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Abstract
Recent advancements have significantly improved the efficiency and effectiveness of deep 
learning methods for image-based remote sensing tasks. However, the requirement for 
large amounts of labeled data can limit the applicability of deep neural networks to exist-
ing remote sensing datasets. To overcome this challenge, few-shot learning has emerged as 
a valuable approach for enabling learning with limited data. While previous research has 
evaluated the effectiveness of few-shot learning methods on satellite-based datasets, little 
attention has been paid to exploring the applications of these methods to datasets obtained 
from Unmanned Aerial Vehicles (UAVs), which are increasingly used in remote sensing 
studies. In this review, we provide an up-to-date overview of both existing and newly pro-
posed few-shot classification techniques, along with appropriate datasets that are used for 
both satellite-based and UAV-based data. We demonstrate few-shot learning can effectively 
handle the diverse perspectives in remote sensing data. As an example application, we 
evaluate state-of-the-art approaches on a UAV disaster scene dataset, yielding promising 
results. Furthermore, we highlight the significance of incorporating explainable AI (XAI) 
techniques into few-shot models. In remote sensing, where decisions based on model pre-
dictions can have significant consequences, such as in natural disaster response or environ-
mental monitoring, the transparency provided by XAI is crucial. Techniques like attention 
maps and prototype analysis can help clarify the decision-making processes of these com-
plex models, enhancing their reliability. We identify key challenges including developing 
flexible few-shot methods to handle diverse remote sensing data effectively. This review 
aims to equip researchers with an improved understanding of few-shot learning’s capabili-
ties and limitations in remote sensing, while pointing out open issues to guide progress in 
efficient, reliable and interpretable data-efficient techniques.
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1  Introduction

The last few decades saw significant advancements in remote sensing imaging technology. 
Remote sensing technologies nowadays encompass not only the traditional satellite-based 
platforms, but also include data collected from remote Unmanned Aerial Vehicles (UAVs). 
Figure 1 illustrates the typical height at which such platforms navigate as well as their esti-
mated coverage area (Xiang et al. 2018) for an urban setting. The modern airborne sensors 
that are attached to such platforms can cover and map a significant portion of the earth’s 
surface with better spatial and temporal resolutions, making them essential for earth-based 
or environmental-based observations like geodesy and disaster relief. Automatic analysis 
of remote sensing images is usually multi-modal, meaning that optical, radar, or infrared 
sensors could be used, and such data could be distributed geographically and globally in 
an increasingly efficient manner. With advances in artificial intelligence, deep learning 
approaches have found their way into the remote sensing community, which, together with 
the increased in remote sensing data availability, has enabled more effective scene under-
standing, object identification, and tracking.

Convolutional Neural Networks (CNNs) have become popular in object recognition, 
detection, and semantic or instance segmentation of remote sensing images, typically 
using RGB images as input, which undergo convolution, normalization, and pooling 
operations. The convolution operation is effective in accounting for the local interac-
tions between features of a pixel. While the remote sensing community has made great 
strides in multi-spectral satellite-based image classification, tracking, and semantic and 

Fig. 1   A simple pictorial illustration of the type of remote sensing platforms, as well as the typical height 
in which such platforms navigate. The values for their possible coverage area for an urban setting are also 
illustrated and are adapted from Xiang et al. (2018)
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instance segmentation, the limited receptive field of CNNs makes it difficult to model 
long-range dependencies in an image. Vision transformers (ViTs) was proposed to 
address this issue by leveraging the self-attention mechanism to capture global interac-
tions between different parts of a sequence. ViTs have demonstrated high performance 
on benchmark datasets, competing with the best CNN-based methods. Consequently, 
the remote sensing community has rapidly proposed ViT-based methods for classify-
ing high-resolution images. With pre-training weights and transfer learning techniques, 
CNNs and ViTs can retain their classification performance at a lower computational 
cost, which is essential for limited computational resources platforms such as UAVs.

However, both CNNs and ViTs required large training data samples for accurate 
classification, and some of these methods may not be feasible for critical tasks such as 
UAVs search-and-rescue. It would be beneficial, for instance, if the platforms were able 
to quickly identify and generalize disaster scene solely from analyzing a small subset of 
the captured frames. Few-shot classification approaches addressed the above needs, and 
in such approaches the goal is to enable the network to quickly generalize to unseen test 
classes in a more diverse manner given a small sets of training images. A framework 
like this closely resembles how the human brain learns in real life. Like ViTs, few-shot 
learning has also ignited new researches in remote sensing, and their applications to 
land cover classification in the RGB domain (Deng et al. 2021; Zhang et al. 2021) and 
hyperspectral classification (He et al. 2019; Zhong et al. 2021) has been observed. The 
approaches have also been extended to object detection (Carion et  al. 2020) and seg-
mentation (Xu et  al. 2021). These emerging works are also as recent as that utilizing 
ViT. Since a review of ViT approaches for various domains in remote sensing (Aleis-
saee et al. 2022) have been reported, a review of few-shot-based approaches in remote 
sensing is noteworthy to keep current interested researchers up-to-pace with the recent 
progresses in this area.

We have taken note that a related review has already been conducted in Sun et  al. 
(2021). A notable omission in the previous review is the failure to acknowledge the sig-
nificance of interpretable machine learning models in this field. Integrating interpretable 
machine learning into remote sensing image classification can further enhance CNNs 
and ViTs’ performance. By providing insights into the decision-making process of these 
models, interpretable machine learning can increase their transparency and account-
ability, which is particularly relevant in applications where high-stakes decisions are 
made based on their outputs, such as disaster response and environmental monitoring. 
For instance, saliency maps can be generated to highlight regions of images that are 
most relevant for the model’s decision, providing visual explanations for its predictions. 
Furthermore, interpretable machine learning can aid in identifying potential biases and 
errors in the training data, as well as enhancing the robustness and generalization of the 
model. In remote sensing, interpretable machine learning can also facilitate the integra-
tion of expert knowledge into the model, enabling the inclusion of physical and envi-
ronmental constraints in the classification process. This can enhance the accuracy and 
interpretability of the model, allowing for more informed decision-making. In short, the 
integration of interpretable machine learning in remote sensing image classification can 
provide a valuable tool for enhancing the transparency, accountability, and accuracy of 
CNNs and ViTs. By providing insights into the decision-making process of these mod-
els, interpretable machine learning can help build trust in their outputs and facilitate 
their use in critical applications.

The purpose of this additional review in this area is to address some more gaps that 
were not included in the previous review by Sun et al. (2021). These gaps are as follows:
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•	 Their focus in exploring remote sensing datasets was on satellite-based imagery and 
the few-shot learning techniques associated with such datasets. Nonetheless, with 
the emergence of UAV-based remote sensing datasets, we have detected a lack of 
consideration for the proposed works that have been applied and evaluated in such 
datasets. Furthermore, datasets and learning-based techniques associated with UAVs 
could also benefit from few-shot learning approaches due to their limited compu-
tational resources. This implies that data collected through UAVs would be con-
strained by a limited amount, thus emphasizing the need for efficient learning meth-
ods.

•	 Quantitatively speaking, satellite-based remote sensing datasets offer a considerably 
wider field of view and greater coverage, allowing for the simultaneous capture of mul-
tiple object classes or labels in a single scene, an approach referred to as multi-label 
classification. On the other hand, the smaller coverage area of UAV-based remote sens-
ing datasets often provides data that is suitable only for single-label image classifica-
tion. Consequently, proposed methods that address such settings in the context of UAV-
based remote sensing can be easily distinguished from those designed for multi-label 
classification, in contrast to works utilizing satellite-based remote sensing datasets. It is 
essential, therefore, to take into account the characteristics of the remote sensing data-
set when devising and evaluating image classification methods in this field.

•	 As has been emphasized and illustrated by Sun et al. (2021), the utilization of few-shot 
learning-based techniques for remote sensing has been on the rise since 2012. As the 
aforementioned work was published in 2021, we can envisage that there will be an even 
greater proliferation of such approaches for remote sensing. In light of the dynamic 
nature of this research domain, our review aims to disseminate the most current and up-
to-date information available on the topic. Through this approach, we seek to provide 
an improved understanding of the recent advances in few-shot learning-based methods 
for remote sensing, allowing for a comprehensive assessment of their potential applica-
tions and limitations.

In summary, our main contributions in this review article are as follows:

•	 In this work, we present and holistically summarize the applications of few-shot learn-
ing-based approaches in both satellite-based and UAV-based remote sensing images, 
focusing on image classification alone, but extending the review work conducted by 
Sun et al. (2021) in terms of the explored remote sensing datasets. Our analysis serves 
to assist readers and researchers alike, allowing them to bridge gaps between current 
state-of-the-art image-based classification techniques in remote sensing, which may aid 
in promoting further progress in the field.

•	 As part of our discussion on the recent progress in the field of remote sensing regarding 
few-shot classification, we examined how CNNs and transformer-based approaches can 
be adapted to datasets, expanding the potential of these methods in this domain.

•	 Our work delved into a thorough discussion of the challenges and research directions 
concerning few-shot learning in remote sensing. We aimed to identify the feasibil-
ity and effectiveness of different learning approaches in this field, focusing on their 
potential applications in UAV-based classification datasets. Through this approach, we 
sought to shed light on the potential limitations and further research needed to improve 
the efficacy of few-shot learning-based techniques in the domain of remote sensing, 
paving the way for more advanced and sophisticated classification methods to be devel-
oped in the future.
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•	 We also emphasized the significance of integrating XAI to improve transparency and 
reliability of few-shot learning-based techniques in remote sensing. Our objective was 
to offer researchers and practitioners a better comprehension of the possible applica-
tions and constraints of these techniques. We also aimed to identify novel research 
directions to devise more effective and interpretable few-shot learning-based methods 
for image classification in remote sensing.

The remainder of this paper is structured as follows: In Sect. 2, we provide a quick back-
ground on few-shot learning and present example networks. Section  3 discusses related 
review works in remote sensing, and Sects. 4, 5 and 6 provide brief highlights of the type 
of remote sensing data, common evaluation metrics utilized, and benchmark datasets com-
monly used, respectively. Section  7 delves into some up-to-date existing works on few-
shot classification in the hyperspectral, Very High Resolution (VHR), and Synthetic Aper-
ture Radar (SAR) data domain. In Sect. 8, we outline some implications and limitations of 
current approaches, and in Sect. 9, we quantitatively evaluate some existing methods on a 
UAV-based dataset, demonstrating the feasibility of such approaches for UAV applications. 
Finally, in Sect. 10, we conclude this review paper. An overview of the scope covered in 
our review of Explainable Few-Shot Learning for Remote Sensing is illustrated in Fig. 2.

2 � Backgrounds

Few-shot learning (FSL) is an emerging approach in the field of machine learning that 
allows models to acquire knowledge and make accurate predictions with limited training 
examples per class or context in a specific problem domain. In contrast to conventional 
machine learning techniques that demand vast quantities of training data, FSL aims to 
achieve comparable levels of performance using substantially fewer training examples. 
This ability to learn from scarce data makes FSL well-suited for applications where gather-
ing sizable training sets may be prohibitively expensive or otherwise infeasible.

In traditional machine learning, models are trained from scratch on large labeled data-
sets. In contrast, FSL aims to learn new concepts from just a few examples, leveraging 
transfer learning from models pre-trained on other tasks. First, a base model is pretrained 
on a large dataset for a task like image classification. This provides the model with gen-
eral feature representations that can be transferred. Then for the new few-shot task, the 
pretrained model is used as a starting point. The support set of few labeled examples for 
the new classes is used to fine-tune the pretrained model. Typically only the last layer is 
retrained to adapt the model to the new classes, in order to leverage the pre-learned fea-
tures. Finally, the adapted model is evaluated on the query set. The query set contains unla-
beled examples that the model must make predictions for, based on the patterns learned 
from the small support set for each new class. This tests how well the model can generalize 
to new examples of the classes after adapting with only a few shots. To get a clearer view, 
this whole process is illustrated in Fig. 3.

Approaches in FSL classification can often be categorized based on the number of novel 
categories needed for generalization, referred to as N, as well as the number of labeled 
samples or classes available in the support set for each of the N novel classes, referred to 
as k. Generally, a lower value of k makes it more challenging for the few-shot model to 
achieve high classification accuracy, as there is less supporting information in the support 
set to aid the model in making accurate predictions. This scheme is commonly referred to 
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as ‘N-way k-shot learning scheme.’ In instances where k equals 1, such schemes are often 
referred to as one-shot learning. Additionally, in instances where k equals 0, such schemes 
are often referred to as zero-shot learning.

Initial exploration of FSL in conjunction with unmanned aerial vehicle (UAV)-based 
thermal imagery was undertaken by Liu et  al. (2018) and Masouleh and Shah-Hosseini 
(2019). Their pioneering work demonstrated the potential of FSL for UAV-based tasks 
where limited onboard computational resources impose stringent constraints on model 
complexity and training data volume. The primary goal of FSL is to construct models that 
can identify latent patterns within a certain field using limited training examples, then uti-
lize this learned knowledge to effectively categorize and classify new input. This capa-
bility closely mirrors human learning, where people can often understand the core of a 
new concept from just one or two examples. By reducing reliance on extensive training 
sets, FSL facilitates the development of machine learning systems applicable to data-scarce 
real-world problems across a broad range of domains.

Fig. 2   Overview of Explainable Few-Shot Learning in Remote Sensing. This illustration provides a high-
level summary of the scope of our review on Explainable Few-Shot Learning techniques, applications, and 
challenges within Remote Sensing
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2.1 � Similarity functions for few‑shot learning

A similarity function is a critical component of linking the support set and query set in 
few-shot learning. An example in the context of aerial disaster scene classification using 
the AIDER dataset (Kyrkou and Theocharides 2020) is illustrated in Fig. 4. The left side 
of the figure shows how the similarity function evaluation is performed between each 
pair of images, with the left and middle images representing a fire disaster class and the 
right image representing a non-disaster class (or normal class). The right side of the figure 
shows how the similarity function can be used in conjunction with a query image and those 
from the support set to make a prediction on the correct class (flood) based on the similar-
ity scores.

