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Abstract
The practical application of object detection inevitably encounters challenges posed by 
small objects. In underwater object detection, a crucial method for marine exploration, 
the presence of small objects in underwater environments significantly hampers the per-
formance of detection. In this paper, a dynamic YOLO detector is proposed as a solution 
to alleviate this problem. Specifically, a light-weight backbone network is first constructed 
based on deformable convolution v3, with some specialized designs for small object detec-
tion. Secondly, a unified feature fusion framework based on channel-wise, scale-wise, and 
spatial-aware attention is proposed to fuse feature maps from different scales. This is par-
ticularly critical for detecting small objects since it allows us to fully exploit the enhanced 
capabilities offered by our proposed backbone network. Finally, a simple but effective 
detection head is designed to handle the conflict between classification and localization by 
disentangling and aligning the two tasks. Extensive experiments are conducted on bench-
mark datasets to demonstrate the effectiveness of the proposed model. Without bells and 
whistles, dynamic YOLO outperforms the recent state-of-the-art methods by a large mar-
gin of + 0.8 AP and + 1.8 AP

S
 on the DUO dataset. Experimental results on Pascal VOC 

and MS COCO datasets also demonstrate the superiority of the proposed method. At last, 
ablation studies are conducted on DUO dataset to validate the effectiveness and efficiency 
of each design in dynamic YOLO. Source code will be available at https://​github.​com/​
chenj​ie04/​Dynam​ic-​YOLO.
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1  Introduction

Marine exploration has always held great significance for humanity, whether in the exploi-
tation of marine resources or the preservation of ecosystems. With the rapid advancement 
of marine robotics, vision-based underwater object detection emerges as a cost-effective 
yet promising approach for marine exploration, garnering considerable attention from the 
marine research and engineering community (Fayaz et al. 2022; Xu et al. 2023). However, 
this field faces unique challenges in underwater object detection due to factors like small-
sized objects, which hinder the practical implementation of AI-powered techniques (Er 
et al. 2022).

Most objects of interest in underwater object detection, such as marine organisms (holo-
thurian, echinus, scallops, starfish, etc.), are typically small and tend to aggregate densely 
(Fig. 1a). The visualization of the Statistics of Detecting Underwater Objects (DUO) data-
set (Liu et al. 2021a) depicted in Fig. 1b reveals that the majority of objects exhibit small 
or medium sizes.12 Specifically, approximately 43.9% constitute small objects while around 
53.7% represent medium-sized ones; the number of large objects is almost negligible. This 
ubiquitous fact poses an inevitable challenge for detecting small underwater objects (Er 
et al. 2023).

Insufficient visual information hampers the extraction of discriminative features for 
classification and localization when detecting small objects (Sun et  al. 2021). The lim-
ited spatial coverage of objects restricts conventional convolutional neural networks with 
fixed geometric structures in their kernels from effectively extracting features (Dai et  al. 
2017). Unnecessary contextual information (e.g., sea-grasses in the environment around 
the objects) can impede representation learning. Deformable Convolution Network (DCN) 
overcomes this limitation by dynamically aligning sampling locations using predicted off-
sets, enabling more precise feature extraction (Wang et  al. 2022). The incorporation of 
DCN facilitates adaptive interaction with short- or long-range features, which is particu-
larly advantageous for detecting irregularly shaped small objects in underwater environ-
ments. In this paper, we propose a backbone network based on deformable convolution 
with specialized designs tailored for small object detection.

On the contrary, as convolutional neural networks delve deeper into layers, the intricate 
details of small objects gradually diminish in the feature hierarchy, posing a greater chal-
lenge for detection. To address this issue, multi-scale feature fusion strategies have been 
proposed to aggregate more comprehensive semantic information and localization signals 
by fusing feature maps from different stages of backbone networks (Chen et  al. 2020a). 
Various feature fusion networks have been extensively explored in previous studies (Lin 
et al. 2017a; Liu et al. 2018; Tan et al. 2020), yet a unified framework for multi-scale fea-
ture fusion has not been established.

We propose three fundamental principles for the design of feature fusion networks:

•	 Firstly, feature fusion should exhibit channel-awareness. Our aim is to dynamically 
aggregate semantic information and localization signals from feature maps at different 

1  Images have been rescaled to 640 × 640 pixels, a commonly used scale in recent detectors (Ge et  al. 
2021).
2  The definitions for scales of small objects are adopted from the MS COCO dataset (Lin et  al. 2014), 
where an object with an area less than 322 pixels is considered small, between 322 and 962 pixels is consid-
ered medium, and larger than 962 pixels is considered large.
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levels. Channel-aware attention enables the activation of distinct semantic information 
or localization signals at specific spatial locations as desired.

•	 Secondly, feature fusion should demonstrate scale-awareness. Feature maps from 
various levels respond to object detection at corresponding scales. Consequently, 

Fig. 1   Marine objects are usually small and tend to congregate in dense distributions. a Visualization of 
detecting small objects on DUO dataset (Liu et al. 2021a). b Statistics of DUO dataset on different scales. 
The numerical values on each bar represent the corresponding percentage within that particular category, 
e.g., of the sea urchins (the red bars), 54% are small, 44% are medium, and only 2% are large. Overall, a 
significant proportion of objects fall into the small and medium size, with 44% small, 54% medium, and 2% 
large
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unequal contributions are made by feature maps with different scales from the pre-
vious module; thus, scale-aware attention facilitates the fusion of feature maps at 
appropriate magnitudes.

•	 Thirdly, feature fusion should manifest spatial-awareness. Objects with diverse 
sizes and forms are distributed across different locations in the image space. Spa-
tial-aware attention assists in aggregating crucial region-based information while 
suppressing irrelevant context.

Based on the fundamental principles, we explicitly propose a unified feature fusion 
framework for enhancing small object detection by sequentially applying channel-, 
scale-, and spatial-aware attention mechanisms to refine features.

Another challenge posed by small object detection is the need for higher localization 
accuracy, as even slight misalignments can result in false detections. This issue is fur-
ther complicated by the inherent conflict between classification and localization tasks 
(Ge et al. 2021). In this study, we propose an extended decoupled head that addresses 
this problem through the application of a dynamic ReLU function (Chen et al. 2020b) 
along the channel dimension to disentangle these two tasks using dynamic activa-
tion. Subsequently, two deformable convolution layers are employed to enhance task 
alignment within the detection head. By disentangling and aligning classification and 
localization processes, our proposed approach mitigates conflicts and achieves superior 
localization accuracy.

