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Abstract
Imbalanced problems can arise in different real-world situations, and to address this, cer-
tain strategies in the form of resampling or balancing algorithms are proposed. This issue 
has largely been studied in the context of classification, and yet, the same problem features 
in regression tasks, where target values are continuous. This work presents an extensive 
experimental study comprising various balancing and predictive models, and wich uses 
metrics to capture important elements for the user and to evaluate the predictive model in 
an imbalanced regression data context. It also proposes a taxonomy for imbalanced regres-
sion approaches based on three crucial criteria: regression model, learning process, and 
evaluation metrics. The study offers new insights into the use of such strategies, highlight-
ing the advantages they bring to each model’s learning process, and indicating directions 
for further studies. The code, data and further information related to the experiments per-
formed herein can be found on GitHub: https:// github. com/ Jusci Aveli no/ imbal anced Regre 
ssion.

Keywords Imbalanced tasks · Imbalanced regression · Resampling strategies

1 Introduction

Imbalanced datasets are often encountered in multiple real-world applications. For classi-
fication tasks, such an issue has been studied (Haixiang et al. 2017; Krawczyk 2016; John-
son and Khoshgoftaar 2019). Nonetheless, it is also present in regression tasks (Branco 
et al. 2016). Branco et al. (2017) define imbalanced problems based on the simultaneity 
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of two factors: (i)  a disproportionate preference of the user at the domain of the target 
variable, and (ii) insufficient representation of the data available in the most relevant cases 
for the user. In classification tasks, an imbalanced dataset is determined through the pres-
ence of a class having a smaller representation (minority class) than another one (majority 
class). However, in regression problems, the target value is continuous, thus representing a 
complex definition, because the target value is not constrained to a limited set of discrete 
values, unlike in classification problems where the target value represents specific catego-
ries or classes. Figure 1 presents the distribution and frequency of examples drawn from 
an imbalanced dataset (FuelCons) with target values ranging from 2.7 to 17.3. To analyze 
this range, we employed a bin width of approximately 0.2, resulting in a total of 74 bins. 
The values at the chart’s edges show little frequency and are considered rare examples. In 
this context, Ribeiro (2011) proposes the concept of a relevance function which determines 
the relevance of continuous target values in defining certain examples as rare and others as 
normal. This definition allows to verify an imbalanced between instances considered rare 
and those seen as normal.

Standard regression tasks assume that all values of the domain are of equal importance, 
and are typically evaluated based on the performance of the most frequent values. How-
ever, values that are little represented are often extremely relevant, not only to the user, 
but also in the prediction process. For example, in the context of software engineering pre-
diction mistakes in large projects are associated with higher development costs (Rathore 
and Kumar 2017), whereas during temperatures prediction in a meteorological applica-
tion, errors that surface while predicting extreme conditions (e.g., very high temperatures) 
are even much more costly (Ribeiro and Moniz 2020). This scenario presents particular 
difficulties for learning algorithms, which tend to follow the interval of values in greater 
quantity while neglecting the rare ones in the distribution. Hence, failing to obtain a good 
prediction performance for these particular examples.

Studies looking at solutions for imbalanced regression problems have faced relatively 
little scrutiny when compared to those related to classification problems (Haixiang et al. 
2017). The most common approach used to address this gap has been to modify the distri-
bution of examples by balancing the training data before the actual learning process begins. 
Some of these strategies are Random Under-sampling (Torgo et al. 2013), which removes 
examples from intervals having greater quantities, Random Over-sampling (Branco et al. 
2019), which replicates rare values in the dataset, and the WEighted Relevance-based 
Combination Strategy (WERCS) (Branco et al. 2019), which creates a weighted combina-
tion biased versions of the under- and over-sampling strategies. In addition, several real-
world imbalanced regression problems rely on resampling strategies to properly deal with 
rare and extreme cases, such as in software defect prediction (Bal and Kumar 2018, 2020; 

Fig. 1  Distribution and fre-
quency of the target value Y 
from the FuelCons dataset
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Rathore and Kumar 2017 and Rathore and Kumar 2017) and Enzyme Optimum Tempera-
ture prediction (Gado et al. 2020), as well as to assist in detecting arsenic concentration in 
soil using satellite imagery (Agrawal and Petersen 2021). Hence, the variety of problems 
and increased interest in this field demonstrates the need for studies on imbalanced regres-
sion techniques.

Another difficulty encountered in such scenarios is related to the fact that traditional 
performance metrics, such as the Mean Squared Error (MSE) and the Mean Absolute Error 
(MAE), do not adequately capture user-defined criteria (Branco et al. 2019). Additionally, 
recent works have proposed new performance metrics for evaluating the performance of 
regression models under imbalanced target distributions, and place greater emphasis on 
errors occurring in rare cases. In these cases, Precision, Recall, and F1-score metrics, as 
described for regression tasks (Torgo and Ribeiro 2009), and the squared error-relevance 
area (SERA) metric proposed in Ribeiro and Moniz (2020), are commonly used. Neverthe-
less, a comparison between multiple imbalanced regression strategies under these perfor-
mance metrics, and of how they differ in their approach to assessing the model’s perfor-
mance, is still an open question.

Therefore, our main goal is to analyze the effects of resampling strategies for dealing 
with imbalanced regression problems from different perspectives. To this end, we conduct 
an extensive experimental study employing different resampling strategies and learning 
algorithms. In addition, we use metrics that can assess the models’ performance in imbal-
anced regression tasks, such as the F1-score for regression and SERA (Ribeiro and Moniz 
2020). To the best of our knowledge, this is the first work that performs a comprehensive 
empirical analysis of resampling techniques for imbalanced regression tasks. In contrast, 
for imbalanced classification tasks, numerous surveys and empirical studies have evaluated 
resampling algorithms in different scenarios, such as binary problems (García et al. 2020; 
Kovács 2019; Wojciechowski and Wilk 2017; Roy et  al. 2018; Ali et  al. 2019; Del  Rio 
et al. 2015; Díez-Pastor et al. 2015; Moniz and Monteiro 2021), multiclass classification 
(Cruz et al. 2019; Sáez et al. 2016), and data streams (Aguiar et al. 2022; Zyblewski et al. 
2019).

The broad scope of our experimental analysis, which considers multiple resampling 
strategies, regression models, and performance metrics, is at the core of the uniqueness of 
our research since it allowed us to assess the relationship among these three variables. Our 
study thus differs from Branco et al. (2016), which addresses only theoretical aspects of 
imbalanced problems in general. Moreover, regarding the performance metrics, using the 
SERA metric (Ribeiro and Moniz 2020) is highlighted since no other work has evaluated 
all resampling strategies using it specifically.

The following research questions guide this study: (i) Is it worth using resampling strat-
egies? (ii) Which resampling strategies influence predictive performance the most? (iii) 
Does the choice of best strategy depend on the problem, the learning model, and the met-
rics used? (iv) Does the number of training examples resulting from each strategy influence 
the results? (v) Do the features of the data (percentage of rare cases, number of rare cases, 
dataset size, number of attribues and imbalance ratio) impact the predictive performance of 
the models? The experimental analysis revealed that resampling strategies are beneficial to 
the vast majority of regression models. The best strategies include GN, RO, and WERCS. 
Another important point is that choosing the best strategy depends on the dataset, the 
regression model, and the metric used when evaluating the system’s performance. Further-
more, we found that the dataset size, the number of rare cases, the number of attribute and 
the imbalance ratio significantly influence the results. The smallest datasets and those with 
the fewest rare cases are the most challenging. Models demonstrate superior performance 
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in datasets with fewer features. Lastly, concerning the imbalance ratio, regression models 
encounter more significant challenges with a higher imbalance ratio.

Contributions 

• We propose a novel taxonomy for imbalanced regression tasks according to the regres-
sion model, learning strategy and metrics.

• We review the main strategies used for imbalanced regression tasks.
• We conduct an extensive experimental study comparing the performance of state-of-

the-art resampling strategies and their effects on multiple learning algorithms and novel 
performance metrics proposed in the literature.

• We analyze the impact of dataset characteristics (e.g., dataset size and the number of 
rare cases) on the model’s predictive performance.

This work is organized as follows: Sect. 2 presents the basic concepts and proposes a tax-
onomy for imbalanced regression problems. Section 3 describes the resampling approaches 
evaluated in this study highlighting their advantages and disadvantages. Section 4 presents 
the experimental methodology by describing the data, algorithms, parameters, and perfor-
mance metrics used in this work. Results are shown in Sect. 5. Section 6 presents the les-
sons learned by revisiting and answering the research questions. Finally, Sect. 7 brings our 
conclusions.

2  Basic concepts and proposed taxonomy

Some fundamental concepts must be grasped in order to understand the notion of imbal-
anced regression. In this context, the concept of relevance function is presented herein and 
a taxonomy is proposed to organize the strategies required. The relevance function is a 
fundamental concept in imbalanced regression, as it defines the importance of each sam-
ple in the dataset. Finally, a taxonomy is proposed to categorize the approaches used to 
address imbalanced regression problems, providing a way to understand the existing litera-
ture. Based on this taxonomy, we review the main strategies for dealing with imbalanced 
regression problems.

