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Abstract Some properties of conditionally independent random variables are stud-
ied. Conditional versions of generalized Borel-Cantelli lemma, generalized Kolmogo-
rov’s inequality and generalized Hájek-Rényi inequality are proved. As applications,
a conditional version of the strong law of large numbers for conditionally indepen-
dent random variables and a conditional version of the Kolmogorov’s strong law of
large numbers for conditionally independent random variables with identical condi-
tional distributions are obtained. The notions of conditional strong mixing and condi-
tional association for a sequence of random variables are introduced. Some covariance
inequalities and a central limit theorem for such sequences are mentioned.

Keywords Conditional independence · Conditional mixing · Conditional associ-
ation · Conditional Borel-Cantelli lemma · Generalized Kolmogorov inequality ·
Conditional Hájek-Rényi inequality · Conditional strong law of large numbers ·
Conditional central limit theorem · Conditional covariance inequality

1 Introduction

Our aim in this paper is to review the concept of conditional independence and
introduce the notions of conditional strong mixing and conditional association for
sequences of random variables. We discuss some stochastic inequalities and limit
theorems for such sequences of random variables. Earlier discussions on the topic of
conditional independence can be found in Chow and Teicher (1978) and more recently
in Majerak et al. (2005).
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442 B. L. S. Prakasa Rao

2 Conditional independence of events

Let (�,A, P) be a probability space. A set of events A1, A2, . . . , An are said to be
independent if

P

⎛
⎝

k⋂
j=1

Ai j

⎞
⎠ =

k∏
j=1

P(Ai j ) (1)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n, 2 ≤ k ≤ n.

Definition 1 The set of events A1, A2, . . . , An are said to be conditionally indepen-
dent given an event B with P(B) > 0 if

P

⎛
⎝

k⋂
j=1

Ai j |B
⎞
⎠ =

k∏
j=1

P(Ai j |B) (2)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n, 2 ≤ k ≤ n.

The following examples (cf. Majerak et al. 2005) show that the independence of
events does not imply conditional independence and that the conditional independence
of events does not imply their independence.

Example 1 Let � = {1, 2, 3, 4, 5, 6, 7, 8} and pi = 1/8 be the probability assigned
to the event {i}. Let A1 = {1, 2, 3, 4} and A2 = {3, 4, 5, 6}. Let B = {2, 3, 4, 5}. It is
easy to see that the events A1 and A2 are independent but not conditionally independent
given the event B.

Example 2 Consider an experiment of choosing a coin numbered {i} with probabil-
ity pi = 1/n, 1 ≤ i ≤ n from a set of n coins and suppose it is tossed twice. Let
pi

0 = 1/2i be the probability for tails for the i th coin. Let A1 be the event that tail
appears in the first toss, A2 be the event that tail appears in the second toss and Hi

be the event that the i th coin is selected. It can be checked that the events A1 and A2
are conditionally independent given Hi but they are not independent as long as the
number of coins n ≥ 2.

3 Conditional independence of random variables

Let (�,A, P) be a probability space. Let F be a sub-σ -algebra of A and let IA denote
the indicator function of an event A.

Definition 2 The set of events A1, A2, . . . , An are said to be conditionally indepen-
dent given F or F-independent if

E

⎛
⎝

k∏
j=1

IAi j
|F

⎞
⎠ =

k∏
j=1

E(IAi j
|F) a.s. (3)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n, 2 ≤ k ≤ n.
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Conditional Stochastic models 443

For the definition of conditional expectation of a measurable function X given a
σ -algebra F , see Doob (1953).

Remark 1 If F = {�,�}, then the above definition reduces to the usual definition of
stochastic independence for random variables. If F = A, then the Eq. (3) reduces to
the product of A-measurable functions on both sides.

Let {ζn, n ≥ 1} be a sequence of classes of events. The sequence is said to be
conditionally independent given F if for all choices Am ∈ ζkm where ki �= k j for
i �= j,m = 1, 2, . . . , n and n ≥ 2,

E

⎛
⎝

k∏
j=1

IA j |F
⎞
⎠ =

k∏
j=1

E(IA j |F) a.s. (4)

For any set of real valued random variables X1, X2, . . . , Xn defined on (�,A, P),
let σ(X1, X2, . . . , Xn) denote the smallest σ -algebra with respect to which they are
measurable.

Definition 3 A sequence of random variables {Xn, n ≥ 1} defined on a probability
space (�,A, P) is said to be conditionally independent given a sub-σ -algebra F or
F-independent if the seqeunce of classes of events ζn = σ(Xn), n ≥ 1 are condition-
ally independent given F .

It can be checked that a set of random variables X1, X2, . . . , Xn defined on a prob-
ability space (�,A, P) are conditionally independent given a sub-σ -algebra F if and
only if for all (x1, x2, . . . , xn) ∈ Rn,

E

(
n∏

i=1

I[Xi ≤ xi ]|F
)

=
n∏

i=1

E(I[Xi ≤ xi ]|F) a.s.

