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Abstract A class of regression model selection criteria for the data with correlated
errors is proposed. The proposed class of selection criteria is an estimator of weighted
prediction risk. In addition, the proposed selection criteria are the generalizations of
several commonly used criteria in statistical analysis. The theoretical and asymptotic
properties for the class of criteria are established. Further, in the medium-sample case,
the results based on a simulation study are quite consistent with the theoretical ones.
The proposed criteria perform well in the simulations. Several applications are also
given for a variety of statistical models.

Keywords Generalized cross-validation · Model selection · Nonparametric
regression · Penalized likelihood · Smoothing splines

1 Introduction

Consider first the model

yi = f (t i )+ εi , i = 1, . . . , n,

where yi are observations at design points t i = (ti1, ti2, . . . , tid), f (t) is a function and
εi are zero mean, uncorrelated random errors with common variance σ 2. Let the fitted
values f̂ (λ) = H(λ) y, where λ = (λ1, . . . , λk) is a set of parameters associated with
the selection of the model, H(λ) is an n × n matrix and y = (y1, y2, . . . , yn)

t . The
parameter λ j could be the subset of the discrete index set {1, 2, . . . , p j } (see Li 1987)
or the selection parameter in multivariate nonparametric regression, for examples, the
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bandwidth in kernel-based method or the smoothing parameter in smoothing splines.
Therefore, λ j is assumed to be non-negative.

Obtaining a good selection parameter estimate is very crucial in the fitting process.
One approach is to use the prediction risk

P(λ) = E

⎧
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E
{
[ y� − f̂ (λ)]t [ y� − f̂ (λ)]

}

n
, (1)

as an object function (see Eubank 1988, p. 17), where y� = (y�1, y�2, . . . , y�n)
t is a

vector of n new observations, y�i = f (t i ) + ε�i , and where ε�i , uncorrelated with
ε1, . . . , εn , are zero mean random errors. The estimator of the prediction risk can be
used as a criterion for selecting a sensible value of λ. For instance, the commonly used
GCV (generalized cross validation) criterion (Craven and Wahba 1979),

GCV(λ) = σ̂ 2(λ)

[1 − µ1(λ)]2 ,

is nearly an unbiased estimator of the prediction risk in some cases (see Eubank 1988,
Theorem 2.1), where σ̂ 2(λ) = yt [I − H(λ)]t [I − H(λ)] y/n is the variance estimate,
[1−µ1(λ)]2 is a penalty function for the smoothness of the fit, µ1(λ) = Tr[H(λ)]/n,
and Tr(A) is the trace of the matrix A. The other predictive mean square error (see
Wahba 1990, p. 55), closely related to the previous one, is

T (λ) =
∣
∣
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n
=

[
f̂ (λ)− f

]t [
f̂ (λ)− f

]

n
, (2)

where f = [ f (t1), f (t2), . . . , f (tn)]t . As indicated by the weak GCV theorem in the
paper of Craven and Wahba, the minimizers of expected values of the predictive mean
square error T (λ) and GCV criterion are asymptotically equal in term of the prediction
risk E[T (λ)]. Since E[T (λ)] = P(λ)−σ 2, the minimizers of the two prediction risks,
E[T (λ)] and P(λ), are the same provided that σ 2 is known. In addition to GCV, other
related criteria have the form, σ̂ 2(λ)/φ[µ1(λ)], where φ(·) is a penalty function for the
smoothness of the fit. Commonly used selection criteria can be obtained by employing
different choices of φ, including

1. (Craven and Wahba 1979) GCV : φ(µ1) = (1 − µ1)
2, (3)

2. (Akaike 1974) AIC : φ(µ1) = exp(−2µ1), (4)

3. (Rice 1984) T : φ(µ1) = 1 − 2µ1, (5)

4. (Akaike 1970) FPE : φ(µ1) = 1 − µ1

1 + µ1
, (6)
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5. (Shibata 1981) nS(λ) : φ(µ1) = 1

1 + 2µ1
, (7)

6. (Hocking 1976) U (λ) : φ(µ1) = (1 − µ1)(n − 1 − nµ1)

n − 1
, (8)

(also see Eubank 1988, pp. 38–40). The selection parameter might be sensitive to the
presence of correlation in the errors. The breakdown of several popular data-driven
smoothing parameter selection methods was indicated by Opsomer et al. (2001) in non-
parametric regression. Further, the prediction risk given in the expression (1) might
not be sensible for random errors with unequal variances. For example, suppose
the variance of ε�i is much larger than the one of ε�j . This implies the error in pre-
dicting y�j by f (t j ) might be more “predictable” than the one in predicting y�i by
f (t i ), owing to the smaller variation. Thus, it seems to be sensible to assign different
weights, which are related to the variances of the random errors, to the predictive
errors. In next section, a weighted prediction risk and its estimator are proposed
for cases where the errors of assumed model are correlated. The theoretical pro-
perties of the proposed estimator are also provided. Several examples, including a
simulation study to justify the theoretical results and the applications of the pro-
posed estimator to a variety of statistical models, are presented in Sects. 3 and 4,
respectively. Finally, a concluding discussion is given in Sect. 5. The computational
details for the proposed criteria and some supplementary material can be found at
http://web.thu.edu.tw/wenwei/www/papers/aismSupplement.pdf/.

