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Abstract

As a powerful mathematical tool for tackling uncertain decision problems, three-way
decision has garnered substantial attention since its inception. However, real-world deci-
sion problems are inherently complex, and decision-makers often exhibit characteristics
of incomplete rationality. Traditional three-way decision models, which rely on functions
or relationships, face challenges when confronted with multi-output problems. In response
to this challenge, this paper introduces an intuitionistic fuzzy three-way decision model
grounded in data envelopment analysis (DEA). Initially, we propose an input—output cor-
relation degree that integrates hesitancy information and serves as a procedural indicator
for benefit scores. Subsequently, the traditional DEA is extended to accommodate the intui-
tionistic fuzzy environment and utilized to construct a comprehensive loss function. Fur-
thermore, a novel intuitionistic fuzzy three-way decision model is developed, incorporating
three dimensions: optimism, neutrality, and pessimism, and corresponding decision rules
and algorithms are provided. Finally, the effectiveness of the proposed model is rigorously
validated through a series of experiments and comparative analyses. The model offers a
pioneering approach to address uncertain multi-input—output decision problems, effectively
integrating decision-maker’s risk preferences within an intuitionistic fuzzy environment.

Keywords Three-way decision - DEA - Intuitionistic fuzzy set - Input—output connection
degree - Loss function

1 Introduction

The decision environment in real life is complex and changeable, and the decision-maker’s
preferences are subject to uncertainty. This makes the limitations of the traditional two-
way decision method more and more prominent. In this context, Yao proposed a three-
way decision theory (Yao 2009) based on Pawlak rough sets (Pawlak 1982) and decision
rough sets (Yao and Wong 1992). It introduces a delay option based on traditional two-way
decisions to reduce decision risks. In practice, the three-way decision divides the domain
of discussion into three disjoint regions: the positive region (POS), the boundary region
(BND), and the Negative Region (NEG). These regions respectively correspond to the
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Table 1 Examples of multiple

input—output decision problems ° - “ N N
X 1 2 3 3 4
X, 5 3 5 2 3
X3 4 6 2 1 3
X4 7 3 5 2 2

acceptance decision, delay decision, and reject decision. The core of the three-way deci-
sion involves the determination of the loss function and conditional probability. It does not
regard maintaining the precise consistency of decision knowledge and data as the only goal
but rather focuses more on the losses or risks caused by different decisions. This makes the
model more cost-sensitive to the misclassification of decisions. Due to its strong theoretical
foundation and excellent interpretability, the three-way decision has attracted much atten-
tion and has been successfully applied in many fields, such as shadow sets (Yang and Yao
2021), information systems (Huang et al. 2020), cost-sensitive learning (Qian et al. 2022),
transfer learning (Xin et al. 2023), cognitive concept learning (Yan et al. 2021), recom-
mendation system (Ye and Liu 2022), medical diagnosis (Chu et al. 2023) and clustering
integration (Wu et al. 2022), etc.

In the face of the continuously complex decision-making environment, new decision-
making challenges persistently arise. For instance, Table 1 represents a multi-input—output
decision information system, with x;(i = 1,2, 3,4) denoting various objects, ¢;(i = 1,2,3)
representing inputs, and y;(i = 1, 2) representing outputs. Traditional information systems
predominantly cater to single-output (decision or classification) issues and are ill-suited
for addressing multi-input—output problems, as exemplified by the scenario in Example 1.
The DEA method is an efficient mathematical planning tool in management, economics,
and operations research, and can evaluate decision-making units (DMUs) with multiple
inputs and outputs. Additionally, a notable characteristic of DEA is its independence from
considering the functional relationship between input and output variables or estimating
parameters. This independence effectively prevents the influence of subjective factors on
the evaluation results.

Currently, DEA-related research mainly focuses on the following three aspects. (1)
Uncertain decision-making. For example, a novel rough-set decision method derived from
the DEA model was introduced by Dun et al. (2010) to address decision problems with
multiple decision attributes. Liu and Liang (2017) introduced three-way decisions into the
field of DEA for the first time and proposed a three-way decision model based on DEA.
Bagherikahvarin and De Smet (2016) developed an integrated DEA multi-criteria decision
auxiliary model, aiming to limit the weight value of DEA

to improve the discriminative ability of the DEA model. (2) Evaluation method inte-
grating decision-maker preference information. For example, Yang et al. (2013) com-
bined the DEA model with the evidential reasoning method, providing a new method
for the DEA model to reflect the decision maker’s preferences or value judgments.
Omrani et al. (2020) proposed a combined DEA-group best-worst method to evaluate
road safety, incorporating the decision-maker’s preferences into the decision process
and overcoming the shortcomings of flexible weights in the DEA model. (3) Sorting
strategy. For example, An et al. (2018) combined the DEA model and the analytic hier-
archy process to construct an interval multiplicative preference relationship to derive
the ranking of DMUs. Namazi and Mohammadi (2018) used DEA based on preference
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ranking techniques that approximate ideal solutions to explore the efficiency of national
innovation systems. Rakhshan (2017) studied the effective DMU ranking problem in
DEA and proposed a new combined ranking method. In summary, the integration of
DEA expands the application scope of traditional decision methods while simultane-
ously offering a feasible and effective mathematical tool for addressing multi-output
decision or ranking problems.

It is worth noting that most current DEA problems assume that inputs and outputs
are precise values. Due to the complexity of practical problems, the input and output
data of DMU are usually imprecise, such as interval values, ordinal values, probability
values, or fuzzy values. Therefore, the effectiveness evaluation of DMU under an uncer-
tain environment is a research hotspot. Despotis and Smirlis (2002) deal with impre-
cise data through an imprecise DEA model. Subsequently, Entani et al. (2002); Puri and
Yadav (2015) constructed various DEA models, such as interval efficiency and fuzzy
efficiency to measure the effectiveness of each DMU. In addition, Ref. Puri and Yadav
(2015) extended fuzzy DEA to intuitionistic fuzzy DEA for the first time and analyzed
DEA of optimistic and pessimistic efficiency and intuitionistic fuzzy input—output data.
Chen et al. (2022) proposed a three-way decision method based on the interval data
DEA model to deal with interval-type fuzzy data. Combining DEA with uncertainty
theory or methods proves effective in enhancing its adaptability to the environment. In a
similar vein, the integration of three-way decisions into DEA offers a top-down decision
framework, facilitating the inclusion of risk cost measurement. Their combination will
provide a new idea and decision framework for processing and analyzing uncertain mul-
tiple input—output decision problems. However, there are currently few studies on the
three-way decision model combined with DEA, and existing research ignores the inter-
active impact of uncertain information on input—output. Due to the notable reliability
of DEA, various decision methods have been integrated with it to explore more general
and interpretable intelligent decision-making models. In general, the research on deci-
sion or ranking methods combined with DEA can be categorized into three types:

1. Combining multi-purpose and multi-attribute decision-making methods: Exam-
ples include preference ranking organization method for enrichment evaluations (PRO-
METHEE II), TOPSIS, and analytic hierarchy process (AHP). By integrating DEA, the
scope of application of existing decision methods is expanded, improving the accuracy
and comprehensiveness of decisions. For instance, combining PROMETHEE II and
DEA achieves more precise ranking and selection in complex multi-attribute decision
problems.

2. Based on various uncertainty measures: Methods such as distance entropy and accept-
ability. Introducing uncertainty measurement into the decision process establishes a new
decision or ranking model driven by both "data and knowledge." This approach relies
on data quantity while considering data quality and knowledge background, leading to
more robust decisions in uncertain environments.

3. Granular computing approach: Methods like three-way decision and fuzzy sets, when
combined with DEA, enhance the application of granular computing methods and effec-
tively tackle complex and fuzzy decision problems. For example, integrating three-way
decision with DEA provides more interpretable decision results under uncertainty and
ambiguity.
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To clearly describe the differences between our method and existing ones, we selected
fifteen representative models from the literature and elaborated on them from two per-
spectives: data processing and decision method.

e Data processing level: Reference (Bagherikahvarin and De Smet 2016), Refer-
ences (Omrani et al. 2020; An et al. 2018; Namazi and Mohammadi 2018; Rakhshan
2017), Reference (Liu and Chen 2022) and References (Ebrahimi et al. 2020; Liu
et al. 2022) focus on decision problems with precise information, while References
(Chen et al. 2022; Wang et al. 2005, 2016; Jie et al. 2013; Yul et al. 2019) and Refer-
ence (Wang et al. 2021) address decision problems with uncertain information. Our
method processes data as intuitionistic fuzzy numbers, considering the impact of
uncertain information on decision results. We propose the input—output connection
degree to apply the influence of uncertain information in the model-solving process,
effectively addressing multiple input—output decision-making problems in an intui-
tionistic fuzzy environment and expanding the scope of DEA.

e Decision method level: Reference (Bagherikahvarin and De Smet 2016) obtains the
ranking results via the net flow fraction of PROMETHEE II. Reference (An et al.
2018) combines the AHP with interval efficiency of DMUs for comprehensive rank-
ing. Reference (Namazi and Mohammadi 2018) ranks DMUs based on their distance
from positive/negative ideals. Reference (Wang et al. 2021) obtains the ranking by
introducing the group best-worst method to solve the benefit score of DMUs. Refer-
ence (Chen et al. 2022) uses three-way decision to rank DMUs. Reference (Wang
et al. 2005) uses the minimum-maximum regret method to rank DMU. Reference
(Wang et al. 2016) ranks DMU according to the distance from the positive ideal
cross-efficiency. References (Rakhshan 2017) and (Jie et al. 2013) use TOPSIS to
rank DMU. Reference (Yul et al. 2019) ranks DMU by stochastic multi-criteria
acceptability analysis 2 (SMAAZ2). Reference (Liu and Chen 2022) classifies DMUs
by input—output slack and benefit score. Reference (Ebrahimi et al. 2020) finds effi-
cient DMU by considering decision maker preferences. Reference (Liu et al. 2022)
uses a multi-attribute group decision-making (MAGDM) method based on trust rela-
tionship to rank DMUs. Reference (Wu et al. 2021) ranks DMU by calculating the
Shannon entropy of efficiency score and Reference (Omrani et al. 2020) uses the
fuzzy weighted aggregate sum-product assessment method to rank DMUs.

