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Abstract
A novel noise suppression zeroing neural network (NSZNN) is presented for the trajectory 
tracking problem on a four Mecanum wheeled mobile manipulator (FMWMM) by solving 
its time-varying inverse kinematics (TVIK) problem. The holistic kinematic model of the 
FMWMM is developed, which can receive synergistic control of the mobile manipulator. 
Different from the situation without external interference addressed in our previous work, 
this paper considers a variety of common time-varying interferences by studying the basic 
principles of various noises, and proves the NSZNN model’s of the validity and superior-
ity, which solves the TVIK problem of the FMWMM with external disturbances through 
theoretical analyses. Compared with the existing gradient neural network (GNN) and the 
traditional zeroing neural network (ZNN), the most representative hybrid noise is selected 
to conduct a large number of experiments to substantiate the high efficiency and robustness 
of the NSZNN model. Finally, the NSZNN model is verified on the FMWMM via a robot 
operating system (ROS) by a successful execution of the trajectory tracking task.

Keywords Noise suppression zeroing neural network · Four Mecanum wheeled mobile 
manipulator · Inverse kinematics · Time-varying disturbance.

1 Introduction

As a typical model of uncertain complex systems and incompleteness systems (Zhang et al. 
2023a; Kong et al. 2021), the trajectory tracking (Khan et al. 2020; Zheng et al. 2022) and 
path planning (Hentout et  al. 2023; Kala et  al. 2010) of the Mecanum wheeled mobile 
manipulator (FMWMM) are the hotspots of the research fields recently. Motion control 
is the prerequisite for the FMWMM to complete various tasks, and trajectory tracking is 
the most basic and practical problem in the FMWMM motion control. Therefore, trajec-
tory tracking of the FMWMM has attracted lots of researchers’ attention, which is not only 
widely utilized in industry (Claudia et al. 2021), agriculture (Shangguan et al. 2021), medi-
cal treatment (Nguyen et  al. 2022), and service (Xi and Zhu 2023), but also in fields of 
urban security, national defense, space exploration (Liang et al. 2018) and other hazard-
ous domains. Furthermore, an increasing number of algorithms have been exploited and 
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verified to address the trajectory tracking problem of the FMWMM. For example, in Nie 
et al. (2023), a backstepping and adaptive fuzzy proportion-integral-differential (PID) com-
bining method is presented to solve the trajectory tracking problem of the FMWMM. In 
Qiu et  al. (2019), Qiu et  al. develop a nonlinear control law to optimize kinematic and 
dynamics controllers for the FMWMM with the characteristics of nonlinear, nonholonomic 
constraint and uncertainty. The authors also introduce integrated feedback technology to 
decrease the tracking error of the system. In addition, a robust tracking control method is 
developed for the FMWMM with dynamics and kinematic models, which can compensate 
for the dynamic uncertainty in the tracking process of the FMWMM and improve the accu-
racy of trajectory tracking (Jeong and Chwa 2021). Based on above literatures, traditional 
control algorithms have to establish complex dynamic equations, and are difficult to meet 
the accurate requirements of the FMWMM trajectory tracking. The combination of tradi-
tional control algorithms and the neural network can overcome the aforementioned short-
comings and take the advantages of neural networks to achieve gratifying control results.

Neural networks (Zhang et al. 2023b; Hua et al. 2021; Fu et al. 2021; Sun et al. 2023a; 
Rajesh 2022, 2023) have broad applications in many fields, such as optimization (Cheru-
pally et al. 2020; Jin et al. 2017), signal processing (Xiang et al. 2020) and pattern recogni-
tion (Tan et al. 2019), intelligent control (Machado and Lopes 2017), and fault diagnosis 
(Zhang et al. 2021). Neural networks and neural dynamics are powerful algorithms to solve 
many scientific research and engineering problems online (Fu et al. 2020; Zhu et al. 2020; 
Sun et  al. 2019a, b). In Xia et  al. (2016), a method of combining the Kalman filter and 
fuzzy neural network is suggested to solve the trajectory tracking control problem, which 
improves the efficiency and accuracy of calculation. Recurrent neural networks (RNNs) are 
a type of neural network, which also contain many neural networks, such as zeroing neural 
network (ZNN) and primal pairwise neural networks based on linear variational inequali-
ties (Li et al. 2018; Zhang et al. 2018, 2020; Jin et al. 2016).

The RNNs are widely used to solve TVIK problems for mobile manipulators (Li et al. 
2018; Zhang et al. 2018, 2020; Jin et al. 2016). In view of the excessive position error of the 
FMWMM on the trajectory tracking problem, based on the high-order derivative character-
istics of noise, a new type of RNN is proposed to eliminate the noise, so as to satisfy the 
accuracy of the end-effector (EE) (Li et al. 2018). In Zhang et al. (2020), primal pairwise 
neural network based on linear variational inequalities is widely used in TVIK problems of 
obstacle avoidance, repetitive motion and trajectory tracking for mobile robotic arms. The 
primal pairwise neural network based on linear variational inequalities solves the TVIK 
problem to find a kind of inverse-free solution, which improves the real-time performance. 
In Jin et al. (2016), an improved ZNN is presented to address the TVIK problem to control 
the manipulator with exponentially convergent position error, which prove the availability 
and meliority of neural networks. The presented motion planing of the redundant manipu-
lator had a theoretical analysis of the position error. The orthogonal projection method is 
introduced to eliminate the position error, and the velocity compensation method with gra-
dient descent function is applied to construct recursive neural networks for the tracking 
problem of the redundant manipulator (Xie et al. 2020). Benefiting from its linear symbolic 
bi-power exponential activation function, ZNN possesses good convergence performance 
to calculate the TVIK problem. The feasibility is further verified by redundant robots (Hu 
et al. 2021). Aiming at the TVIK of the FMWMM, ZNN can obtain accurate solutions of 
TVIK problems (Xiao and Zhang 2014). These algorithms are assumed to be free from 
external interference. However, the position error generated by the calculation is caused 
by hardware problems or external interference. The Taylor discrete ZNN model adequately 
considers the time derivative information of time-varying problems but neglects noise (Sun 
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et al. 2021). In the design of RNN, it is typically assumed that time-varying problems are 
not subject to external disturbances. However, in the actual experimental hardware imple-
mentation process, there are implementation errors and environmental interference, con-
sidered as noise. This noise not only significantly impacts the accuracy of RNN solving 
time-varying problems but may also lead to task failure when precision requirements are 
high. Additionally, the preprocessing of denoising may introduce additional time, compro-
mising real-time performance. Therefore, it is necessary to explore an improved model that 
is inherently tolerant to noise and capable of real-time solving of time-varying problems. In 
order to accurately control FMWMM with different measurement noises, a noise suppres-
sion zeroing neural network (NSZNN) model is presented to handle the trajectory tracking 
of the FMWMM, which is worthy of further investigation. The noise suppression model 
implemented in this paper can well eliminate external time-varying interference. This 
is a progress in the control of the FMWMM regarding noise interference, which greatly 
enhances the stability of the locomotion and manipulation.

