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Abstract
Accurate and rapid disease detection is necessary to manage health problems early. Rapid 
increases in data amount and dimensionality caused challenges in many disciplines, with 
the primary issues being high computing costs, memory costs, and low accuracy perfor-
mance. These issues will arise since Machine Learning (ML) classifiers are mostly used 
in these fields. However, noisy and irrelevant features have an impact on ML accuracy. 
Therefore, to choose the best subset of features and decrease the dimensionality of the data, 
Metaheuristics (MHs) optimization algorithms are applied to Feature Selection (FS) using 
various modalities of medical imaging or disease datasets with different dimensions. The 
review starts by giving a general overview of the many approaches to AI algorithms, fol-
lowed by a general overview of the various MH algorithms for healthcare applications, 
an analysis of MHs boosted AI for healthcare applications, and using a wide range of 
research databases as a data source for access to numerous field publications. The final 
section of this review discusses the problems and challenges facing healthcare application 
development.
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1 Introduction

The quadruple objective for healthcare is to enhance population health, patient experience 
of treatment, caregiver experience, and lower the steadily rising cost of care, which pre-
sents considerable challenges to healthcare systems around the world. Governments, pay-
ers, regulators, and providers are under pressure to innovate and alter healthcare delivery 
models as the world’s population ages, the prevalence of chronic diseases increases, and 
healthcare costs increase. Furthermore, healthcare systems today face the challenge of hav-
ing to "perform" (provide efficient, high-quality care) and "transform" (improve) care on a 
scale by integrating real-world data-driven insights into patient care. The global pandemic 
has intensified this challenge (Davis 2019). Evaluation and treatment of primary diseases 
and prompt detection of sequelae that develop due to or accompany the basic ailment are 
essential components of successful patient care in a clinical context. Modern medical 
advancements have made a significant contribution to computer technology and other cut-
ting-edge tools that can benefit people in a variety of ways. Variable uses include helping 
with surgery, testing, and the formulation of numerous drugs, and using a variety of instru-
ments for instruction and training at other medical universities (Kaur and Kumar 2020). 
Each type of physical examination performed in the medical field uses various computing 
tools in one way or another. Using computer-aided automated processes for all evaluation 
procedures used to diagnose various diseases would enhance performance and treatment 
(Khan and Algarni 2020).

As is well known, the amount of data generated and extracted from the healthcare indus-
try is enormous, and the rate of storing all the various healthcare data in databases associ-
ated with clinics is increasing at a much faster rate. Therefore, it is essential to process this 
data efficiently so that the extracted data can assist in the diagnosis and treatment of vari-
ous diseases in patients (Dubey 2021). Today, many researchers are working on automating 
the diagnosis and prognosis of various diseases using multiple ML algorithms to enhance 
the successful treatment of all diseases (Li et  al. 2021). Researchers are currently using 
various ML and data mining algorithms for disease diagnosis (Qiao and Yang 2019). Vari-
ous data mining, Artificial Intelligence (AI), and MH techniques can be used to develop an 
automated and intelligent system for disease detection (Kulkarni et al. 2021).

In particular, cloud computing is making it possible for efficient and secure AI systems 
to become part of the standard healthcare delivery system. Compared to the historical "on-
premises" architecture of healthcare organizations, cloud computing offers computational 
capacity for the analysis of appreciably large amounts of data at faster speeds and lower 
costs. We find that many IT companies are looking to collaborate more and more with 
healthcare organizations to advance AI-driven medical innovations made possible by cloud 
computing and the technological revolution (Wyld 2022).

Creating medical diagnoses based on images is a task that AI is equally adept at as a 
human professional. AI has the potential to enhance healthcare by reducing resource usage, 
freeing up time for doctor-patient interactions, and even assisting in the creation of custom-
ized treatments. The use of AI to understand medical images is one of the applications that 
is developing. This field depends on Deep Learning (DL), a complex form of ML in which 
a sequence of labeled images is fed into algorithms that pick out patterns within them and 
learn how to classify similar images. The identification of diseases ranging from cancer to 
eye disorders has shown potential using this method (Berwick et al. 2008).

AI and ML have become more common in healthcare environments. Artificial neural 
networks (ANNs), for example, have been used to enhance clinical diagnostic accuracy 
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by learning and eventually identifying patterns in digital images (Varghese et  al. 2010). 
Extreme Gradient Boosting is one of the ML methods used to improve disease prediction 
models (Chen et al. 2018; Commandeur et al. 2020). In the healthcare industry, computers 
are used for a variety of tasks, such as hospital information systems, medical data pro-
cessing, and laboratory computing (Mehta et al. 1994). The brains of many diagnostic and 
monitoring equipment are computers and electronic chips. A computer is made up of vari-
ous hardware parts and software that integrate and manage the operation of every physical 
part. An algorithm is a collection of diagrammed suggestions and instructions that describe 
a series of activities. MHs (Osman and Kelly 1996) were developed to provide optimal 
results for difficult data processing jobs more quickly than traditional techniques. MHs are 
governing systems for the pursuit of interaction. The inquiry space analysis is intended to 
quickly identify almost optimal solutions. There are many applications for MH computa-
tions, ranging from straightforward local search techniques to intricate learning metrics. 
The specialized approach technique and strategy can be employed to solve optimization 
problems.

A heuristic process is the foundation of an MH strategy. While the second type of MH 
method is based on a single solution approach (local search), the first type is based on 
population (random search) (Osman and Kelly 1996). Some MH calculations can be used 
to locate an ideal or a nearly ideal solution. They include a Genetic Algorithm (GA) that 
is based on genetic mechanisms (Reeves 2010), Artificial Bee Colony (ABC) that is based 
on bee behavior (Karaboga and Basturk 2007), Neural Networks (NNs) (Potvin and Smith 
2003), ant colonies that are based on ant behavior (Dorigo and Stützle 2003), and simu-
lated annealing (Henderson et al. 2003). In this review, an effective search has been con-
ducted in which publications from various research databases, including Scopus (Elsevier 
2004), PubMed, Web of Science, and others, have been deemed important for detecting 
research using AI and MH techniques in the recent decade [2014–2023].