Comparison of different models as shown in Table 2, where columns represent specific
features of the proposed method: fuzzy information (a,), attribute connection (a,), loss
function (a;), multiple strategies (a,), psychological cognition (as), conditional prob-
ability (ag), classification (a;), and ranking (ayg).

At the same time, how to weaken the impact and result deviation brought by their
subjective loss functions during the combination process is also a key issue. Their com-
bination will provide a new idea and decision framework for processing and analyz-
ing uncertain multiple input—output decision problems. Inspired by the above ideas,
this paper constructs two DEA models (Intuitionistic Fuzzy Sets-CCR, IFS-CCR) and
(Intuitionistic Fuzzy Sets-BCC, IFS-BCC) in an intuitionistic fuzzy environment and
proposes an intuitionistic fuzzy three-way decision model based on DEA. Table 2 shows
the characteristics of the existing classical methods and the proposed methods. The
main contributions are as follows:
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1. A method for measuring the correlation between input and output is proposed, and the
optimal efficiency score is determined by using fuzzy measures as constraints.

2. Four IFS-CCR optimization models for different scenarios are proposed, and the cor-
responding algorithms are given.

3. The losses of DMUs under three strategies are given and an intuitionistic fuzzy three-
way decision model based on DEA is proposed.

The rest of this paper is organized as follows: Sect. 2 introduces the basic knowledge of
intuitionistic fuzzy set theory, three-way decisions, and DEA. Section 3 explains the cal-
culation method of input—output connection, gives four IFS-CCR optimization models,
and induces intuitionistic fuzzy three-way decision rules under three strategies of opti-
mism, neutrality, and pessimism. Section 4 verifies the effectiveness of the proposed model
through a series of experiments and comparative analysis, and finally summarizes this
article.

2 Preliminaries

This section introduces some relevant basic concepts of the decision rough set (Pawlak
1982), intuitionistic fuzzy set (Atanassov and Stoeva 1986; Szmidt and Kacprzyk 2001),
three-way decisions (Yao and Wong 1992), as well as the CCR model and BCC model
(Charnes et al. 1978).

2.1 Three-way decision

Traditional decision theory regards people as rational decision-makers who follow the prin-
ciple of maximizing economic interests in the decision-making process. Affected by the
uncertainty of information and the cognition of decision-makers, it is difficult to be com-
pletely rational even if you fully understand and master the information and intelligence of
the decision-making environment. This makes the limitations of the conventional binary
decision method increasingly prominent. In response, Yao developed the three-way deci-
sion theory, which introduces delayed decisions to the conventional binary decision frame-
work to mitigate decision risks. Given a decision information system DS = (U,AT, V,f),
VX C U, A C AT, the upper and lower approximations of X based on the equivalence rela-
tion R, is as follows:

R X) = {x e Ullxl, € X},
RX)={xe Ul|lxl,nX # @}

The upper and lower approximations can be equivalently converted into POS, BND and
NEG to describe the target concept X as follows:

POS(X) = R (X),
BND(X) = R(X) — R (X),
NEG(X) = U — R(X).
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Among them, POS means accepting that object x belongs to X, NEG means refusing to
accept that x belongs to X, and BND means that x may belong to X. Since the equivalence rela-
tionship is too strict, in order to reduce boundary redundant information, an improved three-
way decision method based on probabilistic rough sets is introduced below. Given a decision
information system DS = (U, AT, V,f), VX C U,A C AT, assume that («, ) is a pair of prob-
ability thresholds, meet the conditions 0 < f < a < 1. Then the conditional probability func-
tion is as follows:

_ Xol
[T

The upper and lower approximations of R, can be rewritten as follows:

P(X|[x])

R X=lxe U|PX|[x]) > a},
RipyX) = {x € UIP(X|[x]) > B}.

Correspondingly, we can obtain the decision rules as follows:

POSX) = {x € U|P(X|[x]) > a},
BND(X) = {x € U|p < PX|[x]) < a},
NEG(X) = {x € UIP(X|[x]) < }.

2.2 Decision-theoretic rough sets

Yao and Wong (1992) introduced the Bayesian minimum risk decision based on the traditional
Pawlak rough set proposed the decision rough set theory and then proposed a three-way deci-
sion model. Let U = {x,x,, ..., x,,} be a non-empty finite domain, R be the equivalence rela-
tion on U, R € U X U, and U/R = {[x]gz|x € U} be the equivalence class of x with respect
to R. If the state set Q = {C,—~C} is given which represents x € C or x ¢ C, and the action
set I' = {ap, ay, ay} which represents the three decision actions of acceptance, deferment
and rejection. Namely, the object x is divided into the POS domain, BND domain, and NEG
domain, the decision cost matrix of each action in different states As shown in Table 3.

Among them, when x € C, the decision losses correspond to taking the three actions ap, ag
and ay are App, Agp and Ayp. Similarly, when x ¢ C, the decision losses corresponding to tak-
ing the above three actions are Apy, Agy and A,y. Therefore, the expected losses from taking
the three actions ap, ag and ay, can be expressed as:

R(ap|[x]R) = XFPP(C|[X]R) + /leP(_'C”x]R),
R(ag|[x]g) = AgpP(C|[x]g) + AgyP(—Cl[x]g), (1)
R(aN|[x]R) = /INPP(CHX]R) + ANNP(_‘C|[X]R)~

Table 3 Decision cost matrix C -C
ap App Apy
ap Agp Agy
ay Anp Ay
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Among them, P(C|[x]g) = |C () [x]g|/|[x]z| represents the conditional probability
that the equivalence class [x], is in state C. Because of P(C|[x];) + P(=C|[x]g) = 1, the
above loss is only related to the classification conditional probability and the loss func-
tion A,.(» € {P, B, N}). Furthermore, consider that the loss of accepting the right thing is
no greater than the loss of delaying acceptance of the right thing, and both are less than
the loss of rejecting the right thing. Similarly, the loss of rejecting the wrong thing is no
greater than the loss of delaying rejecting the wrong thing, and both are less than the loss
of rejecting the wrong thing. Therefore, the size relationship between the loss functions
satisfies: App < Agp < Aypand Apy > Agy = Ayy-

According to the Bayesian decision criterion, the action set with the smallest expected
loss is selected as the best action plan. The following three decision rules can be obtained
as follows:

If R(ap|[x]g) < R(agllx]g) A R(ap|[x]g) < R(ay|[x]g), decide x € POS(C),

If R(ag|[x]g) < R(ap|lx]g) A R(ag|[x]g) < R(ay|[x]g), decide x € BND(C),

If R(ay|[x]g) < R(ap|lx]g) A R(ay|[x]g) < R(ag|[x]g), decide x € NEG(C).

2.3 Intuitionistic fuzzy sets

During the decision process, people usually make uncertain judgments about vague and
complex objective things. For this reason, Zadeh proposed the concept of fuzzy sets to
represent uncertain information. To overcome the shortcomings of a single member-
ship degree, Atanassov proposed the theory of Intuitionistic Fuzzy Sets (IFS), which is
described by three scalars: membership degree, non-membership degree, and hesitation
degree to describe uncertain information.

Definition 1 Atanassov and Stoeva (1986) Let U = {x,,x,,...,x,} be a non-empty
finite domain, VT C U, ueT, call T={< u;(u),vy(u)>|u€ U} an intuitionis-
tic fuzzy set on U, where pu,(u) : U — [0, 1] represents the membership degree of u to
T, vp(u) : U — [0, 1] represents the membership degree of u that does not belong to
T (i.e., non-membership degree), and satisfying conditions 0 < py(u), vp(u) <1 and
0 < pup(w) + vp(u) < 1. wp(u) = 1 — up(u) — vp(u) represents the degree of hesitation that u
belongs to T In addition, if Vu € U has z;(u) = 0, then the intuitionistic fuzzy set T degen-
erates into a fuzzy set. For the convenience of expression, the sequence pair (p;(u), vy(u))
is called an intuitionistic fuzzy number, and a = (y4,,v,) is usually used to represent the
intuitionistic fuzzy number a.

Definition 2 Xu (2007) Let a = (4, v,) and f = (44, v4) be two intuitionistic fuzzy num-
bers, then there are the following operations:

(1) a@® B =+ Mg — Halg VaVy)s
(2) a® B = (HaHp Vet Vs — VoVp),
() wa=(1-(1-pu)"v®),w >0,
@ a®=u1-1=-v)",0>0.