2 Weighted selection criteria

2.1 Weighted predictive mean square error and weighted selection criteria

Assume the n × n variance–covariance matrix of the correlated errors ε =
(ε1, ε2, . . . , εn)

t is Var(ε) = σ 2V−1(α), where α = (α1, . . . , αm) is a set of cor-
relation parameters. Let the fitted values f̂ v = Hv(h) y, where h = (α,λ) =
(h1, . . . , hm+k). Define the weighted prediction risk,

WP(h) = E

⎧
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]t V (α)

[
y� − Hv(λ) y

]}

ψ[V (α)] , (9)

where ψ[V (α)] is a positive function. The choice of ψ(·) reflects the effect of the
matrix V (α) on the weighted prediction risk. Except the sample size, another sensible
choice is ψ[V (α)] = Tr[V (α)]. Thus, when V (α) is an identity matrix, the weighted
prediction risk is also the prediction risk given in the expression (1). When V (α) is
a diagonal matrix with all diagonal elements equal to 1 except that the i th element is
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equal to 0, i.e., no contribution from observation i to the weighted prediction risk,
ψ[V (α)] = n − 1 in this situation might be a better choice than ψ[V (α)] = n. The
other possible choice ofψ(·) is the retained number of principal components of V (α).
The weighted predictive mean square error, which generalizes the one given in the
expression (2), is

WT(h) =

∣
∣
∣

∣
∣
∣ f − f̂ v

∣
∣
∣

∣
∣
∣
2

V (α)

ψ[V (α)] = ( f − f̂ v)
t V (α)( f − f̂ v)
ψ[V (α)] . (10)

When V (α) is a diagonal matrix and ψ[V (α)] = n, WT(h) is the weighted mean
square error discussed in O’Sullivan et al. (1986). If onlyψ[V (α)] = n, WT(h) is the
weighted mean square error in Wang (1998) with the order of the matrix V (α) equal
to one.

The proposed estimator of WP(h) is

W (h) = σ̂ 2
v (h)

φW [µ1v(h)]
, (11)

where

σ̂ 2
v (h) = yt [I − Hv(h)]t V (α) [I − Hv(h)] y

ψ[V (α)] ,

is the variance estimate,

µ1v(h) = Tr[Hv(h)]
ψ[V (α)] ,

is a bounded function, and φW (·) is a penalty function for the smoothness of the fit
satisfying

φW (x) = 1 − 2x + p(x), lim
x→0

p(x)

x2 = c,

and where c is a finite constant. When V (α) is an identity matrix and ψ[V (α)] = n,
the selection criteria given in expressions from (3) to (8) take the form of the
proposed class of weighted selection criteria W (h). In addition, when ψ[V (α)] = n
and φW (x) = (1− x)2, W (h) is the GCV function considered in Wang’s paper, which
corresponds to the one used in Altman (1990).

2.2 Properties of weighted selection criteria

The following theorem and corollary provide theoretical supports for the proposed
selection criteria. The proofs largely follow the GCV theorem (Eubank 1988, Theorem
2.1) and the weak GCV theorem given by Craven and Wahba.
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Theorem 1 Let y = f + ε, f = [ f (t1), . . . , f (tn)]t , and V ar(ε) = σ 2V−1(α) is
an n × n variance–covariance matrix. Denote a positive function

µ2v(h) = Tr
[
H t
v(h)V (α)Hv(h)V−1(α)

]

ψ[V (α)] .

Then,

|WP(h)− {E [W (h)] − r(h)}|
E [W T (h)]

≤ e(h),

where

e(h) = 1

φW [µ1v(h)]

{(∣
∣
∣
∣

p [µ1v(h)]
µ1v(h)

∣
∣
∣
∣ + 2

)

|µ1v(h)| + 1v p [µ1v(h)]
µ2v(h)

}

,

r(h) = 2(1v − 1)µ1v(h)σ 2/φW [µ1v(h)], and where 1v = n/ψ[V (α)].
If the values of e(h) and r(h) are small, the theorem implies that the difference between
E[W (h)] and WP(h) is small relative to the other weighted prediction risk E[WT(h)].
Further, if E[WT(h)] is bounded, W (h) is nearly an unbiased estimator of WP(h)
in this situation. Also, the minimum values of E[WT(h)] and E[W (h)] have similar
properties in term of minimizing the weighted prediction risk E[WT(h)], as indicated
by the following corollary.