Remark 2 Independent random variables {Xn, n ≥ 1} may lose their independence
under conditioning. For instance, let {X1, X2} be Bernoulli trials with probability of
success p with 0 < p < 1. Let S2 = X1 + X2. Then P(Xi = 1|S2 = 1) > 0, i = 1, 2
but P(X1 = 1, X2 = 1|S2 = 1) = 0. On the other hand, dependent random variables
may become independent under conditioning, that is, they become conditionally inde-
pendent. This can be seen from the following discussion.

Let {Xi , i ≥ 1} be independent positive integer-valued random variables. Then
the sequence {Sn, n ≥ 1} is a dependent sequence where Sn = X1 + · · · + Xn . Let
us consider the event [S2 = k] with positive probability for some positive integer k.
Check that

P(S1 = i, S3 = j |S2 = k) = P(S1 = i |S2 = k)P(S3 = j |S2 = k).

Hence the random variables S1 and S3 are conditionally independent given S2. If we
interpret the subscript n of Sn as “time”, “past and future are conditionally independent
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444 B. L. S. Prakasa Rao

given the present”. This property holds not only for sums Sn of independent random
variables but also when the random sequence {Sn, n ≥ 1} forms a time homogeneous
Markov chain (cf. Chow and Teicher 1978).

Remark 3 (i) A sequence of random variables {Xn, n ≥ 1} defined on a probability
space (�,A, P) is said to be exchangeable if the joint distribution of every finite sub-
set of k of these random variables depends only upon k and not on the particular subset.
It can be proved that the sequence of random variables {Xn, n ≥ 1} is exchangeable
if and only if the random variables are conditionally independent and identically dis-
tributed for a suitably chosen sub-σ -algebra F of A (cf. Chow and Teicher 1978,
p. 220). If a random variable X is independent of a sequence of independent and
identically distributed random variables {Xn, n ≥ 1}, then the sequence {Yn, n ≥ 1}
where Yn = X + Xn forms an exchangeable sequence of random variables and hence
conditionally independent.

(ii) Another example of a conditionally independent sequence is discussed in
Prakasa Rao (1987) (cf. Gyires 1981). This can be described as follows. Let θ(k)h, j , 1 ≤
h, j ≤ p, 1 ≤ k ≤ n be independent real valued random variables defined on a
probability space (�,A, P). Let {η j , j ≥ 0} be a homogeneous Markov chain de-
fined on the same space with state space {1, . . . , p} and a nonsingular transition ma-
trix A = ((ahj )). We denote this Markov chain by {A}. Define ψk = θ

(k)
ηk−1,ηk for

1 ≤ k ≤ n. The sequence of random variables {ψk, 1 ≤ k ≤ n} is said to be defined
on the homogeneous Markov chain {A}. Let F be the sub-σ -algebra generated by the
seqence {η j , j ≥ 0}. It is easy to check that the random variables {ψk, 1 ≤ k ≤ n}
are conditionally independent, in fact, F-independent.

4 Conditional Borel-Cantelli lemma

Majerak et al. (2005) proved the following conditional version of Borel-Cantelli
lemma.

Theorem 1 Let (�,A, P) be a probability space and let F be a sub-σ -algebra of A.
The following results hold.

(i) Let {An, n ≥ 1} be a sequence of events such that
∑∞

n=1 P(An) < ∞. Then∑∞
n=1 E(IAn |F) < ∞ a.s.

(ii) Let {An, n ≥ 1} be a sequence of events and let A = {ω : ∑∞
n=1 E(IAn |F) <

∞} with P(A) < 1. Then, only finitely many events from the sequence {An ∩ A,
n ≥ 1} hold with probability one.

(iii) Let {An, n ≥ 1} be a sequence of F-independent events and let A = {ω :∑∞
n=1 E(IAn |F) = ∞}. Then P(lim sup An) = P(A).

We will now obtain a conditional version of the Borel-Cantelli lemma due to Petrov
(2004). For simplicity, we write P(A|F) for EF (IA) in the following discussion.

Let A1, A2, . . . be a sequence of events and

A =
{
ω :

∞∑
n=1

P(An|F) = ∞
}
. (5)
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Let H be an arbitrary F-measurable function. Define

αH = lim inf
n→∞

∑
1≤i<k≤n(P(Ai Ak |F)− H P(Ai |F)P(Ak |F))

(
∑n

k=1 P(Ak |F))2 . (6)

Observe that

2
∑

1≤i<k≤n

P(Ai Ak |F) =
n∑

i,k=1

P(Ai Ak |F)−
n∑

k=1

P(Ak |F) a.s (7)

and

2
∑

1≤i<k≤n

P(Ai |F)P(Ak |F) =
(

n∑
k=1

P(Ak |F)
)2

−
n∑

k=1

(P(Ak |F))2 a.s. (8)

Hence

2αH = lim inf

⎡
⎣

⎛
⎝

n∑
i,k=1

P(Ai Ak |F)
⎞
⎠

(
n∑

k=1

P(Ak |F)
)−2

−
(

n∑
k=1

P(Ak |F)
)−1

− H

+ H

(
n∑

k=1

(P(Ak |F))2
) (

n∑
k=1

P(Ak |F)
)−2

⎤
⎦ a.s. (9)

