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Abstract While spherical distributions have been used in many statistical
models for high-dimensional data analysis, there are few easily implemented
statistics for testing spherical symmetry for the underlying distribution of high-
dimensional data. Many existing statistics for this purpose were constructed by
the theory of empirical processes and turn out to converge slowly to their lim-
iting distributions. Some existing statistics for the same purpose were given in
the form of high-dimensional integrals that are not easily evaluated in numer-
ical computation. In this paper, we develop some necessary tests for spherical
symmetry based on both univariate and multivariate uniform statistics. These
statistics are easily evaluated numerically and have simple limiting distribu-
tions. A Monte Carlo study is carried out to demonstrate the performance of
the statistics on controlling type I error rates and power.
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1 Introduction

Spherically symmetric (or simply spherical) distributions (SSD for simplicity)
are natural extensions to the multivariate standard normal Nd(0, Id) (Id: d × d
identity matrix). The SSD possess many desirable properties similar to those of
Nd(0, Id), see the comprehensive studies on SSD given by Fang et al. (1990). A
d-dimensional random vector x is said to have a spherical distribution if x has a
stochastic representation

x d= �x, (1)

where � is a d × d constant orthogonal matrix such that �′� = ��′ = Id and

the sign “ d=” means that both sides in (1) have the same distribution. We denote
by x ∼ Sd(φ) if x satisfies (1), here φ(·) is a scale function. If x ∼ Sd(φ), then
the characteristic function (c.f.) of x has the form φ(t′t) = φ(‖t‖2) (t ∈ Rd,
the d-dimensional Euclidean space, ‖ · ‖ stands for the Euclidean norm). The
SSD have been used as distributional assumptions associated with statistical
models, (see, for example, Zellner, 1976; Lange et al., 1989). The problem when
the SSD can be considered as the underlying distribution of the sampled data
has been the long lasting interest to statisticians in the study of goodness-of-fit
techniques. For example, Kariya and Eaton (1977) and Gupta and Kabe (1993)
proposed some robust tests for spherical symmetry based on non-independent
samples.

Testing spherical symmetry based on an i.i.d. (independently identically dis-
tributed) sample x1, . . . , xn with a c.d.f. (cumulative distribution function) F(x)

(x ∈ Rd) is to test the null hypothesis

H0 : F(x) is the c.d.f. of a spherical distribution, (2)

versus the alternative hypothesis H1: F(x) is non-spherical. Some existing ap-
proaches or statistics for testing spherical symmetry based on i.i.d. samples
were summarized in Fang and Liang (1999). These are: (1) graphical methods
(Li et al., 1997); (2) tests based on stochastic representation (Baringhaus, 1991);
and (3) tests based on projection NT-type statistics (Fang et al., 1993; Zhu et al.,
1995; Zhu et al., 1995). Some other approaches to testing spherical symmetry
have been proposed since the past few years (see, for example, Koltchinskii and
Li, 1998; Liang and Fang, 2000).

The purpose of this paper is to develop some new necessary tests for spherical
symmetry and point out its possible extension to testing elliptical symmetry by
employing both univariate and multivariate uniform statistics. Here necessary
tests have the same meaning as in Fang et al. (1993). That is, smaller (e.g., less
than 5%) p-values of the tests indicate evidence of a departure from spherical
symmetry while larger p-values (e.g., larger than 10%) imply insufficient infor-
mation to draw a statistical conclusion on the null hypothesis from the sampled
data. The univariate uniform statistics are chosen from the recommendation
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in Quesenberry and Miller (1977) and Miller and Quesenberry (1979). The
multivariate uniform statistics are chosen from Liang et al. (2001). The rest of
the paper is arranged as follows. In Sect. 2 a brief review on the univariate
and multivariate uniform statistics is given. The principle for testing spherical
symmetry based on the uniform statistics is derived. Section 3 presents the
empirical results (type I error rates and power against some selected alterna-
tives) for the performance of the uniform tests by a Monte Carlo study. Some
concluding remarks and a possible extension of the uniform tests to testing
elliptical symmetry are given in the last section.