In few-shot learning, the choice of loss function is critical for enabling effective gener-
alization from limited examples. Some commonly used loss functions include triplet loss, 
contrastive loss, and cross-entropy loss. The triplet loss helps models learn useful feature 
representations by minimizing the distance between a reference sample and a positive sam-
ple of the same class, while maximizing the distance to a negative sample from a different 
class. This allows fine-grained discrimination between classes. Contrastive loss is useful 
for training encoders to capture semantic similarity between augmented views of the same 
example. This improves robustness to input variations. Cross-entropy loss is commonly 
used for classifier training in few-shot models, enabling efficient learning from scarce 

Fig. 3   Schematic of the few-shot learning approach, including pre-training a base model on ample data, 
constructing task episodes with support and query sets for new classes, fine-tuning the base model on the 
support set, and evaluating on the query set
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labeled data. However, it can suffer from overfitting due to limited examples. Regulariza-
tion methods such as label smoothing can help mitigate this. Other advanced losses like 
meta-learning losses based on model parameters have shown promise for fast adaptation 
in few-shot tasks. Overall, the choice of loss function plays a key role in addressing criti-
cal few-shot learning challenges like overfitting, feature representation learning, and fast 
generalization. Further research on specialized losses could continue improving few-shot 
performance.

For the scenario depicted on the left side of Fig. 4, the triplet loss Ltriplet (Hoffer and 
Ailon 2015) is an example of a similarity function that could be used. The triplet loss 
involves comparing an anchor sample class to a positive sample class and a negative sam-
ple class. The goal is to minimize the Euclidean distance between the anchor and the posi-
tive class based on the similarity function f and maximize the distance between the anchor 
and the negative class. This can be summarized mathematically in Eq. 1 as

In Eq. 1, the anchor, positive, and negative class samples are denoted as a, p, and n, respec-
tively. The index i refers to the input sample index, N denotes the total number of samples 
in the dataset, and � is a bias term acting as a threshold. The subscript 2 indicates that the 
evaluated Euclidean distance is the L2 loss, and the superscript 2 corresponds to squaring 
each parenthesis. The second term with a negative sign allows the maximization of the dis-
tance between the anchor and the negative class sample.

Networks that use the triplet loss for few-shot learning are also referred to as triplet net-
works. On the other hand, for comparing pairs of images, Siamese networks are commonly 
used. In such cases, the contrastive loss function Lcontrastive (Hadsell et al. 2006) can be a 
better choice for defining similarity or loss, although the triplet loss can also be employed. 
The contrastive loss can be expressed mathematically as shown in Eq. 2:

(1)Ltriplet =
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Fig. 4   (Left) Similarity function as applied to each pair of images in the AIDER dataset (Kyrkou and Theo-
charides 2020). The image on the left and middle constitute a fire disaster class, and the image on the right 
is a non-disaster class (normal). (Right) A query image of the flood disaster class is compared with the 
images from the support set via the similarity function and a correct class prediction is made based on the 
similarity score. In this case the flood disaster class is correctly predicted and classified
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In Eq. 2, y denotes whether two data points, x1 and x2 , within a given set i, are similar (y 
= 0) or dissimilar (y = 1). The margin term m is user-defined, while DW is the similarity 
metric, which is given by:

Similarly to the previous method, the L2 loss-based Euclidean distance is used, where the 
first term in Eq. 3 corresponds to similar data points and the second term corresponds to 
dissimilar ones.

The third type of network for Few-Shot Learning can be realized as a prototypical net-
work, as introduced by Snell et  al. (2017). This method utilizes an embedding space in 
which samples from the same class are clustered together. In Fig.  5, an example is pro-
vided to demonstrate this concept. For each cluster, a typical class prototype is computed 
as the mean of the data points in that group. The calculation of the class prototype can be 
expressed mathematically as shown in Eq. 4:

Equation 4 represents the prototypical network, a third type of network for FSL. The class 
prototype, computed as the mean of the data points belonging to the same group in the 
embedded space, is denoted by v(k) , where k represents the class. The set of support images 
for class k is represented by xk

i
 , and the embedding function by f� , which is different from 

the similarity function f described earlier.
The prototypical network and Siamese or triplet networks are different few-shot learning 

approaches that compare query and support samples in different ways. While Siamese or 
triplet networks directly compare query and support samples in pairs or triplets, the pro-
totypical network compares the query samples with the mean of their support set. This is 

(2)Lcontrastive(W, y, (x1, x2)
i) =
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Fig. 5   The embedding space in a 
prototypical network comprising 
of 3 classes c1 , c2 and c3 (denoted 
as green, dark red and orange 
respectively). The mean of k 
samples (5 in the diagram) for 
each class serves as the center of 
the cluster, and a given data point 
x is evaluated via the euclidean 
distance to determine which set 
of cluster it belongs based on the 
minimum distance criteria
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achieved by calculating the prototype representation of each class in the embedded metric 
space, which is the average of the feature vectors of all the support samples for that class. 
This can be visualized in Fig. 5. However, for one-shot learning, where only a single sup-
port sample is available for each class, the three approaches become equivalent, as the pro-
totype representation becomes identical to the support sample representation. Overall, the 
choice of few-shot learning approach may depend on the dataset’s specific characteristics 
and the available support samples.

2.2 � Importance of explainable AI in remote sensing

Remote sensing and analysis of satellite imagery has progressed rapidly thanks to artificial 
intelligence and machine learning. Machine learning models can identify objects and pat-
terns in huge amounts of satellite data with incredible accuracy, surpassing human capa-
bilities. However, these complex machine learning models are often considered “black 
boxes”—they provide highly accurate predictions and detections but it is unclear why they 
make those predictions.

Explainable AI is an emerging field of study focused on making machine learning mod-
els and their predictions more transparent and understandable to humans. Explainable AI 
techniques are essential for applications like remote sensing where decisions could have 
serious real-world consequences (Kakogeorgiou and Karantzalos 2021). For example, 
a machine learning model that detects signs of natural disasters like wildfires in satellite 
images needs to provide an explanation for its predictions so that human operators can 
verify the findings before taking action. There are several approaches to making machine 
learning models used for remote sensing more explainable.

•	 Highlighting important features: Techniques like saliency maps can highlight the most 
important parts of an image for a machine learning model’s prediction. For example, 
computer vision models could highlight the features they use to detect objects in satel-
lite images, allowing correction of errors. Similarly, anomaly detection models could 
point to regions that led them to flag unusual activity, enabling verification of true posi-
tives versus false alarms.

•	 Simplifying complex models: Complex machine learning models can be converted into 
simplified explanations that humans can understand, like logical rules and decision 
trees. For instance, deep reinforcement learning policies for navigating satellites could 
be expressed as a simplified set of if-then rules, revealing any flawed assumptions. 
These simplified explanations make the sophisticated capabilities of machine learning 
more accessible to domain experts.

•	 Varying inputs to understand responses: Another explainable AI technique is to sys-
tematically vary inputs to a machine learning model and observe how its outputs 
change in response. For example, generative models that create new realistic satellite 
images could be evaluated by generating images with different attributes to determine 
their capabilities and limitations. Analyzing how a model’s predictions vary based on 
changes to its inputs provides insights into how it works and when it may produce unre-
liable results.

Overall, explainable AI has the potential to build trust in machine learning systems and 
empower humans to make the best use of AI for applications like remote sensing. Mak-
ing machine learning models explainable also allows domain experts to provide feedback 
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that can improve the models. For example, experts in remote sensing may notice biases 
or errors in a machine learning model’s explanations that could lead the model astray. By 
providing this feedback, the experts can help data scientists refine and retrain the machine 
learning model to avoid those issues going forward.

In short, explainable AI has significant promise for enabling machine learning and 
remote sensing to work together effectively. By making machine learning models and pre-
dictions transparent, explainable AI allows:

•	 Humans to verify and trust the outputs of machine learning models before taking con-
sequential actions based on them.

•	 Domain experts to provide feedback that improves machine learning models and avoids 
potential issues.

•	 A better understanding of the strengths, weaknesses and limitations of machine learn-
ing that can guide how the technology is developed and applied in remote sensing.

Explainable AI will be key to ensuring machine learning is used responsibly and to its full 
potential for remote sensing and beyond. Building partnerships between humans and AI 
can lead to a future with technology that enhances human capabilities rather than replacing 
them.

2.3 � Taxonomy of few‑shot learning approaches

Understanding the different approaches in few-shot learning, as illustrated in Fig. 6, can 
help improve how these models are interpreted. The figure categorizes several main types 
of few-shot learning techniques. It includes metric learning methods like Prototypical Net-
works, Siamese Networks, and Triplet Networks, which focus on learning distinct embed-
dings; optimization-based meta-learning exemplified by Meta-SGD and MAML for quick 
adaptation; memory-based meta-learning with methods such as Matching Networks and 
Relation Networks that use support sets; data augmentation through methods like data hal-
lucination and generative/VAE-based transformations; transfer learning through domain 
adaptation and pre-training plus fine-tuning; and model generalization methods that focus 
on inherent adaptability through regularization constraints and inductive bias encoding. 
Referring to this framework enables us to pinpoint the main focus of a few-shot learning 
method, whether it’s in measuring similarities, optimizing meta-level processes, employing 

Fig. 6   Taxonomy of few-shot learning approaches
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non-parametric memory, expanding data, transferring knowledge, or adapting the architec-
ture. This classification, as depicted in the figure, can direct the creation of transparent and 
easy-to-understand techniques, particularly for remote sensing applications where explain-
ability is key. By understanding the foundational learning mechanisms shown in the figure 
and associated with existing methods, we can make reasoned decisions to select, combine, 
and enhance techniques to achieve not only accurate but also interpretable few-shot remote 
sensing analysis.

2.4 � Taxonomy of explainable few‑shot learning approaches

Expanding on the previous discussion, the clarity of few-shot models can be improved by 
using explainable AI methods designed for this area. These methods of explainable few-
shot learning can generally be divided into two main categories, as discussed below.

2.4.1 � Explainable feature extraction

These methods aim to highlight influential features or inputs that drive the model’s 
predictions.

•	 Attention mechanisms: Attention layers accentuate informative features and inputs by 
assigning context-specific relevance weights (Jetley et al. 2018). They produce activa-
tion maps visualizing influential regions (Wang et al. 2022a; Hong et al. 2021). How-
ever, they don’t explain overall reasoning process.

•	 Explainable graph neural networks: Techniques like xGNNs (Yuan et al. 2020a; Moura 
et  al. 2022) can identify important nodes and relationships in graph-structured data. 
Cheng et al. (2022) puts forth attentive graph neural network modules that can provide 
visual and textual explanations illustrating which features are most crucial for few-shot 
learning. This provides feature-level transparency. But complete logic remains unclear.

•	 Concept activation visualization: Approaches like Grad-CAM produce saliency maps 
showing influential regions of input images (Selvaraju et  al. 2016). But local feature 
importance may not fully represent global decision process.

•	 Rotation-invariant feature extraction: The proposed rotation-invariant feature extraction 
framework in Pintelas et  al. (2023) introduces an interpretable approach for extract-
ing features invariant to rotations. This provides intrinsic visual properties rather than 
extraneous rotation variations.

2.4.2 � Explainable decision making

These methods aim to directly elucidate the model’s internal logic and reasoning.

•	 Interpretable models: Decision trees (Rudin 2019) and rule lists (Letham et al. 2015) 
provide complete transparency into model logic in a simplified human-readable format. 
However, accuracy is often lower than complex models.

•	 Model-agnostic methods: Techniques like LIME (Ribeiro et  al. 2016) and SHAP 
approximate complex models locally using interpretable representations. But generat-
ing explanations can be slow at prediction time.
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•	 Fairness constraints: By imposing fairness constraints during training (Agarwal et al. 
2018) or transforming data into fair representations (Zemel et al. 2013), biases can be 
mitigated. However, constraints may overly restrict useful patterns.

•	 Prototype analysis: Analyzing prototypical examples from each class provides intuition 
into a model’s reasoning (Snell et al. 2017). But limited to simpler instance-based mod-
els.

Overall, choosing suitable explainable few-shot learning techniques requires trading off 
accuracy, transparency, and efficiency based on the application requirements and con-
straints. A combination of feature and decision explanation methods is often necessary 
for complete interpretability. The taxonomy provides an initial guide to navigating this 
complex landscape of approaches in remote sensing contexts. For clarity, the taxonomy 
is also illustrated in Fig. 7.

3 � Type of remote sensing sensor data

Remote sensing data is typically acquired from satellite or unmanned aerial vehicle 
(UAV) platforms, and the characteristics of the data can vary greatly depending on the 
specific platform and sensor used. They can be classified according to their spatial, 
spectral, radiometric, and temporal resolutions, as discussed in Aleissaee et al. (2022) 
and Sun et al. (2021).

Fig. 7   Taxonomy of explainable 
few-shot learning approaches
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•	 Spatial resolution: The spatial resolution of remote sensing data is often limited by the 
size and altitude of the sensor platform, as well as the resolution of the sensor itself. 
For example, satellite-based sensors typically have a lower spatial resolution than UAV-
based sensors, due to their higher altitude and larger coverage area.

•	 Spectral resolution: Spectral resolution refers to the range of wavelengths that a remote 
sensing sensor can detect, as well as the sampling rate at which it collects data across 
this range. Different sensors have different spectral characteristics, and the spectral res-
olution of a sensor can have a significant impact on its ability to distinguish different 
features or objects in the scene.

•	 Radiometric resolution: Radiometric resolution is related to the sensitivity of the sensor 
and the number of bits utilized for signal representation. A higher radiometric resolu-
tion means that the sensor is able to capture a wider range of signal strengths and more 
accurately represent the scene being imaged.

