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Abstract A class of rank-based tests is proposed for the two-sample problem with
left-truncated and right-censored data. The class contains as special cases the exten-
sion of log-rank test and Gehan test. The asymptotic distribution theory of the test is
presented. The small-sample performance of the test is investigated under a variety of
situations by means of Mone Carlo simulations.

Keywords Two-sample tests · Left-truncated and right-censored data

1 Introduction

In survival studies, the observed data is typically censored and/or truncated. Left trun-
cation and right censoring together occur naturally in cohort follow-up studies (see
Wang 1991). Hypothesis testing for the comparison of two groups is important in
many situations. Consider the following application:

Example 1 (prevalent cohort data) Suppose that the disease population in a certain
area is a representative sample from a large disease population. The target interest of
a research project is to compare the natural history of the disease (such as acquired
immune deficiency syndrome (AIDS)) for two subgroups of individuals who devel-
oped the disease during the calendar time period (τ1, τ2), τ1 < τ2. Consider the
sampling under which all of the individuals in the area who have experienced an ini-
tial event E1 (such as being diagnosed as HIV-positive) between τ1 and τ2 and have
not experienced a second event E2 (such as AIDS) are recruited at the time τ (τ > τ2)
for a prospective follow-up study. The follow-up study is terminated at τ ∗ (τ ∗ > τ ).
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462 P.-s. Shen

For group i (i = 1, 2), let T ∗
i be the time from the onset of E1 to E2, V ∗

i denote
the time from onset of E1 to τ , and C∗

i denote the time from E1 to censoring. Left
truncation arises because those individuals who have experienced E2 as well as E1
prior to time of recruitment (τ ) are excluded from the cohort. The presence of right
censoring is due to loss to follow-up, or simply to end of study at τ ∗. Clearly, the
calendar time of the potential censoring point must be greater than τ . Therefore, the
relationship C∗

i ≥ V ∗
i is always satisfied. When the only reason of censoring is due

to the end of the study, we have C∗
i = V ∗

i + τ ∗ − τ. Besides, when τ ∗ is sufficiently
large, the only reason of censoring is caused by loss to follow-up.

Example 2 (data on residents of a retirement community) Consider survival data for
elderly residents of a retirement community. Data on ages at death of two subgroups
of individuals, who were in residence during the period τ to τ ∗ were reported. The life
length is left-truncated because an individual must survive to a sufficient age to enter
the retirement community. Individuals who die at an early age are excluded from the
study. The truncation variables V ∗

i ’s are ages at entry, target variables Ti ’s are ages at
death, and censoring variables C∗

i ’s are ages at the end of study at τ ∗. Note that the
relationship C∗

i ≥ V ∗
i is always satisfied.

The Mann–Whitney test (Mann and Whitney 1947) and the Wilcoxon test
(Wilcoxon 1945) are two closely associated nonparametric two-sample tests for the
case of complete data. Extensions of nonparametric two-sample tests have been devel-
oped for the right-censored data. The Gehan test (Gehan 1965) is an extension of the
Mann–Whitney test that allows right-censored data. The log-rank test (Peto and Peto
1972) is an extension of the Mantel–Haenzel test (Mantel and Haenzel 1959). Based
on the integrated weighted difference in Kaplan–Meier estimators (1958), Pepe and
Fleming (1989) proposed a class of distance test for right-censored data. For the case
of randomly left (or right) truncated data, Lagakos et al. (1988) studied a weighted
log-rank test. Bilker and Wang (1989) proposed a semiparametric test for the case
when truncation distribution is parameterized.

In Sect. 2, a class of rank-based test is proposed for the two-sample problem with
left-truncated and right-censored data. The class contains as special cases the exten-
sion of log-rank test (Mantel 1966; Lagakos et al. 1988) and Gehan test (Gehan 1965).
The asymptotic distribution theory of the test is derived using martingale theory. In
Sect. 3, the small-sample performance of the test is investigated under a variety of
situations by means of Mone Carlo simulations.

2 A class of tests

Let (T ∗
i , C∗

i , V ∗
i ) (i = 1, 2) be a continuous random vector from subgroup i such

that (C∗
i , V ∗

i ) is independent of T ∗
i . For subgroup i (i = 1, 2), let Fi , Qi and Gi

denote the distribution function of T ∗
i , C∗

i and V ∗
i , respectively. For left-truncated and

right-censored data, one can observe nothing if T ∗
i < V ∗

i and observe (X∗
i , δ∗

i ), with
X∗

i = min(T ∗
i , C∗

i ) and δ∗
i = I[T ∗

i ≤C∗
i ], if X∗

i ≥ V ∗
i . For any distribution function

H denote the left and right endpoints of its support by aH = inf{t : H(t) > 0}
and bH = inf{t : H(t) = 1}, respectively. Woodroofe (1985) pointed out that if
aGi ≤ min(aFi , aQi ) (i = 1, 2) and bGi ≤ min(bFi , bQi ) (i = 1, 2), then Fi , Qi
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A class of rank-based test 463

and Gi are all identifiable. In this note, for technical convenience, we assume that
aF1 = aF2 = aF , and bF1 = bF2 = bF .

For i = 1, 2, j = 1, . . . , ni , let (Xi j , δi j , Vi j ) denote the left-truncated and right-
censored sample from subgroup i .

