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Abstract Confidence intervals for quantiles and tolerance intervals based on or-
dered ranked set samples (ORSS) are discussed in this paper. For this purpose,
we first derive the cdf of ORSS and the joint pdf of any two ORSS. In addition,
we obtain the pdf and cdf of the difference of two ORSS, viz. XORSS

s:N − XORSS
r:N ,

1 ≤ r < s ≤ N . Then, confidence intervals for quantiles based on ORSS are de-
rived and their properties are discussed. We compare with approximate confidence
intervals for quantiles given by Chen ( Journal of Statistical Planning and Infer-
ence, 83, 125–135; 2000), and show that these approximate confidence intervals are
not very accurate. However, when the number of cycles in the RSS increases, these
approximate confidence intervals become accurate even for small sample sizes. We
also compare with intervals based on usual order statistics and find that the confi-
dence interval based on ORSS becomes considerably narrower than the one based
on usual order statistics when n becomes large. By using the cdf of XORSS

s:N − XORSS
r:N ,

we then obtain tolerance intervals, discuss their properties, and present some tables
for two-sided tolerance intervals.
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1 Introduction

The basic procedure of obtaining a ranked set sample is as follows. First, we draw
a random sample of size n from the population and order them (without actual
measurement, for example, visually). Then, the smallest observation is measured
and denoted as X(1), and the remaining are not measured. Next, another sample of
size n is drawn and ordered, and only the second smallest observation is measured
and denoted as X(2). This procedure is continued until the largest observation of the
nth sample of size n is measured. The collection {X(1), . . . , X(n)} is called as a one-
cycle ranked set sample of size n. If we replicate the above procedure m times, we
finally get a ranked set sample of total size N = mn. The data thus collected in this
case is denoted byXRSS = {

X1(1), X2(1), . . . , Xm(1), . . . , X1(n), X2(n), . . . , Xm(n)

}
.

The ranked set sampling was first proposed by McIntyre (1952) in order to
find a more efficient method to estimate the average yield of pasture. Since then,
numerous parametric and nonparametric inferential procedures based on ranked
set samples have been developed in the literature. The reader is referred to, among
others, Takahasi and Wakimoto (1968), Dell and Clutter (1972), Stokes (1977,
1980a,b, 1995), Chuiv and Sinha (1998), Stokes and Sager (1988), and Chen
(1999, 2000a,b). For a comprehensive review of various developments on ranked
set sampling, we refer the reader to Patil et al. (1999) and the monograph by
Chen et al. (2004).

Distribution-free confidence intervals for quantiles and tolerance intervals based
on the usual order statistics of simple random sample (OSRS) are well known in
the literature; see David and Nagaraja (2003). In this paper, we extend these ideas
to ordered ranked set samples (ORSS). In Sect. 2, we present the pdf, the cdf and
the joint pdf of ORSS, as well as the corresponding formulas for the uniform dis-
tribution. Section 3 focuses on confidence intervals for quantiles based on RSS and
their properties. Chen (2000b) gave approximate confidence intervals for quantiles
by using the central limit theorem and we show that these approximate confidence
intervals are not very accurate by computing the corresponding exact confidence
levels and showing that they are significantly different from the nominal level.
However, when the number of cycles in the RSS increases, these approximate
confidence intervals become accurate even for small sample sizes. In Sect. 4, we
derive tolerance intervals and discuss their properties. Finally, some tables for the
two-sided tolerance intervals are given in this section.

2 Ordered ranked set samples

We first note that all Xi(j)’s (1 ≤ i ≤ m, 1 ≤ j ≤ n) are independent. Moreover,
for a fixed j , Xi(j)’s (1 ≤ i ≤ m) are identically distributed with pdf fj :n(x). It is
easy to see that if the ranking in RSS is perfect, fj :n(x) is actually the pdf of the
j th order statistic from a SRS of size n, and is given by (see Arnold, Balakrishnan,
& Nagaraja, 1992; David & Nagaraja, 2003)

fj :n(x) = n!

(j − 1)!(n − j)!
[F(x)]j−1 [1 − F(x)]n−j f (x), −∞ < x < ∞.

(1)
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Let XORSS = {XORSS
1:N ≤ XORSS

2:N ≤ · · · ≤ XORSS
N :N } denote the ORSS obtained by

arranging Xi(j)’s in increasing order of magnitude. Then, using the results for
order statistics from independent and non-identically distributed random variables
(Vaughan and Venables, 1972; Balakrishnan, 1988, 1989), the distribution function
of XORSS

r:N (1 ≤ r ≤ N) can be written as

F ORSS
r:N (x) =

N∑

i=r

∑

S
[N ]
i

{
i∏

l=1

Fkl :n(x)

N∏

l=i+1

[1−Fkl :n(x)]

}

=
N∑

i=r

∑

S
[N ]
i

{
i∏

l=1

IF(x)(kl, n−kl+1)

N∏

l=i+1

[1−IF(x)(kl, n − kl + 1)]

}

,

(2)

where
∑

S
[N ]
i

denotes the summation over all permutations (j1, j2, . . . , jN) of
(1, 2, . . . , N) for which j1 < · · · < ji and ji+1 < · · · < jN , Ip(a, b), called as
incomplete beta function, is defined by

Ip(a, b) = 1

B(a, b)

p∫

0

ta−1(1 − t)b−1dt,

B(a, b) is complete beta function, and

kl =





[jl/m] if jl/m = [jl/m] , 1 ≤ l ≤ N,

[jl/m] + 1 if jl/m > [jl/m] , 1 ≤ l ≤ N.

Moreover, the joint density function of XORSS
r:N and XORSS

s:N (1 ≤ r < s ≤ N) can be
expressed as

f ORSS
r,s:N(x, y) = 1

(r − 1)!(s − r − 1)!(N − s)!

∑

P [N ]

{
r−1∏

k=1

[
Fik :N(x)

]
fir :N(x)

×
s−1∏

k=r+1

[
Fik :N(y) − Fik :N(x)

]
fis :N(y)

N∏

k=s+1

[
1 − Fik :N(y)

]
}

=
∑

P [N ]

n∑

k1=j1

· · ·
n∑

ks−1=js−1

js−1∑

ks=0

· · ·
jN−1∑

kN=0

n−k1∑

l1=0

· · ·
n−kr−1∑

lr−1=0

kr+1∑

lr+1=kr+1+1−jr+1

· · ·
ks−1∑

ls−1=ks−1+1−js−1

ks+1∑

ls+1=0

· · ·
kN∑

lN=0

D∗
j,k,l(r, s)fr ′,s ′:nN(x, y), x < y,

(3)

where fr ′,s ′:nN(x, y) denotes the joint density function of r ′th and s ′th order statis-
tic from a SRS of size nN ,

∑
P [N ] denotes the summation over all N ! permutations

(i1, i2, . . . , iN ) of (1, 2, . . . , N), and
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ja =





[ia/m] if ia/m = [ia/m] , 1 ≤ a ≤ N,

[ia/m] + 1 if ia/m > [ia/m] , 1 ≤ a ≤ N,

D∗
j,k,l(r, s) = Dj,k,l

(r ′ − 1)!(s ′ − r ′ − 1)!(nN − s ′)!
(r − 1)!(s − r − 1)!(N − s)!(nN)!