2 The uniform tests for spherical symmetry

2.1 A review of the uniform statistics

Univariate uniform statistics are those for testing uniformity in the unit inter-
val (0, 1). They are usually constructed by measuring the discrepancy between
an ordered sample u(1) ≤ · · · ≤ u(n) that is associated with an i.i.d. sample
{u1, . . . , un} in (0, 1) and a set of reference ordered points in (0, 1). The ordered
points {(2i − 1)/(2n) : i = 1, . . . , n} are known to be uniformly scattered in
(0, 1) in the sense of discrepancy in Fang and Wang (1994). There are a num-
ber of uniform statistics in the literature. Based on their Monte Carlo studies,
Quesenberry and Miller (1977) and Miller and Quesenberry (1979) recom-
mended using Watson’s U2-statistic and Neyman’s smooth test with the fourth
degree polynomials as general choices for testing univariate uniformity in (0, 1).
These two statistics are described as follows:

1. Watson’s U2-statistic
Let W2 = 1/(12n) + ∑n

i=1[(2i − 1)/2n − u(i)]2, Watson (1962) proposed the
statistic

WU2 = W2 − n(ū − 0.5)2 (3)

for testing uniformity in (0, 1), where ū is the sample mean from an i.i.d. sample
{u1, . . . , un}. Tables of critical values for WU2 are usually given for the modified
form of WU2:

MU2 =
(

WU2 − 1
10n

+ 1
10n2

)(

1 + 0.8
n

)

. (4)

The critical values of MU2 are found to be only slightly dependent on the sample
size n, and they are 0.267 (α = 1%), 0.187 (α = 5%) and 0.152 (α = 10%) from
Stephens (1970). Large values of MU2 indicate evidence of non-uniformity of
the sample. For example, if MU2 > 0.187, one rejects the null hypothesis of
uniformity in (0, 1) at the significance level α = 5%.

2. Neyman’s smooth test
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Let

π0(y) = 1,
π1(y) = √

12(y − 1/2),
π2(y) = √

5[6(y − 1/2)2 − 1/2],

π3(y) = √
7[20(y − 1/2)3 − 3(y − 1/2)],

π4(y) = 210(y − 1/2)4 − 45(y − 1/2)2+9/8,

which are Legendre polynomials, y ∈ [0, 1]. Denote by

tr =
n∑

i=1

πr(ui), r = 1, 2, 3, 4, (5)

where {u1, . . . , un} is an i.i.d. sample in (0, 1). Neyman’s smooth test (Neyman,
1937) with the fourth degree polynomials is defined by

P2
4 = 1

n

4∑

r=1

t2r . (6)

Large values of P2
4 indicate evidence of non-uniformity of the sample. Critical

values for P2
4 for some small sample size n and for large n (n = ∞) were pro-

vided by Miller and Quesenberry (1979). For example, for n > 50, the critical
values for P2

4 were given as 13.28 (α = 1%), 9.49 (α = 5%) and 7.78 (α = 10%).
Testing multi-dimensional (multivariate) uniformity is to test whether an

i.i.d. d-dimensional sample {z1, . . . , zn} can be considered from the uniform dis-
tribution in the unit hypercube C̄d = [0, 1]d. The hypothesis for uniformity of
{z1, . . . , zn} can be set up as

H0 : z1, . . . , zn are uniformly distributed in C̄d. (7)

The alternative hypothesis H1 implies rejection for H0 in (7). Liang et al. (2001)
proposed two types of multivariate uniform statistics for testing uniformity in
C̄d. The two types of multivariate uniform statistics are defined as follows (see
Liang et al., 2001 for details):

Type 1. Approximate N(0, 1)-statistics

An = √
n[(U1 − Md) + 2(U2 − Md)]

/
(5

√
ζ1)

D→ N(0, 1) (n → ∞) (8)

under H0 in (7), where “
D→” means convergence in probability distribution.

There are three choices for An according to the three measures of discrepancy:
symmetric, centered, and star (Hickernell, 1998).

Type 2. Approximate χ2-statistics

Tn =n[(U1−Md), (U2−Md)]�−1
n [(U1−Md), (U2−Md)]′ D→ χ2(2), (n→∞)

(9)
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under H0 in (7), where

�n =
(

ζ1 2ζ1

2ζ1
4(n−2)

n−1 ζ1 + 2
n−1ζ2

)

, (10)

and ζ1 and ζ2 are calculated differently according to the three measures of
discrepancies given as follows. There are also three choices for Tn.

The calculation of An in (8) and that of Tn in (9) are obtained according to
any of the following three measures of discrepancy. From an i.i.d. d-dimensional
sample {z1, . . . , zn} in C̄d, let zk = (zk1, . . . , zkd)′ (k = 1, . . . , n).