1.1  Contribution

In this section, we discuss the value of MH algorithms for identifying different diseases. 
The method is new in that it applies MH algorithms to Decision Support Systems (DSS) for 
the single purpose of detecting different diseases or as a component of a large and hybrid 
system. The review discusses revolutionary MH algorithms and how they could be used to 
diagnose diseases. The review covers articles published in the last decade [2014–2023] for 
various disorders for which MH algorithms have been used. In this work, four key research 
questions are addressed: 

1. Which research used MH techniques and are they used to diagnose diseases?
2. Which various diseases have used MH algorithms?
3. What types of AI and MH techniques are currently used to diagnose diseases?
4. What are the issues and limitations in each research area?
5. What measurement criteria are used to evaluate the effectiveness of classification mod-

els?
6. In what additional healthcare fields could MH techniques be applied in the future?

This is a summary of the primary contributions provided by this paper: 

1. Analysis of the current research methodologies on MHs and AI techniques.
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2. Provide an overview of DL and ML techniques currently applied to classifying diseases 
using different modalities of medical imaging or disease datasets with different dimen-
sions.

3. Provide MHs currently applied to FS using different modalities of medical imaging or 
disease datasets with different dimensions.

4. Illustrate the modalities of medical imaging used for disease diagnosis.
5. Present the datasets used in the classification models for medical images or disease 

datasets with different dimensions.
6. Analysis of MHs boosted AI for healthcare applications.

1.2  Proposed model

The proposed model that will be introduced in this review will involve the following steps, 
as shown in Fig. 1:

– Datasets: Use different disease datasets with varying sizes of dimensions extracted 
from the official repositories [University of California Irvine (UCI) (Frank 2010), Kag-
gle (Alphabet 2010), INSPIRE Datasets (The University of Iowa 1925), etc.].

– Data cleaning and pre-processing: done on the training dataset.
– Feature extraction (FE): Extract the disease features.
– FS: Help select the best-performed features of the FE.
– Classification: FS is given as input to the classification process (classifier) and is used 

to analyze the disease dataset.
– Statistical Validation: Nonparametric statistics, such as the Friedman mean rank, 

Kruskal-Wallis test, and Wilcoxon sign rank test.
– Performance evaluation: The effectiveness of the performance of the proposed tech-

nique is evaluated using an evaluation metric and statistical analysis.

1.3  Paper structure

An overview of various AI and MH Optimization Algorithms utilized in healthcare appli-
cations is provided in this review. The remainder of this review is organized as follows: 
The basics and background for AI and MH techniques will be covered in Sect. 2, AI will be 
covered in Subsect. 2.1, and MH in Subsect. 2.2. Healthcare applications will be covered 
in Sect. 3, AI applications for healthcare applications will be covered in Subsect. 3.1, MH 
applications in Subsect.  3.2, AI and MH applications in Subsect.  3.3, research issues of 
healthcare applications in Sect. 4, future trends and challenges are covered in Sect. 5. Sec-
tion 6 represents the conclusion of the review.

2  Basics and background

2.1  AI overview

AI is the science of building intelligent computers using algorithms that the computer 
follows to mimic human cognitive processes. With the ability to foresee issues as they 
arise, AI systems can act with intention, intelligence, and adaptability. The strength of AI 
lies in its capacity to recognize patterns and relationships in vast multidimensional and 
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multi-modal datasets. For example, AI systems may be able to distill the entirety of a 
patient’s medical history into a single number that indicates a likely diagnosis (Shubhendu 
and Vijay 2013). AI is not a single technology but contains various subfields (such as ML 
and DL) that, on their own or in combination, provide applications with more intelligence 
(Saw and Ng 2022).

AI is being utilized in healthcare applications. Figure 2a displays statistics for AI and 
healthcare applications research from 2014 to 2023 based on a Scopus search. The dis-
tribution of AI in the field of healthcare research is shown in Fig. 2b. The use and imple-
mentation of AI in clinical practice remains limited after more than a decade of intense 
concentration, and many AI products for healthcare are still in the design and development 
stages. Although there are different approaches to developing AI systems for healthcare 
applications, far too frequently attempts are made to fit square pegs into round holes, that 
is, identify healthcare issues and utilize AI solutions without giving the local context (such 
as clinical workflows, user needs and ethical implications) the attention it deserves (Topol 
2019).

2.1.1  ML overview

ML is one of the most prevalent types of AI. It is a statistical technique that allows mod-
els to be fitted to the data and ’learn’ by training on the data (Mitchell 1997). Precision 
medicine, which determines which treatment protocols are likely to be effective in a patient 
according to a variety of patient features and the treatment environment, is the most widely 
used use of classical ML in healthcare (Lee et al. 2018). A training dataset for which the 
outcome variable is known is necessary for the vast majority of ML and precision medicine 
applications; this process is known as supervised learning.

Different algorithms can be chosen for training the model. One approach is to use 
various relevant algorithms to train the model, and then use the confusion matrix and the 
Receiver Operating Curve (ROC) to assess how well it performed (Kendale et al. 2018). 
An iterative procedure creates the final model. To provide the model with the most predic-
tive power, the optimum method with a combination of parameters is chosen. To reduce the 
amount of time and computational work required for hyperparameter adjustment, certain 
methodologies have provided default settings for different parameters (Probst et al. 2019).

ML is being utilized in healthcare applications. Figure  3a shows statistics for the 
research on ML and healthcare applications from 2014 to 2023 based on a Scopus search. 
The distribution of ML in the field of healthcare research is shown in Fig. 3b.

ML algorithms used in healthcare research performed in the last decade (2014–2023) as 
shown in Table 1.

There are numerous instances in which ML algorithms are utilized to develop DSS that 
assist physicians. One instance is the stratification of the mortality risk of patients with 
infection using an ensemble model made up of four separate models, namely NN, a gradi-
ent-boosted DT, SVM, and LR algorithms COVID-19 (Gao et al. 2020). Furthermore, the 
greater ability to handle data using a variety of hardware and cloud solutions has improved 
our ability to employ sophisticated algorithms for big data (McKendrick 2021). Some 
examples of how ML is used to improve community health (Sally et al. 2022).

2.1.1.1 Logistic regression (LR) In cases where the result has two levels, the LR classifi-
cation algorithm, which is frequently used, predicts a categorical result (Brownlee 2016). 
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The drawback of LR is that interactions must be manually inserted. Regression using more 
than two layers of a multinomial logistic function can predict categorical variables (Molnar 
2020).