,

Dj,k,l =
{

r−1∏

a=1

(
n

ka

)(
n − ka

la

)} {
jr

(
n

jr

)(
n − jr

kr − jr

)} {
s−1∏

a=r+1

(
n

ka

)

×
(

ka

la

)} {
js

(
n

js

)(
js − 1

ks

)} {
N∏

a=s+1

(
n

ka

)(
ka

la

)}

,

r ′ =
N∑

a=1
a �=r,s

ka + jr + js −
N∑

a=r+1
a �=s

la − ks − 1,

s ′ =
N∑

a=1
a �=s

ka + js +
r−1∑

a=1

la.

From the joint pdf of XORSS
r:N and XORSS

s:N in Eq. (3), we can use the Jacobian method to
derive the pdf of some systematic statistics from ORSS. For example, the statistic
W ORSS

rs = U ORSS
s:N − U ORSS

r:N (1 ≤ r < s ≤ N), where U ORSS
i:N is the ith ORSS from the

uniform [0,1] distribution, is very important in our discussion of tolerance intervals
based on ORSS. For this specific reason, in Example 1, we derive the pdf and cdf
of W ORSS

rs .

Example 1 Let W ORSS
rs = U ORSS

s:N − U ORSS
r:N (1 ≤ r < s ≤ N), where U ORSS

i:N is the ith
ORSS of size N = mn from the uniform [0,1] distribution.

From Eq. (3), we have the joint pdf of U ORSS
r:N and U ORSS

s:N as

f ORSS
r,s:N(ur, us) =

∑

P [N ]

n∑

k1=j1

· · ·
n∑

ks−1=js−1

js−1∑

ks=0

· · ·
jN−1∑

kN=0

n−k1∑

l1=0

· · ·
n−kr−1∑

lr−1=0

×
kr+1∑

lr+1=kr+1+1−jr+1

· · ·
ks−1∑

ls−1=ks−1+1−js−1

ks+1∑

ls+1=0

· · ·
kN∑

lN=0

D∗
j,k,l(r, s)

× (nN)! ur ′−1
r (us − ur)

s ′−r ′−1(1 − us)
nN−s ′

(r ′ − 1)!(s ′ − r ′ − 1)!(nN − s ′)!
, 0 ≤ ur < us ≤ 1.
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By transforming ur , us to ur , wrs = us − ur , using the fact that 0 ≤ ur ≤ 1 − wrs ,
and integrating out ur , we can obtain the pdf and cdf of W ORSS

rs as

fWORSS
rs

(w) =
∑

P [N ]

n∑

k1=j1

· · ·
n∑

ks−1=js−1

js−1∑

ks=0

· · ·
jN−1∑

kN=0

n−k1∑

l1=0

· · ·
n−kr−1∑

lr−1=0

×
kr+1∑

lr+1=kr+1+1−jr+1

· · ·
ks−1∑

ls−1=ks−1+1−js−1

ks+1∑

ls+1=0

· · ·
kN∑

lN=0

D∗
k,j,l(r, s)

× ws ′−r ′−1(1 − w)nN−s ′+r ′

B(s ′ − r ′, nN − s ′ + r ′ + 1)
, 0 ≤ w ≤ 1,

and

FWORSS
rs

(w) =
∑

P [N ]

n∑

k1=j1

· · ·
n∑

ks−1=js−1

js−1∑

ks=0

· · ·
jN−1∑

kN=0

n−k1∑

l1=0

· · ·
n−kr−1∑

lr−1=0

×
kr+1∑

lr+1=kr+1+1−jr+1

· · ·
ks−1∑

ls−1=ks−1+1−js−1

ks+1∑

ls+1=0

· · ·
kN∑

lN=0

D∗
k,j,l(r, s)

× Iw(s ′ − r ′, nN − s ′ + r ′ + 1), 0 ≤ w ≤ 1. (4)

Remark 1 In contrast to the case of the ordered simple random sample (OSRS)
in which the pdf and cdf of W OSRS

rs = U OSRS
s:N − U OSRS

r:N just depend on s − r and not
individually on r and s, the pdf and cdf of W ORSS

rs depend on both r and s. Moreover,

since U ORSS
i:N

d= 1 − U ORSS
N−i+1:N , we readily have

W ORSS
rs

d= W ORSS
N−s+1,N−r+1. (5)

Example 2 Let m = 1, n = 4, r1 = 1, s1 = 2, r2 = 2 and s2 = 3. Then,
s1 − r1 = s2 − r2, and

FWORSS
12

(x) = 54.8571Ix(1, 7) − 192.5714Ix(1, 8) + 305.9048Ix(1, 9)

−284.9905Ix(1, 10) + 169.3091Ix(1, 11) − 65.6000Ix(1, 12)

+16.5594Ix(1, 13) − 2.7652Ix(1, 14) + 0.3165Ix(1, 15)

−0.0198Ix(1, 16)

= 1 − 54.8571(1 − x)7 + 192.5714(1 − x)8 − 305.9048(1 − x)9

+284.9905(1 − x)10 − 169.3091(1 − x)11 + 65.6000(1 − x)12

−16.5594(1 − x)13 + 2.7652(1 − x)14 − 0.3165(1 − x)15

+0.0198(1 − x)16,

FWORSS
23

(x) = 1 − 28.8000(1 − x)6 + 93.2571(1 − x)7 − 141.7143(1 − x)8

+131.8095(1 − x)9 − 83.3524(1 − x)10 + 37.8182(1 − x)11

−12.6545(1 − x)12 + 3.1329(1 − x)13 − 0.5594(1 − x)14

+0.0671(1 − x)15 − 0.0042(1 − x)16.
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It is obvious that FWORSS
12

(x) and FWORSS
23

(x) are polynomials in (1−x). We know
that these two polynomials are equal if and only if the coefficients of each (1 − x)i

are the same. Since this is not the case, we can conclude that the cdf of W ORSS
rs

depends on both r and s, and not just on s − r as in the case of OSRS.

3 Distribution-free confidence intervals for quantiles

3.1 Confidence intervals for quantiles and their properties

Suppose X is a continuous variate with cdf F(x), then the pth quantile is defined
as

ξp = F−1(p),

where 0 < p < 1.
In order to construct a confidence interval for ξp based on ORSS, we first have

to know the probability with which the random interval
[
XORSS

r:N , XORSS
s:N

]
covers ξp.

