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Abstract
This paper presents a review of deep learning on engineering drawings and diagrams. 
These are typically complex diagrams, that contain a large number of different shapes, such 
as text annotations, symbols, and connectivity information (largely lines). Digitising these 
diagrams essentially means the automatic recognition of all these shapes. Initial digitisation 
methods were based on traditional approaches, which proved to be challenging as these 
methods rely heavily on hand-crafted features and heuristics. In the past five years, how-
ever, there has been a significant increase in the number of deep learning-based methods 
proposed for engineering diagram digitalisation. We present a comprehensive and critical 
evaluation of existing literature that has used deep learning-based methods to automatically 
process and analyse engineering drawings. Key aspects of the digitisation process such as 
symbol recognition, text extraction, and connectivity information detection, are presented 
and thoroughly discussed. The review is presented in the context of a wide range of appli-
cations across different industry sectors, such as Oil and Gas, Architectural, Mechanical 
sectors, amongst others. The paper also outlines several key challenges, namely the lack of 
datasets, data annotation, evaluation and class imbalance. Finally, the latest development in 
digitalising engineering drawings are summarised, conclusions are drawn, and future inter-
esting research directions to accelerate research and development in this area are outlined.

Keywords Deep learning · Object detection · Engineering diagram · Piping and 
Instrumentation Diagram · Convolutional neural networks

Carlos Francisco Moreno-García and Eyad Elyan have contributed equally to this work.

 * Laura Jamieson 
 l.jamieson4@rgu.ac.uk

 Carlos Francisco Moreno-García 
 c.moreno-garcia@rgu.ac.uk

 Eyad Elyan 
 e.elyan@rgu.ac.uk

1 School of Computing, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, 
Scotland, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10779-2&domain=pdf


 L. Jamieson et al.

1 3

136 Page 2 of 37

1 Introduction

Engineering diagrams are considered one of the most complex to digitise. This is due to 
multiple reasons such as the combination of vast variety of symbols and text, dense repre-
sentation of equipment and non standard formatting. Furthermore, there can be scientific 
annotations and the drawings can be edited over time to contain annotations from multi-
ple disciplines. These diagrams are prevalent across multiple industries, including electri-
cal (De et al. 2011), oil and gas (Elyan et al. 2020a), and architecture (Kim et al. 2021a). 
Manual analysis of these diagrams is time-consuming, prone to human error (Paliwal et al. 
2021a, b) and requires subject matter experts (Paliwal et  al. 2021a). There has recently 
been an increasing demand to digitise these diagrams for use in processes including asset 
performance management (Mani et al. 2020), safety studies (Gao et al. 2020), and data ana-
lytics (Moreno-García et al. 2018). Due to its importance, the problem of complex diagram 
digitisation is receiving interest from academia and industry (Moreno-Garcia and Elyan 
2019; Hantach et al. 2021). For instance, engineering was the field with the most recent 
digitalisation-related publications in the Scopus database (Espina-Romero and Guerrero-
Alcedo 2022). Engineering diagrams are complex and used for different purposes, as seen 
in Fig. 1. Fig. 1a represents part of a Piping and Instrumentation Diagram (P&ID). These 
are commonly used in offshore oil and gas installations, while Fig. 1b presents part of a 
HVAC diagram, commonly utilised in construction projects.

Various methods have been developed over the past four decades to automate the pro-
cessing, analysing and interpretation of these diagrams (Kang et  al. 2019; Groen et  al. 
1985; Okazaki et al. 1988; Nurminen et al. 2020; Ablameyko and Uchida 2007). A rela-
tively recent review by Moreno-García et al. (2018) showed that most relevant literature 
followed a traditional machine learning approach to automate these drawings. Traditional 
approaches are based on hand-crafting a set of features which are then input to a specific 
supervised machine learning algorithm (LeCun et  al. 1998). Extensive feature engineer-
ing and expert knowledge were often required to design suitable feature extractors (LeCun 
et al. 1998). Image features were typically based on colour, edge and texture. Examples of 
commonly used image features include Histogram of Oriented Gradient (HOG) (Dalal and 
Triggs 2005), Scale Invariant Feature Transform (SIFT) (Lowe 2004), Speeded Up Robust 
Features (SURF) (Bay et  al. 2006) and Local Binary Pattern (LBP) (Ojala et  al. 2002). 
The feature vectors were classified using algorithms, such as a Support Vector Machine 
(SVM). Whilst traditional methods were shown to work well in specific use cases, they 

Fig. 1  a Small section of a P&ID. b Small section of a HVAC diagram
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were not suited to the extensive range of characteristics present in engineering diagrams 
(Moreno-García et al. 2019). For example, traditional symbol classification methods may 
be limited by variations in symbol appearance, including rotation, translation and degra-
dation (Moreno-García et al. 2019). Morphological changes and noise also compromised 
traditional methods’ accuracy (Yu et  al. 2019). The reliance of traditional methods on 
pre-established rules resulted in weak generalisation ability across variations (Zhao et al. 
2020).

In recent years, deep learning has significantly advanced the domain of computer vision 
(LeCun et al. 2015). Deep learning is a subfield of machine learning, which is itself a sub-
field of artificial intelligence. Figure 2 illustrates the key differences between traditional 
and deep learning methods. In contrast to traditional machine learning-based methods, 
deep learning-based methods learn features automatically. Deep learning models contain 
multiple computation layers which can be trained to extract relevant features from data. 
Convolutional Neural Networks (CNN) have improved computer vision methods, includ-
ing image classification, segmentation and object detection (LeCun et al. 2015). In 1998, 
LeCun et al. (1998) introduced the influential LeNet model. The authors presented a CNN-
based method for handwritten character recognition. They showed that a CNN could auto-
matically learn features from pixel data and outperform traditional approaches. However, 
a significant improvement in methods was seen mainly since 2012 when Krizhevsky et al. 
(2012) presented the AlexNet model. AlexNet was used to classify images in the 2012 Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et  al. 2015). 
The authors obtained the winning score by a large margin. The top 5 error rate was 15.3%, 
compared to 26.2% for the second-place method. Since then, there has been a considerable 
rise in deep learning. This was facilitated by algorithm developments, improvements in 
computing hardware, and a significant increase in available data.

Despite the recent and unprecedented progress, digitising engineering drawings con-
tinues to be a challenging problem (Moreno-García et al. 2018). First of all, these dia-
grams are very complex, containing a large number of similar (Paliwal et  al. 2021a; 
Rahul et al. 2019) and overlapping (Rahul et al. 2019) shapes. For example, Elyan et al. 
(2020a) reported on average 180 symbols of different types in a real-world P&ID data-
set. The presence of text is another challenging problem. There is no consistent pattern 
for engineering equipment layout, meaning the text can be present anywhere in the dia-
gram. It is also commonly present in multiple fonts (Rahul et al. 2019), scales and orien-
tations (Gao et al. 2020). Contextualisation of the extracted data is a further challenge. 

Feature
Extraction

Machine
Learning
Algorithm

Convolutional
Neural

 Network 

a) Input Diagram
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Output Prediction

Output Prediction

Fig. 2  Comparison of traditional and deep learning approaches for engineering diagram digitisation. a Tra-
ditional Approach and b deep learning approach
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This involves determining the relationships between extracted data, for example, asso-
ciating a tag with the relevant symbol. Moreno-Garcia and Elyan (2019) identified three 
additional challenges as document quality, imbalanced data and topology. Although a 
large proportion of the related literature analysed high-quality drawings, in practice, the 
drawings can be low-quality (Moreno-Garcia and Elyan 2019). Another factor restrict-
ing the development of deep learning models in this area is the lack of publicly avail-
able datasets (Hantach et al. 2021; Moreno-García et al. 2019). Furthermore, annotation 
of these datasets is required for use with supervised learning algorithms, which is typi-
cally a time-consuming and often impractical manual process.

In this paper, we present a comprehensive critical investigation of existing literature 
that utilises state-of-the-art deep learning methods for digitising complex engineering 
drawings. In a related area, Pizarro et  al. (2022) provided a review on the automatic 
analysis and recognition of floor plans. They focussed on both rule-based and learning-
based approaches. However, there is a gap in the literature, as there is no published 
review which covers the surge in the deep learning research in engineering diagram dig-
itisation published in the last five years.

The reviewed literature was selected according to several criteria. First, the paper 
should present a deep learning method for the digitisation of engineering drawings. This 
covers a wide variety of drawing types, such as P&IDs and architectural diagrams. This 
review also covers the literature that focussed on the digitisation of specific elements, 
such as presenting a detection method for symbols, aswell as that which presented mul-
tiple methods to digitise more than one diagram component. Papers which presented a 
mixture of deep learning and traditional methods were included. Second, we reviewed 
peer-reviewed articles from academic databases including IEEE Xplore, ACM Digital 
Library and Science Direct. Third, we focus on the recent literature that was published 
in the last five years. This shows there is an urgent need for more accurate and stable 
methods to handle such complex documents and engineering diagrams. Furthermore, 
from analysing these papers, remaining challenges were elicited, which were datasets, 
data annotation, evaluation and class imbalance.

The main contributions of this paper are outlined as follows:

• A critical and comprehensive investigation of deep learning-based methods for digit-
ising engineering diagrams.

• A thorough discussion of the open research challenges associated with deep learning 
solutions for complex diagrams.

• Recommendations for future research directions are provided to overcome the 
remaining challenges and improve the field of complex engineering diagram digiti-
sation.

The rest of this paper is structured as follows:
Section  2 presents the reviewed literature in terms of application domains across 

various sectors. It also covers a thorough critical investigation of deep learning-based 
methods for digitising engineering drawings. This includes an in-depth technical discus-
sion of state-of-the-art methods for handling symbols, text, and connectivity informa-
tion in these diagrams. In Sect. 3, the challenges associated with deep learning methods 
for complex diagram digitisation are discussed. Finally, Sect. 4 provides the conclusion 
and suggestions for future work.
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2  Related work

Deep learning has been used for diagram digitisation across various domains. The dia-
grams are composed of three elements. These are symbols, text and connectors. Connec-
tors link symbols together and represent various line types, including continuous or dashed 
lines. Specialised computer vision methods are required to digitise each element type. This 
section introduces and discusses the application domains, together with the state-of-the-art 
deep learning methods used in the recent and relevant literature on complex engineering 
diagram digitisation.

2.1  Application domains

The reviewed literature is listed by application and extracted data type in Table 1. Amongst 
these applications, there has been a considerable research focus on P&IDs (Rahul et  al. 
2019; Sinha et  al. 2019; Yu et  al. 2019; Mani et  al. 2020; Gao et  al. 2020; Elyan et  al. 
2020a; Moreno-García et  al. 2020; Jamieson et  al. 2020; Nurminen et  al. 2020; Paliwal 
et al. 2021a; Moon et al. 2021; Kim et al. 2021b; Stinner et al. 2021; Paliwal et al. 2021b; 
Toral et  al. 2021; Bhanbhro et  al. 2022; Hantach et  al. 2021). Another research area is 
architecture diagram digitisation (Ziran and Marinai 2018; Zhao et  al. 2020; Rezvanifar 
et al. 2020; Kim et al. 2021a; Renton et al. 2021; Jakubik et al. 2022). Deep learning meth-
ods were also applied to technical drawings (Nguyen et al. 2021), construction drawings 
(Faltin et al. 2022) engineering documents (Francois et al. 2022) and engineering drawings 
(Sarkar et al. 2022; Scheibel et al. 2021; Haar et al. 2023).