1. The symmetric discrepancy gives

U1 = 1
n

n∑

k=1

d∏

j=1

(1 + 2zkj − 2z2
kj),

U2 = 2d+1

n(n − 1)

n∑

k<l

d∏

j=1

(1 − |zkj − zlj|),
(11)

with M = 4/3, ζ1 = (9/5)d − (6/9)d and ζ2 = 2d − (16/9)d;
2. The centered discrepancy gives

U1 = 1
n

n∑

k=1

d∏

j=1

(

1 + 1
2

∣
∣
∣zkj − 1

2

∣
∣
∣ − 1

2

∣
∣
∣zkj − 1

2

∣
∣
∣
2
)

,

U2 = 2
n(n − 1)

n∑

k<l

d∏

j=1

(

1 + 1
2

∣
∣
∣zkj − 1

2

∣
∣
∣ + 1

2

∣
∣
∣zlj − 1

2

∣
∣
∣ − 1

2

∣
∣
∣zkj − zlj

∣
∣
∣

)

,

(12)

with M = 13/12, ζ1 = (47/40)d − (13/12)2d and ζ2 = (57/48)d − (13/12)2d;
3. The star discrepancy gives

U1 = 1
n

n∑

k=1

d∏

j=1

(
3 − zkj

2

)

,

U2 = 2
n(n − 1)

n∑

k<l

d∏

j=1

[
2 − max(zkj, zlj)

]
,

(13)

with M = 4/3, ζ1 = (9/5)d − (16/9)d and ζ2 = (11/6)d − (16/9)d.
The empirical finite-sample percentiles of An and Tn under the above three

discrepancies were provided in Liang et al. (2001) for some selected sample
sizes (n = 25, n = 50, n = 100 and n = 200). From the Monte Carlo study on
the type I error rates of An and Tn in Liang et al. (2001) by using the correspond-
ing critical values of N(0, 1) (for An) and χ2(2) (for Tn), it can be concluded
that the approximation of An by N(0, 1), and Tn by χ2(2) is good enough for
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sample sizes n as small as 25. A large value of |An| or Tn indicates evidence of
non-uniformity for the underlying distribution of a sample from C̄d.

2.2 Uniform tests for spherical symmetry

In the univariate case, the uniform test for general goodness-of-fit problem is
based on the principle: a random variable X has a c.d.f. F(x) that is strictly
increasing if and only if the random variable U = F(X) has a uniform distribu-
tion U(0, 1). F(X) is called the uniform transformation of X. In the multivariate
case, different uniform transformations from a random vector x can be defined.
These transformations are based on some characterization of the underlying
distribution of the random vector. Theorem 1 is an application of Lemma 1 and
it gives the necessary characterization for the spherical distribution. Theorem 1
provides the principle for the necessary uniform tests for spherical symmetry.

Lemma 1 (Rosenblatt, 1952) Let random vector x = (x1, . . . , xd)′ have a proba-
bility density function (p.d.f.) f (x1, . . . , xd). Define the following random variables
by the conditional probability distributions:

x1 = x1;

x2|1
d= x2|x1;

...
...

...

xk|1...,k−1
d= xk|(x1, . . . , xk−1),

(14)

for k = 2, . . . , d. Then the random variables x1, x2|1, . . . , xk|1...,k−1 (k = 2, . . . , d)

are mutually independent.

The assertion in Lemma 1 follows from the definition for the conditional
p.d.f. and the property

f (x1, . . . , xd) = fx1(x1)f2|1(x2|x1) . . . fd|1...d−1(xd|x1, . . . , xd−1),

where fx1 stands for the marginal p.d.f. of x1, f2|1(x2|x1) for the conditional
p.d.f. of x2|1, and in general, fk|1...k−1(xk|x1, . . . , xk−1) for the conditional p.d.f.
of xk|1...,k−1 for k = 2, . . . , d. The conditional probability transformation in (14)
is called the Rosenblatt transformation.

Theorem 1 Let random vectors x1, . . . , xn be i.i.d. with a spherical distribution
S(φ) and P(xi = 0) = 0 (i = 1, . . . , n). Denote by

u1 = x1/‖x1‖, . . . , un = xn/‖xn‖, (15)
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and ui = (ui1, . . . , uid)′ for i = 1, . . . , n. Then the following assertions on the
conditional distributions are true:

B1(i)
d= u2

i1 ∼ β(1/2, (d − 1)/2),

B2(i)
d= {(1 − u2

i1)
−1u2

i2|ui1} ∼ β(1/2, (d − 2)/2),
...

...
...

Bk(i) d= {(1 − ∑k−1
j=1 u2

ij)
−1u2

ik|(ui1, . . . , ui,k−1)}
∼ β(1/2, (d − k)/2),

i = 1, . . . , n; k = 2, . . . , d − 1

(16)

where β(1/2, (d − j)/2) denotes the univariate beta distribution with param-
eters 1/2 and (d − j)/2 (j = 1, . . . , d − 1). Moreover, the random variables
{B1(i), . . . , Bd−1(i) : i = 1, . . . , n} are mutually independent.