In this paper, we propose a dynamic YOLO detector that effectively detects small 
underwater objects, leveraging the lightweight backbone network, novel feature fusion 
framework, and extended decoupled head. Our approach is extensively evaluated on 
benchmark datasets to demonstrate its effectiveness. Notably, without any additional 
complexities, our dynamic YOLO outperforms the recent state-of-the-art methods by a 
significant margin of + 0.8AP and + 1.8APS on the DUO dataset. Furthermore, experi-
mental results on the Pascal VOC and MS COCO datasets validate the superiority of 
our proposed model consistently. Finally, ablation studies confirm the effectiveness 
and efficiency of each design choice.

The following are summaries of this paper’s significant contributions: 

1.	 A light-weight backbone network specially designed for underwater small target detec-
tion based on DCN v3 is proposed.

2.	 Three fundamental principles for multi-scale feature fusion are identified, and a unified 
feature fusion framework is proposed.

3.	 An extended decoupled head is introduced to alleviate the conflict between classification 
and localization tasks by disentanglement and alignment.

4.	 With these improvements, a dynamic YOLO detector is developed, achieving state-of-
the-art performance on benchmark datasets for underwater object detection.

The remaining sections of this paper are organized as follows: Sect.  2 presents the 
related works. In Sect. 3, we propose a dynamic YOLO detector and provide detailed 
explanations on the light-weight backbone, novel feature fusion framework, and decou-
pled head. Experimental results and discussions on benchmark datasets are presented 
in Sect. 4. Finally, we summarize our conclusions in Sect. 5.
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2 � Related work

With the flourishing development of marine robots, vision-based underwater object detec-
tion has emerged as a prominent research area (Teng and Zhao 2020). Marine robots 
equipped with deep learning-powered visual perception systems demonstrate immense 
potential for ocean exploration. However, unlike land scenarios, underwater object detec-
tion poses greater challenges (Er et al. 2023), including image degradation, small objects, 
poor generalization, and real-time requirements. In this study, our focus lies on detecting 
small underwater objects.

2.1 � Deformable convolution

In recent years, transformer-based detectors have emerged as dominant players in the com-
mon object detection community due to their robust representation capabilities and supe-
rior performance (Han et al. 2022). However, they still face challenges in detecting small 
objects primarily because of their limited ability to capture local information. This limita-
tion has prompted researchers to reintroduce convolution modules into the framework (Wu 
et  al. 2021). Among various alternatives, DCN stands out as a more competitive option 
owing to its adaptive feature extraction across spatial distributions.

The Deformable Convolutional Network (DCN) was initially proposed in Dai et  al. 
(2017) to enhance the transformation modeling capability of conventional CNNs by 
refining the sampling locations with spatial offsets. This enables easy adaptation of fea-
ture extraction to object variations in geometry, making it desirable for visual recognition 
tasks requiring accurate localization. In DCN v2 (Zhu et al. 2019), a learnable modulation 
amplitude is introduced at each sampling location, allowing control over the relative influ-
ence of samples on recognition tasks. To further strengthen its capability, DCN v3 (Wang 
et al. 2022) incorporates several optimizations: Firstly, sharing projection weights among 
convolution neurons reduces parameters and memory complexity. Secondly, a multi-group 
mechanism aggregates richer information from different feature subspaces at various loca-
tions. Lastly, normalization of modulation scalars along sampling locations stabilizes the 
training process.

DCN, being a robust operator, has gained widespread adoption in computer vision sys-
tems for precise feature extraction. Its capability enables detectors to extract features with 
higher accuracy from small objects and effectively suppress interference caused by the sur-
rounding environment. In this study, we propose a lightweight backbone network based on 
DCN v3 for detecting small underwater objects.

2.2 � Small object detection

Small objects are widely acknowledged as a significant issue in object detection using deep 
learning, since the network gradually loses detailed information as it goes deeper (Liu et al. 
2021b). Many multi-scale feature fusion strategies have been proposed to generate a dis-
criminative representation for small object detection (Er et al. 2023).

In the hierarchical structure of convolutional neural networks (CNNs), there is an 
enhancement of semantic information, but a loss of localization signals as the net-
work deepens (Liu et  al. 2018). To address this predicament, researchers have proposed 
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multi-scale feature fusion to augment representations with both semantic information and 
localization signals from diverse scale feature maps, thereby enabling robust object detec-
tion across various sizes.

FPN represents the first endeavor towards multi-scale representation by incorporating 
high-level features into lower ones, facilitating the integration of high-level semantic infor-
mation (Lin et al. 2017a). However, FPN is limited by a single top-down path flow, result-
ing in weak localization capabilities for the top feature map. To address this issue, PANet 
(Liu et al. 2018) introduces an additional bottom-up path to complement FPN and enhance 
precise localization signals throughout the entire feature hierarchy. NAS-FPN (Ghiasi et al. 
2019) employs neural architecture search to obtain an optimal topology for feature fusion 
but results in an irregular network structure and increased computational cost. In order to 
establish a simple and efficient multi-scale feature fusion network, BiFPN (Tan et al. 2020) 
eliminates redundant nodes while extensively incorporating skip-connections to enhance 
output representation, achieving a better trade-off between accuracy and efficiency.

In recent years, the attention mechanism has demonstrated its superior performance in 
various tasks (Vaswani et al. 2017). Several attention-based feature fusion networks have 
been proposed to enhance this capability (Lian et al. 2021; Qin et al. 2020). In Qin et al. 
(2020), a novel attention module is designed by combining channel and pixel attention, 
which effectively treats different features and pixels unequally. Similarly, in Lian et  al. 
(2021), an attention feature fusion block is introduced to aggregate relevant context from 
different network layers for improved detection of small objects in traffic scenarios.

The most relevant work to our paper is the dynamic head (Dai et al. 2021), which aims 
to integrate attention mechanisms into the detection head. It treats the output of a back-
bone network as a 3-dimensional tensor, with dimensions defined as level × space × chan-
nel. Consequently, scale-, spatial-, and channel-aware attention are sequentially applied. In 
this paper, we contend that there exists a significant conflict between the classification and 
regression tasks within the detection head, necessitating separate handling of these two 
tasks.

2.3 � Conflict in detection head

The conflict between classification and localization tasks has long been acknowledged in 
the field of object detection (Feng et al. 2021; Ge et al. 2021; Song et al. 2020; Wu et al. 
2020). For a given object, distinctive characteristics within specific prominent regions may 
offer valuable information for accurate classification. Conversely, features near the bound-
ary can effectively aid in localizing the bounding box. This misalignment poses a challenge 
to aligning these two tasks during training and significantly impacts detection performance.