Most of the P&ID digitisation literature focussed on the extraction of specific data types 
(Sinha et al. 2019; Gao et al. 2020; Elyan et al. 2020a; Jamieson et al. 2020; Nurminen 
et al. 2020; Moon et al. 2021; Kim et al. 2021b; Stinner et al. 2021; Paliwal et al. 2021b; 
Toral et al. 2021). There is a particular focus on P&ID symbols (Elyan et al. 2020a; Nur-
minen et  al. 2020; Paliwal et  al. 2021b). For example, Elyan et  al. (2020a) presented a 
You Only Look Once (YOLO) v3 (Redmon and Farhadi 2018) based detection method 
for symbols in real-world P&IDs. A Generative Adversarial Network (GAN) based (Ali-
Gombe and Elyan 2019) approach was used to synthesise more data to improve classifica-
tion. Meanwhile, Paliwal et  al. (2021b) used a graph-based approach for symbol recog-
nition. Other studies focussed on the text (Jamieson et al. 2020; Francois et al. 2022) or 
connectors (Moon et al. 2021). Studies that presented methods for multiple element types 
were also seen (Gao et al. 2020; Stinner et al. 2021). For instance, Gao et al. (2020) created 
a Region-based Fully Convolutional Network (R-FCN) (Dai et al. 2016) component detec-
tion method and a SegLink (Shi et  al. 2017a) based text detection method. Meanwhile, 
Stinner et al. (2021) presented work on extracting symbols, lines and line crossings, how-
ever they did not consider the text.

There are only a few recent P&ID digitisation studies that presented methods for sym-
bols, text and connectors (Paliwal et  al. 2021a; Rahul et  al. 2019; Yu et  al. 2019; Mani 
et al. 2020; Hantach et al. 2021). These were often focused on specific elements of interest. 
For example, Mani et al. (2020) created symbols, text and connection detection methods. 
They considered two symbol classes and recognised the text associated with these sym-
bols. Hantach et al. (2021) also proposed symbol, text and lines methods. The authors only 
had access to a limited dataset of eight P&IDs and considered one symbol class. Mean-
while, Yu et al. (2019) created methods for tables aswell as symbols, lines and text. Deep 
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Table 1  Relevant literature by application domain and extracted data

References Year Application Extracted data

Symbols Text Connectors

 Ziran and Marinai (2018) 2018 Architectural ✓ – –
 Rahul et al. (2019) 2019 P&IDs ✓ ✓ ✓
 Sinha et al. (2019) 2019 P&IDs – ✓ –
 Yu et al. (2019) 2019 P&IDs ✓ ✓ ✓
 Renton et al. (2019) 2019 Floor plans ✓ – –
 Mani et al. (2020) 2020 P&IDs ✓ ✓ –
 Gao et al. (2020) 2020 P&IDs ✓ ✓ –
 Elyan et al. (2020a) 2020 P&IDs ✓ – –
 Zhao et al. (2020) 2020 Architectural ✓ – –
 Rezvanifar et al. (2020) 2020 Architectural ✓ – –
 Moreno-García et al. (2020) 2020 P&IDs ✓ ✓ ✓
 Jamieson et al. (2020) 2020 P&IDs – ✓ –
 Nurminen et al. (2020) 2020 P&IDs ✓ – –
 Paliwal et al. (2021a) 2021 P&IDs ✓ ✓ ✓
 Moon et al. (2021) 2021 P&IDs – – ✓
 Nguyen et al. (2021) 2021 Technical drawings ✓ ✓ –
 Kim et al. (2021b) 2021 P&IDs ✓ ✓ –
 Stinner et al. (2021) 2021 P&IDs ✓ – ✓
 Paliwal et al. (2021b) 2021 P&IDs ✓ – –
 Hu et al. (2021) 2021 Mechanical drawings ✓ ✓ –
 Joy and Mounsef (2021) 2021 Electrical engineering ✓ ✓ –
 Scheibel et al. (2021) 2021 Engineering drawings – ✓ –
 Kim et al. (2021a) 2021 Architectural ✓ ✓ –
 Renton et al. (2021) 2021 Architectural ✓ – –
 Toral et al. (2021) 2021 P&IDs ✓ ✓ –
 Mizanur Rahman et al. (2021) 2021 Circuit diagrams ✓ – –
 Hantach et al. (2021) 2021 P&IDs ✓ ✓ ✓
 Bickel et al. (2021) 2021 Principle sketches ✓ – –
 Bhanbhro et al. (2022) 2022 P&IDs ✓ – –
 Sarkar et al. (2022) 2022 Engineering drawings ✓ ✓ –
 Francois et al. (2022) 2022 Engineering documents – ✓ –
 Jakubik et al. (2022) 2022 Architectural ✓ ✓ –
 Gupta et al. (2022) 2022 P&IDs ✓ – –
 Bickel et al. (2023) 2023 Principle sketches ✓ – –
 Mafipour et al. (2023) 2023 Technical drawings ✓ ✓ –
 Haar et al. (2023) 2023 Engineering and manufac-

turing drawings
✓ ✓ –

 Rumalshan et al. (2023) 2023 Railway technical maps ✓ ✓ –
 Theisen et al. (2023) 2023 Process flow diagrams ✓ – ✓
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learning was used for symbols and text, while the lines and table detection methods were 
based on traditional image processing.

Extracted elements have been associated to each other using distance-based or graph-
based methods (Mani et al. 2020; Paliwal et al. 2021a; Rahul et al. 2019; Bickel et al. 2023; 
Theisen et al. 2023). For instance, Mani et al. (2020) determined symbol-to-symbol con-
nections by representing the P&ID in graph format and implementing a depth-first search. 
Paliwal et al. (2021a) used a graph-based method to associate lines with relevant symbols 
and text. Meanwhile, Rahul et al. (2019) used the euclidean distance to associate detected 
symbols, tags and pipeline codes with the closest pipeline. Theisen et al. (2023) presented 
methods for the digitisation of process flow diagrams. They used a Faster Regions with 
CNN features (Faster R-CNN) (Girshick et al. 2014) model to detect the unit operations, 
and a pixel search based algorithm to detect the connections between them. Then, the data 
was converted to a graph.

Deep learning has also been recently applied for the digitisation of architecture dia-
grams (Ziran and Marinai 2018; Zhao et al. 2020; Rezvanifar et al. 2020; Kim et al. 2021a; 
Renton et al. 2021; Jakubik et al. 2022). These present similar challenges to engineering 
diagrams, such as various semantically equivalent symbol representations (Rezvanifar et al. 
2020), relatively small objects (Kim et al. 2021a) and the presence of occlusion and clutter 
(Rezvanifar et al. 2020). One example is the work by Zhao et al. (2020), which proposed a 
YOLO (Redmon et al. 2016) based method to detect components in scanned structural dia-
grams. The authors suggested the method as a basis for reconstructing a Building Informa-
tion Model (BIM). Various approaches have been presented for symbol detection in floor 
plans, including YOLO (Rezvanifar et al. 2020), Faster R-CNN (Jakubik et al. 2022; Ziran 
and Marinai 2018) and graph-based (Renton et al. 2021) methods.

There are a wide variety of uses of the digitised diagram data. This includes similar-
ity search (Bickel et al. 2023), diagram comparison (Daele et al. 2021) and classification 
(Xie et al. 2022). For instance, Daele et al. (2021) used deep learning to create a technical 
diagram similarity search tool (Daele et al. 2021). They used 5000 technical diagrams. A 
traditional method based on Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) (Ester et al. 1996) was used to partition the diagram. A CNN containing three 
convolutional layers classified drawing segments as ‘table’, ‘two-dimensional CAD draw-
ing’ or ‘irrelevant’. A siamese neural network classified a pair of CAD images as either 
‘same’ or ‘different’ based on cosine similarity. An accuracy of 96.9% was reported.

Xie et al. (2022) used deep learning to classify engineering diagrams according to the 
manufacturing method. A dataset of 1692 industry diagrams of engineering equipment 
was used. First, the diagrams were pre-processed by removing tables and dimension lines. 
Information tables were identified using CascadeTabNet (Prasad et al. 2020). The model 
contained two neural networks. The first, HRNet, was used for feature extraction and the 
second, Cascade R-CNN, for bounding box proposal. Reported precision was 97%. In com-
parison, the precision of a heuristic method based on watershed segmentation was lower 
at 78%. Dimension lines were detected using a Graph Neural Network (GNN), which out-
performed a heuristic method. However, the authors reported that the network predictions 
allowed higher fault tolerance. The pre-processed diagram was then converted to graph for-
mat. Each node was embedded with line start and end positions. A GNN was used to pre-
dict the appropriate manufacturing method. This was shown to outperform various CNN 
and graph-based approaches. Overall accuracy of 90.8% was reported.

Digitised data from engineering diagrams can be used towards creating a digital 
twin (Vilgertshofer et al. 2019), (Mafipour et al. 2023). For instance, Vilgertshofer et al. 
(2019) created a CNN-based symbol detection method to check for discrepancies between 
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archived railway technical drawings and built infrastructure. They noted that the method 
provided significant support towards creating a digital twin of railway infrastructure.

Dzhusupova et al. (2022) proposed a YOLOv4 (Bochkovskiy et al. 2020) based model 
to detect specific combinations of shapes in P&IDs that represented engineering errors. 
Domain experts manually labelled 2253 industry P&IDs with eight classes of equipment 
combinations. A balanced dataset was obtained by creating new examples of rare sym-
bol instances manually. The authors reported around 70% correct recognition, however the 
results per class were not presented.

The literature shows that deep learning has been employed for various digitisation appli-
cations. Amongst the different types of complex engineering diagrams and documents 
used, there was considerable research attention on P&IDs. Diagrams were sourced from 
a range of industries such as nuclear (Gao et  al. 2020), construction (Zhao et  al. 2020), 
and oil and gas (Elyan et al. 2020a). In addition to digitising diagram elements, existing 
literature showed that deep learning was also used for related diagram analysis purposes. 
These include creating a diagram search tool (Daele et al. 2021), determining the appropri-
ate manufacturing method (Xie et al. 2022) and detecting engineering errors (Dzhusupova 
et  al. 2022). Data contained within engineering diagrams is of critical importance, and 
there is potential for deep learning to be used for additional digitisation applications.

2.2  Metrics

Evaluation metrics are calculated using model predictions and the ground truth. The pre-
cision, recall and F1 score are calculated using True Positives, False Positives and False 
Negative detections. Precision is the ratio of True Positives to the number of predicted 
positives, refer to Eq. 1. Recall is the ratio of True Positives to the number of actual posi-
tives, refer to Eq. 2. The F1 score combines the previous two metrics and is defined as the 
harmonic mean of precision and recall, as shown in Eq. 3.