Proof Under the spherical assumption on the xi’s, the random vectors ui’s given
by (15) are independent and the ui’s have a uniform distribution on the surface
of the unit sphere in Rd. By Chap. 2 of Fang et al. (1990), we have

ui
d= z0/‖z0‖, z0 ∼ Nd(0, Id). (17)

Then we can obtain the joint density function for any k < d components of the
ui in (15) by a direct calculation:

�(d/2)

�[(d − k)/2]πk/2

⎛

⎝1 −
k∑

j=1

u2
j

⎞

⎠

(d−k)/2−1

, for
k∑

j=1

u2
j < 1, (18)

where k = 1, . . . , d − 1. The p.d.f given by (18) exists in the unit sphere Sk =
{u : u ∈ Rk, ‖u‖2 < 1} of Rk and it diminishes (zero value) outside Sk
(k = 1, . . . , d − 1). Then a direct calculation for a conditional density leads
to the assertions given by (16). The independence of the random variables
B1(i), . . . , Bd−1(i) (i = 1, . . . , n) results from Lemma 1. This completes the
proof.

Denote by Fbj(·) the c.d.f. of β(1/2, (d − j)/2) (j = 1, . . . , d − 1). Let vi =
(vi1, . . . , vi,d−1)

′ be given by

vij = Fbj(Bj(i)), i = 1, . . . , n; j = 1, . . . , d − 1. (19)

Based on Theorem 1, a necessary test for spherical symmetry can be constructed.
Let x1, . . . , xn be i.i.d. observations. Perform the transformation

{x1, . . . , xn : in Rd} ⇒ {u1, . . . , un : in Rd}
⇒ {B1(i), . . . , Bd−1(i) : i = 1, . . . , n; in Rd−1}
⇒ {v1, . . . , vn : in Rd−1},

(20)
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given by (15), (16) and (19). If the null hypothesis H0 in (2) is true for the
underlying distribution F(x) of the i.i.d. sample {x1, . . . , xn}, the random vari-
ables vij’s given by (19) are mutually independent and the vij has a uniform
distribution U(0, 1). The random points vi = (vi1, . . . , vi,d−1)

′ are located in the
hypercube [0, 1]d−1. A test for spherical symmetry (2) can be substituted by a
test for multivariate uniformity

H0 : the vi’s are uniformly distributed in [0, 1]d−1, (21)

versus H1 that implies that H0 in (21) is not true. Or a test for spherical symmetry
(2) can also be substituted by a test for univariate uniformity

H0 : the vij’s are uniformly distributed in (0, 1), (22)

versus H1 that implies that H0 in (22) is not true. It is obvious that both of the
tests for (21) and (22) are necessary tests for spherical symmetry (2). That is, if
H0 in (21) or H0 in (22) is rejected at some significance level, the H0 in (2) is
also rejected at the same level, and the underlying distribution of the sample
{x1, . . . , xn} can be considered as non-spherical. The statistics An in (8) and Tn
in (9) can be employed to test (21), and the statistics MU2 in (4) and P2

4 in
(6) can be employed to test (22). Each of these four statistics can be used as a
necessary test for hypothesis (2).

It should be pointed out that acceptance of H0 in (21) can usually lead to
acceptance of H0 in (22) but the contrary is usually not true. This implies that
univariate uniformity of all one-dimensional marginal distributions does not
automatically lead to multivariate uniformity for the joint distribution. Figure 1
shows the extreme cases (dimension for the xi’s: d = 3) that the transformed
sample {v1, . . . , vn} (dimension for the vi’s: d − 1 = 2) given by (20) has uni-
variate uniformity on the horizontal axis (H0 in (22) is true) but does not have
multivariate uniformity in R2 (H0 in (21) is not true).

3 Monte carlo study

In this section we carry out a limited Monte Carlo study on the performance
of the uniform tests An in (8), Tn in (9), MU2 in (4) and P2

4 in (6) for testing
spherical symmetry. The type I error rates for MU2 and P2

4, and the type I error
rates for An and Tn under the three discrepancies (symmetric, centered and
star) and the power of all uniform statistics will be studied. In calculating the
type I error rates and power, the corresponding percentiles for the multivariate
unform statistics An and Tn are chosen as those of their limiting distributions,
respectively. That is, we consider An ∼ N(0, 1) and Tn ∼ χ2(2) for all sample
sizes n. The percentiles of MU2 and P2

4 are given in Sect. 2.1. That is, for MU2,
they are 0.267 (1 −α = 99%), 0.187 (1 −α = 95%) and 0.152 (1 −α = 90%); for
P2

4, they are 13.28 (1 − α = 99%), 9.49 (1 − α = 95%) and 7.78 (1 − α = 90%).
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Fig. 1 Extreme cases of univariate uniformity but no multivariate uniformity in R2