In Song et  al. (2020), a task-aware spatial disentanglement (TSD) operator is pro-
posed to decouple the classification and regression tasks from the spatial dimension by 
generating two disentangled proposals from shared proposals. This simple disentangle-
ment leads to an improvement of approximately 3% AP on the MS COCO dataset for 
all backbones and models. Wu et al. (2020) revisit the fc-head and conv-head for clas-
sification and localization tasks, finding that fc-head is more suitable for classification 
due to its greater spatial sensitivity, while conv-head is better suited for localization. 
YOLOX (Ge et al. 2021) proposes a decoupled head with both classification and loca-
tion branches based on convolution, achieving a better trade-off between performance 
and efficiency; however, spatial misalignment still exists in this approach. Feng et  al. 
Feng et al. (2021)’s TOOD method (2021) proposes a task-aligned head that achieves a 
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better balance between learning task-interactive and task-specific features through align-
ment of classification and localization using a task-aligned predictor based on learned 
features.

In this study, we propose a task-aligned head based on the decoupled head architecture. 
To disentangle the two tasks, we employ channel-aware attention and introduce deformable 
convolution to enhance the flexibility of the head for alignment learning. The incorporation 
of disentanglement and alignment leads to improved detection performance.

3 � Our approach

To enhance the performance of small underwater object detection, we have developed a 
lightweight detector called dynamic YOLO. As depicted in Fig. 2a, we formally present 
the design of our backbone network based on DCN v3, which is both lightweight and 
efficient for extracting features from small objects. Additionally, we introduce a uni-
fied framework for multi-scale feature fusion that leverages the enhanced capabilities 
of our backbone network. In Fig. 2b, different scale feature maps are dynamically fused 
using various attention modules. Furthermore, we investigate the conflict between clas-
sification and localization tasks and propose an improved decoupled head as illustrated 
in Fig.  2c, which proves advantageous for object detection purposes. Based on these 
enhancements, we propose the dynamic YOLO detector.

3.1 � Light‑weight backbone network based on DCN v3

The backbone network of our system is constructed based on DCN v3, which will be 
briefly revisited in this section before proceeding to the construction of the basic block. 
Subsequently, specialized designs for small object detection are proposed and integrated 
into the backbone.

Fig. 2   The architecture of our proposed dynamic YOLO detector
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3.1.1 � Revisiting DCN v3

DCN v3 is formulated as Equation (1):

Given the input feature map x ∈ ℝ
C×H×W , where C, H, and W represent the channel, height, 

and width of the feature map respectively. DCN v3 divides it into G groups, denoted as 
xg ∈ ℝ

C�
×H×W to indicate the sliced feature map with group dimension C�

= C∕G. Here, 
p0 represents the current pixel while K denotes the kernel size. The pre-defined sampling 
locations are enumerated as pk. The learning offset for location pk in the g-th group is rep-
resented by Δpgk which adaptively recalibrates sampling locations to achieve precise fea-
ture extraction. Modulation scalars mgk ∈ ℝ control the relative influence of each sample. 

Additionally, shared projection weights wg ∈ ℝ
C×C� are employed to map each sample to a 

hidden feature space.

3.1.2 � Basic block

By introducing the multi-group mechanism and weight-sharing strategy, DCN v3 
becomes a lightweight yet efficient operator for feature extraction in Wang et  al. 
(2022). We have redesigned the basic block to achieve a higher level of weight light-
ing. Firstly, we have dropped the unnecessary input and output projections before and 
after the DCN v3 operator, as they are primarily used for creating query, key, and 
value vectors in transformers. Secondly, it is crucial to incorporate feed-forward net-
works for exchanging information between groups due to separated feature modeling 
in different sub-spaces. We compressed the expansion ratio of the first feed-forward 
layer to 1 and replaced second feed-forward layer with a 3 × 3 depthwise separable 
convolution to enhance spatial dependency incorporation. These design choices sig-
nificantly enhance the capability of our basic block. Furthermore, our basic block 
incorporates layer normalization and employs the GELU activating function as shown 
in Fig. 3.

(1)y
(
p0
)
=

G∑

g=1

K∑

k=1

wgmgkxg

(
p0 + pk + Δpgk

)
.

Fig. 3   The detailed structure of basic block of our backbone network
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3.1.3 � Specialized designs for small object detection

We propose specialized designs for small object detection. Typically, object detectors 
employ a 4-stage backbone network with an “AABA” stacking pattern, where the 1-st stage 
consists of “A” basic blocks and the 3-rd stage consists of “B” basic blocks, with “B” being 
significantly larger than “A”, e.g., the backbone of InternImage-s detector is followed (4, 
4, 21, 4) pattern. The stride of this 4-stage backbone is set as stride = {4, 8, 16, 32}. In our 
work, we merge the stride = 4 stage into the stem layer using depthwise separable convo-
lution while retaining the subsequent stages with strides of {8, 16, 32}. This modification 
aligns with (Huang et al. 2022), aiming to enhance computational efficiency. Additionally, 
we adopt an “AAB” stacking pattern but assign a larger number of layers to “A”, e.g., our 
Dynamic YOLO-s model is in (8, 8, 4) pattern. These specialized designs allow us to stack 
more layers in the first stage without sacrificing resolution and facilitate better extraction of 
semantic information crucial for small object detection.

With the utilization of specialized designs and basic blocks mentioned above, we pro-
pose the architecture of our backbone network as illustrated in Fig. 2a. To achieve weight-
lighting, depthwise separable convolutions are extensively employed in the stem layer, 
while down-sampling is accomplished through 3 × 3 convolution with a stride of 2 and 
layer normalization.

3.2 � Dynamic neck for multi‑scale feature fusion

To fully exploit the potential of the backbone network, we propose a dynamic neck for 
multi-scale feature fusion, aiming to aggregate valuable features at different scales and 
enhance each feature representation with semantic information or localization signals from 
higher- or lower-level feature maps. Specifically, given a list of multi-scale feature maps 
obtained from the output of the backbone Fin =

{
Fi

}L

i=1
 (where L denotes the number of 

feature maps), our approach seeks to improve feature representations through a transforma-
tion: Fout = f (Fin).

