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Abstract We consider the estimation of error variance in the analysis of exper-
iments using two level orthogonal arrays. We address the estimator which is the
minimum of all the estimators which we obtain by pooling some sums of squares
for factorial effects. Under squared error loss, we discuss whether or not this esti-
mator uniformly improves upon the best positive multiple of error sum of squares.
We show that when we have two factorial effects, we obtain uniform improvement.
However, we show that when we have more than two factorial effects, we cannot
necessarily obtain uniform improvement. Further, the above results are applied to
the problem of estimating the smallest scale parameter of chi-square distributions.

Keywords Two-level orthogonal arrays · Stein’s estimator · Squared error
loss · Uniform improvement · Simple tree order restriction · Isotonic regression
estimator · Random effects model

1 Introduction

We consider the estimation of error variance σ 2 based on experiments using two-
level orthogonal arrays. Let each of p factorial effects be assigned to one column
and the error term to ν0 columns. Let Si be the sum of squares for the ith factorial
effect and let S0 be that for the error term. Assume that random errors are indepen-
dently distributed as N(0, σ 2). Then S0 and Si, i = 1, . . . , p are independently
distributed as σ 2χ2

ν0
and σ 2χ2

1 (λi), i = 1, 2, . . . , p respectively, where χ2
ν0

denotes
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a central χ2 distribution with ν0 dfs, and χ2
1 (λi) a non-central χ2 distribution with

1 df and noncentrality parameter λi . Note that λi = 0 implies that the ith factorial
effect is inactive.

When we estimate σ 2 under the squared error loss

L(σ 2, σ̂ 2) =
(
σ̂ 2 − σ 2

)2
, (1)

it is well-known that the estimator

δ0 = S0

(ν0 + 2)
(2)

is the best among positive multiples of S0. Stein (1964) showed that for the case
p = 1, γ1 = min{S0/(ν0 + 2), (S0 + S1)/(ν0 + 3)} uniformly improves upon δ0.
Brown (1968) and Brewster and Zidek (1974) generalized Stein’s result for the
case p = 1. Further, Gelfand and Dey (1988) generalized Stein’s result for a class
of nested linear models and showed that for the case p ≥ 2

γp = min

(
S0

ν0 + 2
,
S0 + S1

ν0 + 3
,
S0 + S1 + S2

ν0 + 4
, . . . ,

S0 +∑p

i=1 Si

ν0 + p + 2

)
(3)

uniformly improves upon δ0. See Oono and Shinozaki (2006) for a related result.
One may also refer to Maatta and Casella (1990) for tracing the history of devel-
opments in decision-theoretic variance estimation, starting with Stein (1964)’s
discovery.

In Gelfand and Dey (1988)’s estimator, the pooling order of Si, i = 1, . . . , p
must be determined in advance of observing data, that is in the order S1, S2, . . . , Sp.
However in ANOVA model, it is usual that the pooling order is not determined in
advance. For instance, one may test whether each factorial effect is active or not
and then pool sums of squares corresponding to all nonsignificant effects with
error sum of squares and obtain an estimator of σ 2. Nagata (1989) showed by a
Monte Carlo simulation study that for p = 2 one estimator of this type has a good
performance as compared with the unbiased estimator when the significance level
of the preliminary test is 0.50.

Here we address an estimator

δp = min

(
S0

ν0 + 2
,
S0 + S(1)

ν0 + 3
,
S0 + S(1) + S(2)

ν0 + 4
, . . . ,

S0 +∑p

i=1 S(i)

ν0 + p + 2

)
, (4)

where S(i), i = 1, . . . , p, (S(1) ≤ S(2) ≤ . . . ≤ S(p)) denote the order statistics
of Si, i = 1, . . . , p. Unlike γp, in δp the pooling order of Si, i = 1, . . . , p is
not determined in advance. However, we should remark that δp is not precisely
interpreted as a preliminary test estimator, since it is not decided stepwise whether
we pool S(i) or not. Oono and Shinozaki (2004) have addressed an estimator of the
form

ζp = S0

ν0 + 2
− 1

ν0 + p + 2

p∑
i=1

(
S0

ν0 + 2
− Si

)+
, (5)
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where x+ = max(x, 0), and have shown that for p ≤ 2, ζp uniformly improves
upon δ0 but that for p ≥ 3, ζp uniformly improves upon δ0 only when p ≤ 6 and
ν0 is small.

We should remark that George (1990) also mentioned δp as one generalization
of Stein (1964)’s estimator for the case p ≥ 2. Kubokawa et al. (1993) derived the
asymptotic risk expansion for δ2 and analytically demonstrated that δ2 is asymp-
totically better than δ0. However it has not been well established whether or not δp

uniformly improves upon δ0 for p ≥ 2 so far.
In Sect. 2, we discuss whether or not δp uniformly improves upon δ0. We show

that for p = 2, δp uniformly improves upon δ0. However we show partially through
numerical evaluation that δp does not uniformly improve upon δ0 for p ≥ 12 when
ν0 = 1, for p ≥ 5 when 2 ≤ ν0 ≤ 3, for p ≥ 4 when 4 ≤ ν0 ≤ 12 and for p ≥ 3
when 13 ≤ ν0 ≤ 20.

In Sect. 3, the results of Sect. 2 are applied to the estimation of the smallest scale
parameter of χ2 distributions. Several authors have studied the estimation of order
restricted scale parameters of gamma distributions. See, for example, Kushary and
Cohen (1989), Kaur and Singh (1991), Vijayasree and Singh (1993), Hwang and
Peddada (1994), Iliopoulos and Kourouklis (2000), Chang and Shinozaki (2002)
and Oono (2005). Some other related researches can be traced through the bibli-
ography of Kourouklis (2001).

