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Abstract In applications of Bayesian analysis one problem that arises is the eval-
uation of the sensitivity, or robustness, of the adopted inferential procedure with
respect to the components of the formulated statistical model. In particular, it is
of interest to study robustness with respect to the prior, when this latter cannot be
uniquely elicitated, but a whole class � of probability measures, agreeing with the
available information, can be identified. In this situation, the analysis of robustness
consists of finding the extrema of posterior functionals under �. In this paper, we
provide a theoretical framework for the treatment of a global robustness problem
in the context of hierarchical mixture modeling, where the mixing distribution is
a random probability whose law belongs to a generalized moment class �. Under
suitable conditions on the functions describing the problem, the solution of this
latter coincides with the solution of a linear semi-infinite programming problem.

Keywords Bayesian robustness analysis · Hierarchical mixture models ·
Nonparametric prior · Moment theory · Linear semi-infinite programming

1 Introduction

Robustness analysis is concerned with the sensitivity of the results of the inference
to the assumptions of the adopted model. In particular, in Bayesian inference a

B. Betrò · A. Bodini (B)
CNR-IMATI, via Bassini 15, 20133 Milano, Italy
E-mail: anto@mi.imati.cnr.it

A. Guglielmi
Dipartimento di Matematica,
Politecnico di Milano
Piazza Leonardo da Vinci 32,
20133 Milano,
Italy



722 B. Betrò et al.

robustness problem arises for instance when, due to lack of information, the prior
is difficult to be elicitated.

The state of the art, up to 2000, of robustness issues in Bayesian analysis is
exhibited in the papers collected in Rios Insua and Ruggeri (2000); the opening
paper by Berger et al. (2000) presents an overview of the robust Bayesian approach,
which usually includes the global robustness approach, where the class of all priors
coherent with the elicited prior information is considered, and the local robustness
approach, where the interest is in the rate of change in inferences with respect to
small changes in the prior.

When considering global robustness (in short, robustness henceforth), the anal-
ysis usually can be expressed as follows

sup
π∈�

∫
�
g(θ)l(θ)π(dθ)
∫
�
l(θ)π(dθ)

− inf
π∈�

∫
�
g(θ)l(θ)π(dθ)
∫
�
l(θ)π(dθ)

where g : � → IR is some function of interest, l(θ) is the likelihood function, �
is the parameter space, and π is the prior distribution which is assumed to belong
to a class � of probability distributions. Of course, without loss of generality, the
analysis can be focused on the supremum. In this framework, the possibility of pro-
viding effective algorithms for the analysis of robustness is available in the case of
classes of priors defined by generalized moment conditions, since here the problem
of analyzing Bayesian robustness is reduced to a problem of Linear Semi-Infinite
Programming (LSIP).

Generalized moment classes have been considered in connection with robust-
ness first by Betrò et al. (1994) and then by Betrò and Guglielmi (1994),
Goutis (1994), Dall’Aglio (1995), Smith (1995), Betrò et al. (1996), and Betrò
and Guglielmi (1997); Betrò and Guglielmi (2000). Such classes incorporate a
number of interesting situations—the most common being the one in which bounds
on quantiles of the prior distribution are available—and have been widely studied
in other contexts. Consequently, a rather comprehensive theory exists for optimi-
zation of linear functionals defined over them, mainly due to Kemperman (1971,
1983, 1987). In robustness analysis, the functional to be optimized is not linear but,
as first noticed in Betrò and Guglielmi (1994), it is possible to obtain linearity by
a suitable transformation, so that the above theory can be applied, as extensively
studied in Betrò and Guglielmi (2000). We remark that, as shown in Hoff (2003),
probability measures belonging to a generalized moment class can be represented
as convex combinations of extremal probability measures. This property can be
exploited as an alternative way for solving the robustness problem, as in Betrò
et al. (1994); however, the corresponding optimization problem turns out to be a
global nonlinear one, and its numerical solution seems more difficult to be obtained.

The aim of this paper is to provide a theoretical framework for the treatment of
a global robustness problem within nonparametric hierarchical mixture modeling.
By their flexibility, combined with the development of suitable sample techniques,
Bayesian hierarchical models based on Dirichlet processes or other random proba-
bility measures have greatly increased their popularity. Here, extending the results
of Betrò and Guglielmi (2000), the random probability measure defining the mix-
ing distribution is assumed to vary in a generalized moment class, as described
in Sect. 2. The resulting robustness problem will be referred to as nonparamet-
ric robustness problem. Since the extension requires to work with the set M of
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all finite Borel measures on a separable metric space, in Sect. 3 we establish the
fundamental results of the generalized moment problem in M. The key result is
Theorem 3.1, which is similar to Theorem 5 in Kemperman (1983); proof of this
latter was never published, while the former is proved here using a classical result
in convex analysis known as Farkas’ lemma. The application of the general theory
to robustness analysis is described in Sect. 4. Finally, two examples illustrate the
approach.

2 The problem

In the last 10 years, a large amount of papers in the nonparametric Bayesian liter-
ature have been devoted to study inferences in the context of hierarchical mixture
modeling, described as follows:

X1, . . . , Xr |Y1, . . . , Yr are independent

Xi |Yi is distributed according to L(Xi |Yi), i = 1, . . . , r

Y1, . . . , Yr |π̃ are i.i.d. according to π̃ ,

(1)

and

π̃ ∼ q, (2)

where q is a nonparametric prior, i.e. the distribution of a random probability
measure π̃ . The most popular choice for π̃ is the Dirichlet process, and the result-
ing model, introduced by Lo (1984), is known as “mixture of Dirichlet process
models” (MDP) or “Dirichlet mixture of kernels”. Relevant contributions in the
context of nonparametric Bayesian hierarchical mixture modeling include those by,
among others, Escobar and West (1995, 1998) for the MDP model, Petrone (1999)
for Bernstein polynomials, Lijoi et al. (2005) for mixtures of normalized inverse-
Gaussian processes, and Nieto-Barajas et al. (2004) for mixtures of normalized
random distribution functions with independent increments. For an overview on
the Bayesian nonparametric approach, see Ghosh and Ramamoorthi (2003).