Based on the discussion of fundamental principles for multi-scale feature fusion, we 
propose a dynamic neck network, as illustrated in Fig. 2b, where channel-aware attention, 
scale-aware attention, and spatial-aware attention are sequentially applied. Specifically, 
distinct channel attention modules are initially employed in each connection to activate 
diverse semantic information or localization signals prior to feature fusion. Secondly, only 
adjacent feature maps are fused based on our intuition that long-range feature maps may 
introduce potential conflicts. By repeating the dynamic neck block N − 1 times, all infor-
mation from the initial N feature maps can be accessed without concerns about information 
loss. Lastly, the spatial attention module is implemented using a basic block based on DCN 
v3 and applied once after feature fusion to reduce redundant information.

3.2.1 � Channel‑aware attention

Feature fusion aims to enhance the representation by incorporating semantic informa-
tion and localization signals from higher or lower feature maps. To achieve desired fea-
ture fusion, it is essential to selectively activate different channels of feature maps. For 
instance, when fusing two adjacent feature maps, activating the semantic information 
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from the higher map while utilizing the localization signals from the lower map would 
be optimal. In this study, we employ dynamic ReLU (DyReLU-B) function (Chen et al. 
2020b) to direct distinct feature channels towards preferred activations.

The DyReLU-B activation function is a parametric approach that dynamically adjusts 
the channel-wise activation using control signals, which encode the global context of 
the feature map through a hyperfunction. Initially, the global context is aggregated by 
adaptive average pooling. Subsequently, an explicit “Squeeze-and-Excitation” operation 
(Hu et al. 2018) is performed to model inter-dependencies between channels. Based on 
these inter-dependencies, control signals 

[
a1, b1, a2, b2 | ∈ ℝ

]
 are generated to adaptively 

recalibrate the channel-wise feature activation. The formulation of DyReLU-B is as 
follows:

where Fi, F′

i
 denote the input and output feature maps. The squeeze function Fsq(⋅) and 

excitation function Fex(⋅) are approximated by 1 × 1 convolution, respectively. A shifted 
hard-sigmoid function is employed in the excitation function Fex(⋅) to normalize the output 
within the range of [−1, 1]. By incorporating the parametric DyReLU-B function, our chan-
nel-aware attention module gains the capability to selectively activate semantic information 
or localization signals based on specific requirements.

3.2.2 � Scale‑aware attention

Scale-aware attention aims to dynamically integrate features from different scales based 
on their semantic roles’ significance. Our rationale is straightforward: feature maps at 
various levels exhibit varying responses to object detection at corresponding scales, 
thus contributing unequally to the current representation. Consequently, adaptive fea-
ture fusion becomes imperative.

In the scale-aware attention module, global context of each feature map is initially 
aggregated through adaptive average pooling. Subsequently, the hard-sigmoid function 
based on global context activates the scale-ware fusion scores. Finally, multi-scale fea-
tures are weightedly summed up to achieve scale-ware feature fusion with reference to 
the fusion scores. The formulation for scale-aware fusion can be expressed as follows:

where Fi is the ith feature map from the previous fusion block. f (⋅) presents the linear map-
ping implemented by a 1 × 1 convolution, and �(x) denotes the hard-sigmoid function. Only 
feature maps at adjacent levels are fused in the scale-aware attention module. L′ denotes the 
number of feature maps in the current fusion process, which can be varied.

(2)a1, b1, a2, b2 = Fex

(
Fsq

(
1

C × H ×W

∑

C,H,W

Fi

))

(3)F�

i
= max(a1 ⋅ Fi + b1, a2 ⋅ Fi + b2)

(4)Fl =
1

L�

L�∑

i

�

(
f

(
1

C × H ×W

∑

C,H,W

Fi

))
⋅ Fi,

(5)�(x) = min

(
max

(
x + 3

6
, 0

)
, 1

)
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3.2.3 � Spatial‑aware attention

Spatial-aware attention enhances representation capabilities by selectively focusing on 
crucial regions of the feature map and suppressing unnecessary context, enabling pre-
cise feature extraction for object detection (Guo et al. 2022). Various approaches exist 
to implement spatial-aware attention (Fu et al. 2019), with DCN (Dai et al. 2017) being 
one of the most prominent methods. By learning a 2D offset for each neuron in the con-
volution kernel, DCN enables interaction with specific spatial regions, thereby achiev-
ing spatial attention (Dai et al. 2017).

In this study, we have implemented a spatial-aware attention module based on the 
fundamental block proposed in the backbone network. By incorporating the extended 
DCN v3, our spatial-aware attention module demonstrates enhanced effectiveness and 
efficiency in strengthening representation capability. Following scale-aware fusion, spa-
tial-aware attention is applied to the feature map to acquire a more robust representation.

3.3 � Extended decouple head for task alignment

Multi-scale feature fusion has established a robust foundation for object detection. 
However, the conflict between classification and localization within the detection head 
remains a bottleneck that hampers the improvement of detection performance, particu-
larly in small underwater object detection (Ge et al. 2021). Consequently, the adoption 
of decoupled heads, which disentangle classification and localization through two sepa-
rate branch networks, is frequently employed in both one-stage and multi-stage detec-
tors (Song et al. 2020; Wu et al. 2020). Nevertheless, significant spatial misalignment 
still persists within these decoupled heads. This misalignment poses an unfavorable cir-
cumstance for object detection. In this study, we propose an extension to the decoupled 
head for task alignment in a learning-based manner.

As illustrated in Fig. 2c, we introduce the DyReLU-B function as a means to disen-
tangle features for classification and localization tasks. Consistent with the discussion 
presented in the section on multi-scale feature fusion, the feature maps generated by 
the neck module encode both semantic information and localization signals within each 
feature vector at a spatial point. Consequently, it becomes crucial to disentangle these 
features along the channel dimension.

To address the misalignment, we incorporate two deformable convolution layers into 
separate branches that effectively aggregate features from relevant spatial locations to 
cater to different tasks. For instance, while the classification branch focuses on aggre-
gating semantic information within salient areas, the localization branch gathers locali-
zation signals primarily around object boundaries.