Let V0 and Vi, i = 1, . . . , p be independently distributed as σ 2
0 χ2

ν0
and

σ 2
i χ2

1 , i = 1, . . . , p. Assume that it is known that σ 2
i ’s are subject to the sim-

ple tree order restriction

σ 2
0 ≤ σ 2

j , j = 1, . . . , p. (6)

The above setup arises naturally when considering the additive random effects
model. See, for example, Sect. 3.5 of Lehmann and Casella (1998). For simplicity,
let us consider the random effects two-way layout

Xijk = µ + Ai + Bj + εijk, i = 1, 2, j = 1, 2, k = 1, . . . , n. (7)

Assume that the unobservable random effects Ai , Bj and the error term εijk

are independently distributed as N(0, σ 2
A), N(0, σ 2

B) and N(0, σ 2
ε ). Let V0 =∑2

i=1

∑2
j=1

∑n
k=1(Xijk − X̄i·· − X̄·j · + X̄···)2, V1 = 2n

∑2
i=1(X̄i·· − X̄···)2 and

V2 = 2n
∑2

j=1(X̄·j · − X̄···)2, where X̄i·· = ∑2
j=1

∑n
k=1 Xijk/(2n), X̄·j · =∑2

i=1

∑n
k=1 Xijk/(2n) and X̄··· = ∑2

i=1

∑2
j=1

∑n
k=1 Xijk/(4n). Then V0, V1 and

V2 are independently distributed as σ 2
0 χ2

ν0
, σ 2

1 χ2
1 and σ 2

2 χ2
1 with ν0 = 4n − 3,

σ 2
0 = σ 2

ε , σ 2
1 = σ 2

ε + 2nσ 2
A and σ 2

2 = σ 2
ε + 2nσ 2

B , and we have the simple tree
order restriction Eq. (6) with p = 2.

When we consider the estimation of σ 2
0 under squared error loss, V0/(ν0 +2) is

the best among positive multiples of V0. However, since the information (Eq. 6) is
available, a reasonable estimator of σ 2

0 may be the isotonic regression of {V0/(ν0 +
2), V1, . . . , Vp} with weights {ν0 + 2, 1, . . . , 1}, that is

σ̂ 2
0

ST = min

(
V0

ν0 + 2
,
V0 + V(1)

ν0 + 3
,
V0 + V(1) + V(2)

ν0 + 4
, . . . ,

V0 +∑p

i=1 V(i)

ν0 + p + 2

)
,

(8)
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where V(i), i = 1, . . . , p denote the order statistics of Vi, i = 1, . . . , p. See
Bartholomew et al. (1972) or Roberson et al. (1988) as for the construction of

isotonic regression estimators. Here, we are interested in whether or not σ̂ 2
0

ST
uni-

formly improves upon V0/(ν0 + 2) under squared error loss. We show that σ̂ 2
0

ST

uniformly improves upon V0/(ν0 + 2) for p = 2 but that σ̂ 2
0

ST
does not uniformly

improve upon V0/(ν0 + 2) for larger p.

2 Estimation of error variance in ANOVA model

In this Section, we discuss whether or not δp uniformly improves upon δ0 under
squared error loss. We discuss this problem for the case when p = 2 in Sect. 2.1
and for the case when p ≥ 3 in Sect. 2.2 separately.

2.1 The case when p = 2

Here, we show that δ2 uniformly improves upon δ0. The following well-known
Lemma, which can be obtained by integration by parts method, is very useful to
evaluate the risk difference of δ0 and δ2. See Efron and Morris (1976) or Shinozaki
(1995).

Lemma 2.1 Let T be distributed as χ2
n and let f (·) be an absolutely continu-

ous function. Then E[Tf (T )] = nE[f (T )] + 2E[Tf
′
(T )], provided that both

expectations exist.

Let J 2
i be the set of (S0, S1, S2) such that δ2 = (S0 + Si)/(ν0 + 3) and let J 2

12
be the set of (S0, S1, S2) such that δ2 = (S0 + S1 + S2)/(ν0 + 4). Further let J 2

i (or
J 2

12) be the indicator function of the set J 2
i (or J 2

12). Then δ2 can be written as

δ2 = S0

ν0 + 2
− g(U1, U2), (9)

where

g(x1, x2) = 1

ν0 + 3
(x1J

2
1 + x2J

2
2 ) + 1

ν0 + 4
(x1 + x2)J

2
12 (10)

and Ui = S0/(ν0 +2)−Si . Now we evaluate the risk difference of δ0 and δ2. With-
out loss of generality we set σ 2 = 1. Let us denote the risk when we estimate σ 2 by
σ̂ 2 as R(σ 2, σ̂ 2) = E[L(σ 2, σ̂ 2)]. Then from Eq. (9), we have the risk difference
as

R(σ 2, δ0) − R(σ 2, δ2) = 2E

[(
S0

ν0 + 2
− 1

)
g(U1, U2)

]
− E

[{g(U1, U2)}2] .
(11)
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To evaluate the first term on the right-hand side of Eq. (11), we apply Lemma
2.1 with T = S0 and f (T ) = g(U1, U2), and we have

E[S0g(U1, U2)] = ν0E[g(U1, U2)] + 2E

[
S0

g(1, 1)

ν0 + 2

]

= (ν0 + 2)E[g(U1, U2)] + 2E [g(S1, S2)] . (12)

Thus we have

2E

[(
S0

ν0 + 2
− 1

)
g(U1, U2)

]

= 4

ν0 + 2

{
1

ν0 + 3

(
E
[
S1J

2
1

]+ E
[
S2J

2
2

])+ 1

ν0 + 4
E
[
(S1 + S2) J 2

12

]}
.