Definition 3 Xu (2007) Let a = (u,, v,) and f = (4, v,,) be two intuitionistic fuzzy num-
bers, then we have
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Sa) =p, — vy Z(a) = p, + v,. )

Among them, S(@) is the score function, S(a) € [—1, 1] and Z(«a) is the exact function,
Z(a) € [0, 1] satisfy the following relationships:

(1) If S(a) < S(p), decide a less than f, recorded as a < f;
2) If S(a) = S(p), decide If Z(a) < Z(f), decide « less than f, recorded as a < §; If
Z(a) = Z(p), decide a equal f, recorded as « = f.

2.4 Choquetintegral

Choquet integral as nonlinear integration, is a method of aggregating or integrating
functions in the context of multi-criteria decisions. It is appropriate for addressing non-
additive measurement or decision problems. The method aggregates input—output val-
ues based on the set function L, substituting the additivity of probability measures with
monotonicity.

Definition 4 Grabisch and Labreuche (2016) Let (X, P(X), L) be a fuzzy measure space,
where X = {e|, e,, ...,e,} is a multidimensional data set, P(X) is the power set of X, L is
the set function, and the measurable function is f : X — (—o0,+00). If the set function
L : P(X) — [0, +o0) satisfies L(@) =0; E,F € P(X), E C F and L(E) < L(F), it is called
the benefit measure on X. Then the choquet integral of f{e) with respect to the benefit meas-
ure L is as follows:

+o0

0
/ fdL = / [L(F.) — L(X)1dé + / L(F,)de. 3)
- 0

Among them, F, = {elf(e) > &é,e € X}, £ € [0,+00), when f is a non-negative function,
+oo
JfdL = [ L(F;)dé. When X ={e,,e),...e,} is a finite set, the function value

0
flep.f(ey), ....f(e,,) of f can be arranged in increasing order f(e,") < f(e))) < ... < f(e,));
where the set {e,, e, ..., ¢, } is rearranged from the subsets in the set {e,’, ¢,’, ..., e, } from
small to large. Therefore, the Choquet integral can be obtained as follows:

/ AL = Y [fe!) = fle LAY S (eg) = 0.4; = (¢ ey ey} (@)
i=1

Taking input variables as an example, an equivalent integral corresponding to the Choquet
integral (Wang and Guo 2003) is as follows:

om_q

/ fAL =) ZL(A), ®)
i=1

where z; = max(minf(e) — maxf(e). 0. D). Ay = (114 = (2], oAyecr = (1,2,0.,2" = 1), the out-

put variable p; is the same.
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2.5 DEA

DEA can evaluate the efficiency of a DMU by considering multiple inputs and outputs.
It assesses whether the DMU achieves a balance between input and output and further
evaluates the relative effectiveness of efficiency.

Definition 5 Charnes et al. (1978) Let M = {u,, u,, ..., u,, } represents n DMUs, denoted as
uj(j =1,2,...,n). each DMU has m input variables and s output variables. The p-th input of
the j-th DMU is epj(p =1,2,...myj=1,2,..,n), and the corresponding weight is o. The
g-th output is yqj(q =1,2,...,87 =1,2,...,n), and the corresponding weight is i, then the
CCR model is as follows:

s m
max y, = 2 qu()q/ Z ipeOp’
q=1 p=1

2 0yl Lipey S Lj=12m ©
q= p=

0,2 0,g=12,..s,
ip >0,p=12,..,m.

s.t.

The above planning model is a fractional planning, which can be obtained by changing the
Charnes-Cooper as follows:

s
maxy, = Y O0,o,
q=1

ZOy.—Z[e'SO,j:Lz,...n,
P A 7)

s.t. m
> Lep, =1,
p=1

Ip >0, Oq >0,

where [, and O, are the input and output weights used by each DMU to construct the best
practice boundary, y is the efficiency score of u,, and u, is considered effective when
y, = 1. The essence of the CCR model becomes apparent as the evaluated DMU endeavors
to discover its weight vector. This pursuit aims to maximize its weighted output, subject to
the constraints that its weighted input remains fixed at unity, and its weighted output does
not exceed the weighted input of all DMUs.

Since the traditional CCR model assumes Constant Returns to Scale (CRS), the type
of returns to scale of DMU cannot be estimated. In order to make up for this shortcom-
ing, Banker et al. developed a BCC model that considers Variable Returns to Scale (VRS)
based on the CCR model. The BCC model is described as follows:
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Fig.1 DMU production frontier 4

>
~
><C\\
o >
min y,
Z Vg Z Ve d = 1,2, .08,
=
sit. ] Z} p=12..m, Q)
2 A=1,
j=1
\ 42 0.

where v, is the best efficiency score of the DMU calculated based on the BCC model.

Among the above models, if the efficiency score of a DMU achieves DEA effectiveness
if its efficiency score equals unity and it resides on the production frontier. Conversely, if
the efficiency score deviates from unity, the DMU is deemed DEA ineffective. The cor-
responding DEA production frontier is shown in Fig. 1. Figure 1 shows five DMUs, each
DMU has two input variables e, e, and one output variable y. The polyline in Fig. 1 is
DEA’s production frontier and DMU’s relative efficiency value on the production frontier.
Observing the figure above reveals the validity of DEA for A, B, C, and D, whereas E is
identified as invalid. By mapping E to E on the production frontier, DEA becomes valid at
E', with the efficiency at E calculated as OE’ /OE < 1.

3 Intuitionistic fuzzy three-way decision model based on DEA

To quantitatively analyze the impact of hesitancy on input—output interaction, this section
proposes the input—output connection degree based on the set pair analysis theory and con-
structs the IFS-CCR model. Furthermore, the input and output of each DMU are integrated
into the measurement process of the loss function. Finally, according to the difference in
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DMU information table

K=(MXUY,R=_tv))

Input linkage Output linkage
Hy-Hgz Hy-Hes

W UATIga0d  AJUesay jan)

-

Create intuitionistic fuzzy matrix ]

f L —
For ‘ §affocts lf Divide three
He[am™n, men ‘ 0131::::;’“ |- steategies

‘Opu’mism strategy: & = 1 MH = Hvirs D]

‘Neutral strategy: £ =10 HH = U RO

Pessimistic strategy: & = —]J’ HSTHEE >

[ Construct IF3-CCR model ]
[ Calculate Benefit Scorez) }—/

%?\‘%n Calculate
conditional DMU 4
probability gxpecle
based on 3P loss

L 2

[ Construct an intuitionistic fuzzy three-way decision-making model based on DEA for classification and ranking ]

Fig. 2 Intuitionistic fuzzy three-way decision model framework based on DEA

the value of the hesitation degree in the input—output connection degree, the corresponding
intuitionistic fuzzy three-way decision model is constructed from the three dimensions of
optimism, neutrality, and pessimism. At the same time, a multi-strategy ranking method
using the DEA benefit score as the conditional probability is proposed. The overall frame-
work is shown in Fig. 2.

3.1 Intuitionistic fuzzy DEA model construction

The DEA model is an important tool for efficiency evaluation. Since the objective data in
the real world are full of uncertainties, the traditional CCR model is limited to processing
accurate data. To this end, this section also proposes an intuitionistic fuzzy DEA model
that integrates the input—output connection degree to improve the model’s ability to handle
uncertain and complex problems.
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Definition 6 Let U = {x,,x,,...,x,} is a non-empty finite domain, T is an intuitionistic
fuzzy set on U, @ = (p,, Vv, ) and f = (u;, vj) are two intuitionistic fuzzy inputs on 7, and
their weights are w, and w, respectively, then

H = py+wyé — vy 9)

Among them, H is the connection degree between two input variables, & € [—1, 1]
is the hesitancy value coefficient of H, uy = (0,4, + 0yup), 7y = (0,7, + wpmy),
and vy = (@,Vv, + wyv,) are the connection components between a and f respectively.
Namely, the degree of identity, the degree of difference, and the degree of opposition.
Decision makers can use H to measure the degree of connection between two input vari-
ables. Furthermore, the integration process reflects the impact of the input—output con-
nection degree on the DMU benefit score based on the degree of optimism of the hesi-
tancy value coefficient.

Theorem 1 The input—output connection H satisfies the following properties:

(1) When & € [-1, 1], the input—output connection H € [—1,1];

(2) Whené € [—1, 1], input—output connection degree wy& and —ry & have the same value
range.

Proof

(1) In the input—output connection H, there is uy : T —[0,1] vy : T — [0, 1]. For any
ueT,thereis0 < uy +vy <1,¢ €[-1,1],50 H € [—1, 1] s established.

(2) Whené € [-1,1], ny¢ € [ny& — myélis the same as —ny € € [nyé — my], soits value
range is the same.

|

Definition 7 Let there are n DMUs, denoted as u(j =1, 2,...,n), each DMU has m input
variables denoted as X = {e|, e,,....¢,}, (p = 1,2,...,m), and s output variables denoted as
Y = {y1,92, ¥, ), (g =1,2,...,5). Considering the interaction between multiple input and
output variables, use o({y, }) to represent the benefit measure of the output variable, i({e,})
to represent the benefit measure of the input variables, g;(y,) to represent the data informa-
tion of the output variables of the j-th DMU, and f;({e, }) to represent the j-th DMU’s out-
put variables data information. The efficiency score of DMU is expressed by the maximum
ratio of total output to total input. The IFS-CCR I model can be obtained as follows:

_ [ gndo,
max l[/O = /fpodip N
/gqjd"q .
— 1 < =
s.t. 1, <(1,0),j=12,...n, (10)

0 <i(A) <i(B);A CB,A,B € P(X),
0 < o(C) < o(D);C C D, C,D € P(Y).