•	 Temporal resolution: Temporal resolution is a critical characteristic of remote sensing 
data, as it can enable the tracking of changes in a scene over time. The frequency with 
which images are collected, as well as the length of time over which they are collected, 
can impact the ability of remote sensing systems to detect and monitor changes in the 
scene, such as vegetation growth or land use changes.

Understanding the various characteristics of remote sensing data is important for develop-
ing effective machine learning approaches, as different methods may be better suited to 
different types of data. For example, models that perform well on high-resolution satellite 
imagery may not perform as well on lower-resolution UAV data, and vice versa. By con-
sidering the characteristics of the data and tailoring machine learning approaches to the 
specific problem at hand, researchers can develop more accurate and effective models for 
remote sensing applications.

A classification of image data types can also be made based on three categories, namely 
Very High-Resolution Imagery, Hyperspectral Imagery, and Synthetic Aperture Radar 
Imagery, as discussed in Aleissaee et al. (2022) and Sun et al. (2021). Figure 8 provides 
some examples of such imagery.

•	 Very High Resolution (VHR) imagery: Very High Resolution (VHR) imagery is often 
captured through the use of VHR satellite sensors, which are designed to capture 
images with an extremely high level of detail. This level of detail can be particularly 

Fig. 8   Illustration of each remote sensing image category. The VHR image is from the VHR-10 dataset 
(Su et al. 2019), the hyperspectral image is from the Houston dataset (Contest 2013), and the SAR image is 
from the HR-SID dataset (Wei et al. 2020)
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beneficial for a number of different applications, including object detection and track-
ing, as well as emergency response operations. As the technology behind optical sen-
sors continues to advance, the spatial resolution obtained from these sensors becomes 
even finer, allowing for even greater levels of detail to be captured in these images. 
This, in turn, can lead to even more accurate object detection and tracking, as well as 
more effective emergency response operations that are better able to respond to events 
as they unfold in real time.

•	 Hyperspectral imagery: In addition to the optical electromagnetic spectrum that is 
often represented by the RGB color channels, remote sensing signals and imagery can 
also be obtained and analyzed in other parts of the spectrum, including the infrared 
(IR) and ultraviolet (UV) regions. In particular, the IR spectrum can be further catego-
rized into near, mid or far-infrared, and the corresponding images captured in these 
ranges are known as hyperspectral imagery. This type of imagery goes beyond the 
three color channels of optical images and contains more spectral information, ena-
bling the unraveling of the composition of the object of interest, both physically and 
chemically. As such, hyperspectral images are particularly useful for environmental and 
earth-science-based research, as they can provide detailed information on factors such 
as vegetation health, mineral composition, and water quality. By analyzing this spectral 
information, researchers can gain a deeper understanding of the earth’s surface, as well 
as monitor changes and anomalies that may indicate potential issues.

•	 Synthetic Aperture Radar (SAR) imagery: By utilizing the process of emission and 
reception of electromagnetic waves on the Earth, radar-based remote sensing can 
be accomplished. Such remote sensing techniques can acquire high spatial resolu-
tion images regardless of weather conditions, and are widely applicable in numerous 
domains. In particular, Synthetic Aperture Radar (SAR) based images have been uti-
lized in diverse fields, including disaster management, hydrology and forestry, due to 
their ability to provide high-quality images regardless of atmospheric conditions, time 
of day or season. SAR-based imagery can thus be a valuable source of information for 
remote sensing-based research and applications.

4 � Benchmark remote sensing datasets for evaluating learning models

In this section, we will provide a brief overview of commonly used benchmark datasets 
that evaluate algorithms in remote sensing. The datasets are categorized and listed based 
on the type of remote sensing data and platforms they were collected from. It is important 
to note that these datasets are frequently used by researchers to evaluate and benchmark 
their algorithms, and although not included in the survey works by Aleissaee et al. (2022), 
they are essential for this review.

4.1 � Hyperspectral image dataset

4.1.1 � Satellite‑based data

Most of the datasets described here are more tailored for multi-label image classification, 
although a few single label-based classification dataset exist.
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•	 Pavia (G. de Inteligencia Computacional 2020; Dam 2022): The Pavia University 
research team created a hyperspectral image dataset with images consisting of 610 × 
610 pixels and 103 spectral bands. Each image in the dataset is a classification map 
with 9 classes that include mostly urban contexts such as bitumen, brick, and asphalt. 
The dataset comprises 42,776 labeled images and is specifically designed for multi-
label classification.

•	 Indian Pines (G. de Inteligencia Computacional 2020; Dam et al. 2020): The dataset 
contains hyperspectral images of a particular landscape in Indiana. It is a multi-label 
classification dataset where each map consists of 145 × 145 pixels and 224 spectral 
bands. There are 16 semantic labels available for each map, and the dataset has a total 
of 10,249 samples.

•	 Salinas Valley (G. de Inteligencia Computacional 2020): The Salinas Valley dataset 
consists of hyperspectral images collected from California, with multi-label classifica-
tion maps of pixel size 512 × 217 and 224 spectral bands, similar to the Indian Pines 
dataset. There are 16 semantic classes with 54,129 samples. A subset of the Salinas 
dataset, referred to as Salinas-A, includes only 86 × 86 image pixels of 6 classes, with a 
total of 5,348 samples.

•	 Houston (Contest 2013): The Hyperspectral Image Analysis group in collaboration 
with the NSF Funded Center for Airborne Laser Mapping (NCALM) has acquired 
images across the University of Houston. This dataset comprises 16 semantic classes 
of urban objects such as highways, railways, and tennis courts, unlike the Botswana, 
Indian Pines, and Salinas Valley datasets. The images have 144 spectral bands in the 
380 nm to 1050 nm region, and each image has a pixel size of 349 × 1905. The dataset 
is designed for evaluating multi-label image classification.

•	 BigEarthNet (Sumbul et al. 2019): The dataset consists of pairs of Sentinel-2 images 
captured by a multi-spectral sensor, with 590326 pairs collected from 10 European 
countries. Each image in the pair has a size of 120 × 120 pixels and covers 13 spectral 
bands. The dataset is annotated with multiple land-cover classes or labels, making it 
suitable for multi-label classification evaluation.

•	 EuroSat (Helber et al. 2019): The dataset consists of images obtained from the Senti-
nel-2 satellite, covering 13 spectral bands with 10 classes and 27,000 labeled samples. 
It is utilized for evaluating single-label-based land cover and land use classification. 
Each image has a pixel size of 64 × 64.

•	 SEN12MS (Schmitt and Wu 2021): The dataset comprises 180,662 images captured 
from Sentinel-1 and Sentinel-2, with four cover types categorized using different classi-
fication schemes. Each image is of size 256 × 256 and contains different spectral bands. 
The images are annotated by multiple land-cover labels, but the primary objective is to 
use these labels to infer the overall context of the scene, such as forest, grasslands, or 
savanna, making it suitable for single label-based scene classification. It is important to 
note that Sentinel-1 images are SAR images, making the dataset useful for SAR-based 
map classification as well.

4.1.2 � UAV‑based dataset

•	 WHU-Hi (Hu et al. 2020): The WHU-Hi dataset, which stands for Wuhan UAV-borne 
Hyperspectral Image, consists of UAV-based images of various crop types gathered in 
farming areas in Hubei province, China. It is divided into three sub-datasets: WHU-
Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-Honghu, each with different individ-
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ual image sizes, numbers of labels/classes, and spectral bands, which are explained in 
Table 1. The dataset is suitable for evaluating multi-label classification algorithms.

4.2 � VHR image‑based dataset

4.2.1 � Satellite‑based datasets

•	 UC Merced Landuse (Yang and Newsam 2010): The dataset was designed for single-
label land use classification and comprises 2100 RGB images, each of size 256 × 256 
pixels. The dataset consists of 21 classes, predominantly related to urban land use.

•	 ISPRS Potsdam (Gerke 2014): The International Society of Photogrammetry and 
Remote Sensing (ISPRS) developed a dataset for algorithmic evaluation of multi-label 
map classification. The dataset comprises 38 patches/images. The pixel size of each 
patch is 6000 × 6000.

•	 ISPRS Vaihingen (Gerke 2014): The dataset was created for multi-label map classifica-
tion and includes 33 patches/images of varying sizes. The pixel size of each patch is 
2494 × 2064.

•	 RESISC45 (Cheng et al. 2017): The Northwestern Polytechnical University (NWPU) 
created a dataset for single-label image scene classification. The dataset contains 
31,500 images categorized into 45 classes, with each class consisting of 700 images. 
The pixel size of each image is 256 × 256.

•	 WHU-RS19 (Xia et  al. 2010): The dataset is created using satellite images obtained 
from Google Earth and contains 19 semantic classes, with approximately 50 samples 
per class. Samples from same class are extracted from different regions with varying 
resolutions, scales, orientations, and illuminations. Each image in the dataset is 600 
× 600 pixels in size. It is intended for the purpose of single label-based image scene 
classification.

•	 AID (Xia et al. 2017): The Aerial Image Database (AID) is a collection of 10,000 sat-
ellite images gathered from Google Earth, each sized 600 × 600 pixels. The dataset 
includes 30 classes primarily related to urban environments. As with the RESISC45 
and WHU-RS19 datasets, AID is used for single-label image scene classification pur-
poses.

4.2.2 � UAV‑based dataset

•	 AIDER (Kyrkou and Theocharides 2020): The Aerial Image Database for Emergency 
Response (AIDER) is a collection of 8540 UAV images categorized into four disaster 
categories—collapsed buildings, fire, flood, and traffic accidents, along with a non-dis-
aster category labeled as “normal” (Lee et al. 2023). This is one of the first UAV-based 
datasets that can be used as a benchmark for visual-based humanitarian aid or search-
and-rescue operations in the RGB spectrum.

•	 SAMA-VTOL (Bayanlou and Khoshboresh-Masouleh 2021): The SAMA-VTOL aerial 
image dataset is a new dataset developed from images captured by UAVs. This dataset 
was created to support a broad spectrum of scientific projects within the field of remote 
sensing. It is particularly useful for research projects focused on 3D object modeling, 
urban and rural mapping, and the processing of digital elevation and surface models. 
The objective is to provide high-resolution, low-cost data that contribute to a better 
understanding of both urban and rural scenes for various applications.
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4.3 � SAR image‑based dataset

•	 MSTAR (Wang et al. 2015): This dataset consists of 5950 X-band spectral images, each 
with a size of 128 × 128 pixels, and categorized into 10 classes. It is designed specifi-
cally for military object recognition and classification.

•	 OpenSARShip (Huang et al. 2017): The dataset includes 11,346 chips of ships captured 
by C-band SENTINEL-1 SAR imagery, belonging to 17 ship types, and collected from 
41 images. Each chip is labeled with automatic identification system messages indicat-
ing different environmental conditions. The image sizes of the chips range from 30 × 30 
to 120 × 120 pixels.

It is evident that there are fewer SAR-based benchmark datasets compared to hyperspectral 
or VHR-based image datasets. According to Fu et al. (2021), collecting SAR-based images 
with fine annotation is more challenging due to the difficulty of acquisition and the tedious 
and time-consuming process of interpreting and labeling such images. Furthermore, Ros-
tami et al. (2019) stated that the devices used for generating SAR images are costly, and the 
data accessibility is strictly regulated due to its classification.

In Table 1, we have summarized the discussion on the available datasets, highlighting 
the data type, number of images and classes, pixel sizes, spectral bands (if any), platform, 
and classification method.

5 � Evaluation metrics for few‑shot remote sensing task

Before delving into the various approaches in a few-shot remote sensing task, we highlight 
in this section some evaluation metrics that are more suited for few-shot learning task. The 
data distribution would display some degree of imbalance between the training set and the 
test set for small-sample size unlike typical learning-based tasks, and hence appropriate 
metrics addressing such imbalance would need to be invoked. We illustrate in Table 2 the 

Table 2   Evaluation metrics commonly utilized in few-shot learning-based approaches

Metrics Overview

Confusion Matrix Summary of correct and incorrect predictions by a classifier in matrix form
Precision Ratio of true positive and the total predicted positives
Recall Ratio of true positive and the total ground-truth positives
F1 Score Weighted average of precision and recall
Overall Accuracy (OA) Sum of true positives plus true negatives divided by the total number of class 

sample involved
Average Accuracy (AA) Average computed accuracy per-class
Pixel Accuracy (PA) The percentage of individual pixels classified accurately
Kappa Coefficient ( �) Measures of statistical agreement between existing and random classification 

results
PR curve Statistical graph (y-axis: precision, x-axis: recall)
IoU (Jaccard Index) The measure of overlap between the predicted bounding box and actual annotated 

bounding box of an area of interest in images
Average Precision (AP) The area under the PR curve
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various metrics along with a brief overview. The metrics are the confusion matrix, preci-
sion, recall, F1 score, Overall Accuracy (OA), Average Accuracy (AA), Pixel Accuracy 
(PA), Average Precision (AP), Kappa coefficient � , PR curve and Intersection over Union 
(IoU or Jaccard Index). Equations (5)–(10) mathematically describe some of the metrics as 
indicated in the respective equations.

The variables TP, FP, TN, and FN in the previous equations represent true positive, 
false positive, true negative, and false negative classes, respectively. In Eq. (6), Nclasses 
refers to the total number of classes that are taken into consideration.

Depending on the remote sensing tasks at hand, various appropriate metrics are needed 
to compare the performances of the state-of-the-art algorithms in the same footing. For 
image classification, whereby one label are outputted per image as a whole, the confu-
sion matrix, precision, recall, F1 score, OA, AA, � , and PR curve are suitable metrics. For 
image segmentation, whereby multiple labels can be assigned to different area of interests 
(usually denoted by different colours) in an image, the IoU, F1 score, PA, precision, recall, 
the confusion matrix, and the PR curve can be utilized. For object detection, whereby an 
object in the image is required to be identified and localized, the IoU and the Average Pre-
cision stands out as the best metrics for the task since the use of the bounding box localized 
the object of interest, although other metrics like precision, recall, PR curve, and F1 scores 
could be used.