2.1.1.2 Support vector machine (SVM) SVM algorithms are vital algorithms with the 
potential to solve health issues with precise computing. SVM processes data using regres-
sion, classification, and outlier identification. Numerous studies have used medical data ana-
lytics to demonstrate the ability of SVM to identify a wide range of health issues, including 
diabetes, blood pressure, and cancer. With increased usage in issues related to global health, 
SVM is anticipated to undergo a major revolution (Drucker et al. 1999). SVM is a reliable 
algorithm that is essential for the diagnosis and prognosis of many cancers. Training data-
sets and independent testing are initially applied to the pre-processed database. To develop 
SVM classifiers with the highest classification accuracy, data is used (Vatsa et  al. 2005; 
Doucet et al. 2007).

The accuracy of SVM is one of the key arguments for using it in health evaluation. Its 
simplicity, clarity, and memory effectiveness are further benefits (Shen et al. 2016). SVM 
can be used; however, it has drawbacks such as the dependency on parameter precision and 
the inability to handle big datasets. By more accurately diagnosing ailments, SVM is a cru-
cial algorithm that can improve healthcare applications. (Tharwat et al. 2017).

2.1.1.3 Decision tree (DT) DT uses recursive partitioning, a technique that further divides 
the decision space into smaller and smaller parts before labeling it, to predict a categorical 
variable. The DT’s simplicity in adjusting to a clinical setting and its superior interpret-
ability in comparison to other algorithms are both significant advantages. DT makes the 
prediction and informs the decision maker of the precise justification for it in a healthcare 
environment. It is also useful for categorizing unfamiliar datasets (Witten and Frank 2002). 
It is compared with other DT algorithms including C4.5. A more reliable version of C4.5, 
called EC4.5, was first introduced by (Ruggieri 2002). EC4.5 offers five times greater effi-
ciency than C4.5 for identical DT. It shares the same decision-making tree as C4.5.

2.1.1.4 Naïve Bayes (NB) Based on the Bayes theorem (Leung 2007), NB is employed. 
With more than two levels of prediction, this technique works well (Wickramasinghe and 
Kalutarage 2021). Less training data are needed compared to the LR algorithm in cases 
where the assumption of independence is true (Chen et al. 2020). The predictor variables 
are presumed to be independent, but in most circumstances, this is not the case. NB is 
a straightforward but effective algorithm with numerous real-world uses, from managing 
driverless vehicles to making product suggestions and medical diagnoses (Wickramasinghe 
and Kalutarage 2021).

2.1.1.5 Artificial neural network (ANN) ANNs or Simulated Neural Networks (SNNs) are 
other names for Neural Networks, which are a subset of ML and the basis of DL techniques. 
They replicate the way that actual neurons communicate with each other, drawing inspira-
tion from the human brain for both its name and its form Ripley et al. (1998). Three lay-
ers make up an ANN node layer: an input layer, one or more hidden levels, and an output 
layer. Each node, or artificial neuron, has a weight and threshold associated with it and is 
connected to other nodes. Any node whose output exceeds the specified threshold value is 
activated and starts sending data to the network’s top layer (Fan et al. 2021).
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2.1.1.6 DL overview ANNs are the foundation of the ML idea known as DL. DL models 
outperform standard data analysis techniques and shallow ML models in many applications 
(Akkus et al. 2017). DL is technically the use of NN with more than one or two layers. A 
parametric, non-linear change of input often makes up a "layer" in a neural network. To 
map high-dimensional inputs to outputs, these transformations are stacked to develop a sta-
tistical data structure. Optimizing the parameters allows for the execution of this mapping. 
This optimization uses gradient descent as its preferred method. When utilizing gradient 
descent, each parameter is updated to minimize the loss function by computing the partial 
derivative of the loss function concerning that parameter. As a result of stacking multiple of 
these layers, DL is given the label "Deep". "Learning" refers to the parameter optimization 
in the second component of the name (Janiesch et al. 2021). DL models typically include 
50 to 200 layers and about 100 to 10 billion parameters. There are 600 and 175 billion 
parameters combined in two of the largest models officially described (Brown et al. 2020; 
Lepikhin et  al. 2020). In recent years, the size of these models has increased incredibly 
quickly (Ahmed and Wahed 2020). Convolution Neural Networks (CNN), deep neural net-
works, and deep Boltzmann machines are some examples of common DL techniques (Yap 
et al. 2017). DL is being utilized in healthcare applications. Based on data from Scopus 
databases, Fig. 4a shows the statistics for the research on ML and healthcare applications 
from 2014 to 2023. The distribution of ML in the field of research on healthcare applications 
is shown in Fig. 4b.

DL was used in research on healthcare applications performed in the last decade 
(2014–2023) as shown in Table 2.

CNN: Due to CNN’s simple architecture, it is used to solve complex image-driven pat-
tern recognition issues and offers an efficient approach to begin using ANNs. Yap et  al. 
(2017). As with traditional ANNs, CNNs are composed of neurons that can adapt to their 
environment. Each neuron, the core component of countless ANNs, will continue to pro-
cess information and perform an action. The entire network will still only express one per-
ceptive score function (the weight), from the input raw image vectors to the final output 
of the class score. The final layer will include loss functions related to the classes and all 
the standard advice developed for conventional ANNs still holds "true" value (O’Shea and 
Nash 2015). The main significant distinction between CNNs and traditional ANNs is that 
CNNs are predominantly employed in the field of image pattern recognition. This enables 
us to add image-specific characteristics while reducing the number of parameters needed to 
develop the model (Li et al. 2021).

Table 2  DL used in Healthcare 
applications research performed 
in the last decade (2014–2023)

Year Publications

2014 6
2015 20
2016 29
2017 105
2018 239
2019 512
2020 873
2021 1610
2022 2293
2023 3103
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CNNs include three different types of layers: convolutional, pooling, and fully  con-
nected. Each layer serves a certain purpose (Stenroos 2017): 

1. Convolutional layer: calculates the scalar product between the weights of the input 
volume-connected region and the neurons whose output is related to the particular areas 
of the input. The goal of the Rectified Linear Unit (ReLu) is to activate the output of the 
previous layer’s activation by utilizing an activation function.

2. Pooling layer: downsamples along the spatial dimensionality of the input, resulting in 
activation with fewer parameters.

3. Fully-connected layers: carry out the identical tasks as in conventional ANNs and derive 
class scores from the activations, which can then be applied to classification. Addition-
ally, it is proposed that ReLu be utilized between these layers to enhance performance.

CNNs were utilized with excellent success in image classification and segmentation (Rus-
sakovsky et al. 2015).