This article considers a more general framework, assuming that the prior q can-
not be uniquely specified but belongs to a generalized moment class. According
to Eq. (1), the data are represented by r random vectors X1, . . . , Xr with values
in IRk , and the conditional distribution of Xi given Yi is defined by a transition
probability density k(x; y), i.e. k:IRk × Y → [0,+∞), where Y is a measurable
subset of IRn, such that

• y �→ k(x; y) is π -measurable for all x in IRk .
• x �→ k(x; y) is a probability density on IRk , for all y in Y , with respect to a
σ -finite measure λ on IRk .

Observe that, by Eq. (1), whatever distribution q is chosen, the prior is concentrated
on the space of densities. We assume that π̃ takes values in a subset S of P(Y), the
set of all probability measures on Y , so that q belongs to P(S). If x = (x1, . . . , xr)
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is a sample from (X1, . . . , Xr), the posterior distribution of π̃ is given by the Bayes
theorem

q(dπ |x) = l(π)q(dπ)
∫
S l(π)q(dπ)

,

where l(π) := l(π; x) = ∏r
i=1 p(xi;π) is the likelihood function, and p(x;π) :=∫

Y k(x; y)π(dy). We assume that q in Eq. (2) belongs to a (nonempty) generalized
moment class �,

� =
{

q ∈ P(S):
∫

S
fi(π)q(dπ) ≤ αi, i = 1, . . . , m

}

, (3)

where fi are given q-integrable functions, and αi are fixed real constants, i =
1, . . . , m.

The global robustness problem consists of determining

sup
q∈�

∫
S g(π)l(π)q(dπ)∫

S l(π)q(dπ)
(4)

where g : S → IR is a given function such that
∫
S g(π)q(dπ |x) exists for all q.

Observe that, if S is the space of degenerate probability measures on Y , then
p(x;π) = p(x; δy) = k(x; y), and the problem considered here coincides with the
parametric problem considered in Betrò and Guglielmi (1997); Betrò and Guglielmi
(2000). For this reason, Eqs. (3) and (4) can be viewed as an extension to the non-
parametric setting of the robustness parametric analysis under generalized moment
conditions.

As concern the functions defining �, possible choices for the function g are the
following:

• g(π) = IS1(π), the indicator function of some measurable subset S1 of inter-
est; in this case we are concerned with the posterior probability that the random
mixing probability measure π̃ belongs to S1.

• g(π) = π(A), A ∈ B(Y); in this case, we want to compute the supremum of
the a posteriori expected value of the random variable π̃(A), when q varies in
�.

• g(π) = p(x;π), x ∈ IRk , i.e. we deal with the predictive density of a future
observation.

As far as the constraints are concerned, possible functions fis are:

• fi(π) = ∫
Ki
p(x;π)λ(dx),Ki ∈ B(IRk), so that

∫
S fi(π)q(dπ) = ∫

Ki
mX1(x)

λ(dx), wheremX1 denotes the marginal density of a single observation; such a
constraint specifies a bound on the marginal distribution.

• for k = 1, fi(π) = ∫
IR x

i p(x;π)λ(dx) so that
∫
S fi(π)q(dπ) = ∫

IR x
i mX1(x)

λ(dx), here the bound is on the moments of the marginal distribution.
• fi(π) = ∫

Y y
iπ(dy), if Y∈ B(IR); such a constraint represents a bound on the

expected value of the ith moment functional of the random probability measure
π̃ .
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Analogously to the parametric problem, the functional to be optimized in Eq. (4)
is not linear in the argument q; however by means of a variable transformation
approach, it is easy to obtain an equivalent linear optimization problem (see Betrò
and Guglielmi 2000). Indeed, consider the map ψ from P(S) to M(S) which
associates to the probability measure q the finite measure µ defined by

ψ(q)(A) =: µ(A) = q(A)
∫
S l(π)q(dπ)

, A ∈ B(S), (5)

assuming that 0 <
∫
S l(π)q(dπ) < +∞. It is easily seen that

∫
S l(π)µ(dπ) = 1

if, and only if,µ ∈ ψ(P(S)). Moreover, the mapψ is injective. Indeed, ifψ(q1) =
ψ(q2) then, by Eq. (5) withA = S it holds

∫
S l(π)q1(dπ) = ∫

S l(π)q2(dπ), so that
q1(A) = q2(A) for all A ∈ B(S), i.e. q1 = q2. By this transformation, problems
(3) and (4) turns into

sup
µ∈M1

∫

S
g(π)l(π)µ(dπ), (6)

where

M1 = M1(S) :

=
{

µ ∈ M(S) :
∫

S
f̃i(π)µ(dπ) ≤ 0, i = 1, . . . , m,

∫

S
l(π)µ(dπ) = 1

}

(7)

and f̃i(π) := fi(π)− αi, i = 1, . . . , m.
Problem (6) is an instance of the class of generalized moment problems widely

studied by Kemperman (1971, 1983, 1987). The main results which are useful for
our purposes are reported in the following section.

3 Some theory on the generalized moment problem

Consider a general separable metric space S, and let M = M(S) be the set of
all finite Borel measures on S; see Appendix A for preliminaries on the space
M. Let hi :S → IR, u:S → IR be measurable functions and ηi be real constants,
i = 1, . . . , n.

The generalized moment problem consists in determining the upper bound

U := sup
µ∈M1

∫

S
udµ, (8)

where M1 = M1(S) := {µ ∈ M :
∫
S h

+
i dµ < +∞,

∫
S hidµ ≤ ηi, i =

1, . . . , n}. We assume the existence of µ∗ in M1 such that
∫
S u

−dµ∗ > −∞, so
that U > −∞. From now on, IRn

+ will denote the set
{
(x1, . . . , xn) ∈ IRn : xi ≥

0 ∀ i = 1, . . . , n
}
.