2.1  Relevance function

The concept of relevance function is crucial when it comes to understanding the imbal-
anced regression problem and some strategies for dealing with it. Proposed by Ribeiro 
(2011), the relevance function ( � ∶ Y → [0, 1] ) determines the relevance of the examples 
in each dataset using an automatic method. The relevance value determines the examples 
that are normal and those that are rare, with the rare ones being the least represented in the 
dataset. The intuition of the relevance function is to automatically set the significance of 
data points within a dataset by assigning relevance scores. In this way, the relevance func-
tion serves as the foundation for evaluating models in the context of imbalanced regression, 
as well as for data resampling. Consequently, using a different relevance function alters 
both the model evaluation and data resampling.

To the best of our knowledge, this definition of relevance function is unique in the 
literature. In Ribeiro (2011) and Ribeiro and Moniz (2020), the relevance function is 
showcased using the Piecewise Cubic Hermite Interpolating Polynomials (pchip) and 
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cubic spline methods. However, it was noted that cubic spline interpolation cannot pro-
vide precise control over the function. It fails to confine the relevance function within 
the specified [0, 1] interval scale. This limitation is rectified by the pchip method, 
employing suitable derivatives at control points, thereby ensuring properties like posi-
tivity, monotonicity, and convexity. Consequently, Ribeiro (2011) proposed relevance 
function utilizes the pchip method and aligned with this, the works in the field utilize 
this function.

The relevance function ( � ) is calculated using Piecewise Cubic Hermite Interpolating 
Polynomials (pchip) (Dougherty et  al. 1989) over a set of control points (Algorithm  1). 
The algorithm receives as input the control points (S) with their respective relevance val-
ues (�(yk) ) and derivative (��(yk) ). The condition y1 < y2 < … < ys ensures that the data 
points are ordered in ascending order of their y-values. This ordering is fundamental for 
properly functioning the pchip algorithm. As a result, the algorithm produces a separate 
�(y) polynomial for each interval [yk, yk+1] , with coefficients calculated based on the con-
trol points and their derivatives within that specific interval, where the variable k represents 
the index for the input set S control points.

Algorithm 1  pchip(S): Piecewise cubic Hermite interpolating polynomials

The control points can be defined based on domain knowledge or provided by an 
automated method. When control points are defined based on domain knowledge, 
selecting them is guided by the expertise and understanding of the specific problem 
or dataset. This approach relies on the insights and experience of individuals familiar 
with the data and its context. Ideally, access to domain knowledge for defining control 
points would be preferred. However, this knowledge is often unavailable or nonexistent 
(Ribeiro and Moniz 2020). Therefore, the utilization of an automatic method for control 
point definition becomes necessary. An example of defining control points of the  NO2 
emissions problem based on domain knowledge is presented in Table 1. Control points 
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are determined based on Directive 2008/50/EC. The objective is to maintain the LNO2 
(target) hourly concentration values below a limit equal to ln(150�g∕m3) ≈ 5.0 , indicat-
ing maximum relevance, and the annual average guideline of ln (40�g / m3) ≈ 3.7 , indi-
cating minimal relevance. And the lowest LNO2 concentration value ln (3�g / m3) ≈ 1.1 
is attributed minimal relevance.

In this work, we employ the automatic method, proposed by Ribeiro (2011), to define 
the control points. This method is based on Tukey’s boxplot (Tukey 1970). The Tuk-
ey’s boxplot is a graphical representation used to display the distribution of a dataset 
through its five summary statistics: The adjacent limits adjL (Eq. 1) and adjH (Eq. 2), 
first quartile (Q1), third quartile (Q3) and median Ỹ  (Eq. 3). In turn, the control points 
are defined by the adjacent limits and the median value. The input to the pchip algo-
rithm consists of control points, their relevance and derivatives. For this purpose, to the 
adjacent values ( adjL , adjH ) maximum relevance is assigned, which equals 1, and the 
median value ( ̃Y  ) with relevance value equal to zero. All control points are initialized 
with derivative ��(yk) equal to 0. In addition to defining the control points using Tukey’s 
boxplot, Ribeiro and Moniz (2020) proposes the utilization of the adjusted boxplot, as 
proposed by Hubert and Vandervieren (2008).

where Q1 and Q3 are the first and third quartile, respectively, and IQR = Q3 − Q1.
Figure 2 illustrates the relevance function resulting from the pchip algorithm, for the 

fuelCons dataset. The points approaching Ỹ  have negligible relevance, whereas points 
that move away from Ỹ  and approach adjL or adjH have maximum relevance.

(1)adjL = Q1 − 1.5 ⋅ IQR

(2)adjH = Q3 + 1.5 ⋅ IQR

(3)Ỹ = median of Y

Table 1  Control points of 
LNO2 concentration thresholds 
according to Directive 2008/50/
EC (Ribeiro and Moniz 2020)

yk : LNO2 concentration values �(yk) ��(yk)

Low concentration ln(3�g∕m3) ≈ 1.1 0.0 0.0
Annual mean guideline ln(40�g∕m3) ≈ 3.7 0.0 0.0
Limit threshold ln(150�g∕m3) ≈ 5.0 1.0 0.0

Fig. 2  Relevance function of the 
fuelCons dataset
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Algorithm 2  check_slopes ( Φ,Δ ) Fritsch and Carlson (1980)

The interpolation generates a function that crosses the control points. One of the main 
goals is to learn the correct slopes in the data points such that the interpolant is monotonic 
by parts. To this end, a method that implements the Monotone Cubic Spline (Fritsch and 
Carlson 1980) (line 6) is used. The check_slopes method (Algorithm 2) ensures that the 
derivative is zero when the control point for a maximum or minimum local (Ribeiro and 
Moniz 2020).

A relevance threshold ( tR ) defined by the user is employed to divide the data into rare 
( DR ) and normal ( DN ) values. Given a dataset D, the sets DR and DN are defined consid-
ering the superior and inferior thresholds as follows: DR = {⟨x, y⟩ ∈ D ∶ �(y) ≥ tR} and 
DN = {⟨x, y⟩ ∈ D ∶ 𝜙(y) < tR}.

2.2  Proposed taxonomy

In the context of class imbalanced problems, solutions are often classified into four groups: 
Algorithmic level, Cost-sensitive, Ensemble learning, and Data preprocessing (Galar et al. 
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2011; López et  al. 2013). However, one problem with this classification is that there is 
a significant overlap between the ensemble learning, data preprocessing, and cost-sen-
sitive groups. Ensemble learning approaches can be used in conjunction with any other 
approaches by learning the base models, accounting to target imbalance at the algorith-
mic level, or applying data preprocessing prior to training each base model in the ensem-
ble. Therefore, to better understand the different approaches for dealing with imbalanced 
regression problems, we can categorize the strategies into three main groups: (i) Regres-
sion Models, (ii) Learning Process Modification, and (iii) Evaluation Metrics.

The first group of strategies comprises regression models, such as single models and 
ensembles, which can be used to address imbalanced regression problems. However, their 
performance can be further improved by incorporating data preprocessing, cost-sensitive 
learning, and algorithmic-level modifications. The second group describes these additional 
strategies which can help adjust the learning process to deal with the target imbalance, 
thus leading to better results when compared to using the models alone. The third group 
comprises the evaluation metrics and is divided into local and global subgroups. The local 
metrics require a relevance threshold to distinguish extreme values and conduct a local 
evaluation, and thus, cases with a relevance score lower than the threshold are disregarded. 
Conversely, global metrics do not require a relevance threshold, making a global evalu-
ation, considering all the examples. To conclude, categorizing these strategies into three 
groups can provide a better understanding of the approaches and enable the selection of 
the most suitable strategy for dealing with imbalanced regression problems. As shown 
in Fig.  3, data preprocessing takes the spotlight, which is the main focus of this work. 
Herein, we explore and compare different data preprocessing techniques to improve the 
performance of regression models (single models and ensembles) in imbalanced regression 
problems.

2.2.1  Regression models

Regression models such as MLPRegressor, Linear Support Vector Regression (SVR) and 
decision trees can be used to solve problems with imbalanced regression data, but they 
may not perform well due to the imbalance. In such cases, it may be necessary to utilize 

Fig. 3  Proposed taxonomy for imbalanced regression problems
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other techniques such as data preprocessing or cost-sensitive learning, or to modify the 
algorithm, to address the issue. In the same perspective, ensemble models, such as bag-
ging, boosting, and random forest, can also be utilized in addressing these problems. Solu-
tions based on ensemble learning combined with data preprocessing strategies and cost-
sensitive were proposed. In Branco et  al. (2018) the REsampled BAGGing (REBAGG) 
model was proposed in a bid to integrate data resampling strategies with bagging, and had 
the advantage of generating a diverse set of models taking into account the different ways 
training data are resampled using the Random Under-sampling, Random Over-sampling 
and SmoteR strategies. SMOTEBoost (Moniz et al. 2018) includes a resampling step when 
boosting, where SmoteR is used to direct the distribution of data towards rare cases. In the 
same context, Moniz et al. (2017) carried out a performance study of ensemble methods in 
regression tasks with imbalanced datasets.

