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Abstract
Place recognition is a fundamental topic in computer vision and robotics. It plays a crucial 
role in simultaneous localization and mapping (SLAM) systems to retrieve scenes from 
maps and identify previously visited places to correct cumulative errors. Place recognition 
has long been performed with images, and multiple survey papers exist that analyze image-
based methods. Recently, 3D point cloud-based place recognition (3D-PCPR) has become 
popular due to the widespread use of LiDAR scanners in autonomous driving research. 
However, there is a lack of survey paper that discusses 3D-PCPR methods. To bridge the 
gap, we present a comprehensive survey of recent progress in 3D-PCPR. Our survey covers 
over 180 related works, discussing their strengths and weaknesses, and identifying open 
problems within this domain. We categorize mainstream approaches into feature-based, 
projection-based, segment-based, and multimodal-based methods and present an overview 
of typical datasets, evaluation metrics, performance comparisons, and applications in this 
field. Finally, we highlight some promising research directions for future exploration in this 
domain.

Keywords  3D point cloud · Place recognition · LiDAR · Localization · Mapping

1  Introduction

Where am I? Determining the place in a given reference database or map is still an ongo-
ing challenge in computer vision, robotics, and autonomous driving (Masone and Caputo 
2021). Place recognition is a perception-based method that can use images, 3D point 
clouds, and other information acquired by robots to identify previously visited places by 
comparing the similarity between query frame information and map database information. 
Place recognition can help robots improve the accuracy of loop-closure detection by pro-
viding reference places in the environment, that is, using the initial reference places pro-
vided by place recognition to lock the loop-closure area. This eliminates cumulative errors 
and helps to achieve high-precision and reliable simultaneous localization and mapping 
(SLAM). This critical task of place recognition has obtained significant research atten-
tion over the last few decades. Since GPS-based methods may not always be accurate and 
sometimes even completely fail in cities with high-rise buildings and bridges, numerous 
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research efforts are dedicated to developing solutions for image-based and 3D point cloud-
based place recognition.

Image-based place recognition, also known as visual place recognition (VPR), involves 
providing an image of a place and recognizing whether the image corresponds to a previ-
ously visited place (Lowry et al. 2015). Since the camera is the most commonly used sen-
sor for this purpose, conventional image feature extraction algorithms such as SIFT (Lowe 
2004), SURF (Bay et  al. 2006), BRIEF (Calonder et  al. 2010) and ORB (Rublee et  al. 
2011) have been conveniently applied to VPR. Consequently, VPR has received extensive 
attention from researchers, and numerous advancements have been made in the past two 
decades (Lowry et  al. 2015; Zhang et  al. 2021; Masone and Caputo 2021; Barros et  al. 
2021; Yin et  al. 2022). Lowry (Lowry et  al. 2015) defined the “place” concept in their 
survey and discussed how VPR solutions can implicitly or explicitly account for changes in 
the environment’s appearance.

With the advent of deep learning-based image classification methods, recent surveys 
(Zhang et al. 2021; Masone and Caputo 2021) have focused on their application in VPR. 
VPR methods can be classified into two categories, depending on the camera sensor 
modalities used: partial-observable camera and fully-observable camera (Yin et al. 2022). 
The partial-observable camera includes pin-hole, fish-eye, and stereo cameras. Most VPR 
methods and datasets are developed based on this modality (Zaffar et al. 2021). However, 
observing the same area under different perspectives is still a significant challenge in par-
tial-observable camera-based VPR, which may result in significantly different observations 
of the same place. This problem is overcome by fully-observable camera systems which 
provide a 360-degree field of view (Scaramuzza 2014), and have the inherent advantage of 
viewpoint-invariant localization.