Perform the following conversion on IFS-CCR I:
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Let t; = (1,0)//]_‘/-di[tj >(0,D], 0, =t0,, I,=1ti, get the IFS-CCR II model as
follows:

maxy, = [ g,0dO0,

/8,40, — [ f,dl, < (0,1, =1,2,...n,

/];Odlp =(1,0), an
0 <I(A) <I(B):A C B,A,B € P(X),
0<0C)L0D);CCD,C,DeEPY).

S.t.

In IFS-CCR 11, if there are fuzzy measures O and I such that the DMU?’s efficiency score
is equal to unity, the DMU is deemed to be effective; if the efficiency of the DMU is less
than unity, the DMU is deemed to be invalid. The nature of the IFS-CCR II model becomes
apparent as it presents itself as a linear programming problem. The objective function only
considers the output data of DMU. The entire model is only related to the benefit measure
i({e,}) of the input variable and the benefit measure o({y,}) of the output variable. To adapt
the classic equivalent formula to the intuitionistic fuzzy set environment, presented below are
the intuitionistic fuzzy subtraction operation and the multi-constraint intuitionistic fuzzy divi-
sion operation, which integrate the input—output connection degree.

Definition 8 Leta = (u,,v,) and f = (u;, v;) be two intuitionistic fuzzy numbers, then we
have

@ == (g = Hy+ Ho b HI, V—ﬁ)

>0
y e S (12)

V/A)

(Mg = Mg+ Mo pg) [ H| + v, [ vg

VoV,

a+ﬁ=(,’j—:,va—vﬂ+ L),

2 >0,

Hp

Vo=V, 13

s.t. Va_Vﬂ'i‘l_VéZO, (13)

P my
Ha - LT <
Mﬁ+v(Jr vpt— <L

~ VYmin

In Eq. 12, the closer the connection between input and output, the bigger the impact of
membership after integration, and the overall positive connection appears. If Eq. 12 does
not satisfy its constraints, let « — f = (0, 1). Similarly, if Eq. 13 does not satisfy its con-
straints, let @ + f = (0, 1). Therefore, according to Definition 4 and Eqs. 12 and 13, the
IFS-CCR III model is as follows:
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2-1
maxy, = Y p,00,
g=1
21

Y 2,0, - Zzpj :<(0,1),j=1,2,..

=1
e (14)
S.1. 4 z 2, p] =(1,0),

0 S I(A) < I(B):A € B,A,B € P(X),
0<0(C)<0D);,CcCcD,C,DePY).

IFS-CCR III uses the intuitionistic fuzzy integration operator (Xu 2007) to integrate the
input-output variables z,; and p,; in the model to obtain the optimal benefit score. The
intuitionistic fuzzy weighted average operator of g,(y,) regarding the fuzzy measure is:

2°—1 2°—1 27—1

o
IFWAG) = ' 0,05 = (1= [T =% TT v, (15)
g=1 g=1

g=1

In the same way, f,(e;)’s intuitionistic fuzzy weighted average operator regarding fuzzy
measures is:

- - .
1, 1
IFWA(f) = Z aly == T =™, [T vi>- (16)
p=1 p=1

Applying Egs. 15 and 16 to IFS-CCR III, IFS-CCR IV based on the intuitionistic fuzzy
weighted average operator can be obtained:

max y, = IFWA(g,)

IFWA(g) — IFWA(f) < (1,0),j=1,2,...n,

IFWA(f) = (1,0), (17)
0<I(A) <I(B)A C B,A,B € P(X),
0<0C)L0D);,CCD,C,DEePY).

S.t.

In the same way, BCC use the intuitionistic fuzzy integration operator [30] to integrate
the input—output variables x,; and y,; in the model to obtain the optimal benefit score. The
intuitionistic fuzzy weighted average operator of g,(y,) regarding the weight A:

2°-1 2°—1

iPwats) = 3 vyt == [T [T a9

g=1

The intuitionistic fuzzy weighted average operator of f,(e;) regarding the weight A:

-1 -1 2m—1
4
IFWA(f)) = Z x4 = (1 = H(l ) ,H V. (19)
=1 p=1

Applying egs. (18-19) to BCC model, IFS-BCC model based on the intuitionistic fuzzy
weighted average operator can be obtained:
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min y,
D IFWA(g) > IFWA(go).j = 1,2, ...n,
j=1
sit. D IFWA(f) < wlFWA(f,), 20)
j=1
doa=1,
j=1
\ 42 0.

In the process of solving the benefit score, IFS-CCR IV integrates intuitionistic fuzzy data
of input and output using the intuitionistic fuzzy weighted average operator, while also
incorporating the input—output connection degree.

Different from the traditional CCR model, IFS-CCR 1V introduces the benefit measure
as an optimization parameter. This approach enhances the objectivity of the benefit meas-
ure, facilitating the derivation of the benefit score under optimal conditions. Consequently,
it addresses the calculation problem associated with the DMU benefit score in an intuition-
istic fuzzy environment. The key steps of the IFS-CCR IV model are outlined below, with
corresponding pseudocode provided in Algorithm 1.

Step1 Calculate the input—output connection H between each variable according to
Eq. 9.

Step 2 Expand the input and output variables in the DMU information table according to
Definition 4.

Step 3 Calculate the difference between the expanded variables according to Eq. 12.

Step4 Obtain IFS-CCR IV based on Egs. 15 and 16 and the results in step 3.

Step 5 Solve the benefit score based on IFS-CCR IV.
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Algorithm 1 DMU benefit score solving algorithm

Input: (1) DMU information table K = (M, X UY,V = (u,v)); (2) Weight w.
Output: Benefit score 1.

begin

for each u; € M do
Calculate the input-output connection degree according to Eq. 9 H
compute According to Definition 4, the input and output variables in
the DMU information table are expanded, and the rules are as follows:

Al = {1}7A2 = {2}7A3 = {1?2}3*44 = {3}7 "'3A2""1 = {1727 [EX3) 2m — ]‘}

end

Generator The matrix of input-output connection.

Establishing computational rules grounded in input-output connection, according
to Eq. 12

for Get the data R = (p,v) and weight w of all u; € M from the DMU information

table K do
Substitute the choquet integrals for the inputs and outputs of each DMU with

the equivalent formula provided in Definition 4.
if mi — 1) th
i min flep) max f(ep) < (0,1) then

‘ Zj = (07 1)7
end
else

‘ 2j = min flep) — max flep);
end

for Build model: IF'S-CCR do
2°—1

Set objective function: max gy = > pg;O0q;
q=1

251 2m 1
> PaiOqi — 2 2pilp; <(0,1),j=1,2,...n
q=1 p=1
27 1
Set constraints: > z,.I,; = (1,0)
p=1

0<I(4)<I(B);ACB,ABcP(X)
0<0(C)<0(D);CCD,C,DeP(Y)

end
Utilize Egs. 15 and 16 to integrate the intuitionistic fuzzy information from z;
and p; resulting in the IFS-CCR IV model.

end
Obtain efficiency scores for DMUs using the IFS-CCR IV model ),

end
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Table 4 Loss function integrating input—output distance

C -C
a }.j =0 /{j =d __ | max cosy f—min cosy
P = —_— ) %
PP PN max | max cosy f+max cosy 0
a J max cosy —min cosy 6 J o _ max cosy§—min cosy 6
B Y —— x| —d . XYoo =nd _
BP (I max cosy 0+max cosy 0 I mm) BN n max l max cosy 0+max cosy 0 D
a j  _ | maxcosyf—mincosy§ o _
N Ao, =|—=2—1 | —d_. Aoy =0
NP | max cosy §+max cosy 0 | min

3.2 Loss function integrating input-output impact

The loss function of the traditional three-way decision model is generally given by
experts, which means that the actions I' = {ap, ag, ay} taken by different plans in state
Q = {C,C} have the same loss value. This phenomenon contradicts reality, since dif-
ferent schemes may lead to different losses depending on their characteristics. To incor-
porate the impact of intuitionistic fuzzy input—output on decision loss, this section pro-
poses a loss-cost function that fuses cosine distance.

Definition 9 Let K =M, X|JY,V =(u,v)) represent a DMU information table,
where M = {u,u,,...,u,} is a DMU set, X = {e;,e,, ...,ep} is an input variable set,
Y = {y1,¥2, ..., ¥,} is an output variable set, and V = (u, v) is an intuitionistic fuzzy input-
output variable value set. The intuitionistic fuzzy mean of the input variable is as follows:

n

1 n
_ s — 1 .
Hy = 1- Ty = VpV, = Vi By = - E Tpn] = 1,2,...,n. (21)
j=1

Among them, y, is the average membership degree of the input variable e,,, v, is the average
non-membership degree of input variable e,, 7, is the average hesitation degree of the input vari-
able e, and meets the conditions 0 < 1, v, < 1,0 <y, +v, < landzm,=1—-p,—v,.
Definition 10 In the DMU information table K = (M,XJ Y,V = (4, v)), u; is in state
Q = {C, ~C}, and the loss function for taking action I = {ap, ag, ay} is shown in Table 4.

