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Abstract
As a powerful mathematical tool for tackling uncertain decision problems, three-way 
decision has garnered substantial attention since its inception. However, real-world deci-
sion problems are inherently complex, and decision-makers often exhibit characteristics 
of incomplete rationality. Traditional three-way decision models, which rely on functions 
or relationships, face challenges when confronted with multi-output problems. In response 
to this challenge, this paper introduces an intuitionistic fuzzy three-way decision model 
grounded in data envelopment analysis (DEA). Initially, we propose an input–output cor-
relation degree that integrates hesitancy information and serves as a procedural indicator 
for benefit scores. Subsequently, the traditional DEA is extended to accommodate the intui-
tionistic fuzzy environment and utilized to construct a comprehensive loss function. Fur-
thermore, a novel intuitionistic fuzzy three-way decision model is developed, incorporating 
three dimensions: optimism, neutrality, and pessimism, and corresponding decision rules 
and algorithms are provided. Finally, the effectiveness of the proposed model is rigorously 
validated through a series of experiments and comparative analyses. The model offers a 
pioneering approach to address uncertain multi-input–output decision problems, effectively 
integrating decision-maker’s risk preferences within an intuitionistic fuzzy environment.

Keywords Three-way decision · DEA · Intuitionistic fuzzy set · Input–output connection 
degree · Loss function

1 Introduction

The decision environment in real life is complex and changeable, and the decision-maker’s 
preferences are subject to uncertainty. This makes the limitations of the traditional two-
way decision method more and more prominent. In this context, Yao proposed a three-
way decision theory (Yao 2009) based on Pawlak rough sets (Pawlak 1982) and decision 
rough sets (Yao and Wong 1992). It introduces a delay option based on traditional two-way 
decisions to reduce decision risks. In practice, the three-way decision divides the domain 
of discussion into three disjoint regions: the positive region (POS), the boundary region 
(BND), and the Negative Region (NEG). These regions respectively correspond to the 
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acceptance decision, delay decision, and reject decision. The core of the three-way deci-
sion involves the determination of the loss function and conditional probability. It does not 
regard maintaining the precise consistency of decision knowledge and data as the only goal 
but rather focuses more on the losses or risks caused by different decisions. This makes the 
model more cost-sensitive to the misclassification of decisions. Due to its strong theoretical 
foundation and excellent interpretability, the three-way decision has attracted much atten-
tion and has been successfully applied in many fields, such as shadow sets (Yang and Yao 
2021), information systems (Huang et al. 2020), cost-sensitive learning (Qian et al. 2022), 
transfer learning (Xin et  al. 2023), cognitive concept learning (Yan et  al. 2021), recom-
mendation system (Ye and Liu 2022), medical diagnosis (Chu et al. 2023) and clustering 
integration (Wu et al. 2022), etc.

In the face of the continuously complex decision-making environment, new decision-
making challenges persistently arise. For instance, Table 1 represents a multi-input–output 
decision information system, with xi(i = 1, 2, 3, 4) denoting various objects, ei(i = 1, 2, 3) 
representing inputs, and yi(i = 1, 2) representing outputs. Traditional information systems 
predominantly cater to single-output (decision or classification) issues and are ill-suited 
for addressing multi-input–output problems, as exemplified by the scenario in Example 1. 
The DEA method is an efficient mathematical planning tool in management, economics, 
and operations research, and can evaluate decision-making units (DMUs) with multiple 
inputs and outputs. Additionally, a notable characteristic of DEA is its independence from 
considering the functional relationship between input and output variables or estimating 
parameters. This independence effectively prevents the influence of subjective factors on 
the evaluation results.

Currently, DEA-related research mainly focuses on the following three aspects. (1) 
Uncertain decision-making. For example, a novel rough-set decision method derived from 
the DEA model was introduced by Dun et  al. (2010) to address decision problems with 
multiple decision attributes. Liu and Liang (2017) introduced three-way decisions into the 
field of DEA for the first time and proposed a three-way decision model based on DEA. 
Bagherikahvarin and De Smet (2016) developed an integrated DEA multi-criteria decision 
auxiliary model, aiming to limit the weight value of DEA

to improve the discriminative ability of the DEA model. (2) Evaluation method inte-
grating decision-maker preference information. For example, Yang et  al. (2013) com-
bined the DEA model with the evidential reasoning method, providing a new method 
for the DEA model to reflect the decision maker’s preferences or value judgments. 
Omrani et  al. (2020) proposed a combined DEA-group best-worst method to evaluate 
road safety, incorporating the decision-maker’s preferences into the decision process 
and overcoming the shortcomings of flexible weights in the DEA model. (3) Sorting 
strategy. For example, An et al. (2018) combined the DEA model and the analytic hier-
archy process to construct an interval multiplicative preference relationship to derive 
the ranking of DMUs. Namazi and Mohammadi (2018) used DEA based on preference 

Table 1  Examples of multiple 
input–output decision problems
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x1 1 2 3 3 4
x2 5 3 5 2 3
x3 4 6 2 1 3
x4 7 3 5 2 2
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ranking techniques that approximate ideal solutions to explore the efficiency of national 
innovation systems. Rakhshan (2017) studied the effective DMU ranking problem in 
DEA and proposed a new combined ranking method. In summary, the integration of 
DEA expands the application scope of traditional decision methods while simultane-
ously offering a feasible and effective mathematical tool for addressing multi-output 
decision or ranking problems.

It is worth noting that most current DEA problems assume that inputs and outputs 
are precise values. Due to the complexity of practical problems, the input and output 
data of DMU are usually imprecise, such as interval values, ordinal values, probability 
values, or fuzzy values. Therefore, the effectiveness evaluation of DMU under an uncer-
tain environment is a research hotspot. Despotis and Smirlis (2002) deal with impre-
cise data through an imprecise DEA model. Subsequently, Entani et al. (2002); Puri and 
Yadav (2015) constructed various DEA models, such as interval efficiency and fuzzy 
efficiency to measure the effectiveness of each DMU. In addition, Ref. Puri and Yadav 
(2015) extended fuzzy DEA to intuitionistic fuzzy DEA for the first time and analyzed 
DEA of optimistic and pessimistic efficiency and intuitionistic fuzzy input–output data. 
Chen et  al. (2022) proposed a three-way decision method based on the interval data 
DEA model to deal with interval-type fuzzy data. Combining DEA with uncertainty 
theory or methods proves effective in enhancing its adaptability to the environment. In a 
similar vein, the integration of three-way decisions into DEA offers a top-down decision 
framework, facilitating the inclusion of risk cost measurement. Their combination will 
provide a new idea and decision framework for processing and analyzing uncertain mul-
tiple input–output decision problems. However, there are currently few studies on the 
three-way decision model combined with DEA, and existing research ignores the inter-
active impact of uncertain information on input–output. Due to the notable reliability 
of DEA, various decision methods have been integrated with it to explore more general 
and interpretable intelligent decision-making models. In general, the research on deci-
sion or ranking methods combined with DEA can be categorized into three types: 

1. Combining multi-purpose and multi-attribute decision-making methods: Exam-
ples include preference ranking organization method for enrichment evaluations (PRO-
METHEE II), TOPSIS, and analytic hierarchy process (AHP). By integrating DEA, the 
scope of application of existing decision methods is expanded, improving the accuracy 
and comprehensiveness of decisions. For instance, combining PROMETHEE II and 
DEA achieves more precise ranking and selection in complex multi-attribute decision 
problems.

2. Based on various uncertainty measures: Methods such as distance entropy and accept-
ability. Introducing uncertainty measurement into the decision process establishes a new 
decision or ranking model driven by both "data and knowledge." This approach relies 
on data quantity while considering data quality and knowledge background, leading to 
more robust decisions in uncertain environments.

3. Granular computing approach: Methods like three-way decision and fuzzy sets, when 
combined with DEA, enhance the application of granular computing methods and effec-
tively tackle complex and fuzzy decision problems. For example, integrating three-way 
decision with DEA provides more interpretable decision results under uncertainty and 
ambiguity.
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To clearly describe the differences between our method and existing ones, we selected 
fifteen representative models from the literature and elaborated on them from two per-
spectives: data processing and decision method.

• Data processing level: Reference (Bagherikahvarin and De  Smet 2016), Refer-
ences (Omrani et al. 2020; An et al. 2018; Namazi and Mohammadi 2018; Rakhshan 
2017), Reference (Liu and Chen 2022) and References (Ebrahimi et  al. 2020; Liu 
et al. 2022) focus on decision problems with precise information, while References 
(Chen et al. 2022; Wang et al. 2005, 2016; Jie et al. 2013; Yul et al. 2019) and Refer-
ence (Wang et al. 2021) address decision problems with uncertain information. Our 
method processes data as intuitionistic fuzzy numbers, considering the impact of 
uncertain information on decision results. We propose the input–output connection 
degree to apply the influence of uncertain information in the model-solving process, 
effectively addressing multiple input–output decision-making problems in an intui-
tionistic fuzzy environment and expanding the scope of DEA.

• Decision method level: Reference (Bagherikahvarin and De Smet 2016) obtains the 
ranking results via the net flow fraction of PROMETHEE II. Reference (An et  al. 
2018) combines the AHP with interval efficiency of DMUs for comprehensive rank-
ing. Reference (Namazi and Mohammadi 2018) ranks DMUs based on their distance 
from positive/negative ideals. Reference (Wang et al. 2021) obtains the ranking by 
introducing the group best-worst method to solve the benefit score of DMUs. Refer-
ence (Chen et  al. 2022) uses three-way decision to rank DMUs. Reference (Wang 
et  al. 2005) uses the minimum-maximum regret method to rank DMU. Reference 
(Wang et  al. 2016) ranks DMU according to the distance from the positive ideal 
cross-efficiency. References (Rakhshan 2017) and (Jie et  al. 2013) use TOPSIS to 
rank DMU. Reference (Yul et  al. 2019) ranks DMU by stochastic multi-criteria 
acceptability analysis 2 (SMAA2). Reference (Liu and Chen 2022) classifies DMUs 
by input–output slack and benefit score. Reference (Ebrahimi et al. 2020) finds effi-
cient DMU by considering decision maker preferences. Reference (Liu et al. 2022) 
uses a multi-attribute group decision-making (MAGDM) method based on trust rela-
tionship to rank DMUs. Reference (Wu et al. 2021) ranks DMU by calculating the 
Shannon entropy of efficiency score and Reference (Omrani et  al. 2020) uses the 
fuzzy weighted aggregate sum-product assessment method to rank DMUs.