(13)

To evaluate the second term on the right-hand side of Eq. (11), we utilize the
inequality

{g(U1, U2)}2 ≤ 2(ν0 + 3)

(ν0 + 2)(ν0 + 4)2

×
{(

S0

ν0 + 2
− S1

)
g1(U1, U2) +

(
S0

ν0 + 2
− S2

)
g2(U1, U2)

}
,

(14)

where

g1(x1, x2) = (ν0 + 2)(ν0 + 4)

(ν0 + 3)2
x1J

2
1 +
(

x1 − x2

ν0 + 3

)
J 2

12 (15)

and

g2(x1, x2) = (ν0 + 2)(ν0 + 4)

(ν0 + 3)2
x2J

2
2 +
(

x2 − x1

ν0 + 3

)
J 2

12. (16)

The inequality (14) can be confirmed since one needs to add

ν0 + 2

(ν0 + 3)2(ν0 + 4)
(U 2

1 J 2
1 + U 2

2 J 2
2 ) + 1

(ν0 + 2)(ν0 + 4)
(U1 − U2)

2J 2
12, (17)

which is clearly nonnegative, to {g(U1, U2)}2 to obtain the right-hand side of Eq. (14).
Note that g1(U1, U2) and g2(U1, U2) are absolutely continuous functions of S0, S1
and S2. To evaluate the expectation of Eq. (14), we introduce auxiliary random vari-
ables Ki, i = 1, 2 distributed independently as Poisson distribution with mean
λi such that Ki is independent of S0, and Si given Ki is distributed as σ 2χ2

1+2Ki
.

From Lemma 2.1, we evaluate the expectation of each term on the right-hand side
of Eq. (14) as

E[S0gi(U1, U2)] = (ν0 + 2)E[gi(U1, U2)] + 2E[gi(S1, S2)], (18)

E[S1g1(U1, U2) | K1, K2]

= (1 + 2K1)E [g1(U1, U2) | K1, K2] − 2E[g1(S1, 0) | K1, K2] (19)
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and

E[S2g2(U1, U2) | K1, K2]

= (1 + 2K2)E [g2(U1, U2) | K1, K2] − 2E[g2(0, S2) | K1, K2]. (20)

Using Eqs. (14), (18), (19) and (20) we have

E[{g(U1, U2)}2] ≤ 2(ν0 + 3)

(ν0 + 2)(ν0 + 4)2
E

[
2

ν0 + 2
{g1(S1, S2) + g2(S1, S2)}

+2{g1(S1, 0) + g2(0, S2)}
]

(21)

= 4

(ν0 + 2)(ν0 + 4)

{(
E
[
S1J

2
1

]+ E
[
S2J

2
2

])

+E
[
(S1 + S2) J 2

12

]}
.

Thus we see from Eqs. (11), (13) and (21) that

R(σ 2, δ0) − R(σ 2, δ2) ≥ 4

(ν0 + 2)(ν0 + 3)(ν0 + 4)

(
E
[
S1J

2
1

]+ E
[
S2J

2
2

])
,

(22)

which is clearly positive. Summarizing the above we have the following Theorem.

Theorem 2.1 δ2 uniformly improves upon δ0 under squared error loss.

2.2 The case when p ≥ 3

We discuss whether or not δp uniformly improves upon δ0 for the case p ≥ 3. We
should mention that Oono and Shinozaki (2004) have shown that the case when
λi = 0, i = 1, . . . , p is the most critical one for ζp to improve upon δ0 uniformly in
the sense that ζp uniformly improves upon δ0 if and only if R(σ 2, ζp) ≤ R(σ 2, δ0)
when λi = 0, i = 1, . . . , p. This case may also be the most critical one for δp to
improve upon δ0 uniformly, since in this case δp is stochastically smallest and may
shrink δ0 too much. Here we evaluate the risk difference of δ0 and δp only for the
case when λi = 0, i = 1, . . . , p, and show that δp does not uniformly improve
upon δ0 for larger p. Let {i1, . . . , il} be a subset of the set {1, . . . , p} and let J p

i1...il

be the set of (S0, S1, . . . , Sp) such that δp = (S0 +∑l
j=1 Sij )/(ν0 + l +2). Further,

let J
p

i1···il be the indicator function of the set J p

i1···il . Then δp can be written as

δp = S0

ν0 + 2
− 1

ν0 + p + 2
h(U1, . . . , Up), (23)

where

h(x1, . . . , xp) =
p∑

l=1

ν0 + p + 2

ν0 + l + 2

∑
{i1,...,il}




l∑
j=1

xij


 J

p

i1···il (24)
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and Ui = S0/(ν0 + 2) − Si . We note that the summation
∑

{i1,...,il} is taken over
arbitrary subset {i1, . . . , il} of the set {1, . . . , p}. Without loss of generality we set
σ 2 = 1. Let R0 and E0 denote the risk and the expectation both when λi = 0, i =
1, . . . , p. Then we have from Eq. (23)

R0(σ
2, δ0) − R0(σ

2, δp) = 2

ν0 + p + 2
E0

[(
S0

ν0 + 2
− 1

)
h(U1, . . . , Up)

]

− 1

(ν0 + p + 2)2
E0

[{
h(U1, . . . , Up)

}2
]
. (25)

Similarly with Eq. (12), we have from Lemma 2.1

E0[S0h(U1, . . . , Up)] = (ν0 + 2)E0[h(U1, . . . , Up)] + 2E0
[
h(S1, . . . , Sp)

]
.

(26)

Applying Eq. 26 to the first term on the right-hand side of Eq. (25), we have

R0(σ
2, δ0) − R0(σ

2, δp) = 4

(ν0 + 2)(ν0 + p + 2)
E0
[
h(S1, . . . , Sp)

]

− 1

(ν0 + p + 2)2
E0

[{
h(U1, . . . , Up)

}2
]
. (27)

To evaluate the right-hand side of Eq. (27), we need the following Lemmas 2.3,
2.4 and 2.5. Lemma 2.2 is used to show Lemma 2.3. The proofs of these Lemmas
are rather technical and we give them in Appendix A.