Corollary 1 If E[WT(h)] has (at least) one minimizer h∗
n and ψ[V (α)] = O(n),

there exists a sequence of minimizers ĥn of E[W (h)] such that

lim
n→∞

E
[
WT(ĥn)

]

E
[
WT(h∗

n)
] = 1,

under the assumptions that

lim
n→∞µ1v(hn) = 0, lim

n→∞
µ2

1v(hn)

µ2v(hn)
= 0, lim

n→∞
(1v − 1)µ1v(hn)

µ2v(h∗
n)

= 0,

where hn = ĥn or hn = h∗
n.

Both the proofs of Theorem 1 and Corollary 1 are given in the Appendices A and
B, respectively. The condition

lim
n→∞

(1v − 1)µ1v(hn)

µ2v(h∗
n)

= 0,

is not required if either ψ[V (α)] = n or E[WT(h∗
n)] does not tend to zero. The corol-

lary indicates the selection criteria W (h) given in the expression (11) are weighted
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predictive mean-square error (the one given in the expression (10)) criteria. When
V (α) is an identity matrix and φW (x) = (1 − x)2, the corollary is the weak GCV
theorem. Since E[WT(h)] = WP(h) − 1vσ 2, the minimizers of the two prediction
risks, E[WT(h)] and WP(h), are the same given known values of σ 2 and correlation
parameters.

To have the optimal properties, it is not necessary to define µ1v(h) as a function
of Hv(h) through its trace. For instance, if the function µ1v(h) satisfies µ1v(h) −
Tr[Hv(h)]/ψ[V (α)] converging uniformly to 0 or more relaxed condition limn→∞
{µ1v(hn)− Tr[Hv(hn)]/ψ[V (αn)]} = 0, the theorem and corollary still hold, where
hn = (αn,λn). Thus, more flexible choices of µ1v(h) can be made than only through
the trace of Hv(h).

3 Simulations

The purpose of the following simulations is to illustrate that all the selection criteria
given in the expressions from (3) to (8) perform well. In addition, the numerical
results are consistent with the theoretical ones, even in medium-sample case. A range
of scenarios, including different choices of V (α) and noise levels, have been set up
for the simulation study.

3.1 Weighted linear regression

In the simulation, the values of four input variables, X1, X2, X3, X4, were in [0, 1]
and 100 observations were generated from the model

yi = 1 + 2xi1 + 4xi3 + εi , i = 1, . . . , 100,

where εi are zero mean random errors. The errors were generated from both Gaussian
AR(1) and MA(1) processes with the standard deviations of uncorrelated Gaussian
errors, σg , equal to 0.2, 1, and 2. The autocorrelation values at lag 1, ρ(1), for the
Gaussian AR(1) process were −0.8, −0.2, 0.2, and 0.8, while −0.4, −0.2, 0.2, and
0.4 for the Gaussian MA(1) process. For simplicity, assume V (α) = V is known. Two
choices for ψ(V ) were the sample size and retained number of principal components
of the matrix V by including just enough components to explain 90% amount of
the variance. 500 replicates of random errors were generated. For each sample, the
proposed selection criteria and associated weighted predictive mean-square error given
in the expression (9) were computed for all possible models with at least one input
variable, i.e., total 15 possible models. The averages of these quantities can be used to
estimate the expected values of the proposed selection criteria and weighted predictive
mean-square error. The results for the averages corresponding to the true model, i.e.,
the estimates of WP(ĥn) and E

[
W (ĥn)

]
, can be obtained. The selection criteria and

weighted predictive mean-square error produce very similar results, which provide
numerical support for Theorem 1. Since the results under different settings are quite
consistent, Table 1 summarizes parts of these results for Gaussian AR(1) process. The
first number in the parenthesis is the average with ψ(V ) equal to the sample size and
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Table 1 Weighted linear regression and smoothing with Gaussian AR(1) and MA(1) random errors,
respectively

AR(1) MA(1)

ρ(1) = −0.8 ρ(1) = 0.8 ρ(1) = −0.4 ρ(1) = 0.4
σg = 1 σg = 1 σg = 1 σg = 1

WP(h) (1.030,1.688) (1.030,1.688)

GCV (1.036,1.768) (1.032,1.760) (1.001,1.057) (1.002,1.106)

AIC (1.035,1.764) (1.031,1.756) (1.000,1.023) (1.002,1.106)

T (1.037,1.773) (1.033,1.765) (1.001,1.057) (1.002,1.106)

FPE (1.035,1.764) (1.031,1.756) (1.000,1.023) (1.002,1.106)

nS (1.034,1.756) (1.029,1.748) (1.000,1.023) (1.054,1.106)

U (1.037,1.769) (1.032,1.761) (1.001,1.057) (1.002,1.106)

the second number otherwise. On the other hand, since the averages of the proposed
selection criteria and weighted predictive mean-square error attain their minimums as
the postulated model being the true model, the estimate of E[WT(ĥn)]/E[WT(h∗

n)]
is equal to 1.