6 � Recent few‑shot learning techniques in remote sensing

In the domain of remote sensing, the intersection with computer vision has received con-
siderable attention and research interest, as evinced by numerous works such as those 
undertaken by Aleissaee et al. (2022) and Tuia et al. (2011), which delve into and assess 
diverse active machine learning frameworks. Moreover, the intricacies of hyperspectral 
image classification and contemporary developments in machine learning and computer 

(5)Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

(6)F̄1 =
2

Nclasses

Nclasses∑

i=1

Precision ∗ Recall

Precision + Recall
,

(7)OA =
TP + TN

TP + TN + FP + FN
,

(8)AA =

N∑

i=1

TPi + TNi

TPi + FNi + TNi + FNi

,

(9)� =
2 × ((TP × TN) − (FN × FP))

(TP + FP) × (FP + TN) × (TP + FN) × (FN + TN)
,

(10)IoU=
TP

TP + FP + FN
=
|Target ∩ Prediction|
|Target ∪ Prediction|

.



Unlocking the capabilities of explainable few‑shot learning…

1 3

Page 21 of 55  169

vision methods are explored by Camps-Valls et al. (2013). A comprehensive and exhaus-
tive analysis of deep learning algorithms utilized for processing remote sensing images, 
while detailing current practices and available resources, is provided by Zhu et al. (2017). 
Furthermore, Aleissaee et  al. (2022) presents an overview of Vision Transformer-based 
approaches to remote sensing, with a specific focus on very high-resolution, hyperspec-
tral, and radar imaging. In this review, our specific focus lies on recent breakthroughs in 
the realm of few-shot learning techniques for remote sensing imaging. We seek to provide 
an in-depth exploration of the implications of such advancements for scene classification 
and comprehension in both satellite-based and UAV-based data collection platforms. The 
incorporation of explainable AI can aid in understanding the reasoning behind classifica-
tion results, providing more transparency and confidence in decision-making processes.

6.1 � Few‑shot learning in hyperspectral images classification

In the field of remote sensing, few-shot learning has gained significant traction, as high-
lighted in the introductory section. In this particular section, we shall concentrate on the 
techniques put forward for both single-label and multi-label remote sensing classification 
within the context of both satellite and UAV-based platforms. It is worth noting that, unless 
indicated otherwise, all the evaluation metrics employed in the studies under review in this 
section encompass OA, AA, and �.

The MDL4OW model, presented by Liu et al. (2020), employs a few-shot based deep 
learning architecture to classify five unknown classes through training on nine known 
classes. Notably, the proposed model departs from traditional centroid-based methods, 
instead utilizing extreme value theory from a statistical model, as depicted in Fig. 3. Fur-
thermore, the authors introduced a novel evaluation metric, the mapping error, which is 
particularly sensitive to imbalanced classification scenarios frequently encountered in 
hyperspectral remote sensing image datasets. Mathematical expression of the mapping 
error for C classes is provided in 11, subject to constraints expressed in 12 and 13.

The mathematical expression of 11 represents the mapping error, where Ap,i signifies 
the predicted area of the ith class and Agt,i denotes the corresponding ground-truth area. 
Here, C represents the total number of known classes (as in the case of their work, where 
it is equal to 9), while C + 1 refers to the total number of unknown classes (which, in their 
work, is 5). The Pavia dataset, the Indian Pines dataset, and the Salinas Valley dataset are 
the datasets that are evaluated in their study. Apart from mapping error, the Openess metric 
(Geng et al. 2020) is also considered as a benchmark for their evaluation, which evaluates 
the degree of openness for a given dataset in open-world classification, in addition to OA 
and micro F1 score.

(11)Error =

∑C

i=1

���Ap,i − Agt,i
���

∑C

i=1
Agt,i

,

(12)Ai ≥0,

(13)
C+1∑

i=1

Ap,i =

C+1∑

i=1

Agt,i.
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Equation 14 elucidates the association between Openess and the number of training and 
testing data, Ntrain and Ntest , respectively.

Figure 9 presents an illustration of how the MDL4OW methodology effectively identi-
fies unknown classes, as demonstrated through an example image. The top portion of the 
figure highlights the road (denoted by black) and the house (enclosed by a dark-blue bor-
der), both of which cannot be assigned to any known class, as they were not presented a 
priori. However, a standard deep learning model would still require assigning them a label, 
as it was not trained to recognize these specific labels. In contrast, the MDL4OW approach 
(depicted in the bottom portion of the figure) is adept at identifying and marking unknown 
classes (denoted by black), effectively applying the proposed scheme.

Employing adaptive subspace learning and feature-wise transformation (SSFT) tech-
niques, Bai et al. (2022) aimed to enhance feature diversities and minimize overfitting. In 
particular, they incorporated a 3-D local channel attention residual network to extract fea-
tures, and evaluated their algorithm against the SOTA using the Salinas, Pavia, and Indian 

(14)Openess = 1 −

√
2 × Ntrain

Ntrain + Ntest

.

Fig. 9   Illustration of how the MDL4OW can help to identify unknown semantic labels (The road high-
lighted in black and the house enclosed in the dark blue border) that the training network has not being 
exposed to beforehand. Any label that the network has not learned during training would be highlighted 
in black in the MDL4OW scheme (Top), as compared to without it, where the house is labelled in orange 
(enclosed by black circle). This may cause confusion as it may be misinterpreted as other classes (Bottom). 
Image is from the Salinas Valley dataset
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Pines datasets. To compare with other SOTA, they performed a 5-shot, 10-shot, 15-shot, 
20-shot, and 25-shot evaluation approach. In the study conducted by Ding et  al. (2021), 
a pseudo-labelling approach was adopted to augment the feature extraction procedure of 
their network using limited samples and also reduce overfitting. The soft pseudo label was 
computed by taking into account the euclidean distance between the unlabelled samples 
and the other agents with each labelled sample acting as a reference. Two sub-networks, 
namely the 3D-CNN and the SSRN (based on the ResNet), were proposed to function as 
the feature extractor. The dataset used for evaluation comprised of Pavia, Indian Pines and 
Salinas Valley. For comparison with other SOTA approaches, a 1-shot, 3-shot, and 5-shot 
evaluation approach was employed. Results showed that the proposed model outperformed 
all existing SOTA approaches in all three evaluation settings.

Using a 3D residual convolutional block attention network (R3CBAM), the authors of 
Pal et al. (2022) demonstrated how to effectively learn spectral-spatial features in a more 
salient manner with small training samples. The CBAM is incorporated as an attention 
network. Meta-learning is employed, where a set of Euclidean distances from the test query 
set from known class prototypes are leveraged, and unknown class queries are labelled as 
outliers and are recognized without setting a threshold value beforehand. The evaluation of 
their approach was performed on the Indian Pines, Pavia, Salians, and Houston datasets. 
During the training of their network, a query set was generated from six base classes ran-
domly chosen, and the support set was formed from samples using three randomly chosen 
query classes. A 1-shot and 5-shot OSR performance evaluation were carried out and com-
pared with SOTA methods. In both 1-shot and 5-shot OSR evaluations, the results indi-
cated that the proposed method outperformed the SOTA methods.

Expanding upon previous works, Wang et al. (2021) proposed the Heterogeneous Few-
Shot Learning (HFSL) approach for remote sensing classification with few samples per 
class. The method initially learns from data randomly sampled from the mini-ImageNet 
dataset to obtain transferable knowledge, followed by separating the data into support and 
query sets. A spectral-spatial fusion few-shot learning model is proposed that extracts spec-
tral information through 1D mathematical operations and spatial information through a 
CNN with VGG16 pre-trained weights in the first layer. Their evaluation approach includes 
the Pavia University and Houston datasets, with a 5-shot performance evaluation against 
state-of-the-art methods. Building on this, Hu et  al. (2022) adds Knowledge Distillation 
(KD) to the approach, making it simpler to identify important parts of small samples, even 
with a shallower network. Further knowledge transfer and fine-tuning of the classifier 
model are performed, with evaluation on the Pavia University and Indian Pines datasets.

Using the Dirichlet-Net for feature extraction, Qu et  al. (2019) suggested a few-shot 
multi-task transfer learning strategy that aims to maintain classification accuracy across 
several domains. The key concept is to extract fundamental representations that are com-
mon to the same type of object features across domains, with the aim of circumventing the 
requirement for more ground-truth labels from the target domain. The Pavia University 
dataset was employed to assess their approach, with a 5-sample per class evaluation strat-
egy (i.e., 5-shot evaluation). Results showed that the proposed method was able to accu-
rately classify unseen target domain samples, demonstrating the efficacy of the approach.

The authors of Tong et  al. (2020) proposed a new Attention-weight Graph Convolu-
tional Network (AwGCN) for a few-shot method of quantifying and correlating internal 
features in hyperspectral data. This is followed by a semi-supervised label propagation 
of the node labels (features) from the support to query set via the GCN using the trained 
weights of the attention graphs. Unlike other approaches, they did not rely on pre-trained 
CNN-based weights as feature extractors but instead utilized a graph-based approach. The 
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proposed method was evaluated on the Indian Pines dataset using 1-shot, 3-shot, and 5-shot 
approaches and on the Pavia University dataset using a 5-shot approach. In a similar vein, 
Yang et al. (2020) proposed a GraphSAGE-based approach that utilizes spectral and spa-
tial feature information to greatly reduce algorithmic space and time complexity. Their 
approach was evaluated on the Pavia University, Indian Pines, and Kennedy Space Centre 
dataset using a 30-samples per class evaluation approach for training and a 15-samples 
per class evaluation approach for validation. Their results demonstrated improved accu-
racy compared to other state-of-the-art methods, with a 6.7% increase in accuracy on the 
Pavia University dataset and a 5.2% increase on the Indian Pines dataset. Furthermore, 
the Kennedy Space Centre dataset improved accuracy by 7.1%, making their approach a 
strong contender for further research. This improvement in accuracy indicates that their 
approach is more effective than other methods and could be a potential solution for future 
applications.

The proposed method by Huang et  al. (2021a), Self-Attention and Mutual-Attention 
Few-Shot Learning (SMA-FSL), utilizes a 3D convolutional feature embedding network 
for spectral-spatial extraction, coupled with a self-attention module to extract prototypes 
from each class in the support set and a mutual-attention module that updates and aligns 
these category prototypes with the query set. Attention-based learning is emphasized, 
where crucial features are enhanced while noisy features are reduced. To assess the effi-
cacy of their approach, it is evaluated on the Houston, Botswana (Gerke 2014), Chikusei 
(Yokoya and Iwasaki 2016) and Kennedy Space Center datasets using 1-shot, 5-shot, and 
15-shot evaluation approaches. These datasets are chosen for their diverse range of terrain 
and vegetation, allowing for a comprehensive evaluation of the model’s performance. The 
results of the evaluation show that the approach is effective across all datasets, demonstrat-
ing its versatility in different environments.

The proposed work by Zhao et  al. (2022) presents an incremental learning-based 
method that constantly updates the classifier by utilizing few-shot samples, allowing rec-
ognition of new classes while retaining knowledge of previous classes. The feature extrac-
tor module is implemented using a 20-layer ResNet, and the few-shot class incremental 
learning (FSCIL) is carried out via a constantly updated classifier (CUC), which is further 
enhanced by incorporating an attention mechanism for measuring the prototype similarity 
between each training and test sample class. The Pavia University dataset was employed for 
evaluating the performance of this approach using a 5-shot evaluation strategy. The results 
obtained showed that the proposed FSCIL with CUC and attention mechanism achieved 
superior performance compared to the baseline method. Furthermore, it was also observed 
that the performance improved with an increase in the number of shots.

Most previous works have employed CNN-based architectures for few-shot learning in 
hyperspectral image classification. However, CNNs can struggle with modeling long-range 
dependencies in spectral-spatial data when training samples are scarce. This has motivated 
recent interest in transformer architectures as an alternative.

In a notable contribution, Bai et  al. (2022) addressed the challenge of performance 
degradation observed in hyperspectral image classification methods when only a limited 
number of labeled samples are available for training. They proposed a unified framework 
with a Transformer Encoder and Convolutional Blocks to enhance feature extraction with-
out needing extra data. The Transformer Encoder provides global receptive fields to cap-
ture long-range dependencies, while the Convolutional Blocks model local relationships. 
Their method achieved state-of-the-art results on few-shot hyperspectral tasks using public 
datasets, demonstrating the potential of transformers to advance few-shot learning in this 
domain.
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Huang et al. (2023) also recognized limitations of CNN-based models for few-shot 
hyperspectral image classification. They highlighted the inherent difficulty of CNNs in 
effectively capturing long-range spatial-spectral dependencies, especially in scenarios 
with limited training data. They proposed an improved spatial-spectral transformer 
(HFC-SST) to overcome this, inspired by transformers’ strong modeling capabilities for 
long-range relationships. HFC-SST generates local spatial-spectral sequences as input 
based on correlation analysis between spectral bands and adjacent pixels. A transformer-
based network then extracts discriminative spatial-spectral features from this sequence 
using only a few labeled samples. Experiments on multiple datasets demonstrated that 
HFC-SST outperforms CNNs and prior few-shot learning methods by effectively mod-
eling local long-range dependencies in limited training data. This further highlights the 
potential of transformers to advance few-shot hyperspectral classification through robust 
spatial-spectral feature learning.