Since (P(Ak |F))2 ≤ P(Ak |F) a.s. for every k ≥ 1, it follows that the second and
fourth terms on the right-hand side of the above equation converge to zero as n → ∞
on the set A. It is easy to see that

(
n∑

k=1

P(Ak |F)
)2

≤
n∑

i,k=1

P(Ai Ak |F) a.s. (10)

by Cauchy-Schwarz inequality (cf. Petrov 2004). Hence, it follows that

2αH ≥ 1 − H a.s. (11)

on the set A.
For any integer m ≥ 1, let

β
(m)
H = lim inf

n→∞

∑
m≤i<k≤n(P(Ai Ak |F)− H P(Ai |F)P(Ak |F))(∑n

k=m P(Ak |F)
)2 . (12)

It can be shown that

αH = β
(m)
H (13)
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on the set A following the arguments given in Petrov (2004).
Following the inequality in Chung and Erdös (1952), it can be shown that, for every

m < n,

P

(
n⋃

k=m

Ak |F
)

≥ (
∑n

k=m P(Ak |F))2∑n
i,k=m P(Ai Ak |F) a.s. (14)

Furthermore

n∑
i,k=m

P(Ai Ak |F) =
n∑

k=m

P(Ak |F)+ 2
∑

m≤i<k≤n

P(Ai Ak |F)

=
n∑

k=m

P(Ak |F)+ T1 + T2 (15)

where

T1 = 2
∑

m≤i<k≤n

(P(Ai Ak |F)− H P(Ai |F)P(Ak |F)) (16)

and

T2 = 2H
∑

m≤i<k≤n

P(Ai |F)P(Ak |F). (17)

It follows, by arguments given in Petrov (2004), that

T2

(
∑n

k=m P(Ak |F))2 → H a.s. as n → ∞ (18)

on the set A. Relations (14) and (15) imply that

P

(
n⋃

k=m

Ak |F
)

≥
⎡
⎣

(
n∑

k=m

P(Ak |F)
)−1

+ T1

(
n∑

k=m

P(Ak |F)
)−2

+ T2

(
n∑

k=m

P(Ak |F)
)−2

⎤
⎦

−1

a.s. (19)

on the set A. Let n → ∞ keeping m fixed. Then it follows that

P

( ∞⋃
k=m

Ak |F
)

≥
[

H + lim inf
n→∞ T1

(
n∑

k=m

P(Ak |F)−2

)]−1

a.s. (20)
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on the set A. Applying the relation (13), we obtain that

P

( ∞⋃
k=m

Ak |F
)

≥ (H + 2αH )
−1 a.s. (21)

on the set A. Let Bm = ∪∞
k=m Ak . Then we get that

P(Bm |F) ≥ (H + 2αH )
−1 a.s. (22)

on the set A for every m ≥ 1. Since the set Bm decreases as m increases, it follows
that

lim P(Bm |F) = P

( ∞⋂
m=1

Bm |F
)

a.s. (23)

and

lim sup An =
∞⋂

m=1

∞⋃
k=m

Ak =
∞⋂

m=1

Bm .

Hence

P(lim sup An|F) ≥ (H + 2αH )
−1 a.s. (24)

on the set A = {ω : ∑∞
n=1 P(An|F) = ∞}.

As a consequence of the above observations, we have the following theorem which
is a conditional version of the generalized Borel-Cantelli lemma due to Petrov (2004).

Theorem 2 Let (�,A, P) be a probability space and let F be a sub-σ - algebra of
A. Let A1, A2, . . . be a sequence of events and let A = {ω : ∑∞

n=1 P(An|F) = ∞}.
Let H be any F-measurable function. Define

αH = lim inf
n→∞

∑
1≤i<k≤n(P(Ai Ak |F)− H P(Ai |F)P(Ak |F))

(
∑n

k=1 P(Ak |F))2 . (25)

Then

P(lim sup An|F) ≥ 1

H + 2αH
a.s. (26)

on the set A.

We now obtain another version of a conditional generalized Borel-Cantelli lemma
due to Kochen and Stone (1964) following the method of Yan (2004).
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Theorem 3 Let (�,A, P) be a probability space and let F be a sub-σ - algebra of A.
Let A1, A2, . . . be a sequence of events and A = {ω : ∑∞

n=1 P(An|F) = ∞}. Then

P(An, n ≥ 1 infinitely often |A)
≥ lim sup

n→∞
(
∑n

k=1 P(Ak |F))2∑n
i,k=1 P(Ai Ak |F) a.s

= lim sup
n→∞

∑
1≤i≤k≤n P(Ai |F)P(Ak |F)∑

1≤i≤k≤n P(Ai Ak |F) a.s. (27)

In particular, if {An, n ≥ 1} are pairwise F-independent or F-negatively correlated
events, that is, P(Ai Ak |F)− P(Ai |F)P(Ak |F) ≤ 0, for every 1 ≤ i �= k, then