3.1 Monte Carlo study on type I error rates

In the study on type I error rates of the tests, six spherical distributions as
discussed in detail in Chap. 3 of Fang et al. (1990) are selected as the null distri-
butions. These spherical distributions are: (1) the standard normal distribution
Nd(0, Id); (2) the multivariate t-distribution with degrees of freedom m = 5;
(3) the Kotz type distribution with N = 2, r = 1 and s = 0.5; (4) the Pearson
type VII distribution (PVII) with N = 10 and m = 2; (5) the Pearson type
II distribution (PII) with m = 3/2; and (6) the Cauchy distribution. The so-
called TFWW algorithm (Tashiro, 1977; Fang and Wang, 1994, pp. 166–170) is
employed to generate empirical samples from the selected non-normal spheri-
cal distributions. The normal samples are generated by the MATLAB internal
function. The empirical type I error rates are computed by

Type I error rate = Number of rejections
Number of replications

. (23)
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Table 1 Type I error rates of An and Tn for testing spherical symmetry (α = 0.05, no. of replications
= 2,000)

Statistics Discrepancy Dimension d = 5

n Normal Mult.-t Kotz PVII PII Cauchy

Tn Symmetric 25 0.0530 0.0495 0.0530 0.0605 0.0545 0.0595
50 0.0515 0.0550 0.0465 0.0475 0.0425 0.0595

100 0.0550 0.0505 0.0495 0.0540 0.0500 0.0425
200 0.0500 0.0595 0.0520 0.0520 0.0530 0.0515

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Centered 25 0.0480 0.0490 0.0535 0.0565 0.0540 0.0610

50 0.0515 0.0600 0.0480 0.0535 0.0485 0.0610
100 0.0555 0.0470 0.0450 0.0525 0.0495 0.0520
200 0.0590 0.0555 0.0515 0.0555 0.0515 0.0490

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Star 25 0.0570 0.0580 0.0575 0.0550 0.0595 0.0630

50 0.0605 0.0675 0.0650 0.0575 0.0630 0.0630
100 0.0615 0.0575 0.0630 0.0635 0.0640 0.0635
200 0.0610 0.0660 0.0600 0.0595 0.0635 0.0630

An Symmetric 25 0.0645 0.0670 0.0650 0.0740 0.0750 0.0650
50 0.0580 0.0595 0.0545 0.0505 0.0535 0.0650

100 0.0540 0.0490 0.0470 0.0515 0.0575 0.0535
200 0.0510 0.0590 0.0480 0.0530 0.0570 0.0520

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Centered 25 0.0590 0.0625 0.0685 0.0570 0.0720 0.0665

50 0.0620 0.0630 0.0640 0.0555 0.0435 0.0665
100 0.0580 0.0490 0.0515 0.0500 0.0555 0.0520
200 0.0555 0.0545 0.0455 0.0550 0.0505 0.0490

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Star 25 0.0510 0.0500 0.0475 0.0445 0.0465 0.0550

50 0.0575 0.0545 0.0485 0.0500 0.0510 0.0550
100 0.0530 0.0455 0.0475 0.0510 0.0470 0.0525
200 0.0445 0.0490 0.0520 0.0495 0.0505 0.0545

Tables 1 and 2, respectively, present the simulation results on the type I error
rates of An and Tn, and those of MU2 and P2

4, when testing spherical symme-
try with the significance level α = 0.05. Similar simulation results were also
obtained for the significance levels α = 0.01 and 0.10, but these are not pre-
sented to save space. The following empirical conclusions can be summarized:

(1) When using the limiting distributions instead of the finite-sample distri-
butions, the two multivariate uniform statistics An and Tn, and the two
univariate uniform statistics MU2 and P2

4 can maintain feasible control of
the type I error rates for the sample size as small as n = 25;

(2) The dimension of the sample seems to have little influence on the type
I error rates of the statistics An, Tn, MU2 and P2

4 when testing spherical
symmetry. This is a good indication in testing goodness-of-fit in the sense
of avoiding curse of dimensionality.
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Table 1 continued

Statistics Discrepancy Dimension d = 10

n Normal Multi.-t Kotz PVII PII Cauchy

Tn Symmetric 25 0.0620 0.0540 0.0470 0.0510 0.0440 0.0500
50 0.0565 0.0445 0.0630 0.0625 0.0495 0.0520

100 0.0435 0.0515 0.0455 0.0540 0.0465 0.0455
200 0.0565 0.0490 0.0470 0.0465 0.0425 0.0505

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Centered 25 0.0565 0.0480 0.0505 0.0605 0.0495 0.0430

50 0.0525 0.0520 0.0580 0.0585 0.0560 0.0480
100 0.0465 0.0490 0.0545 0.0590 0.0595 0.0585
200 0.0470 0.0455 0.0510 0.0465 0.0530 0.0525

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Star 25 0.0570 0.0565 0.0615 0.0660 0.0540 0.0580
50 0.0560 0.0655 0.0570 0.0635 0.0650 0.0600