Although VPR has achieved great success, its performance is inevitably influenced by 
various environmental factors (Lai et al. 2022), such as lighting conditions, viewpoint vari-
ations, seasonal changes, weather conditions, etc. In contrast to image-based methods, 3D 
point cloud-based place recognition (3D-PCPR) methods utilize range sensors, such as 
LiDAR or RGB-D sensors, to acquire 3D geometric information about the surrounding 
environment. The obtained 3D information is then used to identify whether the place in the 
environment has been visited before. The use of 3D point clouds makes 3D-PCPR more 
robust to changes in lighting, viewpoint, seasons, and weather conditions (Uy and Lee 
2018), enabling SLAM technology to adapt to these challenging scenarios. Driven by the 
recent advancements in point cloud sensor technology, there has been a surge of interest 
among researchers in exploring and advancing 3D-PCPR techniques. This has resulted in 
remarkable advancements in 3D-PCPR (Yin et al. 2018; Uy and Lee 2018; Liu et al. 2019; 
Du et al. 2020; Zhou et al. 2021; Komorowski 2021; Sun et al. 2020; Fan et al. 2020; Xiang 
et al. 2021; Hou et al. 2022; He et al. 2016; Kim and Kim 2018; Kim et al. 2021; Yin et al. 
2020, 2021; Jiang et al. 2020; Schaupp et al. 2019; Chen et al. 2021; Xu et al. 2021; Wang 
et al. 2020; Dubé et al. 2017; Dube et al. 2020; Vidanapathirana et al. 2021; Li et al. 2021; 
Zhu et al. 2020; Lu et al. 2020; Pan et al. 2021; Komorowski et al. 2021; Cramariuc et al. 
2021; Yin et al. 2021; Chen et al. 2020a; Ma et al. 2023).

In the face of such rapid advancements in 3D-PCPR techniques, there is a pressing 
need for a comprehensive and up-to-date survey that encompasses the broader scope of 
3D data sources beyond just LiDAR sensors. While existing surveys (Wang et  al. 2019; 
Elhousni and Huang 2020; Yin et al. 2022, 2023) have made valuable contributions, they 
either focus on specific aspects of 3D-PCPR or provide limited coverage of the topic. For 
example,  Wang et al. (2019) only provide a summary of loop-closure detection methods 
with 3D data sources, but their discussion is confined to a restricted number of methods. 



3D point cloud‑based place recognition: a survey﻿	

1 3

Page 3 of 44  83

Similarly, Elhousni (Elhousni and Huang 2020) provide a brief survey on 3D LiDAR-based 
localization methods, primarily centered around LiDAR-aided pose tracking for autono-
mous vehicles. Yin et al. (2022) conduct a general place recognition survey with a focus on 
real-world autonomy, offering limited coverage of 3D-PCPR methods. Even the recent sur-
vey (Yin et al. 2023) does not cover the topic comprehensively and is restricted to LiDAR-
based global localization topics.

Considering the existing literature, it becomes evident that a comprehensive survey 
specifically dedicated to 3D-PCPR methods, encompassing a broader range of 3D data 
sources, while also giving insights into the limitations of existing methods and highlight-
ing promising future directions to explore in this domain is lacking. This survey covers the 
gap and serves as an invaluable resource for researchers, enabling them to grasp the cur-
rent state-of-the-art, identify research gaps, and drive further advancements in the rapidly 
evolving field of 3D-PCPR.

  Our survey covers more than 180 important works related to place recognition. We 
mainly considered papers published in well-known journals or conferences in the fields of 
robotics, computer vision and artificial intelligence, such as IEEE Transactions on Pattern 
Analysis and Machine Intelligence (TPAMI), International Journal of Computer Vision 
(IJCV), IEEE Transactions on Robotics (T-RO), IEEE International Conference on Intelli-
gent Robots and Systems (IROS), IEEE International Conference on Robotics and Automa-
tion (ICRA), and IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 
Besides that, we also considered some latest preprint papers on arXiv that already gained 
much attention. Based on an extensive and comprehensive literature survey, we propose a 
novel categorization scheme that classifies 3D-PCPR methods into four distinct catego-
ries. By categorizing existing methods and examining each category in detail, our survey 
provides a deeper understanding of the current state of the field and identifies promising 
avenues for future research.

The rest of this article is organized as follows: Sect. 2 briefly introduces the background 
of 3D point clouds, including the acquisition, development, and applications of 3D point 
clouds, etc. Sections 3 to 6 respectively introduce the four categories of 3D-PCPR meth-
ods, namely feature-based, projection-based, segment-based, and multimodal-based meth-
ods, as shown in Fig.  1. Section  7 describes the main datasets, evaluation metrics and 
performance comparisons commonly used in 3D-PCPR. Section 8 introduces related appli-
cations of 3D-PCPR. Particularly, we discuss the future promising research directions of 
3D-PCPR technology. Finally, we conclude our survey in Sect. 9.