3.2 Weighted smoothing

In the simulation, 100 observations were generated from the model

yi = sin(2π i/n), i = 1, . . . , 100,

where εi are zero mean random errors. The function was utilized in the simulation study
(Wang 1998, p. 344). The errors were generated from both Gaussian AR(1) and MA(1)
processes with the same variances of uncorrelated Gaussian errors and autocorrelation
values at lag 1 as the ones in the simulation study given in Sect. 3.1. Also, there were two
choices for ψ(V ), as given in the previous simulation study. 100 replicates of random
errors were generated. For each sample, the smoothing spline fit using the B-spline of
degree 3 and a second order penalty (see Eilers and Marx 1996) was computed. The
chosen knots divided the domain of t (0.05π − 2π ) into 20 intervals of equal width.
Then, the proposed selection criteria and weighted predictive mean-square error given
in the expression (9) were computed for the smoothing parameter with values 10,
20, …, 1000. The averages of the proposed selection criteria and weighted predictive
mean-square error were computed. Evaluated at their minimums, the results can be
obtained. Similar to Sect. 3.1, the numbers in the parenthesis are the averages based on
different choices of ψ(V ). The values for different selection criteria and the weighted
predictive mean-square error are quite close. This provides numerical support for
Theorem 1. In addition, the estimated values of E

[
WT(ĥn)

]
/E

[
WT(h∗

n)
]

are quite
close to 1. Note that similar results can be obtained when the domain of t was divided
into 50 intervals of equal width. Since these results under different settings are quite
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consistent, parts of these results, the estimated values of E
[
WT(ĥn)

]
/E

[
WT(h∗

n)
]

for Gaussian MA(1) process, are provided in Table 1.

4 Applications

In the following examples, the proposed weighted selection criteria are applied to a
variety of statistical models.

4.1 Weighted linear regression

Consider the linear model

y = Xβ + ε,

where X = (x1, . . . , x p) is an n × p design matrix and β = (β1, . . . , βp)
t is a p × 1

coefficient vector. For simplicity, assume V (α) = V is known. Let the discrete index
set � = {1, 2, . . . , p} and Xλ = (xi1 , . . . , xil ), where λ = {i1, . . . , il} is a subset
of the index set �. Thus, Hv(λ) = Xλ[X t

λV Xλ]−1 X t
λV and µ1v(λ) = µ2v(λ) =

l/ψ(V ). Further, both e(λ) and r(λ) tend to 0 as n tends to infinity. Therefore, W (λ) is
nearly an unbiased estimator of WP(λ) implied by Theorem 1. As limn→∞(1v−1) =
0, Corollary 1 also holds.

4.2 Weighted smoothing

Suppose the weighted (or generalized) smoothing spline estimate f̂ v is the minimizer
of

( y − f )t V ( y − f )+
k∑

j=1

λ j
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2 , (12)

over the class of all twice differentiable functions (also see Opsomer et al. 2001,
p. 148), where J j are some operators, for examples, the orthogonal projectors given

in chapter 10 of Wahba (1990) or
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2 = ∫ [ ∂2 f (t)

∂t2
j

]2dt j for additive splines (see

Hastie and Tibshirani 1990). Let f (t) = ∑pn
j=1 a j B j (t), where pn is the number of

suitably chosen basis functions, usually at least large enough to ensure the accuracy
of the approximation and B j (t) are basis functions, for example, the commonly used

B-splines (see Green and Silverman 1994, pp. 155–159). Thus, when
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2 =

at P j a, the expression (12) reduces to

( y − Ba)t V ( y − Ba)+
k∑

j=1

λ j at P j a,

123



On regression model selection for the data with correlated errors 299

where B = (b1, . . . , bn)
t = [B j (t i )]i j is an n × pn matrix, a = (a1, . . . , apn )

t

and P j are pn × pn penalty matrices. The estimate of the coefficient a is â(λ) =
(Bt V B + ∑k

j=1 λ j P j )
−1 Bt V y. Then, the minimizer is

f̂ v =
[

f̂v(t1,λ), . . . , f̂v(tn,λ)
]t = B

(

Bt V B +
k∑

j=1

λ j P j

)−1

Bt V y = Hv(λ) y,

where Hv(λ) = [his(λ)]is = B(Bt V B + ∑k
j=1 λ j P j )

−1 Bt V is the hat matrix,
i = 1, . . . , n, s = 1, . . . , n.