2.2.2  Learning process modification

Learning Process Modification refers to the techniques used to modify the training pro-
cess of machine learning algorithms to take into account rare cases. These techniques 
include algorithmic level modification, as well as the cost-sensitive and data preprocess-
ing methods. At an algorithmic level, a model is introduced in Torgo and Ribeiro (2003) 
with new division criteria for the regression trees that allow to induce trees at extreme and 
rare predicted values. Yang et al. (2021) proposed methods aimed at favoring the similarity 
between near targets by applying a kernel distribution to soften the distribution in the target 
and space of attributes. Ribeiro (2011) then addressed a utility-based algorithm involving 
cost-sensitive learning designed with a set of rules extracted from the generation of differ-
ent regression trees aimed at obtaining accurate and interpretable predictions for imbal-
anced regression. Steininger et al. (2021) proposed a density-based weighting approach to 
address the issue of imbalanced regression, building on the cost-sensitive method. This 
approach assigns higher weights to rare cases by taking into account their local densities. 
Finally, one of the most common approaches for treating imbalanced issues is data pre-
processing, also known as resampling or balancing algorithms, which precede the learning 
process, altering the examples distribution. The method works by either removing samples 
from common cases (i.e., under-sampling) or generating synthetic samples for rare events 
(i.e., oversampling). Data processing techniques have the advantage of allowing the use of 
just about any learning algorithm concurrently, without affecting the explicability of the 
model (Branco et al. 2019).

Different resampling strategies have been proposed to deal with imbalanced regression 
problems. Most such techniques are based on existing resampling strategies proposed for 
classification problems. That is the case, for example, of the SmoteR algorithm, which is 
a variation of the Smote (Chawla et  al. 2002) algorithm, with the following main adap-
tations made to adjust to the issue of regression: (i)  the definition of rare cases, (ii)  the 
creation of synthetic examples, and (iii)  the definition of target values for newly gener-
ated examples. Also on the basis of the Smote algorithm, Camacho et al. (2022) proposed 
Geometric SMOTE, which generates synthetic data points along the line connecting two 
existing data points. Other strategies adapted from imbalanced classification are: Random 
Under-sampling (Torgo et  al. 2013), based on the idea of Kubat et  al. (1997); Random 
Over-sampling (Branco et al. 2019), proposed for the classification in Batista et al. (2004), 
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and Introduction of Gaussian Noise (Branco et al. 2019), adapted from Lee (1999, 2000). 
In contrast, the SMOGN (SmoteR with Gaussian Noise) (Branco et  al. 2017) and the 
WERCS (WEighted Relevance-based Combination Strategy) (Branco et  al. 2019) strate-
gies were originally proposed for handling imbalanced regression problems. Furthermore, 
Song et  al. (2022) introduced a distributed version of the SMOGN called DistSMOGN. 
The method uses a weighted sampling technique to generate synthetic samples for rare 
cases, in addition to considering the data distribution in each node of the distributed sys-
tem. For the imbalanced data streams in regression models context, Aminian et al. (2021) 
introduced two sampling strategies (ChebyUS, ChebyOS) based on the Chebyshev inequal-
ity to improve the performance of existing regression methods on imbalanced data streams. 
The approaches use a weighted learning strategy that assigns higher weights to rare cases 
in order to balance the training process.

Each strategy resamples data differently. However, they appear to be based on the same 
principles: reducing normal examples and/or increasing rare examples. Under-sampling, 
which reduces normal examples, is the basis of the Random Under-sampling strategy. In 
contrast, over-sampling, which increases rare examples, can have a simple performance, as 
in Random Over-sampling, or by generating synthetic cases, as in the SmoteR Algorithm 
and Introduction of Gaussian Noise. Other strategies are based on the aforementioned 
models. Examples include the SmoteR with Gaussian Noise (SMOGN), which combines 
the Random Under-sampling strategy with the SmoteR and Introduction of Gaussian Noise 
over-sampling strategies. Also, the WEighted Relevance-based Combination Strategy 
(WERCS) combines the Random Under-sampling and Random Over-sampling strategies 
by using weights to perform the resampling without establishing a relevance threshold.

In our study, we analyze a variety of data preprocessing techniques to optimize the per-
formance of single and ensemble regression models in addressing imbalanced regression 
problems. Our objective is to compare the effectiveness of different approaches in identify-
ing the most suitable strategies for this situation. By carefully assessing these techniques, 
we aim to provide guidance as to how to increase the success rate of regression models 
using data preprocessing techniques in imbalanced regression tasks.

2.2.3  Evaluation metrics

The choice of assessment metrics is fundamental in an imbalanced datasets scenario. Some 
metrics, such as the MSE, may fool users when the focus is on the accuracy of rare values of 
the target variable (Moniz et al. 2014) since it does not consider the relevance of each testing 
example. To show the limitations of the MSE metric and how the scores obtained by different 
metrics can significantly differ, we present a synthetic example (Table 2). For 10 examples in 
the FuelCons dataset, we present hypothetical predictions for two artificial models: M1 and 
M2 . The True row represents the true target for each instance in the dataset, directly obtained 
from the FuelCons dataset. The � row is the relevance value of each example. Meanwhile, 
the M1 and M2 rows showcase predictions generated by the respective models for individual 
test examples. In parallel, the M1 and M2 loss rows quantify the differences between the true 
target and the predictions made by the models for each test example. The example shows that 
M1 generates more accurate predictions for the less relevant examples, which are less repre-
sented in the dataset, while M2 performs better for more relevant examples, which are more 
frequently represented. Nonetheless, if the models’ performances are assessed using the MSE 
metric, there will be no difference in scores between them. This is because the MSE metric 
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considers all examples as having the same relevance ( � ). Therefore, for the imbalanced data 
scenario, where each example has a particular relevance, it is more interesting to use metrics 
that consider the relevance of each particular example.

Other metrics consider each example as having a particular relevance score, such as Preci-
sion, Recall, and the F1-score, which were proposed for regression applications in Torgo and 
Ribeiro (2009). In addition, the Squared error-relevance area (SERA) metric, which was spe-
cifically created for imbalanced regression, was proposed by Ribeiro and Moniz (2020). This 
metric aims to effectively assess the model’s performance for predictions of extreme values 
while being robust to model bias. Table 3 presents the MSE, F1-score, and SERA values for 
the example presented in Table 2. As earlier mentioned, for the MSE, the models are regarded 
as equals since they both have the same error amplitude. Nonetheless, for the F1-score and 
SERA, which consider each example’s relevance, M2 is the best model as it presents a lower 
error in the most important examples.

The Precision, Recall, and F1-score metrics require that a relevance threshold be defined 
to determine extreme values. Thus, a local evaluation is performed, since examples below the 
threshold are ignored. Furthermore, these metrics use the concept of a utility-based framework 
(Torgo and Ribeiro 2007; Ribeiro 2011). Such a structure uses the numeric error of the predic-
tion and the relevance of the actual and predicted values. The utility of predicting a value ŷ 
for y is calculated from the notions of costs and benefits of numeric predictions (Branco et al. 
2019), and thus, the utility function Up

𝜙
(ŷ, y) is given by Eq. 4, where ŷ is the predicted value 

and y is the actual value.

(4)
U

p

𝜙
(ŷ, y) = B𝜙(ŷ, y) − C

p

𝜙
(ŷ, y)

= 𝜙(y) ⋅ (1 − ΓB(ŷ, y)) − 𝜙p(ŷ, y) ⋅ ΓC(ŷ, y)

Table 2  Predictions of two artificial models

True—Target values
�—Relevance values
M1 and M2—Model predictions
M1 Loss and M2 Loss—Prediction errors

Test examples

True 2.70 3.20 3.50 4.10 4.50 4.70 5.20 5.70 9.20 17.30
� 0.00 0.00 0.00 0.00 0.00 0.02 0.57 1.00 1.00 1.00
M

1
2.66 3.14 3.40 3.80 4.00 3.80 4.10 4.40 7.70 15.50

M
1
 loss 0.04 0.06 0.10 0.30 0.50 0.90 1.10 1.30 1.50 1.80

M
2

0.90 1.70 2.20 3.00 3.60 4.20 4.90 5.60 9.14 17.26
M

2
 Loss 1.80 1.50 1.30 1.10 0.90 0.50 0.30 0.10 0.06 0.04

Table 3  Performances of two 
artificial models

Estimated performance

MSE F1-score SERA

M
1

0.955 0.598 7.885
M

2
0.955 0.983 0.076
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The utility is given by the difference between the prediction benefit ( B𝜙(ŷ, y) ) and cost 
( Cp

𝜙
(ŷ, y) ) of prediction ŷ for y. The benefit is defined as a proportion of the relevance of 

the actual value according to the following equation: 𝜙(y) ⋅ (1 − ΓB(ŷ, y)) , where ΓB(ŷ, y) 
is the bounded loss function (Eq. 5). This equation defines a loss function, ΓB(ŷ, y) , which 
quantifies the loss incurred when making a prediction ŷ for the actual value y (Eq. 6). This 
loss function operates on a scale from 0 to 1, where 0 represents no loss, and 1 represents 
maximum loss.

L is a “standard” loss function [e.g., absolute deviation (Eq. 6)] and L̇B is the benefit thresh-
old function, (Eq. 7). The benefit threshold function identifies the point at which the pre-
dicted value ceases to provide a benefit. This can happen because of two conditions: (i) 
surpassing the maximum acceptable loss of the bump or (ii) being situated on a different 
bump (Ribeiro 2011).

where bΔ
�(y)

 is the maximum admissible loss, defined in Eq. 8. The maximum admissible 
loss is calculated for each bump i. A bump refers to a interval of the domain, denoted as 
B ⊆ Y  (Ribeiro 2011). b− is the mean value at which the target variable reaches the mini-
mum relevance before reaching its maximum value, and b∗ is the mean value at which the 
target variable reaches the maximum relevance. The reason for this definition is that this 
function is contingent upon the smallest discrepancy concerning the target variable when 
transitioning from the most pertinent value within a bump ( b∗

i
 ) to an alternative bump. The 

smallest differences regarding the target variable can have two effects on model perfor-
mance. On the positive side, it can make the model more accurate by focusing on the areas 
where predictions must be very close to the actual values. This is useful when you need 
high accuracy in specific parts of the data. Conversely, the model might become too fixated 
on the training data, making it sensitive to unusual data points and not very good at han-
dling new data, leading to overfitting. Consequently, this implies that when dealing with 
“narrow” bumps, our sensitivity to prediction errors is heightened, whereas for broader 
bumps, we are more inclined to deem larger disparities between the actual and forecasted 
values as acceptable (Ribeiro 2011).