Comparison of different models as shown in Table 2, where columns represent specific 
features of the proposed method: fuzzy information ( a1 ), attribute connection ( a2 ), loss 
function ( a3 ), multiple strategies ( a4 ), psychological cognition ( a5 ), conditional prob-
ability ( a6 ), classification ( a7 ), and ranking ( a8).

At the same time, how to weaken the impact and result deviation brought by their 
subjective loss functions during the combination process is also a key issue. Their com-
bination will provide a new idea and decision framework for processing and analyz-
ing uncertain multiple input–output decision problems. Inspired by the above ideas, 
this paper constructs two DEA models (Intuitionistic Fuzzy Sets-CCR, IFS-CCR) and 
(Intuitionistic Fuzzy Sets-BCC, IFS-BCC) in an intuitionistic fuzzy environment and 
proposes an intuitionistic fuzzy three-way decision model based on DEA. Table 2 shows 
the characteristics of the existing classical methods and the proposed methods. The 
main contributions are as follows: 
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1. A method for measuring the correlation between input and output is proposed, and the 
optimal efficiency score is determined by using fuzzy measures as constraints.

2. Four IFS-CCR optimization models for different scenarios are proposed, and the cor-
responding algorithms are given.

3. The losses of DMUs under three strategies are given and an intuitionistic fuzzy three-
way decision model based on DEA is proposed.

The rest of this paper is organized as follows: Sect. 2 introduces the basic knowledge of 
intuitionistic fuzzy set theory, three-way decisions, and DEA. Section 3 explains the cal-
culation method of input–output connection, gives four IFS-CCR optimization models, 
and induces intuitionistic fuzzy three-way decision rules under three strategies of opti-
mism, neutrality, and pessimism. Section 4 verifies the effectiveness of the proposed model 
through a series of experiments and comparative analysis, and finally summarizes this 
article.

2  Preliminaries

This section introduces some relevant basic concepts of the decision rough set (Pawlak 
1982), intuitionistic fuzzy set (Atanassov and Stoeva 1986; Szmidt and Kacprzyk 2001), 
three-way decisions (Yao and Wong 1992), as well as the CCR model and BCC model 
(Charnes et al. 1978).

2.1  Three‑way decision

Traditional decision theory regards people as rational decision-makers who follow the prin-
ciple of maximizing economic interests in the decision-making process. Affected by the 
uncertainty of information and the cognition of decision-makers, it is difficult to be com-
pletely rational even if you fully understand and master the information and intelligence of 
the decision-making environment. This makes the limitations of the conventional binary 
decision method increasingly prominent. In response, Yao developed the three-way deci-
sion theory, which introduces delayed decisions to the conventional binary decision frame-
work to mitigate decision risks. Given a decision information system DS = (U,AT ,V , f ) , 
∀X ⊆ U , A ⊆ AT  , the upper and lower approximations of X based on the equivalence rela-
tion RA is as follows:

The upper and lower approximations can be equivalently converted into POS, BND and 
NEG to describe the target concept X as follows:

R
−
(X) = {x ∈ U|[x]

A
⊆ X},

R̄(X) = {x ∈ U|[x]
A
∩ X ≠ �}.

POS(X) = R
−
(X),

BND(X) = R̄(X) − R
−
(X),

NEG(X) = U − R̄(X).



Intuitionistic fuzzy three‑way decision method based on data… Page 7 of 39 235

Among them, POS means accepting that object x belongs to X, NEG means refusing to 
accept that x belongs to X, and BND means that x may belong to X. Since the equivalence rela-
tionship is too strict, in order to reduce boundary redundant information, an improved three-
way decision method based on probabilistic rough sets is introduced below. Given a decision 
information system DS = (U,AT ,V , f ) , ∀X ⊆ U,A ⊆ AT , assume that (�, �) is a pair of prob-
ability thresholds, meet the conditions 0 ≤ 𝛽 < 𝛼 ≤ 1 . Then the conditional probability func-
tion is as follows:

The upper and lower approximations of RA can be rewritten as follows:

Correspondingly, we can obtain the decision rules as follows:

2.2  Decision‑theoretic rough sets

Yao and Wong (1992) introduced the Bayesian minimum risk decision based on the traditional 
Pawlak rough set proposed the decision rough set theory and then proposed a three-way deci-
sion model. Let U = {x1, x2, ..., xn} be a non-empty finite domain, R be the equivalence rela-
tion on U, R ∈ U × U , and U∕R = {[x]R|x ∈ U} be the equivalence class of x with respect 
to R. If the state set Ω = {C,¬C} is given which represents x ∈ C or x ∉ C , and the action 
set Γ = {aP, aB, aN} which represents the three decision actions of acceptance, deferment 
and rejection. Namely, the object x is divided into the POS domain, BND domain, and NEG 
domain, the decision cost matrix of each action in different states As shown in Table 3.

Among them, when x ∈ C , the decision losses correspond to taking the three actions aP , aB 
and aN are �PP , �BP and �NP . Similarly, when x ∉ C , the decision losses corresponding to tak-
ing the above three actions are �PN , �BN and �NN . Therefore, the expected losses from taking 
the three actions aP , aB and aN can be expressed as:

P(X|[x]) =
|X ∩ [x]|

|[x]|
.

R
− (𝛼,𝛽)

(X) = {x ∈ U|P(X|[x]) ⩾ 𝛼},

R̄(𝛼,𝛽)(X) = {x ∈ U|P(X|[x]) > 𝛽}.

POS(X) = {x ∈ U|P(X|[x]) ⩾ 𝛼},

BND(X) = {x ∈ U|𝛽 < P(X|[x]) < 𝛼},

NEG(X) = {x ∈ U|P(X|[x]) ⩽ 𝛽}.

(1)
R(aP|[x]R) = �PPP(C|[x]R) + �PNP(¬C|[x]R),

R(aB|[x]R) = �BPP(C|[x]R) + �BNP(¬C|[x]R),

R(aN|[x]R) = �NPP(C|[x]R) + �NNP(¬C|[x]R).

Table 3  Decision cost matrix C ¬C

aP �PP �PN

aB �BP �BN

aN �NP �NN
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Among them, P(C�[x]R) =
�
�C

⋂
[x]R

�
�∕
�
�[x]R

�
� represents the conditional probability 

that the equivalence class [x]R is in state C. Because of P(C|[x]R) + P(¬C|[x]R) = 1 , the 
above loss is only related to the classification conditional probability and the loss func-
tion �∙∙(∙ ∈ {P,B,N}) . Furthermore, consider that the loss of accepting the right thing is 
no greater than the loss of delaying acceptance of the right thing, and both are less than 
the loss of rejecting the right thing. Similarly, the loss of rejecting the wrong thing is no 
greater than the loss of delaying rejecting the wrong thing, and both are less than the loss 
of rejecting the wrong thing. Therefore, the size relationship between the loss functions 
satisfies: 𝜆PP ≤ 𝜆BP < 𝜆NP and 𝜆PN > 𝜆BN ≥ 𝜆NN.

According to the Bayesian decision criterion, the action set with the smallest expected 
loss is selected as the best action plan. The following three decision rules can be obtained 
as follows:

If R(aP|[x]R) ≤ R(aB|[x]R) ∧ R(aP|[x]R) ≤ R(aN|[x]R) , decide x ∈ POS(C),
If R(aB|[x]R) ≤ R(aP|[x]R) ∧ R(aB|[x]R) ≤ R(aN|[x]R) , decide x ∈ BND(C),
If R(aN|[x]R) ≤ R(aP|[x]R) ∧ R(aN|[x]R) ≤ R(aB|[x]R) , decide x ∈ NEG(C).

2.3  Intuitionistic fuzzy sets

During the decision process, people usually make uncertain judgments about vague and 
complex objective things. For this reason, Zadeh proposed the concept of fuzzy sets to 
represent uncertain information. To overcome the shortcomings of a single member-
ship degree, Atanassov proposed the theory of Intuitionistic Fuzzy Sets (IFS), which is 
described by three scalars: membership degree, non-membership degree, and hesitation 
degree to describe uncertain information.

Definition 1 Atanassov and Stoeva (1986) Let U = {x1, x2, ..., xn} be a non-empty 
finite domain, ∀T ⊆ U , u ∈ T  , call T = {< 𝜇T (u), 𝜈T (u) > |u ∈ U} an intuitionis-
tic fuzzy set on U, where �T (u) ∶ U → [0, 1] represents the membership degree of u to 
T, �T (u) ∶ U → [0, 1] represents the membership degree of u that does not belong to 
T (i.e., non-membership degree), and satisfying conditions 0 ≤ �T (u), �T (u) ≤ 1 and 
0 ≤ �T (u) + �T (u) ≤ 1 . �T (u) = 1 − �T (u) − �T (u) represents the degree of hesitation that u 
belongs to T. In addition, if ∀u ∈ U has �T (u) = 0 , then the intuitionistic fuzzy set T degen-
erates into a fuzzy set. For the convenience of expression, the sequence pair (�T (u), �T (u)) 
is called an intuitionistic fuzzy number, and � = (�a, �a) is usually used to represent the 
intuitionistic fuzzy number �.

Definition 2 Xu (2007) Let � = (�� , ��) and � = (�� , ��) be two intuitionistic fuzzy num-
bers, then there are the following operations: 

(1) 𝛼 ⊕ 𝛽 = (𝜇𝛼 + 𝜇𝛽 − 𝜇𝛼𝜇𝛽 , 𝜈𝛼𝜈𝛽),
(2) 𝛼 ⊗ 𝛽 = (𝜇𝛼𝜇𝛽 , 𝜈𝛼 + 𝜈𝛽 − 𝜈𝛼𝜈𝛽),
(3) 𝜔𝛼 = (1 − (1 − 𝜇𝛼)

𝜔, 𝜈𝜔
𝛼
),𝜔 > 0,

(4) 𝛼𝜔 = (𝜇𝜔
𝛼
, 1 − (1 − 𝜈𝛼)

𝜔),𝜔 > 0.

Definition 3 Xu (2007) Let � = (�a, �a) and � = (�b, �b) be two intuitionistic fuzzy num-
bers, then we have
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Among them, S(�) is the score function, S(�) ∈ [−1, 1] and Z(�) is the exact function, 
Z(�) ∈ [0, 1] satisfy the following relationships: 

(1) If S(𝛼) < S(𝛽) , decide � less than � , recorded as 𝛼 < 𝛽;
(2) If S(�) = S(�) , decide If Z(𝛼) < Z(𝛽) , decide � less than � , recorded as 𝛼 < 𝛽 ; If 

Z(�) = Z(�) , decide � equal � , recorded as � = �.