Suppose P j are positive-definite matrices with eigenvalues 0 < h∗
j,pn

≤ · · · ≤
h∗

j,2 ≤ h∗
j,1 and 0 ≤ hmin(n,pn) ≤ · · · ≤ h2 ≤ h1 are the eigenvalues of Bt V B. If

hi = O(i−q1), q1 > 1 and the fastest decay rate of the eigenvalues h∗
j,· is h∗

l,pn
=

0(n−q2), q2 < 1/2, Theorem 1 and Corollary 1 hold. The justifications are given in
Appendix C. When Bt V B is nonsingular and there exist generalized eigenvalues hl,i

of (Bt V B)−1x = λ∗ P−1
l x with decay rate O(i−q3), q3 > 1 (see Golub and Van Loan

1993, pp. 466–472), Theorem 1 and Corollary 1 also hold. The detailed justifications
were delegated to the supplementary material. When the matrix V involves a set of
correlation parameters, Theorem 1 and Corollary 1 can be justified alone the lines
given in Appendix C by specifying the decay rate of the eigenvalues of Bt V (α)B.

4.3 Model selection in multivariate linear regression

Consider the linear model

y j = X jβ j + ε j , j = 1, . . . , k,

where y j = (y j1, . . . , y jn j )
t , X j = (x j1, . . . , x j p j ) is an n j × p j design matrix,

β j = (β j1, . . . , β j p j )
t and ε j = (ε j1, ε j2, . . . , ε jn j )

t . Let the discrete index sets
� j = {1, 2, . . . , p j } and Xλ j = (x j i1, . . . , x j il j

), where λ j = {i1, . . . , il j } is a
subset of � j . Thus,

Hv(h) = Xλ

[
X t

λV (α)Xλ

]−1
X t

λV (α),

andµ1(h) = Tr[Hv(h)]/ψ[V (α)], where Xλ = Diag(Xλ1 , . . . , Xλk ) is a
∑k

j=1 n j×
∑k

j=1 l j matrix and σ 2V−1(α) is the variance–covariance matrix of (εt
1, . . . , ε

t
k)

t .

4.4 Generalized ridge regression

Let y = Xβ + ε, where X is an n × pn design matrix and β = (β1, . . . , βpn )
t ,

and where pn ≤ n. The weighted (or generalised) ridge regression estimate of β, the
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minimizer of

( y − Xβ)t V (α)( y − Xβ)+
k∑

j=1

λ jβ
t P jβ,

is [X t V (α)X +∑k
j=1 λ j P j ]−1 X t V (α) y, where P j are nonsingular matrices. Thus,

Hv(h) = X

⎡

⎣X t V (α)X +
k∑

j=1

λ j P j

⎤

⎦

−1

X t V (α).

4.5 Partial splines

Let

yi = xiβ + f (t i )+ εi , i = 1, . . . , n,

(see Eubank 1988, pp. 292–293; Wahba 1990, Chapt. 6) and f (t) = ∑pn
j=1 a j B j (t).

Then, the weighted (or generalized) partial spline estimate f̂ v is the minimizer of

( y − Xβ − f )t V (α)( y − Xβ − f )+
k∑

j=1

λ j
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2 , (13)

where J j are some operators. When
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2 = at P j a, the expression (13) reduces

to

( y − Xβ − Ba)t V (α)( y − Xβ − Ba)+
k∑

j=1

λ j at P j a,

where B = (b1, . . . , bn)
t = [B j (t i )]i j is an n × pn matrix, a = (a1, . . . , apn )

t , and
P j are pn × pn penalty matrices. The estimates of the coefficients a and β are

â(h) =
⎛

⎝Bt V (α)B +
k∑

j=1

λ j P j

⎞

⎠

−1

Bt V (α)
[

y − Xβ̂(h)
]
,

and

β̂(h) = {
X t V (α) [I − H2(h)] X

}−1 X t V (α) [I − H2(h)] y,
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respectively, where

H2(h) = B

⎛

⎝Bt V (α)B +
k∑

j=1

λ j P j

⎞

⎠

−1

Bt V (α).

Then, the minimizer is

f̂ v =
[

f̂v(t1, h), . . . , f̂v(tn, h)
]t = Hv(h) y

= [H1(h)+ H2(h)− H1(h)H2(h)] y,

where

H1(h) = X
{

X t V (α) [I − H2(h)] X
}−1 X t V (α) [I − H2(h)] .