It is easy to show that, for any convex subset M0 of M containing M1, it holds

U ≤ U ∗ := inf

{
n∑

i=1

βiηi + sup
µ∈M0

∫

S

(

u−
n∑

i=1

βihi

)

dµ, β ∈ IRn
+

}

.
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At this point we aim to determine: (1) conditions under which U ∗ is finite and
U = U ∗; (2) a tractable form for U ∗. Note that if M0 = M, then

U ∗ = inf

{
n∑

i=1

βiηi : β ∈ IRn
+,

n∑

i=1

βihi(s) ≥ u(s) ∀ s ∈ S
}

(9)

and the problem of calculating U ∗ as in Eq. (9) is usually called LSIP problem;
see Goberna and López (1998). However, assuming M0 = M will not guarantee
that U and U ∗ coincide. Theorem 3.2, representing the main result of this section,
answers to issue (1) and permits to obtain Eq. (9) when M0 is a proper compact
subset of M.

We introduce the following conditions:

H1: hi is lower semicontinuous (l.s.c.), i.e. {s ∈ S : hi(s) > b} is an open set for
any b ∈ IR, for all i = 1, . . . , n.

H2: hi(s) ≥ Ci for all s ∈ S, for some constants Ci < 0, i = 1, . . . , n.
H3: there exists β̃ ∈ IRn

+ such that
∑n

i=1 β̃ihi(s) > 1 for all s ∈ S.
H4: for any ε > 0 there exist a compact setKε in S and βε ∈ IRn

+, with
∑n

i=1 β
ε
i ≤

B for some positive constant B, such that
∑n

i=1 β
ε
i hi(s) >

1
ε

for all s ∈ KC
ε .

H5: u is upper semicontinuous (u.s.c.), i.e. −u is l.s.c.
H6: u(s) ≤ G for all s ∈ S, for some constant G > 0.
H7: there exists β̃ ∈ IRn+1

+ , such that
∑n

i=1 β̃ihi(s)− β̃n+1u(s) > 1 for all s ∈ S.
H8: for any ε > 0 there exist a compact setKε inS andβε ∈ IRn+1

+ with
∑n+1

i=1 β
ε
i ≤

B for some positive constant B, such that
∑n

i=1 β
ε
i hi(s)− βεn+1u(s) >

1
ε

for
all s ∈ KC

ε .

Observe that H3 (H4) is a special case of H7 (H8).
Next theorem is the key result of the section. It is analogous to Theorem 5 in

Kemperman (1983), which, however, was stated without proof. Condition H3 used
here appears to be easier to verify than formula (4.4) in Kemperman’s theorem.

Theorem 3.1 Under H1–H4, M1 
= ∅ if, and only if, the following condition
holds:

if β ∈ IRn
+ is such that

n∑

i=1

βihi(s) ≥ 0 for any s ∈ S, then
n∑

i=1

βiηi ≥ 0. (10)

Proof See Appendix B.

Theorem 3.2 stems now from Theorem 3.1; the proof is rather technical and
uses standard arguments of generalized moment theory. The interested reader is
referred to Betrò et al. (2002).

Theorem 3.2 Under H1–H2 and H5–H8, if M1 
= ∅, then

U = inf

{
n∑

i=1

βiηi : β ∈ IRn
+,

n∑

i=1

βihi(s) ≥ u(s), ∀ s ∈ S
}

. (11)

Moreover, the supremum U is finite and attained.
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If the metric space S is compact, some of the hypotheses in Theorem 3.2 are
automatically satisfied so we can state the following.

Corollary 3.1 Let S be compact. Under H1, H5, and H7, if M1 
= ∅, then

U := sup
µ∈M1

∫

S
udµ = inf

{
n∑

i=1

βiηi : β ∈ IRn
+,

n∑

i=1

βihi(s) ≥ u(s)∀ s ∈ S
}

.

(12)

Moreover, the supremum U is finite and attained.

4 Solving nonparametric robustness problems

In this section we apply the results of the previous one to problem (6) using the
same notation as in Sect. 2. Indeed, any subset S of P(Y) is separable by the sep-
arability of Y ⊂ IRk . Conditions H1, H2, and H5–H8 are immediately transposed
into the following I1–I7, exploiting the nonnegativity of l(π) in the formulation of
I6 and I7.

I1: f̃j is l.s.c., j = 1, . . . , m, and l is continuous.
I2: g is u.s.c.
I3: f̃j ≥ Cj , j = 1, . . . , m, where Cj s are real (negative) constants.
I4: l is bounded.
I5: gl is bounded from above.
I6: there exist β̃0 ∈ IR+, β̃ ∈ IRm+1

+ such that β̃0l(π)+
∑m

i=1 β̃i f̃i(π)− β̃m+1g(π)
l(π) > 1 for all π in S.

I7: for any ε > 0 there exist a compact set Kε in S and βε0 ∈ IR+, βε ∈
IRm+1

+ with
∑m+1

i=0 β
ε
i ≤ B for some positive constant B, such that βε0 l(π) +

∑m
i=1 β

ε
i f̃i(π)− βεm+1g(π)l(π) >

1
ε

for all π in KC
ε .

Remark 1 If I6 holds with β̃m+1 = 0, then choosing ε̃ such that 1 − β̃0ε̃ > 0
and β̃ ′

i = β̃i/(1 − β̃0ε̃), it is also
∑m

i=1 β̃
′
i f̃i (π) > 1 for all π in S such that

l(π) ≤ ε̃. Roughly speaking, when l is small, at least one of the f̃is is positive and
far from 0. The converse is also true: if there exist ε̃ > 0 and β̃ ∈ IRm

+ such that
∑m

i=1 β̃i f̃i(π) > 1 for all π ∈ S at which l(π) ≤ ε̃, then I6 holds with β̃m+1 = 0
and β̃0 > (1 −∑m

i=1 β̃iCi)/ε̃.

