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Abstract In this paper, we consider the problem of testing for a parameter change
using the cusum test based on one-step estimators in diffusion processes. It is shown
that under regularity conditions the cusum test statistic has the limiting distribution
of a functional of Brownian bridge.
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1 Introduction

The problem of testing for parameter change has long been a core issue in statisti-
cal inferences. It originally started in the quality control context and then rapidly
moved to various areas such as economics, finance and medicine. Since the paper
of Page (1955), the problem has generated much interest and a vast amount of
literatures have been published in various fields. For a general review, we refer to
Csörgő and Horváth (1997); Chen and Gupta (2000) and the articles therein. The
change point problem was first dealt in i.i.d. samples but it became very popular
in time series models since the structural change often occurs in economic models
owing to a change of policy and critical social events. For relevant references in
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i.i.d. samples and time series models, we refer to Hinkley (1971), Brown, Durbin,
and Evans (1975), Winchern, Miller, and Hsu (1976), Zacks (1983), Picard (1985),
Csörgő and Horváth (1988), Krishnaiah and Miao (1988), Bai (1994), Lee and Park
(2001), and the references therein.

In handling the change point problem, one can consider either a parametric
approach using the likelihood as in Chen and Gupta (2000) or a nonparametric
approach like the cusum test as in Inclán and Tiao (1994). In the same spirit of
Inclán and Tiao (1994) and Nyblom (1989), Lee, Ha, Na, and Na (2003) devised
a cusum test widely applicable to time series models. The basic concept of the
cusum test is the same as the one for the mean and variance change, but it can
include a large number of other cases, such as the autoregressive coefficient in
the random coefficient autoregressive models, the parameters in GARCH models
and nonlinear autoregressive models. In particular, the GARCH model is one of
the most popular models in the financial time series context. The cusum test has
an advantage that it can test for the existence of change points and allocate their
locations.

Although the issue of the change point analysis has drawn much attention from
researchers, to our knowledge there are no existing literatures as to continuous
time stochastic processes. The diffusion process, the most popular continuous time
stochastic process, has been playing a central role in many applications such as
finance, engineering and medicine. As with its probabilistic properties themselves,
the statistical inference for the diffusion process model has been studied by many
authors. For relevant literatures, see Prakasa Rao (1999) and Kutoyants (2004). In
view that the ARCH process, which is a discrete version of the diffusion process,
often suffers from parameter changes, one can reason that with high possibility the
same might occur in modelling financial data set by a diffusion process in actual
practice. It is therefore worthwhile to study the parameter change test for diffusion
processes.

Conventionally, the cusum test is based on the estimators such as the least
squares estimator and maximum likelihood estimator (cf. Lee and Lee 2004; Lee
and Na 2004a,b). However, here we employ the cusum test based on a one-step
estimator, which certainly has the merit that it includes the case that the maximum
likelihood estimator is not given in an explicit form. Hence, our result covers a
more general case than those in the literatures mentioned above.

The organization of this paper is as follows. In Sect. 2, we introduce the cusum
test for diffusion processes and show that the test statistic converges weakly to the
sup of a Brownian bridge. We outline the proof of the theorem in this section, and
complete it in Sect. 3.

2 Main result and the outline of the proof

Let � be a parameter space which is a bounded, convex, open subset of R. Let
V0 : R × � → R and V : R → (0,∞) be some functions. Let us consider
the one-dimensional stationary diffusion process t � Xt given by the stochastic
differential equation (SDE)

dXt = V0(Xt , θ)dt + V (Xt)dWt,
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where t � Wt is a one-dimensional standard Wiener process. Here, we implicitly
assume that the solutions of the SDE exist. We denote by Xθ the solution under
the probability measure Pθ for θ ∈ �, and by Eθ the expectation with respect to
Pθ . The stationary distribution νθ (x)dx is given by

νθ (x) = nθ(x)∫
R
nθ(y)dy

with nθ(x) = 1

V (x)2
exp

(

2
∫ x

0

V0(z, θ)

V (z)2
dz

)

.