Figure  4 shows the bump partition obtained for a relevance function and the maximum 
admissible loss for each bump. This arbitrary relevance function, defined in the context of 
non-uniform utility regression, has four quite different bumps.

And L̈B(ŷ, y)) (Eq. 9) is defined as follows:

(5)ΓB(ŷ, y)) =

{
L(ŷ, y)∕L̇B(ŷ, y), if L(ŷ, y) < L̇B(ŷ, y)

1, if L(ŷ, y) ≥ L̇B(ŷ, y)

(6)L(ŷ, y) = |ŷ − y|

(7)L̇B(ŷ, y) = min{bΔ
𝛾(y)

, L̈B(ŷ, y)}

(8)bΔ
�(y)

= 2 ⋅ min {∣ b−
i
− b∗

i
∣, ∣ b∗

i
− b−

i+1
∣}

(9)L̈B(ŷ, y)) =

{
∣ y − b−

𝛾(y)
∣, if ŷ < y)

∣ y − b−
𝛾(y)+1

∣, if ŷ ≥ y)
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This definition satisfies two essential conditions: (1) The initial component within the min 
function addresses the maximum allowable error range within the true value’s context, 
guaranteeing a level of reasonable accuracy in the prediction; (2) The subsequent compo-
nent within the min function evaluates whether the predicted value aligns with the correct 
action by considering its proximity to the boundaries of the context associated with the true 
value.

The cost is given by the mean of weighted relevance ( 𝜙p(ŷ, y) ) (Eq. 10), where the param-
eter p is used to define the weights between the two relevances and ΓC(ŷ, y) is the bounded 
loss function in the scale [0;1]. This equation calculates the weighted relevance of the pre-
dicted value ŷ and the actual value y. The parameter p defines the weights between these two 
relevances. The intuition here is to balance the predicted value’s importance and the utility 
function’s actual value.

The cost function ΓC(ŷ, y) is calculated according to Eq. 11.

where L is the standard loss function, and L̇C is the cost threshold function (Eq. 12):

and L̈C(ŷ, y)) is defined as follows:

(10)𝜙p(ŷ, y) = (1 − p)𝜙(ŷ) + p𝜙(y)

(11)ΓC(ŷ, y)) =

{
L(ŷ, y)∕L̇C(ŷ, y), if L(ŷ, y) < L̇C(ŷ, y)

1, if L(ŷ, y) ≥ L̇C(ŷ, y)

(12)L̇C(ŷ, y) = min{bΔ
𝛾(y)

, L̈C(ŷ, y)}

(13)L̈C(ŷ, y)) =

{
∣ y − b∗

𝛾(y)−1
∣, if ŷ < y)

∣ y − b∗
𝛾(y)+1

∣, if ŷ ≥ y)

Fig. 4  Bumps partition of Y with respect to relevance function � and the maximum admissible loss in 
bumps. Each bump i is characterized by its partition node b− and by one global maximum b∗ . Each bump 
has a maximum error tolerance defined by the double of the smalles amplitude in the bump between each of 
one of its bounds and its maximum value (Ribeiro 2011)
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Captured using the utility function, the Precision and Recall metrics are defined by Eqs. 14 
and 15, respectively.

The relevance of the actual value yi is defined by �(yi) , as defined in Sect. 2.1, and 𝜙(ŷi) is 
the relevance of the predicted value ŷi . tR is a threshold defined by the user for the relevance 
values, and Up

𝜙
(ŷi, yi) is the utility function previously described.

The Precision and Recall metrics can be aggregated in compound measures, such as 
F1-score, defined by Eq. 16:t

where 0 ≤ � ≤ 1 controls the relative importance of the Recall for the Precision. These 
compound measures have the advantage of allowing comparisons between models by pro-
viding a single score (Torgo and Ribeiro 2009).

These metrics require the definition of an ad-hoc relevance threshold and do not 
consider examples below the threshold for model evaluation (Ribeiro and Moniz 
2020). To address this, Ribeiro and Moniz (2020) proposed the SERA metric.

SERA metric can assess models’ efficacy and optimize them for predicting rare and 
extreme cases. This metric does not require a definition of a relevance threshold and 
thus performs a global evaluation since all data points are considered. The Squared 
error-relevance is obtained in relation to a cutting t achieved based on a relevance 
function � ∶ Y → [0, 1] . A subset Dt = {⟨x, y⟩ ∈ D ∶ �(y) ≥ t} formed based on the cut-
ting t is considered for this estimate, such as in Eq. 17:

The Squared error-relevance area (SERA) represents the area below the curve SERt , 
obtained through integration presented in Eq. 18:

The SERt curve offers a broad view of prediction errors in the domain at various relevance 
cutoff values. Therefore, a smaller area under the curve (SERA) indicates a better model. It 
is noteworthy that assuming uniform preferences with �(y) = 1 , SERA is comparable with 
the sum of squared errors.

(14)Precision =

∑
𝜙(ŷi)>tR

(1 + U
p

𝜙
(ŷi, yi))

∑
𝜙(ŷi)>tR

(1 + 𝜙(ŷi))

(15)Recall =

∑
𝜙(yi)>tR

(1 + U
p

𝜙
(ŷi, yi))

∑
𝜙(yi)>tR

(1 + 𝜙(yi))

(16)F1-score =
(�2 + 1) ⋅ Precision ⋅ Recall

�2 ⋅ Precision + Recall

(17)SERt =
∑

i∈Dt

(ŷi − yi)
2

(18)SERA =

1

∫
0

SERt dt =

1

∫
0

∑

i∈Dt

(ŷi − yi)
2 dt
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3  Resampling strategies

The most common way to deal with imbalanced datasets is to use resampling strategies 
changing the data distribution to balance the targets (Moniz et al. 2017). Such strategies 
are concentrated on the following three main approaches: (i)  over-sampling, (ii)  under-
sampling, and (iii)  a combination of these two approaches. In over-sampling, rare cases 
are generated to compensate for the imbalanced distribution. The Random Over-sampling 
technique (Branco et al. 2019) is an example of such a technique, which works by replicat-
ing rare cases prior to training. However, it is also possible to perform over-sampling by 
generating synthetic cases, as in the SmoteR (Torgo et al. 2013) and Introduction of Gauss-
ian Noise strategies (Branco et al. 2019).

Conversely, under-sampling techniques aim to exclude larger quantity data (i.e., nor-
mal examples). The Random Under-sampling algorithm (Torgo et  al. 2013) uses this 
notion. Some strategies employ a combination of approaches, such as the SmoteR and 
Introduction of Gaussian Noise, which generates synthetic cases and uses under-sampling, 
WEighted Relevance based Combination Strategy (Branco et al. 2019), thus combining the 
approaches of under-sampling and over-sampling. The SMOGN (Branco et al. 2017) uses 
the generation of synthetic cases with SmoteR and GN and under-sampling.

Sections 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 provide an overview of the resampling strategies 
evaluated in this work. These strategies were selected based on their wide adoption in the 
literature. Conversely, other strategies were disregarded due to an absence of publicly avail-
able source code for them, limited reproducibility, and infrequent utilization by researchers 
for diverse problem domains. Finally, Sect. 3.7 critically analyzes the resampling strategies 
with a visual example.

3.1  SmoteR

The SMOTE for regression (SmoteR) algorithm was proposed in Torgo et  al. (2013) 
(Algorithm 3). Like the other methods addressing imbalanced regression issues, it requires 
a relevance function ( �(y) ) and a relevance threshold ( tR ). The relevant or unimportant 
examples are defined from such a function. The algorithm removes the least relevant exam-
ples (lines 4 to 7), which are considered “normal”, and then generates synthetic examples 
based on the most relevant examples (line 8). The generation process basically follows the 
idea in the SMOTE, namely, first selecting one rare case from the dataset as the seed case 
and one of its K-Nearest Neighbors to generate a new data point between the reference and 
its selected neighbor. Algorithm 4 presents the procedure for generating the synthetic cases 
using SmoteR. First the number of synthetic examples that is generated from a selected 
rare case, ng, is determined based on the percentage of over-sampling o determined by the 
user and the dataset cardinality |D| (line 3). Then, for each rare case c that will be used as 
a reference in the generation process, its K-Nearest Neighbors are computed (Line 5) nns. 
After the set of neighbors are obtained, the algorithms execute multiple iterations to gen-
erate ng synthetic examples by picking one of the examples in the nns set at random and 
interpolating with the reference one. This generation process is presented from lines 8 to 
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15, which show how attribute values for the synthetic case are generated. If the attributes 
are numeric, the difference between the attributes of the two seed cases is calculated (line 
10). Subsequently, (line 11) multiplies this difference by a random number between 0 and 
1, and then adds to the example’s attribute. Otherwise, a random selection between the val-
ues of the seed cases is performed. On lines 16 to 18, the value of the target is generated, 
calculated by the weighted average of the two cases. The weights are obtained by the dis-
tance between the new case and the two seed cases (lines 16 and 17). In de Oliveira Branco 
(2018), this strategy is extended, and is able to handle any number of either normal or rare 
cases.