The result follows immediately:

Theorem 4.1 Under I1–I7, if M1(S) 
= ∅, then

sup
µ∈M1

∫

S
g(π)l(π)µ(dπ) = inf

{
β0 : β0 ∈ IR, β ∈ IRm

+, (13)

β0l(π)+
m∑

i=1

βif̃i(π) ≥ g(π)l(π) ∀ π ∈ S
}

and the supremum in the left-hand side of Eq. (13) is finite and attained.
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Proof Apply Theorem 3.2 with n = m + 2, u = gl, M1 = M1(S), h1 = l,
h2 = −l, η1 = 1, η2 = −1, hi+2 = f̃i , ηi+2 = 0, i = 1, . . . , m.

Remark 2 According to Corollary 3.1, when S is compact, only assumptions I1,
I2, and I6 are to be verified.

Remark 3 If any of the constraint functions fj (π) has the form
∫
Y z(y)π(dy), and

z:Y → IR is bounded from below and l.s.c, then it is easy to show that fj is l.s.c.
as well (see Lemma 3 in Kemperman, 1983). Indeed, the result holds not only for
probabilities, but also for finite measures.

Here follow some considerations about the solution of Eq. (13). Theorem 4.1
shows that the required maximum can be obtained by solving a LSIP problem.
Although algorithms for this latter exist, regardless of the structure of S (see e.g.
Betrò 2004), in practice the infinite dimensionality of S must be dealt with, so
that a finite approximation is necessary. Treatment of such computational aspects
is beyond the scope of this paper.

Once it has been ensured that the supremum in Eq. (6) is reached by some
measure µ∗, then it can be assumed that µ∗ has finite support of at most m + 1
points. Indeed, setting

z0 =
∫

S
gldµ∗, zi =

∫

S
f̃idµ

∗, i = 1, . . . m,

and recalling that 1 = ∫
S ldµ

∗, Theorem 1 in Rogosinsky (1958) (see also Lemma
1 in Kemperman 1983) states that there exists a measure µ, having finite support
of at most m + 2 points, and such that

∫
S ldµ = 1,

∫
S gldµ = z0,

∫
S f̃idµ = zi ,

i = 1, . . . , m, so that such a measure is still optimal. Consequently, the problem of
determining supµ∈M1

∫
S gldµ turns out be an ordinary (finite) linear programming

problem inm+2 variables andm+1 constraints for which it is well known that, if
a solution exists, then it can be assumed to have at mostm+1 non-null coordinates.

Denoting byµ∗ an optimal measure with atoms π∗
1 , . . . , π

∗
k and corresponding

masses µ∗
1, . . . , µ

∗
k , µ

∗
j > 0, j = 1, . . . , k, k ≤ m+ 1, if the infimum in Eq. (13)

is a minimum achieved by, say, β∗
0 ∈ IR and corresponding coefficients β∗

i ≥ 0
(i = 1 . . . , m), then it is

0 ≤
∫

S

(

β∗
0 l +

m∑

i=1

β∗
i f̃i − gl

)

dµ∗

= β∗
0 +

m∑

i=1

β∗
i

∫

S
f̃idµ

∗ − β∗
0 ≤ 0

so that

β∗
0 l(π

∗
j )+

m∑

i=1

β∗
i f̃i (π

∗
j ) = g(π∗

j )l(π
∗
j ), j = 1, . . . , k (14)

and
k∑

j=1

f̃i(π
∗
j )µ

∗
j = 0 (15)
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for all is such that i ∈ {1, . . . , m} and β∗
i > 0.

Conversely, if µ∗ in M1 is an atomic measure with support π∗
1 , . . . , π

∗
k ,

k ≤ m + 1 which satisfies Eqs. (14) and (15), then µ∗ is an optimal measure.
Indeed

β∗
0 ≥

∫

S
gldµ∗ = β∗

0

∫

S
ldµ∗ +

m∑

i=1

β∗
i

∫

S
f̃idµ

∗ = β∗
0

so that
∫
gldµ∗ = β∗

0 , i.e. µ∗ is optimal.
The above characterization of an optimal measure is useful for practical com-

putations, as illustrated in the next section.
Finally, observe that in order to apply Theorem 4.1 we need to either provide

conditions under which S is compact, or single out compact subsets of S (see I7).
If we assume that Y is compact and S is closed, then S is compact; indeed, if Y
is compact, then S ⊂ P(Y) is trivially tight and, being closed, is compact too by
Prohorov’s theorem (see, e.g., Parthasarathy, 1967; Theorem 6.7, p. 47). If S is not
compact, but Y and S are closed subsets in their corresponding spaces, then S is a
Polish space too, so by Prohorov’s theorem we can characterize compact sets in S
as the closures of tight sets in S. For instance, condition I7 holds when one of the
functions f̃is, say f̃1, has the form

f̃1(π) =
∫

Y
z(y)π(dy)− α1, z(y) ≥ C, C < 0,

δ0 is a positive real number such that 1/δ0 − C + α1 > 0, and for some family of
nonempty compact sets {Aδ ⊂ Y; 0 < δ ≤ δ0} nondecreasing when δ decreases to
zero and such thatπ(AC

δ0
) = 0 for someπ in S, there exists a function v(δ) such that

lim
δ→0+

v(δ) = 0, v(δ) inf
y∈AC

δ

z(y) ≥ 1

δ
− C + α1 for δ ≤ δ0.

This is the case, e.g., if Y = [0,+∞), z(y) ≥ yα and nondecreasing in [K,+∞)
for some α > 0 and K > 0, provided that π((K,+∞)) = 0 for some π in S;
indeed, it is easily verified that we can take Aδ = [0, (z(1/δ)(1/δ − C + α1))

1/α]
and v(δ) = z−1(1/δ) for δ ≤ δ0 = 1/K , assuming 1/K − C + α1 ≥ 1.