Among them, 5(n € (0,1)) is the risk aversion coefficient, d,;, =0, d,,, = 1. This
loss function is constructed using the difference between the input distance and the
output distance of the variables in u; from the average in the most favorable situation,
that is when the input-output is closest to the average. Based on Definition 10, we
know that ’1]1;13 < /1;}, < /1]1'\,},, /1§VN < /léN < /I{DN, the loss function exhibits the following
characteristics.

(1)  When the decision unit ; is in state C, the loss incurred by the DMU when making an
acceptance decision is /IJPP = 0. If it chooses to reject the decision, the loss incurred by
the DMU at this time is 4}, = | ZX0-mncond g

max cosy f+max cosy min*
ratio increases, the expected Decision losses increase. In addition, considering people’s
risk aversion in the real world, when making delayed decisions, the loss value should
be smaller than the loss of rejecting the decision, so the delayed decision loss function
can be expressed as /I’ép = y(| RaxcosOmincos,0 5

Namely, as the output-input

max cosy f+max cosy 6 min)-
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(2) When the decision unit u; is in state ~C, the loss incurred by the DMU when making
a rejection decision is A{VN = 0. If it chooses to accept the decision, the loss incurred

. Y _
by the DMU at this time is 4,y = d |maxcosy9+max poer,

input ratio decreases, expected decision losses increase. In addition, considering peo-
ple’s risk aversion in the real world, when making a delayed decision, the loss value
should be smaller than the loss of accepting the decision, so the loss function of the

max cosy#—min cosy 0

|. Namely, as the output-

delayed decision can be expressed as /12 v = N(dpay — |% )

Among them, n(n € (0, 1)) is the risk aversion coefficient. Referring to Definition 6, it
becomes evident that the input—output relationship incorporates the hesitancy coefficient
¢. Considering the unique personality and attitude variations among DMUs, the hesita-
tion coefficient & acts as a parameter, reflecting the decision-maker’s optimism in man-
aging the input—output connection degree within the designated number of intervals.

Definition 11 Assume that the input—output connection degree is H, H € [H™", H™X],
and the hesitation degree coefficient is &, £ € [—1, 1]. There are three situations as follows:

Case 1 When & = 1, according to Definition 8 and IFS-CCR 1V, at this time the mem-
bership degree is the biggest and the benefit score is the largest. Therefore, the current
DMU is completely optimistic, which is the Optimistic Strategy (Opt), with H = H™%;

Case 2 When & = —1, it means that the current DMU is completely pessimistic, that is,
it is the Pessimistic Strategy (Pes), with H = H™";

Case 3 When & = 0, it means that the current decision attitude of DMU is unknown,
which is the Neutral Strategy (Neu), with H = %(H max | pyminy

Therefore, based on the above three strategies, the decision rule in section 2.1 can be
rewritten as follows:

If R(ap|u)® < R(aglu)® A Rap|u)® < R(ay|u)®, decide u; € POS(C);

If R(aglu))® < R(ap|u)® A R(aglu)® < R(ay|u;)®, decide u; € BND(C);

If Rlay|u)® < R(ap|u)® A Ray|u))® < R(ag|u)®, decide u; € NEG(C).

Among them, A = {Opt, Pes, Neu}, C € Q, u; € M.

3.3 Intuitionistic fuzzy three-way decision model based on DEA

This section gives the intuitionistic fuzzy three-way decision model algorithm based on
DEA, and provides a detailed description of the decision process based on the IFS-CCR
model. The classification and ranking results of each plan are obtained through the pro-
posed model. The key steps are as follows:

Step 1 Calculate the benefit score y of each DMU according to Algorithm 1.

Step 2 Calculate the input—output intuitionistic fuzzy mean and distance.

Step 3  Calculate the loss function of each DMU according to Definition 10.

Step 4 Calculate the decision loss of each DMU based on the benefit score and the loss
function and divide M into three domains: POS, BND, and NEG based on the
size of the loss.

Step 5 Sort the DMUs in each domain according to the loss value. The corresponding
pseudocode is as follows:
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Algorithm 2 Intuitionistic fuzzy three-way decision model based on DEA

Input: (1)DMU information table K = (M, X UY,V = (u,v)); (2)Benefit score 1;
(3)Degree of input-output connection H;
Output: Classify and sort.

begin

= 0

end

for each e, € X,y, €Y do

Calculate the intuitive fuzzy mean of each input-output according to Eq. 21

(,LL;)nPUt, V;nput) and (‘ulgutput7 Vgutput)

Calculate the cosine distance between each data and the intuitionistic fuzzy
mean according to Definition 10 dcosg;
Construct six loss functions based on cosine distance

)

APP, APN; ABP, ABN, ANP, ANN;
Calculate the decision loss by combining the benefit scores of Algorithm 1

R(ap|[ulr)®, R(ap|[u]r)®, R(an|[u]r)?;

end
for each u; € M do

if R(ap|[u;]p)® < R(ap|[u;]z)® A R(ap|[us]p)® < R(an|[u;]p)? then
| u; € POS;

end

i\f Iz(fg'%}'\];%? < R(ap|[uj]p)* A R(ap|[u;]p)* < R(an|[u;]z)* then

end

if R(an|[uy]

)
| u; € NEG;

end

& < R(apl[u;]p)® A R(an|uj] 5)* < R(apl[u;]p)* then

nd
o

r arbitrary uq, up, ue. € M do
if ug,up € POSV ug,upy € BND then
Ry, < Ry = ug > up;
else if u,,u, € NEG then
Ry > Ry = uq > up;
else if u, € POS,uy € BND,u. € NEG then
| Ug = Up > Ug;
end
end

end

end
return: Classification and ranking results of the three strategies.

3.4 Complexity analysis

The

efficiency score solution algorithm includes two processes:

input—output variable expansion and model solution. This article assumes that n
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represents the number of DMUs, m represents the number of input variables, and s rep-
resents the number of output variables. In the input—output variable expansion stage,
all DMUs are first traversed and the degree of connection is calculated. The time com-
plexity is O(n X (m + s)), then expand the input—output variables of each DMU respec-
tively, and its time complexity is O(n X (2" +2%)). Therefore, the time complex-
ity of the input—output variable expansion stage is O(n X (2" + 2+ m+s)). In the
model solving phase, the expanded variables are initialized with a time complexity
of O(n+ 2" +2°), and then the data structure of the DEA model is created, including
input variables, output variables, etc., with a time complexity of O(n X (2™ + 2%)). In the
model-solving phase, the time complexity is mainly determined by the model, then the
time complexity of solving the model is O(n? X (2™ + 2°) X (log(2°® +2™))). Therefore,
O(nx (2" +2°+m+s)+n>x (2" +2°) x (log(2* +2™))) is the overall time complexity
of the benefit score solving algorithm.

4 Experiment and comparative analysis
4.1 Numerical example

To better explain the loss function based on the input—output connection degree and the
input—output distance, this section uses a numerical example to illustrate the calculation
process of the proposed connection degree and loss function.

Digital education refers to an education model that uses advanced information and com-
munication technology to digitize and make all aspects of the education process intelligent.
In the international environment, with the development of cloud computing and big data
technology and the rapid globalization trend, digital education has become an important
direction for many countries to promote education reform. At the same time, most coun-
tries have also introduced policy incentives and regulations to effectively promote the inno-
vation and development of digital education-related technical facilities. The reason lies in
the indispensable importance of digital education, which plays a pivotal role in enhancing
the quality of education, fostering innovation, and mitigating educational inequality. This
is significant for improving national competitiveness, promoting social development, and
coping with changes. In response to the national call to improve digital teaching capabili-
ties, a school is preparing to introduce a digital education system. When evaluating the dig-
ital education systems to be selected, due to the differences in thinking between manage-
ment and branches, relevant experts are invited to evaluate the 10 digital education systems
to be selected (M = {u,, u,, ..., u;}). The input evaluation indicators set by experts during
the evaluation process include acquisition cost (ey;), required personnel (e;), and system
operability (e;). The output indicators include the level of integration of educational infor-
mation resources (y;;), and the intelligence of education platform facilities. Level (y,).
The intuitionistic fuzzy evaluation information of the utility evaluation object is shown in
Table 5. Now it is necessary to analyze the multi-input—output connection degree of the
digital education system. The specific process is as follows:

Firstly, calculate the input—output connection degree based on Definition 6, as shown
in Table 6. Among them, the value range of £ is £ € [—1, 1], which has the effect of con-
verting uncertainty into certainty. Therefore, according to Definition 11, the input—out-
put connection degree under different strategies can be obtained. According to the defi-
nition of input—output connection, when & equals unity, it means that all the uncertain
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Table 5 DMU information table