2.4  Choquet integral

Choquet integral as nonlinear integration, is a method of aggregating or integrating 
functions in the context of multi-criteria decisions. It is appropriate for addressing non-
additive measurement or decision problems. The method aggregates input–output val-
ues based on the set function L, substituting the additivity of probability measures with 
monotonicity.

Definition 4 Grabisch and Labreuche (2016) Let (X, P(X), L) be a fuzzy measure space, 
where X = {e1, e2, ..., en} is a multidimensional data set, P(X) is the power set of X, L is 
the set function, and the measurable function is f ∶ X → (−∞,+∞) . If the set function 
L ∶ P(X) → [0,+∞) satisfies L(∅) = 0; E,F ∈ P(X), E ⊂ F and L(E) ≤ L(F) , it is called 
the benefit measure on X. Then the choquet integral of f(e) with respect to the benefit meas-
ure L is as follows:

Among them, F� = {e|f (e) ≥ �, e ∈ X}, � ∈ [0,+∞) , when f is a non-negative function, 

∫ fdL =
+∞

∫
0

L(F�)d� . When X = {e1, e2, ..., em} is a finite set, the function value 

f (e1), f (e2), ..., f (em) of f can be arranged in increasing order f (e1�) ≤ f (e2
�) ≤ ... ≤ f (em

�) ; 
where the set {e1, e2, ..., em} is rearranged from the subsets in the set {e1�, e2�, ..., em�} from 
small to large. Therefore, the Choquet integral can be obtained as follows:

Taking input variables as an example, an equivalent integral corresponding to the Choquet 
integral (Wang and Guo 2003) is as follows:

where zj = max{min
i∈Aj

f (ei) −max
i∉Aj

f (ei), (0, 1)},A1 = {1},A2 = {2}, ...,A2m−1 = {1, 2, ..., 2m − 1} , the out-

put variable �j is the same.

(2)S(�) = �� − �� Z(�) = �a + �a.

(3)
∫

fdL =

0

∫
−∞

[L(F�) − L(X)]d� +

+∞

∫
0

L(F�)d�.

(4)
∫

fdL =

n∑

i=1

[f (ei
�) − f (ei−1

�)]L(Ai); f (e0
�) = 0,Ai = {ei

�, ei+1
�, ..., em

�}.

(5)
∫

fdL =

2m−1∑

j=1

zjL(Aj),
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2.5  DEA

DEA can evaluate the efficiency of a DMU by considering multiple inputs and outputs. 
It assesses whether the DMU achieves a balance between input and output and further 
evaluates the relative effectiveness of efficiency.

Definition 5 Charnes et al. (1978) Let M = {u1, u2, ..., un} represents n DMUs, denoted as 
uj(j = 1, 2, ..., n) . each DMU has m input variables and s output variables. The p-th input of 
the j-th DMU is epj(p = 1, 2, ...,m;j = 1, 2, ..., n) , and the corresponding weight is o. The 
q-th output is yqj(q = 1, 2, ..., s;j = 1, 2, ..., n) , and the corresponding weight is i, then the 
CCR model is as follows:

The above planning model is a fractional planning, which can be obtained by changing the 
Charnes-Cooper as follows:

where Ip and Oq are the input and output weights used by each DMU to construct the best 
practice boundary, �0 is the efficiency score of u0 , and u0 is considered effective when 
�0 = 1 . The essence of the CCR model becomes apparent as the evaluated DMU endeavors 
to discover its weight vector. This pursuit aims to maximize its weighted output, subject to 
the constraints that its weighted input remains fixed at unity, and its weighted output does 
not exceed the weighted input of all DMUs.

Since the traditional CCR model assumes Constant Returns to Scale (CRS), the type 
of returns to scale of DMU cannot be estimated. In order to make up for this shortcom-
ing, Banker et al. developed a BCC model that considers Variable Returns to Scale (VRS) 
based on the CCR model. The BCC model is described as follows:

(6)

max�0 =
s∑

q=1

oqy0q∕
m∑

p=1

ipe0p,

s.t.
⎧
⎪
⎨
⎪
⎩

s∑

q=1

oqyqj∕
m∑

p=1

ipepj ≤ 1, j = 1, 2,… n,

oq ≥ 0, q = 1, 2, ..., s,

ip ≥ 0, p = 1, 2, ...,m.

(7)

max�0 =
s∑

q=1

Oqy0q,

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

s∑

q=1

Oqyqj −
m∑

p=1

Ipepj ≤ 0, j = 1, 2,… n,

m∑

p=1

Ipe0p = 1,

Ip ≥ 0,Oq ≥ 0,
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where �0 is the best efficiency score of the DMU calculated based on the BCC model.

Among the above models, if the efficiency score of a DMU achieves DEA effectiveness 
if its efficiency score equals unity and it resides on the production frontier. Conversely, if 
the efficiency score deviates from unity, the DMU is deemed DEA ineffective. The cor-
responding DEA production frontier is shown in Fig. 1. Figure 1 shows five DMUs, each 
DMU has two input variables e1 , e2 and one output variable y. The polyline in Fig. 1 is 
DEA’s production frontier and DMU’s relative efficiency value on the production frontier. 
Observing the figure above reveals the validity of DEA for A, B, C, and D, whereas E is 
identified as invalid. By mapping E to E′ on the production frontier, DEA becomes valid at 
E

′ , with the efficiency at E calculated as OE�∕OE < 1.

3  Intuitionistic fuzzy three‑way decision model based on DEA

To quantitatively analyze the impact of hesitancy on input–output interaction, this section 
proposes the input–output connection degree based on the set pair analysis theory and con-
structs the IFS-CCR model. Furthermore, the input and output of each DMU are integrated 
into the measurement process of the loss function. Finally, according to the difference in 

(8)

min�0,

s.t.

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

n�

j=1

�jyqj ⩾ yqo, q = 1, 2,… s,

n�

j=1

�jxpj ⩽ �0xp0, p = 1, 2,…m,

n�

j=1

�j = 1,

�j ⩾ 0.

Fig. 1  DMU production frontier
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the value of the hesitation degree in the input–output connection degree, the corresponding 
intuitionistic fuzzy three-way decision model is constructed from the three dimensions of 
optimism, neutrality, and pessimism. At the same time, a multi-strategy ranking method 
using the DEA benefit score as the conditional probability is proposed. The overall frame-
work is shown in Fig. 2.

3.1  Intuitionistic fuzzy DEA model construction

The DEA model is an important tool for efficiency evaluation. Since the objective data in 
the real world are full of uncertainties, the traditional CCR model is limited to processing 
accurate data. To this end, this section also proposes an intuitionistic fuzzy DEA model 
that integrates the input–output connection degree to improve the model’s ability to handle 
uncertain and complex problems.

Fig. 2  Intuitionistic fuzzy three-way decision model framework based on DEA
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Definition 6 Let U = {x1, x2, ..., xn} is a non-empty finite domain, T is an intuitionistic 
fuzzy set on U, � = (�� , ��) and � = (�� , ��) are two intuitionistic fuzzy inputs on T, and 
their weights are �� and �� respectively, then

Among them, H is the connection degree between two input variables, � ∈ [−1, 1] 
is the hesitancy value coefficient of H, �H = (���� + ����) , �H = (���� + ����) , 
and �H = (���� + ����) are the connection components between � and � respectively. 
Namely, the degree of identity, the degree of difference, and the degree of opposition. 
Decision makers can use H to measure the degree of connection between two input vari-
ables. Furthermore, the integration process reflects the impact of the input–output con-
nection degree on the DMU benefit score based on the degree of optimism of the hesi-
tancy value coefficient.

Theorem 1 The input–output connection H satisfies the following properties: 

(1) When � ∈ [−1, 1] , the input–output connection H ∈ [−1, 1];
(2) When � ∈ [−1, 1] , input–output connection degree �H� and −�H� have the same value 

range.

Proof 

(1) In the input–output connection H, there is �H ∶ T → [0, 1], �H ∶ T → [0, 1] . For any 
u ∈ T  , there is 0 ≤ �H + �H ≤ 1 , � ∈ [−1, 1] , so H ∈ [−1, 1] is established.

(2) When � ∈ [−1, 1] , �H� ∈ [�H� − �H�] is the same as −�H� ∈ [�H� − �H�] , so its value 
range is the same.

  ◻

Definition 7 Let there are n DMUs, denoted as uj(j = 1, 2, ..., n) , each DMU has m input 
variables denoted as X = {e1, e2, ..., ep}, (p = 1, 2, ...,m) , and s output variables denoted as 
Y = {y1, y2, ..., yq}, (q = 1, 2, ..., s) . Considering the interaction between multiple input and 
output variables, use o({yq}) to represent the benefit measure of the output variable, i({ep}) 
to represent the benefit measure of the input variables, gj(yq) to represent the data informa-
tion of the output variables of the j-th DMU, and fj({ep}) to represent the j-th DMU’s out-
put variables data information. The efficiency score of DMU is expressed by the maximum 
ratio of total output to total input. The IFS-CCR I model can be obtained as follows:

Perform the following conversion on IFS-CCR I:

(9)H = �H + �H� − �H .

(10)

max𝜓0 =
∫ gq0doq

∫ fp0dip
,

s.t.
⎧
⎪
⎨
⎪
⎩

∫ gqjdoq

∫ fpjdip
≤ (1, 0), j = 1, 2,… n,

0 ≤ i(A) ≤ i(B);A ⊆ B,A,B ∈ P(X),

0 ≤ o(C) ≤ o(D);C ⊆ D,C,D ∈ P(Y).
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Let tj = (1, 0)∕ ∫ fjdi[tj > (0, 1)] , Oq = tjoq , Ip = tjip , get the IFS-CCR II model as 
follows:

In IFS-CCR II, if there are fuzzy measures O and I such that the DMU’s efficiency score 
is equal to unity, the DMU is deemed to be effective; if the efficiency of the DMU is less 
than unity, the DMU is deemed to be invalid. The nature of the IFS-CCR II model becomes 
apparent as it presents itself as a linear programming problem. The objective function only 
considers the output data of DMU. The entire model is only related to the benefit measure 
i({ep}) of the input variable and the benefit measure o({yq}) of the output variable. To adapt 
the classic equivalent formula to the intuitionistic fuzzy set environment, presented below are 
the intuitionistic fuzzy subtraction operation and the multi-constraint intuitionistic fuzzy divi-
sion operation, which integrate the input–output connection degree.