It holds that Eθf (Xθt ) = ∫
R
f (x)νθ (x)dx for all t ∈ [0,∞).

We wish to test the hypotheses
H0 : The true value θ0 ∈ � of the model does not change. versus
H1 : not H0.

Below, we will introduce the cusum test statistic and derive its asymptotic distribu-
tion under H0. Under H0, the probability and the expectation below will be taken
under the probability measure Pθ0 and Eθ0 , respectively.

Here are the assumptions to ensure the Brownian bridge result for the test

statistic below. We denote δk = dk
dθk for an integer k.

Assumption 1 The stochastic process t � X
θ0
t is stationary and α-mixing with

exponential rate under Pθ0 .

We assume the α-mixing property only for applying a functional limit theorem for
stationary processes, namely, Theorem VIII.3.79 of Jacod and Shiryaev (1987).
Thus, we can replace the assumption by any other condition which implies the
assumption 3.80 with p = q = 2 there; see also Lemma VIII.3.102. As for the
mixing rate, we refer to Veretennikov (1987, 1997).

Assumption 2 For every x ∈ R, the function θ � V0(x, θ) is three times contin-
uously differentiable. Moreoever, Eθ [| δV0

V
(Xθ0 , θ)|2] > 0 for every θ ∈ �.

Assumption 3 Eθ0 [| δkV0
V
(X

θ0
0 , θ0)|2q]<∞ for some q > 1, for every k=1, 2, 3.

Assumption 4 It holds that

Eθ0

[

sup
θ∈�

∣
∣
∣
∣
δkV0

V 2
(X0, θ)V0(X0, θ0)

∣
∣
∣
∣

]

< ∞, for every k = 1, 2, 3.

Also, it holds that

Eθ0

[

sup
θ∈�

∣
∣
∣
∣
δkV0δ

lV0

V 2
(X0, θ)

∣
∣
∣
∣

]

< ∞,

for every k, l = 0, 1, 2, 3 such that 1 ≤ k + l ≤ 3.

Motivated by the fact that the log-likelihood is given by

�
θ0
T (θ) =

T∫

0

V0

V 2
(Xθ0

t , θ)dX
θ0
t − 1

2

T∫

0

(
V0

V

)2

(Xθ0
t , θ)dt,
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we define ψθ0
T (θ) and η(θ) as follows:

ψ
θ0
T (θ) :=

T∫

0

δV0

V 2
(Xθ0

t , θ)dX
θ0
t −

T∫

0

V0δV0

V 2
(Xθ0

t , θ)dt;

η(θ) := −Eθ
[(

δV0

V

)2

(Xθ0 , θ)

]

.

As for the latter, we have kept the stationarity of X in mind. In fact, it holds for
any T that

Eθ0 [δψθ0
T (θ0)] = T η(θ0), ∀θ0 ∈ �. (1)

Now, we consider the cusum test procedure based on one-step estimators. We
assume that an initial estimator θ̂0

T satisfies the following.

Assumption 5 Fix θ∗ ∈ �. For T ∈ [0, 1], set θ̂0
T = θ∗. For T ∈ (1,∞), it

holds that supT ∈(1,∞) rT |θ̂0
T − θ0| < ∞, Pθ0 -almost surely, for some rT > 0 with

T 1/4r−1
T → 0 as T → ∞.

The rate like rT = T 1/4 log log(T + 2) would be useful. Also, if we set rT = 1 for
T ∈ [0, 1], it is clear that for any η > 0, there exists Mη > 0, such that

Pθ0

[

sup
T ∈[0,∞)

rT |θ̂0
T − θ0| > Mη

]

≤ η. (2)

Taking account of (1), we define the one-step estimator θ̂T by

θ̂T = θ̂0
T − [T η(θ̂0

T )]
−1ψ

θ0
T (θ̂

0
T ), (3)

and consider the stochastic process u� SuT given by

SuT = u
√
T (θ̂uT − θ̂T ), ∀u ∈ [0, 1]. (4)

The following is the main theorem of this paper.