P(An, n ≥ 1 infinitely often |A) = 1. (28)

Proof Let an = (
∑n

k=1 P(Ak |F))2, bn = ∑n
i,k=1 P(Ai Ak |F). Then, on the set

A, limn→∞ an = ∞ a.s. The inequality (14) implies that limn→∞ bn = ∞ a.s. on the
set A. From the relation (14) and the fact that

�n
i,k=m+1 P(Ai Ak |F) ≤ bn − bm a.s., (29)

we get that

P

( ∞⋃
k=m+1

Ak |F
)

= lim
n→∞ P

(
n⋃

k=m+1

Ak |F
)

≥ lim sup
n→∞

(
√

an − √
am)

2

bn − bm
= lim sup

n→∞
an

bn
a.s. (30)

on the set A. Letting m → ∞,we get the inequality in (27). Since
∑∞

k=1 P(Ak |F) =
∞ a.s on the set A, and since

(
n∑

k=1

P(Ak |F)
)2

≤ 2
∑

1≤i≤k≤n

P(Ai |F)P(Ak |F)+
n∑

k=1

P(Ak |F),

it follows that

lim
n→∞

∑n
k=1 P(Ak |F)∑

1≤i≤k≤n P(Ai |F)P(Ak |F) = 0 a.s. (31)

on the set A. Thus the equality in (27) holds. 
�
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5 Generalized Kolmogorov inequality

Majerak et al. (2005) proved a conditional version of Kolmogorov’s inequality and
derived a conditional version of Kolmogorov’s strong law of large numbers for a
sequence of conditionally independent random variables. We will now derive a con-
ditional version of Generalized Kolmogorov’s inequality due to Loève (1977), p. 275.
We assume that the conditional expectations exist and the conditional distributions
exist as regular conditional distributions in the following discussion (cf. Chow and
Teicher 1978).

Theorem 4 Let {Xk, 1 ≤ k ≤ n} be a set of F-independent random variables with
EF [|Xk |r ] < ∞, 1 ≤ k ≤ n for some r ≥ 1 where EF (Z) denotes the condi-
tional expectation of a random variable Z given a sub-σ -algebra F . For an arbitrary
F-measurable random variable ε > 0 a.s., let Sk = X1 + · · · + Xk, k ≥ 1 and let

C =
[

max
1≤k≤n

|Sk − EF Sk | ≥ ε

]
.

Then

εr P(C |F) ≤ EF [|Sn − EF Sn|r IC ] ≤ EF [|Sn − EF Sn|r ] a.s. (32)

We will prove now a lemma which will be used in the proof of the above theorem.

Lemma 1 Let X and Y be F-independent random variables such that EF |X |r < ∞
and EF |Y |r < ∞ where r ≥ 1. Then, for any event A ∈ σ(X),

EF [|X − EF X + Y − EF Y |r IA] ≥ EF [|X − EF X |r IA].

Proof Let the conditional distribution of X − EF X given F be denoted by FF
X−EF X

and the conditional distribution of Y − EF Y given F be denoted by FF
Y−EF Y

.Observe
that

|x − EF X |r = |EF (x − EF X + Y − EF Y )|r
≤ EF [|x − EF X + Y − EF Y )|r ] (33)

by Jensen’s inequality for conditional expectations. Hence

EF [|X − EF X + Y − EF Y |r IA]
=

∫
A

dFF
X−EF X (x)

∫ ∞

−∞
|x − EF X + y − EF Y )|r dFF

Y−EF Y (y)

≥
∫

A
|x − EF X |r dFF

X−EF X (x) = EF [|X − EF X |r IA]. (34)


�
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Remark 4 It is easy to see that the above lemma holds if X is a sum of F-independent
random variables X1, X2, . . . , Xk,Y is a sum of F-independent random variables
Xk+1, . . . , Xn and A ∈ σ(X1, X2, . . . , Xk). We will use the above lemma in this
form.

Proof of Theorem 4 Let

τ = inf{k : |Sk − EF Sk | ≥ ε, 1 ≤ k ≤ n},

Ak = C ∩ [τ = k],

and

Rk = Xk+1 + · · · + Xn .

Note that

EF [|Sn − EF Sn|r IAk ] = EF [|Sk + Rk − EF Sk − EF Rk |r IAk ]
= EF [|Sk − EF Sk + Rk − EF Rk |r IAk ]
≥ EF [|Sk − EF Sk |r IAk ] (by Lemma 1)

≥ εr P(Ak |F). (35)

Summing over k = 1, 2, . . . , n on both sides of the above inequality, we get that

EF [|Sn − EF Sn|r ] ≥ EF [|Sn − EF Sn|r IC ]

= EF
[
|Sn − EF Sn|r

n∑
k=1

IAk

]

=
n∑

k=1

EF [|Sn − EF Sn|r IAk ]

≥
n∑

k=1

εr P(Ak |F) (by Eq. 35)

= εr P(C |F). (36)

Hence

εr P(C |F) ≤ EF [|Sn − EF Sn|r IC ] ≤ EF [|Sn − EF Sn|r ].