Definition 8 Let � = (�� , ��) and � = (�� , ��) be two intuitionistic fuzzy numbers, then we 
have

In Eq. 12, the closer the connection between input and output, the bigger the impact of 
membership after integration, and the overall positive connection appears. If Eq. 12 does 
not satisfy its constraints, let � − � = (0, 1) . Similarly, if Eq. 13 does not satisfy its con-
straints, let � ÷ � = (0, 1) . Therefore, according to Definition 4 and Eqs.  12 and 13, the 
IFS-CCR III model is as follows:

(11)

max𝜓0 = ∫ gq0dOq

s.t.

⎧
⎪
⎨
⎪
⎩

∫ gqjdOq − ∫ fpjdIp ≤ (0, 1), j = 1, 2,… n,

∫ fp0dIp = (1, 0),

0 ≤ I(A) ≤ I(B);A ⊆ B,A,B ∈ P(X),

0 ≤ O(C) ≤ O(D);C ⊆ D,C,D ∈ P(Y).

(12)

� − � = ((�� − �� + ����)�H�,
��

��
)

s.t.

⎧
⎪
⎨
⎪
⎩

�� − �� + ���� ⩾ 0
��

��
⩾ 0

(�� − �� + ����)�H� + ��∕�� ⩽ 1

(13)

� ÷ � = (
��

��

, �� − �� +
��−��

1−�min

),

s.t.

⎧
⎪
⎨
⎪
⎩

��

��

≥ 0,

�� − �� +
��−��

1−�min

≥ 0,

��

��

+ �� − �� +
��−��

1−�min

≤ 1.
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IFS-CCR III uses the intuitionistic fuzzy integration operator (Xu 2007) to integrate the 
input–output variables zpj and �qj in the model to obtain the optimal benefit score. The 
intuitionistic fuzzy weighted average operator of gk(yr) regarding the fuzzy measure is:

In the same way, fk(ei) ’s intuitionistic fuzzy weighted average operator regarding fuzzy 
measures is:

Applying Eqs. 15 and 16 to IFS-CCR III, IFS-CCR IV based on the intuitionistic fuzzy 
weighted average operator can be obtained:

In the same way, BCC use the intuitionistic fuzzy integration operator [30] to integrate 
the input–output variables xpj and yqj in the model to obtain the optimal benefit score. The 
intuitionistic fuzzy weighted average operator of gk(yr) regarding the weight �:

The intuitionistic fuzzy weighted average operator of fk(ei) regarding the weight �:

Applying eqs. (18–19) to BCC model, IFS-BCC model based on the intuitionistic fuzzy 
weighted average operator can be obtained:

(14)

max𝜓0 =
2s−1∑

q=1

𝜌q0Oq,

s.t.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

2s−1∑

q=1

𝜌qjOqj −
2m−1∑

p=1

zpjIpj ≤ (0, 1), j = 1, 2,… n

2m−1∑

p=1

zpjIpj = (1, 0),

0 ≤ I(A) ≤ I(B);A ⊆ B,A,B ∈ P(X),

0 ≤ O(C) ≤ O(D);C ⊆ D,C,D ∈ P(Y).

(15)IFWA(gj) =

2s−1∑

q=1

�qjOqj = (1 −

2s−1∏

q=1

(1 − �qj)
Oqj ,

2s−1∏

q=1

�
Oqj

qj
).

(16)IFWA(fj) =

2m−1∑

p=1

zpjIpj = (1 −

2m−1∏

p=1

(1 − �pj)
Ipj ,

2m−1∏

p=1

�
Ipj

pj
).

(17)

max𝜓0 = IFWA(g0)

s.t.

⎧
⎪
⎨
⎪
⎩

IFWA(gj) − IFWA(fj) ≤ (1, 0), j = 1, 2,… n,

IFWA(fj) = (1, 0),

0 ≤ I(A) ≤ I(B);A ⊆ B,A,B ∈ P(X),

0 ≤ O(C) ≤ O(D);C ⊆ D,C,D ∈ P(Y).

(18)IFWA(gj) =

2s−1∑

q=1

yqj�j = (1 −

2s−1∏

q=1

(1 − �qj)
�j ,

2s−1∏

q=1

�
�j

qj
).

(19)IFWA(fj) =

2m−1∑

p=1

xpj�j = (1 −

2m−1∏

p=1

(1 − �pj)
�j ,

2m−1∏

p=1

�
�j

pj
).
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In the process of solving the benefit score, IFS-CCR IV integrates intuitionistic fuzzy data 
of input and output using the intuitionistic fuzzy weighted average operator, while also 
incorporating the input–output connection degree.

Different from the traditional CCR model, IFS-CCR IV introduces the benefit measure 
as an optimization parameter. This approach enhances the objectivity of the benefit meas-
ure, facilitating the derivation of the benefit score under optimal conditions. Consequently, 
it addresses the calculation problem associated with the DMU benefit score in an intuition-
istic fuzzy environment. The key steps of the IFS-CCR IV model are outlined below, with 
corresponding pseudocode provided in Algorithm 1. 

Step 1  Calculate the input–output connection H between each variable according to 
Eq. 9.

Step 2  Expand the input and output variables in the DMU information table according to 
Definition 4.

Step 3  Calculate the difference between the expanded variables according to Eq. 12.
Step 4  Obtain IFS-CCR IV based on Eqs. 15 and 16 and the results in step 3.
Step 5  Solve the benefit score based on IFS-CCR IV.

(20)

min�0

s.t.

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

n�

j=1

IFWA(gj) ⩾ IFWA(g0), j = 1, 2,… n,

n�

j=1

IFWA(fj) ⩽ �0IFWA(f0),

n�

j=1

�j = 1,

�j ⩾ 0.
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Algorithm 1  DMU benefit score solving algorithm
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3.2  Loss function integrating input–output impact

The loss function of the traditional three-way decision model is generally given by 
experts, which means that the actions Γ = {aP, aB, aN} taken by different plans in state 
Ω = {C,¬C} have the same loss value. This phenomenon contradicts reality, since dif-
ferent schemes may lead to different losses depending on their characteristics. To incor-
porate the impact of intuitionistic fuzzy input–output on decision loss, this section pro-
poses a loss-cost function that fuses cosine distance.

Definition 9 Let K = (M,X
⋃

Y ,V = (�, �)) represent a DMU information table, 
where M = {u1, u2, ..., un} is a DMU set, X = {e1, e2, ..., ep} is an input variable set, 
Y = {y1, y2, ..., yq} is an output variable set, and V = (�, �) is an intuitionistic fuzzy input–
output variable value set. The intuitionistic fuzzy mean of the input variable is as follows:

Among them, �p is the average membership degree of the input variable ep , �p is the average 
non-membership degree of input variable ep , �p is the average hesitation degree of the input vari-
able ep , and meets the conditions 0 ≤ �p, �p ≤ 1 , 0 ≤ �p + �p ≤ 1 and �p = 1 − �p − �p.

Definition 10 In the DMU information table K = (M,X
⋃

Y ,V = (�, �)) , uj is in state 
Ω = {C,¬C} , and the loss function for taking action Γ = {aP, aB, aN} is shown in Table 4.

Among them, �(� ∈ (0, 1)) is the risk aversion coefficient, dmin = 0 , dmax = 1 . This 
loss function is constructed using the difference between the input distance and the 
output distance of the variables in uj from the average in the most favorable situation, 
that is when the input–output is closest to the average. Based on Definition 10, we 
know that 𝜆j

PP
< 𝜆

j

BP
< 𝜆

j

NP
, 𝜆

j

NN
< 𝜆

j

BN
< 𝜆

j

PN
 , the loss function exhibits the following 

characteristics. 

(1) When the decision unit uj is in state C, the loss incurred by the DMU when making an 
acceptance decision is �j

PP
= 0 . If it chooses to reject the decision, the loss incurred by 

the DMU at this time is �j
NP

= |
max cosX�−min cosY�

max cosY�+max cosX�
| − dmin . Namely, as the output-input 

ratio increases, the expected Decision losses increase. In addition, considering people’s 
risk aversion in the real world, when making delayed decisions, the loss value should 
be smaller than the loss of rejecting the decision, so the delayed decision loss function 
can be expressed as �j

BP
= �(|

max cosX�−min cosY�

max cosY�+max cosX�
| − dmin).

(21)�p = 1 − �p − �p, �p =

n∏

j=1

�
1

n

pj
,�p =

1

n

n∑

j=1

�pj, j = 1, 2, ..., n.

Table 4  Loss function integrating input–output distance

C ¬C

aP �
j

PP
= 0 �

j

PN
= dmax − |

max cosY�−min cosX�

max cosY�+max cosX�
|

aB �
j

BP
= �(|

max cosX�−min cosY�

max cosY�+max cosX�
| − dmin) �

j

BN
= �(dmax − |

max cosY�−min cosX�

max cosY�+max cosX�
|)

aN �
j

NP
= |

max cosX�−min cosY�

max cosY�+max cosX�
| − dmin

�
j

NN
= 0
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(2) When the decision unit uj is in state ¬C , the loss incurred by the DMU when making 
a rejection decision is �j

NN
= 0 . If it chooses to accept the decision, the loss incurred 

by the DMU at this time is �j
PN

= dmax − |
max cosY�−min cosX�

max cosY�+max cosX�
| . Namely, as the output-

input ratio decreases, expected decision losses increase. In addition, considering peo-
ple’s risk aversion in the real world, when making a delayed decision, the loss value 
should be smaller than the loss of accepting the decision, so the loss function of the 
delayed decision can be expressed as �j

BN
= �(dmax − |

max cosY�−min cosX�

max cosY�+max cosX�
|).

Among them, �(� ∈ (0, 1)) is the risk aversion coefficient. Referring to Definition 6, it 
becomes evident that the input–output relationship incorporates the hesitancy coefficient 
� . Considering the unique personality and attitude variations among DMUs, the hesita-
tion coefficient � acts as a parameter, reflecting the decision-maker’s optimism in man-
aging the input–output connection degree within the designated number of intervals.

Definition 11 Assume that the input–output connection degree is H, H ∈ [Hmin,Hmax] , 
and the hesitation degree coefficient is � , � ∈ [−1, 1] . There are three situations as follows:

Case 1 When � = 1 , according to Definition 8 and IFS-CCR IV, at this time the mem-
bership degree is the biggest and the benefit score is the largest. Therefore, the current 
DMU is completely optimistic, which is the Optimistic Strategy (Opt), with H = Hmax;

Case 2 When � = −1 , it means that the current DMU is completely pessimistic, that is, 
it is the Pessimistic Strategy (Pes), with H = Hmin;

Case 3 When � = 0 , it means that the current decision attitude of DMU is unknown, 
which is the Neutral Strategy (Neu), with H =

1

2
(Hmax + Hmin).