Lemma 2.2 Let Lp

i1···il be the set of (S0, . . . , Sp) such that S0/(ν0 +2) ≥ Sj if and
only if j ∈ {i1, . . . , il}. If (S0, . . . , Sp) ∈ J p

i1···il , then (S0, . . . , Sp) ∈ Lp

i1···ih for
some {i1, . . . , ih} ⊇ {i1, . . . , il}.
Lemma 2.3 Let h(·, . . . , ·) be defined as in Eq. (24). Further, let L

p

i1···il be the
indicator function of the set Lp

i1···il and let

h1(x1, . . . , xp) =
p∑

l=1

ν0 + p + 2

ν0 + l + 2

∑
{i1,...,il}




l∑
j=1

xij


L

p

i1···il . (28)

Then (i) h(S1, . . . , Sp)≤h1(S1, . . . , Sp) and (ii) h(U1, . . . , Up)≥h1(U1, . . . , Up).

Lemma 2.4 Let

h2(x1, . . . , xp) =
p−1∑
l=1

p − l

ν0 + l + 2

∑
{i1,...,il}




l∑
j=1

xij


L

p

i1···il (29)

and

h3(x1, . . . , xp) =
p−1∑
l=1

{(
ν0 + p + 2

ν0 + l + 2

)2

− 1

} ∑
{i1,...,il}




l∑
j=1

xij




2

L
p

i1···il .

(30)
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Then for p ≥ 3,

h1(S1, . . . , Sp) =
p∑

i=1

SiI S0
ν0+2 >Si

+ h2(S1, . . . , Sp) (31)

and

{h1(U1, . . . , Up)}2 =
(

p∑
i=1

U+
i

)2

+ h3(U1, . . . , Up), (32)

where IC is the indicator function of a set C and a+ = max(0, a).

Lemma 2.5 For p ≥ 3,

E0[h2(S1, . . . , Sp)] ≤ p(p − 1)

ν0 + p + 1

{
E0[S1L

2
1] + p − 2

ν0 + 3
E0[S1L

3
1]

}
(33)

and

E0[h3(U1, . . . , Up)]

≥ p(p − 1)

{(
ν0 + p + 2

ν0 + p + 1

)2

− 1

}{
E0[U 2

1 L2
1] + (p − 2)E0[U1U2L

3
12]
}
.

(34)

We have from Lemmas 2.3, 2.4 and 2.5,

E0[h(S1, . . . , Sp)] ≤ E0[h1(S1, . . . , Sp)]

=
p∑

i=1

E0

[
SiI S0

ν0+2 >Si

]
+ E0[h2(S1, . . . , Sp)]

≤
p∑

i=1

E0

[
SiI S0

ν0+2 >Si

]
+ p(p − 1)

ν0 + p + 1

×
{
E0[S1L

2
1] + p − 2

ν0 + 3
E0[S1L

3
1]

}
. (35)

Similarly we have

E0[{h(U1, . . . , Up)}2] ≥ E0



(

p∑
i=1

U+
i

)2



+p(p − 1)

{(
ν0 + p + 2

ν0 + p + 1

)2

− 1

}{
E0[U 2

1 L2
1] + (p − 2)E0[U1U2L

3
12]
}
.

(36)



Estimation of variance and ordered scale parameters 747

As shown in Oono and Shinozaki (2004), we can easily confirm from Lemma 2.1
that

R0(σ
2, δ0) − R0(σ

2, ζp) = 4

(ν0 + 2)(ν0 + p + 2)

p∑
i=1

E0

[
SiI S0

ν0+2 >Si

]

− 1

(ν0 + p + 2)2
E0



(

p∑
i=1

U+
i

)2



= 2p(ν0 + 2p + 1)

(ν0 + p + 2)2(ν0 + 2)
E0

[
S1I S0

ν0+2 >S1

]

− p(p − 1)

(ν0 + p + 2)2
E0[U+

1 U+
2 ]. (37)

Applying Eq. (35) and (36) to Eq. (27) and noting the first equality of Eq. (37), we
evaluate the risk difference as

R0(σ
2, δ0) − R0(σ

2, δp)

≤ R0(σ
2, δ0) − R0(σ

2, ζp) + 4p(p − 1)

(ν0 + 2)(ν0 + p + 1)(ν0 + p + 2)

×
{
E0[S1L

2
1] + p − 2

ν0 + 3
E0[S1L

3
1]

}
− p(p − 1)

(ν0 + p + 2)2

×
{(

ν0 + p + 2

ν0 + p + 1

)2

− 1

}{
E0[U 2

1 L2
1] + (p − 2)E0[U1U2L

3
12]
}
. (38)

If the right-hand side of Eq. (38) is negative, then δp does not uniformly improve
upon δ0. For 1 ≤ ν0 ≤ 20, using Mathematica, we have numerically evaluated
the values of E0[S1I S0

ν0+2 >S1
], E0[U+

1 U+
2 ], E0[S1L

2
1], E0[U 2

1 L2
1], E0[S1L

3
1] and

E0[U1U2L
3
12] in Table 1. Based on Table 1 and the inequality (38) and noting the

second equality of (37), we can numerically confirm the following for 2 ≤ ν0 ≤ 20.

Result 2.1 δp does not uniformly improve upon δ0 for 5 ≤ p ≤ 25 when 2 ≤ ν0 ≤
3, for 4 ≤ p ≤ 25 when 4 ≤ ν0 ≤ 12, and for 3 ≤ p ≤ 25 when 13 ≤ ν0 ≤ 20.