100 0.0500 0.0660 0.0595 0.0545 0.0705 0.0515
200 0.0560 0.0570 0.0605 0.0565 0.0630 0.0550

An Symmetric 25 0.0740 0.0750 0.0545 0.0720 0.0585 0.0765
50 0.0665 0.0480 0.0515 0.0685 0.0560 0.0565

100 0.0560 0.0590 0.0540 0.0625 0.0485 0.0480
200 0.0590 0.0605 0.0550 0.0505 0.0505 0.0445

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Centered 25 0.0680 0.0645 0.0680 0.0705 0.0625 0.0635

50 0.0550 0.0495 0.0555 0.0495 0.0605 0.0625
100 0.0480 0.0595 0.0530 0.0675 0.0620 0.0630
200 0.0535 0.0490 0.0530 0.0505 0.0520 0.0435

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Star 25 0.0505 0.0450 0.0430 0.0495 0.0415 0.0460

50 0.0495 0.0575 0.0475 0.0500 0.0560 0.0545
100 0.0400 0.0570 0.0510 0.0460 0.0555 0.0460
200 0.0485 0.0595 0.0440 0.0475 0.0520 0.0430

3.2 Monte Carlo study on power

The empirical power of the tests is computed by (23) when choosing five non-
spherical alternative distributions. Five meta-type normal distributions are cho-
sen as the alternative distributions for studying the rejection rate or power
of each of the tests for testing spherical symmetry. The theory on general
meta-type distributions is given in Fang et al. (2002). The idea for constructing
the meta-type normal distribution is as follows. Let x = (X1, . . . , Xd)′ have a
continuous c.d.f. F(x) (x ∈ Rd) with a density function f (x) = f (x1, . . . , xd).
Denote by fi(xi) the marginal density function of Xi. Define the random vector
y = (Y1, . . . , Yd)′ by

Yi = �−1(Fi(Xi)), i = 1, . . . , d, (24)

where �(·) is the c.d.f. of N(0, 1) and Fi(·) the marginal c.d.f. of Xi. It is obvi-
ous that each Yi has a normal distribution N(0, 1) but the joint distribution



690 J. Liang et al.

Table 2 Type I error rates of MU2 and P2
4 for testing spherical symmetry (α = 0.05, no. of

replications = 2,000)

Statistics n Dimension d = 5

Normal Multi.-t Kotz PVII PII Cauchy

MU2 25 0.0470 0.0560 0.0465 0.0505 0.0530 0.0565
50 0.0515 0.0585 0.0530 0.0455 0.0415 0.0515

100 0.0550 0.0580 0.0470 0.0545 0.0510 0.0480
200 0.0525 0.0470 0.0475 0.0525 0.0575 0.0560

P2
4 25 0.0430 0.0475 0.0410 0.0445 0.0510 0.0630

50 0.0520 0.0505 0.0510 0.0510 0.0450 0.0480
100 0.0530 0.0545 0.0535 0.0525 0.0580 0.0490
200 0.0520 0.0495 0.0450 0.0530 0.0590 0.0530

Dimension d = 10
MU2 25 0.0605 0.0445 0.0595 0.0570 0.0605 0.0450

50 0.0500 0.0420 0.0500 0.0480 0.0500 0.0455
100 0.0480 0.0490 0.0465 0.0500 0.0500 0.0510
200 0.0485 0.0490 0.0410 0.0520 0.0625 0.0520

P2
4 25 0.0535 0.0525 0.0495 0.0480 0.0580 0.0500

50 0.0455 0.0500 0.0450 0.0435 0.0490 0.0465
100 0.0450 0.0545 0.0475 0.0520 0.0550 0.0550
200 0.0500 0.0475 0.0470 0.0520 0.0520 0.0515

of y = (Y1, . . . , Yd)′ may have a big difference from the multivariate normal
distribution. A direct calculation gives the joint density function of y:

q(y1, . . . , yd)= f
(
F−1

1 (�(y1)), . . . , F−1
d (�(yd))

) d∏

i=1

{φ(yi)/fi(F−1
i (�(yi)))}, (25)

where φ(·) is the density function of N(0, 1) and (y1, . . . , yd)′ ∈ Rd. In particular,
if the random variables X1, . . . , Xd are independent, then y = (Y1, . . . , Yd)′ ∼
Nd(0, Id). The five meta-type normal distributions are obtained as follows. All
related spherical distributions with the corresponding parameters are referred
to Chap. 3 of Fang et al. (1990).