Therefore, based on the above three strategies, the decision rule in section 2.1 can be 
rewritten as follows:

If R(aP|uj)
Δ
≤ R(aB|uj)

Δ ∧ R(aP|uj)
Δ
≤ R(aN|uj)

Δ , decide uj ∈ POS(C);
If R(aB|uj)

Δ
≤ R(aP|uj)

Δ ∧ R(aB|uj)
Δ
≤ R(aN|uj)

Δ , decide uj ∈ BND(C);
If R(aN|uj)

Δ
≤ R(aP|uj)

Δ ∧ R(aN|uj)
Δ
≤ R(aB|uj)

Δ , decide uj ∈ NEG(C).
Among them, Δ = {Opt,Pes,Neu} , C ∈ Ω , uj ∈ M.

3.3  Intuitionistic fuzzy three‑way decision model based on DEA

This section gives the intuitionistic fuzzy three-way decision model algorithm based on 
DEA, and provides a detailed description of the decision process based on the IFS-CCR 
model. The classification and ranking results of each plan are obtained through the pro-
posed model. The key steps are as follows: 

Step 1  Calculate the benefit score � of each DMU according to Algorithm 1.
Step 2  Calculate the input–output intuitionistic fuzzy mean and distance.
Step 3  Calculate the loss function of each DMU according to Definition 10.
Step 4  Calculate the decision loss of each DMU based on the benefit score and the loss 

function and divide M into three domains: POS, BND, and NEG based on the 
size of the loss.

Step 5  Sort the DMUs in each domain according to the loss value. The corresponding 
pseudocode is as follows:



 X. Xin et al.235 Page 20 of 39

Algorithm 2  Intuitionistic fuzzy three-way decision model based on DEA

3.4  Complexity analysis

The efficiency score solution algorithm includes two processes: 
input–output variable expansion and model solution. This article assumes that n 
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represents the number of DMUs, m represents the number of input variables, and s rep-
resents the number of output variables. In the input–output variable expansion stage, 
all DMUs are first traversed and the degree of connection is calculated. The time com-
plexity is O(n × (m + s)) , then expand the input–output variables of each DMU respec-
tively, and its time complexity is O(n × (2m + 2s)) . Therefore, the time complex-
ity of the input–output variable expansion stage is O(n × (2m + 2s + m + s)) . In the 
model solving phase, the expanded variables are initialized with a time complexity 
of O(n + 2m + 2s) , and then the data structure of the DEA model is created, including 
input variables, output variables, etc., with a time complexity of O(n × (2m + 2s)) . In the 
model-solving phase, the time complexity is mainly determined by the model, then the 
time complexity of solving the model is O(n2 × (2m + 2s) × (log(2s + 2m))) . Therefore, 
O(n × (2m + 2s + m + s) + n2 × (2m + 2s) × (log(2s + 2m))) is the overall time complexity 
of the benefit score solving algorithm.

4  Experiment and comparative analysis

4.1  Numerical example

To better explain the loss function based on the input–output connection degree and the 
input–output distance, this section uses a numerical example to illustrate the calculation 
process of the proposed connection degree and loss function.

Digital education refers to an education model that uses advanced information and com-
munication technology to digitize and make all aspects of the education process intelligent. 
In the international environment, with the development of cloud computing and big data 
technology and the rapid globalization trend, digital education has become an important 
direction for many countries to promote education reform. At the same time, most coun-
tries have also introduced policy incentives and regulations to effectively promote the inno-
vation and development of digital education-related technical facilities. The reason lies in 
the indispensable importance of digital education, which plays a pivotal role in enhancing 
the quality of education, fostering innovation, and mitigating educational inequality. This 
is significant for improving national competitiveness, promoting social development, and 
coping with changes. In response to the national call to improve digital teaching capabili-
ties, a school is preparing to introduce a digital education system. When evaluating the dig-
ital education systems to be selected, due to the differences in thinking between manage-
ment and branches, relevant experts are invited to evaluate the 10 digital education systems 
to be selected ( M = {u1, u2, ..., u10} ). The input evaluation indicators set by experts during 
the evaluation process include acquisition cost ( e1j ), required personnel ( e2j ), and system 
operability ( e3j ). The output indicators include the level of integration of educational infor-
mation resources ( y1j ), and the intelligence of education platform facilities. Level ( y2j ). 
The intuitionistic fuzzy evaluation information of the utility evaluation object is shown in 
Table 5. Now it is necessary to analyze the multi-input–output connection degree of the 
digital education system. The specific process is as follows:

Firstly, calculate the input–output connection degree based on Definition 6, as shown 
in Table 6. Among them, the value range of � is � ∈ [−1, 1] , which has the effect of con-
verting uncertainty into certainty. Therefore, according to Definition 11, the input–out-
put connection degree under different strategies can be obtained. According to the defi-
nition of input–output connection, when � equals unity, it means that all the uncertain 
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Table 5  DMU information table DMU X Y

e
1

e
2

e
3

y
1

y
2

u1 (0.8, 0.1) (0.2, 0.4) (0.6, 0.4) (0.3, 0.5) (0.7, 0.2)
u2 (0.5, 0.5) (0.2, 0.7) (0.4, 0.4) (0, 0.7) (0.3, 0.5)
u3 (0.5, 0.4) (0.3, 0.7) (0.7, 0.1) (0.5, 0.3) (0.3, 0.4)
u4 (0.9, 0.1) (0.2, 0.3) (0.6, 0.3) (0.3, 0.5) (0.5, 0.5)
u5 (0.3, 0.6) (0, 0.8) (0.1, 0.7) (0, 0.1) (0.2, 0.8)
u6 (0.3, 0.7) (0, 1) (0.5, 0.4) (0.2, 0.6) (0.4, 0.4)
u7 (0.4, 0.5) (0.1, 0.7) (0.3, 0.7) (0.3, 0.6) (0.3, 0.5)
u8 (0.7, 0.3) (0.1, 0.9) (0.3, 0.6) (0.4, 0.4) (0.2, 0.6)
u9 (0.3, 0.5) (0, 0.9) (0.5, 0.5) (0.4, 0.5) (0.1, 0.7)
u10 (0.3, 0.4) (0.1, 0.8) (0.6, 0.4) (0.4, 0.5) (0.3, 0.6)
� 1/3 1/3 1/3 1/2 1/2

Table 6  Input–output connection 
degree

DMU Input variable connection Output 
variable con-
nection

He1e2
He1e3

He2e3
Hy1y2

u1 0.17� + 0.17 0.03� + 0.3 0.13� 0.15� + 0.15

u2 0.03� − 0.17 0.07� 0.1� − 0.17 0.25� − 0.45

u3 0.03� − 0.1 0.1� + 0.23 0.07� + 0.07 0.3� + 0.05

u4 0.17� + 0.23 0.03� + 0.37 0.2� + 0.07 0.1� − 0.1

u5 0.1� − 0.37 0.1� − 0.3 0.13� − 0.47 0.45� − 0.35

u6 −0.47 0.03� − 0.1 0.03� − 0.3 0.2� − 0.2

u7 0.1� − 0.23 0.03� − 0.17 0.07� − 0.33 0.15� − 0.25

u8 −0.4 0.03� + 0.03 0.03� − 0.37 0.2� − 0.2

u9 0.1� − 0.37 0.07� − 0.07 0.03� − 0.3 0.15� − 0.35

u10 0.13� − 0.27 0.1� + 0.03 0.03� − 0.17 0.1� − 0.2

Table 7  The distance between 
each input–output and the 
average value

DMU X Y

e
1

e
2

e
3

y
1

y
2

u1 0.911 0.855 0.987 0.989 0.792
u2 0.964 0.995 0.974 0.827 0.992
u3 0.992 0.960 0.860 0.935 0.956
u4 0.896 0.715 0.979 0.989 0.959
u5 0.853 0.975 0.730 0.500 0.899
u6 0.810 0.949 1.000 0.944 0.984
u7 0.943 0.995 0.872 0.942 0.992
u8 0.980 0.968 0.908 0.988 0.954
u9 0.876 0.968 0.984 0.960 0.890
u10 0.860 0.990 0.987 0.960 0.982
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parts of uj hold a supportive attitude at this time. At this time, uj is in line with the 
optimistic attitude in the real world and adopts an optimistic strategy; when � is equal to 
zero, indicating that the uncertain part of uj at this time has an attitude of neither sup-
port nor opposition. At this time, uj conforms to the neutral attitude in the real world 
and adopts a neutral strategy; when � is equal to negative unity, it indicates that the 
uncertain part of uj are opposed and adopt a pessimistic strategy at this time.

Then, according to the DMU information table and Definition 9, the intuitionistic 
fuzzy mean of each input–output is obtained:

(�
input
p , �

input
p ) = {(0.56, 0.35), (0.16, 0.68), (0.51, 0.4)},

(�
output
q , �

output
q ) = {(0.33, 0.42), (0.36, 0.49)}.

Furthermore, the cosine distance shown in Table 7 can be obtained based on the intu-
itionistic fuzzy mean and DMU information table. According to Table 7, the following 
results can be obtained: 

(1) The cosine value of the angle between the input of each DMU and the average value 
in the optimal state is is as follows: 0.987, 0.995, 0.992, 0.979, 0.975, 1.000, 0.995, 
0.980, 0.984, 0.990;

(2) The cosine value of the angle between the output of each DMU under optimal condi-
tions and the average value is as follows: 0.989, 0.992, 0.956, 0.989, 0.899, 0.984, 
0.992, 0.988, 0.960, 0.982;

(3) The cosine value of the angle between the input of each DMU in the worst state and 
the average value is as follows: 0.855, 0.964, 0.860, 0.715, 0.730, 0.810, 0.872, 0.908, 
0.876, 0.860;

(4) The cosine value of the angle between the input of each DMU in the worst state and 
the average value is as follows: 0.792, 0.827, 0.935, 0.959, 0.500, 0.944, 0.942, 0.954, 
0.890, 0.960. Finally, according to Definition 10 and Table 7, the loss functions of all 
DMUs can be calculated as shown in Table 8.