2 � Acquisition of 3D point cloud

A point cloud is a set of geometric points situated on the surfaces of 3D objects in Euclid-
ean space. These points are typically captured using 3D sensors like LiDAR, laser scan-
ners, structured light scanners, or Time-of-Flight (ToF) RGB-D cameras. A point pi in 
a point cloud P can be represented by its x, y, and z Cartesian coordinates, denoted as 
P = {pi = (xi, yi, zi)}

N
i=1

 , where N is the number of points in P . In this section, we provide a 
brief overview of the acquisition and applications of 3D point clouds.

The acquisition of a 3D point cloud involves measuring the depth or range of obstacles 
(from the sensor) and then calculating the 3D coordinates and attributes of points in Euclidean 
space (Xu and Stilla 2021). Various sensors are available to acquire 3D point clouds. These 
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sensors are typically grouped as being either active or passive (Lillesand et al. 2015) as shown 
in Fig. 2.

Active sensors include structured light technology (e.g. Kinect-1 Zennaro 2014; Lun and 
Zhao 2015) whereby an infrared light pattern is projected onto the scene and then sensed by 
a camera to measure the 3D distance using the principle of triangulation. Another type of 
sensor is laser scanners (Wang et al. 2020; Vosselman and Maas 2010) that project a single 
light stripe and scan it over the scene to generate dense point clouds, using the triangulation 
principle. ToF principle is used by LiDARs (Wandinger 2005) that transmits and scans mul-
tiple laser beams to generate sparse point clouds of a large scene. Radar (Knott and Skolnik 
2008) sensors also use the ToF principle but they transmit electromagnetic radiation and then 
measure the reflections returned from the target object. Another class of ToF sensors transmit 
a modulated single light (usually IR) and measure the phase difference of the reflected light 
from various points in the scene to measure the time and hence their distance from the sensor. 
Kinect-2 (Fankhauser et al. 2015; Wasenmüller and Stricker 2016) and PrimeSense (Breuer 
et al. 2014; Kuan et al. 2019) sensors use this technology. Only lasers based and radar sensors 
work in outdoor environments due to the strong sunlight. Structured light and ToF sensors are 
designed for indoor use only. These sensors measure the distances to obstacles to compute 
their 3D coordinates, resulting in a point cloud of xyz coordinates.

Passive sensors, such as photogrammetry (Lillesand et al. 2015) and stereo (Beltran and 
Basañez 2014) cameras, capture 3D data of the environments without actively emitting any 
energy. These sensors typically measure the geometry structure of environments using mul-
tiple observations, estimate the depth of objects within the scene through photogrammetric 
approaches such as multi-view geometry, and finally generate point clouds from the 3D recon-
structions. In addition to 3D coordinates, a point cloud can also contain other information 
such as intensity and color, and normal vectors can be calculated using the local neighborhood 
geometry (Chen et al. 2020a, b). We show more details of different sensors in Table 1.

Early 2D laser scanners (Thrun 2002), also known as single-line LiDAR, have a single-
line beam emitted by the laser source to generate low-resolution 2D planar scans. Due to its 
simple structure and high reliability, it has been widely studied and used in real-world robots 
(Hess et al. 2016; Kuang et al. 2023). However, 2D laser scanners can only perform plane 
scanning and generate low-resolution point cloud information, limiting its use for place rec-
ognition (Zhang and Ghosh 2000; Olson 2009; Zimmerman et al. 2023). The development of 
sensor technology has promoted point cloud sensing from 2D to 3D. Compared to 2D scans, 
3D point clouds present more information for robots to better understand their surroundings. 
Therefore, 3D sensors have developed rapidly in the past three decades.

3D point cloud data finds applications in many fields (Guo et al. 2020), including computer 
vision, autonomous driving, robotics, remote sensing, medical treatment, cultural relic recon-
struction, etc. The rest of this article will mainly discuss research and applications of 3D point 
clouds in place recognition.

3 � Feature based methods

We show a chronological overview of the four main categories of 3D-PCPR methods in 
Fig.  3. As depicted, feature-based approaches are fundamental methods for 3D-PCPR. 
The main idea of these methods is to extract features from the 3D point clouds and then 
match such features to perform subsequent place recognition. We divide the feature-based 
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methods into two categories: hand-crafted feature-based methods and deep learning fea-
ture-based methods.