A True Positive detection is defined using object class and location. Firstly, the predicted 
symbol class must match that of the ground truth. Secondly, the Intersection Over Union 
(IOU) (Eq. 4) is considered.

Symbol detection methods were also commonly evaluated using the mean Average Preci-
sion (mAP). This is defined as the mean of the Average Precision (AP) across all classes, 
as shown in Eq. 5. Here APi is the AP of the i-th class and C is the total number of classes.

(1)Precision =
True Positives

True Positives + False Positives

(2)Recall =
True Positives

True Positives + False Negatives

(3)F1 score =
1

1

2
(

1

Precision
+

1

Recall
)
.

(4)Intersection Over Union =
Area of Overlap

Area of Union
.
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The AP for each class is defined as the Area Under the Curve (AUC) of the precision-recall 
curve. This metric is commonly specified at an IOU threshold of 0.5. Note that other IOU 
thresholds may be specified, for example the COCO dataset (Lin et al. 2014) uses AP@
[.5 : .05 : .95], which calculates the average AP at ten different IOU thresholds.

2.3  Symbols

Symbols are considered one of the main drawing elements in engineering diagrams. Exam-
ples of symbols are shown in Fig. 3. Symbol recognition can be a complex task for multi-
ple reasons. Each diagram typically contains numerous symbol instances, for example, one 
study reported on average 180 symbols per P&ID (Elyan et al. 2020a). Symbols represent 
a wide range of equipment types, and consequently, they vary in size and shape. Addition-
ally, there is often a low amount of interclass variation (Paliwal et al. 2021a; Rahul et al. 
2019) which can result in difficulty distinguishing between symbol classes, refer to Fig. 4. 
Moreover, symbols may be overlapped by other drawing elements (Nurminen et al. 2020), 
shown in varying orientations (Nurminen et al. 2020), represented by simple shapes (Ziran 
and Marinai 2018) or even by only a few lines (Rezvanifar et al. 2020).

Recent literature shows an increasing number of deep learning-based methods for rec-
ognising symbols in engineering diagrams, as shown in Table 2. The most commonly used 
methods were object detection models. These models predict the location, defined by a 
bounding box, and the class of objects within an image.

Faster R-CNN (Ren et al. 2015) based methods were popular for engineering symbol 
detection (Ziran and Marinai 2018; Nguyen et al. 2021; Gao et al. 2020; Stinner et al. 2021; 
Hu et al. 2021; Joy and Mounsef 2021; Sarkar et al. 2022; Jakubik et al. 2022; Zheng et al. 
2022). Faster R-CNN is a two-stage object detector presented in 2015. Two related models 

(5)mAP =
1

C

C
∑

i=1

APi

Fig. 3  Examples of engineering symbols as shown in the diagram legend

Fig. 4  Visually similar symbols from mechanical engineering diagrams: a Union and Butterfly Valve, b 
gate valve, globe valve, lockable flow control valve, hose-end drain valve, lockshield valve, automatic con-
trol valve, valve and capped provision, c flow switch and balancing valve (plug)
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were published earlier (Girshick et al. 2014; Girshick 2015). R-CNN (Girshick et al. 2014) 
was created in 2014. The selective search algorithm (Uijlings et al. 2013) was used to gen-
erate around 2000 region proposals from the input image. CNN features were extracted 
from each region. These features were then input into class-specific linear SVMs for clas-
sification purposes. On the prominent PASCAL Visual Object Classes (VOC) (Evering-
ham et al. 2010) dataset, 30% relative improvement was reported over traditional methods 
based on features such as HOG (Dalal and Triggs 2005). However, the method was com-
putationally slow. Separate CNN computation was required for each region proposal. Fast 
Region-based CNN (Fast R-CNN) (Girshick 2015) was presented the following year. The 
model was designed to speed up computation compared to R-CNN. One convolutional fea-
ture map was produced for the whole input image. Then, a feature vector was extracted for 
each region using a Region of Interest (RoI) pooling layer. Class probabilities and bound-
ing box positions were predicted for each region. Later that same year, Faster R-CNN (Ren 
et al. 2015) was proposed. A Region Proposal Network (RPN) was introduced to speed up 
the costly region proposal. Convolutional features were shared between the RPN and the 
downstream CNN.

The feature extraction network used in Faster R-CNN was changed in several studies 
(Gao et al. 2020; Dai et al. 2016; Hu et al. 2021). For example, Gao et al. (2020) devel-
oped a Faster R-CNN component detection method. A dataset of 68 nuclear power plant 
diagrams was used. Components were split into three groups based on aspect ratio and 
scaling factor. These groups were small symbols, steam generator symbols and pipes. A 
separate model was trained for each group. ResNet-50 (He et  al. 2016) was used as the 
feature extractor. ResNet-50 is a type of residual network with 50 layers. The mAP was 
96.6%, 98% and 92% for each group. Two other models were evaluated for the detection 
of the small symbols. The first was Faster R-CNN with Inception (Szegedy et  al. 2015) 
network. Although 100% AP was still obtained for certain classes, lower performance was 

Table 2  Symbol recognition methods seen in the literature on diagram digitisation

Model type Model based on References

Detection YOLOv1 (Redmon et al. 2016)  Zhao et al. (2020)
YOLOv2 (Redmon and Farhadi 2017)  Rezvanifar et al. (2020), Gupta et al. (2022)
YOLOv3 (Redmon and Farhadi 2018)  Elyan et al. (2020a), Nurminen et al. (2020)
YOLOv5 (Jocher et al. 2020)  Toral et al. (2021), Hantach et al. (2021), Haar 

et al. (2023)
Faster R-CNN (Ren et al. 2015)  Ziran and Marinai (2018), Nguyen et al. (2021), 

Gao et al. (2020), Stinner et al. (2021), Hu 
et al. (2021), Joy and Mounsef (2021), Sarkar 
et al. (2022), Jakubik et al. (2022), Theisen 
et al. (2023)

R-FCN (Dai et al. 2016)  Gao et al. (2020)
Classification CNN  Mani et al. (2020), Yu et al. (2019)

TBMSL-Net (Zhang et al. 2020)  Paliwal et al. (2021a)
Segmentation FCN (Long et al. 2015)  Rahul et al. (2019), Paliwal et al. (2021a)

Mask R-CNN (He et al. 2017)  Bickel et al. (2021), Bickel et al. (2023)
Graph Dynamic Graph Convolutional Neural 

Network (DGCNN) (Wang et al. 
2018)

 Paliwal et al. (2021b)

Graph Neural Network (GNN)  Renton et al. (2021), Renton et al. (2019)
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observed overall. A R-FCN model (Dai et  al. 2016) with ResNet-50 was also evaluated. 
Dai et al. (2016) introduced R-FCN in 2016. All trainable layers in R-FCN are convolu-
tional. Faster inference time was reported compared to Faster R-CNN (Dai et  al. 2016). 
Although the authors of (Dai et  al. 2016) reported comparative performance to Faster 
R-CNN on the PASCAL VOC dataset (Everingham et al. 2007), this was not the case on 
the nuclear power plant diagrams. The reported AP was significantly lower at 16.24%. The 
authors used publicly available diagrams, which may be simplified compared to those in a 
real-world scenario.

Hu et  al. (2021) presented an approach to detect the surface roughness symbol from 
mechanical drawings. A dataset of 3612 mechanical drawings was used. The approach 
involved symbol detection and text detection. Various object detection models were evalu-
ated. The highest recall and F1 score were reported with Faster R-CNN using ResNet-101 
(He et  al. 2016) in surface roughness detection. The authors used Single Shot Detector 
(SSD) (Liu et  al. 2015) with ResNet-50 for localising text and LeNet (Cun et  al. 1990) 
for character recognition. An F1 score of 96% was reported. The approach was designed 
specifically for the surface roughness symbol and may be limited in applicability to a wider 
range of symbols.

Several engineering diagram studies required the use of a diagram legend (Joy and 
Mounsef 2021; Sarkar et al. 2022). For example, Joy and Mounsef (2021) used a Faster 
R-CNN method with ResNet-50 for symbol detection in electrical engineering diagrams. 
First, symbol shapes were obtained using morphological operations to identify symbol grid 
cells in the legend table. Next, data augmentation was used to increase the available train-
ing data. Detection and recognition rates of 83% and above were reported on a small test 
set of five diagrams. Increasing the training data diversity may help to improve the results. 
Sarkar et al. (2022) also used a Faster R-CNN model for symbol detection in engineering 
drawings. All symbols were treated as belonging to one class. Detected symbols were then 
assigned a class based on similarity with the symbols in the diagram legend. Two similar-
ity measures were evaluated. The first was based on traditional SIFT (Lowe 2004) features. 
The second employed a CNN as a feature extractor. Better performance was reported using 
the SIFT-based approach. These studies relied on the use of a diagram legend, however, 
this may not be available in practice. Moreover, symbols can be present in the diagrams 
that do not appear in the legend (Sarkar et al. 2022).

Yun et  al. (2020) also created an R-CNN-based method for symbol recognition from 
P&IDs. Ten industry P&IDs were used. Region proposals were generated using image 
processing methods customised for each symbol type. Positive and negative regions were 
obtained. The negative regions were divided into classes using negative class decompo-
sition through unsupervised learning models, namely k-means and Deep Adaptive image 
Clustering (DAC) (Chang et  al. 2017). Positive regions were assigned classes manually. 
Results showed that the incorporation of the negative classes reduced false positives. A 
slight improvement was reported using DAC compared to k-means. This method is rule-
based and requires manual adjustment for a different use case.

Faster R-CNN based symbol detection methods were also used on floor plan images 
(Ziran and Marinai 2018; Jakubik et al. 2022). For instance, Ziran and Marinai (2018) pre-
sented a Faster R-CNN method for object detection in floor plan images. Two datasets were 
used. The first contained 135 diverse floor plans obtained from internet search queries. The 
second consisted of 160 industry floor plans sourced from an architectural firm. Although 
detailed results of the preliminary experiments were unavailable, improved performance 
using Faster R-CNN compared to SSD was reported. The initial performance on the first 
dataset was comparatively low, at 0.26 mAP. Data augmentation and anchor specification 
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increased the mAP to 0.31. For the second, more standardised dataset, the mAP was higher 
at 0.86. Additionally, the authors used transfer learning to improve performance on the 
more diverse dataset. The model was pre-trained on the second dataset and then fine-tuned 
on the first dataset. Performance improved by 0.08 mAP.

Jakubik et  al. (2022) presented a human-in-the-loop system for object detection and 
classification in floor plans. The symbol detection method was based on Faster R-CNN. 
A training dataset of 20, 000 synthetic images was created using legend symbols and data 
augmentation. The test set of 44 industry floor plans was manually annotated with 5907 
symbols from 39 classes. An uncertainty score was calculated for each detected and then 
classified symbol. Symbols were then labelled by a human expert in order of decreas-
ing uncertainty. A range of uncertainty measures was evaluated. Increased accuracy was 
reported compared to random selection at 50% of the labelling budget, using all but one 
uncertainty measure.