For any ε ≤ δ0, define Kε = {π ∈ S:π(AC
δ ) ≤ v(δ) ∀ δ ≤ ε } 
= ∅. By

definition,Kε is tight and is easily seen to be closed, so that it is compact. For any
π in KC

ε , there exists δπ ≤ ε such that π(AC
δπ
) > v(δπ), and hence

f̃1(π) =
∫

AC
δπ

z(y)π(dy)+
∫

Aδπ

z(y)π(dy)− α1

≥ inf
y∈AC

δπ

z(y)v(δπ )+ C − α1 ≥ 1

δπ
≥ 1

ε
∀ π ∈ KC

ε ,

so that I7 is fulfilled by choosing β̃ε1 = 1 and all other coefficients equal to 0. An
analogous argument can be developed when g(π) has the form

∫
S zdπ . Essentially,

this example shows that condition I7 is a request for “divergence to infinity” for
some of the constraint functions f̃is or for −gl.
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5 Examples

We apply Theorem 4.1 to the study of robustness in the following two simple situa-
tions, which aim at illustrating a technique that can be applied to more general cases.

Example 1 (S compact). According to notation in Sects. 2 and 4, assume that, for
any i, Xi |Yi in Eq. (1) is Bernoulli distributed with parameter Yi so that

p(x;π) =
∫

Y
yx(1 − y)1−xπ(dy), x ∈ {0, 1},

where Y = [0, 1] and π ∈ S = P(Y). The likelihood can be expressed simply as

l(π) =
( ∫

Y
yπ(dy)

) r∑

1
xi
(

1 −
∫

Y
yπ(dy)

)r−
r∑

1
xi
, π ∈ S.

Let S1 = {(1 − α)π1 + απ2 : α ∈ [0, 1]} and S2 = {(1 − α)π1 + απ2 : α ∈
[1/4, 3/4]}, where π1 and π2 are probability measures in S such that

∫ 1
0 yπ1(dy) =

1/4,
∫ 1

0 yπ2(dy) = 3/8.
Assume r = 2, x1 = x2 = 1, m = 3, and let

f̃1(π) =
∫

Y
yπ(dy)− 1

2
, f̃2(π) = −

∫

Y
yπ(dy)+ 1

2
, f̃3(π) = 1

8
− IS2(π).

This means that q belongs to � if, and only if,

P(X1 = 1) =
∫

S
f1(π)q(dπ) =

∫

S

∫ 1

0
yπ(dy)q(dπ) = 1

2
and q(S2) ≥ 1

8
.

Finally, consider

g(π) = IS1(π),

assuming we are interested in the supremum of the posterior probability that π̃
belongs to S1.

Since S is compact by the compactness of Y , in order to apply Theorem 4.1
it is sufficient to verify I1, I2, and I6. Note that M1(S) is a nonempty set as, for
example, it contains the measure with atoms (π1 + π2)/2 and δ3/4 and weights,
respectively, 0.1696 and 0.1272. Moreover, the function f̃3 is l.s.c. since S2 is
closed in S, g is u.s.c. since S1 is closed in S, while f̃1 is continuous and bounded
and l is continuous and positive on S. By Remark 1, condition I6 is verified since,
if l(π) ≤ ε < 1/4, then f̃2(π) ≥ (1/2) − ε1/2 > 0, so that

∑
β̃i f̃i(π) > 1 for

β̃1 = β̃3 = 0, β̃2 ≥ (1/2 − ε1/2)−1 and β̃0 > (1+β̃2/2)/ε. Observe that, ifπ ∈ S1,
then

∫ 1
0 yπ(dy) = (

1
4 + λ

8

)
for some λ in [0,1]; if π 
∈ S1, denote

∫ 1
0 yπ(dy) by z.
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Therefore, by Theorem 4.1, the solution of Eqs. (3) and (4) is the solution of the
LSIP problem

β∗
0 = inf β0

(β0 − 1)

(
1

4
+ λ

8

)2

+b
(

−1

4
+ λ

8

)

− 7

8
β3 ≥0, for all

1

4
≤λ ≤ 3

4
,

(β0−1)

(
1

4
+ λ

8

)2

+b
(

−1

4
+ λ

8

)

+ 1

8
β3 ≥0, for all 0≤λ < 1

4
or

3

4
< λ≤1,

β0z
2+b

(

z− 1

2

)

+ 1

8
β3 ≥0, for all z ∈ [0, 1],

0≤β0 ≤1, b = β1−β2 ∈ IR, β3 ∈ IR+. (16)

As 0 ≤ β0 ≤ 1, the first set of inequalities, when λ = 3/4, yields b ≤ 0. Therefore,

(β0 − 1)

(
1

4
+ λ

8

)2

+ b

(

−1

4
+ λ

8

)

− 7

8
β3,

as a function of λ, is nonincreasing on [0,1], so that the first and the second sets
of inequalities hold if, and only if, they hold for λ = 3/4 and λ = 1, respectively.
As far as the third condition is concerned, it can be clearly seen that it holds when
2β0 + b ≥ 0; if 2β0 + b < 0, it holds if, and only if, β0 + b/2 + (1/8)β3 ≥ 0.
Summing up, solving Eq. (16) is equivalent to solve the LP problems

min β0

(β0 − 1)
(

11
32

)2 + b
(− 5

32

)− 7
8β3 ≥ 0

(β0 − 1)
(

9
64

)2 + b
(− 1

8

)+ 1
8β3 ≥ 0

2β0 + b ≥ 0
0 ≤ β0 ≤ 1
b ≤ 0
β3 ≥ 0,

min β0

(β0 − 1)
(

11
32

)2 + b
(− 5

32

)− 7
8β3 ≥ 0

(β0 − 1)
(

9
64

)2 + b
(− 1

8

)+ 1
8β3 ≥ 0

2β0 + b < 0
β0 + 1

2b + 1
8β3 ≥ 0

0 ≤ β0 ≤ 1
b ≤ 0
β3 ≥ 0.