4.6 Spline smoothing in generalized linear models

Consider the standard generalized linear model in which each component of the
response vector has a distribution taking the form

f (yi ; θi , φ) = exp

[
yiθi − m(θi )

u(φ)
+ c(yi , φ)

]

,

where θi and φ are scalar parameters, and m(·), u(·) and c(·) are specific functions.
The dependence of the response yi on the associated explanatory variable t i can be
modeled through the link function d(·), where θi = d(α + β t t i ), and where α and β

are some parameters. The natural link and u(φ) = 1 are assumed hereafter. In addition,
let θi = f (t i ) and f = Ba. The estimate of f is the minimizer of the penalized
negative logarithm of the likelihood,

n∑

i=1

{m [ f (t i )] − yi f (t i )} + 1

2

k∑

j=1

λ j
∣
∣
∣
∣J j ( f )

∣
∣
∣
∣2

=
n∑

i=1

m [(Ba)i ] − yt Ba + 1

2

k∑

j=1

λ j at P j a,

where (Ba)i is the i th element of the vector Ba. The estimate of the coefficient vector
a can be written as a weighted penalized least squares estimate,

â(λ) =
⎛

⎝Bt M̈ B +
k∑

j=1

λ j P j

⎞

⎠

−1

Bt M̈ z,
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where M̈ = diag{m ′′ [ât
(λ)b1], . . . ,m

′′ [ât
(λ)bn]} and z = Bâ(λ) + M̈

−1
( y − ṁ),

and where ṁ = {m ′ [ât
(λ)b1], . . . ,m

′ [ât
(λ)bn]}t . Let

Hv(λ) = M̈
1/2

B

⎛

⎝Bt M̈ B +
k∑

j=1

λ j P j

⎞

⎠

−1

Bt M̈
1/2
,

andµ1v(λ) = Tr[Hv(λ)]/ψ(M̈). The smoothing parameter estimate is the minimizer

of the following function, ‖M̈
−1/2

( y − ṁ)‖2/φW [µ1v(λ)]. When φW (x) = (1 − x)2

and ψ(M̈) = n, the above function is the GCV function (see Wahba 1990, p. 113;
O’Sullivan et al. 1986).

4.7 Nonparametric regression incorporating the information provided by derivatives

The derivatives of a function can provide useful information for data analysis. To
incorporate the information provided by the derivatives, consider first the model

y(d)i = f (d)(ti )+ ε
(d)
i , i = 1, . . . , n; d = 0, . . . , k,

where the data, y(d)i , associated with the first k’th derivatives of the function f (·) are
available, f (d)(·) is the dth order of derivative of the function with f (·) = f (0)(·), and
where ε(d)i are zero mean random errors. Let f (t) = ∑pn

j=1 a j B(0)j (t). The weighted
sum of squares are

k∑

d=0

λd

(
y(d) − B(d)a

)t
V (d)(α)

(
y(d) − B(d)a

)
,

where λ0 = 1, y(d) = (y(d)1 , . . . , y(d)n )t , B(d) = {B(d)j (ti )}i j , σ 2V (d)(α) is the

variance–covariance matrix of the data y(d), and where B(d)j is the dth order of

derivative of the basis function B(0)j with respect to t . The parameters λd play a key
role in controlling the trade-off between zero order derivative information represented
by the weighted residual sum of squares and the information provided by other order
of derivatives. Then,

Hv(h) y

= (⊕k
d=0 B(d))

⎧
⎨

⎩
⊕k

i=0

{

Bt V (0)(α)B +
[

k∑

d=1

λd(B(d))t V (d)(α)B(d)
]}−1

⎫
⎬

⎭

×
[
⊕k

d=0 B(d)V (d)(α)
]

y,

where y = [( y(0))t , . . . , ( y(k))t ]t and ⊕k
i=1 Ai is the Kronecker sum of the matrices

A1, . . . , Ak .
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5 Concluding discussion

As indicated by Theorem 1, all the selection criteria given in the expressions from (3) to
(8) have similar optimal properties in term of the difference between their expected
values and the prediction risk WP(h). Further, Corollary 1 indicates that the minimizers
of E[W (h)] and E[WT(h)] also have similar properties in term of minimizing the
weighted prediction risk. In Sect. 3.1, the correct model can be selected by both the
averages of these selection criteria and the prediction risk WP(h). As illustrated in
Table 1, the numerical results based on the simulated data are quite consistent with the
theoretical results, even in the medium-sample case. In addition, the proposed criteria
have wide applications, as presented in Sect. 4.

When the correlation is parametrically specified, commonly used structures, such
as the ARIMA model, might be employed to fit the data. Thus, the proposed criteria
can be used to estimate both the selection parameters and correlation parameters. For
the correlation not parametrically specified, the analogue criteria can be obtained by
replacing V (α) in the proposed criteria given in the expression (11) with a sensible
non-parametric estimate V̂ . The minimum values of E[WT(λ)] and the expected value
of the analogue criteria still have similar properties in term of minimizing the weighted
prediction risk E[WT(λ)], i.e., a result analogous to Corollary 1. The arguments in
proving the result are similar to the ones given in Corollary 1 of Wei (2005).