Theorem 1 Assume that Assumptions 1–5 hold. Then, under H0, as T → ∞, the
sequence of stochastic processes u� SuT converges weakly to a zero-mean Gauss-
ian process u� Yu in �∞([0, 1]), such that EYuY v = −η(θ0)

−1{(u ∧ v)− uv}.
Below, we present an outline of the proof of Theorem 1. Some relevant lemmas to
complete the proof will be given in the next section.

From the above theorem, we can easily derive the asymptotic behavior of the
test statistic

ŜT = sup
u∈[0,1]

u2T (−η(θ̂T ))|θ̂uT − θ̂T |2. (5)

Corollary 2 Assume Assumptions 1–5 hold. Then under H0, the sequence of ran-
dom variables ŜT converges weakly to supu∈[0,1] |W ◦

u |2 as T → ∞, where u� W ◦
u

is a standard Brownian bridge.
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Now we address the outline of the proof of Thoerem 1. Recalling (3), it follows
from the Taylor expansion that

θ̂T − θ0 = − 1

T
η(θ0)

−1ψ
θ0
T (θ0)+	T ,

where 	T = 	
(1)
T +	

(2)
T +	

(3)
T and

	
(1)
T = (θ̂0

T − θ0)− 1

T
η(θ0)

−1δψ
θ0
T (θ0)(θ̂

0
T − θ0) (6)

	
(2)
T = 1

T
η(θ0)

−2δη(θ0)ψ
θ0
T (θ0)(θ̂

0
T − θ0) (7)

	
(3)
T = − 1

T

1∫

0

(1 − α)δ2(η−1ψ
θ0
T )(θ0 + α(θ̂0

T − θ0))dα · (θ̂0
T − θ0)

2. (8)

So we have

θ̂uT − θ̂T = (θ̂uT − θ0)− (θ̂T − θ0)

= η(θ0)
−1

uT
(−ψθ0

uT (θ0)+ uψ
θ0
T (θ0))+ (	uT −	T ).

Recall (4). In the next section, we will show the weak convergence of the process
u� YuT , where

YuT = η(θ0)
−1

√
T

(−ψθ0
uT (θ0)+ uψ

θ0
T (θ0)), (9)

to the process u� Yu that appeared in Theorem 1, and the assertion that

sup
u∈[0,1]

u
√
T |	(i)

uT | = oPθ0 (1) for i = 1, 2, 3.

These two facts ensure the result of our main theorem.

Remarks It is possible to generalize our result to the case where � is a subset of
R
J for J ≥ 1. In this case, the test statistic ŜT given by (5) is replaced by

ŜT = sup
u∈[0,1]

u2T (θ̂uT − θ̂T )
′(−η(θ̂T ))(θ̂uT − θ̂T ),

where −η(θ) is the Fisher information matrix. Then the limit in Corollary 2 is
replaced by SJ = supu∈[0,1]

∑J
j=1 |W ◦,j

u |2, where u � (W ◦,1
u , . . . ,W ◦,J

u )′ is a J -
dimensional standard Brownian bridge. Using our result, one can determine the
critical region (ŜT ≥ Cα), given a level α, where Cα is the (1 − α)-quantile point
of SJ . Although it is not easy to calculate the critical values analytically, Lee et al.
(2003) give a table through a Monte Carlo simulation (see their Table 1).
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3 Lemmas and their proofs

In this section, we will prove some lemmas to show Theorem 1. Since the true value
θ0 is fixed, we will mostly denote P = Pθ0 , E = Eθ0 , X = Xθ0 , ψT (θ) = ψ

θ0
T (θ),

δψT (θ) = δψ
θ0
T (θ) and δ2ψT (θ) = δ2ψ

θ0
T (θ), without any confusion.

Lemma 3 Under Assumptions 1–3, it holds that under P = Pθ0 , the sequence of
the processes u � YuT given by (9) converges weakly in �∞([0, 1]) to the process
u� Yu in Theorem 1.