When ν0 = 1, the numerical value of the right-hand side of Eq. (38) is positive
for p ≥ 3, and we can not determine whether or not δp uniformly improves upon
δ0 based on Table 1 and the inequality (38) unfortunately. Further, similar remark
applies to the case when p is large. However, as formally stated in the following
Proposition, δp does not uniformly improve upon δ0 for large p. The proof is rather
technical and we give it in Appendix B.

Proposition 2.1 δp does not uniformly improve upon δ0 for p ≥ 12 when ν0 = 1,
for p ≥ 10 when ν0 = 2, for p ≥ 9 when 3 ≤ ν0 ≤ 4, and for p ≥ 24 when
ν0 ≥ 5.

Combining Result 2.1 and Proposition 2.1, we see that δp does not uniformly
improve upon δ0 for p ≥ 12 when ν0 = 1, for p ≥ 5 when 2 ≤ ν0 ≤ 3, for p ≥ 4
when 4 ≤ ν0 ≤ 12 and for p ≥ 3 when 13 ≤ ν0 ≤ 20. We should mention that
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Table 1 Numerical evaluation 1

ν0 E0[S1I S0
ν0+2 >S1

] E0[U+
1 U+

2 ] E0[S1L
2
1] E0[U 2

1 L2
1] E0[S1L

3
1] E0[U1U2L

3
12]

1 0.057669 0.107241 0.020089 0.033023 0.008656 0.020310
2 0.089443 0.151270 0.030652 0.052254 0.012576 0.031881
3 0.109551 0.174162 0.037112 0.064870 0.014695 0.039361
4 0.123417 0.187827 0.041453 0.073793 0.015978 0.044595
5 0.133555 0.196763 0.044563 0.080441 0.016818 0.048464
6 0.141289 0.202994 0.046898 0.085587 0.017401 0.051440
7 0.147384 0.207553 0.048714 0.089690 0.017824 0.053802
8 0.152310 0.211015 0.050165 0.093037 0.018142 0.055720
9 0.156375 0.213722 0.051351 0.095821 0.018388 0.057311
10 0.159785 0.215891 0.052339 0.098172 0.018583 0.058650
11 0.162688 0.217664 0.053174 0.100184 0.018740 0.059794
12 0.165188 0.219137 0.053888 0.101926 0.018869 0.060782
13 0.167364 0.220379 0.054507 0.103448 0.018977 0.061644
14 0.169275 0.221439 0.055048 0.104790 0.019068 0.062403
15 0.170966 0.222353 0.055244 0.105983 0.019145 0.063076
16 0.172474 0.223149 0.055948 0.107049 0.019212 0.063677
17 0.173827 0.223848 0.056326 0.108007 0.019270 0.064217
18 0.175048 0.224466 0.056666 0.108874 0.019321 0.064704
19 0.176154 0.225016 0.056974 0.109662 0.019365 0.065147
20 0.177162 0.225509 0.057254 0.110381 0.019405 0.065551

we may be able to confirm that δp does not uniformly improve upon δ0 for p ≥ 3
also when ν0 > 20 by numerically evaluating the value of the right-hand side of
Eq. (38) and combining the result with Proposition 2.1.

We remark that it is implied by our Monte Carlo simulation study over ten mil-
lion iterations for the case when λi = 0, i = 1, . . . , p that δ3 does not uniformly
improve upon δ0 also when 1 ≤ ν0 ≤ 12.

3 Estimation of the smallest scale parameter

Let V0 and Vi, i = 1, . . . , p be independently distributed as σ 2
0 χ2

ν0
and σ 2

i χ2
1 , i =

1, . . . , p respectively. Assume that σ 2
i ’s are subject to the simple tree order restric-

tion Eq. (6). Here we consider the estimation of the smallest scale parameter σ 2
0 and

discuss whether or not the isotonic regression estimator σ̂ 2
0

ST
as defined in Eq. (8)

uniformly improves upon V0/(ν0 + 2) under squared error loss. We first show that

for p = 2, σ̂ 2
0

ST
uniformly improves upon V0/(ν0 + 2) by using Theorem 2.1 and

the following well-known Lemma.

Lemma 3.1 Let Vi be distributed as σ 2
i χ2

νi
, where σ 2

i ≥ σ 2
0 . Then there exists

an auxiliary random variable Wi satisfying the following two conditions. (a) Vi

given Wi is distributed as σ 2
0 χ2

νi
(Wi). (b) Wi is distributed as τ 2

i /(2σ 2
0 )χ2

νi
, where

τ 2
i = σ 2

i − σ 2
0 .

Theorem 3.1 For the case p = 2, σ̂ 2
0

ST
uniformly improves upon V0/(ν0 + 2)

under squared error loss.
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Proof From Lemma 3.1, we can imagine auxiliary independent random variables
Wi, i = 1, 2 such that V0 and Vi, i = 1, 2 given Wi, i = 1, 2 are independently
distributed as σ 2

0 χ2
ν0

and σ 2
0 χ2

1 (Wi), i = 1, 2 respectively. Given Wi’s, by applying
Theorem 2.1 with Si = Vi, i = 0, 1, 2 and λi = Wi, i = 1, 2, we have

E[L(σ 2
0 , σ̂ 2

0

ST
)|W1, W2] < E[L(σ 2

0 , V0/(ν0 + 2))|W1, W2]. (39)

Taking the expectation on both sides of Eq. (39) overWi’s, we see thatR(σ 2
0 , σ̂ 2

0

ST
) <

R(σ 2
0 , V0/(ν0 + 2)), which completes the proof.