By using the fact that F(XORSS
i:N )

d= U ORSS
i:N , we immediately have

Pr
(
XORSS

r:N ≤ ξp ≤ XORSS
s:N

) = Pr
(
XORSS

r:N ≤ F−1(p) ≤ XORSS
s:N

)

= Pr
{
F(XORSS

r:N ) ≤ p ≤ F(XORSS
s:N )

}

= Pr
(
U ORSS

r:N ≤ p ≤ U ORSS
s:N

)

= Pr
(
U ORSS

r:N ≤ p
) − Pr

(
U ORSS

s:N ≤ p
)
. (6)

By using the expression in Eq. (2) for the uniform [0, 1] case, we readily have the
probability that the random interval

[
XORSS

r:N , XORSS
s:N

]
covers ξp as

π(r, s, n, N, p)=
s−1∑

i=r

∑

S
[N ]
i

{
i∏

l=1

Ip(kl, n−kl+1)

N∏

l=i+1

[1−Ip(kl, n−kl+1)]

}

.

(7)

Remark 2 It is obvious from Eq. (7) that the probability π(r, s, n, N, p) depends
only on r, s, n, N , andp, and not onF(x).This means that the interval

[
XORSS

r:N , XORSS
s:N

]

is indeed a distribution-free confidence interval for the unknown quantile ξp.

It should be noted first that for small sample size N , the exact confidence
coefficient 1 − α may not be achieved due to the discreteness of the probability
π(r, s, n, N, p) in Eq. (7). Also since there may be more than one choice of r and s
to construct such a confidence interval for ξp with confidence coefficient ≥ 1 − α,
we use the following two rules:

(1) Choose r and s such that s − r is as small as possible;

(2) For different (r, s) with the same value of s − r , choose r and s such that
the expected width of the interval

[
U ORSS

r:N , U ORSS
s:N

]
, viz. E

{
U ORSS

s:N − U ORSS
r:N

}
, is as

small as possible.
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Besides the confidence interval with confidence coefficient ≥ 1 − α, we are
also interested in the upper confidence limit XORSS

su
for ξp, where

su = inf
{
s : Pr

(
ξp ≤ XORSS

s:N

) ≥ 1 − α
}
,

and the lower confidence limit XORSS
sl

for ξp, where

sl = sup
{
s : Pr

(
XORSS

s:N ≤ ξp

) ≥ 1 − α
}
.

Theorem 3.1 presents some properties of these confidence intervals and confi-
dence limits for the unknown population quantiles.

Theorem 3.1 Suppose 0 < p < 1, and ξp is the pth quantile such that F(ξp) = p.
Then:

(1)
[
XORSS

r:N , XORSS
s:N

]
is the confidence interval for ξp with confidence coefficient ≥

1 − α if and only if
[
XORSS

N−s+1:N, XORSS
N−r+1:N

]
is the confidence interval for ξ1−p

with confidence coefficient ≥ 1 − α, i.e.,

Pr
(
XORSS

r:N ≤ ξp ≤ XORSS
s:N

) ≥ 1 − α

⇔ Pr
(
XORSS

N−s+1:N ≤ ξ1−p ≤ XORSS
N−r+1:N

) ≥ 1 − α;

(2) XORSS
s:N is the upper confidence limit for ξp with confidence coefficient ≥ 1 − α

if and only if XORSS
N−s+1:N is the lower confidence limit for ξ1−p with confidence

coefficient ≥ 1 − α, i.e.,

Pr
(
ξp ≤ XORSS

s:N

) ≥ 1 − α ⇔ Pr
(
XORSS

N−s+1:N ≤ ξ1−p

) ≥ 1 − α.

Proof Since U ORSS
r:N

d= 1 − U ORSS
N−r+1:N , we readily have Pr(U ORSS

r:N ≤ p) = Pr(1 −
U ORSS

N−r+1:N ≤ p). Then by using Eq. (6), the result in (1) can be established as
follows:

Pr
(
XORSS

r:N ≤ ξp ≤ XORSS
s:N

) ≥ 1 − α

⇔ Pr
(
U ORSS

r:N ≤ p ≤ U ORSS
s:N

) ≥ 1 − α

⇔ Pr
(
1 − U ORSS

N−r+1:N ≤ p ≤ 1 − U ORSS
N−s+1:N

) ≥ 1 − α

⇔ Pr
(
U ORSS

N−s+1:N ≤ 1 − p ≤ 1 − U ORSS
N−r+1:N

) ≥ 1 − α

⇔ Pr
(
XORSS

N−s+1:N ≤ ξ1−p ≤ XORSS
N−r+1:N

) ≥ 1 − α.

Using similar arguments, the result in (2) can also be established. �	

Tables 1, 2, 3 and 4 present 90 and 95% confidence intervals as well as upper
and lower confidence limits for the pth quantile, where p = 0.1(0.1)0.9. Here,
we have chosen one-cycle ORSS, that is, m = 1 and N = n. It is important to
observe that the numerical results presented in these tables are consistent with the
theoretical properties established in Theorem 3.1.
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Table 1 ORSS 90% confidence intervals for the pth quantile based on one cycle

n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

2
3 [1, 3]
4 [1, 4] [1, 4] [1, 4]
5 [1, 4] [1, 4] [1, 4]∗ [2, 5] [2, 5]

[2, 5]
6 [1, 4] [1, 4] [2, 5] [3, 6] [3, 6]
7 [1, 4] [1, 4] [2, 5] [2, 6] [3, 6] [4, 7] [4, 7]
8 [1, 4] [1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [5, 8]
9 [1, 4] [2, 5] [2, 6]∗∗ [3, 7] [4, 8]∗∗ [5, 8] [6, 9]

[3, 7] [3, 7]
10 [1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6, 9] [7, 10]

∗ The expected widths of [1, 4] and [2, 5] are the same
∗∗ The confidence interval that is chosen based on the minimum expected width

Table 2 ORSS 95% confidence interval for the pth quantile based on one cycle

n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

2
3
4 [1, 4] [1, 4] [1, 4]
5 [1, 4] [1, 5] [2, 5]
6 [1, 4] [1, 5] [2, 5] [2, 6] [3, 6]
7 [1, 4] [1, 5]∗∗ [2, 6] [3, 7]∗∗ [4, 7]

[2, 6] [2, 6]
8 [1, 5] [2, 6] [3, 7] [3, 7] [4, 8]
9 [1, 4] [1, 5] [2, 6] [3, 7] [4, 8] [5, 9] [6, 9]

10 [1, 4] [1, 5]∗∗ [2, 6]∗∗ [3, 7]∗ [5, 9]∗∗ [6, 10]∗∗ [7, 10]
[2, 6] [3, 7] [4, 8] [4, 8] [5, 9]