The aforementioned network architecture design has endowed the extended decou-
pled head with the capability to align classification and localization tasks. However, 
a learning mechanism is still required to guide the detection head towards achieving 
alignment. In this paper, we employ quality focal loss (QFL) (Li et al. 2020) as the clas-
sification loss function to supervise the learning process. Unlike standard focal loss, 
QFL incorporates softening of the usual one-hot category label by considering localiza-
tion quality, which is determined by the IoU scores between predicted bounding boxes 
and their corresponding ground truth annotations. Specifically, y = 0 represents the 
classification label for negative samples with a quality score of 0. Meanwhile, 0 ≤ y ≤ 1 
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denotes positive sample labels along with their corresponding IoU scores. By utilizing 
soft labels, QFL can be formulated as follows:

where p denotes the prediction output, � is the scaling factor, and |y − p| measures the dis-
tance between the prediction p and its ground truth, which is used to down-weight the con-
tribution of easy examples. By adopting QFL supervision, we can ensure that spatial points 
with higher classification scores also possess higher Intersection over Union (IoU) values. 
This property guarantees the successful alignment of classification and localization tasks in 
the extended decoupled head.

We employ GIoU (Rezatofighi et al. 2019) as our localization loss, and the total loss is 
set as:

where Lcls denotes classification loss and Lreg denotes localization loss. �1 = 1.0 and 
�2 = 2.0 are the weights of two losses by default. The alignment between the two tasks can 
greatly enhance detection performance.

3.4 � Dynamic YOLO

This paper introduces a dynamic YOLO detector for small underwater object detection, 
featuring a light-weight backbone, dynamic neck, and extended decoupled head. To 
enhance the multi-scale representation crucial for detecting objects of different sizes, espe-
cially small ones, we incorporate multiple repetitions of the fusion block in the dynamic 
neck. Additionally, instead of utilizing separated detection heads on different level features 
as suggested by Redmon and Farhadi (2018), we choose to share the detection head along 
different levels to improve model efficiency.

4 � Experiment

To evaluate the effectiveness of the proposed dynamic YOLO, we conducted extensive 
experiments on the DUO dataset (Liu et  al. 2021a), which contains about 6671 images 
in the training set and 1111 images in the testing set, respectively. The DUO dataset was 
collected from Underwater Robot Professional Contest,3 which is developed for robot pick-
ing based on underwater images. It contains four categories of underwater targets, namely 
holothurian, echinus, scallops, and starfish. The brief statistic of DUO is shown in Fig. 1b, 
there are 63,998 objects, with 44% small, 54% medium, and 2% large. We also evaluate 
our model on the Pascal VOC and MS COCO datasets, the most well-accepted benchmark 
datasets for common object detection. At last, to validate the effectiveness and efficiency 
of each design in the proposed model, ablation studies are performed on the DUO dataset.

(6)QFL(p) = −|y − p|�((1 − y)log(1 − p) + ylog(p)),

(7)L = �1Lcls + �2Lreg

3  Underwater Robot Professional Contest: http://​en.​cnurpc.​org.

http://en.cnurpc.org
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4.1 � Implementation details

We implement our dynamic YOLO model based on the MMdetection 3.0 framework (Chen 
et  al. 2019), with Python 3.8.18, PyTorch 2.0.0, and CUDA Toolkit 11.8. The default 
stacking pattern of the backbone network is set to {8, 8, 4}, and the number of groups for 
DCN v3 in each stage is set to {4, 8, 16}. The fusion block in the dynamic neck is repeated 
4 times by default. We adopt AdamW as our optimizer with a 0.001 initial learning rate, 
which is scheduled by a Flat-Cosine strategy. The batch size is set to 8. The stochastic 
depth and layer scale techniques are also employed to increase the dynamic in training. 
Strong data augmentations, including cached Mosaic and MixUp (Lyu et  al. 2022), are 
applied for a robust generalization but are switched off in the last 20 epochs to fine-tune the 
model on a more realistic data distribution. All our models are trained from scratch for 300 
epochs on a compute node with 2 RTX A5000 GPUs, each with 24GB of memory.

4.2 � Comparison with the state‑of‑the‑arts on DUO dataset

The most straightforward method to demonstrate the effectiveness and efficiency of the 
proposed model is to compare it with the state-of-the-art methods on the benchmark data-
set. Several representative one-stage (Li et  al. 2020; Lin et  al. 2017b; Tian et  al. 2019; 
Zhang et al. 2020) and multi-stage detectors (Cai and Vasconcelos 2018; Ren et al. 2015; 
Yang et al. 2019) are adopted for comparison. Specifically, most experimental results are 
from the DUO benchmark (Liu et  al. 2021a), where detectors are trained on 512 × 512 
resolutions. The state-of-the-art real-time object detectors, including YOLOX (Ge et  al. 

Table 1   Comparison of dynamic YOLO with state-of-the-art methods on the number of parameters, 
FLOPS, and accuracy on the DUO dataset

The best results are in bold, and the second-best results are in italics

Method Param. FLOPs AP AP50 AP75 APS APM APL

Multi-stage detectors
Faster R-CNN (Ren et al. 2015) 41.14 63.26 54.8 75.9 63.1 53.0 56.2 53.8
Cascade R-CNN (Cai and Vas-

concelos 2018)
68.94 77.54 55.6 75.5 63.8 44.9 57.4 54.4

RepPoints (Yang et al. 2019) 36.60 35.60 56.0 80.2 63.1 40.8 58.5 53.7
One-stage detectors
RetinaNet (Lin et al. 2017b) 36.17 39.68 49.3 70.3 55.4 36.5 51.9 47.6
FCOS (Tian et al. 2019) 31.84 38.84 53.0 77.1 59.9 39.7 55.6 50.5
ATSS (Zhang et al. 2020) 31.89 38.84 58.2 80.1 66.5 43.9 60.6 55.9
GFL (Li et al. 2020) 32.04 39.63 58.6 79.3 66.7 46.5 61.6 55.6
Real-time detectors
YOLOX (Ge et al. 2021) 8.94 13.34 61.2 82.8 69.9 46.6 63.1 59.7
RTMDet (Lyu et al. 2022) 8.86 14.80 67.4 85.9 75.3 53.3 68.5 67.0
YOLOv6 (Li et al. 2022) 17.19 21.88 67.2 86.2 74.9 46.7 68.6 66.5
YOLOv7 (Wang et al. 2023) 6.23 6.89 62.3 83.5 70.5 46.6 63.7 61.7
YOLOv8 (Jocher et al. 2023) 11.14 14.27 67.8 86.1 75.6 48.5 69.3 66.8
Dynamic YOLO 8.21 12.51 68.6 86.7 76.3 55.1 69.8 68.1
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2021), RTMDet (Lyu et al. 2022), YOLOv6 (Li et al. 2022), YOLOv7 (Wang et al. 2023), 
YOLOv8 (Jocher et  al. 2023), and our dynamic YOLO, are trained from scratch with 
640 × 640 resolutions.