The most popular CNN architectures are shown in Table 3 with their configuration.

2.2  MH optimization algorithms overview

In the world of computers today, there is a need for different techniques to solve various 
issues. One method that can offer workable answers to such problems is the use of MH 
algorithms. Because they are effective, MH algorithms are now used in healthcare data to 
diagnose diseases more effectively than conventional techniques.

When faced with a high number of input features, a usual approach is to employ MH 
approaches to lower the dimensionality of the original problem, which can occasionally 
improve learning performance. FS and Feature FE techniques are the two main categories 
of dimensionality reduction approaches. The key distinction between the two is that FE 
selects a subset of the original features, while FS combines the original features to produce 
a new set of features (Remeseiro and Bolon-Canedo 2019), as illustrated in Fig. 5.

FS techniques can also be divided into filters, embedded methods, and wrappers based 
on how they interact with the learning technique (Guyon et al. 2008). Because the empha-
sis is on the general features of the data, the filters are independent of any learning meth-
odology. Both wrappers and embedded techniques need a learning approach to carry out 
FS. An induction approach assesses potential feature candidate subsets for wraps. Wrap-
pers are more computationally expensive than filters because of interactions with the clas-
sifier. Because selection is a step in the induction method’s training process, embedded 
techniques fall between filters and wrappers. Because the classifier is trained while looking 
for the best subset of features, embedded approaches are less computationally expensive 
than wrappers.

The techniques that have gained popularity among researchers for FS are Correlation-
Based FS (CFS) (Hall 1999), INTERACT (Zhao and Liu 2009), Recursive Feature Elimi-
nation for SVM (SVM-RFE) (Guyon et al. 2002), ReliefF (Kononenko 1994), and consist-
ency-based filter (Dash and Liu 2003).

MHs (Blum and Roli 2003) are generally considered a component of ML and soft com-
puting technologies. The primary property of MHs is that they repeatedly perform the 
transition, evaluation, and determination operators in addition to input and output until the 
search process converges or satisfies the predetermined stopping condition (Tsai and Rod-
rigues 2013). We have noticed that some recent research on healthcare applications has 
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employed MHs to solve data mining challenges, such as clustering for unknown data, clas-
sification for part of unknown data, and the association rule for intriguing patterns.

MHs are being utilized in healthcare applications. Based on data from Scopus data-
bases, Fig.  6a shows statistics for the research of MH and healthcare applications from 
2014 to 2023. The distribution of MH in the field of research for healthcare applications is 
shown in Fig. 6b.

Different classifications of MHs have been submitted according to how exploration and 
exploitation are used and the metaphor of search procedures, as shown in Table 4.

There are five main paradigms, as illustrated in Table 4.

2.2.1  Bio‑stimulated algorithms

Bio-inspired algorithms tackle application issues in decision-making, information manage-
ment, and optimization across various scientific fields. It is anticipated that in the com-
ing years, more strategies will be developed in fields where intelligent optimization algo-
rithms will be more efficient at tackling different problems in anomaly and failure detection 
regions (Mishra et  al. 2011). This section provides a concise overview of bio-inspired 
algorithms.

Grey wolf optimization (GWO):
The GWO algorithm (Mirjalili et  al. 2014) is an MH and bio-inspired methodology 

inspired by grey wolves in nature. The four types of grey wolves in a wolf pack are denoted 
as � , � , � , and � . Among them, � is regarded as the group’s leader. � wolves support � in 
making decisions and hunting, and they are the next candidates to become the leader if � 
reaches the point of retirement or passes away while hunting. � senior wolves, � former 
wolves, sentinels, or scouts who guard the group’s boundaries. If the � wolf reaches the 
point of retirement or passes away while hunting, the � wolves are considered the next 

Fig. 5  FS and FE techniques
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contender eligible to become the leader. Elder wolves, former � wolves, sentinels, or scouts 
known as � wolves guard the group’s boundaries. � wolves must be subordinate to all other 
dominant wolves and must follow all other categories of wolves, making them the least 
important wolf (Seyed et al. 2014). Medjahed et al. (2016) also adopted a straightforward 
update to GWO to convert it to a binary version. For FS for hyperspectral band selection, 
their binary version was used. The GWO was transformed into binary form Medjahed et al. 
(2016) using a straightforward threshold.

Artificial immune system (AIS):
AIS algorithms (Timmis et al. 2004) are essential tools in the ML framework, based on 

computational intelligence and inspired by the concepts and procedures of the vertebrate 
immune system. The AIS technique imitates the human immune system in some ways. 
According to Timmis’ 2008 summary (Timmis et  al. 2008), the goal of AIS is to close 
the gap between immunology and engineering. To this end, a variety of research methods, 
abstraction from those models into algorithm design, and implementation in the context of 
engineering (Chanal et al. 2021). In Periasamy et al. (2022), AIS allows medical profes-
sionals to take preventive action at the appropriate time to prevent osteoporosis from devel-
oping early. Trials showed 94% prediction accuracy, demonstrating its value in identifying 
those at risk of osteoporosis in the future. Effective plan and schedule home care while 
taking into account factors including the patient’s preferences, the availability of caregiv-
ers, and their qualifications. An AIS is suggested as a route generator to overcome this 
issue, and a multi-agent method is built to ensure the best coordination and communication 
between all involved parties (Haitam et al. 2022).

2.2.2  Nature‑inspired algorithms

Nature-Inspired Optimization Algorithms (NIOA) are influenced by the way things behave 
in the natural world. Biological processes, chemical processes, and other phenomena have 
all served as inspiration for NIOAs. Solutions in engineering, medicine, etc. have been 
made possible by this (Kumar et al. 2023). It is simple to break down natural processes into 
numerous intricately layered sub-processes. As a result, the algorithms become distinc-
tive and powerful. The goal of the study of NIOAs is to improve the efficiency of nature-
inspired algorithms by addressing algorithm selection, parameter tuning, and algorithm 
adaptation to changing environments (Dhal et al. 2019). These Nature-inspired algorithms 
are commonly used in medical applications for classification based on characteristics, and 
the relevant research is discussed below.