The rest of this paper covers the following four directions. The motivation, problem for-
mation, and inverse kinematics (Xiao and Zhang 2014) related problems of the FMWMM 
are described in Sect. 2. Section 3 proposes and analyzes several types of neural networks, 
which proves the effectiveness and superiority of the developed NSZNN model compared 
with the existing models. Section 4 verifies the superiority and robustness of the NSZNN 
proposed in this paper through a large number of simulations, and proves the effectiveness 
of the algorithm on robot operating system (ROS) mobile manipulator. Section 5 draws the 
conclusion and discusses the future works. Finally, the primary contributions of this paper 
are described as follows. 

(1) From the perspective of control, the noise suppression model of the denoising integral 
term is regarded as a generalized PID controller, and the detailed theoretical analysis 
and the derivation of the NSZNN model show that the model can effectively solve the 
TVIK problem.

(2) Based on the external disturbance in the actual application of the FMWMM, a new 
NSZNN is proposed, which can accurately converge to the inverse kinematics of the 
FMWMM with noise interference. Numerical results and experiments show that com-
pared with the presented neural network model, the NSZNN model is more effective 
and accurate in the path-tracking task of the FMWMM.

2  Problem formulation and related work

In order to handle the trajectory tracking problem of the FMWMM involved in the previous 
section, this section gives the kinematic equations of the manipulator and mobile platform 
respectively, and integrates them into an overall kinematics equation. The above planning 
scheme enables the degrees of freedom of the mobile platform to be incorporated into the 
manipulator system to enhance the overall maneuverability. At the same time, the synergy 
between the mobile platform and the manipulator motion planning process is ensured.

2.1  The kinematic model of the FMWMM

The FMWMM is shown in Fig. 1a, and it is divided into two parts: the chassis base on four-
wheel Mecanum wheels and a four degrees of freedoms (DOFs) manipulator. The vertical 
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view of the FMWMM is shown in Fig. 1b, and the relevant parameters are generalized as 
follows. 

(1) Pd : The join point between the manipulator and mobile chassis ( xd,yd,zd ) with zd = 0.
(2) a: The distance between wheel 1 and point A.
(3) b: The length between the point Pd and point A.
(4) �̇�x , �̇�y : The speed of the wheel on the X and Y axes.
(5) � : The velocity of rotation of the mobile platform around point Pd.
(6) �̇�1 , �̇�2 , �̇�3 , �̇�4 : The velocity of wheel 1, wheel 2, wheel 3 and wheel 4, respectively.

This subsection establishes the kinematic equations of the mobile platform by means of 
complete constraints on the moving platform. The Mecanum wheel of the moving platform 
consists of a hub and a roller. The hub is a direct support for the entire wheel, while the roller 
is a drum mounted on the hub. The angle between the hub axis and the roller axis is 45◦ . The 
motion of the moving platform ground is decomposed into three independent parts: X axis 
translation, Y axis translation and yaw axis rotation. The detailed kinematic modeling deriva-
tion of the moving platform can be found in the paper (Sun et al. 2022).

The kinematic equation of the FMWMM is expressed as (Xiao and Zhang 2014; Sun et al. 
2023b):

where � represents the rotation angle of the manipulator, cj := cos�j , sj := sin�j , c23 := 
cos (�2 + �3) and s23 := sin (�2 + �3) with j = 1 , ..., 4, �1 = 0.135 , �2 = 0.147 , �3 = 0.103 
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Fig. 1  The FMWMM and its platform model. a Physical picture of the FMWMM. b Geometric model of 
mobile platform. (Color figure online)
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and �4 = 0.035 . Combining (1) with (2), an overall kinematic equation of FMWMM is 
expressed as follows:

where xd and yd indicate the location of the mobile platform in the world coordinate sys-
tem, respectively, and � indicates the rotation angle of the manipulator. The velocity-level 
kinematic model of FMWMM is constructed as follows:

where �̇�(t) is the temporal differential of the EE location vector of the FMWMM. The coef-
ficient matrix is presented as follows:

where Jacobian matrix J(�,�) is defined as J(�,�) = �h(�,�)∕�Γ ; Γ =
[
𝜇⊤, 𝛼

]⊤ ; I is an 
identity matrix; q̇ = [�̇�, �̇�⊤]⊤ delegates the angle velocity vector of the FMWMM, which 
involves the wheel rotational velocity and the rotational velocity of the manipulator. Note 
that b = 0.3 m, a = 0.1 m (Sun et al. 2023b).

2.2  Problem formulation

Due to the disturbance phenomenon in the processing of the trajectory tracking prob-
lem of the FMWMM, the NSZNN model is exploited to solve the trajectory tracking 
problem. When the EE of the FMWMM follows a user-defined trajectory, it is defined 
as the following case:

where Ω(q, t) is a continuous nonlinear positive kinematics mapping of the FMWMM. 
The EE �(t) of the mobile manipulator is expected to track the desired trajectory �d , i.e., 
�(t) → �d(t) . By differentiating Eq. (5) with regard to time t, it can be derived into the fol-
lowing form:

where �̇�d(t) represents the rate of change of the desired trajectory with respect to time t. To 
be specific, when the FMWMM’s EE follows the given trajectory, the corresponding joint 
angle and wheel velocity are solved in real-time. The above description is the inverse kin-
ematics problem of the FMWMM.
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(5)Ω(q, t) = �(t) → �d(t)

(6)Uq̇ = �̇�(t) → �̇�d(t)
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3  NSZNN approach

To address the problems of existing schemes such as inability to deal with noise interfer-
ence and the existence of hysteresis error, a new NSZNN model is proposed to dispose 
of the TVIK problem of the FMWMM. At the same time, the NSZNN method and its 
related models are proposed to suppress the external disturbance to solve the TVIK of the 
FMWMM. In addition, the detailed theoretical analysis proves the noise-tolerant capability 
of the presented NSZNN mode.