The work by Peng et  al. (2023) also explores cross-domain few-shot learning for 
hyperspectral image classification, where labeled samples in the target domain are 
scarce. They propose a convolutional transformer-based few-shot learning (CTFSL) 
approach within a meta-learning framework. Most prior cross-domain few-shot methods 
rely on CNNs to extract statistical features, which only capture local spatial information. 
To address this, CTFSL incorporates a convolutional transformer network to extract 
both local and global features. A domain aligner maps the source and target domains 
to the same space, while a discriminator reduces domain shift and distinguishes fea-
ture origins. By combining few-shot learning across domains, transformer-based feature 
extraction, and domain alignment, their method outperforms state-of-the-art techniques 
on public hyperspectral datasets. This demonstrates the potential of transformers and 
cross-domain learning strategies to advance few-shot hyperspectral classification with 
limited labeled data.

Recently, Ran et  al. (2023) proposed a novel deep transformer and few-shot learning 
(DTFSL) framework for hyperspectral image classification that aims to overcome the limi-
tations of CNNs. The DTFSL incorporates spatial attention and spectral query modules 
to capture long-range dependencies between non-local spatial samples. This helps reduce 
uncertainty and better represent underlying spectral-spatial features with limited training 
data. The network is trained using episode and task-based strategies to learn an adaptive 
metric space for few-shot classification. Domain adaptation is also integrated to align dis-
tributions and reduce variation across domains. Experiments on three public HSI datasets 
demonstrated that the transformer-based DTFSL approach outperforms state-of-the-art 
methods by effectively modeling relationships between non-local spatial samples in a few-
shot context. This indicates transformers could be a promising alternative to CNNs for few-
shot hyperspectral classification.

In another work, Liu et al. (2022) introduces a Vision Transformer (ViT)-based architec-
ture for FSL that employs feedback learning. The Few-Shot Transformer Network (FFTN) 
developed by Liu et  al. (2022) combines spatial and spectral attention of the extracted 
features learned by the transformer component. By incorporating XAI, the model’s deci-
sion-making process can be made more transparent and interpretable, thereby enhancing 
its trustworthiness and reducing the risk of biases. Additionally, the network incorpo-
rates meta-learning with reinforced feedback learning on the source set as the first step to 
improving the network’s ability to identify misclassified samples through reinforcement. 
The second step is target-learning with transductive feedback training on the target sam-
ple to learn the distribution of unlabeled samples. This two-step process helps the network 
adapt to the target domain, thus improving its accuracy and reducing the risk of overfitting.
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Table 3 provides an overview of some of the existing methods for few-shot approaches 
in hyperspectral image classification. It lists the dataset and metrics used, as well as the 
type of feature extractor approach for each method and the year of publication. The addition 
of XAI techniques could enhance the transparency and interpretability of these methods.

A 5-shot evaluation method is mostly used to measure how well the proposed meth-
ods work on the Chikusei, Salinas Valley, and Pavia University datasets. Table 3 gives an 
overview of the methods that have been discussed, including the datasets and evaluation 
metrics, the learning methods that were used, and the year the paper was published. From 
the works that were talked about, it is clear that the Pavia, Indian Pines, and Salinas Valley 
datasets are the ones most often used to compare algorithms.

In Table 3, most of the few-shot approaches for hyperspectral image classification have 
not incorporated XAI for better interpretability. However, the addition of XAI techniques 
could enhance transparency and provide insights into the decision-making process of the 
models. One way to incorporate XAI is by using visualization techniques to highlight the 
features or regions of the image that contribute to the model’s prediction. Another approach 
is to use saliency maps to identify the most important regions of the input image that influ-
ence the model’s decision. Additionally, model-agnostic methods such as LIME or SHAP 
can provide insights into the decision-making process of the models. Overall, the incorpo-
ration of XAI techniques in few-shot approaches for hyperspectral image classification can 
improve the transparency and interpretability of the models and facilitate their adoption in 
real-world applications.

6.2 � Few‑shot learning in VHR image classification

All studies in this section employ the OA metric unless otherwise stated. Li et al. (2017) 
proposes a novel zero-shot scheme for scene classification (ZSSC) based on the visual 
similarity of images from the same class. Their work employs the UC Merced dataset for 
evaluation, where a number of classes were randomly chosen as observed classes while the 
rest were unseen classes. Additionally, the authors incorporate the RSSCN7 dataset (Zou 
et al. 2015) and a VHR satellite-based image database consisting of instances from both 
observed and unknown classes in an unlabeled format. To address the issue, the authors 
adopt the word2vec (Church 2017) model to represent each class as a semantic vector and 
use a K-Nearest Neighbor (KNN) graph-based model to implement sparse learning for 
label refinement. The refinement also helps to denoise any noisy label during the zero-
shot classification scheme. Their proposed model achieves significant performance gains 
compared to existing SOTA zero-shot learning models with linear computational complex-
ity. Furthermore, the proposed model can handle a large number of classes with minimal 
memory requirements. Some of the newest attempts to use few-shot learning and UAV-
based data was carried out by Al-Haddad and Jaber (2023), Khoshboresh-Masouleh and 
Shah-Hosseini (2023).

The work presented by Hamzaoui et al. (2022) proposed a hierarchical prototypical 
network (HPN) as a novel approach for few-shot learning, which is evaluated on the 
RESISC45 dataset. The HPN model is designed to perform analysis of high-level aggre-
gated information in the image, followed by fine-level aggregated information compu-
tation and prediction, utilizing prototypes associated with each level of the hierarchy 
as described in (4). The evaluation protocol involves a 5-way 1-shot and 5-way 5-shot 
classification approach within the standard meta-learning framework. In the proposed 
approach, the ResNet-12 model serves as the backbone for the first stage of feature 
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extraction. The extracted features are then passed through a linear layer to obtain the 
final feature representation. This feature representation is used for the classification task 
in the second stage.

In a bid to augment the performance of few-shot task-specific contrastive learning 
(TSC), Zeng and Geng (2022) introduced a self-attention and mutual-attention mod-
ule (SMAM) that scrutinizes feature correlations with the aim of reducing any back-
ground interference. The adoption of a contrastive learning strategy facilitates the pairing 
of data using original images from diverse perspectives. Ultimately, the aforementioned 
approach enhances the potentiality to distinguish intra-class and inter-class image features. 
The NWPU-RESISC45, WHU-RS19, and UC Merced datasets were leveraged for their 
algorithmic evaluation, which comprised a 5-way 1-shot and 5-way 5-shot classification 
approach that was scrutinized and compared. Furthermore, Yuan et al. (2020b) introduced 
a multiple-attention approach that concurrently focuses on the global and local feature scale 
as part of their Multi-Attention Deep Earth Mover Distance (MAEMD) proposed network. 
Local attention is geared towards capturing significant and subtle local features while sup-
pressing others, thereby improving representational learning performance and mitigating 
small inter-class and large intra-class differences. Their approach was evaluated on the UC-
Merced, AID, and OPTIMAL-31 (Wang et al. 2018) datasets with a 1-shot, 5-way 5-shot, 
and 10-shot evaluation approach. As evidence of the success of the local attention strategy, 
the results showed that the model achieved state-of-the-art performance across all datasets.

Another illustration of an attention-based model is presented by Kim and Chi (2021) 
with the introduction of the Self-Attention Feature Selection Network (SAFFNet). This 
model aims to integrate features across multiple scales using a self-attention module, in 
a similar manner to that of a spatial pyramid network. The Self-Attention Feature Selec-
tion (SAFS) module is employed to better match features from the query set with the fused 
features in the class-specified support set. Experimental analysis was conducted on the UC-
Merced, RESISC45, and AID datasets, using a 1-shot and 5-shot classification evaluation 
approach. The results showed that SAFS was able to improve the performance of the base-
line model for all datasets, with the largest improvement seen on the AID dataset.

Incorporating a feature encoder to learn the embedded features of input images as a pre-
training step, Huang et al. (2021b) proposed the Task-Adaptive Embedding Network (TAE-
Net). To choose the most informative embedded features during the learning task in an 
adaptive manner, a task-adaptive attention module is employed. By utilizing only limited 
support samples, the prediction is performed on the query set by the meta-trained network. 
For their algorithmic evaluation, they employed the NWPU-RESISC45, WHU-RS19, and 
UC Merced dataset. A 5-way 1-shot and 5-way 5-shot classification approach were imple-
mented for comparison. The results were evaluated based on accuracy, precision, recall, 
and F1-score metrics. Furthermore, the models were compared in terms of their training 
time and memory usage.

The study conducted by Wang et al. (2022b) aims to achieve few-shot learning through 
deep economic networks. The deep economic network incorporates a two-step simplifi-
cation process to reduce training parameters and computational costs in deep neural net-
works. The reduction of redundancy in input image, channel, and spatial features in deep 
layers is achieved. In addition, teacher knowledge is utilized to improve classification with 
limited samples. The last block in the model includes depth- and point-wise convolutions 
that effectively learn cross-channel interactions and enhance computational efficiency. 
The algorithmic evaluation of the model is conducted on three datasets, namely the UC-
Merced, RESISC45, and RSD46-WHU. The evaluation is carried out using a 1-shot and 
5-shot approach on RESISC45 and the RSD46-WHU, and an additional 10-shot evaluation 
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is implemented on the UC-Merced dataset. The model shows promising performance 
across all datasets, with the highest accuracy coming from the 10-shot evaluation.

The introduction of the Discriminative Learning of Adaptive Match Network (DLA-
MatchNet) for few-shot classification by Li et al. (2020a) incorporated the attention mecha-
nism in the channel and spatial domains to identify the discriminative feature regions in the 
images through the examination of their inter-channel and inter-spatial relations. In order 
to address the challenges posed by large intra-class variances and inter-class similarity, the 
discriminative features of both the support and query sets were concatenated, and the most 
relevant pairs of samples were adaptively selected by a matcher, which was manifested 
as a multi-layer perceptron. The UC-Merced, RESISC45, and WHU-RS19 datasets were 
employed for the state-of-the-art (SOTA) evaluation, utilizing a 5-way 1-shot and 5-shot 
approach for all datasets. The results confirmed the superior accuracy of the proposed 
method over the SOTA, proving its utility for remote sensing image retrieval.

Graph-based methods have also been employed in the very high-resolution (VHR) 
domain for few-shot learning. In this regard, Jiang et  al. (2022) proposed a multi-scale 
graph-based feature fusion (MGFF) approach that involves a feature construction model 
that converts typical pixel-based features to graph-based features. Subsequently, a feature 
fusion model combines the graph features across several scales, which enhances the distin-
guishing ability of the model via integrating the essential semantic feature information and 
thereby improving few-shot classification capability. The authors conducted the algorith-
mic evaluation on the RESISC45 and WHU-RS19 datasets using a 5-way 1-shot and 5-way 
5-shot classification approach. In addition, Yuan et al. (2022) proposed Graph Embedding 
Smoothness Network (GES-Net), which implements embedded smoothing to regularize 
the embedded features. This not only effectively extracts higher-order feature relations but 
also introduces a task-level relational representation that captures graph relations among 
the nodes at the level of the whole task, thereby enhancing the node relations and feature 
discerning capabilities of the network. The work is evaluated on the RESISC45, WHU-
RS19, and UC Merced datasets using 5-way 1-shot and 5-shot comparison approaches. 
Episodic training was adopted, where each episode refers to a task and is comprised of 
N uniformly sampled categories without replacement and the query and support set. The 
support set contains K samples from each of the N categories, and the query set contains 
a single sample from each of the N categories. The samples in the query and support sets 
are selected from a larger pool of available samples in a random manner, ensuring that each 
episode is unique.

Few-shot strategies for VHR image classification can benefit greatly from the applica-
tion of XAI methods like explainable graph neural networks and attention mechanisms. 
Transparency, accountability, bias detection, and fairness issues can all be improved with 
the help of xGNNs because they shed light on the model’s decision-making process. To 
make the model’s decisions more understandable and transparent, attention mechanisms 
can draw focus to key features and nodes in the graph. In principle, these methods could 
make graph-based few-shot classification models more reliable and easy to understand.

Table 4 presents a similar format to Table 3, depicting a comprehensive summary of 
the aforementioned methods in the very high-resolution (VHR) classification domain. It 
can be observed that the RESISC45, UC-Merced, and WHU-RS19 dataset are among the 
most frequently employed for algorithmic comparison, as seen in the subset of the existing 
works highlighted.

Furthermore, the majority of the approaches presented in Table  4 incorporate atten-
tion mechanisms and graph-based methods for few-shot VHR classification. The MGFF 
approach presented by Jiang et al. (2022) is an example of a graph-based method, while the 
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DLA-MatchNet presented by Li et al. (2020a) is an example of an approach that utilizes 
attention mechanisms. Similarly, the GES-Net presented by Yuan et  al. (2022) also uses 
graph-based methods in its approach. These techniques aim to extract more relevant and 
informative features from the input images, which can enhance the performance of few-
shot VHR classification systems.

6.3 � Few‑shot learning in SAR image classification

SAR (Synthetic Aperture Radar) is a remote sensing technology for capturing high-resolu-
tion images of the Earth’s surface regardless of the weather conditions, making it a valu-
able tool in various applications such as agriculture, forestry, and land use management. 
However, the availability of SAR-based data is often limited in comparison to hyperspec-
tral or VHR-based data, mainly due to the high cost of SAR sensors and the complex-
ity of SAR data processing. As a result, traditional classification approaches for SAR data 
are often challenged by insufficient training data and the high intra-class variability, which 
leads to a pressing need for the development of few-shot learning methods that can effec-
tively tackle these challenges. Therefore, a review of emerging few-shot learning methods 
in the SAR-based classification domain is highly desirable to advance the state-of-the-art 
and enable more accurate and efficient classification of SAR data.