As a consequence of Theorem 4, we have the following corollary.

Corollary 1 Let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be a triangular array of random vari-
ables such that the random variables {Xnk, 1 ≤ k ≤ kn} are F-independent for every
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Conditional Stochastic models 451

n ≥ 1. Let Snk = Xn1 + · · · + Xnk, 1 ≤ k ≤ kn . Suppose that EF [|Xnk |r ] < ∞ for
1 ≤ k ≤ kn, n ≥ 1 for some r ≥ 1. Further suppose that

EF [
|Snkn − EF Snkn |r

]
→ 0

almost surely as n → ∞. Then, for every F-measurable positive random variable ε,

P

(
max

1≤k≤kn
|Snk − EF Snk | ≥ ε|F

)
→ 0

almost surely as n → ∞.

Conditional Hájek-Rényi Inequality
The following result gives a conditional version of the Hájek-Rényi inequality (cf.
Hájek and Rényi 1955) which in turn generalizes the conditional Kolmogorov inequal-
ity in Majerak et al. (2005).

Theorem 5 Let {Xk, 1 ≤ k ≤ m} be a set of F-independent random variables with
EF [X2

k ] < ∞, 1 ≤ k ≤ m where EF (Z) denotes the conditional expectation of a
random variable Z given a sub-σ -algebra F . For an arbitrary F-measurable random
variable ε > 0 a.s., let Sk = X1 + · · · + Xk, k ≥ 1 and let

C =
[

max
n≤k≤m

ck |Sk − EF Sk | ≥ ε

]

where ck, 1 ≤ k ≤ m is a non-decreasing sequence of positive F-measurable random
variables a.s. Then, for any positive integers 1 ≤ n ≤ m,

ε2 P(C |F)≤c2
n

n∑
k=1

EF [Xk − EF (Xk)]2+
m∑

k=n+1

c2
k EF [Xk − EF (Xk)]2 a.s. (37)

Proof Without loss of generality, assume that EF (Xk) = 0, 1 ≤ k ≤ m.Let ε > 0 a.s.
be an arbitrary F-measurable random variable and let A = {maxn≤k≤m ck |Sk | ≥ ε}.
Let

τ = inf{k : ck |Sk | ≥ ε, n ≤ k ≤ m}.

Observe that the random variable τ takes the values n, . . . ,m on the set A. Let Ar =
A ∩ [τ = r ], n ≤ r ≤ m. Let

ζ =
m−1∑
k=n

S2
k (c

2
k − c2

k+1)+ c2
m S2

m . (38)
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Then

EF [ζ ] =
m−1∑
k=n

(c2
k − c2

k+1)E
F (S2

k )+ c2
m EF (S2

m)

= c2
n

n∑
k=1

EF [X2
k ] +

m∑
k=n+1

c2
k EF [X2

k ]. (39)

The last equality follows from the F-independence of the random sequence Xi , 1 ≤
k ≤ m. We have to prove that

ε2
m∑

r=n

P(Ar |F) ≤ EF [ζ ]. (40)

Observe that

EF [ζ ] ≥ EF [ζ IA] =
m∑

r=n

EF [ζ IAr ]. (41)

Furthermore

EF [ζ IAr ] =
m−1∑
k=n

(c2
k − c2

k+1)E
F (S2

k IAr )+ c2
m EF (S2

m IAr ). (42)

In addition, we note that, for any k such that r ≤ k ≤ m,

EF [S2
k IAr ] = EF [(Sr + Sk − Sr )

2 IAr ]
≥ EF [S2

r IAr ]
≥ ε2

c2
r

P(Ar |F). (43)

The second inequality in the above follows from the fact that the random variables
Sr IAr and Sk − Sr are F-independent for r ≤ k ≤ m. Combining the inequalities in
(41) to (43), we obtain (40) proving the conditional Hájek-Rényi inequality. 
�
Remark 5 As corollaries to Theorem 5, we can obtain the following results.
(i) If we choose n = 1 and c1 = c2 = · · · = cm = 1, then we get the conditional
version of Kolmogorov’s inequality proved in Theorem 3.4 of Majerak et al. (2005).
If we choose ck = 1/k, k = n + 1, . . . ,m, then we obtain the inequality

ε2 P

([
max

n≤k≤m

|Sk − EF (Sk)|
k

≥ ε

]
|F

)

≤
∑n

k=1 EF [Xk − EF (Xk)]2

n2 +
m∑

k=n+1

EF [Xk − EF (Xk)]2

k2 a.s. (44)
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(ii) Letting m → ∞ in Theorem 5, it can be seen that

ε2 P

([
sup
n≤k

ck |Sk − EF (Sk)| ≥ ε

]
|F

)

≤ c2
n

n∑
k=1

EF [Xk − EF (Xk)]2 +
∞∑

k=n+1

c2
k EF [Xk − EF (Xk)]2 a.s. (45)

Choosing ck = 1
k , k ≥ 1 in the above inequality, we get that

ε2 P

([
sup
n≤k

|Sk − EF (Sk)|
k

≥ ε

]
|F

)