The corresponding solutions are, respectively, β0 = 0.3483, b = −0.6967,
β3 = 0.0364, and β0 = 0.3454, b = −0.6999, β3 = 0.0366, so that β∗

0 = 0.3454.
As observed in Sect. 4, the optimal measure µ∗ is discrete with at most m + 1
points {π∗

1 , . . . , π
∗
m+1} in its support. This latter set can be found via Eq. (14) with

β∗
0 = 0.3454, b∗ = β∗

2 − β∗
1 = 0.6999, β∗

3 = 0.0366; the set of the corresponding
weights is determined solving the finite system given by Eq. (15) together with∫
ldµ∗ = 1 as seen in Sect. 4. It turns out that

µ∗ = 0.6546 δπ∗
1
+ 0.3967 δπ∗

2
+ 2.1226 δπ∗

3
,

where π∗
1 = δ1, π∗

2 = (1/4)π1 + (3/4)π2, and π∗
3 = π2.

To complete the analysis of robustness, we need to determine

inf
q∈�

∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
= − sup

q∈�

∫
S −IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
. (17)
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Unfortunately −IS1 is not u.s.c., as S1 is a closed set, so that we cannot apply
directly Theorem 4.1. However, denoting the interior of S1 by S ′

1, −IS ′
1

is u.s.c.,
and

inf
q∈�

∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
≥ inf

q∈�

∫
S IS ′

1
(π)l(π)q(dπ)

∫
S l(π)q(dπ)

.

We will determine the right-hand side in the above inequality and show that it is
equal to the left-hand side.

We note that condition I6 is satisfied here too. Using the same argument as
before, we obtain an LP problem having solution β∗

0 = −0.0208, b∗ = −β0, and
β∗

3 = 0.0833, so that

µ∗ = 0.6546 δπ∗
1
+ 0.0793 δπ∗

2
+ 2.1226 δπ∗

3
,

where π∗
1 = δ1, π∗

2 = (1/4)π1 + (3/4)π2, and π∗
3 = π2. Since the atoms of µ∗ do

not belong to S1 \ S ′
1, then µ∗ is an optimal measure for Eq. (17) too. Summing

up, for all q in �, it is

0.0208 ≤
∫
S IS1(π)l(π)q(dπ)∫

S l(π)q(dπ)
≤ 0.3454.

Example 2 (S not compact). We assume that X1, . . . , Xr are i.i.d., given π , with
density

p(x;π) =
∫

Y

y∑

k=1

λ
(y)

k ke−kxπ(dy), x > 0, (18)

where Y = [1,+∞), S = P(IN), and λ(y)1 , . . . , λ
(y)
y are fixed probability weights

for all y = 1, 2, . . . , i.e. Xi |Yi is distributed according to a mixture of y exponen-
tials.

We consider g(π) = IS1(π), with S1 = {δ1}, and

f̃1(π) =
∫

Y
yπ(dy)− α1, f̃2(π) = −π({2})− π({3})− α2,

where α1, α2 are fixed real constants, α1 ≥ 1, −1 ≤ α2 ≤ 0, i.e., we are interested
here in the supremum of the posterior probability thatX1, . . . , Xr is a sample from
the exponential distribution with parameter equal to 1, under the constraints

Eq

( ∫

Y
yπ̃(dy)

)
≤ α1, Eq

(
π̃({2})+ π̃({3})

)
≥ α2.

Observe that a more general example would result assuming that the weights
λ
(y)

1 , . . . , λ
(y)
y in Eq. (18) are random as well, so that π should represent the dis-

tribution of (y, λ(y)1 , . . . , λ(y)y ). However, in this framework, fixing λ(y)1 , . . . , λ
(y)
y

for all y = 1, 2, . . . in Eq. (18) corresponds to averaging with respect to a fixed
distribution for (λ(y)1 , . . . , λ

(y)
y ) given y.

In this example, S = P(IN) is not compact, but it is easily seen to be closed.
Therefore, due to the arguments introduced at the end of Sect. 4, I7 holds since
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f1 has the form
∫
Y z(y)π(dy). Moreover, f̃1 is l.s.c. (see Remark 3), f̃2 and l are

continuous on S, g is u.s.c. since S1 is trivially closed, and it is easy to verify that
I3, I4, and I5 hold. As far as I6 is concerned, simple calculations show that the con-
dition is satisfied, applying Remark 1 with β̃3 = β̃1 = 0 and β̃0, β̃2 large enough.
Finally, it can be checked that, if −α2 ≤ α1 − 1, then M1(S) 
= ∅. Therefore, the
required maximum is equal to

inf
{
β0:0 ≤ β0 ≤ 1, β1, β2 ≥ 0, β0l(π)+ β1f̃1(π)+ β2f̃2(π)

≥ g(π)l(π) ∀π ∈ S
}
. (19)

Now, assuming r = 1, and denoting π({i}) by πi , the feasible region is given by

(β0 − 1)e−x1 + β1(1 − α1)+ β2(−α2) ≥ 0 (20)

β0

+∞∑

i=1

πi

(
i∑

k=1

λ
(i)
k ke−kx1

)

+β1

(+∞∑

i=1

iπi−α1

)

+β2(−π2−π3−α2)≥0, (21)

where 0 ≤ π1 < 1 and 0 ≤ ∑+∞
1 πi ≤ 1. As the left-hand side of Eq. (21) is linear

in π := {π1, π2, . . . }, its evaluation at the simplex vertices, together with Eq. (20),
gives the following equivalent formulation of Eq. (19)

min
0≤β0≤1

β0

β1 ≥ 0, β2 ≥ 0

(β0 − 1)e−x1 + β1(1 − α1)+ β2(−α2) ≥ 0

β0(λ
(2)
1 e−x1 + λ

(2)
2 2e−2x1)+ β1(2 − α1)+ β2(−1 − α2) ≥ 0

β0(λ
(3)
1 e−x1 + λ

(3)
2 2e−2x1 + λ

(3)
3 3e−3x1)+ β1(3 − α1)+ β2(−1 − α2) ≥ 0.