In the following, we discuss whether or not σ̂ 2
0

ST
uniformly improves upon

V0/(ν0 + 2) for p ≥ 3. We remark that the case σ 2
i = σ 2

0 , i = 1, . . . , p may

possibly be the most critical one for σ̂ 2
0

ST
to improve upon V0/(ν0 +2) since in this

case σ̂ 2
0

ST
is stochastically smallest and may shrink V0/(ν0 + 2) too much. Note

that the risks of σ̂ 2
0

ST
and V0/(ν0 + 2) when σ 2

i = σ 2
0 , i = 1, . . . , p are equal to

R0(σ
2
0 , δp) and R0(σ

2
0 , δ0). Thus we see from the results of Section 2.2 that σ̂ 2

0

ST

does not uniformly improve upon V0/(ν0 + 2) for p ≥ 12 when ν0 = 1, for p ≥ 5
when 2 ≤ ν0 ≤ 3, for p ≥ 4 when 4 ≤ ν0 ≤ 12 and for p ≥ 3 when 13 ≤ ν0 ≤ 20.
We finally give the following two Remarks.

Remark 3.1 Our results indicate that the isotonic regression estimator σ̂ 2
0

ST
of the

smallest scale parameter under simple tree order restriction fails to improve upon
the usual estimator V0/(ν0 + 2) for larger p. Not surprisingly, similar phenome-
non is reported by Lee (1988) and Hwang and Peddada (1994) for the problem of
estimating the smallest location parameter of p elliptically symmetric distributions
under simple tree order restriction. They showed that for sufficiently large p, the
isotonic regression estimator of the smallest location parameter tends to −∞ and
fails to improve upon the usual estimator.

Remark 3.2 Recently, (Cohen et al. 2000) have pointed out that while the isotonic
regression estimator has desirable property for simple order model, it is prone to
behavior which is somewhat unintuitive and unappealing to our sensibilities for
many order restricted models including the simple tree order model. Actually, as
stated in Remark 3.1, the isotonic regression estimator under simple tree order
model fails to improve upon V0/(ν0 + 2) for larger p. This behavior may cause
us to seek an alternative estimation procedure. Oono and Shinozaki (2006) have
generalized the result of Hwang and Peddada (1994) and have given an estimator
which not only has desirable property in the sense of Cohen et al. (2000) but also
uniformly improves upon V0/(ν0 + 2).

A Appendix

Proof of Lemma 2.2 Let M be the set of (S0, . . . , Sp) such that S0/(ν0 + 2) ≥ Sij

for j = 1, . . . , l. Note that M =
⋃

{i1,...,ih}
Lp

i1···ih , where
⋃

is taken over all the
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sets {i1, . . . , ih} such that {i1, . . . , ih} ⊇ {i1, . . . , il}. Then we need only to show
that if (S0, . . . , Sp) ∈ J p

i1···il then (S0, . . . , Sp) ∈ M. Equivalently, supposing that
(S0, . . . , Sp) /∈ M, we show that (S0, . . . , Sp) /∈ J p

i1···il . From (S0, . . . , Sp) /∈ M,
wee see that S0/(ν0 + 2) < Sij for at least one j , j =1, . . . , l. We first consider the
case when S0/(ν0 + 2) ≥ Sij for some j ’s, j =1, . . . , l. Without loss of generality,
we assume that S0/(ν0 +2) ≥ Sij for j =1, . . . , m (< l) and that S0/(ν0 +2) < Sij

for j = m + 1, . . . , l. Let us denote ξi1···il = (S0 +∑l
j=1 Sij )/(ν0 + l + 2). Then

we can easily confirm that ξi1···im < ξi1···il , which implies (S0, . . . , Sp) /∈ J p

i1···il . In
the following we consider the case when S0/(ν0 + 2) < Sij for all j , j = 1, . . . , l.
Then we can easily confirm that S0/(ν0 +2) < ξi1···il , which implies (S0, . . . , Sp) /∈
J p

i1···il . This completes the proof. ��
Proof of Lemma 2.3 We omit the proof of (i) since it can be discussed similarly
with that of (ii). Without loss of generality we assume (S0, . . . , Sp) ∈ J p

i1···ik . We
show that (ii) is true. We see from Lemma 2.2 that (S0, . . . , Sp) ∈ Lp

i1···ih for some

{i1, . . . , ih} ⊇ {i1, . . . , ik}. Let us denote ξi1···ik = (S0 +∑k
j=1 Sij )/(ν0 + k + 2).

Then we have

h(U1, . . . , Up) = ν0 + p + 2

ν0 + k + 2

k∑
j=1

Uij

= (ν0 + p + 2)

(
S0

ν0 + 2
− ξi1···ik

)
(40)

and

h1(U1, . . . , Up) = ν0 + p + 2

ν0 + h + 2

h∑
j=1

Uij

= (ν0 + p + 2)

(
S0

ν0 + 2
− ξi1···ih

)
. (41)

Since (S0, . . . , Sp) ∈ J p

i1···ik implies ξi1···ik ≤ ξi1···ih , we see from Eqs. (40) and (41)
that (ii) is true. This completes the proof. ��
Proof of Lemma 2.4 We omit the proof of Eq. (32) since it can be discussed simi-
larly with that of Eq. (31). Since we have from Eqs. (28) and (29)

h1(S1, . . . , Sp) − h2(S1, . . . , Sp) =
p∑

l=1

∑
{i1,...,il}




l∑
j=1

Sij


L

p

i1···il ,

we need only to show that

p∑
l=1

∑
{i1,...,il}




l∑
j=1

Sij


L

p

i1···il =
p∑

i=1

SiI S0
ν0+2 >Si

. (42)

If (S0, . . . , Sp) ∈ Lp

i1···il for some {i1, . . . , il}, then both sides of Eq. (42) are equal

to
∑l

j=1 Sij . If (S0, . . . , Sp) /∈ Lp

i1···il for any {i1, . . . , il}, then both sides of Eq. (42)
are equal to 0. This completes the proof. ��
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Proof for (33) in Lemma 2.5 Since Sj , j = 1, . . . , p are identically distributed as
χ2