For i = 1, 2, let R̂i (u) = ∑ni
j=1 I[Vi j <u≤Xi j ] and Ni (u) = ∑ni

j=1 I[Xi j ≤u,δi j =1].
The nonparametric maximum likelihood estimate (NPMLE) of Fi (x) (Wang 1987) is
given by

F̂i (x) = 1 −
∏

u≤x

[
1 − d�̂i (u)

]
,

where d�̂i (u) = dNi (u)

R̂i (u)
, dNi (u) = Ni (u) − Ni (u−).

The main null hypothesis of interest is H0 : S1(t) = S2(t) for all t , and the alterna-
tive hypothesis can be two-sided Ha : S1(t) �= S2(t) or one-sided (e.g. Ha : S1(t) <

S2(t)), where Si (t) = 1 − Fi (t) (i = 1, 2), Based on d�̂i (u), we define a class of
rank-based statistics as

LW =
√

n1n2

n

[∫ b̂

0
Ŵ (t)d�̂1(t) −

∫ b̂

0
Ŵ (t)d�̂2(t)

]

, (1)

where n = n1 + n2, b̂ = min(b̂1, b̂2), where b̂i = sup{t : Ŝi (t) > 0}, Ŝi (t) (i = 1, 2)

is the product-limit estimate of Si (t) based on the sample from subgroup i , and Ŵ (t)

is a random weight function. Let R̂(t) = R̂1(t)+ R̂2(t). When Ŵ (t) = n
n1n2

R̂1(t)R̂2(t)
R̂(t)

and V ∗
i = 0 (i = 1, 2), the LW test is reduced to the log-rank statistics proposed by

Lagakos et al. (1988). When Ŵ (t) = R̂1(t)R̂2(t)/(n1n2) (i = 1, 2), the Eq. (1) is
equivalent to

√
n1n2

n

n1∑

j=1

n2∑

k=1

U jk

n1n2
,

where

U jk =[X2k≥X1 j ,X1 j >V2k ,δ1 j =1] −I[X2k≤X1 j ,X2k>V1 j ,δ2k=1].

In this case, when V ∗
i = 0 (i = 1, 2), the LW test is reduced to the Gehan (1965) test.

To derive the limiting null distribution of the LW test, we need the following assump-
tions:
(a)

∫ t
aF

1/R∗
i (u) f (u)du → 0 as t → aF , where R∗

i (t) = P(V ∗
i ≤ t ≤ C∗

i ) (i = 1, 2)

and f (t) is the probability density function of T ∗
i .

(b) Let F i (t) (i = 1, 2) denote the complete σ -field generated by

{Vi j , I[Vi j <u≤Xi j ], I[Vi j <Xi j ], δi j I[Vi j <Xi j ≤u], I[Vi j <Xi j ≤s], u ≤ s}.
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The weight function Ŵ (t) is a locally bounded predictable Fi (t−) process with

|Ŵ (t)| ≤ τ [n−1
i R̂i (t)Ŝi (t−)] 1

2 +δ t ∈ (aF , b̂) (2)

for some constants τ and δ, and

sup
aF <t<bF

|Ŵ (t) − W (t)| p−→0,

where W (t) is some deterministic function.
(c) For i = 1, 2 there exists a non-negative function Hi (t), such that

sup
aF <t<bF

∣
∣
∣
∣

[Ŵ (t)]2 I[R̂i (t)>0]
n−1

i R̂i (t)
− Hi (t)

∣
∣
∣
∣

p−→0, ni → ∞.

The following theorem derives the limiting null distribution of the LW test.

Theorem 1 Suppose that b̂ → b such that Si (b) > 0 for i = 1, 2. Under the null
hypothesis H0 : S1(t) = S2(t), assumptions (a), (b) and (c), then

LW
d−→N (0, σ 2),

where

σ 2 = p2

[∫ b

0
H1(t)λ1(t)dt

]

+ p1

[∫ b

0
H2(t)λ2(t)dt

]

.

Proof To prove Theorem 1, we make use of martingale theory and stochastic integral
representation similar to those used in the censored case (see Fleming and Harrington
1991; Anderson et al. 1993).

First, for i = 1, 2, let Mi (t) = Ni (t) − ∫ t
aF

R̂i (s)λi (s)ds, where λi (i = 1, 2)
denote the hazard function of Fi (t) (i = 1, 2). According to the results of Lemma 5
of Lai and Ying (1991), Mi (t), t ∈ (aF , b) is a zero-mean martingale with respect to
the filtration Fi (t). According to theorem 2.6.1 in Fleming and Harrington (1991), the
predictable variation process of Mi (t) is given by

〈Mi (t)〉 =
∫ t

aF

R̂i (s)λi (s)ds.

The LW test can be written as

LW = An + Bn,

where

An =
√

n1n2

n

{

n−1
1

∫ b̂

0
K̂1(t)dM1(t) − n−1

2

∫ b̂

0
K̂2(t)dM2(t)

}
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and

Bn =
√

n1n2

n

{∫ b̂

0
Ŵ (t)I[R̂1(t)>0]λ1(t)dt −

∫ b̂

0
Ŵ (t)I[R̂2(t)>0]λ2(t)dt

}

,

where K̂i (t) = ni Ŵ (t)I[R̂i (t)>0]/R̂i (t) (i = 1, 2).

Let Ui (t) = n
− 1

2
i

∫ t
0 K̂i (s)d Mi (s). Then Ui (t) is a martingale with predictable

variation process

〈Ui (t)〉 =
∫ t

0
[K̂i (s)]2n−1

i R̂i (s)λi (s)ds.