For example, if α1 = 1.5, −α2 = 0.5, x1 = 4.6 and λ(2)1 = 0.2, λ(3)1 = 0.01,
λ
(3)
2 = 0.02, we found that the infimum is equal to β∗

0 = 0.8223, while, if α1 =
3.5, −α2 = 0.75, x1 = 0.6931 and λ(2)1 = 0.5, λ(3)1 = 1/3, λ(3)2 = 1/3, then
β∗

0 = 0.2667.
To complete the example, we note that the infimum in Eq. (17) is equal to 0 in

this case; indeed, there exists a degenerate measure q̂ = δπ̂ belonging to �, where
the support of π̂ is contained in {1, 2, 3} and π̂({1}) < 1.

Acknowledgements We wish to thank the Associated Editor for his valuable suggestions, which
lead to an improvement in the organization of the paper.

Appendix A

Let S be a metric space, endowed with the class B(S) of Borel sets in S. Let
P(S) be the space of all probability measures on (S,B(S)), with the topology of
weak convergence: πn

w→ π in P(S) if
∫
S f dπn → ∫

S f dπ for every bounded,
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continuous real function f on S. Let M(S) be the space of all finite positive mea-
sures on (S,B(S)), equipped with the topology of weak convergence as well (see
Parthasarathy, 1967, p. 40). Over P(S) and M(S) we consider the correspond-
ing Borel σ -fields. It is well known that P(S) and M(S), both endowed with
the topology of weak convergence, are separable metric spaces if, and only if, S
is separable; distances metrizing the topology of weak convergence in P(S) and
M(S) are the Prohorov distance and the one described in Doob (1994), pp. 139–
140, respectively. Moreover, observe that if S is a Polish space then both P(S) and
M(S) are Polish in their corresponding topologies (see Prohorov 1956).

When dealing with finite measures on a topological space, an important notion
is the tightness of a family of finite measures. A subset A of M(S) is tight if for
all ε > 0 there exists a compact set Kε in S such that µ(KC

ε ) < ε for each µ
in A (Ash, 1972, p. 330). Recalling that a subset A of a metric space is relatively
compact if every sequence of elements in A contains a weakly convergent sub-
sequence, the following theorem states that tightness is a sufficient condition for
relative compactness of a set of uniformly bounded measures.

Theorem A.1 Let S be separable. If A ⊂ M(S) is tight and supµ∈A µ(S) ≤ C
for some positive constant C, then A is relatively compact.

This is a part of the well-known Prohorov’s theorem; see, for instance, Ash
(1972), where the result is stated when S = IR.

Appendix B

Proof of Theorem 3.1. The “only if” part is obvious. Indeed, if M1 
= ∅, there
exists a finite measure µ̃ in M1; therefore, if we choose β ∈ IRn

+ such that∑n
i=1 βihi(s) ≥ 0 for any s ∈ S, we have

0 ≤
∫

S

n∑

i=1

βihi(s)µ̃(ds) ≤
n∑

i=1

βiηi.

We prove the “if” part in several steps. We show that the measures in M1 are
uniformly bounded (Step 1), so that M1 is tight (Step 2). As M1 is contained
in a convex and compact subset too, we will provide a necessary and sufficient
condition for M1 to be not empty (Step 3) that is implied by Eq. (14) (Step 4).

Step 1 M1 ⊂ MD := {µ ∈ M(S) : µ(S) ≤ D} for some positive D.
Indeed, if µ ∈ M1, by H3,

µ(S) =
∫

S
µ(ds) ≤

∫

S

n∑

i=1

β̃ihi(s)µ(ds) ≤
n∑

i=1

β̃iηi;

therefore, if D := 1 + ∑n
i=1 β̃iηi , then D > 0 and µ(S) ≤ D. Of course, if

M1 = ∅, trivially M1 ⊂ MD for all D > 0.
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Step 2 M1 is tight.
This is obvious when M1 = ∅. Otherwise, let µ ∈ M1 and σ > 0; by H2 and H4
we have

n∑

i=1

βσi ηi ≥
∫

S

n∑

i=1

βσi hi(s)µ(ds)

=
n∑

i=1

βσi

∫

Kσ

hi(s)µ(ds)+
∫

KC
σ

n∑

i=1

βσi hi(s)µ(ds)

≥
n∑

i=1

βσi Ciµ(Kσ )+ 1

σ
µ(KC

σ )

=
n∑

i=1

βσi Ciµ(S)+
(

1

σ
−

n∑

i=1

βσi Ci

)

µ(KC
σ ),

so that

µ(KC
σ ) ≤

∑n
i=1 β

σ
i ηi −

∑n
i=1 β

σ
i Ciµ(S)

1
σ

−∑n
i=1 β

σ
i Ci

≤ σ

n∑

i=1

βσi (ηi − Ciµ(S)).

By H4

n∑

i=1

βσi (ηi − Ciµ(S)) ≤
n∑

i=1

βσi (ηmax − CminD) ≤ max{0, ηmax − CminD}B

where ηmax := maxi ηi and Cmin := mini Ci , and this yields

µ(KC
σ ) ≤ σB max{0, ηmax − CminD} =: δ(σ ) → 0, for σ → 0,

i.e. M1 is tight.