3.1 � Hand‑crafted feature‑based methods

Hand-crafted feature-based methods have been extensively researched for several decades, 
resulting in significant advancements in 3D-PCPR. These advancements have played a 
crucial role in driving the continuous development of this field. Magnusson et al. (2009a, 
2009b) conducted early research inspired by NDT (Biber and Straßer 2003) and proposed 
a loop detection approach based on surface shape and orientation histograms using only 
3D point cloud data. The main idea behind their method is to calculate the similarity of 
two scans from the histogram of the NDT descriptors and achieve good recall rates at low 
false negative (For more detailed description about recall and false negative, please refer to 
Sect. 7.2) in environments with different characteristics.

Steder et al. (2010) presented a robust approach for 3D place recognition using range 
data. Their method uses interest feature points and scores candidate transformations. 
Although this method produces accurate relative pose transformations between two scans 
and has high recognition rates, it cannot achieve real-time performance and orientation 
invariance. To overcome these shortcomings, they later proposed another method (Steder 
et  al. 2011) using a combination of a bag-of-words and a point-feature-based estimation 
of relative poses, which is more efficient and rotational invariant compared to the former 
approach.

A loop closure detection method using small-sized signatures from 3D LiDAR data was 
presented by Muhammad and Lacroix (2011). This method extracts histogram-based sig-
natures from 3D LiDAR data and uses them for loop closure detection. These features are 

Raw 3D point cloud
Four Main Categories and 

Research Trends

Feature Based Projec�on Based Segment Based Mul�modal Based

Hand-cra�ed Feature

Local Feature-based

2D Planes-based

2D Images-based

Post-segment Feature

Seman�c-based

Camera-LiDAR

Radar-LiDAR

Bird-eye View-based Graph-based

Pose or Loop Candidates

Deep Learning Feature
Global Descriptor-based

Future Poten�als

Sequence Frames

Long-term Learning

Cross-Modal

Global MetricMul�-view Fusion

Fig. 1   Four categories of 3D-PCPR methods namely feature-based, projection-based, segment-based, and 
multimodal-based, as well as future research trends
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based on histograms of local surface normals for 3D point clouds. To design a 3D-PCPR 
method recognizing complex indoor scenes and tackling moving objects’ disturbance effec-
tively, Zhuang et al. (2012) proposed an approach that can extract and match the Speed Up 
Robust Features (SURF) (Bay et al. 2006) from bearing-angle images generated by a self-
built rotating 3D laser scanner. Using both the local SURF features and the global spatial 
features, their place recognition framework has shown validity and robustness in dynamic 
indoor environments.

Collier et al. (2012) presented a LiDAR-based place recognition system that can extract 
highly descriptive features called the variable dimensional local shape descriptors from 
3D point cloud data to encode environmental features. Their system can run on a military 
research vehicle equipped with a highly accurate, 360-degree field of view LiDAR and 
detect loops regardless of the sensor’s orientation.

Bosse and Zlot (2013) presented a noteworthy method for place recognition in large 3D 
point cloud datasets, utilizing keypoint voting. This approach involves extracting keypoints 
directly from the 3D point cloud and describing them using handcrafted 3D gestalt descrip-
tors. The keypoints then vote to their nearest points, and based on the resulting scores, 
loops are detected.

Röhling et al. (2015) proposed a fast histogram-based similarity measure for detecting 
loop closures in 3D point cloud data. Their method can avoid computationally expensive 
features and compute histograms from simple global statistics of the LiDAR scans. Hence, 
high precision and recall rates are achieved in a computationally efficient manner.

Another fast, complete, 3D point cloud-based loop closure for LiDAR odometry and 
mapping method was proposed by  Lin and Zhang (2019). They compute 2D histograms of 
local map patches and then use the normalized cross-correlation of the 2D histograms as 
the similarity metric. This method selects some keyframes from the LiDAR input and the 
offline map, and can quickly evaluate the similarity between keyframes to form a relatively 
simple and practical system for place recognition. However, this method is mainly based on 
a small field of view and does not propose a very effective calculation method for relative 
pose estimation between the keyframes.

3.2 � Deep learning feature‑based methods

The rapid advancement of technological innovations along with the proliferation of big 
data and the exponential enhancement of computational capabilities, has significantly 
propelled the widespread adoption of deep learning techniques (LeCun et  al. 2015) in a 

Ac�ve Sensors Passive Sensors

3D Point Cloud Sensors

LiDAR Laser Scanner Photogrammetry Stereo CameraRadar

Fig. 2   Common 3D point cloud acquisition sensor types along with sample acquired point clouds
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myriad of domains. In this section, we discuss some deep learning feature-based methods 
in 3D-PCPR. These methods mainly learn from the raw 3D point clouds to extract features 
that are useful for performing subsequent place recognition.