Taking u1 , u2 and u3 as an example, let the risk coefficient � = 0.2 when in state C, 
we can get 𝜆3

NP
< 𝜆2

NP
< 𝜆1

NP
 and 𝜆3

BP
< 𝜆2

BP
< 𝜆1

BP
 , which means that no matter whether 

the expert takes the acceptance or rejection decision during the evaluation process, 

Table 8  Loss function of each 
DMU �

j

PP
�
j

BP
�
j

NP
�
j

PN
�
j

BN
�
j

NN

u1 0 0.020 0.099 0.962 0.192 0
u2 0 0.009 0.044 0.986 0.197 0
u3 0 0.004 0.018 0.949 0.190 0
u4 0 0.002 0.010 0.910 0.182 0
u5 0 0.030 0.150 0.909 0.182 0
u6 0 0.007 0.037 0.825 0.165 0
u7 0 0.000 0.001 0.938 0.188 0
u8 0 0.003 0.013 0.945 0.189 0
u9 0 0.010 0.048 0.946 0.189 0
u10 0 0.001 0.003 0.938 0.188 0
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the loss function of u3 is smaller than the plan u1 and u2 . The loss function of the first 
scheme is greater than the loss function of the other schemes. In the same way, when in 
state ¬C , there are 𝜆3

BN
< 𝜆1

BN
< 𝜆2

BN
 and 𝜆3

PN
< 𝜆1

PN
< 𝜆2

PN
.

Observing Definitions 6 and 11 highlights the influence of the input–output connec-
tion on the benefit score. Consequently, based on the relationships outlined in Table 6, 
the following conclusions can be derived. 

(1) Adopt an optimistic strategy: For input indicators, the largest connection degree 
between input indicators e1j and e2j of the system u4 means that the system u4can con-
sume less input under the same output standard. The connection degree among the 
overall input indicators is the largest, which is higher than other systems. For output 
indicators, the largest connection degree between the output indicators y1j and y2j of 
system u3 means that the system u3 can obtain higher output under the same input 
standard. Among the overall output indicators, u3 has the largest connection degree, 
which is better than other systems.

(2) Adopt a neutral strategy: System u4 can consume less input under the same output 
standard. u4 has the highest degree of connection among the overall input indicators 
and has higher benefits than other systems. System u1 can obtain higher output under 
the same input standard. Among the overall output indicators, u1 has the largest con-
nection degree and has higher benefits than other systems.

(3) Adopt a pessimistic strategy: System u4 can consume less input under the same output 
standard, u4 has the highest degree of connection among the overall input indicators 
and has higher benefits than other systems. System u1 can obtain higher output under 
the same input standard. Among the overall output indicators, u1 has the highest degree 
of connection and has higher benefits than other systems.

4.2  Experimental analysis

In this section, experiments are conducted on the reservoir dam data in the literature (Chen 
et al. 2022), and the classification and ranking results are obtained for comparative analy-
sis with other methods. Among them, there are a total of 19 reservoir dams, denoted as 
M = {u1, u2, ..., u19} . To test their risk levels in earthquakes, they are evaluated by setting 
three input indicators and three output indicators. The evaluation inputs set during the 
evaluation process include the degree of earthquake risk. ( e1j ), dam characteristics ( e2j ) 
and pre-earthquake status ( e3j ), and the output indicators include seismic cracks ( y1j ), leak-
age ( y2j ) and seismic deformation ( y3j ). When conducting the evaluation, the intuitionistic 
fuzzy evaluation information of these dams is shown in Table 9.

Firstly, based on the division rules of the three strategies in Definition 11, the benefit 
scores of DMU under the three strategies are calculated according to IFS-CCR IV and IFS-
BCC, as shown in Tables 10 and 11.

Secondly, if actions aP , aB and aN are taken against a DMU that actually belongs to C, 
the losses are �

PP
 , �

BP
 and �

NP
 respectively; On the contrary, if actions aP , aB and aN are 

taken against a DMU that actually belongs to ¬C , the losses are �
PN

 , �
BN

 and �
NN

 respec-
tively. Therefore, based on the original loss function and according to Definition 10, the 
loss function of each DMU fusion input–output is calculated as shown in Table 12.

Finally, the benefit scores in Table  11 are used as conditional probabilities to calcu-
late the expected decision losses of each DMU taking corresponding actions under 
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Table 9  DMU information table

DMU X Y

e
1

e
2

e
3

y
1

y
2

y
3

u1 (0.877,0.062) (0.344,0.482) (0.572,0.214) (0.656,0.117) (0.219,0.634) (0.096,0.788)
u2 (0.873,0.063) (0.236,0.623) (0.291,0.556) (0.505,0.303) (0.765,0.006) (0.492,0.318)
u3 (0.874,0.063) (0.116,0.759) (0.304,0.526) (0.369,0.447) (0.220,0.629) (0.724,0.036)
u4 (0.852,0.074) (0.313,0.525) (0.426,0.39) (0.437,0.378) (0.683,0.093) (0.273,0.574)
u5 (0.847,0.076) (0.292,0.537) (0.161,0.7) (0.560,0.219) (0.260,0.576) (0.369,0.444)
u6 (0.851,0.075) (0.422,0.393) (0.43,0.384) (0.656,0.122) (0.396,0.424) (0.150,0.723)
u7 (0.949,0.025) (0.167,0.671) (0.099,0.759) (0.027,0.855) (0.246,0.571) (0.301,0.503)
u8 (0.85,0.075) (0.204,0.64) (0.048,0.84) (0.232,0.605) (0.751,0.124) (0.205,0.639)
u9 (0.861,0.069) (0.172,0.69) (0.048,0.846) (0.656,0.114) (0.683,0.083) (0.219,0.631)
u10 (0.862,0.069) (0.122,0.739) (0.205,0.633) (0.587,0.174) (0.178,0.667) (0.137,0.719)
u11 (0.796,0.102) (1.0,0.0) (0.304,0.539) (0.519,0.286) (0.410,0.413) (0.096,0.795)
u12 (0.865,0.067) (0.16,0.71) (0.521,0.277) (0.082,0.808) (0.738,0.028) (0.519,0.279)
u13 (0.936,0.032) (0.391,0.417) (0.24,0.601) (0.301,0.526) (0.601,0.171) (0.000,0.908)
u14 (0.813,0.093) (0.257,0.578) (0.378,0.431) (0.396,0.409) (0.328,0.491) (0.232,0.609)
u15 (0.947,0.026) (0.332,0.469) (0.275,0.539) (0.000,0.896) (0.123,0.732) (0.232,0.593)
u16 (0.842,0.079) (0.209,0.637) (0.572,0.203) (0.109,0.764) (0.464,0.329) (0.219,0.625)
u17 (0.829,0.085) (0.555,0.253) (0.378,0.459) (0.642,0.153) (0.383,0.453) (0.683,0.106)
u18 (0.925,0.038) (0.306,0.506) (0.235,0.593) (0.096,0.771) (0.437,0.348) (0.041,0.843)
u19 (0.977,0.012) (0.078,0.802) (0.369,0.439) (0.246,0.590) (0.383,0.422) (0.287,0.539)

Table 10  DMU’s benefit score 
for CRS

DMU Benefit score

�Opt �Pes �Neu

u1 0.778 0.894 0.895
u2 0.976 0.982 0.977
u3 0.912 0.948 0.908
u4 0.851 0.943 0.845
u5 0.656 0.874 0.616
u6 0.798 0.918 0.778
u7 0.670 0.558 0.570
u8 0.825 0.948 0.949
u9 0.887 0.970 0.895
u10 0.672 0.845 0.846
u11 0.557 0.841 0.491
u12 0.936 0.963 0.935
u13 0.697 0.867 0.641
u14 0.331 0.738 0.206
u15 0.164 0.394 0.429
u16 0.417 0.742 0.746
u17 0.869 0.973 0.883
u18 0.342 0.678 0.690
u19 0.295 0.714 0.717
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Table 11  DMU’s benefit score 
for VRS

DMU Benefit score

�Opt �Pes �Neu

u1 0.784 0.799 0.809
u2 1.000 0.880 0.992
u3 0.938 1.000 0.920
u4 0.8641 0.876 0.888
u5 0.679 0.973 0.722
u6 0.809 0.877 0.847
u7 0.342 0.937 0.388
u8 0.826 1.000 1.000
u9 0.864 1.000 0.876
u10 0.717 1.000 0.738
u11 0.667 1.000 0.743
u12 0.962 0.955 0.955
u13 0.639 0.663 0.683
u14 0.514 1.000 0.580
u15 0.293 0.621 0.338
u16 0.559 0.976 0.617
u17 0.884 0.938 0.927
u18 0.466 0.705 0.518
u19 0.378 1.000 0.439

Table 12  Loss function of each 
DMU

�
PP

�
BP

�
NP

�
PN

�
BN

�
NN

u1 5.25 5.282 8.156 10.194 7.169 3.95
u2 0.25 4.758 9.809 7.191 5.138 4.75
u3 0.50 4.032 8.406 6.594 4.869 4.50
u4 5.85 6.004 6.784 10.266 5.703 2.55
u5 5.50 5.774 7.750 10.200 4.80 4.15
u6 1.75 1.961 9.347 8.553 4.531 5.00
u7 5.75 5.885 8.011 9.639 4.128 2.15
u8 1.00 1.264 8.572 6.928 5.486 4.35
u9 0.00 5.011 10.354 5.396 4.079 4.00
u10 1.95 2.086 9.135 8.115 5.623 5.35
u11 5.45 5.515 6.052 10.248 5.350 3.95
u12 1.25 1.481 10.107 7.643 4.379 5.50
u13 5.35 5.672 6.299 9.851 7.020 5.15
u14 4.85 5.714 6.931 10.719 7.144 4.25
u15 4.75 4.894 5.536 10.814 8.663 6.85
u16 4.65 5.977 6.774 10.462 6.585 5.00
u17 0.75 1.675 8.505 8.745 4.549 4.25
u18 4.50 5.029 6.218 10.286 7.906 6.00
u19 5.35 5.462 8.686 9.314 6.363 4.00
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different strategies. To display the expected losses of the three strategies more intuitively, 
an expected loss bar chart is drawn as shown in Fig. 3.

Among them, Fig. 3(a-c) shows the expected decision loss of DMU under the optimistic 
strategy, neutral strategy and pessimistic strategy based on CRS method, and Fig. 3(d-f) 
shows the expected decision loss of DMU under the optimistic strategy, neutral strategy 
and pessimistic strategy based on VRS method. The figure can be seen that when the DMU 
takes action Γ = {aP, aB, aN} , it will be classified into the POS domain, BND domain or 
NEG domain. Therefore, according to Definition 11, the corresponding decision rules can 
be obtained as shown in Tables 13 and 14.

According to Tables 13 and 14, the decision domains under the three strategies can be 
drawn as shown in Fig. 4.