There is still room for future research in regression model selection with correlated
errors. Nonparametric modeling and semi-parametric modelling have been widely
used techniques in recent years (see Härdle et al. 2004). The proposed criteria could
be applied to some of these models. The proposed criteria have different sensitivities to
the changes of the selection parameters or correlation parameters. A thorough robust
and sensitivity analysis for different selection criteria could be helpful. The other
issue is about the comparison of different criteria. The characterization of efficiency
associated with a selection criterion is still unclear.

6 Appendix: Proofs

6.1 Appendix A: Proofs of Theorem 1

Based on the formula for the mean of a quadratic form, the expected value of the
weighted predictive mean-square error is

E [WT(h)] = b2(h)+ σ 2µ2v(h),

where b2(h) = {1/ψ[V (α)]} f t [I − Hv(h)]t V (α)[I − Hv(h)] f is the bias term and
σ 2µ2v(h) is the variance term. Similarly,

E [W (h)] = b2(h)+ σ 2 [1v − 2µ1v(h)+ µ2v(h)]
φW [µ1v(h)]

.
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The following shows that the difference between the expected values of the selection
criteria and WP(λ) is close to 0. Denote

r(h) = 2(1v − 1)µ1v(h)σ 2/φW [µ1v(h)].

Then,

E [W (h)] − 1vσ
2 − r(h)

= b2(h)+ σ 2 [1v − 2µ1v(h)+ µ2v(h)] − 1vσ 2φW [µ1v(h)]
φW [µ1v(h)]

− r(h)

= b2(h)+ σ 2µ2v(h)− 1vσ 2 p [µ1v(h)]
φW [µ1v(h)]

.

Further, since WP(h) = E[WT(h)] + 1vσ 2,

W P(h)− {E [W (h)] − r(h)}
E [WT(h)]

= b2(h)+ σ 2µ2v(h)− {
b2(h)+ σ 2µ2v(h)− 1vσ 2 p [µ1v(h)]

}
/φW [µ1v(h)]

b2(h)+ σ 2µ2v(h)

= −2µ1v(h)+ p [µ1v(h)]
φW [µ1v(h)]

+ 1vσ 2 p [µ1v(h)]

φW [µ1v(h)]
[
b2(h)+ σ 2µ2v(h)

] .

Finally, since |µ1v(h)| ≤ M and b2(h) ≥ 0,

|WP(h)− {E [W (h)] − r(h)}|
E [WT(h)]

≤ 1

φW [µ1v(h)]

{(∣
∣
∣
∣

p [µ1v(h)]
µ1v(h)

∣
∣
∣
∣ + 2

)

|µ1v(h)| + 1v p [µ1v(h)]
µ2v(h)

}

= e(h),

where M is some constant.

6.2 Appendix B: Proofs of Corollary 1

By Theorem 1, the following inequality can be obtained,

E [WT(h)] [1 − e(h)] ≤ E [W (h)] − 1vσ
2 − r(h) ≤ E [WT(h)] [1 + e(h)] ,

for all h. Note that r(h) tends to 0 asµ1v(h) tends to 0 andψ[V (α)] = O(n). Thus, the
difference between the expected values of W (h) and the predictive mean-square error
WT(h) is approximately 1vσ 2. Intuitively, this implies the minimizers of E[WT(h)]
and E[W (h)] should be very close and further the corollary holds. The rigorous
justifications are as follows. Since E[W (h∗

n)]−1vσ 2−r(h∗
n) ≤ E[WT(h∗

n)][1+e(h∗
n)]
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and r(h∗
n) tends to 0, there exists N such that at least one minimizer ĥn of E[W (h)]

is in the nonempty set

{
h : E [W (h)] − 1vσ

2 − r(h) ≤ E
[
W (h∗

n)
] − 1vσ

2 − r(h∗
n)
}
,

for n > N . Thus,

E
[
WT(ĥn)

] [
1 − e(ĥn)

]

≤ E
[
W (ĥn)

]
− 1vσ

2 − r(ĥn)

≤ E
[
W (h∗

n)
] − 1vσ

2 − r(ĥn)

≤ E
[
WT(h∗

n)
] [

1 + e(h∗
n)
] +

[
r(h∗

n)− r(ĥn)
]
.

Further,

E
[
WT(ĥn)

]

E
[
WT(h∗

n)
]

≤
[

1 + e(h∗
n)

1 − e(ĥn)

]

+
{

1

E
[
WT(h∗

n)
]

}[
r(h∗

n)− r(ĥn)

1 − e(ĥn)

]

≤
[

1 + e(h∗
n)

1 − e(ĥn)

]

+ |1v − 1|(|µ1v(h∗
n)| + |µ1v(ĥn)|)

|min
{
φW [µ1v(h∗

n)], φW [µ1v(ĥn)]
}
µ2v(h∗

n)|

[
2

1 − e(ĥn)

]

.