Algorithm 3  SmoteR
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Algorithm 4  Generating synthetic cases

3.2  Random over‑sampling

The Random over-sampling (Branco et al. 2019) strategy, presented in Algorithm 5, works by 
first selecting the examples that are above the relevance threshold tR (line 2) as candidates to 
be duplicated, BinsR . Then, for each bin B belonging to the rare examples BinsR , the number 
of replicas tgtNr generated is defined according to its cardinality |B| and the oversampling per-
centage o (Line 4). The |B| represents the number of elements (data points or examples) con-
tained within that specific bin B. This oversampling percentage is a hyperparameter defined 
by the user. Random sampling is performed on line 5, and the duplicated cases are added to 
the new dataset (newD) on line 6. When performing this algorithm, no special treatment is 
required to generate the target values. As the examples generated are identical to the existing 
rare cases, the duplicated ones have exactly the same target value.
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Algorithm 5  Random over-sampling

Algorithm 6  Random under-sampling

3.3  Random under‑sampling

The Random Under-Sampling strategy (Algorithm 6) was proposed by Torgo et al. (2013). 
In this approach, the under-sampling is performed by first using the relevance function 
(Sect. 2.1) and a relevance threshold tR to define the rare cases in the dataset (line 1). The 
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examples below tR are considered normal, being candidates to be removed from the final 
dataset (Branco et  al. 2016) (line 2), while rare cases are kept. The removal of the nor-
mal examples is thus performed according to an under-sampling rate provided by the user 
u, which defines the percentage of under-sampling applied in the dataset. For each bin B 
belonging to the set of normal examples BinsN , the number of examples removed from it is 
computed based on its cardinality and the percentage of undersampling u (Line 5). Line 6 
performs the under-sampling in B by randomly selecting data points to be removed, result-
ing in a reduced set that is used to compose the final dataset newD.

3.4  Introduction of Gaussian noise

Generating synthetic examples through Gaussian noise (Introduction of Gaussian Noise - 
GN) constitutes an adaptation of the method proposed in Lee (1999, 2000) for classifi-
cation tasks to the regression context. Algorithm  7 presents the GN technique. It starts 
by dividing the dataset into normal cases BinsN and rare cases BinsR according to the rel-
evance function �(y) and the relevance threshold tR (Lines 1 and 2). Examples belonging 
to BinsN (i.e., normal examples) are reduced in size, using the Random under-sampling 
technique (lines 4 to 6). The amount of reduction is controlled by the percentage of the 
under-sampling hyperparameter u defined by the user.

From lines 8 to 20, the over-sampling procedure is performed using the samples in 
BinsR . For each seed case selected and used in the generation process, a total of ng new 
artificial generated examples are added to the dataset. ng is computed based on the per-
centage of the overs-sampling hyperparameter o and the number of examples in the cor-
responding set B ∈ BinsR (Line 9). The artificial cases are generated by introducing a small 
perturbation on both the attributes and the target variable value of the seed case. If the 
attributes are nominal (line 13), the generation is performed with probability proportional 
to the frequency of the values found in the category (lines 14 and 15). Otherwise, for the 
numeric attributes, a random perturbation from a normal distribution is added, as indicated 
on lines 17 and 18, where � is the perturbation amplitude defined by the user and sd(a) is 
the standard deviation of the attribute a estimated using the examples in the category. The 
normal perturbation is also applied to the seed target value in order to generate the target 
value of the newly generated example.
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Algorithm 7  Introduction of Gaussian Noise

3.5  SmoteR with Gaussian noise

The SmoteR with Gaussian Noise (SMOGN - SG) (Branco et  al. 2017) (Algorithm  8) 
combines the Random under-sampling strategy (lines 6 to 9) with two over-sampling 
strategies: SmoteR and Introduction of Gaussian Noise. The goal is to limit the potential 
risks to the SmoteR of generating bad examples when the seed and its selected neighbor 



Resampling strategies for imbalanced regression: a survey…

1 3

Page 21 of 42 82

are not close enough by using the more conservative strategy of just introducing Gauss-
ian noise to generate new cases. These bad examples may not represent of the underlying 
data distribution and can introduce several issues like noise, bias, or inconsistencies into 
the dataset. Moreover, the technique aims to allow for an increase in diversity when gen-
erating examples, which is not feasible by using only the Introduction of Gaussian Noise 
method (Branco et al. 2017). Increasing diversity means producing a comprehensive range 
of examples covering different data distribution aspects. The generated examples should 
not be overly similar or redundant. Instead, they should capture different patterns, varia-
tions, or scenarios present in the data to represent the data distribution comprehensively. 
Thus, SMOGN addresses the main drawbacks of SmoteR and the introduction of Gaussian 
noise techniques.

Line 11 determines the number of synthetic cases ng that will be generated according 
to the percentage of the over-sampling hyperparameter o and the number of existing cases 
in the corresponding bin B. Then, for each seed case in B, its K-Nearest Neighbors and the 
maximum allowed distance to generate new cases with SmoteR are computed (lines13 to 
15). When the seed case and the selected neighbor are “sufficiently near” (i.e., distance 
below the computed threshold maxD), the SMOGN generates new synthetic examples with 
the SmoteR (lines 17 and 18) technique. Otherwise, it uses the Introduction of Gaussian 
Noise method when the distance between the two examples is higher than the estimated 
threshold (lines 20 and 21). The generated data points are then added to the new dataset, 
newD.
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Algorithm 8  SMOGN

3.6  WEighted relevance based combination strategy

The WEighted Relevance-based Combination Strategy (WERCS) strategy (Branco et  al. 
2019) combines biased versions of the under- and over-sampling strategies which depend 
exclusively on the relevance function provided to the dataset without requiring establish-
ing a relevance threshold. Under the WERCS, the relevance function and a modification 
of the relevance are used to attribute weights that are used as inclusion and removal crite-
ria for the examples. Algorithm 9 details this resampling strategy. The over-sampling and 
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under-sampling on lines 4 and 7, respectively, are performed considering weights obtained 
on lines 3 and 6. These weights are calculated based on the relevance function. The weights 
associated with over-sampling WOver are proportional to the relevance function (line 3). 
Therefore, the higher the relevance of a case, the higher its probability of being selected for 
generating new cases. Conversely, the weights associated with under-sampling WUnd are 
inversely proportional to the relevance value (line 6). Thus, normal examples, which are 
usually associated with lower relevance values, have a higher probability of being removed 
rather than used in the generation process. The number of generated and removed samples 
is defined based on the percentage of over-sampling o and under-sampling u, respectively.

Therefore, the main advantage of this technique is that as a relevance threshold is not 
set a priori, each example can participate in both processes. Thus, both under-sampling 
and over-sampling strategies are applied over the entire dataset. Also, the technique elimi-
nates the dependency on the relevance threshold tR that was a key component necessary for 
applying all other resampling strategies reviewed in this work.

Algorithm 9  WEighted relevance-based combination strategy (WERCS)

3.7  Advantages and disadvantages of strategies

The strategies to resample data can have both advantages and disadvantages. Therefore, it 
is crucial to understand the behavior of each strategy. While these strategies can potentially 
enhance learning, they can also impede the learning process of the models. Figure 5 intro-
duces the result of applying the resampling strategies to the FuelCons dataset. The follow-
ing values were attributed to the algorithm’s parameter: u/o = balance and tR = 0.8 (except 
for the WERCS, since it does not require establishing the threshold). The standard values 
were adopted for the remaining parameters. For the visualization, the target values (Y) and 
the attribute (X30) were considered.

Despite selecting the nearest examples to generate new cases, SmoteR still involves 
the risk of the example being too far and of generating an example that does not 



 J. G. Avelino et al.

1 3

82 Page 24 of 42

correspond to the seed very well. This phenomenon is shown in the lower left side 
of Fig.  5b, where the generated examples are far from the original examples. In the 
RO strategy, high percentages of over-sampling may cause an overfitting (Branco 
et  al. 2019) problem. Even though the technique increases the representation of rare 
cases considerably, the generated dataset does not present a high points diversity. The 

Fig. 5  Distribution of the examples of the FuelCons dataset after applying the resampling strategies, con-
sidering t

R
=0.8
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generation process consists in just duplicating existing samples without covering the 
feature space well.

Figure  5c shows the rare data points in darker shade, given that the RO only makes 
copies of the examples. This can therefore lead to learning algorithms overfitting such 
rare examples. In addition, if the replication rate is too high, many duplicate data points 
are added to the dataset which can significantly increase the training time. In contrast to 
the RO, in the RU strategy some meaningful information may be lost due to the removal 
of training data (Fig. 5d), which may hamper the learning of the model. Figure 5e shows 
the result after using the GN strategy, which promotes over-sampling by adding normally 
distributed noise. Once again, in contrast to the RO strategy, examples different from the 
originals ones are generated, and this diversity can help to mitigate overfitting. For the SG 
strategy, even though one of its goals is to reduce the risks seen in SmoteR by creating 
different examples from the original, Fig. 5f shows that there is still a similarity with the 
SmoteR distribution. However, when compared to GN, it is evident that the diversity of 
generated examples is higher in SG. In the WERCS strategy (Fig. 5g), it can be seen that 
the green data points are divided into two groups after the under-sampling, and this result 
can complicate the learning process. The WERCS over-sampling strategy performs simi-
larly to RO, where the generated data are copies of the originals; such as, no new informa-
tion is added to the training set.