Proof Put

Mu,T
z = η(θ0)

−1

√
T

zT∫

0

{−1{s≤uT } + u
} δV0

V
(Xs, θ0)dWs, ∀z ∈ [0, 1].

Then, the process z� Mu,T
z is a continuous martingale, and it holds that Mu,T

1 =
YuT . Here, we have

〈Mu,T ,Mv,T 〉1

= η(θ0)
−2

T

T∫

0

{
1{s≤uT } − u

} {
1{s≤vT } − v

}
(
δV0

V
(Xs, θ0)

)2

ds

= η(θ0)
−2

T






(u∧v)T∫

0

(
δV0

V
(Xs, θ0)

)2

ds − v

uT∫

0

(
δV0

V
(Xs, θ0)

)2

ds

− u

vT∫

0

(
δV0

V
(Xs, θ0)

)2

ds + uv

T∫

0

(
δV0

V
(Xs, θ0)

)2

ds





.

So it holds that

〈Mu,T ,Mv,T 〉1
P−→ −η(θ0)

−1{(u ∧ v)− uv}.
Hence we have the finite-dimensional convergence. On the other hand, to show
the uniform tightness, we will apply Theorem 3.4.2 of Nishiyama (2000), although
a more classical tightness criterion might work well, too. For q > 1 which is in
Assumption 3, choose p > 1 such that (1/p)+ (1/q) = 1. Then we have

〈Mu,T −Mv,T ,Mu,T −Mv,T 〉1

= η(θ0)
−2

T

T∫

0

{
(1{s≤uT } − u)− (1{s≤vT } − v)

}2
(
δV0

V
(Xs, θ0)

)2

ds

≤ η(θ0)
−2

T

T∫

0

{
(1{s≤uT } − 1{s≤vT })− (u− v)

}2
(
δV0

V
(Xs, θ0)

)2

ds

≤ η(θ0)
−2





1

T

T∫

0

{
(1{s≤uT } − 1{s≤vT })− (u− v)

}2p
ds






1
p

Z
(q)

T ,
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where

Z
(q)

T =




1

T

T∫

0

(
δV0

V
(Xs, θ0)

)2q

ds






1
q

.

The right hand side of the above inequality is bounded by

η(θ0)
−2





Cp

T

T∫

0

{|1{s≤uT } − 1{s≤vT }|2p + |u− v|2p} ds






1
p

Z
(q)

T

≤ η(θ0)
−2

{
Cp

{|u− v| + |u− v|2p}}
1
p Z

(q)

T

≤ η(θ0)
−2(2Cp)

1/p|u− v| 1
p Z

(q)

T ,

where Cp > 0 is a constant depending only on p. Since Z(q)T = OP (1) by assump-
tion, we have

sup
u�=v

〈Mu,T −Mv,T ,Mu,T −Mv,T 〉1

|u− v|1/p = OP (1).

This completes the proof. ��

Lemma 4 Under Assumptions 1–3 and 5, it holds that supu∈[0,1] u
√
T |	(2)

uT | =
oPθ0 (1) as T → ∞, where 	(2)

T is given by (7).

Proof Fix any ε, η > 0. Choose M = Mη > 0 for which (2) is satisfied. Choose
any (small) u0 ∈ (0, 1), then we have

P

[

sup
u∈[0,1]

u
√
T |	(2)

uT | > ε

]

≤ P

[

sup
u∈[0,u0]

u
√
T |	(2)

uT | > ε

]

+P
[

sup
u∈(u0,1]

u
√
T |	(2)

uT | > ε

]

=: (I)+ (II).

By (2), it holds that

(I) ≤ P

[

sup
u∈[0,u0]

u
√
T |	(2)

uT | > ε, sup
u∈[0,u0]

|θ̂0
uT − θ0| ≤ M

]

+ η

≤ P

[

sup
u∈[0,u0]

∣
∣
∣
∣
c√
T
ψuT (θ0)

∣
∣
∣
∣M > ε

]

+ η,
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where c = η(θ0)
−2δη(θ0). Since ψt(θ0) = ∫ t

0
δV0
V
(Xs, θ0)dWs , it follows from

Doob’s inequality that the right hand side is bounded by

M2c2

ε2T
E




u0T∫

0

(
δV0

V

)2

(Xs, θ0)ds



 + η

= M2c2

ε2T

u0T∫

0

E

[(
δV0

V

)2

(X0, θ0)

]

ds + η

= M2c2

ε2
E

[(
δV0

V

)2

(X0, θ0)

]

· u0 + η.