Finally, the schemes in each classification area are sorted according to the expected 
decision loss, and all schemes are sorted according to the rule POS > BND > NEG . The 
results are shown in Table 15.

Table 15 reveals that, in both the optimistic and pessimistic strategies, dam u2 exhibits 
the highest risk level, followed by dam u9 . In the neutral strategy, the risk level of dam u9 is 
the highest, followed by dam u2 , of which three under the strategy, the risk level of dam u15 
is the lowest, indicating that dam u15 has better seismic performance in earthquakes.

4.3  Comparative analysis

This section compares the IFS-CCR model and IFS-BCC model with several existing 
DEA models to illustrate the effectiveness of the proposed IFS-CCR model and IFS-BCC 
model. These five methods are Wang’s method (Wang et al. 2005), Wang’s method (Wang 
et al. 2016), Wu’s method (Jie et al. 2013), Yu’s method (Yul et al. 2019) and Liu’s method 
(Chen et al. 2022). The decision areas and ranking results of the five models and the model 
in this article are shown in Fig. 4 and Table 14. The outcomes presented in the table and 

Fig. 3  Expected losses of DMU under three strategies
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figure make it apparent that Wang’s model in Wang et al. (2005) is evidently incapable of 
achieving a comprehensive ranking for all DMUs. In the model (Wang et  al. 2016), the 
sorting relationship between u2 and u9 cannot be obtained, and both u2 and u9 are regarded 
as optimal solutions. Although the sorting order of different models is not the same, the 
optimal DMU is the same, and the consistent results illustrate the rationality and effective-
ness of the proposed model. In addition, the reason why there are certain differences in the 
ranking results of the three strategies is that the degree of optimism of the input–output 
connection is different. The ranking results of different methods are shown in Table 16.

Reviewing Table  16, it becomes apparent that the comparison model utilized closely 
aligns with the top-ranked DMU in the proposed method. This implies that all ranking 
methods employ identical criteria for evaluation. In addition, from the perspective of local 
ranking results, for the group of rankings where the optimal two DMUs are u9 ≻ u2 . Neu-
tral strategy for this method, method (Chen et al. 2022) and method (Jie et al. 2013) of this 
article all consider u9 ≻ u2 , while the method (Wang et al. 2005) and method (Wang et al. 
2016). Then consider both as the optimal solution, namely u9 ≈ u2 . In the method (Yul 
et al. 2019), the optimal DMU is u9 , and the one next to u9 is not u2.

Table 13  Decision rules of DMU under three strategies based on CRS

DMU Opt Neu Pes

decision rules decision loss decision rules decision loss decision rules decision loss

u1 BND 5.701 BND 5.482 BND 5.480
u2 POS 0.417 POS 0.375 POS 0.410
u3 POS 1.036 POS 0.817 POS 1.061
u4 BND 5.959 BND 5.987 BND 5.957
u5 BND 5.439 BND 5.651 BND 5.532
u6 BND 2.480 BND 2.172 BND 2.532
u7 NEG 2.543 BND 5.108 BND 5.129
u8 BND 2.003 BND 1.308 POS 1.302
u9 POS 0.610 POS 0.162 POS 0.567
u10 BND 3.246 BND 2.634 BND 2.631
u11 NEG 5.121 BND 5.489 NEG 4.982
u12 POS 1.659 POS 1.487 POS 1.666
u13 NEG 5.951 BND 5.851 NEG 5.887
u14 NEG 5.137 BND 6.089 NEG 4.802
u15 NEG 6.635 NEG 6.332 NEG 6.286
u16 NEG 5.740 BND 5.134 POS 6.117
u17 POS 1.797 POS 0.966 POS 1.685
u18 NEG 6.075 BND 5.955 BND 5.921
u19 NEG 5.382 BND 5.720 BND 5.717
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In addition, because the method in this article considers the input–output connection, 
resulting in differences in local ranking results, the optimal DMU in the optimistic strategy 
and pessimistic strategy in this article is u2 . Based on several methods, the selection of 
the worst DMU is the same, and u15 is ranked as the worst DMU. Since different decision 
methods have differences in program selection, decision-makers need to clearly understand 
the background and positioning of each method to correctly select the most appropriate 
decision method.

Table 14  Decision rules of DMU under three strategies based on VRS

DMU Opt Neu Pes

decision rules decision loss decision rules decision loss decision rules decision loss

u1 BND 5.691 BND 5.661 BND 5.643
u2 POS 0.250 POS 1.083 POS 0.304
u3 POS 0.876 POS 0.500 POS 0.986
u4 BND 5.963 BND 5.967 BND 5.970
u5 BND 5.461 POS 5.627 BND 5.503
u6 BND 2.453 POS 2.277 BND 2.355
u7 NEG 4.156 BND 5.774 NEG 4.426
u8 BND 1.998 POS 1.000 POS 1.000
u9 POS 0.736 POS 0.000 POS 0.670
u10 BND 3.087 POS 1.950 BND 3.011
u11 NEG 5.351 POS 5.450 BND 5.473
u12 POS 1.493 POS 1.538 POS 1.538
u13 NEG 5.884 NEG 5.912 NEG 5.935
u14 NEG 5.627 POS 4.850 NEG 4.805
u15 NEG 6.464 NEG 6.034 NEG 6.406
u16 NEG 5.991 POS 4.789 NEG 6.094
u17 POS 1.680 POS 1.246 POS 1.334
u18 NEG 6.102 BND 5.878 NEG 6.113
u19 NEG 5.772 POS 5.350 BND 5.967

Fig. 4  Classification results of three strategies



 X. Xin et al.235 Page 30 of 39

Ta
bl

e 
15

  
R

an
ki

ng
 re

su
lts

 o
f t

he
 th

re
e 

str
at

eg
ie

s

M
et

ho
ds

St
ra

te
gi

es
So

rt 
re

su
lts

O
pt

u
2
≻
u
9
≻
u
3
≻
u
1
2
≻
u
1
7
≻
u
8
≻
u
6
≻
u
1
0
≻
u
5
≻
u
1
≻
u
4
≻
u
7
≻
u
1
1
≻
u
1
4
≻
u
1
9
≻
u
1
6
≻
u
1
3
≻
u
1
8
≻
u
1
5

C
R

S
Ne

u
u
9
≻
u
2
≻
u
3
≻
u
1
7
≻
u
1
2
≻
u
8
≻
u
6
≻
u
1
0
≻
u
7
≻
u
1
≻
u
1
1
≻
u
5
≻
u
1
9
≻
u
1
3
≻
u
1
8
≻
u
4
≻
u
1
4
≻
u
1
6
≻
u
1
5

Pe
s

u
2
≻
u
9
≻
u
3
≻
u
8
≻
u
1
2
≻
u
1
7
≻
u
1
6
≻
u
6
≻
u
1
0
≻
u
7
≻
u
5
≻
u
1
≻
u
1
9
≻
u
1
8
≻
u
4
≻
u
1
4
≻
u
1
1
≻
u
1
3
≻
u
1
5

O
pt

u
2
≻
u
9
≻
u
3
≻
u
1
2
≻
u
1
7
≻
u
8
≻
u
6
≻
u
1
0
≻
u
5
≻
u
1
≻
u
4
≻
u
7
≻
u
1
1
≻
u
1
4
≻
u
1
9
≻
u
1
3
≻
u
1
6
≻
u
1
8
≻
u
1
5

V
R

S
Ne

u
u
9
≻
u
3
≻
u
8
≻
u
2
≻
u
1
7
≻
u
1
2
≻
u
1
0
≻
u
6
≻
u
1
6
≻
u
1
4
≻
u
1
9
≻
u
1
1
≻
u
5
≻
u
1
≻
u
7
≻
u
1
8
≻
u
4
≻
u
1
3
≻
u
1
5

Pe
s

u
2
≻
u
9
≻
u
3
≻
u
8
≻
u
1
7
≻
u
1
2
≻
u
6
≻
u
1
0
≻
u
1
1
≻
u
5
≻
u
1
≻
u
1
9
≻
u
4
≻
u
7
≻
u
1
4
≻
u
1
3
≻
u
1
6
≻
u
1
8
≻
u
1
5



Intuitionistic fuzzy three‑way decision method based on data… Page 31 of 39 235

Ta
bl

e 
16

  
Si

de
w

ay
st

ab
le

M
et

ho
d

So
rt 

re
su

lts
O

pt
im

al

W
an

g 
et

 a
l. 

(2
00

5)
u
2
≈
u
3
≈
u
6
≈
u
8
≈
u
9
≈
u
1
0
≈
u
1
2
≈
u
1
7
≻
u
1
≻
u
1
9
≻
u
5
≻
u
4
≻
u
1
1
≻
u
7
≻
u
1
3
≻
u
1
4
≻
u
1
6
≻
u
1
8
≻
u
1
5

-
W

an
g 

et
 a

l. 
(2

01
6)

u
2
≈
u
9
≻
u
1
7
≻
u
3
≻
u
1
2
≻
u
8
≻
u
6
≻
u
1
0
≻
u
4
≻
u
3
≻
u
1
≻
u
1
9
≻
u
1
1
≻
u
1
3
≻
u
1
4
≻
u
7
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
2
,
u
9

W
u 

et
 a

l. 
(2

01
3)

u
9
≻
u
2
≻
u
1
7
≻
u
8
≻
u
4
≻
u
3
≻
u
1
2
≻
u
5
≻
u
6
≻
u
1
0
≻
u
1
9
≻
u
1
4
≻
u
1
1
≻
u
1
3
≻
u
1
≻
u
1
6
≻
u
7
≻
u
1
8
≻
u
1
5

u
9

Y
u 

et
 a

l. 
(2

01
9)

u
9
≻
u
3
≻
u
2
≻
u
8
≻
u
1
7
≻
u
1
2
≻
u
5
≻
u
4
≻
u
1
0
≻
u
6
≻
u
1
9
≻
u
7
≻
u
1
4
≻
u
1
≻
u
1
3
≻
u
1
1
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
9

Li
u 

et
 a

l.(
O

pt
) C

he
n 

et
 a

l. 
(2

02
2)

u
9
≻
u
2
≻
u
3
≻
u
1
7
≻
u
8
≻
u
1
2
≻
u
6
≻
u
1
0
≻
u
1
≻
u
1
9
≻
u
1
1
≻
u
5
≻
u
7
≻
u
1
3
≻
u
4
≻
u
1
4
≻
u
1
8
≻
u
1
6
≻
u
1
5

u
9

Li
u 

et
 a

l.(
Pe

s)
 C

he
n 

et
 a

l. 
(2

02
2)

u
9
≻
u
2
≻
u
3
≻
u
1
7
≻
u
8
≻
u
1
2
≻
u
6
≻
u
1
0
≻
u
5
≻
u
1
≻
u
1
9
≻
u
1
1
≻
u
7
≻
u
4
≻
u
1
4
≻
u
1
3
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
9