3.1  NSZNN model

In practical industrial applications, there are many types of disturbances during robot oper-
ation, and the NSZNN model and its derivative models are presented to track the trajectory 
of the FMWMM. A vector-valued error function is defined based on the kinematic equa-
tion (4), which makes the NSZNN model limit and drives every item of the error to zero. 
The expression of the function is shown as follows:

where �d(t) and �(t) are the anticipant trajectory and practical trajectory of the EE, respec-
tively. For the sake of obtaining an accurate solution, each term of the error function is 
required to approach zero, and the noise-suppressing zeroing neural dynamic equation is as 
follows:

The parameter 𝜉 > 0 , is set to change the convergence rate of the system, and the param-
eter 𝛿 > 0 , ensures the stability of the neural network. �(⋅) is the activation function vector 
mapping of the neural network, and different types of activation functions are employed to 
improve the rate of convergence. In this paper, a linear activation function �(�(t)) = �(t) is 
exploited to dispose the noise suppression zeroing neural dynamic model.

Simultaneously process the zeroing neural dynamic system with noise suppression 
capability and the global kinematics model of the FMWMM, the following expressions can 
be obtained through calculation:

In addition, the NSZNN model with external disturbances is described as:

(7)�(t) = �d(t) − �(t)

(8)�̇�(t) = −𝜉𝜙(𝜎(t)) − 𝛿 ∫
t

0

𝜎(𝜏)d𝜏

(9)Uq̇ = �̇�d(t) + 𝜉
(
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)
+ 𝛿 ∫
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0

(
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)
d𝜏

(10)
q̇ = U†(�̇�d(t) + 𝜉

(
𝜅d(t) − 𝜅(t)

)
+

𝛿 ∫
t

0

(
𝜅d(𝜏) − 𝜅(𝜏)

)
d𝜏 + Υ(t))
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Algorithm 1: Operational steps of the controller (10)

Input: Desired trajectory �d;
Output: Optimized wheel angles � and joint angles �;
1: initialize � and � ; � and �;
2: repeat
3: optimize the wheel angles of the mobile platform and the joint angles of the manipulator.
4: observe the positional error �d − � of the EE and external interference noise Υ(t).
5: refresh the controller state based on �d − � , Υ(t) and the previous state of � and � at the last moment.
6: until the position of the EE returns to the starting point of the cyclic task.

where Υ(t) denotes time-varying disturbance, and U† is the pseudo-inverse of U. In the 
actual operation of the FMWMM, there are always external disturbances that affect the 
normal operation of the robot, for instance, constant external impact interference, tran-
sient external force, electromagnetic interference generated by the interaction of current 
and magnetic field, and continuous random noise or their superposition and so on. Fig-
ure 2 demonstrates the composition and basic principles of the neural dynamics equation. 
The NSZNN algorithm based on temporal derivative information, activation function and 
integral properties can efficiently solve the trajectory tracking problem of the FMWMM 
with external disturbances. As shown in Fig. 2, this model is regarded as a representative 
closed-cycle control system from classical control theory, which is analogous to a control 
system composed of a generalized PID controller.

3.2  Theoretical analyses

To demonstrate the validity and superiority of the proposed NSZNN model (10) for solving 
TVIK under time-varying noise (linear noise, sinusoidal noise, exponential decay noise, 
and continuous bounded random noise), and the strong robustness of NSZNN to different 
noises is analysed in detail.

Theorem  1 Consider the existing NSZNN model (10) with linear noise disturbances 
Υ(t) =

⌢

Υt . The NSZNN model is applied to handle the TVIK solution of the FMWMM, and 

Fig. 2  The control schematic diagram of the NSZNN model
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the absolute value of the error of each solution is less than lim
t→∞

|||𝜎j(t)
||| =

||||
⌢

Υj

||||∕𝛿 . The abso-

lute value of each error approaches zero as the parameter � is driven to infinity.

Proof The Laplace transformation of the jth subsystem of the NSZNN model (10) with 
linear noise is represented as

where the symbol L{⋅} represents the Laplace transformation. Simplifying (11) to get the 
following form

where 
⌢

Υj

s2
 is the Laplace transformation of 

⌢

Υjt , and the above equation can be converted to

According to the final value theorem (Oppenheim and Willsky 1997), the following equa-
tion is obtained as follows:

  ◻

Remark 1 When the perturbation form is linear, the noise error is driven to zero. From a 
control-based theoretical viewpoint, the control system is analyzed through the Laplace 
transformation, which employs a visual and simple graphical method to determine the 
entire characteristics of the control system. The proposed NSZNN model (10) in this paper 
performs corresponding theoretical investigation under four common time-varying pertur-
bations, and analyzes the accuracy of the theory on the NSZNN model (10) with external 
interference by using the Laplace transformation.

Theorem 2 Consider the developed NSZNN model (10) with sinusoidal time-varying desta-
bilizations, and Υ(t) = nj sin(�j(tj)) . �j ∈ ℝ and nj ∈ ℝ . The NSZNN model (10) converges 
to an accurate solution of trajectory tracking problem of the FMWMM, and each item has 
an absolute value of position error lim

t→∞
�j(t) = 0.