Invasive weed optimization (IWO):
IWO algorithm (Xing et al. 2014) is inspired by the way weeds naturally colonize and 

choose an area that is conducive to growth and reproduction. Invasive weed colonization 
served as a model for this technique. Weeds have shown remarkable resilience and adapt-
ability. Therefore, they are not suitable for use in agriculture. According to Razmjooy and 
Razmjooy (2020), the filtered image is subjected to the suggested optimized NN based 
on the Quantum IWO algorithm to separate the regions of skin lesions. The DermIS and 
the Dermquest databases have both been used to analyze system performance. According 
to experimental results, the suggested approach is effective in segmenting skin lesions. 
The IWO method in Soulami et al. (2019) determines the ideal threshold for the extrac-
tion of questionable regions in mammograms. The Smallest Univalue Segment Assimilat-
ing Nucleus (SUSAN) algorithm is then applied to the selected threshold to find dense 
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anomalies. The results indicate that this method outperforms other methods in terms of 
accuracy when it comes to identifying worrisome breast tissue, particularly dense breast 
tissue.

Cuckoo search algorithm (CSA):
The CSA is based on some cuckoo species’ brood parasitism. Additionally, the so-called 

Levy flights (Pavlyukevich 2007), as opposed to straightforward isotropic random walks, 
improve this technique. Some species use shared nests to lay their eggs, but they may also 
remove the eggs of other species to increase the chance that their eggs will hatch. Obligate 
brood parasitism is practiced by various species, which deposit their eggs in the nests of 
other host birds (Yang and Deb 2009). The deep cuckoo-based deep convolutional Long-
Short Term Memory (convLSTM) classifier in Kumar et al. (2022) is tuned using CS to 
predict diseases. A training percentage of 97.591% for accuracy was obtained using the 
suggested strategy, which outperformed traditional techniques. The comparative investiga-
tion demonstrated that the suggested method produced greater accuracy than other tech-
niques. Utilizing optimization algorithms such as CSA can help DL approaches become 
even more accurate (Zargar et al. 2020; Jain et al. 2021).

2.2.3  Physics‑based algorithms

MH and computational intelligence are the two fields in which physics-based algorithms 
often belong (Can and Alataş 2015). Metalworking, music, the interaction of culture and 
development, and complicated dynamic systems like avalanches are a few examples of 
inspirational physical systems. They often combine local (neighborhood-based) and global 
search approaches with stochastic optimization algorithms.

High-dimensional issues can be solved efficiently and effectively using physics-based 
algorithms (Can and Alataş 2015). MH techniques based on physics are effective and reli-
able for dealing with complex, high-dimensional situations. Although 23 MH algorithms 
have roots in physics, few academics in the field are aware of them (Can and Alataş 2015). 
These physics-based algorithms are frequently utilized in medical applications to classify 
based on features, and the relevant research is discussed below.

Gravitational search algorithm (GSA):
The second rule of motion and Newton’s law of gravitation both served as inspiration 

for GSA (Rashedi et al. 2009). Each potential solution in the search space is viewed as an 
object whose fitness is determined by its mass. Compared to lighter objects, heavier ones 
are thought to be fit. Due to the gravitational attraction between the objects, they move 
around in the search space. The entire population eventually gravitates towards the heavi-
est object, also known as the global best solution, because the heavier objects attract other 
objects with greater power. GSA and SVM were used (Shirazi and Rashedi 2016) to study 
a model for spotting breast cancer on mammography images. The pre-processing was first 
performed and then ROI was derived. Once the features had been extracted, the Grey-Level 
Co-occurrence Matrix (GLCM) model was applied. After choosing the features, the key 
goal was to decrease the features and improve the classification accuracy using the mixed 
GSA. To overcome the curse of dimensionality, pyramid GSA (PGSA), a hybrid approach 
in which the number of genes is cyclically lowered, has been developed. Two components 
comprise PGSA: a filter and an iterative wrapper approach (influenced by GSA). To further 
minimize the dimension, the genes chosen in each cycle are carried over to the following 
rounds. By utilizing the most insightful genes while using fewer genes, PGSA seeks to 
maximize classification accuracy. Results from a multi-class microarray gene expression 
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dataset for breast cancer are provided. To make a fair comparison, various FS algorithms 
have been put into practice. With 73 genes, the PGSA had the highest accuracy (84.5%) 
(Tahmouresi et al. 2022).

Sine cosine algorithm (SCA):
One of the most recent and promising population-based MH optimization techniques 

was SCA (Mirjalili 2016), which was first presented by Mirjalili in 2016. The inspira-
tion for the SCA is very distinct. To discover the global optimum, it searches the space 
using two sine and cosine functions that update the positions of the solutions (Mirjalili 
2016). Because of its straightforward implementation and comparatively good performance 
in solving difficult problems, SCA has been extensively explored and applied in different 
domains. SCA, for instance, was used to address the scheduling issue in Das et al. (2018). 
To address the FS problem, Sindhu et al. (2017) proposed an Improved SCA (ISCA) that 
integrates SCA with a new position update method and an elitism technique. Ten bench-
mark datasets from the medical and non-medical fields were used to validate the efficacy of 
ISCA. It was shown that ISCA was superior to well-known MHs.

To prevent early convergence of SCA, the random parameters r
1
 , r

2
 , and r

3
 in ISCA are 

dynamically modified. Based on the test systems for the IEEE 30-Bus and IEEE 118-Bus, 
the performance of ISCA was assessed.

2.2.4  Evolutionary algorithms

Evolutionary Algorithm (EA) employs naturalistic techniques and solves issues by mim-
icking the actions of living things. Evolving AI is a part of both bio-inspired and evolution-
ary computing (Eiben et  al. 2015). EAs are motivated by Darwinian evolutionary ideas. 
The solutions act as distinct creatures in an ecosystem in EAs. The problem is first filled 
with a random mixture of viable solutions. Following that, the population’s fitness-or how 
quickly and effectively it solves problems-is tested. Then, only those who are physically fit 
are chosen to reproduce. The cycle repeats itself as the population’s fitness is assessed and 
the least fit people are removed (Vikhar 2016).