(1) When the random vector x = (X1, . . . , Xd)′ ∼multivariate t-distribution
with m = 5 in (24), the meta-type normal distribution given by the distri-
bution of y = (Y1, . . . , Yd)′ in (24)–(25) is denoted by y ∼ MTN;

(2) when the random vector x = (X1, . . . , Xd)′ ∼Kotz type distribution with
N = 2, r = 1 and s = 0.5, the meta-type normal distribution given by the
distribution of y = (Y1, . . . , Yd)′ in (24)–(25) is denoted by u ∼ MKN;

(3) when the random vector x = (X1, . . . , Xd)′ ∼Pearson type VII distribution
with N = 10 and m = 2, the meta-type normal distribution given by the
distribution of y = (Y1, . . . , Yd)′ in (24)–(25) is denoted by u ∼ MPVIIN;

(4) when the random vector x = (X1, . . . , Xd)′ ∼Pearson type II distribution
with m = 3/2, the meta-type normal distribution given by the distribution
of y = (Y1, . . . , Yd)′ in (24)–(25) is denoted by u ∼ MPIIN;
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(5) when the random vector x = (X1, . . . , Xd)′ ∼Cauchy distribution, the
meta-type normal distribution given by the distribution of y=(Y1, . . . , Yd)′
in (24)–(25) is denoted by u ∼ MCN.

In order to have a visual perception on the power performance of the four
statistics An, Tn, MU2 and P2

4, we plot their power values versus the above five
nonspherical alternative distributions. The simulation for obtaining the empiri-
cal power of the four statistics was carried out with 2,000 replications. Figures 2
and 3, respectively, present the plots of the power values versus the five meta-
type normal distributions for dimension d = 5 and d = 10 for different sample
sizes.

Figures 2 and 3 provide a quick view on the power performance of the four
statistics An, Tn, MU2 and P2

4 in testing spherical symmetry against the selected
meta-type normal distributions that are nonspherical. Based on Figs. 2 and 3,
we can summarize our empirical conclusions on the power performance of the
uniform statistics as follows.

(1) Similar to the performance in their type I error rates, all four uniform
statistics An, Tn, MU2 and P2

4 are not sensitive to the increase of sample
dimension in testing spherical symmetry. For example, when the sample
dimension d increases from d = 5 (Fig. 2) to d = 10 (Fig. 3), the four sta-
tistics have similar power performance for each of the selected alternative
distributions;

(2) For the two multivariate uniform statistics An and Tn, their power per-
formance is different for different choices of discrepancy measures. The
symmetric discrepancy tends to be the best, centered discrepancy the sec-
ond, and the star discrepancy the worst in all cases;

(3) The two multivariate uniform statistics An and Tn cannot outperform the
two univariate uniform statistics MU2 and P2

4 in all cases and vice versa.
So in practical applications, all of these statistics can be used together to
give more confidence in drawing a conclusion.

4 Concluding remarks and a possible extension

In Sect. 3 we employ the two multivariate uniform statistics An and Tn to test
spherical symmetry. Although these two statistics cannot outperform the tra-
ditional univariate uniform statistics MU2 and P2

4 in all cases as considered,
they provide a new way to substitute a test for spherical symmetry by a test for
uniformity. The statistics An and Tn are easy to compute and their percentiles
can be approximately taken as those for the standard normal N(0, 1) and the
chi-square χ2(2), respectively, for the sample size as small as n = 25 based on
the simulation results. In some extreme cases like those in Fig. 1, if the underly-
ing distribution of the sample is not spherical, the univariate uniform statistics
MU2 and P2

4 may fail to detect nonspherical symmetry but the multivariate
uniform statistics An and Tn may still work well. This implies that the statistics
An and Tn possess some good multivariate properties that the statistics MU2

and P2
4 do not have.
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Fig. 2 Plots of power of the statistics An and Tn (under the three discrepancies: symmetric, cen-
tered and star), and MU2 and P2

4 in testing spherical symmetry against the meta-type normal
distributions (d = 5, α = 5%). The curves c1–c8 stand for: (1) c1 for Tn (symmetric); (2) c2 for Tn
(centered); (3) c3 for Tn (star); (4) c4 for An (symmetric); (5) c5 for An (centered); (6) c6 for An
(star); (7) c7 for MU2; and (8) c8 for P2

4. The alternative distributions are arranged in order: “1”
for the distribution MTN; “2” for the distribution MKN; “3” for the distribution MPVIIN; “4” for
the distribution MPIIN; and “5” for the distribution MCN

It is also a desirable property that the uniform tests for spherical symmetry
are not sensitive to the increase of sample dimension. While the power of the
uniform statistics is relatively high for some selected alternative distributions
with suitable measures of discrepancy, it is very low for the selected alternative
distributions “2” (MKN) and “3” (MPVII) by using An and Tn with the star
discrepancy (the curves c3 and c6 in Figs. 2 and 3). This implies that choosing
the symmetric discrepancy and the centered discrepancy for An and Tn may
give better results in general.