Proof The Laplace transformation of the jth subsystem of the NSZNN model (10) with 
sinusoidal time-varying perturbation is represented as

(11)L
{
�̇�j(t)

}
= L

{
−𝜉𝜎j(t) − 𝛿 ∫

t

0

𝜎j(𝜏)d𝜏 +
⌢

Υjt

}

(12)s𝜎j(s) − 𝜎j(0) = −𝜉𝜎j(s) −
𝛿

s
𝜎j(s) +

⌢

Υj

s2

(13)𝜎j(s) =
s𝜎j(0) +

⌢

Υj

s(s2 + 𝜉s + 𝛿)

(14)
|||| limt→∞

𝜎j(t)
|||| =

||||lims→0
s𝜎j(s)

|||| =
|||||||
lim
s→0

s2𝜎j(0) +
⌢

Υj

s2 + 𝜉s + 𝛿

|||||||
=

||||
⌢

Υj

||||
𝛿

(15)L{�̇�j(t)} = L

{
−𝜉𝜎j(t) − 𝛿 ∫

t

0

𝜎j(𝜏)d𝜏+nj sin(𝜗j(tj))

}
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Owing to the Laplace transformation, the following equation can be computed as

Further, formula (16) can be rewritten as

Through the final value theorem (Oppenheim and Willsky 1997), it is simplified as

Hereto, the theoretical proof of the NSZNN model (10) with sinusoidal time-varying dis-
turbance is accomplished.   ◻

Theorem 3 Consider the presented NSZNN model (10) with exponential attenuation inter-
ference Υ(t) = �j exp(−�jt) . � ∈ ℝ and 𝜒 > 0 ∈ ℝ . The NSZNN model (10) is used to 
obtain the exact solution of inverse kinematics of the FMWMM with each position error 
lim
t→∞

�j(t) = 0.

Proof The Laplace transformation of the jth system of the NSZNN model (10) with an 
exponential attenuation from disturbance is expressed as

Simplifying (18) obtains

Then formula (19) is reorganized as

By means of the final value theorem (Oppenheim and Willsky 1997) to the above equation

The proof is fulfilled.   ◻

(16)s�j(s) − �j(0) = −��j(s) −
�

s
�j(s) +

nj�j

s2 + �j
2

(17)�j(s) =
s(s2 + �j

2)�j(0) + snj�j

(s2 + �j
2)(s2 + s� + �)

lim
t→∞

�j(t) = lim
s→0

s(s(s2 + �j
2)�j(0) + snj�j)

(s2 + �j
2)(s2 + s� + �)

= 0

(18)L{�̇�j(t)} = L

{
−𝜉𝜎j(t) − 𝛿 ∫

t

0

𝜎j(𝜏)d𝜏 + 𝜁j exp(−𝜒jt)

}

(19)s�j(s) − �j(0) = −��j(s) −
�

s
�j(s) +

�j

s + �j

(20)�j(s) =
s(s + �j)�j(0) + s�j

(s + �j)(s
2 + s� + �)

lim
t→∞

�j(t) = lim
s→0

s(s(s + �j)�j(0) + s�j)

(s + �j)(s
2 + s� + �)

= 0
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Theorem 4 Consider the acquired NSZNN model (10) suffering from continuous bounded 
time-varying disturbances Υ(t) with task time of duration Tr , and task execution time 
t ∈ [0, Tr] . The jth item of the system satisfies |||Υj(t)

||| ≤ Υmax(t) and Υmax(t) > 0 ∈ ℝ . Exter-
nal perturbation disappears after the task, Υ(t) = 0 with t > Tr . The NSZNN model (10) 
obtains an accurate solution of the TVIK of the FMWMM, and the positional error of each 
term is lim

t→∞
�j(t) = 0.

Proof The Laplace transformation of the jth subsystem of the NSZNN model (10) with 
continuous bounded time-varying perturbation is represented as

Equation (21) can be renewed a simple form

Furthermore, the above formula is rewritten as

The above equation simplifies based on the final value theorem (Oppenheim and Willsky 
1997) to

Therefore, 
|||| limt→∞

�j(t)
|||| = lim

t→∞
�j(t) = 0 . The proof is thus fulfilled.   ◻

Remark 2 The principle analysis of the NSZNN model under different noises shows the 
necessity of eliminating external disturbances. Specifically, the hardware bias error in the 
system is treated as a linear disturbance. Electromagnetic interference usually exists dur-
ing the operation of the FMWMM, which is regarded as the superposition of sinusoidal 
time-varying interference with an unknown frequency and amplitude. The momentary arc 
discharge interference generated by the switch closing or cutting off is regarded as an expo-
nential attenuation from a time-varying disturbance. Continuous bounded random noise 
can represent most of the time-varying disturbances in real life, therefore, it is difficult to 
express with actual mathematical formulas. The various types of noise discussed above are 
the principles of the disturbance form of the NSZNN model (10).

(21)L{�̇�j(t)} = L

{
−𝜉𝜎j(t) − 𝛿 ∫

t

0

𝜎j(𝜏)d𝜏 + Υj(t)

}

(22)s�j(s) − �j(0) = −��j(s) −
�

s
�j(s) + ∫

+∞

−∞

Υj(t) exp(−st)dt

(23)(s +
�

s
+ �)�j(s) = �j(0) + ∫

+∞

−∞

Υj exp(−st)dt

(24)

|||| limt→∞
�j(t)

|||| =
||||||
lim
s→0

s2(�j(0) + ∫ Tr
0

Υj(t) exp(−st)dt)

s2 + s� + �

||||||

≤
|||||||
lim
s→0

||s2|||||�j(0)
||| + ||s||Υmax

||(1 − exp(−sTr))
||

||s2 + s� + �||

|||||||
= 0
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4  Numerical simulations

In this section, numerical simulations certify the efficiency and robustness of the 
NSZNN model (10) to dispose of the trajectory tracking problem of the FMWMM. 
The simulation results compare the existing ZNN model (27), gradient neural network 
(GNN) model (26), and finite-time Zhang neural network (FTZNN) (28), respectively. 
The results verify the effectiveness of the model proposed in this paper in resisting noise 
and eliminating hysteresis errors.