Let p̂i = ni/n. Then

An =
[√

p̂2U1(b̂) −
√

p̂1U2(b̂)

]

.

Next, under the assumption (b), we have

E

[∫ u

aF

[K̂i (t)]2n−1
i R̂i (t)λi (t)dt

]

≤ E

[∫ u

aF

[Ŵ (t)]2 I[R̂i (t)>0]
n−1

i R̂i (t)
λi (t)dt

]

≤ τ 2 E

[∫ u

aF

Ŝi (t−)

Si (t)
fi (t)dt

]

≤ τ 2 Fi (u)

Si (u)
→ 0 as u → aF .

Hence, for any ε > 0,

lim
u↓aF

lim sup
ni →∞

P

(∫ u

aF

[K̂i (t)]2n−1
i R̂i (t)d�i (t) > ε

)

= 0. (3)

Similarly, since E[Ŝi (t)/Si (t)] is bounded for t ∈ (u, b), we have

E

[∫ b̂

u
[K̂i (t)]2n−1

i R̂i (t)λi (t)dt

]

≤ τ 2 E

[∫ b

u

Ŝi (t−)

Si (t)
fi (t)dt

]

≤ τ 2 E

[

sup
t∈(u,b)

Ŝi (t−)

Si (t)

]

×[Si (u) − Si (b)] → 0 as u → b.

Hence, any ε > 0,

lim
u↑b

lim sup
ni →∞

P

(∫ b

u
[K̂i (t)]2n−1

i R̂i (t)d�i (t) > ε

)

= 0. (4)
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Assuming p̂i → pi (i = 1, 2), it follows from (3), (4) and Theorem 5 of Lai and Ying

(1991) that under H0, An
d−→N (0, σ 2).

Next, we show that Bn
p−→0. Under H0, i.e λi (t) = λ(t) (i = 1, 2), it suffices to

show that

lim
n→∞

√
n1n2

n
E

[∫ b̂

0
W (t)(I[R̂1(t)>0] − I[R̂2(t)>0])λ(t)dt

]

= 0.

Note that assumption (b) implies that there exists some constant c and ε such that

|W (t)| ≤ c[R∗
i (t)](1/2)+ε[Si (t−)]1+ε t ∈ (aF , b).

Hence,

E

[∫ b̂

0
W (t)(I[R̂1(t)>0] − I[R̂2(t)>0])λ(t)dt

]

≤ E

[∫ b̂

0
W (t)(I[R̂1(t)>0,R̂2(t)=0] + I[R̂2(t)>0,R̂1(t)=0])λ(t)dt

]

≤ c
∫ b

0
[(R∗

1(t))
1
2 S(t−)P(R̂1(t) = 0) + (R∗

2(t))
1
2 S(t−)P(R̂2(t) = 0)]λ(t)dt.

≤ c
∫ b

0
[P(R̂1(t) = 0) + P(R̂2(t) = 0)] f (t)dt.

Let βi = P(V ∗
i < X∗

i ) for i = 1, 2. Since P(R̂i (t) = 0) = (1 − R∗
i (t)S(t−)/βi )

ni

for i = 1, 2, it suffices to show that

lim
ni →∞

√
ni

∫ b

0

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt = 0.

Based on assumption (a), there exists t0 such that for t ∈ (aF , t0), F(t) < R∗
i (t). Since

R∗
i (t)S(t−) is continuous, we can require that R∗

i (t)S(t−) is increasing in (aF , t0).

Now,

√
ni

∫ b

aF

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt = Cni + Dni ,

where

Cni = √
ni

∫ b

t0

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt,
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and

Dni = √
ni

∫ t0

aF

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt

First,

Cni = √
ni

∫ b

t0

[
P(t < V ∗

i < min(C∗
i , T ∗

i ))

βi

]ni

f (t)dt

≤ √
ni

[
P(t0 < V ∗

i < min(C∗
i , T ∗

i ))

βi

]ni

→ 0 as ni → ∞.

Next, consider a monotone sequence tni = F−1(1/ni
0.5+ε), 0 < ε < 0.5, converge

to aF . For sufficiently large ni , we have

√
ni

∫ tni

aF

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt

≤ √
ni F(F−1(1/ni

0.5+ε)) = 1/ni
ε → 0 as ni → ∞, (5)

and

√
ni

∫ t0

tni

(

1 − R∗
i (t)S(t−)

βi

)ni

f (t)dt ≤ √
ni

(

1 − R∗
i (tni )S(tni −)

βi

)ni

≤ √
ni [1 − F(tni )S(tni −)]ni = √

ni

(

1 − n0.5+ε
i − 1

n1+2ε
i

)ni

→ 0 as ni → ∞.

(6)

By (5) and (6), it follows that Dni → 0. Hence, we have Bn
p−→0 and LW

d−→N (0, σ 2).

The proof is completed.
Under the assumptions (b) and (c), a consistent estimator of σ 2 can be found by

substituting estimators for pi , Hi (t) and �i (t) in σ 2. Thus, a consistent estimator of
σ 2 is given by

σ̂ 2 = p̂2

[∫ b̂

0
Ĥ1(t)d�̂1(t)

]

+ p̂1

[∫ b̂

0
Ĥ2(t)d�̂2(t)

]

,

where Ĥi (t) = ni [Ŵi (t)]2 I[R̂i (t)>0]
R̂i (t)

(i = 1, 2). Based on Theorem 1, we have

limn→∞ LW /σ̂
d−→N (0, 1). Given the nominal level α, for two-sided test, H0

would be rejected if |LW |/σ̂ > zα/2, where zα/2 is the upper α/2 percentile of the
standard normal distribution.