∗ The expected widths of [3, 7] and [4, 8] are the same
∗∗ The confidence interval that is chosen based on the minimum expected width

3.2 Comparison with approximate confidence intervals for quantiles

Chen (2000b) presented approximate confidence intervals
[
XORSS

l1
, XORSS

l2

]
with con-

fidence coefficient 1 − α, and equal tail probabilities, i.e., intervals satisfying

Pr
(
XORSS

l1:N ≤ ξp ≤ XORSS
l2:N

) = 1 − α

and

Pr
(
ξp ≤ XORSS

l1:N

) = Pr
(
XORSS

l2:N ≤ ξp

) = α/2.
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Table 3 ORSS (100(1 − α)%) upper confidence limit for the pth quantile based on one cycle

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9
n 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

2 2 2 2 2 2 2 2
3 2 2 2 2 3 3 3 3 3 3
4 2 2 3 3 3 3 3 4 4 4 4 4
5 2 2 3 3 3 4 4 4 4 5 5 5 5
6 2 3 3 3 4 4 4 5 5 5 6 6 6 6
7 2 3 3 4 4 4 5 5 6 6 6 6 7 7 7
8 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8
9 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 9

10 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

Table 4 ORSS (100(1 − α)%) lower confidence limit for the pth quantile based on one cycle

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9
n 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 2 2 2 2
4 1 1 1 1 2 1 2 2 2 2 3 3
5 1 1 1 2 1 2 2 3 2 3 3 4 4
6 1 1 1 1 2 2 3 2 3 3 4 4 5 4
7 1 1 1 2 2 2 2 3 3 4 4 5 4 6 5
8 1 1 1 2 2 3 3 4 3 5 4 5 5 6 6
9 1 1 2 1 3 2 3 3 4 4 5 5 6 6 7 7
10 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

By using the central limit theorem, Chen (2000b) showed that





l1 ≈ Np − Z1−α/2

√

m
n∑

r=1
Ip(r, n − r + 1)

[
1 − Ip(r, n − r + 1)

]
,

l2 ≈ Np + Z1−α/2

√

m
n∑

r=1
Ip(r, n − r + 1)

[
1 − Ip(r, n − r + 1)

]
,

(8)

where Za denotes the ath quantile of the standard normal distribution.
Moreover, the approximate upper confidence limit XORSS

Lu:N and the approximate
lower confidence limit XORSS

Ll :N can also be expressed as





Ll ≈ Np − Z1−α

√

m
n∑

r=1
Ip(r, n − r + 1)

[
1 − Ip(r, n − r + 1)

]
,

Lu ≈ Np + Z1−α

√

m
n∑

r=1
Ip(r, n − r + 1)

[
1 − Ip(r, n − r + 1)

]
.

(9)
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Table 5 Approximate (90%) ORSS confidence interval for the pth quantile, based on one and
two cycles, with exact level of confidence

m n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

1 2 [0, 1] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [1, 2] [1, 2]
80% 61% 95% 90% 81% 70% 55% 37% 20%

3 [0, 1] [0, 2] [0, 2] [0, 2] [0, 3] [1, 3] [1, 3] [1, 3] [2, 3]
71% 95% 84% 69% 95% 85% 73% 54% 28%

4 [0, 1] [0, 2] [0, 2] [0, 3] [1, 3] [1, 4] [2, 4] [2, 4] [3, 4]
62% 88% 68% 91% 75% 95% 83% 67% 36%

5 [0, 1] [0, 2] [0, 3] [1, 3] [1, 4] [2, 4] [2, 5] [3, 5] [4, 5]
54% 79% 92% 74% 91% 73% 93% 76% 43%

6 [0, 2] [0, 2] [1, 3] [1, 4] [2, 4] [2, 5] [3, 5] [4, 6] [4, 6]
94% 68% 80% 92% 71% 87% 64% 82% 54%

7 [0, 2] [0, 3] [1, 3] [1, 4] [2, 5] [3, 6] [4, 6] [4, 7] [5, 7]
91% 94% 69% 81% 88% 93% 74% 90% 60%

8 [0, 2] [0, 3] [1, 4] [2, 5] [3, 5] [3, 6] [4, 7] [5, 8] [6, 8]
87% 89% 90% 92% 69% 80% 86% 93% 66%

9 [0, 2] [0, 3] [1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6, 9] [7, 9]
83% 82% 83% 85% 86% 89% 91% 95% 71%

10 [0, 2] [1, 3] [2, 4] [2, 6] [3, 7] [4, 8] [6, 8] [7, 9] [8, 10]
78% 72% 69% 95% 95% 95% 68% 70% 75%

2 2 [0, 2] [0, 3] [0, 3] [1, 3] [1, 4] [1, 4] [2, 4]
83% 95% 86% 70% 90% 80% 61%

3 [0, 3] [0, 3] [1, 4] [1, 5] [2, 5] [3, 6] [3, 6]
94% 79% 87% 95% 83% 90% 79%

4 [0, 2] [0, 3] [1, 4] [1, 5] [2, 6] [3, 7] [4, 7] [5, 8] [6, 8]
83% 85% 85% 90% 93% 95% 81% 87% 60%

5 [0, 2] [0, 4] [1, 5] [2, 6] [3, 7] [4, 8] [5, 9] [6, 10] [6, 10]
75% 94% 92% 91% 90% 91% 92% 94% 71%

Tables 5 and 6 present 90 and 95% approximate confidence intervals for the
pth quantile, respectively, with exact levels of confidence which were computed
by using Eq. (7). In these tables, we present the results for one-cycle ORSS for
size n up to 10, ie., m = 1, N = n, and for two-cycle ORSS for size n up to 5, ie.,
m = 2, N = 2n. The corresponding exact one-cycle ORSS confidence intervals
can be found in Tables 1 and 2, while the exact 90 and 95% two-cycle ORSS confi-
dence intervals are presented in Tables 7 and 8, respectively. We note from Tables
5 and 6 that the approximate confidence intervals are not accurate enough even
for large N based on one cycle, and particularly worse when p is away from 0.5.
For example, when m = 1 and n = 10, the 90% approximate confidence interval
for ξ0.7 is [XORSS

6:10, X
ORSS
8:10], with exact confidence level just 68%, when the nominal

level is supposed to be 90%. The approximate upper and lower confidence limits
in Eq. (9) are not accurate either in this case. However, when the number of cycles
increases, the approximate confidence intervals of Chen (2000b) become more
accurate even for small n. For example, when m = 2 and n = 5, the approximate
90% confidence interval for ξ0.7 is [XORSS