In the absence of any prior knowledge, the task of 3D point cloud-based global localiza-
tion poses a formidable challenge. To tackle this issue, Yin et al. (2018) proposed a semi-
handcrafted approach that leverages siamese LocNets for representation learning from 
LiDAR point clouds. By employing LocNet representations in the Euclidean space, a cru-
cial global prior map can be constructed, which helps in enhancing robustness. Nonethe-
less, achieving global localization in dynamic environments remains a daunting task even 
with their method. The inherent disorderliness of point clouds complicates the extraction 
of local features, making the encoding of these features into global descriptors for address-
ing the 3D-PCPR problem more challenging.

  Uy and Lee (2018) proposed a deep learning network called PointNetVLAD (see 
Fig. 4) to extract local features using PointNet (Qi et al. 2017) which are then passed to 
NetVLAD (Arandjelovic et al. 2016) to generate the final discriminative global descriptor. 
This work presents the first end-to-end trainable network for extracting global descriptors 
directly from raw 3D point clouds. However, PointNetVLAD overlooks the spatial distri-
bution of similar local features, which is of significant importance in capturing the static 
structural information in expansive dynamic environments. To address this limitation, Liu 
et al. (2019) presented LPD-Net, which can extract more discriminative and generalizable 
global descriptors by employing an adaptive local feature extraction module and a graph-
based neighborhood aggregation module for extracting local structures and revealing the 
spatial distribution of local features within large-scale point clouds.

For implementing practical vehicle platforms that possess limited computing and stor-
age resources, the author proposed SeqLPD (Liu et al. 2019), a lightweight variant derived 
from LPD-Net. SeqLPD aims to tackle the place recognition problem by integrating deep 
learning-based point cloud description and a coarse-to-fine sequence matching strategy, 
resulting in notable improvements in loop closure detection. Despite the success of LPD-
Net, it is still resource-intensive. In an effort to enhance performance while mitigating 
resource demands,  Hui et al. (2022) proposed EPC-Net, an efficient point cloud learning 
network specifically designed for 3D-PCPR tasks. EPC-Net achieves commendable perfor-
mance while effectively reducing memory requirement and inference time.

 Yin et  al. (2018) proposed an end-to-end framework that utilizes low-dimensional 
feature matching instead of geometry matching for LiDAR-based long-term place rec-
ognition. This approach combines dynamic octree mapping and place feature inference 
modules and the feature learning is performed in a fully unsupervised manner. In the 
aggregation of local features into a global descriptor, it is important to reweigh the 

Robust PR
Steder et al.

Keypoint Vo�ng 
PR (Bosse et al.)

M2DP 
(He et al.)

SegMatch 
(Dube et al.)

PointNetVLAD 
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Fig. 3   Chronological overview of the four main categories of 3D-PCPR methods. Each category of repre-
sentative methods is marked with different colors
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contributions of each local point feature, thereby allocating greater attention to regions 
that are more relevant to the task. Drawing inspiration from this concept,  Zhang and 
Xiao (2019) proposed the Point Contextual Attention Network (PCAN), which leverages 
point context to predict the significance of individual local point features, offering an 
efficient means to encode the local features into a discriminative global descriptor.

Indoor place recognition represents an important yet relatively less explored area. 
The SpoxelNet (Chang et  al. 2020) neural network architecture was proposed as a 
3D-PCPR method tailored for crowded indoor spaces. SpoxelNet effectively encodes 
input voxels into global descriptor vectors. The method involves voxelizing point clouds 
in spherical coordinates and defining voxel occupancy through ternary values. Spoxel-
Net has been evaluated on diverse indoor datasets, yielding promising results for the 
task of place recognition.