4.1  Numerical results of NSZNN model

In order to prove the noise suppression ability of NSZNN model (10), the advantages and 
effectiveness of NSZNN model (10) for solving TVIK problems online are verified by 
the computer simulation, and the simulation time is 70 s. A desired trajectory is provided 
within an accessible space range, and the FMWMM can move the EE along the desired 
trajectory. The desired path 𝜅d(t) = [𝜅dX(t), 𝜅dY(t), 𝜅dZ(t)]

⊤ are shown as follows:

Specifically, initial states of variables are set as 𝜇(0) = [0, 0, 0, 0,𝜋∕3,𝜋∕3,𝜋∕3,𝜋∕3]⊤ 
rad, Pd = �(0) = xd(0) = yd(0) = 0 , � = 10 and � = 300 . Various types of noises are often 

(25)

⎧⎪⎨⎪⎩

�dX(t) = 0.2 ∗ cos (0.1t),

�dY(t) = 0.2 ∗ sin (0.2t),

�dZ(t) = 0.3.
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Fig. 3  Numerical simulations show the results of utilizing the NSZNN model (10) to control the EE of 
the FMWMM to track the desired trajectory under hybrid perturbation Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] 
and the parameters � = 10 , � = 1000 . a The desired trajectory and practical path. b Vertical view of the 
expected path and actual path. c Position error. d The rate of change of position error
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Fig. 4  Numerical simulations show the results of employing the NSZNN model (10) to monitor the EE 
of the FMWMM to track the desired trajectory under hybrid perturbation Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] 
and the parameters � = 10 , � = 1000 . a Joint angle of manipulator. b Angular speed of manipulator. c 
Angle of mobile platform wheels. d Palstance of mobile platform wheels
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superimposed in the industrial manufacturing process, and the noise can be regarded as 
hybrid noise at this time. The noise in Eq. (10) can be simulated using hybrid noise, the 
specific hybrid noise being Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] . Therefore, the simulation 
results by using the NSZNN model (10) to control the EE of the FMWMM to track the 
desired trajectory under time-varying perturbations are shown as follows. Under hybrid 
noise, the simulation results of the EE tracking the desired trajectory are controlled based 
on NSZNN model (10), as shown in Figs. 3 and 4. To be specific, as seen from Fig. 3a, 
it infers that the simulation results of the EE of the FMWMM track the desired trajec-
tory, which reflects the accuracy and rapidity of the control model. Figure 3b is a verti-
cal view, and it can be perceived from Fig. 3 that the actual trajectory of the FMWMM’s 
EE is awfully close to the expected trajectory. Figure 3c reveals the error 𝜎 = [𝜎x, 𝜎y, 𝜎z]

⊤ 
between the trajectory of the EE of the FMWMM and the expected path. As is depicted 
from the two partially enlarged images, the NSZNN model (10) quickly converges to zero 
and possesses a stable performance during the tracking process, which verifies the theo-
retical proof in Sect.  3. Furthermore, Fig.  3d displays the tracking velocity error of the 
EE, which shows that the NSZNN model has satisfactory control performance. In addition, 
the other parametrical variations of the FMWMM’s EE while tracking the desired trajec-
tory are shown in Fig. 4a–d. As shown in Fig. 4a, there is no abrupt change in the motion 
trajectory of each joint of the FMWMM, indicating that the manipulator is stable while 
tracking the desired trajectory. The angular velocity of the each joint is shown in Fig. 4b, 
which means the rotation rate of each joint when the FMWMM completes trajectory track-
ing. During the trajectory tracking process, there is no jitter and vibration in the changes 
of each joint angle and wheel angle, and the changes of each joint angle and wheel angle 
are relatively smooth. From Fig. 4b and d, it is obtained that the joint speed and the wheel 
speed change in a very small range, which further proves that the numerical changes of 
the manipulator at this moment and the next moment are small, reflecting the stability of 
the system. At the same time, the motor will not lose data or even be damage due to the 
excessive numerical change in a short time. It is revealed in the Fig. 4c that the FMWMM 
changes the velocity of the mobile platform smoothly during the movement, as the data in 
continuous time relatively less changes and the motor speed also changes smoothly, thus 
ensuring the completion of the track tracking task. The rotation speed of four wheels on 
the mobile platform is expressed in Fig. 4d, from which the velocity change of each wheel 
can be obtained when the FMWMM’s EE completes the trajectory tracking task. Simula-
tion results show that the controller always cooperates to monitor the mobile platform and 
manipulator to fulfill the grasping task of the EE, and demonstrate the efficiency and stabil-
ity of the NSZNN model (10) proposed to address the trajectory tracking problem of the 
FMWMM under time-varying disturbances.

(a)
0 10 20 30 40 50 60 70

time(s)
-0.1

0

0.1

0.2

0.3

0.4

m

x

y

z

30 35 40

0
0.1
0.2
0.3

50  50.5 51  
-1
0
1
2

10-3

(b)
0 10 20 30 40 50 60 70

time(s)
0.4

0.6

0.8

1

1.2

1.4

1.6

ra
d

1

2

3

4

(c)
0 10 20 30 40 50 60 70

time(s)
-0.5

0

0.5

1

ra
d

1

2

3

4

(d)

Fig. 5  Numerical simulations show the results of utilizing the NSZNN model (10) to control the 
EE of the FMWMM to track the desired trajectory under hybrid time-varying destabilization 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and parameters � = 100 , � = 1000 . a The desired trajectory and practical 
path. b Position error. c Joint angle of manipulator. d Angle of mobile platform wheels
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In engineering, external interference may not be present at the beginning of trajectory 
tracking, however, it appears during the tracking process. Therefore it is required that the 
controller is able to cope with sudden external disturbances. To verify that the NSZNN 
model has the ability to suppress sudden time-varying noise, the noise is set to appear at 
time t = 35 s in the simulation, and results are shown in Fig. 5. According to Fig. 5b, it can 
be seen that the error increases rapidly to 0.35 m after the noise appears. Then, the error 
converges to 0 soon. It indicates that the NSZNN model is able to suppress sudden external 
disturbances and allows the trajectory tracking error to converge rapidly. In engineering it 
allows the FMWMM to operate the trajectory tracking task with high accuracy in the envi-
ronment with the influence of suddenly changing noise.

4.2  Other existing models

In order to attest the efficiency and superiority of the developed NSZNN model (10), a 
holistic comparison with the existing ZNN model (26) and GNN model (25) is designed. 
For comparison and discussion, the GNN controller, ZNN controller and NSZNN control-
ler are set to have the same parameters.