5:10, X
ORSS
9:10], with exact confidence level being

92%.
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Table 6 Approximate (95%) ORSS confidence interval for the pth quantile, based on one and
two cycles, with exact level of confidence

m n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

1 3 [0, 2] [0, 3] [0, 3] [0, 3] [1, 3]
84% 98% 95% 87% 73%

4 [0, 2] [0, 3] [0, 3] [1, 3] [1, 4] [1, 4] [2, 4]
88% 97% 91% 75% 95% 86% 67%

5 [0, 2] [0, 3] [0, 4] [1, 4] [1, 5] [2, 5] [3, 5]
79% 92% 98% 91% 98% 93% 76%

6 [0, 3] [0, 3] [1, 4] [1, 5] [2, 5] [3, 6] [3, 6]
97% 83% 92% 97% 87% 96% 85%

7 [0, 3] [0, 4] [1, 4] [2, 5] [3, 6] [3, 7] [4, 7]
94% 96% 81% 88% 93% 98% 90%

8 [0, 2] [0, 3] [1, 4] [1, 5] [2, 6] [3, 7] [4, 7] [5, 8] [6, 8]
87% 89% 90% 94% 93% 98% 86% 93% 66%

9 [0, 2] [0, 3] [1, 4] [2, 5] [3, 6] [4, 7] [5, 8] [6, 9] [7, 9]
83% 82% 83% 85% 86% 89% 91% 95% 71%

10 [0, 2] [0, 4] [1, 5] [2, 6] [3, 7] [4, 8] [5, 9] [6, 10] [6, 10]
78% 97% 96% 95% 95% 95% 96% 98% 76%

2 2 [0, 3] [0, 3] [0, 4] [1, 4] [1, 4] [2, 5] [2, 5]
95% 87% 96% 90% 80% 99% 100%

3 [0, 3] [0, 4] [1, 4] [1, 5] [2, 5] [2, 6] [3, 6] [4, 7]
94% 79% 87% 95% 83% 93% 79% 100%

4 [0, 3] [0, 4] [1, 5] [2, 6] [3, 7] [4, 8] [5, 8] [6, 9]
85% 87% 90% 93% 95% 96% 88% 99%

5 [0, 4] [1, 5] [2, 6] [3, 7] [4, 8] [5, 9] [6, 10] [7, 11]
94% 92% 91% 91% 91% 92% 94% 100%

Table 7 ORSS (90%) confidence interval for the pth quantile based on two cycles

m n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

2 2 [1, 4] [1, 4] [1, 4]
3 [1, 4] [1, 5] [2, 5] [2, 6] [3, 6]
4 [1, 5] [1, 5] [2, 6] [4, 8] [4, 8]

[3, 7]
5 [1, 5] [1, 6] [2, 6] [3, 7] [4, 8] [6, 10] [6, 10]

Table 8 ORSS (95%) confidence interval for the pth quantile based on two cycles

m n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

2 3 [1, 5] [1, 5] [2, 6]
[2, 6]

4 [1, 5] [2, 6] [2, 7] [3, 7] [4, 8]
5 [1, 6] [1, 6] [3, 8] [4, 9]
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Table 9 Approximate (100(1 − α)%) ORSS upper confidence limit for the pth quantile with
exact level of confidence

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9
n 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
80% 61% 45% 95% 90% 81% 70% 55% 39% 20%

3 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
71% 46% 95% 84% 69% 50% 95% 87% 74% 54% 29%

4 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4
62% 88% 68% 91% 76% 55% 95% 86% 67% 38%

5 1 1 2 2 2 3 3 3 4 4 4 4 4 5 5 5 5 5
54% 79% 51% 92% 75% 91% 75% 49% 93% 77% 46%

6 1 2 2 2 3 3 3 4 4 4 5 5 5 5 6 6 6 6
46% 94% 68% 83% 55% 92% 74% 88% 65% 85% 54%

7 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 7 7
91% 57% 94% 70% 81% 89% 64% 95% 78% 90% 60%

8 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 8
87% 89% 55% 91% 64% 94% 72% 80% 87% 54% 94% 67%

9 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 9
83% 82% 83% 85% 87% 90% 59% 93% 64% 96% 72%

10 2 2 3 3 4 4 5 6 6 7 7 8 8 8 9 9 10 10
78% 74% 72% 71% 95% 71% 95% 71% 96% 72% 73% 76%

Remark 3 Even though the approximate ORSS confidence intervals proposed by
Chen (2000b) are applicable when N = mn is large (which holds true even when
m = 1 and n is large), we see for the case m = 1 big discrepancy between the exact
coverage probability and the nominal level, particularly when p is away from 0.5.
However, the coverage probability of the approximate ORSS confidence interval
gets closer to the nominal level even for small n when the number of cycles is more
than one.

Tables 9 and 10 present 90 and 95% approximate upper confidence limits and
lower confidence limits for the pth quantile, respectively. In these tables, we pres-
ent the results for one-cycle ORSS of size n up to 10 (m = 1, N = n) and
p = 0.1(0.1)0.9. For comparison, we present the exact confidence level corre-
sponding to each approximate confidence limit. Table 9 shows that for the same
interval (−∞, XORSS

i:N ), the exact confidence level gets smaller as p gets larger. Sim-
ilarly, in Table 10, for the same interval (XORSS

i:N , ∞), the exact confidence level gets
larger as p gets smaller. However, we observe from Tables 9 and 10 that the exact
confidence levels are too low compared to the nominal levels (when p is away
from 0.5) even for large N . But, as in Tables 5 and 6, the exact confidence levels
become close to the nominal level in these cases as well even for small n when the
number of cycles is more than one.

3.3 Comparison with intervals based on usual order statistics

David and Nagaraja (2003) discuss non-parametric confidence intervals for quan-
tiles based on order statistics from a simple random sample. Following a method
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Table 10 Approximate (100(1 − α)%) ORSS lower confidence limit for the pth quantile with
exact level of confidence

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9
n 90%95%90%95%90%95% 90%95% 90%95% 90%95% 90%95% 90%95% 90%95%

2 1 1 1 1 1
95% 99% 100%

3 1 1 1 1 1 2 1 2 2
95% 98% 100% 95%100% 99%

4 1 1 1 1 1 2 2 2 2 3 3
95% 99% 100% 98% 100% 98%

5 1 1 1 1 1 2 2 3 2 3 3 4 4
93% 98% 100% 98% 92%100% 99% 96%

6 1 1 1 1 2 2 3 2 3 3 4 4 5 4
100% 100% 97% 92%100% 99% 97% 94%100%

7 1 1 2 1 2 2 3 3 4 4 5 4 5 5
99% 95%100% 99% 98% 96% 94%100% 100%

8 1 1 1 2 2 3 3 4 3 5 4 5 5 6 6
94% 99% 98% 96% 94%100%91%100% 99% 100%

9 1 2 1 2 2 3 3 4 4 5 5 6 6 7 7
96% 93%100% 99% 99% 99% 98% 99% 99%

10 1 1 2 2 3 2 4 3 5 4 6 6 7 7 8 8
98% 96% 96%100%95%100%95%100% 96% 97% 99%

similar to the one in Sect. 3.1 based on ORSS, confidence intervals for the pth quan-
tile can be obtained based on the usual order statistics. Now, let Ĩp and L̃p denote the
confidence interval for the pth quantile based on the usual order statistics and
the expected length of this interval, respectively. Similarly, let I ∗

p and L∗
p denote

the corresponding quantities based on ORSS. Then, the percentage reduction in
L∗

p compared to L̃p can be defined as

PR = L̃p − L∗
p

L̃p

.