Genetic Algorithm (GA):
A search-based optimization technique called a GA (Mirjalili and Mirjalili 2019) 

is based on the ideas of natural selection and genetics. It is routinely utilized to identify 
ideal or almost ideal answers to challenging issues that would otherwise take a lifetime 
to resolve. GA is one of the most widely used algorithms in the medical field. In several 
research (Lee et  al. 2007; Oztekin et  al. 2010; Nalini et  al. 2008), GA has been used to 
solve scheduling issues in the healthcare industry, such as reducing patient waiting times, 
because the answer to an optimization problem can be expressed as integers or binary num-
bers. The goal of Yeh and Lin (2007) is to use GA to solve the problem of nurse scheduling 
to find a better schedule that will improve the flow of the emergency room and, as a result, 
reduce patient waiting times compared to manually planned schedules. To improve patient 
care, a subsequent study (Nalini et al. 2008) took multiple goals into account at once (such 
as total patient waiting time and doctor scheduling), maximizing the impact of medical 
resources and reducing unnecessary spending. The use of GA to identify better weights 
to update or train classifiers is a promising method of employing MH for classification 
challenges in healthcare applications. For example, in Oztekin et al. (2010), the six most 
crucial features for predicting heart disease were chosen from thirteen features using GA. 
Because the FS technique can greatly reduce the complexity of the data, it is clear that this 
results in a savings of more than 50% in calculation time for the same data.
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Differential evolution (DE):
DE (Storn 1996), a well-known EA that was motivated by Darwin’s theory of evolution, 

has been thoroughly researched to address different optimization problems and engineering 
applications. Meta DE was suggested in the medical field by Koutny (2016). With the help 
of diabetic patients from the Jaeb Center for Health Research, they verified their results 
by continuously measuring blood glucose levels (Koutny 2016). Using a multi-objective 
DE to adjust the random forest technique’s parameters for many medical applications, the 
author (Kaur et al. 2019) developed an e-health data prediction approach.

2.2.5  Swarm‑based algorithms

Swarm behavior is frequently seen in natural systems with socially organized biological 
species. Ants, bees, and locusts are just a few examples of colonial insects that demonstrate 
highly coordinated behavior, although each individual has a restricted ability to detect and 
respond (Beauty 2008). Similar behaviors are displayed by schools of migrating fish and 
birds exhibit similar behaviors (Brown and Cunningham 2007). When fighting parasites, 
white blood cells act in swarms (Majno and Joris 2004).

Swarm Intelligence (SI) (Eberhart et al. 2001), and particularly swarm-based optimiza-
tion algorithms, have in common with neural networks the crucial feature of being made 
up of numerous processing units, each of which has a finite amount of computational 
resources. However, when combined, these parts can develop effective information pro-
cessing systems. Simply expressed, this means that a form of collective intelligence devel-
ops due to interactions between several non-intelligent entities.

Particle swarm optimization (PSO):
PSO (Venter and Sobieszczanski-Sobieski 2003) begins with a population of random 

solutions, or particles. Each particle in PSO also has a velocity, unlike in the other evo-
lutionary computation methods. With velocities that are dynamically changed based on 
their past behaviors, particles move around the search space. As a result, throughout the 
search process, the particles tend to fly towards the better and better search area. PSO pro-
duced many successful results (Gandhi et al. 2010; Shyh-Jong et al. 2013) when it comes 
to classifying problems in a healthcare system. Using PSO as a classification algorithm to 
identify breast cancer is another encouraging research trend (Gandhi et al. 2010; Yeh et al. 
2009). The study (Yeh et  al. 2009) used statistical techniques to choose useful features 
before using PSO to divide the population into two groups: those who have breast cancer 
and those who do not. Therefore, the healthcare system discovers some helpful decision-
making guidelines that would help physicians detect breast cancer. The accuracy rate of a 
classification algorithm can be increased by using PSO to select the most helpful features 
of the data or to decide how much weight to give each feature. In Chowdhury et al. (2009), 
the author used the PSO to establish the ideal pathophysiological parameter weights for 
a diagnosis system, which was later implemented in an FPGA. The study presented in 
Chowdhury et al. (2009) utilized an adaptive approach to dynamically alter the perception 
range of each PSO particle, which can be used to increase the classification accuracy rate.

Ant colony optimization (ACO):
The ACO (Dorigo et al. 2006) uses a unique technique to mimic the behavior of ants in 

the wild to identify an effective solution to the optimization problem in healthcare applica-
tions. Although ACOs are not often used in research to improve healthcare applications, 
the studies (Kuo and Shih 2007; Kuo et  al. 2007) do show that it has a wide range of 
potential benefits. The association rules for the health insurance data were discovered using 
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ACO in Kuo and Shih (2007). These results demonstrate how ACO can be utilized for dif-
ferent healthcare data mining tasks.

Studies (Bergholt et al. 2011; Madhusudhanan et al. 2010; Uma and Kirubakaran 2012) 
revealed that ACO can enhance classification in healthcare applications. ACO and a fuzzy 
rule were coupled in Madhusudhanan et al. (2010) to classify the components of hepatitis. 
ACO and Linear Discriminant Analysis (LDA) were used in a later study (Bergholt et al. 
2011) to better understand the data from gastric cancer endoscopies. More specifically, 
LDA performs the function of data clustering, and ACO performs the function of classifi-
cation in this hybrid method, known as ACO-LDA.

ACO can be used to predict cardiac disease, according to a recent study (Uma and Kiru-
bakaran 2012). To choose the best features of a classification algorithm, this work coupled 
ACO and GA and performed these two MHs at each iteration of the convergence process.

2.3  Datasets

This section provides a summary of publicly available datasets that were utilized in dif-
ferent healthcare classification research. We use different disease datasets with varying 
sizes of dimensions extracted from the official repositories [UCI (Frank 2010), Kaggle 
(Alphabet 2010), INSPIRE Datasets (The University of Iowa 1925),… etc.]. These datasets 
include Arrhythmia, Primary Tumor, Lymphography,…, etc. that contain different feature 
types (categorical, integer, and real) as shown in Table 5. Table 5 shows different disease 
datasets with reference, relevance to healthcare, different numbers of features, number of 
patients, and feature type.

2.4  Medical imaging

The discipline of healthcare applications depends heavily on the analysis of images and the 
identification of disease patterns. Image-guided decision support is the gold standard for 
accurately diagnosing any condition in the medical industry. On the other hand, achieving 
high performance in accurately diagnosing the condition is still a difficult challenge. Con-
sequently, MH algorithms can be utilized to enhance the functionality of the model, giving 
us the best results in terms of accurate disease prediction (Kumar and Gupta 2023; Kaur 
et al. 2022).

These medical imaging include white blood cells, chest X-rays, etc., as shown in 
Table 6.

2.5  Performance evaluation

Table  7) shows performance metrics, where FP, TP, TN, and FN denote False-Positive, 
True-Positive, True-Negative, and False-Negative cases.