The integration of XAI techniques, such as explainable graph neural networks (xGNNs) 
and attention mechanisms, can significantly enhance the proposed few-shot transfer learn-
ing technique for SAR image classification presented by Tai et  al. (2022). This novel 
approach uses a connection-free attention module to selectively transfer shared features 
between SAR and Electro-Optical (EO) image domains, reducing the dependence on addi-
tional SAR samples, which may not be feasible in certain scenarios. By using xGNNs, the 
authors can provide insights into the decision-making process, increasing transparency and 
accountability, which is particularly crucial for SAR image classification due to restricted 
data access and high acquisition costs. The attention mechanism can highlight relevant 
features and nodes in the graph, improving the model’s interpretability and transparency, 
and ultimately, its performance and trustworthiness. In addition, the authors implemented 
a Bayesian convolutional neural network to update only relevant parameters and dis-
card those with high uncertainties. The evaluation was performed on three EO datasets 
that included ships, planes, and cars, with SAR images obtained from Hammell (2019), 
Schwegmann et al. (2017), and MSTAR. The classification accuracy (OA) value was used 
as the performance metric, with the 10-way k-shot approach achieving an OA of approxi-
mately 70%, outperforming other approaches. Overall, incorporating XAI techniques can 
potentially improve the performance and trustworthiness of the proposed few-shot transfer 
learning technique for SAR image classification.

In the pursuit of effective few-shot classification, Gao et al. (2022) proposed a Hand-
crafted Feature Insertion Module (HcFIM), which combines learned features from CNN 
with hand-crafted features via a weighted-concatenated approach to aggregate more 
priori knowledge. Their Multi-scale Feature Fusion Module (MsFFM) is used to aggre-
gate information from different layers and scales, which helps distinguish target sam-
ples from the same class more easily. The combination of MsFFM and HcFIM forms 
their proposed Multi-Feature Fusion Network (MFFN). To tackle the challenge of high 
similarity within inter-classes in SAR images, the authors proposed the Weighted Dis-
tance Classifier (WDC), which computes class-specific weights for query samples in 
a data-driven manner, distributed using the Euclidean distance as a guide. They also 
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incorporated weight generation loss to guide the process of weight generation. The 
benchmark MSTAR dataset and their proposed Vehicles and Aircraft (VA) dataset were 
used for evaluation, where a 4-way 5-shot evaluation approach was used for MSTAR 
and a 4-way 1-shot evaluation approach was used for VA. The Average Accuracy (AA) 
was used as the evaluation metric throughout. The evaluation results demonstrated that 
the VA dataset had a higher AA than MSTAR, indicating that it was better suited for 
fine-grained classification tasks.

In the study by Fu et al. (2021), a novel approach to few-shot classification is intro-
duced through the integration of meta-learning. This method is characterized by the 
synergistic use of two primary components: a meta-learner and a base-learner. The 
meta-learner’s primary function is to determine and store the learning rates, along with 
generalized parameters pertinent to both the feature extractor and classifier. Its objec-
tive is to discern an optimal initialization parameter, thereby refining update strategies 
by meticulously examining the distribution of few-shot tasks. This optimal initializa-
tion is instrumental in setting the algorithm on a path that potentially accelerates con-
vergence and improves performance. Following this, the meta-learner plays a pivotal 
role in directing the base-learner. Here, the base-learner is conceptualized as a classifier 
model specifically tailored for SAR-based target detection. Its design ensures enhanced 
convergence efficiency under the guidance of the meta-learner.

Recognizing the challenges posed by more complex tasks, the study further aug-
ments its methodology with a hard-task mining technique. This is particularly valua-
ble in emphasizing and addressing tasks that are inherently more challenging. For the 
acquisition of transferrable knowledge-a crucial aspect of few-shot learning-the 4CONV 
network is employed during the meta-training phase. The efficacy of this approach, 
termed as MSAR in the publication, was rigorously tested on two datasets: the MSTAR 
dataset and the newly proposed NIST-SAR dataset. Evaluations were carried out using 
both the 5-way 1-shot and 5-way 5-shot paradigms, with the mean accuracy (AA) serv-
ing as the benchmark metric. The empirical results were telling; the MSAR method sur-
passed baseline methodologies in performance for both tasks. Specifically, it achieved 
an impressive AA of 86.2% for the 5-way 1-shot task and an even more commendable 
97.5% for the 5-way 5-shot task.

The paper by Rostami et al. (2019) proposed a novel few-shot cross-domain transfer 
learning approach to transfer knowledge from the electro-optical (EO) domain to the 
synthetic aperture radar (SAR) domain. This is accomplished by utilizing an encoder 
in each domain to extract and embed individual features into a shared embedded space. 
The encoded parameters are updated continuously by minimizing the discrepancies in 
the marginal probability distributions between the two embedded domains. Since the 
distributions are generally unknown in few-shot learning, the authors approximate the 
optimal transport discrepancy measurement metric using the Sliced Wasserstein Dis-
tance (SWD) for more efficient computation. The approach is evaluated on a dataset 
of SAR images acquired by Schwegmann et  al. (2016) for detecting the presence or 
absence of ships. The classification accuracy (OA) is used as the evaluation metric for 
this approach. The results show that this approach can achieve an OA of over 90%, indi-
cating that it is a reliable and accurate method for ship detection.

In their study on few-shot ship recognition using the MSTAR dataset, Wang et  al. 
(2022c) proposed a Deep Kernel Learning (DKL) approach that harnesses the non-
parametric adaptability of Gaussian Processes (GP). The kernel function used in their 
approach is mathematically defined in (15) as a Gaussian kernel
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which determines the similarity and relationships between pairs of embedded data sam-
ples x and x̄ , with l serving as a hyperparameter characterizing the length scale. The DKL 
approach integrates such kernel functions with deep neural networks to enable effective 
few-shot classification. For the K-shot C-way few-shot classification, the authors trained 
GPs on C categories, where the ith GP is trained on positive samples from class Ci and 
negative samples from the remaining classes C − 1 . The GP with the highest confidence in 
the correct target classes is then computed using the log-likelihood formula. They evalu-
ated their approach using 1-shot and 5-shot classification, with the classification accuracy 
(OA) as the metric.

Graph-based learning methods have gained popularity in SAR image classification simi-
lar to hyperspectral and VHR image classification. To enhance feature similarity learning 
among query images and support samples more effectively using graphs, Yang et al. (2020) 
proposed a relation network based on the embedding network for feature extraction and 
attention-based Graph Neural Networks (GNN) in the form of a metric network (Sung et al. 
2018). The channel attention module in CBAM is incorporated into the GNN. MSTAR is 
utilized for evaluation, and a 5-way 1-shot comparison is used with classification accuracy 
(OA) as the metric. In addition, Yang proposed a Mixed-loss Graph Attention Network 
(MGA-Net) which utilizes a multi-layer GAT combined with a mixed-loss (embedding loss 
and classification loss) training to increase inter-class separability and speed up conver-
gence. The MSTAR dataset and the OpenSARShip dataset were used for comparison, and 
a 3-way 1-shot and 3-way 5-shot classification evaluation were utilized for comparison of 
the results represented by the classification accuracy (OA) and the confusion matrix. The 
results showed that the MGA-Net achieved a better performance than the baseline models 
in both datasets, indicating that the multi-layer GAT and mixed-loss training had a positive 
effect on the classification accuracy.

Recently, Zhao et  al. (2022) proposed an instance-aware transformer (IAT) model for 
few-shot synthetic aperture radar automatic target recognition (SAR-ATR). They recognize 
that modeling relationships between query and support images is critical for few-shot SAR-
ATR. The IAT leverages transformers and attention to aggregate relevant support features 
for each query image. It constructs attention maps based on similarities between query 
and support features to exploit information from all instances. Shared cross-transformer 
modules align query and support features. Instance cosine distance during training pulls 
same-class instances closer to improve compactness. Experiments on few-shot SAR-ATR 
datasets show IAT outperforms state-of-the-art methods. Visualizations also demonstrate 
improved intra-class compactness and inter-class separation. This highlights the potential 
of transformers and attention for few-shot SAR classification by effectively relating queries 
to supports and learning discriminative alignments.

CNNs have been dominant for SAR-ATR, but struggle with limited training data. To 
address this, Wang et  al. (2022d) proposed a convolutional transformer (ConvT) archi-
tecture tailored for few-shot SAR ATR. They recognize that CNNs are hindered by nar-
row receptive fields and inability to capture global dependencies in few-shot scenarios. 
ConvT constructs hierarchical features and models global relationships of local features 
at each layer for more robust representation. A hybrid loss function based on recogni-
tion labels and contrastive image pairs provides sufficient supervision from limited data. 
Auto augmentation further enhances diversity while reducing overfitting. Without needing 

(15)kl(x, x̄) = exp

�
−‖x − x̄‖2

2l2

�
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additional datasets, ConvT achieves state-of-the-art few-shot SAR ATR performance on 
MSTAR by effectively combining transformers with CNNs. This demonstrates transform-
ers can overcome CNN limitations for few-shot SAR classification by integrating local and 
global dependencies within and across layers.

Table 5 provides an overview of the various few-shot learning methods that have been 
proposed for SAR classification. The table summarizes the key aspects of each approach, 
including the name of the method, the year of publication, the dataset used for evalua-
tion, and the evaluation metric used. It is noteworthy that among the subset of existing 
works described in this review, the MSTAR dataset is the most commonly used for algo-
rithmic comparisons. The MSTAR dataset has been widely used in SAR classification due 
to its relatively large size and the diversity of the target types that it contains. Overall, the 
methods discussed in Table 5 highlight the potential of few-shot learning approaches in the 
SAR domain, and demonstrate the effectiveness of various techniques such as graph-based 
learning, deep kernel learning, and meta-learning. These approaches have the potential to 
enable more efficient and accurate classification of SAR data, which can have important 
applications in fields such as remote sensing, surveillance, and defense. XAI techniques 
can be really useful for identifying objects in radar images. Because researchers usually 
have limited access to radar data and it’s expensive to get new radar images, techniques like 
explainable graph neural networks and attention mechanisms are helpful.

7 � Few‑shot based object detection and segmentation in remote 
sensing

In the remote sensing domain, much of the focus has been on image classification tasks 
like land cover mapping. However, it is also essential to advance higher-level vision tasks 
like object detection and semantic segmentation, which extract richer information from 
imagery. For example, object detection can precisely localize and identify vehicles, build-
ings, and other entities within a scene. Meanwhile, segmentation can delineate land, veg-
etation, infrastructure, and water boundaries at the pixel level. Significant progress has 
been made in developing and evaluating object detection and segmentation techniques 
for remote sensing data. Various benchmarks and competitions have been organized using 
large-scale satellite and aerial datasets Li et  al. (2020b), Han et  al. (2018). State-of-the-
art deep learning models like R-CNNs, SSDs, and Mask R-CNNs (Su et  al. 2019) have 
shown strong performance. However, many of these rely on extensive annotated training 
data which can be costly and time-consuming to collect across diverse geographical areas. 
Therefore, advancing object detection and segmentation in remote sensing using limited 
supervision remains an open challenge. Few-shot learning offers a promising approach to 
enable effective generalization from scarce training examples. While some initial work 
has explored object detection for aerial images (Zhu et al. 2015; Yao et al. 2019; Mund-
henk et al. 2016; Zhang et al. 2019; Lu et al. 2019), a comprehensive survey incorporating 
the latest advancements is still lacking. Furthermore, few-shot semantic segmentation has 
received relatively little attention for remote sensing thus far.

7.1 � Few‑shot object detection in remote sensing

The main challenge in few-shot object detection is to design a model that can generalize 
well from a small number of examples (Li et  al. 2021a; Wolf et  al. 2021; Cheng et  al. 
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2021a; Gao et al. 2021). This is typically achieved by leveraging prior knowledge learned 
from a large number of examples from different classes (known as base classes). The 
model is then fine-tuned on a few examples from the new classes (known as novel classes) 
(Jeune and Mokraoui 2023).

There are various methods used in few-shot object detection, including metric learn-
ing methods, meta-learning methods, and data augmentation methods (Xiao et  al. 2021; 
Li et al. 2022a; Wang et al. 2022e). Metric learning methods aim to learn a distance func-
tion that can measure the similarity between objects. Meta-learning methods aim to learn 
a model that can quickly adapt to new tasks with a few training examples with the help 
other domain informations (Zhang et al. 2023). Data augmentation methods aim to gener-
ate more training examples by applying transformations to the existing examples (Liu et al. 
2023). Furthermore, a more comprehensive analysis of aerial image-based FSOD is avail-
able in the summarized Table 6.

Explainability in few-shot object detection refers to the ability to understand and inter-
pret the decisions made by the model. This is important for verifying the correctness of the 
model’s predictions and for gaining insights into the model’s behavior. Explainability can 
be achieved by visualizing the attention maps of the model, which show which parts of the 
image the model is focusing on when making a prediction. Other methods include saliency 
maps (Petsiuk et al. 2021), which highlight the most important pixels for a prediction, and 
decision trees, which provide a simple and interpretable representation of the model’s deci-
sion process (Hu et  al. 2023). Therefore, few-shot object detection methods have shown 
promising results in detecting novel objects in aerial images with limited annotated sam-
ples. The feature attention highlight module and the two-phase training scheme contribute 
to the model’s effectiveness and adaptability in few-shot scenarios. However, there are still 
challenges to be addressed, such as the performance discrepancy between aerial and natural 
images, and the confusion between some classes. Future research should focus on develop-
ing more versatile few-shot object detection techniques that can handle small, medium, and 
large objects effectively, and provide more interpretable and explainable results.

7.2 � FSOD benchmark datasets for aerial remote sensing images

•	 NWPU VHR contains 10 categories, with three chosen as novel classes. Researchers 
commonly use a partition that involves base training on images without novel objects 
and fine-tuning on a set with k annotated boxes (where k is 1, 2, 3, 5, or 10) for each 
novel class. The test set has about 300 images, each containing at least one novel object.

•	 DIOR. dataset features 20 classes and over 23,000 images. Five categories are desig-
nated as novel, and various few-shot learning approaches are applied. Fine-tuning is 
performed with k annotated boxes (where k can be 3, 5, 10, 20, or 30) for each novel 
class, and performance is evaluated on a comprehensive validation set.