Table 11 presents the 90% confidence interval Ĩp for the pth quantile, its ex-
pected length L̃p, the expected length L∗

p of the ORSS confidence interval, and the

percentage reduction of L∗
p compared to L̃p. The results are for one-cycle for n up

to 10. From Table 11, it is clear that confidence intervals based on ORSS are more
efficient than the corresponding ones based on OS. Moreover, the PR gets larger
as n increases which means that the confidence interval based on ORSS becomes
considerably narrower than the one based on ordinary OS when n becomes large.

4 Distribution-free tolerance intervals

To construct a tolerance interval that covers at least a fixed proportion γ of the
population with tolerance level β, we seek XORSS

r:N and XORSS
s:N (1 ≤ r < s ≤ N) such

that
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Table 11 OS confidence interval (90%) Ĩp for the pth quantile, its expected length L̃p , the
expected length L∗

p of the ORSS confidence interval, and the percentage reduction of L∗
p com-

pared to L̃p

n p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

5 Ĩp [1, 5] [1, 5] [1, 5]
L̃p 0.6667 0.6667 0.6667
L∗

p 0.5574 0.5574 0.5574
PR 16.39% 16.39% 16.39%

6 Ĩp [1, 5] [1, 6] [2, 6]
L̃p 0.5714 0.7143 0.5714
L∗

p 0.4697 0.4771 0.4697
PR 17.80% 33.21% 17.80%

7 Ĩp [1, 6] [1, 6] [1, 6]/[2, 7] [2, 7] [2, 7]
L̃p 0.6250 0.6250 0.6250 0.6250 0.6250
L∗

p 0.4049 0.4129 0.5495 0.4129 0.4049
PR 35.21% 33.94% 12.08% 33.94% 35.21%

8 Ĩp [1, 6] [1, 6] [2, 7] [3, 8] [3, 8]
L̃p 0.5556 0.5556 0.5556 0.5556 0.5556
L∗

p 0.3556 0.3631 0.3646 0.3631 0.3556
PR 36.00% 34.65% 34.38% 34.65% 36.00%

9 Ĩp [1, 6] [2, 7] [1, 7]/[3, 9] [3, 8] [4, 9]
L̃p 0.5000 0.5000 0.6000 0.5000 0.5000
L∗

p 0.3229 0.4315 0.4339 0.4315 0.3229
PR 35.42% 13.70% 27.68% 13.70% 35.42%

10 Ĩp [1, 6] [2, 7] [2, 8]/[3, 9] [4, 9] [5, 10]
L̃p 0.4545 0.4545 0.5455 0.4545 0.4545
L∗

p 0.2918 0.2938 0.2944 0.2938 0.2918
PR 35.80% 35.37% 46.03% 35.37% 35.80%

Pr






XORSS
s:N∫

XORSS
r:N

f (x)dx ≥ γ





= β. (10)

Upon setting XORSS
r:N = −∞ or XORSS

s:N = ∞, we get one-sided tolerance intervals.
By using Eq. (4), the left hand side of Eq. (10) can be rewritten as

Pr






XORSS
s:N∫

XORSS
r:N

f (x)dx ≥ γ





= Pr

{
F

(
XORSS

s:N

) − F
(
XORSS

r:N

) ≥ γ
}

= Pr
{
U ORSS

s:N − U ORSS
r:N ≥ γ

} = 1 − FWORSS
rs

(γ ).

It is obvious that Eq. (10) can’t be satisfied exactly, but we can choose r and s
making s − r + 1 as small as possible and satisfying that
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Table 12 Two-sided tolerance interval (90%) that covers γ proportion of the population

n γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

2
3 [1, 3] [1, 3]
4 [1, 3] [1, 3] [1, 4] [1, 4]

[2, 4] [2, 4]
5 [1, 3]∗ [1, 4] [1, 4] [1, 5] [1, 5]

[3, 5]∗ [2, 5] [2, 5]
[2, 4]

6 [1, 3]∗ [1, 4]∗ [1, 5] [1, 5] [1, 6] [1, 6]
[4, 6]∗ [3, 6]∗ [2, 6] [2, 6]
[2, 4] [2, 5]
[3, 5]

7 [1, 3]∗ [1, 4]∗ [1, 5]∗ [1, 6] [1, 6] [1, 7]
[5, 7]∗ [4, 7]∗ [3, 7]∗ [2, 7] [2, 7]
[2, 4] [2, 6] [2, 5]
[4, 6] [3, 6]
[3, 5]

8 [1, 4]∗ [1, 4] [1, 5]∗ [1, 6] [1, 7] [1, 8] [1, 8]
[5, 8]∗ [5, 8] [4, 8]∗ [3, 8] [2, 8]
[2, 5] [2, 6] [2, 7]
[4, 7] [3, 7]
[3, 6]

9 [1, 4]∗ [1, 5]∗ [1, 6]∗ [1, 7]∗ [1, 7]∗ [1, 8] [1, 9]
[6, 9]∗ [5, 9]∗ [4, 9]∗ [3, 9]∗ [3, 9]∗ [2, 9]
[2, 5] [2, 6] [2, 7] [2, 8] [2, 8]
[5, 8] [4, 8] [3, 8]
[3, 6] [3, 7]
[4, 7]

10 [1, 4]∗ [1, 5]∗ [1, 6]∗ [1, 7]∗ [1, 8]∗ [1, 9] [1, 10]
[7, 10]∗ [6, 10]∗ [5, 10]∗ [4, 10]∗ [3, 10]∗ [2, 10]
[2, 5] [2, 6] [2, 7] [2, 8] [2, 9]
[6, 9] [5, 9] [4, 9] [3, 9]
[3, 6] [3, 7] [3, 8]
[5, 8] [4, 8]
[4, 7]

∗ Intervals with the shortest expected width.

Pr






XORSS
s:N∫

XORSS
r:N

f (x)dx ≥ γ





≥ β. (11)

From Eq. (5), we can easily prove the symmetry property of tolerance intervals,
which is formally stated in Theorem 4.1.