The advantages and disadvantages of each resampling strategy are quite evident, as is 
the fact that there is no perfect strategy. We hypothesize that other variables, such as the 
regression model and the dataset under investigation, are required to determine the best 
data resampling strategy. Thus, our research allows to understand the behaviors of these 
strategies with different regression models and problems, which in turn allows to estab-
lish directions for combinations of the three variables, namely, the resampling strategy, the 
regression model, and the dataset.

4  Research methodology

4.1  Datasets

Experiments were performed using 30 imbalanced regression datasets chosen to match the 
frequency generally used in studies looking at imbalanced regression. The levels of imbal-
ance in these datasets are defined from the relevance function (Sect.  2.1). A study con-
ducted by Branco et al. (2019) involved varying the relevance threshold from 0.5 to 1. Nev-
ertheless, the findings showed a complex relationship between the number of rare cases, 
the learning algorithm, and the applied pre-processing strategy. Therefore, our experiments 
considered a commonly used threshold ( tR ) of 0.8, as used in Branco et al. (2017), Branco 
et al. (2019) and Branco et al. (2018). Thus, we obtained datasets with different percent-
ages of rare cases (imbalanced levels), varying between 5.1% and 23.4%. The main features 
of these sets are presented in Table 4. Datasets are presented in descending order in terms 
of the percentage of rare cases (%Rare). It is important to clarify that counting rare cases is 
conducted across the entire dataset, as commonly practiced in the literature. Counting rare 
cases on the entire dataset is crucial for comprehensively understanding their rarity within 
the data context. This approach allows us to analyze the model’s behavior within the origi-
nal context of the dataset. However, resampling strategies are applied only to the training 
set to prevent data leakage during cross-validation. The nominal attributes were codified, 



 J. G. Avelino et al.

1 3

82 Page 26 of 42

transforming the vector of categories into whole values between 0 and the number of cat-
egories−1 . As for the ordinal attributes, a pre-defined order was established (e.g., small: 1, 
medium: 2, large: 3).

For each dataset, the results were calculated by applying two 10-fold cross-validation 
repetitions (i.e., 2 × 10 cross-validation) in order to obtain the mean and standard devia-
tion of the results. Nested cross-validation with 2-fold was employed to optimize the 
hyperparameters of the resampling strategies, specifically utilizing the SERA metric for 
optimization. The SERA metric was chosen to optimize the hyperparameters because 
it was specifically created for imbalanced regression. This metric evaluates models’ 

Table 4  Characteristics of the 30 datasets used in the experiments

N: number of cases; p.total: number of attributes; p.nom: number of nominal attributes; p.num: number of 
numeric attributes; nRare: number of rare cases; Imbalance ratio (IR): |DR

|
|D

N
| ; %Rare: 100 × nRare∕N . Data-

sets are arranged in descending order regarding the percentage of rare cases (%Rare)

Datasets N p.total p.nom p.num nRare IR %Rare

wine-quality 6497 11 0 11 1523 0.306 23.4
analcat-apnea3 450 11 0 11 103 0.297 22.9
meta 528 65 0 65 108 0.257 20.5
cocomo-numeric 60 56 0 56 10 0.200 16.7
Abalone 4177 8 1 7 679 0.194 16.3
a3 198 11 3 8 32 0.193 16.2
forestFires 517 12 0 12 79 0.180 15.3
a1 198 11 3 8 28 0.165 14.1
a7 198 11 3 8 27 0.158 13.6
boston 506 13 0 13 65 0.147 12.8
pdgfr 79 320 0 320 10 0.145 12.7
sensory 576 11 0 11 69 0.136 12.0
a2 198 11 3 8 22 0.125 11.1
kdd-coil-1 316 18 0 18 34 0.121 10.8
triazines 186 60 0 60 20 0.120 10.8
airfoild 1503 5 0 5 161 0.120 10.7
treasury 1049 15 0 15 109 0.116 10.4
mortgage 1049 15 0 15 106 0.112 10.1
debutanizer 2394 7 0 7 240 0.111 10.0
fuelCons 1764 37 12 25 164 0.103 9.3
heat 7400 11 3 8 664 0.099 9.0
california 20640 8 0 8 1821 0.097 8.8
AvailPwr 1802 15 7 8 157 0.095 8.7
compactiv 8192 21 0 21 713 0.095 8.7
cpuSm 8192 12 0 12 713 0.095 8.7
maxTorq 1802 32 13 19 129 0.077 7.2
lungcancer-shedden 442 24 0 24 25 0.060 5.7
space-ga 3107 6 0 6 173 0.059 5.6
ConcrStr 1030 8 0 8 55 0.056 5.3
Accel 1732 14 3 11 89 0.054 5.1
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performance in predicting extreme values, penalizing model biases without requiring 
a threshold, and conducting a global assessment (Ribeiro and Moniz 2020). Unlike the 
F1-score, which conducts a local assessment by considering only rare examples, SERA 
evaluates all examples.

4.2  Algorithms

The experiments were performed with the following learning algorithms: Bagging 
(BG), Decision Tree (DT), Multilayer Perceptron (MLP), Random Forest (RF), Support 
Vector Machine (SVM), and XGBoost (XG). Default hyperparameters were applied for 
these models. For details and descriptions of default hyperparameters and used pack-
ages, refer to Online Appendix A.

As resample techniques, we considered the following strategies: SmoteR (SMT), 
Random Over-sampling (RO), Random Under-sampling (RU), Introduction of Gauss-
ian Noise (GN), SMOGN (SG), and WEighted Relevance-based Combination Strategy 
(WERCS). Details about hyperparameters and packages can be found in Table 5.

4.3  Model evaluation

In imbalanced tasks, choosing the appropriate metrics for model evaluation is essential. 
This work uses the F1-score and SERA metrics to evaluate regression models, allowing 
the evaluation of different perspectives of the model performance. While the F1-score 
metric is based on the concept of utility-based evaluation and performs a local assess-
ment according to the definition of a relevance threshold, the SERA metric evaluates 
the effectiveness of models in predicting extreme values while penalizing several model 
biases without the need for a threshold, and performing a global assessment (Ribeiro 
and Moniz 2020). The results for the RMSE and MAE metrics can be consulted in the 
supplementary material (Online Appendix B) for benchmarking purposes.

Table 5  Resampling strategies, hyperparameters, and packages used

a https:// pypi. org/ proje ct/ Imbal anced Learn ingRe gress ion/—Version 0.0.1
b https:// pypi. org/ proje ct/ smogn/—Version 0.1.2
c https:// pypi. org/ proje ct/ resreg/—Version 0.2

Algorithms Hyperparameters Packages

SMT u/o = {balance, extreme}, k = {3, 5, 7} ImbalancedLearningRegressiona

RO o = {balance, extreme} ImbalancedLearningRegressiona

RU u = {balance, extreme} ImbalancedLearningRegressiona

GN u/o = {balance, extreme},
� = {0.00,0.05,0.10,…,0.95,1.00}

ImbalancedLearningRegression a

SG u/o = {balance, extreme}, k = {3, 5, 7},
� = {0.00,0.05,0.10,…,0.95,1.00}

smogn b

WERCS u, o = {0.3, 0.5, 0.7, 0.9} resregc

https://pypi.org/project/ImbalancedLearningRegression/
https://pypi.org/project/smogn/
https://pypi.org/project/resreg/
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5  Results

The experiments aimed at answering the following research questions: 

1. Is it worth using resampling strategies?
2. Which resampling strategies influence the predictive performance the most?
3. Does the choice of best strategy depend on the problem, the learning model, and the 

metrics used?
4. Does the number of training examples resulting from each strategy influence the results?
5. Do the features of the data (percentage of rare cases, number of rare cases, dataset size, 

number of attribues and imbalance ratio) impact the predictive performance of the 
models?

Tables  6  and 7 show how many times each algorithm obtains the highest value for the 
F1-score and SERA metrics, respectively. Where there is a tie, each of the n tied strate-
gies receives 1/n point. Each row in this table must add up to 30, the number of datasets 
assessed. For both metrics used, we found that the larger number of wins occurs when 
using some of the resampling strategies, which points to an advantage of using such strate-
gies. As highlighted  in bold in the tables,  RO and GN obtained the highest number of 
wins  considering the F1-score, and the GN and WERCS, according to SERA. Another 
point observed is that the choice of best strategy possibly depends on the regression model 
used. As for the metrics, both agree regarding the GN strategy. By observing the score 
by rows, also in Tables 6 and 7, it is clear that there is no general agreement between the 

Table 6  Number of times each 
algorithm and resampling 
strategy achieved the best result 
according to the F1-score metric

None SMT RO RU GN SG WERCS

BG 3 3 13 2 6 3 0
DT 6 5 8 3 6 2 0
MLP 3 4 12 1 3 6 1
RF 2 4 9 6 3 3 3
SVR 1 5 13 1 2 6 2
XG 4.7 1 7 5 5.2 3.2 4
Total 19.7 22 62 18 25.2 23.2 10

Table 7  Number of times each 
algorithm and resampling 
strategy reached the best result 
according to the SERA metric

None SMT RO RU GN SG WERCS

BG 4 3 3 5 4 1 10
DT 4 2 7 6 5 2 4
MLP 2 4 9 1 4 7 3
RF 2 1 4 7 6 2 8
SVR 0 5 1 3 12 5 4
XG 3 1 2 5 8.5 3.5 7
Total 15 16 26 27 39.5 20.5 36
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datasets for a resampling strategy since each point is a dataset, and all of them are distrib-
uted in different strategies. The results per learning algorithm, including mean and stand-
ard deviation, can be accessed in the supplementary material – Online Appendix B.