•	 RSOD. dataset consists of four classes. One class is randomly selected as the novel 
class, with the remaining three as base classes. During base training, 60% of samples 
for each base class are used for training, and the rest for testing. Fine-tuning is per-
formed on k annotated boxes in the novel classes, where k can be 1, 2, 3, 5, or 10.

•	 iSAID dataset features 15 classes and employs three distinct base/novel splits designed 
according to data characteristics. Each split focuses on a different aspect-such as object 
size or variance in appearance. The third split specifically selects the six least frequent 
classes as novel. Base training uses all objects from base classes, and fine-tuning uti-
lizes 10, 50, or 100 annotated boxes per class.
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•	 DOTA dataset features an increase from 15 to 18 categories and nearly tenfold expan-
sion to 1.79 million instances. It has two base/novel class splits, with three classes des-
ignated as novel. During episode construction, the number of shots for novel classes 
varies as 1, 3, 5, and 10.

•	 DAN dataset is an amalgamation of DOTA and NWPU VHR datasets, comprising 15 
categories. It designates three classes as novel, with the remaining as base classes.

•	 xBD dataset is designed for detection of building damage layouts and hence identifying 
the disaster that causes it via satellite imagery. It comprises of a pre and post-disaster 
scenery of the affected area for comparisons, and the type of natural disaster that can be 
detected include hurricane, flood, fire, etc. In the work by Bowman and Yang (2021), 
data from xBD was divided into three subsets, one for images captured pre-event (for 
disaster in general), one for images captured post-event (also for disaster in general), 
and one for images captured specifically after a tornado. Since the aftermath images 
due to a tornado is only found in the last subset, the latter training dataset is disjoint 
from the other two training data subset, allowing few-shot training to be attainable.

•	 HRSC2016 + REMEX-FSSD is a combination of dataset proposed by Zhang et  al. 
(2022) for few-shot ship detection using satellite imagery. Such dataset is distinct from 
the other aforementioned dataset as it opens up the feasibility of few-shot object detec-
tion in the maritime domain. Their motivations stem from the observation that there is 
a large intra-class diversity and inter-class similarity between different ships, as well the 
scarcity of training images of different type of ships (more so if the ships are new). For 
the HRSC2016 dataset, 15 classes are selected, for which 5 classes are categorized as 
novel classes. For the REMEX-FSSD, the destroyer class of ship is categorized as the 
novel class.

7.3 � Few‑shot image segmentation in remote sensing

Few-shot image segmentation (FSIS) is a challenging task in computer vision, particularly 
in the context of aerial images. This task aims to segment objects in images with only a few 
labeled examples, which is especially important due to the high cost of collecting labeled 
data in the domain of aerial images. Recent advancements in few-shot image segmentation 
have been driven by deep learning techniques, which have shown promising results in vari-
ous computer vision tasks. Metric-based meta-learning models, such as Siamese networks 
and prototype networks, have been widely used in few-shot segmentation (Yao et al. 2021; 
Chen et al. 2022). These models learn to compare the similarity between support and query 
images and use this information to segment novel classes (Cao et al. 2023).

Another common approach in few-shot image segmentation is to use deep learning net-
works, specifically convolutional neural networks (CNNs) (Zhang et al. 2020). These networks 
have shown great success in image segmentation tasks and have been adapted for few-shot 
learning scenarios. Researchers have explored different architectures and training strategies 
to improve the performance of CNNs in few-shot image segmentation (Zhang et al. 2020). 
Meta-learning, which involves training a model to learn how to learn, has also been applied to 
few-shot image segmentation with promising results (Zhang et al. 2020). Meta-learning algo-
rithms aim to extract meta-knowledge from a set of tasks and use this knowledge to quickly 
adapt to new tasks with only a few labeled examples. In terms of applications, few-shot image 
segmentation in aerial images has various potential applications. One application is in urban 
planning, where few-shot image segmentation can be used to identify and segment different 
types of buildings, roads, and other urban infrastructure (Puthumanaillam and Verma 2023; 
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Lang et al. 2023a, b). Another application is in land-use and land-cover determination, where 
few-shot image segmentation can be used to classify different types of land cover, such as 
forests, agricultural land, and water bodies. Few-shot image segmentation can also be used in 
environmental monitoring and climate modeling to analyze changes in vegetation cover, water 
resources, and other environmental factors. In the field of wildfire recognition, detection, and 
segmentation, deep learning models have shown great potential (Ghali and Akhloufi 2023). 
These models have been successfully applied to aerial and ground images to accurately clas-
sify wildfires, detect their presence, and segment the fire regions. Various deep learning archi-
tectures have been explored, including CNNs, one-stage detectors (such as YOLO), two-stage 
detectors (such as Faster R-CNN), and encoder-decoder models (such as U-Net and DeepLab). 
In the context of UAV images, a framework has been proposed for removing spatiotemporal 
objects from UAV images before generating the orthomosaic. The framework consists of two 
main processes: image segmentation and image inpainting. Image segmentation is performed 
using the Mask R-CNN algorithm, which detects and segments vehicles in the UAV images. 
The segmented areas are then masked to be removed. Image inpainting is carried out using the 
large mask inpainting (LaMa) method, a deep learning-based technique that reconstructs dam-
aged or missing parts of an image (Park et al. 2022). Additionally, a more extensive examina-
tion of aerial image-based FSIS can be found in the Table 7.

Excitability in few-shot image segmentation, particularly in the context of remote sensing 
aerial images, have focused on the development of novel models and techniques that enhance 
the performance of segmentation tasks and provide insights into the decision-making pro-
cess of the models. One such advancement is the Self-Enhanced Mixed Attention Network 
(SEMANet) proposed (Song et  al. 2023). SEMANet utilizes three-modal (Visible-Depth-
Thermal) images for few-shot semantic segmentation tasks. The model consists of a back-
bone network, a self-enhanced module (SE), and a mixed attention module (MA). The SE 
module enhances the features of each modality by amplifying the differences between fore-
ground and background features and strengthening weak connections. The MA module fuses 
the three-modal features to obtain a better feature representation. Another advancement is the 
combination of a self-supervised background learner and contrastive representation learn-
ing to improve the performance of few-shot segmentation models (Cao et  al. 2023). The 
self-supervised background learner learns latent background features by mining the features 
of non-target classes in the background. The contrastive representation learning component 
of the model aims to learn general features between categories by using contrastive learning. 
This approach has shown potential for enhancing the performance and generalization ability 
of few-shot segmentation models. Still, there are still some problems to solve in the field, such 
as how to deal with differences in performance caused by intra-class confusions and how to 
make models that are simple to understand and can be fairly accurate. Future research should 
focus on the development of flexible few-shot object segmentation approaches that are capa-
ble of effectively handling lightweight models. These models should possess a higher level 
of interpretability for each of its components and demonstrate the ability to generalize across 
other domains.

7.3.1 � Few‑shot image segmentation benchmark datasets for remote sensing aerial 
images

•	 iSAID is a large-scale dataset for instance segmentation in aerial images. It contains 
2,806 high-resolution images with annotations for 655,451 instances across 15 catego-
ries.
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•	 Vaihingen consists of true orthophoto (TOP) images captured over the town of Vaihin-
gen an der Enz, Germany. The images have a spatial resolution of 9 cm, which is quite 
high compared to many other aerial image datasets. The dataset also includes cor-
responding ground truth data, which provides pixel-wise annotations for six classes: 
impervious surfaces (such as roads and buildings), buildings, low vegetation (such as 
grass), trees, cars, and clutter/background.

•	 DLRSD contains images where the label data of each image is a segmentation image. 
This segmentation map is analyzed to extract the multi-label of the image. DLRSD has 
richer annotation information with 17 categories and corresponding label IDs.

•	 SARShip-4i contains ship images in the SAR domain that can be utilized for few-shot 
segmentation, as performed by Li et al. (2023). The dataset is comprised of 139 high-
resolution SAR images of ship from 14 regions, with the resolution values ranging from 
0.3 m to 3 m.

8 � Discussions

In this section, we aim to highlight interesting observations, common trends, and potential 
research gaps based on the in-depth analysis of the existing few-shot classification tech-
niques across the three remote sensing data domains. The insights discussed in this section 
can serve as a guide for both current and future researchers in this field.

•	 Most of the methods described in the literature use different feature extraction models, 
with CNN-based models often serving as the backbone, as we’ve already talked about. 
Convolution-based few-shot learning models are still popular for classification tasks in 
all three domains. These models are capable of quickly adapting to new classes with 
few training examples, making them suitable for real-world applications. However, 
graph-based methods are becoming more popular for classifying SAR images, and 
they have only recently been used to classify VHR images. Graph-based methods are 
advantageous because they are able to capture the spatial relationships between objects, 
which is essential for classifying SAR and VHR images. Recently, vision transformer-
based and incremental learning-based methods have emerged as alternatives for hyper-
spectral image classification. These methods have shown promise in achieving high 
accuracy with minimal training data, making them attractive for applications where 
labeled data is limited.

•	 The evaluation of the discussed works in hyperspectral image classification gener-
ally employs three commonly utilized metrics: overall accuracy (OA), average accu-
racy (AA), and kappa coefficient ( � ). These metrics are frequently used to evaluate the 
classification performance of the proposed algorithms. In contrast, for VHR and SAR-
based image classification, the classification accuracy (OA) is often utilized as the pri-
mary evaluation metric, although there are a few exceptions. Moreover, in most of the 
evaluation strategies adopted by the researchers, the proposed algorithms are run mul-
tiple times along with the state-of-the-art (SOTA) techniques, and the corresponding 
mean accuracy and its standard deviation are reported. This approach provides a more 
reliable and robust estimate of the classification performance, taking into account any 
potential variations in the results obtained across multiple runs.

•	 In contrast to hyperspectral classification, it has been observed that there are currently 
few or no vision ViT-based few-shot classification methods proposed for SAR and 
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VHR images. This could be attributed to the challenges associated with acquiring suffi-
cient datasets for implementing effective and accurate ViT-based architectures for SAR 
images. Similarly, for VHR images, although there are existing models that use ViT-
based classification, they are non-few-shot approaches such as the vanilla ViT-based 
model proposed by Zhang et  al. (2021). Consequently, there are considerable oppor-
tunities for researchers to explore the potential of few-shot ViT-based approaches for 
addressing the challenges associated with VHR remote sensing data classification.

•	 The current state of research on few-shot classification approaches in the field of remote 
sensing does not seem to include much work on UAV or low-altitude aircraft-based 
images, as far as current knowledge suggests. This may be due to the unique nature of 
such images, which have been pointed out in previous studies such as Gao et al. (2021). 
The differences in object sizes and perspectives, as well as the limited computational 
resources available for UAV-based operations, may be contributing factors to the scar-
city of research in this area. In addition, the relatively smaller size of the UAV-based 
datasets may have posed challenges for few-shot learning methods, which often require 
a sufficiently large dataset to learn meaningful feature representations. However, with 
the increasing availability of UAV-based data, there may be opportunities for develop-
ing novel few-shot classification methods that can effectively leverage such data.

•	 Furthermore, while few-shot learning has been studied extensively in the context of 
supervised classification, there is also potential for exploring its application in other 
remote sensing tasks such as unsupervised or semi-supervised learning, object detec-
tion, and semantic segmentation. Few-shot learning can provide an effective means 
of leveraging limited labeled data in these tasks, which can potentially lead to more 
accurate and efficient algorithms for remote sensing applications. Overall, while signif-
icant progress has been made in the application of few-shot learning to remote sensing 
data, there are still many research gaps and opportunities for further investigation. The 
exploration of new few-shot learning approaches, as well as the extension of existing 
methods to new applications and domains, can lead to more accurate and efficient algo-
rithms for remote sensing tasks.

•	 The utilization of XAI methodologies in conjunction with few-shot learning models for 
remote sensing applications can considerably enhance the interpretability of such mod-
els, thereby increasing their applicability in domains that are sensitive to potential risks. 
However, despite the significant promise held by XAI for few-shot learning in remote 
sensing, the current body of research in this field remains relatively nascent and further 
endeavors are necessary to fully realize its potential benefits.

8.1 � Computational considerations in few‑shot learning

Few-shot learning, as a niche within the broader domain of machine learning, warrants 
unique computational requirements. These requirements become particularly pertinent 
when the applications have real-time constraints. One of the most critical real-time applica-
tions lies in disaster monitoring using UAVs. The immediacy of feedback in such scenarios 
can drastically affect outcomes, emphasizing the significance of processing time.

Deep learning, which forms the foundation for many few-shot learning techniques, 
inherently demands high computational resources. Techniques such as CNNs are notori-
ous for their computational intensity during both the training and inference phases. This 
computational cost can sometimes be a bottleneck, especially when rapid responses are 
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essential. However, the evolving landscape of few-shot learning has seen the emergence of 
strategies aiming to mitigate these computational challenges:

•	 Meta-learning, exemplified by approaches like MAML (Finn et  al. 2017), offers an 
innovative solution. By optimizing model parameters to allow swift adaptation to novel 
tasks, these methods significantly reduce the computational overhead. This ensures that 
models can be fine-tuned efficiently, even when faced with new datasets.

•	 Wang et al.’s (2022b) proposition of employing lightweight model architectures cou-
pled with knowledge distillation techniques emerges as another viable strategy. By min-
imizing redundancies and unnecessary parameters, these models are streamlined to be 
more computationally efficient without compromising their predictive power.

•	 Graph-based methodologies, such as GraphSAGE (Yang et al. 2020), and further exten-
sions into GNN-based approaches (Yang et al. 2020), provide alternatives to traditional 
CNNs. These methods, in certain dataset contexts, have demonstrated reduced compu-
tational complexity, making them attractive options.