≤
∑n

k=1 EF [Xk − EF (Xk)]2

n2 +
∞∑

k=n+1

EF [Xk − EF (Xk)]2

k2 a.s. (46)

(iii) Let {Xk, 1 ≤ k} be a set of F-independent random variables with EF [X2
k ] <∞, k ≥ 1. Suppose that

∞∑
k=1

EF [Xk − EF Xk]2

k2 < ∞ a.s. (47)

From the inequality obtained in (45), it follows that for any F-measurable random
variable ε > 0 a.s.,

ε2 P

([
sup
n≤k

|Sk − EF (Sk)|
k

≥ ε

]
|F

)
→ 0 a.s. (48)

as n → ∞. Hence

P

(
lim

n→∞
Sn − EF (Sn)

n
= 0|F

)
= 1 a.s. (49)

This result is derived in Theorem 3.5 of Majerak et al. (2005) as a consequence of the
conditional Kolmogorov inequality.

6 Conditional strong law of large numbers

We now obtain a generalized version of the conditional Kolmogorov’s strong law of
large numbers proved in Majerak et al. (2005).

Let {Xn, n ≥ 1} be a sequence of F-independent random variables with EF |Xn −
EF Xn|r < ∞, n ≥ 1 for some r ≥ 1. Let Sn = X1 + · · · + Xn, n ≥ 1. From the
elementary inequality
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∣∣∣∣∣
n∑

k=1

a2
k

∣∣∣∣∣
r

≤ nr−1
n∑

k=1

|ak |2r (50)

for any sequence of real numbers ak, 1 ≤ k ≤ n whenever r ≥ 1, it follows that

EF |Sn − EF Sn|2r ≤ nr−1
n∑

k=1

EF |Xk − EF Xk |2r a.s. (51)

whenever r ≥ 1.

Theorem 6 If {Xn, n ≥ 1} is a sequence of F-independent random variables such
that

∞∑
n=1

EF |Xn − EF Xn|2r

nr+1 < ∞ a.s (52)

for some r ≥ 1. Then, conditionally on F ,

Sn − EF Sn

n
→ 0 a.s as n → ∞. (53)

Proof Without loss of generality, we assume that EF Xk = 0, k ≥ 1. Note that
EF (Sn) = 0. For an arbitrary F-measurable random variable ε > 0, let

Dk = {ω : |Sn| > nε, n ∈ [2k, 2k+1)}. (54)

From the definition of the set Dk, it follows that |Sn| > ε2k for some 2k ≤ n < 2k+1.
Hence, by the Generalized Kolmogorov’s inequality proved in Theorem 4, it follows
that

(ε2k)2r P(Dk |F) ≤ EF |S2k+1 |2r

≤ (2k+1)r−1
2k+1∑
n=1

EF |Xn|2r (55)

for every k ≥ 1. Hence

∞∑
k=0

P(Dk |F) ≤ 1

ε2r

∞∑
k=0

2(k+1)(r−1)

22kr

2k+1∑
n=1

EF |Xn|2r a.s

= 1

ε2r

∞∑
n=1

EF |Xn|2r
∑

k:2k+1≥n

2(k+1)(r−1)

22kr
a.s. (56)
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Let kn be the smallest integer k such that 2k+1 ≥ n. It is easy to check that

∑

k:2k+1≥n

2(k+1)(r−1)

22kr
≤ cr

1

nr+1 (57)

for some positive constant cr . Therefore

∞∑
k=0

P(Dk |F) ≤ cr

ε2r

∞∑
n=1

EF |Xn|2r

nr+1 a.s. (58)

and the last term is finite a.s. by assumption. Hence, by the conditional Borel-Cantelli
lemma stated earlier (cf. Theorem 1) due to Majerak et al. (2005), it follows that, for an
arbitrary F-measurable random variable ε > 0 a.s., the conditional probability of the
event that |Sn| > nε holds infinitely often given F is equal to zero. Hence, conditional
on F ,

Sn

n
→ 0 a.s. as n → ∞.

Suppose X and Y are two random variables defined on a probability space (�,A, P)
and F is a nonempty sub-σ -algebra of A. The random variables X and Y are said to
have identical conditional distributions if

EF (IX≤a) = EF (IY≤a) a.s.

for −∞ < a < ∞. As a special case of the above theorem, we obtain the following
conditional version of the strong law of large numbers for F-independent random
variables with identical conditional distributions. This was also proved in Majerak
et al. (2005). 
�

Theorem 7 Let {Xn, n ≥ 1} be a sequence of F-independent random variables with
identical conditional distributions. Then, conditional on F ,

lim
n→∞

Sn

n
= Y a.s

if and only if EF X = Y a.s.

7 Conditional central limit theorem

The following theorem holds for F-conditionally independent random variables with
identical conditional distributions.
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Theorem 8 Let {Xn, n ≥ 1} be a sequence of F-independent random variables with
identical conditional distributions with almost surely positive finite conditional vari-
ance σ 2

F = EF [X1 − EF X1]2. Let Sn = X1 + · · · + Xn . Then

EF
(

exp

{
i t

[
Sn − EF Sn√

nσF

]})
→ exp(−t2/2) a.s. (59)

as n → ∞ for every t ∈ R.