Table 6 Input—output connection
degree

Table 7 The distance between
each input—output and the
average value

@ Springer

DMU X Y
€ € €3 M Y2
u, (0.8,0.1) (0.2,04) (0.6,04) (03,05 (0.7,0.2)
Uy 0.5,0.5) (0.2,0.7) (0.4,04) (0,0.7) (0.3,0.5)
Uy (0.5,04) (0.3,0.7) (0.7,0.1) (0.5,0.3) (0.3,04)
Uy 0.9,0.1) (0.2,0.3) (0.6,0.3) (0.3,0.5) (0.5,0.5)
Us (0.3,0.6) (0,0.8) (0.1,0.7)  (0,0.1) 0.2,0.8)
Ug 0.3,0.7) (0, 1) (0.5,04) (0.2,0.6) (0.4,0.4)
u, 04,05) (0.1,0.7) (03,0.7) (03,0.6) (0.3,0.5)
ug (0.7,0.3) (0.1,09) (0.3,0.6) (04,04) (0.2,0.6)
Uy (0.3,0.5) (0,0.9) (0.5,0.5) (04,0.5) (0.1,0.7)
Uy 0.3,04) (0.1,0.8) (0.6,0.4) (04,05) (0.3,0.6)
® 1/3 1/3 1/3 172 172
DMU  Input variable connection Output
variable con-
nection
eje, eje; ees3 Hy|yz
u, 0.17£+0.17 0.03¢ +0.3 0.13¢ 0.15¢ +0.15
Uy 0.03¢ —0.17 0.07¢ 0.1£ -0.17 0.25¢ — 0.45
Uz 0.03¢ - 0.1 0.1£+0.23 0.07£4+0.07 0.36 +0.05
Uy 0.17£4+0.23 0.036+0.37 0.2¢ +0.07 0.1£ - 0.1
Us 0.1£ -0.37 0.1£-0.3 0.136 - 0.47 0.45¢£-0.35
Ug —0.47 0.03¢ -0.1 0.03¢ -0.3 0.2 -0.2
U, 0.1£-0.23 0.03¢ -0.17 0.076 =033 0.15£-0.25
Ug —0.4 0.03¢ +0.03 0.03¢ -037 0.2¢6-0.2
Uy 0.1£-0.37 0.07£ —0.07 0.03¢ -0.3 0.15¢ — 0.35
70 0.13£ -0.27 0.1£+40.03 0.03¢ -0.17 0.1£-0.2
DMU X Y
€ € €3 Y1 Y2
u, 0.911 0.855 0.987 0.989 0.792
Uy 0.964 0.995 0.974 0.827 0.992
Uy 0.992 0.960 0.860 0.935 0.956
Uy 0.896 0.715 0.979 0.989 0.959
Us 0.853 0.975 0.730 0.500 0.899
Ug 0.810 0.949 1.000 0.944 0.984
u, 0.943 0.995 0.872 0.942 0.992
ug 0.980 0.968 0.908 0.988 0.954
Uy 0.876 0.968 0.984 0.960 0.890
|79 0.860 0.990 0.987 0.960 0.982
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Table 8 Loss function of each

DMU App Agp Ay Aoy Ay Ay
i, 0 0.020 0.099 0.962 0.192 0
Uy 0 0.009 0.044 0.986 0.197 0
Uz 0 0.004 0.018 0.949 0.190 0
Uy 0 0.002 0.010 0.910 0.182 0
Us 0 0.030 0.150 0.909 0.182 0
Ug 0 0.007 0.037 0.825 0.165 0
Uy 0 0.000 0.001 0.938 0.188 0
Ug 0 0.003 0.013 0.945 0.189 0
Uy 0 0.010 0.048 0.946 0.189 0
|70 0 0.001 0.003 0.938 0.188 0

parts of u; hold a supportive attitude at this time. At this time, ; is in line with the
optimistic attitude in the real world and adopts an optimistic strategy; when ¢ is equal to
zero, indicating that the uncertain part of ; at this time has an attitude of neither sup-
port nor opposition. At this time, u; conforms to the neutral attitude in the real world
and adopts a neutral strategy; when £ is equal to negative unity, it indicates that the
uncertain part of u; are opposed and adopt a pessimistic strategy at this time.

Then, according to the DMU information table and Definition 9, the intuitionistic
fuzzy mean of each input—output is obtained:

(i iy = 1(0.56, 0.35), (0.16,0.68), (0.51,0.4)},

p Y
g ™ vg ) = {(0.33,0.42), (0.36,0.49)).
Furthermore, the cosine distance shown in Table 7 can be obtained based on the intu-
itionistic fuzzy mean and DMU information table. According to Table 7, the following

results can be obtained:

(1) The cosine value of the angle between the input of each DMU and the average value
in the optimal state is is as follows: 0.987, 0.995, 0.992, 0.979, 0.975, 1.000, 0.995,
0.980, 0.984, 0.990;

(2) The cosine value of the angle between the output of each DMU under optimal condi-
tions and the average value is as follows: 0.989, 0.992, 0.956, 0.989, 0.899, 0.984,
0.992, 0.988, 0.960, 0.982;

(3) The cosine value of the angle between the input of each DMU in the worst state and
the average value is as follows: 0.855, 0.964, 0.860, 0.715, 0.730, 0.810, 0.872, 0.908,
0.876, 0.860;

(4) The cosine value of the angle between the input of each DMU in the worst state and
the average value is as follows: 0.792, 0.827, 0.935, 0.959, 0.500, 0.944, 0.942, 0.954,
0.890, 0.960. Finally, according to Definition 10 and Table 7, the loss functions of all
DMUs can be calculated as shown in Table 8.

Taking u,, u, and u; as an example, let the risk coefficient # = 0.2 when in state C,
we can get /113\”) < A%, < A\, and A3, < A%, < AL, which means that no matter whether
the expert takes the acceptance or rejection decision during the evaluation process,
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the loss function of us is smaller than the plan u, and u,. The loss function of the first
scheme is greater than the loss function of the other schemes. In the same way, when in
state ~C, there are A3 < AL < A2 and A3 < AL < A2

Observing Definitions 6 and 11 highlights the influence of the input—output connec-
tion on the benefit score. Consequently, based on the relationships outlined in Table 6,
the following conclusions can be derived.

(1) Adopt an optimistic strategy: For input indicators, the largest connection degree
between input indicators e;; and e,; of the system u, means that the system u,can con-
sume less input under the same output standard. The connection degree among the
overall input indicators is the largest, which is higher than other systems. For output
indicators, the largest connection degree between the output indicators y; and y,; of
system u; means that the system u; can obtain higher output under the same input
standard. Among the overall output indicators, u; has the largest connection degree,
which is better than other systems.

(2) Adopt a neutral strategy: System u, can consume less input under the same output
standard. u, has the highest degree of connection among the overall input indicators
and has higher benefits than other systems. System %, can obtain higher output under
the same input standard. Among the overall output indicators, u, has the largest con-
nection degree and has higher benefits than other systems.

(3) Adopt a pessimistic strategy: System u, can consume less input under the same output
standard, u, has the highest degree of connection among the overall input indicators
and has higher benefits than other systems. System u; can obtain higher output under
the same input standard. Among the overall output indicators, u; has the highest degree
of connection and has higher benefits than other systems.

4.2 Experimental analysis

In this section, experiments are conducted on the reservoir dam data in the literature (Chen
et al. 2022), and the classification and ranking results are obtained for comparative analy-
sis with other methods. Among them, there are a total of 19 reservoir dams, denoted as
M = {uy,u,,...,uj}. To test their risk levels in earthquakes, they are evaluated by setting
three input indicators and three output indicators. The evaluation inputs set during the
evaluation process include the degree of earthquake risk. (e, ) dam characteristics (e5)
and pre-earthquake status (ey;), and the output indicators include seismic cracks (y;;), leak-
age (y,;) and seismic deformation (y;;). When conducting the evaluation, the intuitionistic
fuzzy evaluation information of these dams is shown in Table 9.

Firstly, based on the division rules of the three strategies in Definition 11, the benefit
scores of DMU under the three strategies are calculated according to IFS-CCR IV and IFS-
BCC, as shown in Tables 10 and 11.

Secondly, if actions ap, az and ay, are taken against a DMU that actually belongs to C,
the losses are /IPP, ABP and ANP respectively; On the contrary, if actions ap, a; and ay are
taken against a DMU that actually belongs to =C, the losses are 4, 4., and 4, respec-
tively. Therefore, based on the original loss function and according to Definition 10, the
loss function of each DMU fusion input—output is calculated as shown in Table 12.

Finally, the benefit scores in Table 11 are used as conditional probabilities to calcu-
late the expected decision losses of each DMU taking corresponding actions under
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Table9 DMU information table