In comparison to the previously presented GNN model (Xiao and Zhang 2014): The 
dynamic equation of the GNN model (25) is shown in (25), which is exploited to compute 
the inverse of the matrix. In other words, the GNN model (25) can solve the TVIK of the 
FMWMM. The GNN model (25) with external interference can be represented as the suc-
ceeding equation:
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Fig. 6  Numerical simulations show the results of utilizing the GNN model (25) to control the 
EE of the FMWMM to track the desired trajectory under hybrid time-varying destabilization 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and the parameters � = 10 . a The desired trajectory and practical trajec-
tory. b Vertical view of the expected trajectory and actual trajectory. c Position error. d The rate of change 
of position error
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Fig. 7  Numerical simulations show the results of employing the GNN model (25) to solve the 
EE of the FMWMM to track the desired trajectory under hybrid time-varying destabilization 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and the parameters � = 10 . a Joint angle of the manipulator. b Joint angle 
velocity of the manipulator. c Angle of mobile platform wheels. d Angular velocity of mobile platform 
wheels
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The simulation result of the EE of the FMWMM controlled by the GNN model (25) in 
tracking the desired trajectory under the disturbance of hybrid noise is shown in Fig. 6a. 
The desired trajectory and the actual trajectory of the error are large as shown in Fig. 6c, 
which intuitively shows that the GNN model (25) cannot complete the control task. In sum-
mary, the task of tracking the trajectory fails. More details of the trajectory tracking of the 
FMWMM are shown in Fig. 7. From Fig. 7a–d, the joint variation of the manipulator has 
buffeting, which indicates that there is a sudden change during the operation, and the wheel 
velocity variation of the mobile platform also has buffeting, which indicates that there is a 
mutation in vehicle velocity while tracking the desired trajectory, and it is not allowed in 
the practical scenarios, which further indicates that the rotational velocity of the mobile 
platform and the manipulator is unstable in the trajectory tracking. The numerical results 
infer that the GNN model (25) cannot remove the interference of external. That is to say, 
the GNN model (25) with external destabilization can not have the effectiveness to dispose 
the TVIK problem of the FMWMM.

Compared with the current ZNN model (Xiao and Zhang 2014): In the real-time solu-
tion process, the derivative information of the coefficient matrix is applied to solve the 
TVIK problem, that is to say, the ZNN model (26) can obtain a precise value of the TVIK 
with global exponential convergence. In contrast, the GNN model (25) mentioned in the 
previous subsection does not use derivative information. It can deal with the trajectory 

(26)Uq̇ = 𝜛(𝜅d(t) − 𝜅(t)) + Υ(t)
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Fig. 8  Numerical simulations show the results of using the ZNN model (26) to manage the 
EE of the FMWMM to track the desired trajectory under hybrid time-varying destabilization 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and the parameters � = 10 . a The desired trajectory and practical trajec-
tory. b Vertical view of the expected trajectory and actual trajectory. c Position error. d The rate of change 
of position error
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Fig. 9  Numerical simulations show the results of applying the ZNN model (26) to monitor the 
EE of the FMWMM to track the desired trajectory under hybrid time-varying destabilization 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and the parameters � = 10 . a Joint angle of the manipulator. b Joint angle 
velocity of the manipulator. c Angle of mobile platform wheels. d Angular velocity of mobile platform 
wheels
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tracking problem of the FMWMM and the dynamic equation of the ZNN model (26) with 
external interference is as follows:

Under the interference of hybrid noises, the simulation results of the EE of the FMWMM 
controlled by the ZNN model (26) while tracking the desired trajectory are shown in 
Fig. 8a. The ZNN method is still difficult to control the FMWMM to accomplish the trajec-
tory tracking task with the noise interference. The position error of solving the TVIK prob-
lem under mixed noise based on ZNN model is shown in Fig. 8c. The divergent position 
error further proves that the FMWMM cannot accomplish the trajectory tracking. More 
details of the trajectory tracking of the FMWMM are shown in Fig.  9a–d. From Fig.  9, 
it can be seen that the curves of the mobile platform and the manipulator have buffeting 
while completing the trajectory tracking task. If the solved value is sent to the FMWMM, it 
chatters and will be difficult to complete the track tracking, which is not allowed in practi-
cal application. The aforementioned simulation results confirm that the ZNN model (26) 
cannot eliminate the interference of external time-varying noise. Namely, the ZNN model 
(26) with external interference can not have the robustness to manage the TVIK problem 
of the FMWMM. Through the above experiments, it can be seen that, compared with the 
GNN approach and the ZNN approach, the NSZNN approach has superior performance 
in solving the TVIK problem with different measurement noises. In addition, in order to 
demonstrate that the NSZNN model can suppress external noise interference to enable 
the mobile manipulator to accurately accomplish the trajectory tracking task, the NSZNN 
model can be used to track the trajectory of the mobile manipulator, the finite-time Zhang 

(27)Uq̇ = �̇�d(t) + 𝜉(𝜅d(t) − 𝜅(t)) + Υ(t)
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Fig. 10  Numerical simulations show the results of utilizing the FTZNN model (10) to control the EE of the 
FMWMM to track the desired trajectory under hybrid perturbation Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and 
the parameters �1 = �2 = 1,p∕q = 0.2 . a The desired trajectory and practical trajectory. b Vertical view of 
the expected trajectory and actual trajectory. c Position error. d The rate of change of position error

Fig. 11  Numerical simulations show the results of employing the FTZNN model (10) to monitor the EE 
of the FMWMM to track the desired trajectory under hybrid perturbation Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] 
and the parameters �1 = �2 = 1 , p∕q = 0.2 . a Joint angle of manipulator. b Angular speed of manipulator. c 
Angle of mobile platform wheels. d Palstance of mobile platform wheels
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neural network (FTZNN) model (Xiao et  al. 2018) is compared and analyzed with the 
NSZNN in this paper. The FTZNN model is constructed as follows.

where the parameters �1 = �2 = 1,p∕q = 0.2 , and hybrid perturbation 
Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] . Numerical simulations show the results of utilizing the 
FTZNN model (11) to control the EE of the FMWMM to track the desired trajectory under 
hybrid perturbation Υ(t) = [exp(−2t);0.1t;0.6 sin(3t)] and the parameters �1 = �2 = 1 . From 
Fig. 10a–d, it can be obtained that the FTZNN model cannot control the mobile machinery 
to track the desired trajectory in the presence of noisy interference. From Fig. 11a–d, it is 
obtained that the error becomes dispersion form with time and the position error increases 
to 1.5 m. Thus, the FTZNN model cannot suppress the external noise to accurately inter-
fere with the completion of the trajectory tracking task. In addition, the FTZNN model 
does not satisfy the Lipschitz continuity requirement for some activation functions (Liu 
and Shang 2022). Especially in noisy environments, the FTZNN model makes it very dif-
ficult for mobile manipulators to accurately perform trajectory tracking tasks. Therefore, it 
is very difficult to achieve finite-time convergence of models equipped with these types of 
activation functions in practice.