The experimental results of the comparison on the DUO dataset are shown in Table 1. 
As we can see, the best method among previous state-of-the-art detectors in the benchmark 
dataset is GFL (Li et al. 2020), which obtains 58.6 AP and 46.5APS. However, the most 
remarkable result on small object detection is obtained by Faster R-CNN (Ren et al. 2015), 
achieving 53.0APS, which is a benefit of the fine-tuning process in the two-stage detectors.

The real-time detectors in Table 1 were brought from the community of common object 
detection. They launch a new era of light-weight detectors for underwater object detection. 
YOLOX employs various sophisticated detection techniques, such as a decoupled head and 
the leading label assignment approach SimOTA, which impressively outperforms GFL 
with + 2.6 AP improvement but only 27.9% parameters. YOLOv6 heavily absorbs recent 
ideas in network design, training strategies, testing techniques, quantization, and optimi-
zation methods, achieving significant performance improvements while also doubling the 
model complexity. YOLOv7 presented here is a tiny version; it outperforms YOLOX but 
with only 69.7% parameters, demonstrating its superiority. With continuous evolution, 
RTMDet pushes the boundary of performance by a large margin again, achieving cutting-
edge performance with 67.4 AP, especially the 53.3APS on small object detection. With-
out bells and whistles, RTMDet beats the previous state-of-the-art detectors in all aspects. 
YOLOv8 is the latest real-time detector, integrating many advanced technologies. It 
achieves excellent performance, 67.8 AP, but the performance of small object detection is 
slightly inferior to RTMDet.

Our method surpasses previous methods by a significant margin with fewer parameters. 
For a fair comparison, all hyperparameters of dynamic YOLO keep the same with RTM-
Det (Lyu et al. 2022). The proposed dynamic YOLO model delivers a new state-of-the-art 
performance of 68.6 AP, with an impressive + 0.8 AP improvement over YOLOv8. Mean-
while, it significantly outperforms RTMDet with 55.1 APS, an increase of + 1.8 APS, for 
small object detection. As shown in Table 1, the best results are bolded, and the second-
best results are highlighted in italics. On the other hand, dynamic YOLO only has 73.7% 
parameters of YOLOv8, resulting in a much better trade-off between parameter and accu-
racy. The comprehensive experimental results fully confirm the effectiveness and efficiency 
of our dynamic YOLO model, demonstrating its superior performance in detecting small 
underwater objects.

We do not show the comparison between our model and transformer-based detectors 
(Han et al. 2022) in this paper because they cannot even converge on such small-scale data-
sets without being pre-trained on large-scale datasets.

4.3 � Visualization of detection results on DUO dataset

For an intuitive understanding, we visualize several representative samples of underwater 
object detection in Fig. 4, including the common scenarios in underwater environments, 
such as (a) small objects, (b) low contrast, (c) occlusion, and (d) clustering.

As shown in Fig.  4a, many small objects (mainly echinus) scatter on the sea bed, 
making the detection extremely challenging. We can see some objects on the right-up 
part of the image, but YOLOX misses them all, while RTMDet and dynamic YOLO 
catch some (as indicated by the yellow arrows). However, in Fig.  4b, the situation 
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reversed. YOLOX performs relatively well in the contrast scenario, but RTMDet and 
dynamic YOLO pose a false detection on the right edge of the image. This situation is 
due to the perplexing shadow, causing the RTMDet and dynamic YOLO to malfunction.

In Fig.  4c, there is an echinus on the left-down corner, which is impeded by rock, 
and only a tiny part exhibits. Both RTMDet and dynamic YOLO can detect this echi-
nus successfully. However, on the other hand, dynamic YOLO is deceived by a knot on 
the discarded rope, as YOLOX was. The last scenario is (d) clustering, where piles of 
marine objects gather together. The behaviors of all detectors perform almost consist-
ently; YOLOX and dynamic YOLO still raise a false detection in the left-up corner.

From the visualization of detection results, a comprehensive understanding is 
obtained. There are some trivial false positives in Fig.  4b and d. Actually, the MS 
COCO dataset also has some ambiguous objects marked by “ignore”. They can be or 
are not the target objects. In our case, we consider these false positives to be negligible, 
as evidenced by the better performance on quantitative, as shown in Table 1. Dynamic 
YOLO is more sensitive than RTMDet.

Fig. 4   Example images of underwater object detection in common scenarios of the DUO dataset: a small 
objects; b low contrast; c occlusion; and d clustering

Table 2   Experimental results on pascal VOC dataset

Method Param FLOPs AP AP50 AP75 APS APM APL

YOLOX 8.95 13.34 50.6 78.0 55.7 22.8 38.8 54.7
YOLOv6 17.20 21.90 53.7 75.0 58.4 14.6 34.8 61.2
YOLOv7 6.07 6.63 44.4 68.4 48.4 11.2 29.2 50.9
YOLOv8 11.14 14.29 54.3 74.3 59.2 14.8 35.5 61.9
RTMDet 8.86 14.77 60.7 83.1 66.7 29.0 42.5 66.9
Dynamic YOLO 8.27 12.56 61.7 83.3 67.7 26.0 43.2 68.4
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4.4 � Experimental results on pascal VOC and MS COCO datasets

We also evaluate our dynamic YOLO model on Pascal VOC (Everingham et al. 2010) 
and MS COCO (Lin et  al. 2014) datasets. In the experiments with Pascal VOC, all 
detectors were trained on the 2007 and 2012 training sets and tested on the 2007 test-
ing set. As shown in Table 2, most real-time detectors perform consistently with DUO 
dataset, but RTMDet outperforms YOLOX by a large margin, achieving 60.7 AP, that 
is, a + 6.4 AP increase over YOLOv8. Especially, the best performance of 29.0 APS is 
achieved by RTMDet for small object detection.

Dynamic YOLO model achieves a competitive result with fewer parameters, obtain-
ing a new state-of-the-art performance of 61.7  AP. Experimental results demonstrate 
confidence in the superiority of our approach. However, the performance of small object 
detection in dynamic YOLO has dropped by about − 3.0 APS degradation. We conduct 
a statistic on the Pascal VOC training set and find that it has 7.4% small objects, 26.5% 
medium, and 66.1% large objects. The training process of dynamic YOLO has been 
dominated by large objects, leading to inadequate learning of small objects and deg-
radation in performance. This is probably due to the insufficient learning of offset in 
deformable convolution. Based on the above observation, we conclude that deformable 
convolution is superior in detecting small objects but is sensitive to the class-imbalance 
in the training process.