One-stage object detection models have also been used for engineering symbol detec-
tion (Zhao et al. 2020; Rezvanifar et al. 2020; Elyan et al. 2020a; Toral et al. 2021; Zheng 
et al. 2022). These models are faster than two-stage models. One of the most well-known 
one-stage object detection models is YOLO (Redmon et al. 2016), which was created in 
2016. A real-time inference speed of 45 fps was reported. In contrast, the authors of Faster 
R-CNN (Ren et al. 2015) reported a lower processing speed of 5 fps. YOLO is compara-
tively faster as a single neural network was used to predict bounding boxes and class proba-
bilities. The network had 24 convolutional layers followed by 2 fully connected layers. The 
input image is divided into a S x S grid. Objects are assigned to the grid cell that contains 
the object centre. Each grid cell predicts B bounding boxes. The centre of the bounding 
box is defined relative to the grid cell, whereas the width and height are predicted relative 
to the whole image. Class-specific confidence scores for each box are also predicted. Sev-
eral extensions to the initial YOLO version (Redmon et al. 2016) were proposed. YOLOv2 
(Redmon and Farhadi 2017) contained several modifications, including multi-scale training 
and anchor boxes. The base network, Darknet-19, had 19 convolutional layers. In YOLOv3 
(Redmon and Farhadi 2018), the bounding boxes were predicted at three different scales. A 
feature extractor with 53 convolutional layers was used. Newer versions, YOLOv4 (Bochk-
ovskiy et al. 2020), YOLOv5 (Jocher et al. 2020), YOLOv6 (Li et al. 2022) and YOLOv7 
(Wang et al. 2022) were also proposed. Another one-stage object detection model is SSD 
(Liu et  al. 2015). The single network employs multi-scale feature maps for predictions. 
RetinaNet (Lin et al. 2017) is also a one-stage detector. The model was introduced in 2017 
and employs the novel focal loss function.

YOLO-based methods have been used for symbol detection in several different diagram 
types, including structural diagrams (Zhao et al. 2020), floor plans (Rezvanifar et al. 2020), 
and P&IDs (Elyan et  al. 2020a). For example, Zhao et  al. (2020) presented a YOLO-
based method to detect components in scanned structural diagrams. Five symbol classes 
were considered. Related semantic information, such as the symbol tag, was included in 
the symbol bounding box. Data augmentation increased the dataset size from 500 to 1500 
images. F1 score of 86.7% and above was reported.

Focusing on architectural floor plans, Rezvanifar et  al. (2020) proposed a YOLOv2 
symbol detection method. A private dataset of 115 diagrams was used. Various backbone 
networks were evaluated. Higher mAP was reported using ResNet-50 compared to Dark-
net-19 and Xception (Chollet 2017). However, detection performance varied widely across 
the 12 classes considered. For example, the accuracy for the window symbol was 76% 
compared to 100% for the shower symbol. This may be due to the window symbol’s vary-
ing aspect ratio and visual similarity compared to other image components. Additionally, 
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70 floor plans from the public Systems Evaluation SYnthetic Documents (SESYD) dataset 
were used. Results improved compared to traditional symbol spotting methods. However, 
the authors observed that the SESYD diagrams were simpler than typical real-world floor 
plans. Moreover, there were no intra-class symbol variations. Although YOLOv3 perfor-
mance was not evaluated, its multi-scale prediction may improve the performance on the 
relatively small symbols (Redmon and Farhadi 2018).

In another study, Elyan et al. (2020a) created methods for symbol detection and classifi-
cation in P&IDs. A dataset of 172 industry P&IDs from an oil and gas company was used. 
The symbol detection method was based on YOLOv3. Accuracy was 95% across 25 sym-
bol classes. The authors observed lower class accuracy for the least represented classes. 
Additionally, a Deep Generative Adversarial Neural Network was presented to handle 
class imbalance for symbol classification. GAN (Goodfellow et al. 2014) are deep learning 
models designed to generate data. GANs contain two models. These are a generator and a 
discriminator. A generative model is trained to produce fake data which is indistinguish-
able from real data by the discriminator. The authors used a Multiple Fake Class GAN 
(MFC-GAN) (Ali-Gombe and Elyan 2019) to generate synthetic instances of the minority 
class. Experiments showed that realistic synthetic samples were generated. The synthetic 
instances improved CNN classification. Note that these results were based on using only a 
few training samples per class. For instance, the Angle Choke Valve class was represented 
by only two instances in the initial dataset.

A number of researchers used a CNN classifier with a sliding window approach to detect 
symbols in engineering diagrams (Mani et al. 2020; Yu et al. 2019). Classifiers predict an 
object class for a given image. For instance, Mani et  al. (2020) created a classification-
based method for extracting two symbol classes from P&IDs. A dataset of 29 P&IDs was 
used. The sliding window method extracted fixed-size image patches from the diagram. 
The CNN had three convolutional layers and two fully connected layers. Patches were clas-
sified as ‘tag’, ‘Locally Mounted Instrument’ (LMI) or ‘no symbol’. On 11 test diagrams, 
tags were classified with a precision of 100% and recall of 98%. LMIs were classified with 
a precision of 85% and recall of 95%. According to the authors, results were poorer for 
LMIs due to visually similar components.

Yu et al. (2019) used a similar approach to detect symbols in P&IDs. A dataset of 70 
industry P&IDs was used. First, image processing techniques were employed for diagram 
realignment and to remove the outer border. An AlexNet (Krizhevsky et al. 2012) classi-
fier was then used with a sliding window approach. Candidate symbol regions were iden-
tified by means of morphological close and open operations. The window size was cus-
tomised for each symbol class. The symbol recognition accuracy was 91.6%. This method 
was tested on a limited test set of only two P&IDs. Moreover, the test diagrams contained 
a simple equipment layout with little interference between components. Whilst promising 
results were reported in these studies, this method would likely become computationally 
expensive for a more extensive use case. Although the sliding window approach was fre-
quently used with traditional methods, including Haar cascades (Viola and Jones 2001) and 
Deformable Part Models (Felzenszwalb et al. 2008), there is a prohibitive computational 
cost of classifying each window using a CNN. Moreover, small stride and multi-scale win-
dows are typically required to obtain high localisation accuracy.

Segmentation-based methods have also been used to digitise symbols from engineering 
diagrams (Paliwal et al. 2021a; Rahul et al. 2019). Rather than predicting a symbol bound-
ing box, segmentation methods generate pixel-level predictions. For instance, Rahul et al. 
(2019) created a Fully Convolutional Network (FCN) (Long et al. 2015) method to seg-
ment 10 symbol classes from P&IDs. The authors used four real-world P&IDs from an oil 
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company. F1 scores of 0.87 and above were recorded. However, the authors reported that 
their methods’ performance dropped in the presence of visually similar symbols. This was 
observed in a dataset of P&IDs with a relatively blank background.

Paliwal et al. (2021a) used a combination of methods to recognise symbols in P&IDs. 
Basic shape symbols were detected using traditional methods, such as Hough transform 
for circle detection. Complex symbols were localised using an FCN (Long et  al. 2015) 
segmentation model and classified using Three-branch and Multi-scale learning Network 
(TBMSL-Net) (Zhang et al. 2020). The methods were evaluated on 100 synthetic P&IDs 
and a smaller private dataset of 12 real-world P&IDs. An F1 score of 0.820 and above 
across 32 symbol classes was reported on the synthetic test set. Improved performance 
compared to Rahul et  al. (2019) was observed on the real-world P&IDs. The use of the 
Hough transform for basic shapes is unlikely to generalise well across different symbol 
sizes and appearance variations.

Graph-based methods have been used to recognise symbols in engineering diagrams 
(Paliwal et al. 2021b; Renton et al. 2019, 2021). A graph in this context is comprised of 
nodes connected by edges. For example, Paliwal et al. (2021b) created a Dynamic Graph 
Convolutional Neural Network (DGCNN) (Wang et  al. 2018) to recognise symbols in 
P&IDs. The symbols were represented in graph form and then classified using the DGCNN. 
Classification accuracy of 86% was recorded on 100 synthetic P&IDs. Symbol misclassi-
fications were observed due to noise and clutter. The method was compared to the FCN 
based-method presented by Rahul et al. (2019) on 12 real-world P&IDs, and improved F1 
scores were reported for 3 out of 11 classes. Only one instance per class was used to train 
the DGCNN. To increase the model’s robustness, it was augmented with embeddings from 
a ResNet-34 network pre-trained on symbols.

Renton et al. (2019) introduced a GNN method for symbol detection and classification 
in floor plans. A dataset of 200 floor plans was used. First, the floor plans were converted 
into Region Adjacency Graphs (RAGs). The nodes represented parts of images, and the 
edges represented relationships between these parts. Using a GNN, nodes were classified 
as one of 17 symbol types. This work was developed further in Renton et al. (2021), when 
the authors clustered the nodes into subgraphs corresponding to symbols. Here a symbol 
detection accuracy of 86% was reported.

Mizanur  Rahman et  al. (2021) employed a combination of graph-based methods and 
Faster R-CNN for symbol detection in circuit diagrams. A dataset of 218 diagrams was 
used. The symbol detection method was based on Faster R-CNN with ResNet-50. Graph 
methods were then used to refine the model. Detected symbols were graph nodes. Sym-
bol-to-symbol connectors, identified through image processing-based blob detection, were 
graph edges. Graph Convolutional Networks (GCN) and node degree comparison were 
used to identify graph anomalies, which were potentially false negative predictions from 
Faster R-CNN. The Faster R-CNN model was then fine-tuned using the anomaly regions. 
An improvement in recall between 2 and 4% was reported, although the overall F1 score 
decreased by up to 3%. Additionally, graph refinement techniques were used to identify 
incorrectly labelled nodes. However, the recall was reduced by up to 3% compared to 
Faster R-CNN alone. One drawback of the symbol-to-symbol connection method was that 
it missed complex connections which looped around a symbol.

Studies on engineering symbols classification are also available in the published lit-
erature (Elyan et  al. 2020b, 2018). For example, Elyan et  al. (2018) presented work on 
engineering symbols classification. Symbols were classified using Random Forest (RF), 
Support Vector Machine (SVM) and CNN. Comparable results with all three methods 
were reported. The authors also applied a clustering-based approach to find within-class 
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similarities. This benefitted RF and SVM performance. However, there was a slight 
decrease in CNN performance, potentially due to the limited dataset size.

In summary, it can be said that despite the use of state-of-the-art deep learning methods, 
detecting and recognising symbols in complex documents and engineering drawings con-
tinues to be an inherently challenging problem. Many factors contribute to the challenge 
including symbol characteristics such as a lack of features (Ziran and Marinai 2018; Rez-
vanifar et al. 2020), high intra-class variation (Rezvanifar et al. 2020) and low inter-class 
variation (Paliwal et al. 2021a; Rahul et al. 2019). Moreover, the lack of publicly available 
annotated datasets (Moreno-García et al. 2019) increases the difficulty of the task. Conse-
quently, further research is required to improve methods for symbol digitisation from com-
plex diagrams.