1 when λi = 0, i = 1, . . . , p, we have

E0[Si1L
p

i1···il ] = E0[S1L
p

1···l]. (43)

Thus we have

∑
{i1,...,il}





l∑
j=1

E0
[
Sij L

p

i1···il
]

 = l

(
p

l

)
E0
[
S1L

p

1···l
]
. (44)

We see from Eqs. (30) and (44) that the left-hand side of Eq. (33) is expressed as

p−2∑
l=1

p − l

ν0 + l + 2
l

(
p

l

)
E0
[
S1L

p

1···l
]+ p(p − 1)

ν0 + p + 1
E0

[
S1L

p

1···p−1

]
. (45)

On the other hand, we have from Eq. (43)

E0[S1L
2
1] = E0

[
S1(L

3
1 + L3

12)
]

= E0
[
S1(L

4
1 + 2L4

12 + L4
123)
]

= · · ·

= E0

[
S1

p−1∑
l=1

(
p − 2

l − 1

)
L

p

1···l

]
=

p−1∑
l=1

(
p − 2

l − 1

)
E0[S1L

p

1···l]. (46)

Similarly with Eq. (46), we have

E0[S1L
3
1] =

p−2∑
l=1

(
p − 3

l − 1

)
E0[S1L

p

1···l], (47)

where we define
(0

0

) = 1. We see from Eqs. (46) and (47) that the right-hand side
of Eq. (33) is expressed as

p(p − 1)

ν0 + p + 1

p−2∑
l=1

{(
p − 2

l − 1

)
+ p − 2

ν0 + 3

(
p − 3

l − 1

)}
E0[S1L

p

1···l]

+ p(p − 1)

ν0 + p + 1
E0[S1L

p

1···p−1]

=
p−2∑
l=1

{
(p − l)(ν0 + p − l + 2)

(ν0 + 3)(ν0 + p + 1)
l

(
p

l

)}
E0[S1L

p

1···l]

+ p(p − 1)

ν0 + p + 1
E0[S1L

p

1···p−1], (48)

where we have the last equality by
(

p − 2

l − 1

)
= l(p − l)

p(p − 1)

(
p

l

)
and

(
p − 3

l − 1

)
= l(p − l)(p − l − 1)

p(p − 1)(p − 2)

(
p

l

)
.

(49)



752 Y. Oono and N. Shinozaki

Thus from Eqs. (45) and (48), we need only to show that

(ν0 + l + 2)(ν0 + p − l + 2)

(ν0 + p + 1)(ν0 + 3)
≥ 1, (50)

for l = 1, . . . , p − 2, which can be easily verified. ��
Proof for Eq. (34) in Lemma 2.5 Similarly with Eq. (43), we have

E0[U 2
i1
L

p

i1···il ] = E0[U 2
1 L

p

1···l] (51)

and

E0[Ui1Ui2L
p

i1···il ] = E0[U1U2L
p

1···l]. (52)

Thus we have

∑
{i1,...,il}

E0






l∑
j=1

Uij




2

L
p

i1···il


 = l

(
p

l

){
E0
[
U 2

1 L
p

1···l
]

+(l − 1)E0
[
U1U2L

p

1···l
]}

. (53)

We see from Eqs. (30) and (53) that the left-hand side of Eq. (34) is expressed as
p−1∑
l=1

Q(l)(p − l)l

(
p

l

){
E0
[
U 2

1 L
p

1···l
]+ (l − 1)E0

[
U1U2L

p

1···l
]}

, (54)

where

Q(l) = 1

p − l

{(
ν0 + p + 2

ν0 + l + 2

)2

− 1

}
. (55)

On the other hand, similarly with Eqs. (46) and (47) we have

E0[U 2
1 L2

1] =
p−1∑
l=1

(
p − 2

l − 1

)
E0[U 2

1 L
p

1···l] (56)

and

E0[U1U2L
3
12] =

p−1∑
l=2

(
p − 3

l − 2

)
E0[U1U2L

p

1···l], (57)

where we define
(0

0

) = 1. We see from Eqs. (56) and (57) that the right-hand side
of Eq. (34) is expressed as

p(p − 1)Q(p − 1)

{
p−1∑
l=1

(
p − 2

l − 1

)
E0[U 2

1 L
p

1···l]

+(p − 2)

p−1∑
l=2

(
p − 3

l − 2

)
E0[U1U2L

p

1···l]

}

=
p−1∑
l=1

Q(p − 1)(p − l)l

(
p

l

){
E0
[
U 2

1 L
p

1···l
]+ (l − 1)E0

[
U1U2L

p

1···l
]}

,

(58)
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where we have the last equality by Eq. (49) and
(

p − 3

l − 2

)
= l(l − 1)(p − l)

p(p − 1)(p − 2)

(
p

l

)
. (59)

Thus from Eqs. (54) and (58), we need only to show that

Q(l) ≥ Q(p − 1), (60)

for l = 1, 2, . . . , p − 1. We see that Eq. (60) is true since Q(l) is a decreasing
function of l, which can be easily verified. ��

B Appendix

Proof of Proposition 2.1 Without loss of generality we set σ 2 = 1. We first note
that the risk of δp when λi =0, i =1, . . . , p can be expressed as

R0(σ
2, δp) = Var0[δp] + (E0[δp] − 1)2, (61)

where Var0 is the variance when λi =0, i =1, . . . , p. Based on Eq. (61), we give
the condition on p such that

R0(σ
2, δp) > R0(σ

2, δ0) = 2/(ν0 + 2), (62)

which implies that δp does not uniformly improve upon δ0. To evaluate the variance
of δp, we note that δp can be written as

δp = δ1
p + δ2

p, (63)

where δ1
p = S0/ (ν0 + p + 2) and δ2

p = min
{

pS0

(ν0+2)(ν0+p+2)
,

(p−1)S0+(ν0+p+2)S(1)