Experimental results on the MS COCO dataset are shown in Table 3; the best results 
are highlighted in bold. COCO is the standard benchmark dataset for common object 
detection. We train our model on the COCO Train 2017 set and evaluate it on the Val 
2017 set. The experimental results of other models for comparison are adopted from 
MMYOLO Contributors (2022). As shown in Table  3, our model achieves the best 
results compared with the previous real-time detectors (Glenn et  al. 2022; Ge et  al. 
2021; Li et al. 2022; Xu et al. 2022; Lyu et al. 2022; Jocher et al. 2023) on equal condi-
tions, achieving 45.5 AP. However, it is slightly behind YOLOv8 in small object detec-
tion, obtaining 25.4APS. Dynamic YOLO achieves a better parameter-accuracy trade-
off, demonstrating its superiority.

Table 3   Experimental results on MS COCO Val 2017 dataset

Method Param. FLOPs AP AP50 AP75 APS APM APL

YOLOv5 (Glenn et al. 2022) 7.2 8.3 37.7 57.1 41.0 21.7 42.5 48.8
YOLOX 9.0 13.4 40.7 59.6 44.3 23.9 45.2 53.8
YOLOv6 (Li et al. 2022) 17.2 22.1 43.7 60.8 47.0 23.6 48.7 59.8
PPYOLOE (Xu et al. 2022) 7.9 8.7 43.1 60.5 46.6 23.2 46.4 56.9
YOLOv8 (Jocher et al. 2023) 11.2 14.36 44.2 61.2 47.9 25.6 49.0 59.7
RTMDet 9.0 14.8 44.5 61.9 48.1 24.9 48.5 62.5
Dynamic YOLO 8.3 12.6 45.5 62.6 49.5 25.4 50.2 64.1
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4.5 � Ablation study

4.5.1 � Ablation study on basic designs

Ablation studies are extensively conducted on the DUO dataset to validate the efficiency 
and effectiveness of each design in our dynamic YOLO model. We set RTMDet as a 
baseline and gradually replaced the backbone, neck, and detection head to evaluate their 
performances. As shown in Table  4, by replacing the components with our proposed 
counterparts, the performances of underwater object detection grow gradually while the 
model complexity decreases.

First, we replace the backbone network, which results in a significant improvement 
on most evaluation metrics. Especially in small object detection, we gain a + 2.1APS 
boost on performance. It fully proves the superiority of deformable convolution for 
small object detection. However, we also note the growth in model parameters. The 
proposed light-weight backbone network is slightly heavier than the CSPNeXt network 
used in RTMDet.

To fully activate the potential of the proposed backbone network, we replaced the 
neck of RTMDet with our dynamic neck. In the third row of Table  4, as demonstrated, 
the performances of the detector improve consistently, except for a slight drop in small 
object detection. Notably, the model parameters have decreased to 8.47 M, much lower 
than RTMDet. This experimental result demonstrates that feature fusion based on attention 
mechanisms is more competitive than the conventional FPN framework.

At last, the detection head is replaced by our extended decoupled head, which has the 
capability of task alignment. By alleviating the conflict between classification and locali-
zation, the performance of underwater object detection is continuously improved. At the 
same time, the model parameters decrease again, as shown in the last row of Table 4. It 
comprehensively outperforms the competitive RTMDet detector and achieves state-of-
the-art performances. The usefulness and efficiency of each design in our dynamic YOLO 
model are clearly demonstrated through ablation studies.

Table 4   Ablation studies on the effectiveness of each design in dynamic YOLO on the DUO dataset

By replacing the backbone, neck, and head with proposed counterparts, the performance of underwater 
object detection grows gradually while the model complexity decreases

Method Param. AP AP50 AP75 APS APM APL

RTMDet 8.86 67.4 85.9 75.3 53.3 68.5 67.0
Backbone 11.04 67.7 86.4 75.3 55.4 69.2 66.8
Backbone + neck 8.47 68.3 86.6 75.5 55.0 70.0 67.1
Backbone + neck + head 8.21 68.6 86.7 76.3 55.1 69.8 68.1

Table 5   Ablation studies on the effectiveness of redesigned DCNv3 module on the DUO dataset

Method Param FLOPs AP AP50 AP75 APS APM APL

Original DCNv3 21.81 29.44 69.5 87.5 77.7 58.5 71.0 68.4
Replaced FNN 11.62 15.95 68.8 86.9 76.5 56.2 70.4 67.6
Dropped projections 8.21 12.51 68.6 86.7 76.3 55.1 69.8 68.1
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4.5.2 � Ablation study on backbone network

We rebuilt the DCNv3 module to obtain a lightweight backbone network. Table 5 illus-
trates that, despite achieving a greater performance of 69.5 AP with the same architecture, 
the model with a backbone network based on the original DCNv3 module has a computa-
tion complexity that is almost 2.5 times higher. By compressing the expansion ratio to 1 
and substituting a depthwise separable convolution for the second fully connected layer, 
we were able to almost halve the model complexity, just sacrificing an acceptable level of 
performance deterioration.

We also observed that the DCNv3 module does not require the input projection layer, 
which is used to produce query, key, and value vectors for transformers. Furthermore, the 
feed-forward layer that follows allows the output project layer, which transfers information 
across group convolutions, to be disregarded. As shown in Table 5, by dropping the pro-
jection layer, we can further reduce the model complexity with little impact on the model 
performance, about − 0.2 AP degradation. Though the performance deterioration for small 
object detection is more severe, at roughly − 1.1APS, it is still acceptable given the dif-
ficulty in small object detection. The experimental results demonstrate that our redesigned 
DCNv3 module achieves a superior trade-off between accuracy and efficiency.

4.5.3 � Ablation study on attention mechanisms

As the key component in dynamic YOLO, the effectiveness of each attention mechanism 
in the neck block is validated on the PASCAL VOC dataset. A simple linear fusion was 
employed as the baseline, where adjacent feature maps in the pyramid were combined 
linearly and then processed by a convolutional module. The ablation experimental result 
is presented in Table 6, with “Channel”, “Scale”, and “Spatial” denoting channel-aware, 
scale-aware, and spatial-aware attention mechanisms, respectively.