3  Healthcare applications

This section discusses in detail the important applications of AI and MH in medicine and 
public health.
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3.1  AI algorithms for healthcare applications

Big data and ML are influencing the majority of aspects of contemporary life, including 
entertainment, business, and healthcare applications. All of this data may be used to create 
an extremely detailed personal profile, which can forecast trends in healthcare applications 
and be very valuable for understanding and marketing behavior. There is much hope that 
the use of AI will significantly advance all aspects of healthcare applications, from diag-
nosis to therapy. There is already a lot of evidence that AI algorithms outperform humans 
in a variety of activities, such as analyzing medical images or connecting symptoms with 
the description and prognosis of disease (Douglas Miller and Brown 2018). The prevailing 
consensus is that AI techniques will support and enhance human work rather than, as some 
have suggested, completely replace it. AI is prepared to help medical professionals with a 
range of duties, including administrative workflow, clinical documentation, and specialized 
support like image analysis and patient monitoring.

AI algorithms for healthcare applications are summarized in Table 8. Table 8 contains 
the used dataset, publishing year, the type of algorithms used (either ML or DL), and the 
experimental results.

3.2  MH optimization algorithms for healthcare applications

In the world of computing today, there is a need for different techniques to address differ-
ent issues. One method that can offer workable answers to these problems is the use of 
MH algorithms. Due to its effectiveness, MH algorithms are currently employed in health-
care data to diagnose diseases more effectively than conventional techniques. Furthermore, 
there is a wide range of MH applications in the field of healthcare applications, including 
improved classification systems, efficient detection systems, and an increase in the rate of 
disease diagnosis (Nassif et al. 2022).

In medical applications, FS has been utilized successfully to both reduce the dimen-
sionality and enhance understanding of the root causes of disease. We outline some funda-
mental ideas about medical applications and offer crucial foundation knowledge on FS. We 
examine the most recent FS techniques developed for and used for medical issues.

Various MH algorithms are very helpful for FE and FS for various types of disease 
diagnosis and early detection. MH Algorithms for healthcare applications are summarized 
in Table 9.

Table 6  List of image datasets References Dataset Image modality

 Oliveira et al. (2008) IRMA Mammogram
 Moreira et al. (2012) INBreast Mammogram
 Anand and Gayathri (2015) MIAS Mammogram
 Bowyer et al. (1996) DDSM Mammogram
 SUCKLING (1994) mini-MIAS Mammogram
 Moura et al. (2013) BCDR Mammogram
Alexandre Spanhol et al. (2016) BreakHis Histological
 Wolberg and Mangasarian (1990) WBCD Multimodality
 Wolberg et al. (1992) WDBC Multimodality
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Table 9 contains the used dataset, publishing year, the used algorithms, Purpose FS or 
Classification (Calssif.)), and experimental results.

3.3  MH and AI algorithms for healthcare applications

Many of the MH algorithms have been used as diagnostic tools. These MH algorithms are 
designed and utilized to diagnose approaches and are inspired by numerous typical natural 
observations or phenomena, including the behaviors of fish, birds, insects, animals, plants, 
and people. Better accuracy is obtained due to the FS process, which narrows down a vast 
array of features while maintaining system performance. Numerous techniques employing 
MH algorithms have been developed to handle the difficulty of shrinking the large feature 
space by deleting inessential and unnecessary features due to the inclusion of numerous 
features in ML tasks.

The FS has a single aim that needs to be optimized in single-objective FS tasks. No 
matter how many features there are or how much it costs to train a model, single-objective 
FS seeks to find the greatest classification performance. The FS task is handled by Multi-
Objective FS (MOFS) which contains several evaluation criteria, as illustrated in Table 7, 
which transforms it into a multi-objective optimization problem to deal with the optimiza-
tion of two objectives. The performance of categorization and the number of features are 
the goals. The result is that the answer to the MOFS optimization issue is a series of non-
dominated solutions, each of which is a vector consisting of the best fitness. Table 10 con-
tains the used disease dataset, publishing year, the use of hybrid MH and AI algorithms, 
purpose (FS or Classification), and experimental results.

4  Research issues

The development of computer and network technology has given us many options on how 
to build an effective information system for our daily lives. Healthcare information sys-
tems have advanced significantly in recent years, just as other information systems. A more 
comprehensive, more accurate, and reliable healthcare system can be developed using 
modern computers, networks, and intelligent technologies, as demonstrated by previous 
successful results of healthcare applications (Shehab et al. 2022). We can now offer doctors 
and patients monitoring, detection, and alarming services that are much more effective and 
efficient thanks to the application of ML technologies such as data analytics, as noted in 
Shehab et al. (2022).

4.1  Issues of healthcare

Five levels can be used to categorize recent research on healthcare applications (Koch 
2006): 

1. International level: International organizations frequently assist in analyzing large-scale 
healthcare data on a global basis, such as when examining infectious diseases that are 
common in multiple nations. One of the crucial questions in today’s healthcare data 
analysis is how to predict the patterns of infectious diseases. Google is an illustrative 
example, which predicts flu scenarios based on user search keywords (Dugas et al. 
2013).
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2. National and regional level: A potential research trend in recent years has been the ability 
of a data analytic system to validate an assumption and identify intriguing patterns in 
a large enough set of data from a national or regional medical center’s data (Kuo et al. 
2007).

3. Hospital level: The primary focus of hospital management is on how to maximize medi-
cal resources. Several of the earlier research (Nalini et al. 2008) tried to utilize MHs to 
address the hospital’s scheduling issue.

4. Home/family level: The system can quickly identify human activity to offer the appropri-
ate services, such as preventing elder persons from getting into accidents (Doukas and 
Maglogiannis 2008).

5. Personal level: In Milenković et al. (2006), an attempt was made to extract physiological 
data and integrate it so that the data could be analyzed to offer the wearer of the appli-
ances or sensors appropriate recommendations and services.

4.2  Issues of AI techniques

The major issues of AI techniques in healthcare applications are as follows:

– When an ML model is employed to predict a health result in the event of a potential 
error, legal processes are not optimized. In actuality, it might be challenging to put this 
idea into practice because of the diversity of legal systems found around the world. 
The DT algorithm becomes increasingly difficult to interpret as the number of elements 
rises, while the LR algorithm has the limitation that interactions must be manually 
implemented (Nusinovici et al. 2020).