Note that stability constraint (2) requires that Ŵi (t) (i = 1, 2) is a function of R̂1(t)
and R̂2(t). When there is no truncation, (2) is similar to the constraint (3.2) of Pepe and
Fleming (1989). Let πi (t) = R∗

i (t)Si (t−) = P(V ∗
i ≤ t ≤ C∗

i )Si (t−) (i = 1, 2). For
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the log-rank test, Ŵ (t) is akin to a geometric average of the two πi (t)’s estimators, and
satisfy (2). For right-censored data, Fleming and Harrington (1981) and Harrington
and Fleming (1982) proposed a very general class of tests that includes, as special
cases, the log-rank test. Similar to their approach, we can use the following weight
functions:

Ŵ (t) = [Ŝ(t−)]r [1 − Ŝ(t−)]s ŴL(t), (7)

where ŴL(t) = [ n
n1n2

] R̂1(t)R̂2(t)
R̂(t)

, r ≥ 0, s ≥ 0, and Ŝ(t−) is the product-limit estimate

based on the combined sample. Note that a proper choice of (r, s) depends on what
type of alternatives to expect. For example, when two survival curves are close except
for the late times, a test should gives more weight to late times, i.e. (r, s) = (0, 1)

3 Simulations

To evaluate the performance of the LW test, Monte Carlo simulations are carried out to
study the statistical power and the type I error under a variety of situations. The prop-
erties of the LW test are compared by using weight function of R̂1(t)R̂2(t)/(n1n2) (i.e.
the extension of Gehan test) and (7) with (r, s) = (0, 0), (0.5, 0.5), (1, 0), (0, 1). Note
that the (r, s) = (0, 0) corresponds to the weight function of the extension of log-rank
test. The sample sizes are set at n1 = n2 = 100, 200. The number of iterations in each
simulation study is 5,000.

3.1 Estimated Type I error

The goal of the first set of our simulations is to assess the performance of the LW test
under the null hypothesis. Data sets are generated in the following manner:

Situation 1 Both T ∗
1 and T ∗

2 follow an exponential distribution with mean of 5.0. Both
V ∗

1 and V ∗
2 follow an exponential distribution with mean of µg . The C∗

i is defined
by C∗

i = D∗
i + V ∗

i , where D∗
i is independent of V ∗

i and exponentially distributed
with mean of µd . The parameter is set at the combination of µg = 0.25, 2.0, 8.0 and
µd = 0.25, 2.0, 8.0. The estimated Type I error is calculated as the proportion of
5000 repeated random samples in which we reject the null hypothesis at 0.05 signif-
icance level. The estimated Type I error rates are presented in Table 1. Table 1 also
shows the proportion of truncation P(V ∗

i > T ∗
i ) (denoted by pt ) and that of censoring

P(C∗
i < T ∗

i ) (denoted by pc).

Situation 2 The parameters are the same as those used in Situation 1 except that V ∗
i

is uniformly distributed U (0, µg) and D∗
i is a constant with the value of µd . The

estimated Type I error rates are presented in Table 2.
Tables 1 and 2 show that under H0, the LW test performs fairly well. The estimated

Type I errors of all the tests are close to 0.05.
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Table 1 Estimated Type I error for LW test in Situation 1

µg µd ni pt pc (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.25 0.25 100 0.05 0.91 0.052 0.054 0.035 0.054 0.052

0.25 0.25 200 0.05 0.91 0.046 0.044 0.043 0.048 0.045

0.25 2.00 100 0.05 0.68 0.054 0.055 0.038 0.063 0.039

0.25 2.00 200 0.05 0.68 0.045 0.045 0.049 0.043 0.042

0.25 8.00 100 0.05 0.37 0.060 0.055 0.043 0.060 0.058

0.25 8.00 200 0.05 0.37 0.057 0.050 0.053 0.055 0.048

2.00 0.25 100 0.29 0.68 0.056 0.042 0.039 0.058 0.046

2.00 0.25 200 0.29 0.68 0.055 0.057 0.045 0.052 0.046

2.00 2.00 100 0.29 0.51 0.042 0.044 0.048 0.039 0.041

2.00 2.00 200 0.29 0.51 0.046 0.045 0.051 0.044 0.044

2.00 8.00 100 0.29 0.28 0.055 0.038 0.055 0.042 0.039

2.00 8.00 200 0.29 0.28 0.053 0.052 0.052 0.052 0.055

8.00 0.25 100 0.62 0.36 0.050 0.044 0.033 0.046 0.051

8.00 0.25 200 0.62 0.36 0.046 0.048 0.046 0.052 0.050

8.00 2.00 100 0.62 0.27 0.044 0.044 0.044 0.042 0.048

8.00 2.00 200 0.62 0.27 0.046 0.046 0.052 0.044 0.050

8.00 8.00 100 0.61 0.15 0.046 0.056 0.040 0.042 0.060

8.00 8.00 200 0.62 0.15 0.053 0.049 0.052 0.054 0.059

3.2 Estimated statistical power

To study the statistical power of the LW test, we consider the following six situations:

Situation 3 We consider a situation where two survival curves cross. The T ∗
1 follows

an exponential distribution with mean of 5. The T ∗
2 follows an exponential ditribution

with mean of 2. However, if the T ∗
2 is greater than 3.0, then T ∗

2 is re-generated to follow
an exponential distribution with mean of 50. The V ∗

i is generated from an exponential
distribution with mean of µg . For i = 1, 2, C∗

i = D∗
i + V ∗

i , where D∗
i is independent

of V ∗
i and exponentially distributed with mean of µd . The parameter (µg, µd) is set

at the combination of µg = 0.5, 2.0, 8.0 and µd = 20, 10, 5. The statistical power of
the LW test in this situation is presented in Table 3.