As µ1v(hn) and µ2
1v(hn)/µ2v(hn) tend to 0, e(hn), r(hn) and p[µ1v(hn)]/µ2v(hn)

tend to 0. Since (1v − 1)µ1v(hn)/µ2v(h∗
n) tends to 0,

E
[
WT(ĥn)

]

E
[
WT(h∗

n)
] → 1.

6.3 Appendix C: Theorem 1 and Corollary 1 applied to weighted smoothing

Denote Z = V 1/2 B and let Z = U D Q by singular value decomposition, where U
and Q are orthogonal matrices and D is an n × pn matrix whose diagonal entries are
the square roots of the eigenvalues h1, . . . , hmin(n,pn) of Zt Z = Bt V B and with all
other entries equal to 0.

As given in Sect. 6.1., E [WT(λ)] = b2(λ)+ σ 2µ2v(λ), where

ψ(V )b2(λ) = f t [I − Hv(λ)]
t V [I − Hv(λ)] f ,

and ψ(V )µ2v(λ) = Tr
[
H t
v(λ)V Hv(λ)V−1

]
.
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Let si j be the (i, j)th element of the matrix (Dt D + ∑k
j=1 λ j Q P j Qt )−1. Then,

max
i, j

|si j | ≤

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

−1
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
2

= σ−1
pn

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

≤
⎡

⎣σpn (D
t D)+ σpn

⎛

⎝
k∑

j=1

λ j Q P j Qt

⎞

⎠

⎤

⎦

−1

≤ 1
∑k

j=1 λ j h∗
j,pn

,

and

sii ≥ σpn

⎡

⎢
⎣

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

−1
⎤

⎥
⎦

= σ−1
1

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

≥
⎡

⎣σ1(Dt D)+ σ1

⎛

⎝
k∑

j=1

λ j Q P j Qt

⎞

⎠

⎤

⎦

−1

≥ 1

h1 + ∑k
j=1 λ j h∗

j,1

,

where ‖M1‖2 is the matrix 2-norm of the matrix M1 and σn(M1) ≤ σn−1(M1) ≤
· · · ≤ σ2(M1) ≤ σ1(M1) are the singular values (or eigenvalues) of the n × n
symmetric matrix M1. Then,

ψ(V )µ1v(λ) = Tr

⎡

⎢
⎣U D

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

−1

Dt U t

⎤

⎥
⎦

=
min(n,pn)∑

i=1

hi sii
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≤
∑min(n,pn)

i=1 hi
∑k

j=1 λ j h∗
j,pn

≤ c0nq2

min(n,pn)∑

i=1

i−q1

≈ c0c1nq2 ,

and

ψ(V )µ2v(λ) = Tr

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣D

⎛

⎝Dt D +
k∑

j=1

λ j Q P j Qt

⎞

⎠

−1

Dt

⎤

⎥
⎦

2⎫
⎪⎬

⎪⎭

=
min(n,pn)∑

i=1

min(n,pn)∑

j=1

hi h j s
2
i j

≥
min(n,pn)∑

i=1

h2
i s2

i i

≥
min(n,pn)∑

i=1

(
hi

h1 + ∑k
j=1 λ j h∗

j,1

)2

≈ c2

min(n,pn)∑

i=1

i−2q1

≈ c2c3,

where c0, c1, c2 and c3 are some constants. Thus, both µ1v(λ) and 0 ≤ µ2
1v(λ)/

µ2v(λ) ≤ c2
0c2

1n2q2/[c2c3ψ(V )] tend to 0 as n tends to infinity. Further, both e(λ) and
r(λ) tend to 0. Therefore, W (λ) is nearly an unbiased estimator of W P(λ) implied by
Theorem 1. By differentiating ψ(V )b2(λ) and ψ(V )µ2v(λ),

[
ψ(V )∂b2(λ)

∂λ j

]

λ=0
= −2 f t [I − Hv(0)]

t V
[
∂Hv(λ)

∂λ j

]

λ=0
f = 0,

and ψ(V )∂µ2v(λ)/∂λ j < 0. Thus, E[WT(λ)] has strictly negative gradient at λ = 0
and

lim
λ→∞

E [WT(λ)] = [1/ψ(V )]
n∑

i=1

f̃ 2
i > 0,

where V 1/2 f = f̃ = ( f̃1, . . . , f̃n)
t . These implies that E[WT(λ)] has at least one

minimizer λ∗
n > 0. Finally, if 1v − 1 = O(n−q) and q ≥ 1/2, Corollary 1 holds.
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