Since u0 can be taken to be arbitrary small, the right hand side can also be arbitrary
small.

Next, fix any η′ > 0. Choose any large T > 0 such that 1<u0T andMr−1
u0T

≤η′.
For such T , it follows from (2) that

(II) ≤ P

[

sup
u∈(u0,1]

u
√
T |	(2)

uT | > ε, sup
u∈(u0,1]

|θ̂0
uT − θ0| ≤ η′

]

+ η

= P

[

sup
u∈(u0,1]

∣
∣
∣
∣
c√
T
ψuT (θ0)(θ̂

0
uT − θ0)

∣
∣
∣
∣ > ε, sup

u∈(u0,1]
|θ̂0
uT − θ0| ≤ η′

]

+ η

≤ P

[

sup
u∈(u0,1]

∣
∣
∣
∣
c√
T
ψuT (θ0)

∣
∣
∣
∣ η

′ > ε

]

+ η

where c = η(θ0)
−2δη(θ0). In the same way as above, we have that the right hand

side is bounded by

|η′|2c2

ε2T
E




T∫

0

(
δV0

V

)2

(Xs, θ0)ds



 + η

≤ |η′|2c2

ε2
E

[(
δV0

V

)2

(X0, θ0)

]

+ η.

Since η′ can be taken to be arbitrary small, the right hand side can also be arbitrary
small. The proof is finished. ��

Lemma 5 Under Assumptions 1–3 and 5, it holds that supu∈[0,1] u
√
T |	(1)

uT | =
oPθ0 (1) as T → ∞, where 	(1)

T is given by (6).

Proof By definition it holds that

u
√
T	

(1)
uT = −δψuT (θ0)− uT η(θ0)√

T η(θ0)
(θ̂0
uT − θ0).
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Notice that

|δψt(θ0)− tη(θ0)|

=
∣
∣
∣
∣
∣
∣

t∫

0

δ2V0

V
(Xv, θ0)dWv

+
t∫

0

{

−
(
δV0

V

)2

(Xv, θ0)+ E

(
δV0

V

)2

(X0, θ0)

}

dv

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

t∫

0

δ2V0

V
(Xv, θ0)dWv

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

t∫

0

{(
δV0

V

)2

(Xv, θ0)− E

(
δV0

V

)2

(X0, θ0)

}

dv

∣
∣
∣
∣
∣
∣

= (I)+ (II).

As for (I), we have

E




sup
t≤s

∣
∣
∣
∣
∣
∣

t∫

0

δ2V0

V
(Xv, θ0)dWv

∣
∣
∣
∣
∣
∣

2



 ≤ E




s∫

0

∣
∣
∣
∣
δ2V0

V
(Xv, θ0)

∣
∣
∣
∣

2

dv





≤ s · sup
v∈[0,∞)

E

[∣
∣
∣
∣
δ2V0

V
(Xv, θ0)

∣
∣
∣
∣

2
]

.

Thus the same argment as the proof of the previous lemma establishes the estimate
of the term (I).

On the other hand, by virtue of Assumption 1, Theorem VIII.3.79 of Jacod and
Shiryaev (1987) implies that 1√

t
(II) is uniformly tight as a stochastic process with

parameter t ∈ [0,∞). So Assumption 5 yields the conclusion of the lemma. ��

Lemma 6 Under Assumptions 1–5, it holds that supu∈[0,1] u
√
T |	(3)

uT | = oPθ0 (1)

as T → ∞, where 	(3)
T is given by (8).