 Du et al. (2020) proposed DH3D, the first approach that unifies global place recognition 
and local 6DoF pose refinement. DH3D incorporates a deep hierarchical network and uti-
lizes NetVLAD to generate more discriminative global descriptors. However, the obtained 
descriptors lack rotational invariance and often exhibit shortcomings in reverse revisits. 
Zhou et  al. (2021) introduced NDT-Transformer, a real-time and large-scale 3D-PCPR 
method. Taking inspiration from the success of the NDT (Biber and Straßer 2003) and 
Transformer (Vaswani et al. 2017) models, NDT-Transformer condenses raw point clouds 
through 3D NDT representation and subsequently learns global descriptors through a novel 
NDT-Transformer network. Notably, this approach obviates the need for handcrafted fea-
tures and can serve as a crucial module in real-time SLAM systems.

Acquiring high-quality point cloud data along with ground truth registration in real-
world scenarios for training place recognition models is time-consuming and resource-
intensive.  Qiao et al. (2021) address this problem by proposing a novel registration-aided 
3D domain adaptation network named VLPD-Net (Virtual Large-Scale Point Cloud 
Descriptor Network) for 3D-PCPR. Recognizing the importance of the neighborhood con-
text of each point, the method takes into account the tactical contributions of different local 
features, which may vary unevenly.  Xia et al. (2021) adopted a point orientation encod-
ing module to capture neighborhood information from various orientations. Additionally, 
a self-attention unit is employed to encode the spatial relationships of local features for 
weighted aggregation. This end-to-end architecture enables one-stage training, generating 
a discriminative and compact global descriptor directly from a given 3D point cloud by 
exploring the relationships between raw 3D point clouds and the varying importance of 
local features to perform large-scale 3D-PCPR tasks.

Existing PointNet-like methods primarily process unordered point clouds and may 
not adequately capture local geometric structures. Consequently, a large-scale 3D-PCPR 
method named MinkLoc3D was introduced by Komorowski (2021). MinkLoc3D leverages 
a sparse voxelized point cloud representation and sparse 3D convolutions to compute a 
discriminative 3D point cloud descriptor, as depicted in Fig. 5. The efficacy of this method 
can be attributed to two key factors. Firstly, the sparse convolutional architecture effectively 
generates informative local features. Secondly, enhancements in the training process facili-
tate efficient and effective training by accommodating larger batch sizes. However, Min-
kLoc3D solely utilizes the geometry of 3D point clouds for place recognition. To address 
this limitation, the author proposed MinkLoc3D-SI (Żywanowski et al. 2021), which inte-
grates both spherical representation and measurement intensities. MinkLoc3D-SI improves 
performance when a single 3D LiDAR scan is used. Experimental results demonstrate the 
superior performance of MinkLoc3D-SI on single scans from 3D LiDAR and its excellent 
generalization ability.
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Komorowski (2022) has recently proposed an improved 3D-PCPR method that incor-
porates a ranking-based loss and large batch training technique. This method employs 
a simple and efficient 3D convolutional feature extraction process to enhance channel 
attention blocks. The network architecture is an advancement over the MinkLoc3D 
Komorowski (2021) point cloud descriptor and surpasses the performance of most 
recent methods with more complex architectures.

However, many existing algorithms tend to overlook long-range contextual properties 
and exhibit large model sizes, thereby limiting their widespread applicability. To over-
come these challenges,  Fan et  al. (2022) introduced SVT-Net, which is a lightweight 
sparse voxel transformer designed for large-scale 3D-PCPR tasks. To mitigate issues 
related to moving objects, size disparities among objects, and long-range contextual 
information,   Xu et  al. (2021) proposed TransLoc3D, another large-scale 3D-PCPR 
method that employs adaptive receptive fields. TransLoc3D achieves impressive results 
across multiple datasets, including Oxford RobotCar (Maddern et al. 2017), USRABD 
dataset(including a university sector (U.S.), a residential area (R.A.), and a business dis-
trict (B.D.)) (Uy and Lee 2018).

Sun et al. (2020) proposed DAGC that leverages dual attention and graph convolution 
techniques to perform 3D-PCPR. The dual attention and residual graph convolution net-
work modules contribute to the extraction of discriminative and generalizable features 
for describing a point cloud. By simultaneously considering the importance of points 
and features, DAGC utilizes the point relationships to extract local features, which are 
subsequently passed through a feature fusion block to generate global descriptors by a 
NetVLAD (Arandjelovic et al. 2016) module. Whereas DAGC effectively captures the 
relationship between points and the discriminative power of different features in gener-
ating global descriptors, it does not account for the spatial relationships between local 
features nor the long-range dependence of different features.