The interactions between different attention mechanisms are intricate. Initially, we inte-
grate each attention into the baseline fusion structure individually. As depicted in Table 6, 
it can be observed that channel-aware attention or scale-aware attention only yield slight 
improvements. In fact, there is even a decline in performance for small object detection. 
Conversely, spatial attention leads to significant enhancements across most evaluation 
metrics, except for small object detection, where it achieves an approximately + 0.9  AP 
improvement.

Table 6   Ablation studies on the effectiveness of each attention mechanism in the neck block on PASCAL 
VOC dataset

Channel Scale Spatial Param AP AP50 AP75 APS APM APL

✗ ✗ ✗ 8.79 60.2 82.2 66.4 24.3 40.6 67.1
✓ ✗ ✗ 9.38 60.4 82.5 66.4 23.2 41.1 67.1
✗ ✓ ✗ 8.79 60.3 82.7 66.4 23.4 40.6 67.2
✗ ✗ ✓ 7.62 61.1 83.1 67.2 22.8 42.1 67.8
✓ ✓ ✗ 9.38 60.4 82.6 67.0 24.2 42.0 66.9
✓ ✗ ✓ 8.21 61.2 82.4 66.7 23.8 43.0 68.1
✗ ✓ ✓ 7.62 61.2 83.0 67.4 25.9 42.1 68.1
✓ ✓ ✓ 8.21 61.7 83.3 67.7 26.0 43.2 68.4
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When collaborating with other attention mechanisms, scale-aware attention significantly 
enhances the performance of small object detection, particularly when integrated with 
spatial-aware attention, resulting in a notable improvement of + 1.6APS. This validates 
that feature maps at different levels exhibit distinct responses to object activations across 
various scales, emphasizing the necessity for scale-aware feature fusion. For channel-aware 
attention, it is crucial to enhance the robustness of feature fusion, although neural networks 
can learn to fuse the localization signals and semantic information from different feature 
maps implicitly.

Finally, channel-aware, scale-aware, and spatial-aware attentions are applied to fea-
ture maps sequentially for feature fusion. The fully dynamic fusion module significantly 
improves the baseline by + 1.5  AP and + 1.7APS. The experimental results demonstrate 
that these attention mechanisms work in a coherent manner.

4.5.4 � Ablation study on detection head

To improve the performance of small object detection, we proposed to disentangle and 
align the features for classification and localization via dynamic activation and deform-
able convolution (Dy &DCN). QFL is employed to guide the learning process. The results 
of the ablation study are shown in Table 7. As depicted, even without the supervision of 
QFL, the DCN-based detection head (row 3) is superior to the CNN-based one (row 1), at 
64.0 AP vs. 63.7 AP. But unexpectedly, it is inferior in small object detection, suffering a 
− 1.0APS degradation. This may be due to the difficulty of learning the offsets in deform-
able convolutions. Under the supervision of QFL, the performances have greatly improved 
(row 2 and row 4). The DCN-based detection head outperforms the CNN-based detection 
head on almost every metric while slightly compressing the computational complexity. 
Experimental results demonstrated the effectiveness of our detection head.

4.6 � Visualization of feature maps

To achieve a more comprehensive understanding, we illustrate the feature maps of dynamic 
YOLO in several common scenarios of the DUO dataset. Feature maps are extracted from 
the backbone network’s first stage, the dynamic neck output, and the classification and 
regression branches in the extended decoupled head, respectively.

As shown in the first column at the top of Fig. 5, the proposed model focuses on objects 
well (indicated by the red region), which means more semantic information emerges via 
deeper convolution layers with deformable receptive fields in the first stage. This is ben-
eficial for small object detection because it can gain more semantic information without 
decreasing resolution compared to other competitive models. After feature fusions, our 

Table 7   Ablation studies on the effectiveness of redesigned DCNv3 module on the DUO dataset

Dy &DCN QFL Param FLOPs mAP AP50 AP75 APS APM APL

✗ ✗ 8.47 15.01 63.7 84.2 71.7 47.9 65.0 63.0
✗ ✓ 8.47 15.01 68.3 86.6 75.5 55.0 70.0 67.1
✓ ✗ 8.21 12.51 64.0 84.4 71.8 46.9 64.8 63.7
✓ ✓ 8.21 12.51 68.6 86.7 76.3 55.1 69.8 68.1
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dynamic YOLO model gradually focuses on the regions of objects. As shown in the second 
column, objects are clearly distinguished from their surrounding environments, demon-
strating the effectiveness of our dynamic neck for multi-scale feature fusion. We also visu-
alize the feature map output from the classification and regression branches of the extended 
decoupled head in the third and fourth columns. As expected, the feature maps of the two 
tasks are relatively well aligned since deformable convolutions are employed to adaptively 
aggregate desired features from different locations. The visualization of feature maps con-
firms the aforementioned discussion about the behaviors of dynamic YOLO, demonstrating 
the significant superiority of the proposed model.

For comparison, the visualization of RTMDet’s feature maps is attached at the bot-
tom of Fig. 5. The feature map from the first stage of CSPNeXt in RTMDet presents more 
lower-detail information, such as the fine-grained structures in the images. After the feature 
fusions, the focus of the detector is still scattered. The alignment of classification and local-
ization tasks presented in the feature map also does not perform well enough compared 

Fig. 5   Visualization of feature maps of dynamic YOLO (top) and RTMDet detector (bottom) in common 
scenarios of the DUO dataset: a small objects, b low contrast, c occlusion, and d clustering
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with the dynamic YOLO model. This fact serves as more evidence of the superiority of our 
approach.

5 � Conclusion

This paper thoroughly investigates the problem of small underwater object detection. We 
propose a light-weight dynamic YOLO detector as a solution for this issue. Specifically, a 
backbone network is designed based on deformable convolution v3, which is superior for 
small object detection due to its capability for adaptive feature extraction. To better exploit 
the potential of the backbone, a dynamic feature fusion network is proposed as the neck 
to fuse multi-scale representation. The conflict between the classification and localiza-
tion tasks in the detection head is also explored in this paper, and we propose an extended 
decoupled head to alleviate this problem through task alignment. With the aforementioned 
improvements, dynamic YOLO surpasses state-of-the-art methods by a large margin of 
+ 0.8 AP and + 1.8 APS on performance with fewer parameters on DUO dataset. Experi-
mental results on Pascal VOC and MS COCO datasets also demonstrate the superiority of 
the proposed model. At last, the effectiveness and efficiency of each design are evaluated. 
We anticipate that our research will shed light on small underwater object detection.
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