DMU X Y
e; € e B Y2 Y3
u, (0.877,0.062)  (0.344,0.482) (0.572,0.214) (0.656,0.117)  (0.219,0.634)  (0.096,0.788)
u, (0.873,0.063)  (0.236,0.623)  (0.291,0.556)  (0.505,0.303)  (0.765,0.006)  (0.492,0.313)
Uy (0.874,0.063)  (0.116,0.759)  (0.304,0.526)  (0.369,0.447)  (0.220,0.629)  (0.724,0.036)
Uy (0.852,0.074)  (0.313,0.525)  (0.426,0.39) (0.437,0.378)  (0.683,0.093) (0.273,0.574)
Us (0.847,0.076)  (0.292,0.537) (0.161,0.7) (0.560,0.219)  (0.260,0.576)  (0.369,0.444)
Ug (0.851,0.075)  (0.422,0.393)  (0.43,0.384) (0.656,0.122)  (0.396,0.424)  (0.150,0.723)
U, (0.949,0.025)  (0.167,0.671)  (0.099,0.759)  (0.027,0.855)  (0.246,0.571)  (0.301,0.503)
ug (0.85,0.075) (0.204,0.64) (0.048,0.84) (0.232,0.605)  (0.751,0.124)  (0.205,0.639)
Uy (0.861,0.069)  (0.172,0.69) (0.048,0.846)  (0.656,0.114)  (0.683,0.083)  (0.219,0.631)
Uy (0.862,0.069)  (0.122,0.739)  (0.205,0.633) (0.587,0.174)  (0.178,0.667)  (0.137,0.719)
up, (0.796,0.102)  (1.0,0.0) (0.304,0.539) (0.519,0.286) (0.410,0.413)  (0.096,0.795)
Uy, (0.865,0.067)  (0.16,0.71) (0.521,0.277)  (0.082,0.808)  (0.738,0.028) (0.519,0.279)
Uy (0.936,0.032) (0.391,0.417)  (0.24,0.601) (0.301,0.526)  (0.601,0.171)  (0.000,0.908)
Uy (0.813,0.093) (0.257,0.578) (0.378,0.431)  (0.396,0.409) (0.328,0.491)  (0.232,0.609)
Us (0.947,0.026)  (0.332,0.469) (0.275,0.539)  (0.000,0.896)  (0.123,0.732)  (0.232,0.593)
Ug (0.842,0.079)  (0.209,0.637)  (0.572,0.203)  (0.109,0.764)  (0.464,0.329)  (0.219,0.625)
U (0.829,0.085)  (0.555,0.253)  (0.378,0.459)  (0.642,0.153) (0.383,0.453)  (0.683,0.106)
Upg (0.925,0.038)  (0.306,0.506)  (0.235,0.593) (0.096,0.771)  (0.437,0.348)  (0.041,0.843)
Uy (0.977,0.012)  (0.078,0.802)  (0.369,0.439) (0.246,0.590)  (0.383,0.422)  (0.287,0.539)
;:rblcelgg DMU’s benefit score DMU Benefit score
Yopt Wpes WNeu
u, 0.778 0.894 0.895
Uy 0.976 0.982 0.977
U 0.912 0.948 0.908
Uy 0.851 0.943 0.845
us 0.656 0.874 0.616
Ug 0.798 0918 0.778
u; 0.670 0.558 0.570
ug 0.825 0.948 0.949
Uy 0.887 0.970 0.895
Uy 0.672 0.845 0.846
Uy, 0.557 0.841 0.491
Uy 0.936 0.963 0.935
U 0.697 0.867 0.641
Uy 0.331 0.738 0.206
Us 0.164 0.394 0.429
U 0.417 0.742 0.746
[T 0.869 0.973 0.883
Ug 0.342 0.678 0.690
I, 0.295 0.714 0.717
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}':rbl\sl;; DMU’s benefit score DMU Benefit score
Yopt Wpes YNeu

u, 0.784 0.799 0.809
u, 1.000 0.880 0.992
Uy 0.938 1.000 0.920
Uy 0.8641 0.876 0.888
Us 0.679 0.973 0.722
Ug 0.809 0.877 0.847
U, 0.342 0.937 0.388
ug 0.826 1.000 1.000
Uy 0.864 1.000 0.876
Uy 0.717 1.000 0.738
up, 0.667 1.000 0.743
U, 0.962 0.955 0.955
(7o 0.639 0.663 0.683
Uy 0.514 1.000 0.580
U5 0.293 0.621 0.338
Ug 0.559 0.976 0.617
Uy 0.884 0.938 0.927
Ug 0.466 0.705 0.518
U 0.378 1.000 0.439

']I')alsllfJ 12 Loss function of each A Ay Ay Aoy Ao Ay
u, 5.25 5.282 8.156 10.194 7.169 3.95
u, 0.25 4.758 9.809 7.191 5.138 4.75
Uy 0.50 4.032 8.406 6.594 4.869 4.50
Uy 5.85 6.004 6.784 10.266 5.703 2.55
Us 5.50 5.774 7.750 10.200 4.80 4.15
Ug 1.75 1.961 9.347 8.553 4.531 5.00
u; 5.75 5.885 8.011 9.639 4.128 2.15
ug 1.00 1.264 8.572 6.928 5.486 435
Uy 0.00 5.011 10.354 5.396 4.079 4.00
Uy 1.95 2.086 9.135 8.115 5.623 5.35
up, 5.45 5.515 6.052 10.248 5.350 3.95
U, 1.25 1.481 10.107 7.643 4.379 5.50
Uy, 5.35 5.672 6.299 9.851 7.020 5.15
Uy 4.85 5.714 6.931 10.719 7.144 4.25
Us 4.75 4.894 5.536 10.814 8.663 6.85
U 4.65 5.977 6.774 10.462 6.585 5.00
U, 0.75 1.675 8.505 8.745 4.549 4.25
Ug 4.50 5.029 6.218 10.286 7.906 6.00
Uy 5.35 5.462 8.686 9.314 6.363 4.00
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different strategies. To display the expected losses of the three strategies more intuitively,
an expected loss bar chart is drawn as shown in Fig. 3.

Among them, Fig. 3(a-c) shows the expected decision loss of DMU under the optimistic
strategy, neutral strategy and pessimistic strategy based on CRS method, and Fig. 3(d-f)
shows the expected decision loss of DMU under the optimistic strategy, neutral strategy
and pessimistic strategy based on VRS method. The figure can be seen that when the DMU
takes action I' = {ap, ag,ay}, it will be classified into the POS domain, BND domain or
NEG domain. Therefore, according to Definition 11, the corresponding decision rules can
be obtained as shown in Tables 13 and 14.

According to Tables 13 and 14, the decision domains under the three strategies can be
drawn as shown in Fig. 4.

Finally, the schemes in each classification area are sorted according to the expected
decision loss, and all schemes are sorted according to the rule POS > BND > NEG. The
results are shown in Table 15.

Table 15 reveals that, in both the optimistic and pessimistic strategies, dam u, exhibits
the highest risk level, followed by dam u,. In the neutral strategy, the risk level of dam u, is
the highest, followed by dam u,, of which three under the strategy, the risk level of dam u 5
is the lowest, indicating that dam u, 5 has better seismic performance in earthquakes.

4.3 Comparative analysis

This section compares the IFS-CCR model and IFS-BCC model with several existing
DEA models to illustrate the effectiveness of the proposed IFS-CCR model and IFS-BCC
model. These five methods are Wang’s method (Wang et al. 2005), Wang’s method (Wang
et al. 2016), Wu’s method (Jie et al. 2013), Yu’s method (Yul et al. 2019) and Liu’s method
(Chen et al. 2022). The decision areas and ranking results of the five models and the model
in this article are shown in Fig. 4 and Table 14. The outcomes presented in the table and

1 10
8 8
i D
z K
“a 4
2 2
9 Uy Wy Uy, Uy u, Uy Wy My Uy U o Uy Uy Mg Uy
o, ' ) S, ) S e
(a) The expected optimistic strategy losses (b) The expected neutral strategy losses (c) The expected pessimistic strategy losses
CRS method
705 J-os| [-os
10 E« 10 | -
s s s
5 £ i
EW 4 -
2 2 2
0 0 0
oMU, oMU, oMy,
(d) The expected optimistic strategy losses (e) The expected neutral strategy losses () The expected pessimistic strategy losses
VRS method

Fig. 3 Expected losses of DMU under three strategies
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Table 13 Decision rules of DMU under three strategies based on CRS

DMU  Opt Neu Pes

decision rules  decision loss  decision rules  decision loss  decision rules  decision loss

", BND 5.701 BND 5.482 BND 5.480
Uy POS 0417 POS 0.375 POS 0.410
it POS 1.036 POS 0.817 POS 1.061
Ity BND 5.959 BND 5.987 BND 5.957
1t BND 5.439 BND 5.651 BND 5532
g BND 2.480 BND 2.172 BND 2532
0 NEG 2.543 BND 5.108 BND 5.129
g BND 2.003 BND 1.308 POS 1.302
o POS 0.610 POS 0.162 POS 0.567
o BND 3.246 BND 2.634 BND 2.631
y, NEG 5.121 BND 5.489 NEG 4.982
U, POS 1.659 POS 1.487 POS 1.666
1y NEG 5.951 BND 5.851 NEG 5.887
iy NEG 5.137 BND 6.089 NEG 4.802
s NEG 6.635 NEG 6.332 NEG 6.286
g NEG 5.740 BND 5.134 POS 6.117
Uy POS 1.797 POS 0.966 POS 1.685
Uy NEG 6.075 BND 5.955 BND 5.921
o NEG 5.382 BND 5.720 BND 5717

figure make it apparent that Wang’s model in Wang et al. (2005) is evidently incapable of
achieving a comprehensive ranking for all DMUs. In the model (Wang et al. 2016), the
sorting relationship between u, and u4 cannot be obtained, and both u, and u, are regarded
as optimal solutions. Although the sorting order of different models is not the same, the
optimal DMU is the same, and the consistent results illustrate the rationality and effective-
ness of the proposed model. In addition, the reason why there are certain differences in the
ranking results of the three strategies is that the degree of optimism of the input—output
connection is different. The ranking results of different methods are shown in Table 16.