To identify the best way to preprocess each dataset, Tables 8 and 9 introduce the best 
and worst results for the F1-score and SERA metrics, respectively. The results show that 
most datasets have distinct preferences in terms of combining the best learning model and 
the resampling strategy. This distinction is also found for the metrics used. As for the worst 
results, the SVR and MLP, without preprocessing, is the worst combinations for both met-
rics. Thus, balancing the dataset before applying these models is crucial to reaching more 
promising results. It is also crucial to note the significant difference between the best and 
worst results per problem. So, obtaining good results depends on the correct choice of resa-
mpling strategy and learning model. Unfortunately, the SG strategy failed to perform on the 
california, heat, and wine-quality datasets. These are large datasets, highlighting the poten-
tial challenges in optimizing hyperparameters, rendering the use of this model impractical.

We applied the Friedman test to better measure the advantage of using resampling strat-
egies ( p − value < 0.05 ). The Friedman statistical test was chosen since it can compare 
multiple techniques over several datasets (Demšar 2006). For this measurement, ranking 
sequences are compared. Tables 10 and 11 present the mean ranking of the means of the 
algorithms with a combination of each resampling strategy, considering the F1-score and 
SERA metrics. The lower the ranking, the better the algorithm performance. The algo-
rithms used present significant differences. In general, the best average rank of each algo-
rithm was obtained by using some of the resampling strategies evaluated in this work.

To verify which approaches are statistically different, we applied the Nemenyi post-
hoc test. Figure  6a–f illustrates the critical difference diagrams (Demšar 2006) for each 
of the learning models, considering the F1-score metric. The horizontal line demonstrates 
the significance of the difference between the models. Models that are not connected pre-
sent a significant difference ( p − value < 0.05 ) in relation to the others. This test once 
again confirms that, globally, resampling strategies can significantly improve the regres-
sors’ performance. The Nemenyi test reveals that the RO obtained the best results and the 
most significant differences in relation to None (data without any preprocessing) for the 
metric F1-score. In most cases, the SMT, SG, RU techniques achieve the worst results. 
Figure 7a–f considers the SERA metric; in such a scenario, most of the best results are 
obtained using the GN strategy, followed by WERCS, given the number of times where the 
best results were achieved in the critical difference chart.

Another interesting fact is how different learning algorithms perform when no resam-
pling strategy is applied. In both metrics, the DT model achieved better results with the 
original data sets. Additionally, an interesting aspect involves the ensemble models, Ran-
dom Forest (RF) and XGBoost (XG) obtained better results than single models, corroborat-
ing the analysis conducted in Moniz et al. (2017), which says that ensemble methods pro-
vide a better result than single models. Conversely, the SVR and MLP algorithms obtained 
the worst results, especially when no preprocessing techniques were employed. Thus, it 
can be concluded that these algorithms are the most affected by having an imbalanced tar-
get distribution and require special attention when applied in the imbalanced regression 
context.

As described in Sect. 3, each resampling algorithm uses different heuristics to balance 
the dataset. Figure 8 illustrates the percentage of increase/decrease in the training exam-
ples for each strategy. It was previously concluded that the best results were achieved 
using the RO, GN, and WERCS strategies. The GN and WERCS strategies present a small 
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percentage of 1.28% and 2.83%, respectively. Conversely, the RO presents an increased 
percentage of 1421.1%. Therefore, the influence of the number of examples on the results 
is unclear since the strategies with different percentages of increase/decrease obtained 
good results. Nonetheless, it may be disadvantageous (from a training time point of view) 
to use a strategy, such as the RO, that considerably increases the training set. Other strate-
gies also deliver satisfactory results without excessively increasing the training set. More 
details about the number of instances after the application of the resampling strategies can 
be found in the supplementary material – Online Appendix C.

Figures 9, 10, 11, 12 and 13 present the F1-score results arranged according to some 
dataset characteristics in a bid to assess their impact on the performance of the models. The 
following characteristics were assessed: percentage of rare cases, number of rare cases, 
dataset size, number of attributes, and imbalance ratio. The imbalance ratio is calculated as 
the ratio between the number of rare cases ( DR ) and the number of normal cases ( DN ), i.e., 

Table 8  Best and worst results 
for each dataset based on the 
F1-score metric

a Not completed in a reasonable timeframe

Datasets Best result Worst result

wine-quality 0.738 RF.RO 0.000 SGa

analcat-apnea3 0.233 MLP.NONE 2.00e−5 SVR.NONE
meta 0.435 BG.GN 2.00e−5 SVR.NONE
cocomo-numeric 0.371 RF.RU 1.60e−5 SVR.NONE
Abalone 0.702 RF.RU 1.79e−1 SVR.NONE
a3 0.506 RF.RU 1.95e−5 SVR.NONE
forestFires 0.403 SVR.SMT 2.00e−5 SVR.NONE
a1 0.723 RF.SG 2.00e−5 SVR.NONE
a7 0.411 SVR.RO 2.00e−5 SVR.NONE
boston 0.893 RF.RO 2.00e−5 SVR.NONE
pdgfr 0.229 RF.GN 1.60e−5 RF.SG
sensory 0.672 XG.GN 2.00e−5 SVR.NONE
a2 0.580 RF.RU 2.00e−5 SVR.NONE
kdd-coil-1 0.677 RF.RU 1.90e−5 SVR.NONE
triazines 0.226 RF.WERCS 0.028 RF.NONE
airfoild 0.951 BG.RO 2.00e−5 SVR.WERCS
treasury 0.980 RF.GN 0.777 SVR.NONE
mortgage 0.985 RF.RO 0.834 SVR.NONE
debutanizer 0.901 RF.SMT 0.646 MLP.GN
fuelCons 0.942 XG.GN 0.094 MLP.RU
heat 0.989 XG.RO 0.000 SGa

california 0.902 XG.NONE 0.000 SGa

AvailPwr 0.977 XG.NONE 0.725 SVR.NONE
compactiv 0.528 RF.SG 0.109 MLP.RO
cpuSm 0.526 RF.SMT 0.105 MLP.RO
maxTorq 0.988 XG.WERCS 2.00e−5 SVR.NONE
lungcancer-shedden 0.665 MLP.SG 2.00e−5 SVR.NONE
space-ga 0.802 XG.GN 2.00e−5 SVR.NONE
ConcrStr 0.966 XG.GN 2.00e−5 SVR.RU
Accel 0.961 XG.RO 2.00e−5 SVR.GN
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|DR|
|DN |

 . Each box represents a regression model (BG, DT, MLP, RF, SVR and XG), and each 
point represents a specific set of data, and each line represents a resampling strategy (None, 
SMT, RO, RU, GN, SG and WERCS).

The results presented in Fig. 9 correspond to the same ordering provided in Table 4, 
where the datasets are arranged in decreasing order of the percentage of rare cases. In such 
conditions, it is not possible to find any pattern. Therefore, it is unclear how this aspect 
relates to the model’s performance. Figures 10 and 11 are arranged according to the num-
ber of rare cases and the dataset size, respectively. These circumstances reveal that the 
smaller datasets with a lower number of rare cases represent the hardest tasks, as observed 
in Branco et al. (2019). Figure 12 illustrates the evolution of F1 considering the number 
of attributes in each dataset. In some instances, it is noticeable that datasets with fewer 

Table 9  Best and worst results for each dataset based on the SERA metric

a Not completed in a reasonable timeframe

Datasets Best result Worst result

wine-quality 1.43e+2 RF.WERCS 0.000 SGa

analcat-apnea3 3.93e+7 RF.GN 4.80e+8 SVR.NONE
meta 2.79e+7 MLP.GN 3.83e+7 DT.SG
cocomo-numeric 4.16e+5 XG.SMT 2.91e+6 SVR.NONE
Abalone 1.17e+3 RF.WERCS 2.59e+3 SVR.NONE
a3 3.30e+2 SVR.GN 2.48e+7 MLP.RU
forestFires 1.88e+5 MLP.SG 3.02e+5 DT.GN
a1 1.63e+3 SVR.SG 1.76e+6 MLP.NONE
a7 2.58e+2 XG.RU 2.62e+7 MLP.RU
boston 2.30e+2 BG.WERCS 2.51e+8 MLP.RU
pdgfr 3.86e−2 RF.GN 2.40e−1 DT.WERCS
sensory 1.39e+1 RF.RU 1.16e+2 MLP.SMT
a2 6.91e+2 SVR.GN 2.28e+7 MLP.RU
kdd-coil-1 2.43e+3 SVR.RU 9.09e+3 SVR.NONE
triazines 6.99e−2 RF.RU 3.54e−1 MLP.NONE
airfoild 6.78e+7 XG.RO 2.05e+11 SVR.NONE
treasury 3.08e+0 RF.GN 1.78e+3 MLP.RU
mortgage 1.30e+0 XG.RO 1.70e+2 DT.SG
debutanizer 3.23e−1 RF.SG 2.52e+0 MLP.NONE
fuelCons 1.52e+1 XG.GN 1.32e+7 MLP.RU
heat 6.42e+2 XG.GN 0.000 SGa

california 1.87e+12 RF.RU 0.000 SGa

AvailPwr 4.72e+3 XG.NONE 1.77e+5 MLP.RU
compactiv 1.61e+3 RF.WERCS 6.26e+7 MLP.NONE
cpuSm 2.11e+3 RF.WERCS 5.25e+7 MLP.RO
maxTorq 4.63e+3 XG.GN 1.17e+6 SVR.NONE
lungcancer-shedden 5.75e+1 SVR.GN 2.16e+2 SVR.NONE
space-ga 1.78e+0 XG.WERCS 4.16e+10 MLP.RO
ConcrStr 5.64e+2 XG.WERCS 9.27e+3 SVR.GN
Accel 2.34e+1 XG.GN 7.41e+5 MLP.RU
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Table 10  Average ranking 
(F1-score)