(ν0+3)(ν0+p+2)
,

· · · ,
∑p

i=1 S(i)

ν0+p+2

}
. Since δ1

p and δ2
p are both increasing in S0, their covariance is non-

negative and we see that

Var0[δp] = Var0[δ1
p] + Var0[δ2

p] + 2Cov0[δ1
p, δ2

p] > Var0[δ1
p]

= 2ν0

(ν0 + p + 2)2
, (64)

where Cov0 is the covariance when λi =0, i =1, 2, . . . , p.
To evaluate the bias of δp, we utilize the inequality

h(U1, . . . , Up) ≥
p∑

i=1

U+
i + 1

ν0 + p + 1

∑
{i,j}

U+
i I S0

ν0+2 <Sj
, (65)

whose proof is given later in this Appendix. Using Eq. (65) and taking the expec-
tation of Eq. (23), we have

E0[δp] ≤ ν0

ν0 + 2
− p

ν0 + p + 2
aν0 − p(p − 1)

(ν0 + p + 1)(ν0 + p + 2)
bν0 , (66)
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where aν0 = E0[U+
1 ] and bν0 = E0[U1L

2
1]. Since the right-hand side of Eq. (66)

is clearly smaller than 1, we see from Eq. (66) that

(E0[δp] − 1)2 ≥
{

2

ν0 + 2
+ p

ν0 + p + 2
aν0 + p(p − 1)

(ν0 + p + 1)(ν0 + p + 2)
bν0

}2

.

(67)

Thus we see from Eqs. (61), (64) and (67) that if

2ν0

(ν0 + p + 2)2
+
{

2

ν0 + 2
+ p

ν0 + p + 2
aν0 + p(p − 1)

(ν0 + p + 1)(ν0 + p + 2)
bν0

}2

≥ 2

ν0 + 2
(68)

is true, then Eq. (62) is true. We give the condition for p to satisfy Eq. (68). We
consider the two cases, 1≤ν0 ≤4 and ν0 ≥5 separately.

Case 1 1≤ν0 ≤4. Using Mathematica, we have numerically evaluated the values
of aν0 and bν0 in Table 2. Based on Table 2, we can easily confirm that Eq. (68) is
true for p≥12 when ν0 = 1, for p≥10 when ν0 = 2 and for p≥9 when 3≤ν0 ≤4.

Case 2 ν0 ≥ 5. We should remark that we can figure out a necessary and sufficient
condition for p to satisfy Eq. (68) by numerically evaluating the values of aν0 and
bν0 . However, in this case, we analytically demonstrate that Eq. (68) is true for
p ≥ 24. Since bν0 > 0, we can easily confirm that Eq. (68) is true if p satisfies

{
a2

ν0
(ν0 + 2)2 + 4aν0(ν0 + 2) − 2ν0

}
p + 4(ν0 + 2)

{
aν0(ν0 + 2) − ν0

} ≥ 0.

(69)

Noting that S0 + S1 and U1 are independently distributed, we evaluate aν0 as

aν0 = 1

ν0 + 2
E0
[
(S0 + S1) {1 − (ν0 + 3)U1}+

]

= 1

ν0 + 2
E0[S0 + S1]E0

[{1 − (ν0 + 3)U1}+
]

= ν0 + 1

ν0 + 2
P0

(
U1 <

1

ν0 + 3

){
1 − (ν0 + 3)E0

[
U1 | U1 <

1

ν0 + 3

]}
,

(70)

Table 2 Numerical evaluation 2

ν0 aν0 bν0

1 0.145330 0.047103
2 0.223607 0.072337
3 0.272519 0.087986
4 0.305971 0.098613
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where P0 is the probability when λi = 0, i = 1, . . . , p. Noting that U1 is dis-
tributed as Beta(1/2, ν0/2) when λi = 0, i = 1, . . . , p, it can be shown that for
ν0 ≥ 5

E0

[
U1 | U1 <

1

ν0 + 3

]
≤ 1

3(ν0 + 3)
and P0

(
U1 <

1

ν0 + 3

)
≥ 11

20
,

(71)

which is Lemma A2 in Oono and Shinozaki (2004). We have from Eqs. (70) and
(71)

aν0 ≥ 11

30

ν0 + 1

ν0 + 2
. (72)

Since the left-hand side of Eq. (69) is increasing in aν0 , we see from Eq. (72) that
Eq. (69) is true if

p ≥ 120(19ν2
0 + 27ν0 − 22)

121ν2
0 − 238ν0 + 1441

. (73)

Thus we need only to show that the right-hand side of Eq. (73) is smaller than 24,
which can be easily verified. This completes the proof.

��
Proof for Eq. (65) in the proof of Proposition 2.1 Without loss of generality we
assume (S0, . . . , Sp) ∈ J p

i1···il . Then we see from Lemma 2.2 that (S0, . . . , Sp) ∈
Lp

i1···ih for some {i1, . . . , ih} ⊇ {i1, . . . , il}. Let us denote ξi1···il = (S0 +∑l
j=1 Sij )/

(ν0 + l + 2). Then we have the right-hand side of Eq. (65) as

(
1 + p − h

ν0 + p + 1

)

h∑
j=1

Uij =
(

1 + p − h

ν0 + p + 1

)
(ν0 + h + 2)

(
S0

ν0 + 2
− ξi1···ih

)

(74)

On the other hand we have from Eq. (40)

h(U1, . . . , Up) =
(

1 + p − h

ν0 + h + 2

)
(ν0 + h + 2)

(
S0

ν0 + 2
− ξi1···il

)
. (75)

Since (S0, . . . , Sp) ∈ J p

i1···il implies ξi1···il ≤ ξi1···ih , we see from Eqs. (74) and (75)
that Eq. (65) is true. This completes the proof. ��
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