2.4  Text

Text is another major component that exists in almost all types of engineering diagrams. 
Text digitisation here involves two stages, first, the detection of the text and second, the 
recognition of the text. This is illustrated in Fig. 5. Both the detection and recognition steps 
are considered challenging for multiple reasons. Each diagram typically contains numerous 
text strings. For example, Jamieson et al. (2020) used 172 P&IDs and reported on average 
415 text instances per diagram, whilst Francois et al. (2022) used 330 engineering docu-
ments and reported on average 440 text boxes. Unlike text in documents with a specific 
format, text in complex diagrams can be present anywhere in the drawing (Francois et al. 
2022), including within symbols (Mani et  al. 2020). Additionally, these text strings are 

Fig. 5  Text digitisation is most commonly approached in recent engineering diagram literature in two steps. 
Firstly, a text detection model predicts text regions within an image. Secondly, a text recognition model pre-
dicts a text string from a cropped text instance
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often shown in various fonts (Rahul et al. 2019), printed in multiple orientations (Jamieson 
et al. 2020; Gao et al. 2020; Toral et al. 2021) and vary widely in length (Francois et al. 
2022). Moreover, this text is often present in a cluttered environment and can overlap other 
diagram elements (Kang et al. 2019), as is shown in Fig. 6.

Whilst there has been a considerable amount of research on text digitisation, most 
of it was focused on scene text (Ye and Doermann 2015). Scene text is defined as text 
that appears in natural environments (Long et al. 2018; Liu et al. 2020). However, text in 
undigitised complex documents presents unique challenges that are generally not observed 
for text in natural scenes. These specific challenges include image degradation (Moreno-
García et al. 2018) and the presence of multiple visually similar drawing elements. Com-
plex documents often lack colour features that can be used to distinguish text from the 
background. Moreover, the task is more complicated than digitising text from standard for-
mat documents, where text is typically presented in straight lines and composed of known 
words.

There is a clear shift toward using deep learning-based methods in text digitisation, 
as shown in a relatively recent extensive review paper (Long et al. 2018). Deep learning 
models automatically extract image features, whereas traditional text methods rely heav-
ily on manually extracted features. For instance, text detection methods commonly used 
image features based on colour, edge, stroke and texture (Ye and Doermann 2015). Specific 
features used included HOG, Stroke Width Transform, and Maximally Stable Extremal 
Regions. Two popular traditional text detection methods were based on Connected Com-
ponents Analysis (CCA) and sliding window classification (Ye and Doermann 2015; Long 
et al. 2018). CCA methods extract candidate text components and then filter out non-text 
regions using heuristic or feature-based methods (Long et al. 2018).

Various deep learning models were used to detect text in complex diagrams, as shown 
in Table 3. The majority of studies used models designed for text detection, including 

Fig. 6  The text within engineering diagrams is commonly shown in multiple orientations, a cluttered envi-
ronment and overlapped by separate text strings or other shapes
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Character Region Awareness for Text Detection (CRAFT) (Baek et al. 2019), Efficient 
and Accurate Scene Text Detector (EAST) (Zhou et al. 2017), Connectionist Text Pro-
posal Network (CTPN) (Tian et al. 2016) and SegLink (Shi et al. 2017a). CRAFT (Baek 
et al. 2019) was designed to localise individual characters, whereas EAST (Zhou et al. 
2017) uses a FCN to predict word or text line instances from full images. Meanwhile, 
CTPN (Tian et al. 2016) localises text lines, while SegLink (Shi et al. 2017a) decom-
poses text into oriented boxes (segments) connected by links.

Object detection models have also been used to detect text in engineering dia-
grams (Nguyen et  al. 2021; Hu et  al. 2021; Toral et  al. 2021). For example, Nguyen 
et  al. (2021) created a Faster R-CNN method to detect symbols and text in scanned 
technical diagrams. A large dataset of 4630 technical diagrams was used. Five classes 
were considered. Individual characters were recognised from the text regions using a 
CNN separation line classifier and a CNN character classifier. The average F1 score 
was 89%, although performance varied across object classes. The lowest F1 score, 78%, 
was reported for the least represented class. Text recognition exact match accuracy was 
68.5%. Toral et al. (2021) also used an object detection model for text detection. They 
created a YOLOv5 method to detect pipe specifications and connection points. Pipe 
specifications are text strings with a specific format, whereas the connection point sym-
bol contains a short text string. A heuristic method was applied to the detected object 
regions to obtain text regions. The text was recognised using Tesseract. Detection and 
recognition accuracy of 93% and 94% was reported. Rumalshan et al. (2023) presented 
methods for component detection in railway technical maps. The components were a 
combination of text codes and simple shapes. Their Faster-RCNN method outperformed 
YOLOv3 and SSD methods. Seeded region growing (Adams and Bischof 1994) was 
used to preprocess the detected regions prior to OCR. White pixels at the edge of the 
regions were the seeds.

Whilst there is a range of deep learning models designed for text recognition, a popular 
choice was to use Tesseract software (Smith 2007), as shown in Table 3. The latest ver-
sions of this employ deep learning. Deep learning text recognition models can be consid-
ered segmentation-based or segmentation-free methods (Chen et al. 2021). Segmentation 
methods generally contain preprocessing, character segmentation and character recognition 
steps. In contrast, segmentation-free approaches predict a text string from the entire text 
instance. For example, these methods may comprise image preprocessing, feature extrac-
tion, sequence modelling, and prediction steps (Chen et  al. 2021). Sequence modelling 
considers contextual information within a character sequence. A type of Recurrent Neural 
Network (RNN) known as a Bi-directional Long-Short Term Memory (LSTM) Network is 
often used. The two main prediction methods are attention based (Bahdanau et al. 2015) 
and Connectionist Temporal Classification (CTC) (Graves et  al. 2006). One example of 
a deep learning text recognition method is the Convolutional Recurrent Neural Network 
(CRNN) (Shi et al. 2017b). It combines a CNN, an RNN and a transcription layer.

Engineering diagrams may contain symbols and shapes that are visually similar to text. 
This was reported in a study by Jamieson et al. (2020). Here, the authors built a framework 
to digitise engineering drawings. They used EAST (Zhou et al. 2017) to localise text and 
LSTM-based Tesseract (Smith 2007) for text recognition. Good performance was achieved 
overall with 90% of text instances detected. However, false positives were predicted for 
shapes visually similar to text, including dashed lines and symbol sections. Yu et al. (2019) 
also reported a similar challenge. They used a CTPN (Tian et al. 2016) based method to 
detect text in P&IDs. Character recognition accuracy was 83.1%. Although the two test dia-
grams used had a simple equipment layout, part of a symbol was recognised as a character.
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Another challenging problem with text digitisation is the orientation of the text. This 
was reported in several studies (Kim et al. 2021b; Gao et al. 2020; Paliwal et al. 2021a), 
and various methods were proposed to handle it. For example, Kim et  al. (2021b) cre-
ated methods to recognise symbols and text in P&IDs. The text was detected using the 
easyOCR1 framework and recognised using Tesseract (Smith 2007). EasyOCR is based 
on CRAFT (Baek et al. 2019) and CRNN methods. Text rotation was estimated based on 
aspect ratio and text recognition score. Text detection and recognition combined precision 
and recall were 0.94 and 0.92, respectively. The authors used P&IDs that contained no 
noise or transformations, however this is not necessarily the case in practice (Moreno-Gar-
cia and Elyan 2019). Text digitisation methods were also applied on rotated diagrams (Gao 
et al. 2020; Paliwal et al. 2021a). For instance, Paliwal et al. (2021a) proposed methods to 
digitise P&IDs. First, the text was detected using CRAFT and recognised using Tesseract. 
Then, the diagram was rotated and the process was repeated to capture missing vertical text 
strings. Text detection and recognition accuracy of 87.18% and 79.21% was reported.

Another key challenge is that text in engineering diagrams is often composed of codes 
rather than known words. This differs from the text in other document types, which typi-
cally belongs to a specific lexicon. Rahul et  al. (2019) used prior knowledge of the text 
structure when they digitised pipeline codes from P&IDs. The method was based on a 
CTPN model (Tian et al. 2016) and Tesseract. Text detection accuracy was 90%. The pipe-
line codes had a fixed structure, which was used to filter out false positive text strings. 
However, complex diagrams contain text for numerous reasons, and details of the various 
structures are not always available.

Francois et  al. (2022) proposed a correction method for recognised text. The dataset 
comprised 330 industry engineering documents, including P&IDs and isometrics. Their 
text method was based on the EAST model (Zhou et al. 2017) and Tesseract. A post-OCR 
correction step involved text clustering using affinity propagation. The Levenshtein dis-
tance was used as the similarity measure. Clusters were defined to maximise the similarity 
score between data points. The post-OCR correction improved tag recognition from 75 to 
82%. However, the application of this method to other scenarios relies on the text character 
structure being known in advance.

Text digitisation from complex engineering diagrams remains challenging. Although 
text detection and recognition has received large research interest (Long et al. 2018; Ye and 
Doermann 2015; Chen et al. 2021), the majority was focussed on scene text (Ye and Doer-
mann 2015). The literature shows that text within engineering diagrams presents different 
challenges. In engineering diagrams, the text can be present anywhere in the image (Fran-
cois et  al. 2022), of multiple orientations (Jamieson et  al. 2020), and is frequently over-
lapped by other shapes. One particular challenge for deep learning models is distinguish-
ing text from other similar shapes in the diagram (Jamieson et al. 2020; Yu et al. 2019). 
Moreover, compared to other domains, there is a lack of publicly available annotated text 
datasets. Further research is necessary to enable accurate text detection and recognition 
from complex engineering diagrams.

1 https:// github. com/ Jaide dAI/ EasyO CR/.

https://github.com/JaidedAI/EasyOCR/
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2.5  Connectors

Connectors in engineering diagrams represent the relationship between symbols. The sim-
plest representation of a connector is a solid line, which typically represents a pipeline. 
More complex line types such as dotted lines and dashed lines are also used, which rep-
resent specialised connectors such as electrical signal or air lines. Examples of different 
connectors can be seen in Fig. 7. Although connector extraction may seem a simple task, 
it can be difficult for computer vision methods to distinguish between connectors and other 
shapes in the diagram. This problem occurs as all diagram elements are essentially com-
posed of lines. For instance, the character ‘l’ may also be considered a short line. Methods 
to overcome this challenge and accurately digitise connectors are required, as their infor-
mation is vital for understanding the flow through a system.

Despite the recent advances in deep learning, methods employed for line detection are 
still primarily based on traditional approaches (Rahul et al. 2019; Stinner et al. 2021; Yu 
et al. 2019; Kang et al. 2019). For instance, Yu et al. (2019) introduced methods for line 
recognition in P&IDs. First, image processing techniques were employed for diagram rea-
lignment and to remove the outer border. A series of image processing methods was used 
for line recognition. This involved determining the most common line thickness. Reported 
accuracy was 90.6%. The authors reported that symbol sections were recognised as lines. 
Difficulty in recognising dotted and diagonal lines was also reported in this study. This was 
observed even in a very limited test set of only two P&IDs which contained a simple equip-
ment layout with little interference between components. Kang et al. (2019) also used a tra-
ditional method for line extraction from P&IDs. Lines were extracted based on the symbol 
connection point and sliding window method. Particular difficulties recognising diagonal 
and separated lines were reported.