Situation 4 The parameters are the same as those used in Situation 3 except that V ∗
i

is uniformly distributed U (0, µg) and D∗
i is a constant with the value of µd . The

statistical power of the LW test in this situation is presented in Table 4.
Tables 3 and 4 also show the proportion of truncation 1 − βi (denoted by pti ) and

the proportion of censoring P(C∗
i ≤ T ∗

i ) (denoted by pci ).
Tables 3 and 4 show that the cross of survival curve can leave the log-rank test

(i.e (r, s) = (0, 0)) little power to detect the overall difference. However, when the
truncation is severe and censoring is light (e.g. in Table 3: pt1 = 0.62, pt2 = 0.71;
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Table 2 Estimated Type I error for LW test in Situation 2

µg µd ni pt pc (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.25 0.25 100 0.03 0.92 0.062 0.051 0.050 0.062 0.047

0.25 0.25 200 0.03 0.92 0.058 0.049 0.047 0.054 0.046

0.25 2.00 100 0.03 0.65 0.061 0.062 0.063 0.060 0.053

0.25 2.00 200 0.03 0.65 0.054 0.055 0.055 0.052 0.048

0.25 8.00 100 0.03 0.20 0.063 0.050 0.055 0.054 0.061

0.25 8.00 200 0.03 0.20 0.055 0.047 0.049 0.047 0.053

2.00 0.25 100 0.18 0.78 0.062 0.054 0.063 0.066 0.047

2.00 0.25 200 0.18 0.78 0.054 0.049 0.055 0.057 0.047

2.00 2.00 100 0.18 0.55 0.061 0.053 0.048 0.052 0.063

2.00 2.00 200 0.18 0.55 0.055 0.050 0.051 0.051 0.054

2.00 8.00 100 0.18 0.16 0.063 0.063 0.057 0.055 0.063

2.00 8.00 200 0.18 0.16 0.055 0.054 0.053 0.052 0.053

8.00 0.25 100 0.50 0.47 0.053 0.038 0.061 0.057 0.053

8.00 0.25 200 0.50 0.47 0.049 0.047 0.055 0.052 0.051

8.00 2.00 100 0.50 0.33 0.044 0.049 0.062 0.053 0.039

8.00 2.00 200 0.50 0.33 0.046 0.052 0.054 0.050 0.044

8.00 8.00 100 0.50 0.10 0.053 0.047 0.038 0.045 0.039

8.00 8.00 200 0.50 0.10 0.051 0.048 0.045 0.048 0.045

pc1 = 0.08, pc2 = 0.14), the power of the log-rank test is high since T ∗
1 and T ∗

2
(left-truncated by V ∗

1 and V ∗
2 ) are observable only after the crossing of two curves.

When truncation is not severe, the LW test with weight function of Ŝ(t−)ŴL(t) (i.e.
(r, s) = (1, 0)) has greater power than the other tests.

Situation 5 We consider a situation where two survival curves are close except for
the late times. The T ∗

1 follows an exponential distribution with mean of 4.0. The T ∗
2

follows an exponential ditribution with mean of 3.5. However, if the T ∗
2 is greater than

5.0, then T ∗
2 is re-generated to follow an exponential distribution with mean of 50.

The distributions of V ∗
i and C∗

i are same as those used in Situation 1. The statistical
power of the LW test in this situation is presented in Table 5.

Situation 6 The parameters are the same as those used in Situation 5 except that V ∗
i

is uniformly distributed U (0, µg) and D∗
i is a constant with the value of µd . The

statistical power of the LW test in this situation is presented in Table 6.
Tables 5 and 6 show that the LW test with weight function of [1 − Ŝ(t−)]ŴL(t)

(i.e. (r, s) = (0, 1)) has greater power than the other test. This is a typical situation
where a test should give more weight to late times than to early times. When truncation
is not severe, the power of both log-rank and Gehan tests is low.
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Table 3 Power of the LW test in Situation 3

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 20 100 0.09 0.18 0.20 0.19 0.205 0.981 0.461 0.470 0.906