To take full advantage of the contextual semantic features of the scene and mitigate 
the influence of dynamic noise, such as moving cars and pedestrians,  Fan et al. (2020) 
proposed SRNet, a 3D scene recognition network using static graphs and dense seman-
tic fusion. SRNet comprises Static Graph Convolution, a Spatial Attention Module, and 
Dense Semantic Fusion. These modules help the network learn a deep understanding 
of the contextual scene semantics. After obtaining naive embedded features, the final 
global descriptors used for recognition are aggregated by an additional NetVLAD mod-
ule. Benefiting from strong local feature learning, contextual semantics understanding, 
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and dynamic noise avoidance capabilities, combined with network flexibility, SRNet 
can be easily integrated into other point cloud architectures for tasks beyond place 
recognition.

Most existing algorithms struggle when dealing with reverse loops.   Cattaneo et  al. 
(2022) proposed LCDNet for simultaneous deep loop closure detection and point cloud 
registration in LiDAR-based SLAM. LCDNet leverages a shared encoder and two heads 
for generating global descriptors and estimating the relative pose, enabling simultaneous 
identification of previously visited places and estimation of the 6-DoF relative transfor-
mation between the current scan and the map. Considering the sparsity of point clouds, 
Hui et al. (2021) proposed PPT-Net, a pyramid point cloud transformer network designed 
for large-scale place recognition. PPT-Net extracts discriminative local features to form a 
global descriptor. It incorporates a pyramid point transformer module, which adaptively 
learns the spatial relationships among different KNN neighboring points, and a pyramid 
VLAD module, which aggregates the multi-scale feature maps of point clouds into com-
prehensive global descriptors.

 Habich et al. (2021) proposed an extension of graph-based SLAM to exploit the poten-
tial of 3D laser scans for loop detection. Their method extracts global features from the 
point cloud and then uses a trained detector to determine the presence of a loop. Their 
algorithm is considered an extension of the widely used state-of-the-art RTAB-Map (Labbé 
and Michaud 2019) library. In the domain of indoor LiDAR mobile mapping, Xiang et al. 
(2021) proposed FastLCD, a compact and efficient method for precise loop closure detec-
tion using comprehensive descriptors such as statistics, geometry, planes, range histo-
gram, and intensity histogram. These features are invariant to rotation and are encoded to 
uniquely describe each point cloud scan, making FastLCD a feasible and reliable loop clo-
sure detection algorithm.

Hou et  al. (2022) introduced a novel Hierarchical Transformer for Place Recognition 
(HiTPR), specifically designed to address the challenges of LiDAR-based large-scale place 
recognition such as robustness and real-time performance. HiTPR avoids the use of the 
memory-intensive and inefficient approach of global information aggregation through Net-
VLAD (Arandjelovic et al. 2016). HiTPR comprises four main components namely, point 
cell generation, short-range transformer, long-range transformer, and global descriptor 
aggregation, enabling HiTPR to achieve superior performance in terms of average recall 
rate.
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Many existing methods fail to produce consistent descriptors for the same scene under 
different viewpoints, making rotation invariance crucial. Therefore,  Li et  al. (2022) 
designed an efficient 3D LiDAR-based place recognition using a rotation invariant neu-
ral network that exploits the fact that autonomous robots generally rotate only in the yaw 
direction. Their method combines semantic and geometric features to improve descriptive-
ness and employs a rotation-invariant siamese neural network to predict the similarity of 
descriptor pairs. To acquire more repeatable global descriptors and improve performance 
in 3D place recognition, Vidanapathirana et al. (2022) presented an end-to-end trainable 
locally guided global descriptor learning network (LoGG3D-Net) for 3D-PCPR.  To tackle 
both tasks of loop closing and relocalization,  Shi et al. (2023) proposed a novel multi-head 
network namely LCR-Net. Based on the input 3D point clouds, the method utilizes a novel 
feature extraction and pose-aware attention mechanism to accurately estimate the similari-
ties and 6-DoF poses between pairs of LiDAR scans.

Compression techniques have become popular to store large-scale point cloud maps 
(Golla and Klein 2015; Huang and Liu 2019; Wiesmann et al. 2021). To address the prob-
lem of place recognition in a compressed point cloud map, Wiesmann et al. (2022) pre-
sented Retriever, a novel deep neural network architecture that directly operates on com-
pressed feature representation, then uses a NetVLAD (Arandjelovic et  al. 2016) layer to 
aggregate local features with an attention mechanism between local features and a latent 
code.