Other traditional line extraction methods include those based on the Hough transform 
or kernels. In a study by Stinner et al. (2021), lines were detected using binarisation and 
Hough transform. Line crossings were detected using a line intersection algorithm. Mean-
while, Rahul et  al. (2019) used the more efficient Probabilistic Hough Transform (PHT) 
(Kiryati et  al. 1991) to detect pipelines in P&IDs. Although the P&IDs appear to have 

Fig. 7  Section of engineering diagram showing different line representations
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a relatively blank background, the pipeline detection accuracy, 65%, was still effected 
by noise and overlapping drawing elements. In the kernel-based method, a small filter is 
passed over the diagram and a convolution operation is applied. Paliwal et al. (2021a) used 
a kernel-based method to detect lines in P&IDs. A higher detection accuracy for com-
plete lines (99%) than for dashed lines (83%) was reported. The authors considered the 
line width and image spatial resolution when designing the structuring element matrix. It 
should be noted, however, that kernel-based methods are very sensitive to noise and the 
thickness of lines.

Although not commonly seen in the literature, line detection may be considered as an 
object detection problem. This approach was employed by Moon et al. (2021) in their study 
on line detection in P&IDs. A dataset of 82 remodelled industry P&IDs was used. First, the 
P&ID border was removed using binarisation, pixel processing and morphological opera-
tions. A RetinaNet (Lin et al. 2017) object detection model was used to detect flow arrows 
and specialised line types, such as electrical signal lines. These lines were composed of 
either a line with a shape overlaid, or a series of dashes. In the latter case, each dash was 
treated as an object. A post-processing step was needed to merge the detected line sections. 
Continuous lines were detected using traditional image processing methods, including line 
thinning and Hough transform. Symbol and text regions detected using the method created 
by Kim et al. (2021b) were removed to discard false-positive lines. A precision of 96.1% 
and recall of 89.6% was reported. The dataset was imbalanced, although the results showed 
that highest performance was not always obtained for the most represented class.

Connector detection is also considered a challenging problem. Despite the recent popu-
larity of deep learning digitisation methods for symbols and text, this is not the case for 
connector digitisation methods. Methods used for this task are still primarily based on 
traditional approaches (Rahul et  al. 2019; Kang et  al. 2019; Stinner et  al. 2021). Such 
approaches include the Hough transform, Probabilistic Hough Transform (Kiryati et  al. 
1991) and kernel-based methods. Furthermore, the scale of the problem is increased as 
multiple line types can be present in one diagram (Moon et al. 2021; Rahul et al. 2019; 
Kang et al. 2019). Distinguishing connectors from other shapes in the diagram can be dif-
ficult for computer vision methods. Moreover, there is a lack of connector-labelled datasets 
for use with deep learning models. Therefore, accurate connector detection from complex 
engineering diagrams remains difficult, and improved methods are required.

3  Challenges

Although there are numerous benefits of using deep learning methods for diagram digitisa-
tion, such as their generalisability to the variations seen in the drawings and automatic fea-
ture extraction, the existing literature also suggests various challenges. These are a lack of 
public datasets, data annotation, evaluation, class imbalance and contextualisation. Com-
pared to traditional methods, deep learning methods typically require large quantities of 
training data. Due to proprietary and confidentiality reasons, diagram datasets are gener-
ally not available in the public domain. Furthermore, when datasets can be obtained, they 
typically need to be labelled for use with supervised deep learning models. The lack of 
annotated datasets increases the difficulty of evaluating digitisation methods. The fourth 
challenge arises from the fact that while deep learning models are typically designed for 
balanced datasets, engineering diagram datasets are inherently imbalanced. A detailed dis-
cussion of these challenges is presented in this section.



 L. Jamieson et al.

1 3

136 Page 22 of 37

Ta
bl

e 
4 

 D
at

as
et

s i
n 

re
le

va
nt

 li
te

ra
tu

re

Re
fe

re
nc

es
Ye

ar
D

ia
gr

am
 ty

pe
N

um
be

r
So

ur
ce

Zi
ra

n 
an

d 
M

ar
in

ai
 (2

01
8)

20
18

Fl
oo

r p
la

ns
13

5 
an

d 
16

0
pu

bl
ic

 a
nd

 in
du

str
y

R
ah

ul
 e

t a
l. 

(2
01

9)
20

19
P&

ID
s

4
in

du
str

y
Si

nh
a 

et
 a

l. 
(2

01
9)

20
19

P&
ID

s
10

6
pr

iv
at

e
Y

u 
et

 a
l. 

(2
01

9)
20

19
P&

ID
s

70
in

du
str

y
K

an
g 

et
 a

l. 
(2

01
9)

20
19

P&
ID

s
3

–
Re

nt
on

 e
t a

l. 
(2

01
9)

20
19

Fl
oo

r p
la

ns
20

0
–

M
an

i e
t a

l. 
(2

02
0)

20
20

P&
ID

s
29

–
G

ao
 e

t a
l. 

(2
02

0)
20

20
N

uc
le

ar
 p

ow
er

 p
la

nt
 d

ia
gr

am
68

pu
bl

ic
El

ya
n 

et
 a

l. 
(2

02
0a

)
20

20
P&

ID
s

17
2

in
du

str
y

 Z
ha

o 
et

 a
l. 

(2
02

0)
20

20
St

ru
ct

ur
al

 d
ra

w
in

gs
50

0
pr

iv
at

e
Re

zv
an

ifa
r e

t a
l. 

(2
02

0)
20

20
A

rc
hi

te
ct

ur
al

 d
ra

w
in

gs
 a

nd
 fl

oo
r p

la
ns

11
5 

an
d 

70
in

du
str

y 
an

d 
pu

bl
ic

M
or

en
o-

G
ar

cí
a 

et
 a

l. 
(2

02
0)

20
20

P&
ID

s
8

in
du

str
y

Ja
m

ie
so

n 
et

 a
l. 

(2
02

0)
20

20
P&

ID
s

17
2

in
du

str
y

N
ur

m
in

en
 e

t a
l. 

(2
02

0)
20

20
P&

ID
s

22
, 0

00
 sy

nt
he

tic
Sy

nt
he

tic
 a

nd
 in

du
str

y
Pa

liw
al

 e
t a

l. 
(2

02
1a

)
20

21
P&

ID
s

10
0 

an
d 

12
Sy

nt
he

tic
 a

nd
 in

du
str

y
M

oo
n 

et
 a

l. 
(2

02
1)

20
21

P&
ID

s
82

re
m

od
el

le
d 

fro
m

 in
du

str
y

N
gu

ye
n 

et
 a

l. 
(2

02
1)

20
21

Te
ch

ni
ca

l d
ia

gr
am

s
46

30
re

al
 w

or
ld

K
im

 e
t a

l. 
(2

02
1b

)
20

21
P&

ID
s

82
re

m
od

el
le

d 
fro

m
 in

du
str

y
St

in
ne

r e
t a

l. 
(2

02
1)

20
21

P&
ID

s a
nd

 d
ia

gr
am

s
5 

an
d 

13
 &

, 8
4

in
du

str
y 

an
d 

pu
bl

ic
Pa

liw
al

 e
t a

l. 
(2

02
1b

)
20

21
P&

ID
s

10
0 

an
d 

12
Sy

nt
he

tic
 a

nd
 in

du
str

y
H

u 
et

 a
l. 

(2
02

1)
20

21
M

ec
ha

ni
ca

l d
ra

w
in

gs
36

12
–

 Jo
y 

an
d 

M
ou

ns
ef

 (2
02

1)
20

21
El

ec
tri

ca
l p

la
ns

5
–

Sc
he

ib
el

 e
t a

l. 
(2

02
1)

20
21

En
gi

ne
er

in
g 

dr
aw

in
gs

7
Pu

bl
ic

 a
nd

 in
du

str
y

K
im

 e
t a

l. 
(2

02
1a

)
20

21
Fl

oo
r p

la
ns

23
0

Pr
iv

at
e

Re
nt

on
 e

t a
l. 

(2
02

1)
20

21
Fl

oo
r p

la
ns

20
0

–



A review of deep learning methods for digitisation of complex…

1 3

Page 23 of 37 136

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
Ye

ar
D

ia
gr

am
 ty

pe
N

um
be

r
So

ur
ce

To
ra

l e
t a

l. 
(2

02
1)

20
21

P&
ID

s
85

In
du

str
y

H
an

ta
ch

 e
t a

l. 
(2

02
1)

20
21

P&
ID

s
8

Re
al

-w
or

ld
M

iz
an

ur
 R

ah
m

an
 e

t a
l. 

(2
02

1)
20

21
C

irc
ui

t d
ia

gr
am

s
21

8
Pu

bl
ic

Sa
rk

ar
 e

t a
l. 

(2
02

2)
20

22
En

gi
ne

er
in

g 
dr

aw
in

gs
34

2
–

Fr
an

co
is

 e
t a

l. 
(2

02
2)

20
22

En
gi

ne
er

in
g 

do
cu

m
en

ts
33

0
In

du
str

y
Ja

ku
bi

k 
et

 a
l. 

(2
02

2)
20

22
Fl

oo
r p

la
ns

44
In

du
str

y
X

ie
 e

t a
l. 

(2
02

2)
20

22
En

gi
ne

er
in

g 
dr

aw
in

gs
16

92
Pr

iv
at

e
B

in
 e

t a
l. 

(2
02

2)
20

22
P&

ID
s

7
–

G
up

ta
 e

t a
l. 

(2
02

2)
20

22
P&

ID
s

3
In

du
str

y
H

aa
r e

t a
l. 

(2
02

3)
20

23
En

gi
ne

er
in

g 
an

d 
m

an
uf

ac
tu

rin
g 

dr
aw

in
gs

15
 a

nd
 1

00
0

Re
al

 a
nd

 sy
nt

he
tic

Ru
m

al
sh

an
 e

t a
l. 

(2
02

3)
20

23
R

ai
lw

ay
 te

ch
ni

ca
l m

ap
s

69
–

Th
ei

se
n 

et
 a

l. 
(2

02
3)

20
23

Pr
oc

es
s fl

ow
 d

ia
gr

am
s

10
05

Va
rio

us
 p

ub
lic

 so
ur

ce
s



 L. Jamieson et al.

1 3

136 Page 24 of 37

3.1  Datasets

The lack of publicly available engineering diagram datasets makes it difficult to com-
pare and benchmark various methods. As can be seen in Table 4, most methods are eval-
uated using proprietary datasets. It should also be pointed out that there is a vast variety 
of formats for these drawings. Specific organisations or even specific projects may adopt 
their own drawing formats, which would not be captured in publicly available datasets. 
This means that retraining models to suit specific engineering drawing datasets is an 
important and necessary factor to consider. One example of a public dataset used in the 
digitisation literature is the Systems Evaluation SYnthetic Documents (SESYD) floor 
plan dataset (Rezvanifar et  al. 2020). However, this dataset is synthetic, contained no 
intra-class symbol variations and was considered simpler than typical real-world floor 
plans (Rezvanifar et al. 2020). Moreover, researchers working on floor plan digitisation 
still report a lack of available training data (Ziran and Marinai 2018).