Proof of this result follows by standard arguments. We omit the proof. A more
general version of the conditional central limit theorem for conditionally independent
random variables can be proved under conditional versions of the Lindeberg condition.

8 Conditional strong-mixing

The concept of strong-mixing (or α-mixing ) for sequences of random variables was
introduced by Rosenblatt (1956) to study short range dependence. Let {Xn, n ≥ 1} be
a sequence of random variables defined on a probability space (�,A, P). Suppose
there exists a sequence αn > 0 such that

|P(A ∩ B)− P(A)P(B)| ≤ αn (60)

for all A ∈ σ(X1, . . . , Xk), B ∈ σ(Xk+n, Xk+n+1, . . . ) and k ≥ 1, n ≥ 1. Suppose
thatαn → 0 as n → ∞.Then the sequence is said to be strong-mixing. Note that the set
(X1, X2, . . . , Xk) and (Xk+n, Xk+n+1, . . . ) are approximately independent for large
n. For a survey on mixing sequences and their properties, see Roussas and Ioannides
(1987). Suppose the sequence {Xn, n ≥ 1} is observed at random integer-valued times
{τn, n ≥ 1}. It is not necessarily true that the sequence {Xτn , n ≥ 1} be strong-mixing
even if the original sequence {Xn, n ≥ 1} is strong-mixing. In order to see when the
property of strong-mixing of a sequence is inherited by such subsequences, we have
introduced the notion of mixing strongly in Prakasa Rao (1990) and obtained some
moment inequalities.

In analogy with the concept of conditional independence discussed earlier, we will
now investigate the concept of conditional strong mixing for a sequence of random
variables.

Definition 4 Let (�,A, P) be a probability space and let F be a sub-σ -algebra of
A. Let {Xn, n ≥ 1} be a sequence of random variables defined on (�,A, P). The
sequence of random variables {Xn, n ≥ 1} is said to be conditionally strong-mixing
(F-strong-mixing) if there exists a nonnegative F-measurable random variable αF

n
converging to zero almost surely as n → ∞ such that

|P(A ∩ B|F)− P(A|F)P(B|F)| ≤ αF
n a.s. (61)

for all A ∈ σ(X1, . . . , Xk), B ∈ σ(Xk+n, Xk+n+1, . . . ) and k ≥ 1, n ≥ 1.
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It is clear that this concept generalizes the concept of conditional independence.
From the remarks made above, the property of conditional strong mixing does not
imply strong mixing for a sequence of random variables and vice versa.

An example of a conditionally strong-mixing sequence can be constructed in the fol-
lowing manner. Let {Xn = f (Y (N )n ), n ≥ 1} be a sequence of random variables defined
on a probability space (�,A, P) such that, given N = j, the sequence {Y ( j)

n , n ≥ 1}
is a homogeneous Markov chain with finite state space and positive transition proba-
bilities where N is a positive integer-valued random variable defined on the probability
space (�,A, P). For any fixed j ≥ 1, the Markov chain {Y ( j)

n , n ≥ 1} has a station-
ary distribution. Suppose the initial distribution of the random variable Y ( j)

1 is this

stationary distribution. Then the process {Y ( j)
n , n ≥ 1} is a stationary Markov chain

for every j ≥ 1. Let F be the σ -algebra generated by the random variable N . Then the
sequence {Xn, n ≥ 1} is conditionally strong-mixing, that is, F-strong-mixing. This
can be seen from the fact that, given the event [N = j], the sequence {Y ( j)

n , n ≥ 1} is
strong-mixing with mixing coefficient α( j)

n = r jρ
n
j for some r j ≥ 0 and 0 < ρ j < 1

(cf. Billingsley 1986, p. 375).
The following covariance inequalities hold for F-strong-mixing sequence of ran-

dom variables.

Theorem 9 Let {Xn, n ≥ 1} be F-strong mixing sequence of random variables with
mixing coefficient αF

n defined on a probability space (�,A, P).

(i) Suppose that a random variable Y is measurable with respect to the
σ(X1, . . . , Xk) and bounded by an F-measurable function C and Z is another
random variable measurable with respect to the σ(Xk+n, Xk+n+1, . . . ) bounded
by an F-measurable function D. Then

|EF [Y Z ] − EF [Y ]EF [Z ]| ≤ 4C DαF
n a.s. (62)

(ii) Suppose that a random variable Y is measurable with respect to the
σ(X1, . . . , Xk) and EF [Y 4] is bounded by a F-measurable function C and Z is
another random variable measurable with respect to the σ(Xk+n, Xk+n+1, . . . )

and EF [Z4] is bounded by a F-measurable function D. Then

|EF [Y Z ] − EF [Y ]EF [Z ]| ≤ 8(1 + C + D)[αF
n ]1/2 a.s. (63)

Definition 5 Let (�,A, P) be a probability space and let F be a sub-σ -algebra of
A. A sequence of random variables {Xn, n ≥ 1} defined on (�,A, P) is said to be
F-stationary or conditionally stationary if the joint distribution of (Xt1 , . . . , Xtk ) con-
ditioned on F is the same as the joint distribution of (Xt1+r , . . . , Xtk+r ) conditioned
on F a.s. for all 1 ≤ t1 < · · · < tk ≤ ∞, r ≥ 1.