– Unless models such as DT that allow intuitive interpretation are used, predictions based 
on ML typically do not provide explanations for the forecast (Nicholson Price et  al. 
2019).

– Splits in variables with multiple levels are frequently favored by these models. It 
responds quickly to slight modifications in the training data (Patel and Prajapati 2018), 
and the kNN algorithm becomes slower (Cunningham and Delany 2021) as the number 
of predictor variables increases.

– DL algorithms are nearly hard to understand or interpret. Patients may want to know 
why they were diagnosed with cancer if they are told it was because of a picture. Even 
doctors who are usually knowledgeable about DL algorithms’ workings might not be 
able to explain them.

– Overfitting can occur when an algorithm discovers irrelevant correlations between 
patient features and results. It occurs when there are an excessive number of variables 
affecting the results, which causes the algorithm to forecast things incorrectly (Gama 
et al. 2022).

4.3  Issues of MH optimization algorithms

The major issues of MH techniques in healthcare applications are as follows:

– Large-scale global optimization (LSGO) problems, which require the solution of a large 
number of decision variables, are usually computationally expensive for MAs algo-
rithms.
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– The absence of mathematical analysis. As of yet, no compelling theoretical idea exists 
that gets around this restriction.

– The MHs might not always locate the global optimum solution. There is no assur-
ance that the algorithm will identify the optimal answer because of its random nature 
(Almufti 2019).

– The use of data expansion strategies in some papers to prevent overfitting rather than 
learning transfer.

5  Future trends and challenges

To enhance the effectiveness of disease diagnosis, significant efforts must be made. 
This section shows future directions that can be employed in healthcare applications. 
Although the examined literature produced encouraging results, there are still some 
restrictions and difficulties that need to be resolved to use AI and MH approaches for 
healthcare application detection and classification. The following is a discussion of the 
primary difficulties, underlying trends, suggested research directions, and challenges of 
the review. 

1. The effectiveness of the DL classifier heavily relies on the size and type of the dataset; 
hence, DL necessitates a vast amount of training data. Additionally, creating significant 
amounts of medical imaging data is challenging, as eliminating human errors requires 
a lot of time and effort from many experts and one individual.

2. Most of the examined studies evaluated these using various datasets that were privately 
gathered by healthcare application research organizations. The main flaw in this argu-
ment is how difficult it is to compare the performance of such models across different 
studies.

3. The increasing adoption of wireless AI devices in healthcare necessitates the develop-
ment of new technologies, including cloud computing and the Internet of Things, to 
address the processing and storage capacities of these devices. On the other hand, there 
is a chance that AI gadgets relying on the cloud could compromise the security of patient 
information (Sajid and Abbas 2016).

4. Exploration and exploitation are two fundamental ideas in the MAs. Since they are 
completely opposed to one another, how do you balance between them to get the greatest 
results? (Črepinšek et al. 2013).

5. Techniques for classifying healthcare applications using unsupervised grouping. Most 
of the research from the chosen source classified diseases using the supervised learn-
ing methodology. These techniques have produced better results when labeled train-
ing images are used. However, it can be challenging to find real-world examples of 
diseases with accurate symptoms that trained medical professionals have identified. 
Various grouping strategies can be used to train the disease classification model, which 
is urgently needed.

6. The classification of diseases using reinforcement learning. At the same time, a major 
problem is building an ML model capable of learning from its surroundings. The main 
issue is the lack of sufficient disease image samples to accurately represent all types of 
healthcare applications. Thus, the application can significantly enhance the effective-
ness of techniques for the classification of healthcare applications using images from 
the medical field.
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7. Although AI has advanced significantly in healthcare, human input, and monitoring are 
still necessary. Because no machine can detect behavioral observations or empathize 
with patients the way that humans can, humans are unique in this regard.

8. Robustness compared to data-gathering techniques. To gradually add new datasets, the 
robustness issue of various clinical and technological scenarios must be resolved. The 
diverse presenting qualities of the coloring and enlargement variables are among these 
variances.

In addition to the previously mentioned points, further work should include:

– To enable the classification job depending on the size and feature type of different data-
sets, generic image datasets with a variety of image modalities will be employed. A fall 
DNA case series might be interesting.

– Instead of relying solely on these image modalities, other disease-related images can be 
employed to enhance the effectiveness of disease classification models, such as Com-
puted Tomography (CT) images or thermal imaging. MRI or CT scans for the same 
patient are required.

– To assess the generalizability of the model findings in a concealed or invisible collec-
tion of data, cross-validation is a technique for model validation. The goal is to catego-
rize a dataset to test the model during training, to solve issues such as underfitting and 
overfitting, and to demonstrate how the learned model generalizes to a different dataset.

– Technological research is developing a variety of encryption methods and de-identi-
fication or anonymization systems that remove identity information. The CDM-based 
distributed research network is a well-known example. Moreover, other data mining 
techniques that protect privacy; include homomorphic encryption and federated learn-
ing (You et al. 2017).

– MH algorithms boosted AI techniques to find the optimal solution.

6  Conclusion

The most recent research on disease diagnosis and classification using MH and AI algo-
rithms in various disease datasets is reviewed in this review. Section  3.1 categorizes AI 
applications into ML and DL categories; Sect. 3.2 shows the MH techniques used for FS or 
classification of diseases, and Sect. 3.3 presents the hybrid MH and AI techniques used in 
disease diagnosis.

The review’s strengths include the inclusion of six well-known ML approaches in AI, 
including LR, SVM, DT, kNN, NB, and ANN. The review also focuses on CNN and its 
DL architectures used to identify and categorize diseases by utilizing various modalities 
of medical imaging or disease datasets with different dimensions. MH techniques are clas-
sified into Bio-stimulated Algorithms, Nature-inspired Algorithms, Physics-based Algo-
rithms, Evolutionary Algorithms, and Swarm-based Algorithms.

The architecture also detects and categorizes diseases from various disease datasets. 
Several datasets of diseases are used in the classification models for medical images or dis-
ease datasets with different dimensions, taken from official repositories [UCI (Frank 2010), 
Kaggle (Alphabet 2010), INSPIRE Datasets (The University of Iowa 1925), etc.]. Also 
in this review, an explanation of medical imaging is described, including mammograms, 
ultrasound, magnetic resonance imaging, histological and thermography images. Finally, 
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the study illustrates research issues in healthcare and discusses future trends and challenges 
in healthcare applications.
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