Synthetic diagrams have been utilised in the absence of sufficient real-world data 
(Paliwal et al. 2021a; Sierla et al. 2021; Nurminen et al. 2020; Haar et al. 2023; Bickel 
et  al. 2021). For instance, Paliwal et  al. (2021a) generated a dataset comprising 500 
annotated synthetic P&IDs. Image noise was added. The dataset contained 32 equally 
represented symbol classes. However, class imbalance is inherent in real-world P&IDs 
and can cause models to be biased towards overrepresented classes. Sierla et al. (2021) 
included data extraction from scanned P&IDs as a step in their methodology for the 
semi-automatic generation of digital twins. YOLO was used for symbol detection. The 
authors generated artificial images by placing symbols from process simulation software 
on a white background. However, these images were relatively simple and did not pre-
sent the challenges associated with scanned P&IDs. Similarly, Nurminen et al. (2020) 
created artificial images using process simulation software. They created a YOLOv3-
based model for symbol detection in P&IDs. The method was evaluated on artificial 
images and scanned industrial P&IDs. Meanwhile, Bickel et al. (2021, 2023) generated 
synthetic training data for symbol detection in principle sketches. They used a fixed set 
of rules to generate symbols, which was practical in this case owing to the defined rep-
resentation limits of the drawings used.

Stinner et al. (2021) used images from symbol standards and internet search images 
to increase the training dataset size. They presented work on extracting symbols, lines 
and line crossings from P&IDs. The authors used five industry P&IDs. They used a 
Faster R-CNN-based method to detect four symbol types. The authors reported 93% 
AP over all symbol classes. However, performance was lower for certain object classes 
compared to others.

Haar et  al. (2023) presented symbol and text detection methods for engineering and 
manufacturing drawings. A dataset of 15 real drawings and 1000 synthetic images was 
used. Synthetic data was generated by cropping symbols from the real drawings and ran-
domly placing them on the basic drawings with varying orientations and sizes. YOLOv5 
was used to detect symbols. EasyOCR was used for the text. The model utilised VGG and 
ResNet for feature extraction, LSTM and CTC. The YOLOv5 model performance on the 
real diagrams (36.4 mAP) was lower than on the synthetic dataset (87.6 mAP). The text 
method was evaluated on five diagrams and correctly recognised 68% of text characters. 
Mathematical special characters and rotated texts were highlighted as a challenge.

Although there is a lack of text datasets for engineering diagrams, many text datasets 
exist in other domains. In 2015, commonly used text datasets were discussed in a review 
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(Ye and Doermann 2015). The largest dataset mentioned was IIIT5K Word (Mishra 
et al. 2012), which contains 5, 000 cropped images. Since then, demand for significantly 
bigger datasets to train deep learning models has increased. Today, the largest text data-
sets contain millions of synthetic text instances (Chen et al. 2021). For example, Syn-
th90K (Jaderberg et al. 2014) contains 9 million synthetic annotated text instances. The 
Unreal text dataset (Long and Yao 2020) comprises 12 million cropped text instances. In 
contrast, realistic text datasets are smaller, containing thousands of data samples (Chen 
et al. 2021). Veit et al. (2016) introduced the COCO-Text dataset in 2016. The dataset 
contained over 173k annotated instances of text in natural images, making it the largest 
dataset of its type at the time. The International Conference for Document Analysis and 
Recognition (ICDAR) also introduced text datasets (Karatzas et al. 2013, 2015).

The literature shows an urgent need to have more engineering diagram datasets availa-
ble in the public domain. Most of the proposed digitisation methods were evaluated on pro-
prietary datasets, which may contain a limited number of diagrams (Hantach et al. 2021; 
Yu et al. 2019). Although synthetic datasets were also used, these diagrams were typically 
simple in appearance and not as complex as those in the real-world (Rezvanifar et al. 2020; 
Sierla et al. 2021). Public access to diagram datasets would also allow for improved com-
parison between proposed methods. Therefore, the release of public datasets is crucial to 
accelerate research and development in the area of engineering diagram digitisation.

3.2  Data annotation

Obtaining sufficient annotated data is also regarded as a challenge. When datasets are 
available, they must be annotated for use with supervised deep learning models. Typically, 
a large annotated dataset is required for training purposes (Jakubik et al. 2022). Acquiring 
such data is usually carried out manually. Various software can be used to facilitate this, 
such as Sloth,2 LabelImg3 and LabelMe (Russell et  al. 2008.). For example, to obtain a 
symbol dataset, the user needs to draw a bounding box around the symbol and then label 
it with the relevant class. These steps are required for every symbol of interest in the dia-
gram. Given the high number of symbols per diagram, the process is very time-consuming, 
costly and prone to human error. Furthermore, given the technical nature of these draw-
ings, a subject matter expert is normally required to complete this task.

One method to reduce the required labelling effort is to create synthetic training data 
(Gao et al. 2020; Bin et al. 2022; Gupta et al. 2022). The simplest approach is to use tra-
ditional image processing algorithms. For instance, Gao et al. (2020) presented a method 
for component detection in nuclear power plant diagrams. They manually annotated sym-
bols and then used traditional data augmentation techniques, such as image resizing, to 
increase the training symbol instances (Gao et  al. 2020). The AP increased from 40 to 
82% when the training dataset increased from 100 to 1000 images. Gupta et al. (2022) cre-
ated a YOLOv2 method for valve detection in P&IDs. A dataset of three P&IDs was used. 
Synthetic training data was generated by cropping a symbol and randomly placing it on the 
background. Experiments showed that model performance improved when the amount of 
background and similar symbols in the training data was increased. However, evaluation of 

2 https:// sloth. readt hedocs. io/ en/ latest/.
3 https:// github. com/ tzuta lin/ label Img.

https://sloth.readthedocs.io/en/latest/
https://github.com/tzutalin/labelImg
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more than one symbol type and one test diagram is required to determine if the method can 
be applied to other scenarios.

Synthetic training data was also created using generative deep learning models (Bin 
et al. 2022; Khallouli et al. 2022). For example, Bin et al. (2022) used a method based on 
CycleGAN (Zhu et al. 2017) and CNN for P&ID symbol recognition. A dataset of seven 
P&ID sheets was used. CycleGAN (Zhu et  al. 2017) uses unpaired images. The accu-
racy improved from 90.75 to 92.85% when equal representations of synthetic to authen-
tic samples were used for training. However, the authors reported that the performance 
gain decreased with a 2:1 ratio of synthetic to authentic samples, as an accuracy of 91.88% 
was reported. Khallouli et al. (2022) presented work on OCR from industrial engineering 
documents. Nine drawings of ships were used. They used a method based on ScrabbleGAN 
(Fogel et  al. 2020) to generate synthetic word images. The model contains a generator, 
discriminator and text recogniser. When the synthetic data was added to manually labelled 
training data, the character recognition accuracy increased from 96.83 to 97.45% and the 
word recognition accuracy increased from 88.79 to 92.1%.

Most of the relevant literature used supervised deep learning, which learns from 
labelled training data. An alternative approach is semi-supervised learning, which uses 
both labelled and unlabelled data (Van Engelen and Hoos 2020). In contrast, weakly super-
vised methods use partially labelled data. For example, weakly supervised object detection 
methods mostly use image-level labels (Zhang et al. 2022). In the area of scene text detec-
tion, Liu et al. (2020) presented a semi-supervised method named Semi-Text. ICDAR 2013 
(Karatzas et al. 2013), ICDAR 2015 (Karatzas et al. 2015) and Total-Text (Ch’ng and Chan 
2017) datasets were used. A Mask R-CNN based model was pre-trained on the SynthText 
dataset (Gupta et al. 2016). Then, positive samples were obtained by applying the model to 
unannotated images. The model was then retrained using a dataset of positive samples and 
SynthText data. The performance improved compared to the baseline model.

Data annotation continues to be largely carried out manually, which proved to be 
extremely time-consuming and costly. Furthermore, as the diagrams are highly techni-
cal, identifying the different symbol classes within a diagram typically requires a domain 
expert. Therefore, improved methods to speed up the data annotation process, or reduce the 
need for annotated data, are required.

3.3  Evaluation

Evaluating deep learning methods for complex document digitisation is considered a com-
plex task. Methods used for symbols, text and connectors must all be evaluated separately. 
Moreover, multiple different metrics are used for the same task. For instance, symbol dig-
itisation methods are evaluated with various metrics including precision, recall, F1 score 
and mAP. The lack of standard evaluation protocol, along with the use of disparate data-
sets, increases the difficulty of thoroughly comparing proposed methods.

Symbol detection methods define a True Positive at a specific IOU threshold. The 
PASCAL (Everingham et al. 2010) evaluation metric was often used in the related work 
(Jakubik et  al. 2022). This defines a correct detection if the IOU is over a threshold of 
0.5. More stringent criteria to define a correct detection were also seen. For instance, Rez-
vanifar et al. (2020) defined a correct detection if the IOU was over 0.75. Meanwhile, Pali-
wal et al. (2021a) defined a correct symbol detection based on an IOU greater than 0.75 
and a correct associated text label. Different symbol evaluation metrics may be used in the 
case of graph-based methods. For example, Renton et al. (2021) used a GNN for symbol 
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detection and classification. They defined a correct detection if all the symbol nodes repre-
senting a symbol were found without any extra node.

Evaluation of diagram digitisation methods is further complicated as the ground truth 
information is often unavailable. This is a particular issue for the evaluation of text and 
connector digitisation methods. Manually labelling these components would require sub-
stantially more effort than symbol annotation. Therefore, the current evaluation of text and 
connector digitisation methods is generally subjective (Mani et  al. 2020). For instance, 
Mani et  al. (2020) used EAST (Zhou et  al. 2017) and Tesseract to digitise text in a set 
of industry P&IDs. They presented sample output detection and recognition results, how-
ever evaluation metrics were not used. Objective evaluation methods were used for text 
and connector digitisation in a limited number of cases. This occurred when ground truth 
data was available owing to the use of digital (Francois et al. 2022) or synthetic diagrams 
(Paliwal et  al. 2021a). For example, Paliwal et  al. (2021a) created a synthetic dataset of 
500 P&IDs. The ground truth data of horizontal and vertical line locations, text locations 
and text strings were available. Their digitisation methods were evaluated on 100 synthetic 
P&IDs and a smaller private dataset of 12 real-world P&IDs. However, the text and lines 
methods were objectively evaluated on the synthetic dataset only. The text was considered 
correct if the string exactly matched the ground truth. Francois et al. (2022) used text loca-
tions extracted from PDF engineering documents as the ground truth. A detection was 
considered correct if the predicted area corresponded to the ground truth area within an 
acceptable margin of 10 pixels.