Reviewing Table 16, it becomes apparent that the comparison model utilized closely
aligns with the top-ranked DMU in the proposed method. This implies that all ranking
methods employ identical criteria for evaluation. In addition, from the perspective of local
ranking results, for the group of rankings where the optimal two DMUs are ug > u,. Neu-
tral strategy for this method, method (Chen et al. 2022) and method (Jie et al. 2013) of this
article all consider ug > u,, while the method (Wang et al. 2005) and method (Wang et al.
2016). Then consider both as the optimal solution, namely uy =~ u,. In the method (Yul
et al. 2019), the optimal DMU is uy, and the one next to i is not u,.
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Table 14 Decision rules of DMU under three strategies based on VRS

DMU  Opt Neu Pes

decision rules  decision loss  decision rules  decision loss  decision rules  decision loss

u, BND 5.691 BND 5.661 BND 5.643
Uy POS 0.250 POS 1.083 POS 0.304
Uz POS 0.876 POS 0.500 POS 0.986
Uy BND 5.963 BND 5.967 BND 5.970
Us BND 5.461 POS 5.627 BND 5.503
7 BND 2453 POS 2.277 BND 2.355
iy NEG 4.156 BND 5.774 NEG 4.426
Ug BND 1.998 POS 1.000 POS 1.000
Uy POS 0.736 POS 0.000 POS 0.670
Uy BND 3.087 POS 1.950 BND 3.011
Uy NEG 5.351 POS 5.450 BND 5.473
7298 POS 1.493 POS 1.538 POS 1.538
)3 NEG 5.884 NEG 5.912 NEG 5.935
iy NEG 5.627 POS 4.850 NEG 4.805
s NEG 6.464 NEG 6.034 NEG 6.406
U6 NEG 5.991 POS 4.789 NEG 6.094
Uy POS 1.680 POS 1.246 POS 1.334
g NEG 6.102 BND 5.878 NEG 6.113
U9 NEG 5.772 POS 5.350 BND 5.967
(a) CRS method (b) VRS method
Pes Unlilgily Uy gl Uty Pes s gty Uyl s 3ty
Uity tothplitg tapths iy gyl sttty
Neu il g s ety gty s | New ol s g sty gty u
HUolhpthigtiy Uyl et ethathy WA R Rl Uyl L
Opt toplhs, Lty Uty opt il Uyl Us gyl 3y
Usihpdt LA thatsthethgthy Uiy iy Ugliglhyg sty
0 5 10 15 20 o 5 10 15 2
POS “BND ©NEG POS =BND = NEG

Fig. 4 Classification results of three strategies

In addition, because the method in this article considers the input—output connection,
resulting in differences in local ranking results, the optimal DMU in the optimistic strategy
and pessimistic strategy in this article is u,. Based on several methods, the selection of
the worst DMU is the same, and u,5 is ranked as the worst DMU. Since different decision
methods have differences in program selection, decision-makers need to clearly understand
the background and positioning of each method to correctly select the most appropriate
decision method.
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Fig.5 Comparison of sorting results based on CRS

4.4 Relevance analysis

(i) Pes & Liu et al (Pes) (2022)

To further demonstrate the rationality and feasibility of this method compared to other
methods, the significance analysis of the proposed model and each method is shown in
Figs. 5 and 6 for the excellence of all DMUs. The letters represent whether the difference
is significant. If those with the same marking letters are considered to have insignificant
differences, and those with different marking letters are considered to have significant dif-
ferences, among which p < 0.01.

Figure 5a illustrates a pronounced and significant difference between u, and uy, when
compared to u;s, U, and u,g. There is no significant difference between u, and uy, and
there is no significant difference between u,s, 1,5 and u,g. Observing Fig. 5b to i, a distinc-
tion is evident in the approach of this paper compared to the method Yul et al. (2019) when
assessing the dissimilarity between u,, uy, and u;s, u4, u;5. It is consistent with the judg-
ment in this section, namely u, and u, are the optimal solutions. On the contrary, u;s, u;4

and u, g are the worst solutions.
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Fig.8 The impact of # on DMU
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4.5 Parameter analysis

The risk coefficient analysis results of the loss function in the proposed intuitionistic fuzzy
three-way decision model are shown in Fig. 7. When there is no risk coefficient, the loss
function of each DMU is not affected. As the risk aversion coefficient increases, the overall
loss function of each DMU shows an upward trend.

Due to the changes in the loss function, the expected decision loss of DMU also
changes. According to the decision rules in Definition 11, different ranking results due
to different risk coefficients can be obtained, as shown in Fig. 8. Observing the figure, it
is evident that the ranking results of this program remain constant as the risk coefficient
steadily increases. This stability implies that the impact of the risk coefficient on the results
is relatively consistent. Additionally, it is notable that the risk coefficient significantly influ-
ences the three DMUS u,, u,5, and u16, while the impact is minimal on the four DMUS u,,
Uz, Uy, and u;s. It is consistent with the decision result in Table 13, u,, u; and uy are DMUs
with excellent ranking results and u,5 is the DMU with the worst ranking results.

5 Conclusions

In this paper, a novel intuitionistic fuzzy three-way decision model based on DEA is pro-
posed to address decision-making and ranking problems involving multi-input—output
intuitionistic fuzzy information. Several key advancements over traditional approaches are
introduced. Firstly, by extending the DEA model to an intuitionistic fuzzy environment,
a corresponding model is developed that derives the benefit scores of DMUs, thereby
enhancing the model’s capability to handle uncertainty. Additionally, the proposed loss
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function integrates the impacts of inputs and outputs, eliminating the subjectivity inherent
in setting loss functions and improving the reliability of the results. Secondly, the model
incorporates the input—output connection degree during the solving process, consider-
ing interactions between different inputs and outputs. This extension includes optimistic,
neutral, and pessimistic strategies, accommodating decision-makers with varying risk
preferences. Thirdly, an intuitionistic fuzzy three-way decision model is constructed from
three dimensions, thus expanding the application scope of traditional DEA. Despite these
advancements, the approach has some limitations. The preprocessing process for large-
scale datasets may require significant computational resources. Additionally, the relation-
ship between optimal decision-making units and decision rules has not been explored in
depth from the perspective of logical implication.

The scientific contributions of the proposed method lie in its ability to combine DEA
and intuitionistic fuzzy set theory, offering novel perspectives and tools for optimization
and ordering in complex decision environments with multiple inputs and outputs. Practi-
cally, this approach provides a more nuanced and reliable way to rank decision-making
units under uncertainty, which can be beneficial in various fields such as economics,
management, and engineering. For future research, further investigation into the correla-
tion between multiple input—output decision-making units and three-way decision rules
from the perspectives of conflict analysis and logical implication is planned. Additionally,
exploring methods to optimize the computational efficiency of the model will be a priority.
Techniques such as adversarial generation networks and data block/layering methods could
be employed to transform large-scale data, using a "divide and conquer” strategy to solve
the DEA model for each block. By addressing these challenges, the goal is to enhance the
practical applicability and generalizability of this approach, providing robust solutions for
intelligent decision-making in environments characterized by uncertain information.

Given the uncertainty of data, future research could explore several avenues to
enhance and expand the current work. This includes investigating robust optimiza-
tion techniques to enhance the model’s robustness against uncertainties in input data,
and exploring stochastic programming methods to handle probabilistic uncertainty
in decision-making processes. Additionally, developing hybrid models that combine
intuitionistic fuzzy logic with other decision-making frameworks, such as multi-
criteria decision analysis, could broaden the model’s applicability and effectiveness.
Applying the model to various real-world scenarios, including healthcare, finance,
logistics, and environmental management, would help validate its practical effective-
ness and versatility. Furthermore, creating more advanced algorithms to improve the
computational efficiency and scalability of the model will make it suitable for large-
scale problems. Extending the model to dynamic decision-making environments,
where the decision-making process evolves over time with changing data and con-
ditions, is another promising direction. Finally, integrating machine learning tech-
niques could enhance the decision-making process by learning from large datasets
and improving predictive accuracy. These potential directions offer valuable pathways
for further exploration and development in this field.
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Appendix A: table of acronyms

Abbreviations Meaning Abbreviations Meaning

DEA Data Envelopment Analysis Neg Negative

IFS Intuitionistic Fuzzy Bnd Boundary

DMUs Decision Making Units Opt Optimistic strategy

IFS-CCR Intuitionistic Fuzzy-CCR Pes Pessimistic strategy

IFWA Iterative Fuzzy Weighted Averaging Neu Neutral strategy

IFS-BCC Intuitionistic Fuzzy-BCC Pos Positive

CRS Constant Returns to Scale VRS Variable Returns to Scale

PROMETHEE II Preference Ranking Organization Method ~ AHP Analytic Hierarchy Process
for Enrichment Evaluations

SMAA2 Stochastic Multi-criteria Acceptability MAGDM Multi-Attribute Group
Analysis 2 Decision-Making

Appendix B: symbol thumbnail table

Symbols Meaning

U Domain of discourse

ueM M is a finite non-empty DMU set, u is a DMU

T Intuition fuzzy sets on U

@ = (Hy, V) intuitionistic fuzzy numbers

S(a) Score function

L Set function (benefit measureL(4;))

E,F e PX) Power set

A Assemble (Aj = {x],...x,})

Jj Number of DMUs

m Number of input variables

K Number of output variables

X Input variable set

Y Output variable set

e Input variables

y Output variables

P p-th input

q g-th output

ollO Output weights

illl Input weights

I({x}) Benefit measurement of input variable x

o{y}) Benefit measurement of output variable y

H Input-output connection

n(n € (0, 1)) Risk aversion coefficient

A Loss function
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Symbols Meaning

0 vector angle

w Set of weight

[0} Variable weights

W Benefit score

& Hesitation value coefficient
I'={ap,ag,ay} Action set

Q={C,~C} State set
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