Besides using the two statistics An and Tn to construct the necessary tests for
spherical symmetry, we can actually employ An and Tn to construct a class of
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Fig. 3 Plots of power of the statistics An and Tn (under the three discrepancies: symmetric, cen-
tered and star), and MU2 and P2

4 in testing spherical symmetry against the meta-type normal
distributions (d = 10, α = 5%). The curves c1–c8 stand for: (1) c1 for Tn (symmetric); (2) c2 for Tn
(centered); (3) c3 for Tn (star); (4) c4 for An (symmetric); (5) c5 for An (centered); (6) c6 for An
(star); (7) c7 for MU2; and (8) c8 for P2

4. The alternative distributions are arranged in order: “1”
for the distribution MTN; “2” for the distribution MKN; “3” for the distribution MPVIIN; “4” for
the distribution MPIIN; and “5” the distribution MCN

necessary tests for a much bigger family of symmetric multivariate distributions.
It was pointed out by Fang et al. (1990, p. 9) that the following approach is a
common way to construct symmetric multivariate distributions. Let y have a
symmetric multivariate distribution in some sense. One can define a class of
symmetric multivariate distributions generated by y as follows:

F(y) = {x | x d= Ry, R ≥ 0 is independent of y}. (26)

The following special cases give some subclasses of F(y):



694 J. Liang et al.

(1) If y ∼ Nd(0, σ 2Id), the class F(y) in (26) is equivalent to the class of
mixtures of the spherical normal distribution.

(2) If y is uniformly distributed on the unit sphere in Rd, F(y) in (26) is the
class of spherical distributions.

(3) If y is uniformly distributed on the l1-norm unit sphere, F(y) in (26) is the
class of the l1-norm symmetric distributions (Fang and Fang, 1988, 1989;
Fang et al., 1990, Chap. 5).

(4) If y is uniformly distributed on the lp-norm unit sphere, F(y) in (26) is the
class of the lp-norm symmetric distributions (Yue and Ma, 1995).

(5) If y is uniformly distributed on the Lp-norm unit sphere, F(y) in (26) is
the class of the Lp-norm spherical distributions (Osiewalski and Stel, 1993;
Gupta and Song, 1997).

In this paper we actually develop some necessary goodness-of-fit tests for a
subclass (the class of spherical distributions) of F(y) in (26). The same tech-
nique can be extended to constructing necessary goodness-of-fit tests for the
distributions in the class F(y) defined by (26). Note that all distributions in the
class F(y) have zero means and some distributions have covariance matrices of
the form cI (c > 0 is a constant and I is an identity matrix) when cov(y) = σ 2I
as for the case of an SSD for y. An important family of distributions, called
the elliptical (or elliptically contoured) distributions (ECD for simplicity), is
obtained from a subclass of F(y) by linear transformations (Fang et al., 1990):

x = µ + Ay, y ∼ SSD, (27)

where µ is a constant vector and A is a constant full-rank matrix. x in (27) is
said to have an ECD and denote by x ∼ ECD(µ, �) (� = AA′). ECD has been
used in statistical analysis in many areas (see, e.g., Anderson, 1993; Kariya and
Sinha, 1989; and Wakaki, 1994). Testing whether an i.i.d. sample can be con-
sidered as an elliptical sample (the underlying distribution is an ECD) is called
testing elliptical symmetry. A heuristic approach to extending tests for spher-
ical symmetry to tests for elliptical symmetry could be carried out as follows.
x ∼ ECD(µ, �) can be represented as

x = µ + �
1
2 y, y ∼ SSD, (28)

where �
1
2 stands for the positively definite square root of � > 0 (assuming �

is positively definite). For a given i.i.d. sample x1, . . . , xn, by using the sample
mean x̄ to estimate the unknown mean µ and the sample covariance matrix S to
estimate the unknown covariance matrix �, we define a transformed “sample”
(it is not an i.i.d. sample for finite sample sizes):

yj = S−1/2(xj − x̄), i = 1, . . . , n, (29)

where S−1/2 = (S1/2)−1 and S1/2 is the positively definite square root of S
(assuming large sample size). It is well known that the sample mean x̄ is a



Testing spherical symmetry 695

strongly consistent estimate for µ, and the sample covariance matrix S is a
strongly consistent estimate for � under minor conditions. Therefore, if xj ∼
ECD(µ, �), the distribution of yj defined by (29) can be approximated by an
SSD. Edgeworth expansions of the distribution of yj have been studied by
Wakaki (1994) and Fujikoshi (1997). Under a large sample size, it is possible
to employ the results in Wakaki (1994) and Fujikoshi (1997), the relationship
(29), and the uniform statistics to construct some necessary tests for elliptical
symmetry. Due to limited space in one paper, we will study the theoretical
justifications of this approach in our future research.
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