Theorem 4.1 Suppose 0 < γ, β < 1, then:

(1)
[
XORSS

r:N , XORSS
s:N

]
is the tolerance interval that covers γ proportion of the popula-

tion with confidence coefficient β if and only if
[
XORSS

N−s+1:N, XORSS
N−r+1:N

]
is the

tolerance interval that covers γ proportion of the population with confidence
coefficient β, i.e.,
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Table 13 Two-sided tolerance interval (95%) that covers γ proportion of the population

n γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

2
3 [1, 3] [1, 3]
4 [1, 3] [1, 4] [1, 4]

[2, 4]
5 [1, 3]∗ [1, 4] [1, 5] [1, 5]

[3, 5]∗ [2, 5]
[2, 4]

6 [1, 4]∗ [1, 4]∗ [1, 5] [1, 6] [1, 6]
[3, 6]∗ [3, 6]∗ [2, 6]
[2, 5] [2, 5]

7 [1, 4]∗ [1, 5]∗ [1, 5]∗ [1, 6] [1, 7]
[4, 7]∗ [3, 7]∗ [3, 7]∗ [2, 7]
[2, 5] [2, 6] [2, 6]
[3, 6]

8 [1, 4]∗ [1, 5]∗ [1, 6]∗ [1, 6] [1, 7] [1, 8]
[5, 8]∗ [4, 8]∗ [3, 8]∗ [3, 8] [2, 8]
[2, 5] [2, 6] [2, 7]
[4, 7] [3, 7]
[3, 6]

9 [1, 4]∗ [1, 5]∗ [1, 6]∗ [1, 7]∗ [1, 8] [1, 9] [1, 9]
[6, 9]∗ [5, 9]∗ [4, 9]∗ [3, 9]∗ [2, 9]
[2, 5] [2, 6] [2, 7] [2, 8]
[5, 8] [4, 8] [3, 8]
[3, 6] [3, 7]
[4, 7]

10 [1, 4]∗ [1, 5]∗ [1, 6]∗ [1, 7]∗ [1, 8]∗ [1, 9] [1, 10]
[7, 10]∗ [6, 10]∗ [5, 10]∗ [4, 10]∗ [3, 10]∗ [2, 10]
[2, 5] [2, 6] [2, 7] [2, 8] [2, 9]
[6, 9] [5, 9] [4, 9] [3, 9]
[3, 6] [3, 7] [3, 8]
[5, 8] [4, 8]
[4, 7]

∗ Intervals with the shortest expected width.

Pr






XORSS
s:N∫

XORSS
r:N

f (x)dx ≥ γ





= β ⇔ Pr






XORSS
N−r+1:N∫

XORSS
N−s+1:N

f (x)dx ≥ γ





= β;

(2) [XORSS
r:N , ∞) is the one-sided tolerance interval that covers γ proportion of the

population with the confidence coefficient β if and only if (−∞, XORSS
N−r+1:N ]

is the one-sided tolerance interval that covers γ proportion of the population
with the confidence coefficient β, i.e.

Pr






∞∫

XORSS
r:N

f (x)dx ≥ γ





= β ⇔ Pr






XORSS
N−r+1:N∫

−∞
f (x)dx ≥ γ





= β.
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Tables 12 and 13 present 90 and 95% two-sided tolerance intervals that cover γ
proportion of the population, where γ = 0.1(0.1)0.9. Once again, we use one-cycle
ORSS (m = 1, N = n), with n up to 10. These two tables show that for the same
n and γ , there may be various intervals satisfying Eq. (11). In this case, we will
choose the one with the shortest expected width as we did earlier in Sect. 3.

Appendix A: Fortran program for Table 1

****************************************************************
******THIS IS TO COMPUTE THE CI FOR P-TH QUANTILE BASED ON ORSS
****************************************************************
*******THIS IS TO CALCULATE ‘N!’********************************

SUBROUTINE FACFAC(JIECHENG,JD)
*******OUTPUT:JIECHENG; JIECHENG(N)=(N-1)!**********************

DOUBLE PRECISION JIECHENG(JD+1)
INTEGER JD,I

JIECHENG(1)=1.0
IF (JD.GE.2) THEN

DO I=2,JD+1
JIECHENG(I)=JIECHENG(I-1)*(I-1.0)

END DO
END IF
END

*******THIS IS TO GET N! PERMUTATIONS OF (1,2,...,N)************
SUBROUTINE PAI(P,N,M,JIECHENG)
INTEGER P(M,N),J,I,JJ,ICOUNT,ITEMP,TEMP
DOUBLE PRECISION JIECHENG(N+1)

P(1,1)=1
P(1,2)=2
P(2,1)=2
P(2,2)=1
IF (N.GE.3) THEN
DO J=3,N

DO I=1,JIECHENG(J)
P(I,J)=J

END DO
DO JJ=1,J

DO I=JIECHENG(J)+1,JIECHENG(J+1)
P(I,JJ)=P(I-JIECHENG(J),JJ)

END DO
END DO
DO JJ=1,J-1

DO ICOUNT=1,JIECHENG(J)
ITEMP=JJ*JIECHENG(J)+ICOUNT
TEMP=P(ITEMP,JJ)
P(ITEMP,JJ)=P(ITEMP,J)
P(ITEMP,J)=TEMP

END DO
END DO

END DO
END IF
END

****** THIS IS TO COMPUTE THE COMBINATION*******************
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SUBROUTINE COMBINATION(COMB,N,JIECHENG)
****** COMB(I,J) IS THE COMBINATION OF (I-1,J-1) ***********
****** EG:COMB(1,1)IS C(0,0), COMB(2,1)IS C(1,0)... ********

INTEGER N,I,J
DOUBLE PRECISION JIECHENG(N+1),COMB(N+1,N+1)

DO I=1,N+1
DO J=1,I
COMB(I,J)=JIECHENG(I)/(JIECHENG(J)*JIECHENG(I-J+1)*1.0)
END DO
END DO
END

******* THIS IS TO READ THE MU_ORSS OF UNIFORM DISTRIBUTION***
SUBROUTINE READ_UNIFMU(UNIMMU,N,MUIODATA)
INTEGER I,J,MUIODATA
DOUBLE PRECISION UNIMMU(N),TEMP(N,N)

DO I=1,N
DO J=1,I

READ (MUIODATA,*) TEMP(I,J)
END DO

END DO
UNIMMU=TEMP(N,:)
END

***************************************************************
DOUBLE PRECISION FUNCTION BIFUNC(KINST,N,COMB,PLOCAL)
DOUBLE PRECISION COMB(N+1,N+1),PLOCAL
INTEGER N,II,KINST(N)

BIFUNC=1.D0
DO II=1,N
BIFUNC=BIFUNC*COMB(N+1,KINST(II)+1)*PLOCAL**KINST(II)
C *(1-PLOCAL)**(N-KINST(II))