Analyzed from the perspective of control in conjunction with Fig. 2, the NSZNN model 
(10) can be regarded as a generalized PID controller, which combines the desired temporal 
derivative and integral terms. The GNN model (25) and ZNN model (26) can be regarded as 
generalized P controller and PD controller respectively. The P controller has the effect of fast 
adjustment, but the error cannot be eliminated without the integral term. The PD controller has 
a differential term, which can predict the error trend and improve the dynamic performance of 
the system, but it has an amplification effect on noise interference and leads to system insta-
bility. However, the PID controller not only has the ability of rapid adjustment and advanced 
control to eliminate deviations, but also has an integral term that eliminates the steady-state 
error of the system and eliminates the influence of external noise on the system. Therefore, the 
NSZNN model (10) controller is more effective and superior in dealing with TVIK problems.

4.3  Comparison of different parameters

To testify the meliority and effectiveness of the NSZNN model (10) in solving the TVIK 
problem of the FMWMM with various noises, the same type noise is selected for compari-
son. According to the root mean square error of position in Table 1, it can be clearly judged 
that the position error of the EE of the FMWMM controlled by the NSZNN model (10) in 
tracking the desired trajectory is less than that of the other two models under the three kinds 
of noises. Therefore, the NSZNN model (10) is more splendid than the GNN model (25) and 
ZNN model (26) in TVIK problems of the FMWMM with noises polluted.

(28)
Uq̇ = �̇�d(t) + 𝜉1(𝜅d(t) − 𝜅(t))

+ 𝜉2(𝜅d(t) − 𝜅(t))p∕q + Υ(t)

Table 1  Comparison of NSZNN 
model (10), ZNN model (26) 
and GNN model (25) of the root 
mean square error of the EE 
position under different noises

Controller/noise type Linear noise Sinusoidal noise Hybrid noise

GNN 1.007 × 10−1 1.100 × 10−3 2.900 × 10−3

ZNN 3.510 × 10−2 3.892 × 10−4 3.899 × 10−4

NSZNN 1.558 × 10−4 9.776 × 10−6 9.190 × 10−6
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The parameters of the NSZNN model are modified to alter the convergence rate and error 
accuracy of the system. The simulation results for different sizes of parameter � are shown in 
Fig. 12 and Table 2, where the parameter is � = 100 . It can be informed by Fig. 12 that as the 
parameter � increases, the smaller the error fluctuates in the initial stage, and the faster the con-
vergence is. This indicates that the larger the parameter � is, the faster the NSZNN model con-
verges. Meanwhile, Table 2 shows that the larger the parameter � , the smaller the error, which 
is due to the fact that faster convergence of the system results in the error remaining lower 
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Fig. 12  The position error of the FMWMM’s EE of the NSZNN model under different parameters while 
tracking the desired trajectory with � = 100 . a � = 10. b � = 50. c � = 100

Table 2  Root-mean-square error 
of the position of X-axis, Y-axis 
and Z-axis of the FMWMM 
controlled by the NSZNN model 
with different parameters under 
� = 100

Parameter � �x �y �z

10 1.1798 × 10−2 2.1556 × 10−3 1.8578 × 10−2

50 1.1775 × 10−2 2.1410 × 10−3 1.8545 × 10−2

100 1.1772 × 10−2 2.1311 × 10−3 1.8540 × 10−2
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Fig. 13  The position error of the FMWMM’s EE of the NSZNN model (10) under different parameters 
while tracking the desired trajectory with � = 10 . a � = 50. b � = 125. c � = 200

Table 3  Root-mean-square error 
of the position of X-axis, Y-axis 
and Z-axis of the FMWMM 
controlled by the NSZNN model 
(10) with different parameters 
under � = 10

Parameter � �x �y �z

50 3.4912 × 10−4 2.0000 × 10−3 5.3641 × 10−5

125 2.2919 × 10−4 8.6327 × 10−4 8.3252 × 10−6

200 1.8065 × 10−4 5.5958 × 10−4 5.6559 × 10−6
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for more time, resulting in a smaller trajectory tracking error. Therefore, the desired tracking 
effect can be achieved by appropriately adjusting the parameter � under actual conditions.

Compared the NSZNN model with different parameters � to change the convergence veloc-
ity of the inverse kinematics of the FMWMM. It can be received from Fig.  13, where the 
parameter is � = 10 . As the noise coefficient increases, the convergence speed of the sys-
tem increases. The convergence time of the system at � = 200 is faster than that at � = 50 . 
Namely, the convergence ratio can be manually controlled by changing the parameter � of the 
NSZNN model (10). Combining Fig. 13 and Table 3, it can be concluded that as the param-
eter � increases, the stability of the system can be increased. Table 3 intuitively shows that as 
the parameter � becomes larger, the position error of the FMWMM’s EE while tracking the 
desired trajectory in each coordinate axis is significantly reduced. In summary, noise suppres-
sion can quickly reduce the trajectory tracking error and quickly reduce the effect of external 
disturbances. Therefore it can also affect the convergence of the system. When the parameter 
� is increased, the error is reduced and the convergence is improved. In actual conditions, the 
effect of the desired tracking can be achieved by appropriately adjusting the parameter �.

In addition, the results of the different schemes comparison are summarized in Table 4. 
To emphasize the superiority of the NSZNN model (10), many studies of mobile manipu-
lators (Zhang et al. 2020; Xie et al. 2020; Sun et al. 2019a, 2022, 2023c; Xiao et al. 2018) 
in recent years have compared with the NSZNN (10) model, and the results are presented 
in Table  4. First, the proposed NSZNN model is feasible for both the fixed and mobile 
manipulators. This illustrates the wide applicability of the NSZNN model (10). Second, 
the NSZNN model (10) can solve the time-varying nonlinear system of equations problem 
accurately under noise pollution and adjust the error from large values to zero, while some 
models cannot. Third, only the NSZNN model (10) is validated on a platform, while other 
models are not validated on a platform. Thus, the superior performance of the NSZNN 
model (10) is illustrated based on the above advantages.