Step 3 M1 
= ∅ if, and only if, the following condition holds:

inf
µ∈ND

∫

S

n∑

i=1

βihi(s)µ(ds) ≤
n∑

i=1

βiηi, for all β ∈ IRn
+, (22)

where ND := {µ ∈ MD:µ(KC
σ ) ≤ δ(σ ) ∀ σ > 0}, and MD and δ(σ ) are as in

previous steps.
Indeed, first of all, observe that M1 ⊂ ND; moreover, if Nσ := {µ ∈

MD:µ(KC
σ ) ≤ δ(σ )}, it is ND = ∩σ>0Nσ . We prove that, for all σ > 0, if

{µn}n ⊂ Nσ , µn
w−→ µ, then µ ∈ Nσ and, hence, Nσ is closed. By Lemma 3 in

Kemperman (1983), for each n, σ > 0,µn(KC
σ ) = ∫

S IKC
σ

dµ = sup{∫S f dµn : f
bounded and continuous, f ≤ IKC

σ
}, since IKC

σ
is lower semicontinuous and

bounded from below. Hence, if f is bounded and continuous and f ≤ IKC
σ

, it
is

∫

S
f dµ = lim

n→+∞

∫

S
f dµn ≤ lim sup

n→+∞

∫

S
IKC

σ
dµn ≤ δ(σ )
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since µn ∈ Nσ , so that

µ(KC
σ ) ≤ δ(σ ),

i.e.µ ∈ Nσ . Therefore, ND is closed and, since it is tight, it is compact too by The-
orem A.1. As M1 ⊂ ND and ND is convex, applying Theorem 1 in Kemperman
(1983) with M0 = ND , we obtain that Eq. (22) is a necessary and sufficient
condition for M1 to be nonempty.

Step 4 Eq. (10) yields Eq. (22), concluding our proof.
Introducing the notation η = (η1 . . . , ηn)

′, hs = (h1(s), . . . , hn(s))
′, Eq. (10)

can be rewritten as

h′
sβ ≥ 0, β ≥ 0 ⇒ η′β ≥ 0, β ≥ 0

where y ′ denotes the transpose of the vector y. By Farkas’ lemma (see Goberna
and López 1998, p. 71) this is true if, and only if, η belongs to the closure of the
convex cone generated by {hs, s ∈ S} and the canonical basis in IRn. It is easy to
show (see Goberna and López 1998, Exercise 3.5(iii), p. 76) that η belongs to the
closure of this cone if, and only if, there exists a vector ν ∈ IRn such that for any
ε > 0 there exist constants µεs ≥ 0 (all but finitely many, say k, equal to 0) and a
vector λε ∈ IRn

+ such that

λε +
∑

s

µεshs = η + εν. (23)

Multiplying (23) by β ∈ IRn
+, we obtain

∑

s

µεsh
′
sβ ≤ λ′

εβ +
∑

s

µεsh
′
sβ = η′β + εν ′β, (24)

and the left-hand side can be written as
∫
S h

′
sβµ̄ε(ds), where µ̄ε is the mea-

sure on S with masses µεs1, . . . , µ
ε
sk

at some points s1, . . . , sk in S, respectively.
If µ̄ε ∈ ND , then by Eq. (24) we have

inf
µ∈ND

∫

S
h′
sβµ(ds) ≤ η′β + εν ′β → η′β as ε → 0,

i.e. condition (22) holds, so that M1 
= ∅.
It remains to show that µ̄ε ∈ ND . It is sufficient to consider ε < 1.
By H3 Eq. (24) it is

µ̄ε(S) =
∑

s

µεs ≤
∑

s

µεsh
′
s β̃ ≤ η′β̃ + εν ′β̃ ≤ η′β̃ + ν ′β̃.
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Redefining D = max{D, η′β̃ + ν ′β̃}, it is µ̄ε ∈ MD . Multiplying Eq. (23) by βσ ,
by H2 and H4 we have

η′βσ + εν ′βσ ≥
∑

s

µεsh
′
sβ

σ =
∑

s∈Kσ
µεsh

′
sβ

σ +
∑

s 
∈Kσ
µεsh

′
sβ

σ

≥
∑

s∈Kσ
µεsh

′
sβ

σ + 1

σ

∑

s 
∈Kσ
µεs

≥
∑

s∈Kσ
µεsCmin




∑

j

βσj



+ 1

σ

∑

s 
∈Kσ
µεs

≥ BCmin

∑

s∈Kσ
µεs + 1

σ
µ̄ε(K

C
σ )

≥ BCminµ̄ε(S)+ 1

σ
µ̄ε(K

C
σ ) ≥ BCminD + 1

σ
µ̄ε(K

C
σ ).

Hence,

µ̄ε(K
C
σ ) ≤ σ(η′βσ + εν ′βσ − BCminD)

≤ σ
∑

j

(ηj + ενj )β
σ
j − σBCminD

≤ σ(νmax + ηmax)B − σBCminD

≤ σB(max{0, ηmax + νmax − CminD} = δ∗(σ ).

Redefining δ(σ ) as max{δ(σ ), δ∗(σ )} we have that µ̄ε ∈ Nσ for all σ > 0 and,
hence, µ̄ε ∈ ND .
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Betrò, B., Guglielmi, A. (1994). An algorithm for robust Bayesian analysis under generalized
moment conditions. Quaderno IAMI, 94.6. Milan: CNR-IAMI.
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Betrò B., Guglielmi, A., Rossi, F. (1996). Robust Bayesian analysis for the power law process.
ASA 1996 proceedings of the section on Bayesian statistical science (pp. 288–291),Alexandria:
ASA.



738 B. Betrò et al.
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versità “La Sapienza”, Roma.

Doob, J.L. (1994). Measure theory. Berlin Heidelberg New York: Springer.
Escobar, M. D., West, M. (1995). Bayesian density estimation and inference using mixtures.

Journal of the American Statistical Association, 90, 577–588.
Escobar, M. D., West, M. (1998). Computing nonparametric hierarchical models. In: Dey D.,

Muller P. & Sinha D. (Eds.) Practical nonparametric and semiparametric Bayesian statistics
(pp. 1–22). Berlin Heidelberg New York: Springer.

Ghosh, J.K., Ramamoorthi R.V. (2003). Bayesian nonparametrics. Berlin Heidelberg NewYork:
Springer.
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