0.5 20 200 0.09 0.18 0.20 0.19 0.356 1.000 0.712 0.785 1.000

0.5 10 100 0.09 0.30 0.20 0.24 0.466 0.982 0.082 0.662 0.981

0.5 10 200 0.09 0.30 0.20 0.24 0.778 1.000 0.107 0.928 1.000

0.5 5 100 0.09 0.46 0.20 0.31 0.778 0.980 0.134 0.828 0.992

0.5 5 200 0.09 0.46 0.20 0.31 0.966 1.000 0.235 0.983 1.000

2.0 20 100 0.28 0.14 0.49 0.17 0.168 0.740 0.952 0.060 0.098

2.0 20 200 0.28 0.14 0.49 0.17 0.308 0.956 1.000 0.066 0.183

2.0 10 100 0.28 0.24 0.49 0.20 0.042 0.788 0.603 0.128 0.306

2.0 10 200 0.28 0.24 0.49 0.20 0.051 0.979 0.902 0.216 0.578

2.0 5 100 0.28 0.36 0.49 0.24 0.177 0.815 0.116 0.334 0.632

2.0 5 200 0.28 0.36 0.49 0.24 0.332 0.987 0.214 0.562 0.905

8.0 20 100 0.62 0.08 0.71 0.14 0.962 0.212 1.000 0.386 0.742

8.0 20 200 0.62 0.08 0.71 0.14 1.000 0.381 1.000 0.674 0.956

8.0 10 100 0.62 0.13 0.71 0.17 0.706 0.264 1.000 0.172 0.334

8.0 10 200 0.62 0.13 0.71 0.17 0.954 0.498 1.000 0.315 0.584

8.0 5 100 0.62 0.19 0.71 0.19 0.218 0.332 0.831 0.053 0.054

8.0 5 200 0.62 0.19 0.71 0.19 0.430 0.596 0.992 0.066 0.070

Table 4 Power of the LW test in Situation 4

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 20 100 0.05 0.02 0.12 0.15 0.120 0.993 0.825 0.384 0.935

0.5 20 200 0.05 0.02 0.12 0.15 0.129 1.000 0.960 0.524 1.000

0.5 10 100 0.05 0.13 0.12 0.18 0.355 0.997 0.184 0.587 0.962

0.5 10 200 0.05 0.13 0.12 0.18 0.567 1.000 0.352 0.846 1.000

0.5 5 100 0.05 0.35 0.12 0.20 0.972 0.998 0.624 0.970 0.992

0.5 5 200 0.05 0.35 0.12 0.20 1.000 1.000 0.888 1.000 1.000

2.0 20 100 0.18 0.02 0.37 0.15 0.256 0.837 1.000 0.080 0.235

2.0 20 200 0.18 0.02 0.37 0.15 0.508 0.987 1.000 0.103 0.466

2.0 10 100 0.18 0.11 0.37 0.18 0.027 0.845 0.673 0.144 0.419

2.0 10 200 0.18 0.11 0.37 0.18 0.063 0.989 0.961 0.336 0.693

2.0 5 100 0.18 0.30 0.37 0.20 0.671 0.952 0.118 0.763 0.835

2.0 5 200 0.18 0.30 0.37 0.20 0.909 1.000 0.178 0.958 1.000

8.0 20 100 0.51 0.01 0.68 0.14 1.000 0.117 1.000 0.999 1.000

8.0 20 200 0.51 0.01 0.68 0.14 1.000 0.181 1.000 1.000 1.000

8.0 10 100 0.51 0.07 0.68 0.17 1.000 0.137 1.000 0.895 1.000

8.0 10 200 0.51 0.07 0.68 0.17 1.000 0.225 1.000 1.000 1.000

8.0 5 100 0.51 0.18 0.68 0.19 0.664 0.298 0.993 0.234 0.732

8.0 5 200 0.51 0.18 0.68 0.19 0.922 0.521 1.000 0.066 1.000
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Table 5 Power of the LW test in Situation 5

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 20 100 0.11 0.15 0.13 0.23 0.147 0.092 0.690 0.058 0.075

0.5 20 200 0.11 0.15 0.13 0.23 0.268 0.132 0.936 0.054 0.098

0.5 10 100 0.11 0.26 0.13 0.30 0.065 0.094 0.328 0.038 0.106

0.5 10 200 0.11 0.26 0.13 0.30 0.068 0.156 0.538 0.048 0.151

0.5 5 100 0.11 0.40 0.13 0.40 0.054 0.120 0.176 0.076 0.132

0.5 5 200 0.11 0.40 0.13 0.40 0.066 0.168 0.288 0.098 0.190

2.0 20 100 0.33 0.11 0.37 0.20 0.463 0.058 0.954 0.150 0.052

2.0 20 200 0.33 0.11 0.37 0.20 0.728 0.058 0.997 0.244 0.062

2.0 10 100 0.33 0.19 0.37 0.25 0.218 0.046 0.718 0.084 0.044

2.0 10 200 0.33 0.19 0.37 0.25 0.381 0.086 0.934 0.103 0.049

2.0 5 100 0.33 0.30 0.37 0.31 0.067 0.074 0.201 0.056 0.074

2.0 5 200 0.33 0.30 0.37 0.31 0.071 0.104 0.362 0.049 0.086

8.0 20 100 0.67 0.06 0.64 0.16 0.944 0.058 1.000 0.478 0.530

8.0 20 200 0.67 0.06 0.64 0.16 0.995 0.052 1.000 0.756 0.786

8.0 10 100 0.67 0.10 0.64 0.19 0.782 0.047 0.976 0.327 0.272

8.0 10 200 0.67 0.10 0.64 0.19 0.968 0.054 1.000 0.564 0.442

8.0 5 100 0.67 0.15 0.64 0.23 0.380 0.043 0.736 0.156 0.078

8.0 5 200 0.67 0.15 0.64 0.23 0.605 0.046 0.972 0.249 0.112

Situation 7 We consider a situation where two survival curves have proportional haz-
ard functions. The T ∗

1 and T ∗
2 follow an exponential distribution with mean 4 and 6,

respectively. The V ∗
1 and V ∗

2 follow an exponential distribution with mean of µg . The
D∗

1 and D∗
2 are exponentially distributed with mean of µd . The parameter (µg, µd)

was set at the combination of µg = 0.5, 2.0, 8.0 and µd = 2, 8, 12. The statistical
power of the LW test in this situation is presented in Table 7.