END DO
END

****************************************************************
****************************************************************

PROGRAM MAIN
PARAMETER (N=5,M=120,CC=0.90,NUMP=9)

****************************************************************
******* THIS PROGRAM IS FOR ONE-CYCLE ORSS *********************
******* N IS # THE SAMPLE SIZE, M IS THE FACTORIAL OF N ********
******* NUMP IS THE NUMBER OF P-th QUANTILES (eg: 0.1(0.1)0.9)**
******* CC IS PREFIXED CONFIDENCE COEFFICIENT ******************
****************************************************************

INTEGER II,R,S,IJ,RUNTIME,COUNT,IJCOUNT
INTEGER IODATA,I,CILEP(NUMP),CIREP(NUMP)
INTEGER J(N), PERT(M,N),KTOP(N),KBOTTEM(N),KINST(N),DRS(NUMP)
DOUBLE PRECISION CPORSS(NUMP,N,N),TEMP(NUMP),UNIMMU(N),P(NUMP)
DOUBLE PRECISION JIECHENG(N+1),COMB(N+1,N+1),BIFUNC
DOUBLE PRECISION EL(NUMP),ELNEW(NUMP)
LOGICAL JUDG

****************************OUTPUT******************************
******CPORSS(I,J,K): COVERAGE PROB OF [X_J,X_K] FOR P(I)-TH
******QUANTILE**************************************************
******EL(I): EXPECTED LENGTH OF CI FOR P(I)-TH QUANTILE ********
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******CILEP(I): INDEX OF LEFT END POINT OF CI FOR P(I)TH QUANTILE
******CIREP(I): INDEX OF RIGHT END POINT OF CI FOR P(I)TH QUANTILE
****************************************************************

CALL FACFAC(JIECHENG,N)
CALL COMBINATION(COMB,N,JIECHENG)
CALL PAI(PERT,N,M,JIECHENG)

IODATA=75
OPEN(UNIT=IODATA,FILE=‘UNIMORSS.TXT’)
CALL READ_UNIFMU (UNIMMU,N,IODATA)
CLOSE (IODATA)
IODATA=76
OPEN (UNIT=IODATA,FILE=‘PQCIOUT.TXT’)

P(1)=DBLE(1.0)/DBLE(10.0)
DO II=2,NUMP

P(II)=P(II-1)+0.1D0
END DO

****** LOOP 200 IS TO COMPUTE THE COVERAGE PROB OF [X_R, X_S]****
DO 200 R=1,N-1

DO II=1,NUMP
CPORSS(II,R,R)=0

END DO
DO 300 S=R+1,N

I=S-1
DO II=1,NUMP

TEMP(II)=0
END DO
DO 500 II=1,M

DO IJ=1,N
J(IJ)=PERT(II,IJ)

END DO
IF (N.GE.3) THEN

IF (I.EQ.1) THEN
DO IJ=2,N-1

IF (J(IJ).GT.J(IJ+1)) GOTO 500
END DO

ELSE IF (I.EQ.N-1) THEN
DO IJ=1,N-2

IF (J(IJ).GT.J(IJ+1)) GOTO 500
END DO

ELSE
DO IJ=1,I-1

IF (J(IJ).GT.J(IJ+1)) GOTO 500
END DO
DO IJ=I+1,N-1

IF (J(IJ).GT.J(IJ+1)) GOTO 500
END DO

END IF
END IF

DO 510 IJ=1,N
IF (IJ.LE.I) THEN

KINST(IJ)=J(IJ)
KTOP(IJ)=N
KBOTTEM(IJ)=J(IJ)

ELSE
KINST(IJ)=0
KTOP(IJ)=J(IJ)-1
KBOTTEM(IJ)=0
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END IF
510 CONTINUE

RUNTIME=1
DO IJ=1,N

RUNTIME=RUNTIME*(KTOP(IJ)+1-KBOTTEM(IJ))
END DO

KINST(1)=KINST(1)-1
DO 530 COUNT=1,RUNTIME

KINST(1)=KINST(1)+1
JUDG=.FALSE.
DO 550 IJCOUNT=1,N-1

IF (JUDG) GOTO 501
IF (KINST(IJCOUNT).GT.KTOP(IJCOUNT)) THEN
KINST(IJCOUNT)=KBOTTEM(IJCOUNT)
KINST(IJCOUNT+1)=KINST(IJCOUNT+1)+1
IF (KINST(IJCOUNT+1).LE.KTOP(IJCOUNT+1)) THEN

JUDG=.TRUE.
END IF

ELSE
JUDG=.TRUE.

END IF
550 CONTINUE 501 DO IJ=1,NUMP

TEMP(IJ)=TEMP(IJ)+BIFUNC(KINST,N,COMB,P(IJ))
END DO

530 CONTINUE 500 CONTINUE
DO II=1,NUMP

CPORSS(II,R,S)=CPORSS(II,R,S-1)+TEMP(II)
END DO

300 CONTINUE 200 CONTINUE
DO R=1,N-1

DO S=R+1,N
WRITE(IODATA,*) R,S,CPORSS(:,R,S)

END DO
END DO

******* THIS IS TO OBTAIN THE CI_ORSS **********************
******* EL: EXPECTED LENGTH OF CI FOR P-TH QUANTILE*********
******* DRS: VALUE OF ‘S-R’*********************************
******* CILEP(CIREP): INDEX OF ENDPOINT OF CI***************

DO 540 II=1,NUMP
EL(II)=DBLE(1)
DRS(II)=N
DO R=1,N-1

DO S=R+1,N
IF (ANINT(CPORSS(II,R,S)*100.0) .GE. REAL(CC*100)

C .AND. (S-R).LT.DRS(II)) THEN
DRS(II)=S-R
ELNEW(II)=UNIMMU(S)-UNIMMU(R)
IF (ELNEW(II).LT. EL(II)) THEN

CILEP(II)=R
CIREP(II)=S
EL(II)=ELNEW(II)

END IF
END IF

END DO
END DO

******* THE FOLLOWING IS TO PRINT OUT THE RESULT*************
IF (CILEP(II).GE.1) THEN
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WRITE(*,600) ‘P=’, P(II), ‘,’ , ‘CI_ORSS=[’ , CILEP(II), ‘,’,
C CIREP(II),‘],’,‘CPORSS=’,CPORSS(II,CILEP(II),CIREP(II)),
C ‘EL_ORSS=’,EL(II)

600 FORMAT (1X,A3,F3.1,A1,A11,I2,A2,I2,A3,A10,F15.13,A10,F15.13)
WRITE(IODATA,*) P(II), CILEP(II), CIREP(II), CPORSS(II,CILEP(II),

C CIREP(II)),EL(II)
END IF

540 END DO

END
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