Li
u 

et
 a

l.(
N

eu
) C

he
n 

et
 a

l. 
(2

02
2)

u
9
≻
u
2
≻
u
3
≻
u
1
7
≻
u
8
≻
u
1
2
≻
u
6
≻
u
1
0
≻
u
1
≻
u
1
9
≻
u
5
≻
u
1
1
≻
u
4
≻
u
7
≻
u
1
3
≻
u
1
4
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
9

O
ur

s I
FS

-C
C

R
 (O

pt
)

u
2
≻
u
9
≻
u
3
≻
u
1
2
≻
u
1
7
≻
u
8
≻
u
6
≻
u
1
0
≻
u
5
≻
u
1
≻
u
4
≻
u
7
≻
u
1
1
≻
u
1
4
≻
u
1
9
≻
u
1
6
≻
u
1
3
≻
u
1
8
≻
u
1
5

u
2

O
ur

s I
FS

-C
C

R
 (N

eu
)

u
9
≻
u
2
≻
u
3
≻
u
1
7
≻
u
1
2
≻
u
8
≻
u
6
≻
u
1
0
≻
u
7
≻
u
1
≻
u
1
1
≻
u
5
≻
u
1
9
≻
u
1
3
≻
u
1
8
≻
u
4
≻
u
1
4
≻
u
1
6
≻
u
1
5

u
9

O
ur

s I
FS

-C
C

R
 (P

es
)

u
2
≻
u
9
≻
u
3
≻
u
8
≻
u
1
2
≻
u
1
7
≻
u
1
6
≻
u
6
≻
u
1
0
≻
u
7
≻
u
5
≻
u
1
≻
u
1
9
≻
u
1
8
≻
u
4
≻
u
1
4
≻
u
1
1
≻
u
1
3
≻
u
1
5

u
2

O
ur

s I
FS

-B
C

C
 (O

pt
)

u
2
≻
u
9
≻
u
3
≻
u
1
2
≻
u
1
7
≻
u
8
≻
u
6
≻
u
1
0
≻
u
5
≻
u
1
≻
u
4
≻
u
7
≻
u
1
1
≻
u
1
4
≻
u
1
9
≻
u
1
3
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
2

O
ur

s I
FS

-B
C

C
 (N

eu
)

u
9
≻
u
3
≻
u
8
≻
u
2
≻
u
1
7
≻
u
1
2
≻
u
1
0
≻
u
6
≻
u
1
6
≻
u
1
4
≻
u
1
9
≻
u
1
1
≻
u
5
≻
u
1
≻
u
7
≻
u
1
8
≻
u
4
≻
u
1
3
≻
u
1
5

u
9

O
ur

s I
FS

-B
C

C
 (P

es
)

u
2
≻
u
9
≻
u
3
≻
u
8
≻
u
1
7
≻
u
1
2
≻
u
6
≻
u
1
0
≻
u
1
1
≻
u
5
≻
u
1
≻
u
1
9
≻
u
4
≻
u
7
≻
u
1
4
≻
u
1
3
≻
u
1
6
≻
u
1
8
≻
u
1
5

u
2



 X. Xin et al.235 Page 32 of 39

4.4  Relevance analysis

To further demonstrate the rationality and feasibility of this method compared to other 
methods, the significance analysis of the proposed model and each method is shown in 
Figs. 5 and 6 for the excellence of all DMUs. The letters represent whether the difference 
is significant. If those with the same marking letters are considered to have insignificant 
differences, and those with different marking letters are considered to have significant dif-
ferences, among which p ≤ 0.01.

Figure  5a illustrates a pronounced and significant difference between u2 and u9 when 
compared to u15 , u16 , and u18 . There is no significant difference between u2 and u9 , and 
there is no significant difference between u15 , u16 and u18 . Observing Fig. 5b to i, a distinc-
tion is evident in the approach of this paper compared to the method Yul et al. (2019) when 
assessing the dissimilarity between u2 , u9 , and u15 , u16 , u18 . It is consistent with the judg-
ment in this section, namely u2 and u9 are the optimal solutions. On the contrary, u15 , u16 
and u18 are the worst solutions.

Fig. 5  Comparison of sorting results based on CRS
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Fig. 6  Comparison of sorting results based on VRS

Fig. 7  The impact of � on the loss function
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4.5  Parameter analysis

The risk coefficient analysis results of the loss function in the proposed intuitionistic fuzzy 
three-way decision model are shown in Fig. 7. When there is no risk coefficient, the loss 
function of each DMU is not affected. As the risk aversion coefficient increases, the overall 
loss function of each DMU shows an upward trend.

Due to the changes in the loss function, the expected decision loss of DMU also 
changes. According to the decision rules in Definition 11, different ranking results due 
to different risk coefficients can be obtained, as shown in Fig. 8. Observing the figure, it 
is evident that the ranking results of this program remain constant as the risk coefficient 
steadily increases. This stability implies that the impact of the risk coefficient on the results 
is relatively consistent. Additionally, it is notable that the risk coefficient significantly influ-
ences the three DMUs u1 , u13 , and u16, while the impact is minimal on the four DMUs u2 , 
u3 , u9 , and u15 . It is consistent with the decision result in Table 13, u2 , u3 and u9 are DMUs 
with excellent ranking results and u15 is the DMU with the worst ranking results.

5  Conclusions

In this paper, a novel intuitionistic fuzzy three-way decision model based on DEA is pro-
posed to address decision-making and ranking problems involving multi-input–output 
intuitionistic fuzzy information. Several key advancements over traditional approaches are 
introduced. Firstly, by extending the DEA model to an intuitionistic fuzzy environment, 
a corresponding model is developed that derives the benefit scores of DMUs, thereby 
enhancing the model’s capability to handle uncertainty. Additionally, the proposed loss 

Fig. 8  The impact of � on DMU 
sorting
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function integrates the impacts of inputs and outputs, eliminating the subjectivity inherent 
in setting loss functions and improving the reliability of the results. Secondly, the model 
incorporates the input–output connection degree during the solving process, consider-
ing interactions between different inputs and outputs. This extension includes optimistic, 
neutral, and pessimistic strategies, accommodating decision-makers with varying risk 
preferences. Thirdly, an intuitionistic fuzzy three-way decision model is constructed from 
three dimensions, thus expanding the application scope of traditional DEA. Despite these 
advancements, the approach has some limitations. The preprocessing process for large-
scale datasets may require significant computational resources. Additionally, the relation-
ship between optimal decision-making units and decision rules has not been explored in 
depth from the perspective of logical implication.

The scientific contributions of the proposed method lie in its ability to combine DEA 
and intuitionistic fuzzy set theory, offering novel perspectives and tools for optimization 
and ordering in complex decision environments with multiple inputs and outputs. Practi-
cally, this approach provides a more nuanced and reliable way to rank decision-making 
units under uncertainty, which can be beneficial in various fields such as economics, 
management, and engineering. For future research, further investigation into the correla-
tion between multiple input–output decision-making units and three-way decision rules 
from the perspectives of conflict analysis and logical implication is planned. Additionally, 
exploring methods to optimize the computational efficiency of the model will be a priority. 
Techniques such as adversarial generation networks and data block/layering methods could 
be employed to transform large-scale data, using a "divide and conquer" strategy to solve 
the DEA model for each block. By addressing these challenges, the goal is to enhance the 
practical applicability and generalizability of this approach, providing robust solutions for 
intelligent decision-making in environments characterized by uncertain information.

Given the uncertainty of data, future research could explore several avenues to 
enhance and expand the current work. This includes investigating robust optimiza-
tion techniques to enhance the model’s robustness against uncertainties in input data, 
and exploring stochastic programming methods to handle probabilistic uncertainty 
in decision-making processes. Additionally, developing hybrid models that combine 
intuitionistic fuzzy logic with other decision-making frameworks, such as multi-
criteria decision analysis, could broaden the model’s applicability and effectiveness. 
Applying the model to various real-world scenarios, including healthcare, finance, 
logistics, and environmental management, would help validate its practical effective-
ness and versatility. Furthermore, creating more advanced algorithms to improve the 
computational efficiency and scalability of the model will make it suitable for large-
scale problems. Extending the model to dynamic decision-making environments, 
where the decision-making process evolves over time with changing data and con-
ditions, is another promising direction. Finally, integrating machine learning tech-
niques could enhance the decision-making process by learning from large datasets 
and improving predictive accuracy. These potential directions offer valuable pathways 
for further exploration and development in this field.
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Appendix A: table of acronyms

Abbreviations Meaning Abbreviations Meaning

DEA Data Envelopment Analysis Neg Negative
IFS Intuitionistic Fuzzy Bnd Boundary
DMUs Decision Making Units Opt Optimistic strategy
IFS-CCR Intuitionistic Fuzzy-CCR Pes Pessimistic strategy
IFWA Iterative Fuzzy Weighted Averaging Neu Neutral strategy
IFS-BCC Intuitionistic Fuzzy-BCC Pos Positive
CRS Constant Returns to Scale VRS Variable Returns to Scale
PROMETHEE II Preference Ranking Organization Method 

for Enrichment Evaluations
AHP Analytic Hierarchy Process

SMAA2 Stochastic Multi-criteria Acceptability 
Analysis 2

MAGDM Multi-Attribute Group 
Decision-Making

Appendix B: symbol thumbnail table

Symbols Meaning

U Domain of discourse
u ∈ M M is a finite non-empty DMU set, u is a DMU
T Intuition fuzzy sets on U
� = (�� , ��) intuitionistic fuzzy numbers
S(�) Score function
L Set function (benefit measureL(Aj))
E,F ∈ P(X) Power set
A Assemble ( Aj = {x1, ..., xn})
j Number of DMUs
m Number of input variables
s Number of output variables
X Input variable set
Y Output variable set
e Input variables
y Output variables
p p-th input
q q-th output
o//O Output weights
i//I Input weights
I({x}) Benefit measurement of input variable x
O({y}) Benefit measurement of output variable y
H Input-output connection
�(� ∈ (0, 1)) Risk aversion coefficient
� Loss function
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Symbols Meaning

� vector angle
W Set of weight
� Variable weights
� Benefit score
� Hesitation value coefficient
Γ = {aP, aB, aN} Action set
Ω = {C,¬C} State set
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