Situation 8 The parameters are the same as those used in Situation 7 except that V ∗
i

is uniformly distributed U (0, µg) and D∗
i is a constant with the value of µd . The

statistical power of the LW test in this situation is presented in Table 8.
Tables 7 and 8 show that the log-rank test has the highest power among all the

tests. In this situation, the hazard rates for the two groups are proportional and earlier
research has shown that the log-rank test has optimal power in right censoring situ-
ation. Given truncation proportion, the power of all the tests decrease as censoring
proportion increases.

4 Application to a real data set

In this section, the proposed test is illustrated through the Channing House data from
Hyde (1977, 1980). Channing House is a retirement center located in Palo Atlo, Cali-
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Table 6 Power of the LW test in Situation 6

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 20 100 0.06 0.01 0.07 0.16 0.412 0.100 0.993 0.125 0.054

0.5 20 200 0.06 0.01 0.07 0.16 0.681 0.114 1.000 0.149 0.062

0.5 10 100 0.06 0.08 0.07 0.20 0.117 0.118 0.636 0.069 0.070

0.5 10 200 0.06 0.08 0.07 0.20 0.145 0.171 0.847 0.078 0.123

0.5 5 100 0.06 0.27 0.07 0.22 0.195 0.171 0.182 0.214 0.190

0.5 5 200 0.06 0.27 0.07 0.22 0.280 0.363 0.378 0.289 0.347

2.0 20 100 0.21 0.01 0.24 0.16 0.763 0.050 1.000 0.225 0.095

2.0 20 200 0.21 0.01 0.24 0.16 0.962 0.068 1.000 0.376 0.061

2.0 10 100 0.21 0.06 0.24 0.19 0.292 0.053 0.837 0.143 0.048

2.0 10 200 0.21 0.06 0.24 0.19 0.478 0.115 1.000 0.275 0.054

2.0 5 100 0.21 0.23 0.24 0.22 0.057 0.138 0.164 0.072 0.102

2.0 5 200 0.21 0.23 0.24 0.22 0.114 0.169 0.277 0.125 0.261

8.0 20 100 0.57 0.00 0.60 0.15 1.000 0.073 1.000 0.916 0.970

8.0 20 200 0.57 0.00 0.60 0.15 1.000 0.187 1.000 0.997 1.000

8.0 10 100 0.57 0.03 0.60 0.18 0.971 0.095 1.000 0.753 0.925

8.0 10 200 0.57 0.03 0.60 0.18 1.000 0.190 1.000 0.989 1.000

8.0 5 100 0.57 0.12 0.60 0.20 0.469 0.049 0.868 0.241 0.226

8.0 5 200 0.57 0.12 0.60 0.20 0.776 0.072 0.998 0.445 0.383

fornia. Data on ages at death of 462 individuals (97 males and 365 females), who were
in residence during the period January 1964 (τ ) to July 1975 (τ ∗), has been reported
by Hyde (1977, 1980). There were 97 males (subgroup 1: 46 died, 51 were censored)
and 365 females (subgroup 2: 130 died, 235 were censored). A distinctive feature of
these individuals was that all were covered by a health care program provided by the
center which allowed for easy access to medical care without any additional financial
burden to the residents. The lifetime of interest T ∗

i is the age in months at death, the
truncation time V ∗

i is the age in months at entry into the community, and the censor-
ing time C∗

i is the age in months at the end of study on July 1, 1975, or the age at
withdrawal from the community. For male, the risk set of the observation X1 j = 777
and X1k = 781 are very small (R̂1(777) = 2 and R̂1(781) = 1). Thus, testing was
performed conditionally given that T ∗

i > 781 (i = 1, 2). We apply T̂H and log-rank
tests to compare the survival functions for male and female. The null hypothesis is
H0 : S∗

1 (t) = S∗
2 (t) and the alternative hypothesis is Ha : S∗

1 (t) < S∗
2 (t), where

S∗
i (t) = P(T ∗

i > t |T ∗
i > 781) (i = 1, 2). The p-values of the L̂W test are computed

using the weight function in Table 1. Next, we discuss about the conditions of Theorem
2.1. Since the weight function ŴL(t) satisfy (2.2), it follows that conditions (b) and
(c) of Theorem 1 are satisfied by the weight functions in Table 1. Next, for female
subgroup, we have an observation of (X2 j , δ2 j , V2 j ) = (804, 0, 746). Although a
similar observation is not found for male subgroup, it seems reasonable to assume that
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Table 7 Power of the LW test in Situation 7

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 12 100 0.11 0.22 0.08 0.31 0.717 0.596 0.628 0.708 0.574