The performance of text recognition methods can be objectively measured by compar-
ing the predicted string to the ground truth. This was seen in cases where digital or syn-
thetic diagrams were used, or for a subset of the text. For instance, Nguyen et al. (2021) 
extracted two specific text strings from technical diagrams. They applied the Exact Match 
accuracy for text recognition. The text was considered to be correct if it exactly matched 
the ground truth. In another study, Kim et al. (2021b) used digital P&IDs for which the text 
ground truth metadata was available. In addition to text detection precision and recall, Kim 
et  al. (2021b) also evaluated the combined text detection and recognition performance. 
More specifically, they used the Character Level Evaluation (CLEval) (Baek et al. 2020) 
metric to obtain precision and recall scores that combined text detection and recognition. 
CLEval (Baek et al. 2020) employs both instance matching and character scoring. Mean-
while, Khallouli et al. (2022) evaluated their text recognition method using three metrics. 
These were character recognition rate, word recognition rate and average Levenshtein dis-
tance. The latter metric is the number of character edits (such as substitution, insertion or 
deletion) required to alter the predicted text to the ground truth text.

3.4  Class imbalance

Class imbalance occurs when one or more classes are over-represented in a dataset. It is 
inherent in engineering diagrams as equipment types are represented with varying frequen-
cies. The problem of class imbalance is known to occur in both deep learning and tra-
ditional machine learning (Buda et al. 2018). Learning algorithms trained on imbalanced 
data are typically biased towards the majority class, which causes minority class instances 
to be classified as majority classes (Johnson and Khoshgoftaar 2019).

Class imbalance was shown to occur in both engineering symbols classification and 
detection (Elyan et al. 2020b, a; Kim et al. 2021b; Ziran and Marinai 2018). An example 
is the work presented by Elyan et al. (2020b), which showed that class imbalance effected 
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the CNN classification performance of a P&ID symbols dataset. Lower performance on 
underrepresented classes compared to overrepresented classes was reported. In work on 
object detection, Elyan et  al. (2020a) created a YOLOv3 (Redmon and Farhadi 2018) 
based method for symbol detection of an imbalanced dataset. Overall accuracy was high at 
95% , although it varied across classes. A class accuracy of 98% for the majority class with 
2810 instances was reported, whereas the accuracy for the minority classes with only 11 
instances was 0%.

Similarly, Kim et al. (2021b) reported comparable results in their study on P&ID sym-
bol detection. In particular, a lack of data for large symbols was reported. Lower class-
accuracies were observed for underrepresented instances. Ziran and Marinai (2018) also 
recorded imbalanced symbol distribution in two floor plan datasets. Interestingly, class 
representation was not strictly correlated with the performance of the Faster R-CNN 
based model. The highest precision and recall values were not all for the most represented 
classes. This may be due to the high within-class diversity in the majority classes.

3.5  Contextualisation

In a previous review (Moreno-García et al. 2019), authors defined contextualisation as the 
process of converting the digitised information (i.e. the shapes detected by the computer 
vision algorithms) into structured information, which can be used to better explore, manip-
ulate or redraw the diagrams in more interactive and representative ways. In this subsec-
tion, we discuss the most common solutions in literature that have been presented for this 
purpose. We have split the contextualisation challenge into three sub-challenges: (1) the 
storing challenge, where systems have to be devised in order to save the structural rep-
resentation in an easy to read/access manner, (2) the connectivity challenge, which refers 
to how the digitised objects are arranged in from their spatial representation in a way that 
users are able to know how symbols are connected and (3) the matching challenge, in 
which we address the issue of how to use these structural representations for real-life pur-
poses, such as finding certain sections within a larger drawing, localising which portions of 
the drawing have relation to a 3D representation (i.e. the real facility or a digital twin), and 
ensuring consistency of the structural representation by inspecting it in semi-automated 
ways.

Since the earliest stages of P&ID digitisation, researchers have realised the need 
to convert the digitised information into some sort of structural graph representation 
to address the storing challenge. In the 90s, Howie et  al. (1998) proposed a symbolic 
model output with each of the shapes (symbols and pipes) as a node, and edges con-
necting them. This means that, despite pipes being connectors within the drawing, these 

Fig. 8  Left: A snippet of a P&ID with two shapes connected by a pipe. Right: The structural graph repre-
sentation as proposed in Howie et al. (1998)
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should be represented as another node, as pipes themselves have their own attributes. A 
toy example is presented in Fig. 8.

To address both the connectivity and storing challenges simultaneously, other authors 
have used the notions of graphs to find the connectivity between the symbols, bypassing 
the line detection. For instance, Mani et al. (2020) used graph search to discover sym-
bol to symbol connections in a P&ID. Each pixel was represented as a node, and links 
between neighbouring pixels were represented as graph edges. Then, symbol to symbol 
connections were determined using a depth-first search starting a symbol node. This 
approach results interesting when drawings have a high quality and the algorithm can 
traverse from one symbol to another with relative ease. This system relies on connectors 
not overlapping with each other (since the graph search algorithm could be confused by 
the direction to take) and thus, have limited applicability when the drawing is complex 
and presents an entangled connector structure.

There are a handful of applications found in literature to address the matching chal-
lenge. For instance, Wen et al. (2017b, 2017a) presented a system to measure 2D–3D 
process plant model similarities based on their topological distribution, establishing a 
relation between a 2D engineering drawing and a 3D hydrocarbon plant model. To do 
this, each model was extracted as a graph, and then the feature similarity is calculated to 
measure a degree of matching between the two models using a geometric deformation 
invariant algorithm. Contrary to most of the literature reviewed in this study, authors 
used a type of CAD drawing called ISO drawing, which is relatively easier to digitise 
compared to classical engineering drawings mentioned before (e.g. P&IDs) since it is 
more standardised and contains far more measurements and indicators. Still ISO draw-
ings require vast knowledge and field experience to be correctly digitised and, therefore, 
the extraction of the attributed graph is done in a semi-automated way. Regarding the 
3D plant, extracting the attributed graph is easier since the 3D model is still contained 
in a CAD file which retains all the meta-data needed for this reconstruction.

Rantala et  al. (2019) also applied graph matching techniques to better use plant 
design information from older designs. Authors performed a review of graph matching 
techniques and evaluated six algorithms using an illustrative dataset built for purpose. 
In their evaluation, authors concluded that an algorithm based on simulated annealing 
with a certain combination of parameters was the best option for this task, as it was 
capable to detect spurious and inexact correlations. Later on, Sierla et al. (2020, 2021) 
presented related work on automatic generation of graphs from P&IDs. In this study the 
input was a P&ID represented in XML format, which was able to be converted into an 
attributed graph. To this end, authors used a recursive algorithm which also relies in 
pictures taken from the actual facilities, but that reconstruct the graph with an increased 
accuracy.

In more recent work presented by Rica et  al. (2020, 2021), authors propose graph 
embeddings which are used to train NNs on how to distinguish local substructures 
which may be incorrect, this reducing the human effort on performing manual valida-
tion of the digitised information. To this end, authors first construct the graphs based 
on proximity information provided by the digitisation module, and then learn the most 
common substructures that can be found in the particular drawing set. For instance, a 
drawing may depict three valves connected in a loop, but no more than that. Afterwards, 
a GNN is trained to retain this information and validate the drawings. As in most graph-
based problems, the complexity of this review increases with the size of the graph; 
therefore, authors tested this method in a smaller dataset.
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4  Conclusion and future directions

Significant progress has taken place in the area of processing and analysing engineering 
diagrams and complex documents. This includes aspects such as symbol detection, text 
recognition, and contextualisation. A wide variety of deep learning models were used, for 
instance the literature shows that symbol digitisation methods are not only based on object 
detectors but also segmentation, classification and graph approaches. Meanwhile text dig-
itisation methods were based on both specialised text methods and object detectors. Meth-
ods for connector detection have received comparatively less attention than symbol and 
text methods. Only 21% of the reviewed papers presented a method for connector detec-
tion. Overall, deep learning methods used for digitisation have proved to be beneficial com-
pared to traditional methods and result in improved performance.

However, further research is still required to solve the timely and challenging problem 
of complex engineering diagram digitisation. Improved methods are still needed for all 
diagram components, namely symbols, text and connectors. Newly developed deep learn-
ing models such as transformers (Dosovitskiy et al. 2020) maybe of benefit to engineering 
drawing digitisation, such as in recent related work on CAD drawings (Fan et al. 2022).

The literature shows that engineering diagram digitisation is still regarded as challeng-
ing. This can be attributed to several factors including diagram complexity, visually similar 
drawing components (Kim et al. 2021a; Mani et al. 2020), large intra-class variance (Rez-
vanifar et al. 2020) and low inter-class variance (Paliwal et al. 2021a; Rahul et al. 2019), 
amongst others. The remaining key challenges for engineering diagram digitisation were 
identified as dataset acquisition, data annotation, imbalanced class distribution, evaluation 
methods and contextualisation. Although methods such as synthetic data generation and 
data augmentation exist, the literature suggests that further work is needed to address the 
specific challenges of engineering drawing digitisation.

Therefore, the first and most important need in this area is to develop and release data-
sets to the public domain to accelerate research and development. Real-world datasets 
are typically confidential however, datasets released publicly should ideally be of similar 
complexity and contain properties such as noise, overlapping elements and a wide range 
of symbols. Furthermore, allowing researchers to use standard datasets would facilitate 
benchmarking of proposed methods.

Another area that requires improvement is the data annotation process, which is typi-
cally time-consuming and consequently costly. One potential research direction that aims 
to reduce the amount of required labelled data is active learning. These algorithms aim to 
choose the most informative samples from the unlabelled data (Ren et al. 2021). Labelling 
only the most informative samples could reduce the amount of data required to train the 
learning algorithm, reducing the effort required compared to random labelling.

An additional suggestion to reduce the annotation requirement is to include synthetic 
images in the training data. This was seen in the literature through various methods, 
including specialist engineering visualisation software (Kim et al. 2021b) and image pro-
cessing data augmentation techniques (Gao et al. 2020; Joy and Mounsef 2021; Ziran and 
Marinai 2018; Jakubik et al. 2022). Another method that has been explored is the use of 
deep learning generative models such as GAN-based approaches (Bin et al. 2022; Elyan 
et al. 2020a; Khallouli et al. 2022). For the synthetic images to be of the most benefit, they 
should closely represent the real-world data.

An alternative approach that could reduce the reliance on labelled data is to use meth-
ods other than supervised learning. One possible solution is the use of semi-supervised 
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methods. These methods are designed to learn from both labelled and unlabelled data 
(Van  Engelen and Hoos 2020). Another potential future research direction is the use of 
deep learning methods that learn from a few instances. This could be of particular use 
given the frequent presence of underrepresented and rare symbols within engineering dia-
grams. State-of-the-art methods such as few-shot learning are suggested. Unlike supervised 
learning models, which typically require vast amounts of labelled training data, few-shot 
methods aim to learn from only a few samples (Antonelli et al. 2022).
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