Despite these advancements, it is noteworthy that a significant portion of few-shot learning 
methodologies has not been explicitly tailored for optimizing processing time. Recognizing 
this gap, future research could pivot towards crafting architectures specifically designed 
for real-time UAV applications. Several avenues could be pursued to enhance computa-
tional efficiency. These include embracing model compression techniques, such as pruning 
and quantization (Han et al. 2015), leveraging efficient neural architecture search methods 
(Pham et al. 2018), and exploring hardware-software co-design strategies (Ham et al. 2021) 
to fine-tune models for particular computational platforms. In all these endeavors, the over-
arching goal remains consistent: achieving rapid inference times without sacrificing model 
accuracy.

9 � Numerical experimentation of few‑shot classification on UAV‑based 
and satellite‑based dataset

In order to address point 4 in the discussion section, a few-shot state-of-the-art (SOTA) 
method were employed to classify disaster scenes using the publicly available AIDER 
subset dataset. The evaluation involved the use of several few-shot methods such as the 
Siamese and Triplet Network, ProtoNet (Snell et al. 2017), Relation Network (Sung et al. 
2018), Matching Network (Vinyals et  al. 2016), SimpleShot (Wang et  al. 2019), TAsk-
Dependent Adaptive Metric (TADAM) (Oreshkin et al. 2018), MAML (Finn et al. 2017), 
Meta-Transfer Learning (MTL) (Sun et al. 2019), and Label Hallucination (Jian and Tor-
resani 2022), which were originally proposed and evaluated in non-remote sensing data-
sets. The aim of the study was to evaluate the effectiveness of these methods in the remote 
sensing setting. To compare the results obtained from such dataset against that of a satel-
lite-based remote sensing image classification, we compared our findings with some of the 
methods utilized in the UC-Merced evaluation as performed by Huang et al. (2021b); For 
the methods not listed there, we performed the simulation using the experimental condition 
as stipulated by Huang et al. (2021b).

We conducted a 5-way 1-shot and 5-way 5-shot classification evaluation approach. 
The AIDER subset dataset consists of a total of 6433 images, classified into 5 categories, 
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namely collapsed buildings, fires, floods, traffic accidents, and normal (non-disaster) 
classes, with 511, 521, 526, 485, and the rest of the images, respectively. The dataset subset 
is imbalanced, with more images in the normal class than in the other disaster classes, high-
lighting the potential benefits of few-shot learning approaches, as mentioned in previous 
sections. Table 8 depicts the train-valid-test split ratio adapted for each class. All images 
are cropped to a pixel size of 224 × 224 and pre-processed by dividing each original pixel 
value by 255. The learning rate for each algorithm is set as 0.001. ResNet12 is chosen as 
the feature extraction backbone for TADAM, ProtoNet, Matching Network, Relation Net-
work, SimpleShot, MTL, and Label Hallucination. For all of the methods, a common cat-
egorical cross-entropy loss is utilized, except for relation network, which utilized a mean-
squared error loss. To tackle the problem of class imbalance, the training and validation 
samples were subjected to under-sampling by utilizing the RandomUnderSampler module, 
which was provided in the imblearn library package. All the simulations in this dataset 
were carried out for a total of 200 epochs using the Tensorflow Keras library in Python, 
and the Google Colab Pro+ platform with Tesla A100, V100, and T4 Graphical Processing 
Units (GPU) and Tensor Processing Units (TPU) were employed for computation.

For the UC-Merced dataset, apart from the features as mentioned in section  4.2, 10 
classes are utilized as the base training set, 5 classes are set aside as the validation set, and 
the remaining 6 classes are utilized as the novel test set. In line with Huang et al. (2021b), 
the shapes of all images are cropped to 84 × 84 for feature extraction using their proposed 
feature encoder, with the momentum factor set to 0.1, and the learning rate set to 0.001. 
Due to all classes in UC-Merced having equal samples per class, methods to handle class 
imbalance are not needed. Once again, the common categorical cross-entropy is utilized 
as the loss function, except for relation network, which utilized a mean-squared error loss.

Table 9 presents the results of the simulations carried out on the AIDER subset using 
the few-shot evaluation approach mentioned earlier. Table 10 the corresponding results on 
the UC-Merced dataset. The mean accuracy and standard deviation for 10 runs are reported 
for each method. For the Siamese and Triplet network, the results are only reported for the 
5-way 1-shot evaluation, as only 1 pair of images is compared per episodic training (for 
the Triplet network, the anchor image is taken and compared with the positive vs the nega-
tive image each at a time, so 1 pair of images are still considered). It was observed that the 
mean accuracy for the 5-way 5-shot approach is generally higher than that of the 5-way 
1-shot approach for all the methods utilized in the two dataset, in agreement with the state-
ment made earlier about the difficulty of few-shot learning with fewer shots. The Siamese 
network was found to outperform both Triplet and ProtoNet, demonstrating its effective-
ness in feature extraction and embedding. Consistent with the trend observed in a previous 
study, MTL outperformed TADAM and ProtoNet in the AIDER and the UC-Merced sub-
set, while label hallucination yielded the highest performance with a metric value of over 
81% in the AIDER subset.

10 � Explainable AI (XAI) in remote sensing

XAI has become an increasingly crucial area of research and development in the field of 
remote sensing. As deep learning and other complex black-box models gain popularity 
for analysis of remote sensing data, there is a growing need to provide transparent and 
understandable explanations for how these models arrive at their predictions and decisions. 
Within remote sensing, explainability takes on heightened importance because model 
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outputs often directly inform real-world actions with major consequences. For example, 
models identifying at-risk areas for natural disasters, pollution, or disease outbreaks can 
drive evacuations, remediation efforts, and public health interventions. If the reasoning 
behind these model outputs is unclear, stakeholders are less likely to trust and act upon the 
model’s recommendations.

To address these concerns, XAI techniques in remote sensing aim to shed light inside 
the black box (Mohan and Peeples 2023). Explanations can highlight which input features 
and patterns drive particular model outputs (Wang et  al. 2019). Visualizations can illus-
trate a model’s step-by-step logic (Arrieta et al. 2020). Uncertainty estimates can convey 
when a model is likely to be incorrect or unreliable (Ling and Templeton 2015). Prototypes 
and case studies have shown promise for increasing trust and adoptability of AI models 
for remote sensing applications ranging from climate monitoring to precision agriculture 
(Shaikh et al. 2022). As remote sensors continue producing ever-larger and more complex 
datasets, the role of XAI will likely continue growing in importance. With thoughtful XAI 
implementations, developers can enable deep learning models to not only make accurate 
predictions from remote sensing data, but also provide the transparency and justifications 
required for stakeholders to confidently use these tools for critical real-world decision mak-
ing. Recent approaches to XAI in the field of remote sensing are outlined below.

One notable development is the “What I Know” (WIK) method, which verifies the relia-
bility of deep learning models by providing examples of similar instances from the training 
dataset to explain each new inference (Ishikawa et al. 2023). This technique demonstrates 
how the model arrived at its predictions.

XAI has also been applied to track the spread of infectious diseases like COVID-19 
using remote sensing data (Temenos et al. 2022). By explaining disease prediction models, 
XAI enables greater trust and transparency. Additionally, XAI techniques have been used 
for climate adaptation monitoring in smart cities, where satellite imagery helps extract 
indicators of land use and environmental change (Sirmacek and Vinuesa 2022).

Several specific XAI methods show promise for remote sensing tasks, including Local 
Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations 
(SHAP), and Gradient-weighted Class Activation Mapping (Grad-CAM) (Ishikawa et al. 
2023). These methods highlight influential input features and image regions that led to a 
model’s outputs. Grad-CAM produces visual heatmaps to indicate critical areas in an input 
image for each inference made by a convolutional neural network.

However, some challenges remain in fully integrating XAI into remote sensing frame-
works. Practical difficulties exist in collecting labeled training data, extracting meaning-
ful features, selecting appropriate models, ensuring generalization, and building repro-
ducible and maintainable systems (Sirmacek and Vinuesa 2022). There are also inherent 
uncertainties in modeling complex scientific processes like climate change that limit the 

Table 8   List of training, 
validation and test image sets for 
each class in our subset of the 
AIDER dataset

Class Train Valid Test Total per class

Collapsed building 367 41 103 511
Fire 249 63 209 521
Flood 252 63 211 526
Traffic 232 59 194 485
Normal 2107 527 1756 4390
Total per set 3207 753 2473 6433
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interpretability of model predictions (Sirmacek and Vinuesa 2022). Furthermore, the types 
of explanations provided by current XAI methods do not always match human modes of 
reasoning and explanation (Gevaert 2022). Despite the challenges, XAI methods hold 
promise for enhancing few-shot learning approaches in remote sensing. Few-shot learning 
aims to learn new concepts from very few labeled examples, which is important in remote 
sensing where labeled data is scarce across the diversity of land cover types. However, the 
complexity of few-shot learning models makes their predictions difficult to interpret.

10.1 � XAI in few‑shot learning for remote sensing

Most XAI methods for classification tasks are post-hoc, which cannot be incorporated into 
the model structure during training. Back-propagation (Chattopadhay et  al. 2018; Selva-
raju et al. 2017; Shrikumar et al. 2017; Wang et al. 2020) and perturbation-based meth-
ods (Schulz et al. 2020) are commonly used in XAI for classification tasks. However, few 
works have been carried out on XAI for few-shot learning tasks. Initial work has explored 

Table 9   The mean classification 
accuracy using the 5-way 1-shot 
and 5-way 5-shot learning 
evaluation on our AIDER subset 
simulation

Each method were ran for 10 times per setting

Methods 5-way 1-shot 5-way 5-shot

Siamese Network 75.0±0.97 –
Triplet Network 65.3±0.77 –
SimpleShot 55.6±0.62 73.8±0.25
TADAM 69.0±0.33 76.4±0.55
ProtoNet 62.2±1.50 77.7±0.57
Matching Network 36.2±0.21 73.2±0.10
Relation Network 44.4±0.64 75.9±0.16
MAML 67.1±0.79 75.3±0.70
MTL 75.7±0.39 80.6±0.41
Label Hallucination 77.2±0.67 84.0±0.61

Table 10   The mean classification 
accuracy using the 5-way 1-shot 
and 5-way 5-shot learning 
evaluation on UC-Merced

The Siamese, Triplet, SimpleShot, MTL, TADAM and Label Halluci-
nation were ran for 10 times per setting, while for the remaining meth-
ods, the values were obtained from Huang et al. (2021b)

Methods 5-way 1-shot 5-way 5-shot

Siamese Network 63.8±0.94 –
Triplet Network 61.2±0.92 –
SimpleShot 57.8±0.77 66.1±0.34
TADAM 63.4±0.67 73.0±0.72
ProtoNet 52.6±0.70 65.9±0.57
Matching Network 46.2±0.71 66.7±0.56
Relation Network 48.9±0.73 64.1±0.54
MAML 43.7±0.68 58.4±0.64
MTL 65.8±0.36 73.4±0.74
Label Hallucination 67.3±0.82 75.3±0.73
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techniques like attention maps and feature visualization to provide insights into few-shot 
model predictions for remote sensing tasks (Liu 2022). Recently, a new type of XAI called 
SCOUTER (Li et al. 2021b) has been proposed, in which the self-attention mechanism are 
applied to the classifier. This method extracts discriminant attentions for each category in 
the training phase, allowing the classification results to be explainable. Such techniques can 
provide valuable insights into the decision-making process of few-shot classification mod-
els, increasing transparency and accountability, which is particularly important in remote 
sensing due to the high cost of acquiring and processing remote sensing data. In another 
recent work Wang et  al. (2022a), a new approach to few-shot learning for image classi-
fication has been proposed that uses visual representations from a backbone model and 
weights generated by an explainable classifier. A minimum number of distinguishable fea-
tures are incorporated into the weighted representations, and the visualized weights provide 
an informative hint for the few-shot learning process. Finally, a discriminator compares the 
representations of each pair of images in the support and query set, and pairs yielding the 
highest scores determined the classification results. This approach, when applied onto three 
mainstream datasets, achieved good accuracy and satisfactory explainability.

11 � Conclusions and future directions

In this comprehensive review, we provided a comprehensive analysis of recent few-shot 
learning techniques for remote sensing across various data types and platforms. Com-
pared to previous reviews (Sun et al. 2021), we expanded the scope to include UAV-based 
datasets. Our quantitative experiments demonstrated the potential of few-shot methods on 
various remote sensing datasets. We also emphasized the growing importance of XAI to 
increase model transparency and trustworthiness.

While progress has been made, ample opportunities remain to advance few-shot learn-
ing for remote sensing. Future research could explore tailored few-shot approaches for 
UAV data that account for unique image characteristics and onboard computational con-
straints. Vision transformer architectures could also be investigated for few-shot classifica-
tion of very high-resolution remote sensing data. A key challenge is reducing the perfor-
mance discrepancy between aerial and satellite platforms. Developing flexible techniques 
that handle diverse data effectively is an open problem that warrants further investigation.

On the XAI front, further work is needed to address issues unique to remote sensing like 
scarce labeled data, complex earth systems, and integrating domain knowledge into mod-
els. Techniques tailored for few-shot learning specifically could benefit from more research 
into explainable feature extraction and decision making. Explainability methods that pro-
vide feature-level and decision-level transparency without sacrificing too much accuracy 
or efficiency are needed. There is also potential to apply few-shot learning and XAI to 
new remote sensing problems like object detection, semantic segmentation, and anomaly 
monitoring.

To end, few-shot learning shows increasing promise for efficient and accurate analysis 
of remote sensing data at scale. Integrating XAI can further improve model transparency, 
trust, and adoption by providing human-understandable explanations. While progress has 
been made, ample challenges and opportunities remain to realize the full potential of few-
shot learning and XAI across the diverse and rapidly evolving remote sensing application 
landscape. Advances in these interconnected fields can pave the way for remote sensing 
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systems that learn quickly from limited data while remaining transparent, accountable, and 
fair.
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