0.5 12 200 0.11 0.22 0.08 0.31 0.914 0.883 0.845 0.888 0.856

0.5 8 100 0.11 0.30 0.08 0.40 0.646 0.540 0.558 0.636 0.490

0.5 8 200 0.11 0.30 0.08 0.40 0.884 0.841 0.790 0.866 0.820

0.5 2 100 0.11 0.59 0.08 0.69 0.338 0.292 0.264 0.318 0.276

0.5 2 200 0.11 0.59 0.08 0.69 0.575 0.561 0.452 0.576 0.506

2.0 12 100 0.33 0.17 0.25 0.25 0.719 0.591 0.640 0.688 0.592

2.0 12 200 0.33 0.17 0.25 0.25 0.906 0.822 0.885 0.891 0.827

2.0 8 100 0.33 0.22 0.25 0.32 0.635 0.514 0.572 0.609 0.522

2.0 8 200 0.33 0.22 0.25 0.32 0.871 0.780 0.820 0.861 0.796

2.0 2 100 0.33 0.45 0.25 0.56 0.323 0.314 0.246 0.311 0.304

2.0 2 200 0.33 0.45 0.25 0.56 0.613 0.548 0.502 0.579 0.524

8.0 12 100 0.67 0.08 0.57 0.14 0.636 0.562 0.602 0.626 0.588

8.0 12 200 0.67 0.08 0.57 0.14 0.922 0.840 0.897 0.921 0.888

8.0 8 100 0.67 0.11 0.57 0.18 0.583 0.502 0.543 0.576 0.522

8.0 8 200 0.67 0.11 0.57 0.18 0.903 0.814 0.864 0.905 0.857

8.0 2 100 0.67 0.22 0.57 0.32 0.328 0.281 0.264 0.318 0.278

8.0 2 200 0.67 0.22 0.57 0.32 0.574 0.518 0.478 0.567 0.473

Table 8 Power of the LW test in Situation 8

µg µd ni pt1 pc1 pt2 pc2 (0,0) (1,0) (0,1) (0.5,0.5) Gehan

0.5 12 100 0.06 0.05 0.04 0.13 0.887 0.775 0.741 0.873 0.802

0.5 12 200 0.06 0.05 0.04 0.13 1.000 0.980 1.000 1.000 0.984

0.5 8 100 0.06 0.12 0.04 0.25 0.769 0.763 0.674 0.771 0.760

0.5 8 200 0.06 0.12 0.04 0.25 0.988 0.960 0.922 0.985 0.925

0.5 2 100 0.06 0.57 0.04 0.69 0.561 0.410 0.347 0.363 0.360

0.5 2 200 0.06 0.57 0.04 0.69 0.840 0.761 0.753 0.767 0.742

2.0 12 100 0.21 0.04 0.15 0.11 0.819 0.743 0.771 0.812 0.805

2.0 12 200 0.21 0.04 0.15 0.11 0.985 0.964 0.966 0.970 0.973

2.0 8 100 0.21 0.10 0.15 0.22 0.800 0.735 0.754 0.800 0.774

2.0 8 200 0.21 0.10 0.15 0.22 0.956 0.943 0.946 0.951 0.939

2.0 2 100 0.21 0.47 0.15 0.61 0.397 0.383 0.363 0.376 0.322

2.0 2 200 0.21 0.47 0.15 0.61 0.764 0.665 0.750 0.681 0.666

8.0 12 100 0.57 0.02 0.45 0.07 0.788 0.654 0.741 0.762 0.734

8.0 12 200 0.57 0.02 0.45 0.07 0.999 0.942 0.978 0.987 0.978

8.0 8 100 0.57 0.06 0.45 0.15 0.745 0.639 0.732 0.700 0.720

8.0 8 200 0.57 0.06 0.45 0.15 0.937 0.880 0.924 0.927 0.903

8.0 2 100 0.57 0.26 0.45 0.40 0.351 0.310 0.279 0.342 0.343

8.0 2 200 0.57 0.26 0.45 0.40 0.623 0.611 0.581 0.602 0.587
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Table 9 p-values of L̂W test for Channing House data set

(0,0) (1,0) (0,1) (0.5,0.5) Gehan

Test statistics −0.020 −0.008 −0.035 −0.023 −0.019

p-value 0.492 0.497 0.486 0.491 0.492

there exists t0 such that P(V ∗
i < t < C∗

i ) > 0 for t ∈ (781, t0). Hence, condition (a)
of Theorem 1 is satisfied, i.e.

∫ t
781 1/R∗

i (u) f ∗(u)du → 0 as t → 781, where f ∗(t) is
the conditional probability density function of T ∗

i given T ∗
i > 781.

The results are listed in Table 9. The p-values of the L̂W test indicate that there is
no significant difference between the two conditional survival functions.

5 Discussions

For left-truncated and right-censored data, we have demonstrated how the asymptotic
distribution of the LW can be used to conduct the hypothesis test for the two-sam-
ple problem. Simulation has shown that the true size of of the LW test, in moderate
sample size and under varying amounts of censorship and truncation, is indeed accu-
rately approximated by the normal significance level based on this asymptotic theory.
Simulation results also show that censoring, truncation mechanism and distribution of
lifetime variables all influence the relative power of the LW test. By Bn and integration
by parts, it follows that the LW test should be consistent against stochastic ordering
(i.e. S1(t) < S2(t), see Fleming and Harrington 1991) if

−
∫ bF

aF

[�1(t) − �2(t)]dW (t) > 0.

For the weight function (7), since Ŵ (t)
p−→[S(t−)]r [1 − S(t−)]sπ1(t)π2(t)/

[p1π1(t)+ p2π2(t)], it follows that the LW test with weight function of (r, s) = (1, 0)

is consistent against stochastic ordering if πi (t) is decreasing. On the other hand if
(r > 0, s > 0) or πi (t) is not decreasing, the consistency under stochastic ordering
can fail.
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