As a consequence of the above theorem, the following central limit theorem can be
proved.
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Theorem 10 Let {Xn, n ≥ 1} be a F-stationary and F-strong mixing sequence of
random variables, with mixing coefficient αF

n = O(n−5) almost surely, defined on
a probability space (�,A, P) with EF [X1] = 0 a.s. and EF [X12

n ] < ∞ a.s. Let
Sn = X1 + · · · + Xn . Then

n−1 EF [Sn]2 → σ 2
F ≡ EF [X2

1] + 2
∞∑

k=1

EF [X1 Xk+1] a.s. (64)

and the series converges absolutely almost surely. If σF > 0 almost surely, then

EF [ei t Sn/(σF
√

n)] → e−t2/2 a.s as n → ∞. (65)

Proofs of Theorems 9 and 10 in the conditional framework follow the proofs given
in Billingsley (1986) subject to necessary modifications. We omit the proofs.

Remark 6 The conditions in Theorems 9 and 10 can be weakened further but we do
not go into the details here. The notion of φ-mixing can also be generalized to a
conditional framework in an analogous way.

9 Conditional association

Let X and Y be random variables defined on a probability space (�,A, P) with
E(X2) < ∞ and E(Y 2) < ∞. Let F- be a sub-σ -algebra of A. We define the
conditional covariance of X and Y given F or F-covariance as

CovF (X,Y ) = EF [(X − EF X)(Y − EF Y )].

It easy to see that F-covariance reduces to the ordinary concept of covariance when
F = {�,�}. A set of random variables {Xk, 1 ≤ k ≤ n} is said to be F-associated
if, for any coordinatewise non-decreasing functions h, g defined on Rn,

CovF (h(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0 a.s.

A sequence of random variables {Xn, n ≥ 1} is said to be F-associated if every finite
subset of the sequence {Xn, n ≥ 1} is F-associated.

An example of a F-associated sequence {Xn, n ≥ 1} is obtained by defining Xn =
Z +Yn, n ≥ 1 where Z and Yn, n ≥ 1 are F-independent random variables as defined
in Sect. 3. It can be shown by standard arguments that

CovF (X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
HF (X,Y )dx dy a.s.

where

HF (x, y) = EF [I(X≤x,Y≤y)] − EF [I(X≤x)]EF [I(Y≤y)].
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Let X and Y be F-associated random variables. Suppose that f and g are almost
everywhere differentiable functions such that ess supx | f ′(x)| < ∞, ess supx |g′(x)|<
∞, EF [ f 2(X)] < ∞ a.s. and EF [g2(Y )] < ∞ a.s. where f ′ and g′ denotes the
derivatives of f and g respectively whenever they exist. Then it can be shown that

CovF ( f (X), g(Y )) =
∫ ∞

−∞

∫ ∞

−∞
f ′(x)g′(y)HF (x, y)dx dy a.s. (66)

and hence

∣∣∣CovF ( f (X), g(Y ))
∣∣∣ ≤ ess sup

x
| f ′(x)|ess sup

y
|g′(y)|CovF (X,Y ) a.s. (67)

Proofs of these results can be obtained following the methods used for the study
of associated random variables. As a consequence of these covariance inequalities,
it should be possible to obtain a central limit theorem for conditionally associated
sequences of random variables following the methods in Newman (1984). Note that
F-association does not imply association and vice versa. For results on associated
random variables, see Prakasa Rao and Dewan (2001) and Roussas (1999).

10 Remarks

As it was pointed out earlier, conditional independence does not imply independence
and vice versa. Hence one does have to derive limit theorems under conditioning if
there is a need for such results even though the results and proofs of such results
may be analogous to those under the non-conditioning set up. This was one of the
reasons for developing results for conditional sequences in the earlier sections. We
have given some examples of stochastic models where such results are useful such
as exchangeable sequences and sequences of random variables defined on a homo-
geneous Markov chain discussed in Remark 3. Another example of a conditionally
strong-mixing sequence is described in Sect. 8. A concrete example where conditional
limit theorems are useful is in the study of statistical inference for non-ergodic models
as discussed in Basawa and Prakasa Rao (1980) and Basawa and Scott (1983). For
instance, if one wants to estimate the mean off-spring θ for a Galton-Watson Branching
process, the asymptotic properties of the maximum likelihood estimator depend on
the set of non-extinction . Conditional limit theorems under a martingale set up have
been used for the study of asymptotic properties for maximum likelihood estimators
of parameters in a stochastic process framework where the Fisher information need
not be additive and might not increase to infinity or might even increase to infinity at
an exponential rate (cf. Basawa and Prakasa Rao 1980; Prakasa Rao 1999a,b; Guttorp
1991).
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