Proof We will show that

∣
∣
∣
∣
∣
∣

1∫

0

(1 − α)(δ2(η−1ψt)(θ0 + α(θ̂0
t − θ0))dα

∣
∣
∣
∣
∣
∣
≤ Cξt ,

where C > 0 is a constant, and ξt is a stochastic process, such that

sup
t≤1

ξt < ∞ a.s. (10)
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and that

1

t
ξt = OP (1) as t → ∞. (11)

Since

δ2(η−1ψt)(θ) = δ2(η−1)(θ)ψt (θ)+ 2δ(η−1)(θ)δψt(θ)+ η−1(θ)δ2ψt(θ),

we have

sup
θ∈�

|δ2(η−1ψt)(θ)| ≤ const. sup
θ∈�

2∑

k=0

|δkψt (θ)|. (12)

Here, noticing that

ψt(θ) =
t∫

0

δV0

V
(Xs, θ)dWs +

t∫

0

δV0

V 2
(Xs, θ)V0(Xs, θ0)ds

−
t∫

0

V0δV0

V 2
(Xs, θ)ds,

δψt (θ) =
t∫

0

δ2V0

V
(Xs, θ)dWs +

t∫

0

δ2V0

V 2
(Xs, θ)V0(Xs, θ0)ds

−
t∫

0

(δV0)
2

V 2
(Xs, θ)ds −

t∫

0

V0δ
2V0

V 2
(Xs, θ)ds,

δ2ψt(θ) =
t∫

0

δ3V0

V
(Xs, θ)dWs +

t∫

0

δ3V0

V 2
(Xs, θ)V0(Xs, θ0)ds

−3

t∫

0

δV0δ
2V0

V 2
(Xs, θ)ds −

t∫

0

V0δ
3V0

V 2
(Xs, θ)ds,

we can see that the right hand side of (12) is bounded by a constant times ξt , where

ξt = sup
θ∈�






3∑

k=1

∣
∣
∣
∣
∣
∣

t∫

0

δkV0

V
(Xs, θ)dWs

∣
∣
∣
∣
∣
∣
+

3∑

k=1

∣
∣
∣
∣
∣
∣

t∫

0

δkV0

V 2
(Xs, θ)V0(Xs, θ0)ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

t∫

0

V0δV0

V 2
(Xs, θ)ds

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

t∫

0

(δV0)
2

V 2
(Xs, θ)ds

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

t∫

0

V0δ
2V0

V 2
(Xs, θ)ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

t∫

0

δV0δ
2V0

V 2
(Xs, θ)ds

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

t∫

0

V0δ
3V0

V 2
(Xs, θ)ds

∣
∣
∣
∣
∣
∣





.
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Since t � ξt is continuous, (10) is trivial. On the other hand, notice that the
right hand side contains two kinds of integrals, namely, the stochastic integrals
with respect to the Brownian motion W and the (normal) integrals with respect to
the Lebesgue measure. To get (11), we can use Nishiyama’s (2000) theorem for
the former by Assumption 3 in the same way as the proof of Lemma 3, and the law
of large numbers for the latter by Assumption 4.

Now, notice that

sup
u∈[0,1]

u
√
T |	(3)

uT | ≤ sup
u∈[0,1]

1√
T
ξuT (θ̂

0
uT − θ0)

2

≤ sup
u∈[0,T −1]

1√
T
ξuT (θ̂

0
uT − θ0)

2 + sup
u∈(T −1,1]

1√
T
ξuT (θ̂

0
uT − θ0)

2

=: (I)+ (II).

Note that owing to (10),

(I) = sup
t∈[0,1]

1√
T
ξt (θ̂

0
t − θ0)

2 = OP

(
1√
T

)

as T → ∞.

On the other hand, using (11), we have

(II) = sup
u∈(T −1,1]

1

uT
ξuT · uT√

T
(θ̂0
uT − θ0)

2

≤ sup
t>1

1

t
ξt · sup

u∈(T −1,1]

uT√
T r2

uT

· sup
u∈(T −1,1]

r2
uT (θ̂

0
uT − θ0)

2

= OP (1) · o(1) ·OP (1) as T → ∞.

This establishes the lemma. ��
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