4.4  Mobile manipulator experiments

In order to verify the validity and stability of the NSZNN algorithm, a further test is con-
ducted on a physical mobile manipulator. The algorithm verification principle block dia-
gram is shown in Fig. 14. The optical motion capture system produced by NOKOV is used 

Table 4  Comparison of different controllers for mobile manipulator motion

Scheme Mobile or 
fixed-based 
or no

Error accumula-
tion elimination

Error 
deriva-
tion

Platform 
verifica-
tion

Scheme level Noise 
suppres-
sion

NSZNN Both
√ √ √

Velocity-level
√

GNN (25) Fixed-based × × × Velocity-level ×

ZNN (26) Mobile × × × Velocity-level ×

Sun et al. (2019a) No
√ √

× No ×

Zhang et al. (2020) Mobile × × × Velocity-level ×

Xie et al. (2020) Fixed-based × × × Velocity-level ×

Sun et al. (2022) Both × × × Velocity-level ×

Xiao et al. (2018) No × × × No ×

Sun et al. (2023c) Both
√ √

× Velocity-level
√
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to capture the position of the Marker point (the point in the red circle in Fig. 1a) of the 
ROS mobile manipulator’s EE in 3D space real-timely. First, the data archive profile is 
created and loaded using the Seeker software. Second, connect the workstation to the lens 
and change the workstation page layout, which allows the top of the page to place the con-
nected lens area and the bottom half of the page to be the data capture area. Third, mark the 
end-effector positions of the FMWMM as marker points and place them in the center of the 
motion capture field. Fourth, other stray and reflective points are dealt with in the 2D view 
to ensure the accuracy and reliability of the data acquisition environment. The collected 
data are drawn with MATLAB, and the effectiveness of the algorithm has been verified by 
comparison with expected the trajectory.

Figure 15 shows the desired trajectory computed by MATLAB and the actual trajectory 
returned by the optical motion capture system. It is illustrated in the Fig. 15a that giving 
the initial state point in MATLAB is difficult to satisfy the expected trajectory equation, so 
in the initial stage of trajectory tracking, the EE in Fig. 15a is difficult to track the expected 
trajectory, which is partly marked in the blue circle in Fig. 15a. During the operation of the 
ROS mobile manipulator, there is a large gap between the rotational speed of the mobile 
platform and the manipulator after receiving the command. For example, when the robot 

Fig. 14  Algorithm validation schematic block diagram

(a)
(b)

Fig. 15  MATLAB simulation tracking diagram and ROS based mobile manipulator actual tracking dia-
gram. a The trajectory tracking diagram based on MATLAB simulation. b The trajectory tracking curve 
based on ROS mobile manipulator
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terminal issues the instruction of wheel rotation at a fixed angle, the wheel rotates rapidly 
to a specified angle. The rotation angle instruction is sent to the manipulator through the 
terminal, and the rotational speed of the manipulator is very slow. Therefore, in order to 
overcome the limitation of slow rotation speed of the manipulator, a delay of 60 s is added 
to the C++ program in this paper to make the manipulator move to the expected initial 
position. In the initial stage, there is no trajectory curve turning similar to Fig. 15a in b, and 
the starting position is on the expected trajectory, namely the blue circle in Fig. 15b.

In addition, it is considered that no delay command is added in C++, but there is a large 
difference between the rotational speed of the manipulator and that of the mobile platform 
within a certain time, which will lead to greater initial position error and failure of the 
trajectory task over time. ROS mobile manipulator weighs 10 kg. When the whole C++ 
program runs to the final stage, the value sent to each motor is small, and the power gener-
ated by motor rotation is not enough to overcome the weight of the FMWMM itself, so it is 
difficult to return to the starting position. As can be seen from Fig. 15b, the moving manip-
ulator tracks the triangle in counterclockwise direction, and NSZNN algorithm is effective 
and can control the EE to complete trajectory tracking in general. However, the trajectory 
tracking curve in Fig. 15b still has a lot of jitters, which needs to be improved in the future.

The NSZNN model proposed in this paper is essentially a solution to the time-varying 
nonlinear system of equations problem, a time-varying quadratic programming scheme for 
the mobile manipulator tracking a square trajectory is illustrated by an example to ver-
ify that the mobile manipulator tracks a square trajectory without jitter. The time-varying 
quadratic programming problem of the mobile manipulator can be converted to a time-var-
ying nonlinear system of equations problem by the Karush–Kuhn–Tucker condition. The 
NSZNN model solves the time-varying quadratic programming problem platform experi-
ment as shown in Fig. 16. In the experiment, mobile manipulator EE is expected to trace 
a rectangular trajectory. The Fig.  16 shows the numerical tracking results of the mobile 
manipulator and the actual trajectory based on the optical motion capture system, respec-
tively. From Fig. 16a and b it can be obtained that the NSZNN model is valid to enable 
the mobile manipulator to accomplish the trajectory tracking task. The Fig. 16b illustrates 
the experimental results of mobile manipulator synthesized by time-varying quadratic pro-
gramming with equation and inequality constraints, which were solved using the NSZNN 
model. These experimental results confirm the physical realizability of the NSZNN model 
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Fig. 16  MATLAB simulation tracking diagram and ROS based mobile manipulator actual tracking dia-
gram. a The trajectory tracking diagram based on MATLAB simulation. b Actual tracking trajectory of a 
mobile manipulator based on a motion capture system
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in solving time-varying quadratic programming with equation and inequality constraints 
with noise.

5  Conclusion

A superior NSZNN model based on the classic ZNN model has been proposed to solve the 
TVIK problem. The TVIK problem of the FMWMM with various time-varying perturba-
tions has been analyzed and the results show that the NSZNN model can quickly converge 
to the exact solution of the TVIK, and the reason of its noise suppression capability has 
been analyzed from the control point of view. In addition, the simulation results has shown 
that NSZNN model has advantages over GNN model and ZNN model, which also have 
reflected that NSZNN model has faster convergence performance by adjusting parameters. 
Ultimately, the effectiveness of the algorithm has been verified on the ROS mobile manip-
ulator platform. In future research, we will introduce the ZNN model with nonconvex acti-
vation function to solve the time-varying nonconvex constrained optimization problem.
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