Algorithm Average

RF.RO 10.0
RF.GN 11.8
RF.RU 11.9
XG.RU 12.0
BG.RO 12.2
RF.WERCS 12.4
XG.WERCS 12.8
XG.GN 13.3
BG.RU 13.6
XG.RO 14.6
BG.WERCS 15.5
XG.NONE 15.6
BG.GN 16.0
RF.NONE 17.3
RF.SMT 17.8
XG.SMT 18.4
XG.SG 18.5
BG.NONE 18.8
BG.SMT 18.8
DT.RO 19.3
RF.SG 20.3
DT.NONE 20.4
BG.SG 20.5
DT.RU 20.9
DT.GN 21.0
DT.WERCS 21.1
DT.SMT 22.9
DT.SG 25.1
SVR.RO 26.5
SVR.SMT 26.7
MLP.RO 26.8
SVR.GN 27.6
SVR.SG 28.4
MLP.SMT 29.8
MLP.GN 30.8
SVR.WERCS 31.3
MLP.WERCS 31.7
MLP.SG 31.7
MLP.NONE 32.5
MLP.RU 33.3
SVR.RU 33.8
SVR.NONE 39.6
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Table 11  Average ranking 
(SERA)

Algorithm Average

RF.RU 8.7
RF.GN 10.0
RF.WERCS 10.9
RF.RO 11.3
XG.GN 11.5
XG.WERCS 12.4
XG.RU 12.5
BG.WERCS 13.4
RF.NONE 13.6
XG.SG 13.6
XG.NONE 13.9
BG.RU 14.2
RF.SG 14.3
BG.GN 14.7
XG.RO 14.8
BG.RO 15.4
RF.SMT 15.8
XG.SMT 17.8
BG.NONE 18.3
BG.SG 18.7
BG.SMT 19.6
SVR.SG 23.9
SVR.GN 23.9
DT.GN 26.8
DT.NONE 26.9
SVR.RO 27.1
DT.RU 27.2
DT.RO 27.3
DT.SG 27.4
SVR.RU 27.5
MLP.SG 27.8
SVR.SMT 28.0
DT.WERCS 28.6
MLP.RO 28.7
SVR.WERCS 28.9
MLP.GN 29.4
MLP.SMT 30.4
MLP.WERCS 30.7
DT.SMT 31.4
MLP.NONE 33.9
MLP.RU 35.1
SVR.NONE 36.6



 J. G. Avelino et al.

1 3

82 Page 34 of 42

features exhibit superior performance. Finally, in Fig. 13, the datasets are sorted according 
to their respective imbalance ratios. The regression models with all resampling strategies 
face more significant challenges when dealing with datasets exhibiting higher imbalance 
ratios. This difficulty arises because higher imbalance ratios mean the rare cases are signifi-
cantly underrepresented compared to the normal cases. As a result, the model may struggle 
to learn the underlying patterns and become biased toward the normal cases.

For all the evaluated dataset characteristics, the behavior of the resampling strategies 
is quite similar, resulting in an overlap of the graph’s line. For better clarity, another 
analysis is conducted considering the best F1-score for each dataset. The figures in 
Online Appendix D present the best F1-score for each dataset, considering the data-
set characteristics. With this, we can visualize how the data characteristics affect the 
performance of the top models. The percentage of rare cases does not exhibit a clear 
pattern. Thus, concluding whether this characteristic affects the model’s performance 
is challenging. Regarding the number of rare cases and the dataset size, models achieve 
better performance when there are more rare cases and a larger dataset. When we con-
sider the number of attributes, we observe that a higher number leads to better model 

Fig. 6  Critical difference diagrams for each learning algorithm considering the F1-score metric
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Fig. 7  Critical difference diagrams for each learning algorithm considering the SERA metric

Fig. 8  Percentage of increase/decrease in the training set for each resampling strategy
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performance. As for the imbalance ratio, the higher the imbalance ratio, the worse the 
model’s performance.

Fig. 9  Evolution of the F1-score with datasets sorted by percentage of rare cases

Fig. 10  Evolution of the F1-score with datasets sorted by number of rare cases
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6  Lessons learned

Different approaches have been proposed in a bid to solve the imbalanced problem in the 
context of regression, including resampling strategies. Our research introduced a review 
and an experimental study of the main resampling strategies for dealing with imbalanced 

Fig. 11  Evolution of the F1-score with datasets sorted by size

Fig. 12  Evolution of the F1-score with datasets sorted by number of attributes
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regression problems. In this section, the research questions are revisited and answered 
succinctly. 

1. Is it worth using resampling strategies?
  We answer this question by accounting for the number of times that each strategy 

won (Tables 6 and 7). For both metrics, four of the resampling strategies used won more 
times than when no resampling strategy was used. Furthermore, the Nemenyi post-hoc 
statistical tests performed (Figs. 6 and 7) demonstrate that many resampling strategies 
are statistically better as compared to the absence of a strategy. Therefore, it is advanta-
geous to use (some) resampling strategies.

2. Which resampling strategies influence the predictive performance the most?
  Considering the F1-score metric, the RO and GN strategies positively influenced 

the results of the learning algorithms. As for the SERA metric, the GN and WERCS 
techniques are the best strategies. Statistically, in general, the GN, RO, and WERCS 
strategies held the best results (Figs. 6 and 7). Conversely, in terms of predictive per-
formance, the SMT, SG, RU techniques achieve the worst results..

3. Does the choice of best strategy depend on the dataset, the learning model, and the 
metrics used?

  Most of the datasets used have distinct preferences regarding the combination of 
the best regression model and resampling strategy (Tables 8 and 9). For the regression 
models, different resampling strategies can reach better results. As for the metrics, both 
agree that the GN is a good resampling strategy. Nonetheless, there are cases of disa-
greement between them.

4. Does the number of training examples resulting from each strategy influence the results?
  Given that the best results were obtained using the GN, RO, and WERCS strategies, 

which have different percentages (1.28%, 1421.1%, 2.83%, respectively) of increase/
decrease in the training examples (Fig. 8), the influence of the number of examples on 

Fig. 13  Evolution of the F1-score with datasets sorted by imbalance ratio
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the results is not clear. Nonetheless, it may not be advantageous (from a training time 
point of view) to use a strategy like the RO, which considerably increases the training 
set, as other strategies also deliver equivalent results without this excessive increase.

5. Do the features of the data (percentage of rare cases, number of rare cases, dataset 
size, number of attribues and imbalance ratio) impact the predictive performance of 
the models?

  In the studies performed, the percentage of rare cases did not have a clear impact on 
the results. On the other hand, considering the dataset size and number of rare cases, 
it could be seen that the smaller datasets with fewer rare cases correspond to the most 
difficult tasks. Models demonstrate superior performance in datasets with fewer features. 
Lastly, concerning the imbalance ratio, regression models encounter more significant 
challenges with a higher imbalance ratio. The results for this question are shown in 
Figs. 9, 10, 11, 12 and 13. Online Appendix D presents the evolution of the best F1-score 
for each dataset characteristic, providing a clearer view of the impact of these dataset 
characteristics on model performance.

7  Conclusion

This work reviews and performs a comparative study of data resampling strategies for han-
dling imbalanced regression problems. We reviewed six state-of-the-art resampling strate-
gies for regression based on three approaches: (i) under-sampling, (ii) oversampling, and 
(iii) a mix of undersampling and oversampling, while discussing the advantages and draw-
backs of each existing technique.

Then, we performed an extensive experimental analysis comprised of 6 regression algo-
rithms and 7 scenarios (6 resampling strategies and not using resampling) that can guide 
the development of new strategies to solve the imbalanced regression problem. Our experi-
mental results demonstrate that it is important to use a resampling technique for most mod-
els as resampling techniques lead to statistically better results. The experimental study also 
shows that no resampling technique outperforms all others. Furthermore, choosing the best 
resampling technique depends on three main factors: the learning algorithm, the dataset, 
and the performance metric used to assess the model’s performance.

Further studies should address the recommendation of combining resampling strategies 
with a regression model for each specific dataset. Another element worth addressing is 
the dataset characteristics, which should be investigated through data complexity measures 
(Lorena et al. 2018) in order to assess the adverse effects of these features on prediction 
performance. Moreover, an essential point to address involves proposing a new relevance 
function since currently, only one definition exists. This proposal aims to conduct studies 
and comparisons regarding the definition of an imbalanced regression dataset.
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