3.3 � Summary

In summary, feature-based methods are the most common methods in 3D-PCPR. Their 
main idea is to directly use hand-crafted or deep learning-based methods on 3D point 
clouds to extract local or global features, then similarity matching is performed on the 
extracted point cloud query features and 3D reference map features, and finally achieve 
the task of subsequent place recognition. The hand-crafted place recognition methods 
have good interpretability and high computational efficiency. Representative algorithms 
include AL3D (Magnusson et al. 2009a), Robust PR (Steder et al. 2010), Keypoint Voting 
PR (Bosse and Zlot 2013), etc. However, they are unable to extract all relevant features 
from 3D point clouds. On the other hand, deep learning features-based place recognition 
methods have gained more popularity as they can automatically learn and characterize rel-
evant features from the raw 3D point clouds. Deep learning feature-based place recogni-
tion methods can be divided into local feature-based methods and global descriptor-based 
methods. Local feature-based methods, such as LPD-Net (Liu et al. 2019), PCAN (Zhang 
and Xiao 2019), PPT-Net (Hui et  al. 2021), MinkLoc3D (Komorowski 2021), etc., first 
extract local features based on pointnet-like (Qi et al. 2017) methods, and then aggregate 
them into global descriptors through VLAD-like (Arandjelovic et  al. 2016) methods for 
subsequent place recognition. Global descriptor-based methods generally use transformer-
like (Vaswani et al. 2017) methods to directly represent global features from the raw 3D 
point clouds, such as NDT-Transformer (Zhou et al. 2021), LCDNet (Cattaneo et al. 2022), 
RINet (Li et al. 2022), etc. Overall, deep learning feature-based place recognition methods 
have achieved advanced performance, such as HiTPR (Hou et  al. 2022), MinkLoc3Dv2 
(Żywanowski et al. 2021), etc. However, the point cloud features they extract are not easy to 
interpret (Minh et al. 2022) and require a large amount of training data and powerful com-
puting hardware (Han et al. 2023). Nonetheless, feature-based place recognition methods, 



3D point cloud‑based place recognition: a survey﻿	

1 3

Page 13 of 44  83

especially end-to-end deep learning based 3D-PCPR methods, will remain the preferred 
research direction in the foreseeable future due to their state-of-the-art performance.

4 � Projection based methods

Projection-based methods are another category of methods in 3D-PCPR where the main 
idea is to project the raw 3D point clouds to 2D planes, 2D images, or bird-eye view (BEV) 
information. These projections are then subsequently processed to achieve place recogni-
tion. In this section, we discuss the projection-based methods by dividing them into three 
categories: 2D planes based methods, 2D image-based methods, and bird-eye view-based 
methods.

4.1 � 2D Planes based

The 2D planes based 3D-PCPR methods involve an initial step of projecting the raw 3D 
point cloud onto a 2D representation which is then utilized for subsequent place recogni-
tion tasks. A pioneering approach in this domain is M2DP (He et  al. 2016), which pro-
jects a 3D point cloud onto a sequence of 2D planes that capture various viewpoints of the 
cloud. By characterizing the point projections, M2DP extracts multiple density distribu-
tions or signatures from a single point cloud.

Scan Context (Kim and Kim 2018) is an egocentric spatial descriptor, which summa-
rizes a place as a plane matrix for 3D-PCPR and offers robustness to structural changes 
such as dynamic objects and seasonal changes, as shown in Fig. 6. It projects the maximum 
height of the point cloud in different bins to generate a 2D global descriptor. However, 
using only the maximum height information does not offer much invariance in the lateral 
direction. It also uses brute-force search which is highly inefficient. Wang et al. (2020) pro-
posed another method called Intensity Scan Context (ISC) which codes intensity informa-
tion and geometry relations for loop closure detection. It explores the intensity information 
properties for place recognition and to reduce the computational cost, it performs a two-
stage hierarchical re-identification process including a binary-operation-based fast geomet-
ric relation retrieval and an intensity structure re-identification.

Cai and Yin (2021) introduced a robust global descriptor, known as Weighted Scan 
Context (WSC), for 3D-PCPR by leveraging the enhanced information provided by inten-
sity data in comparison to sparse height features. WSC employs the intensity information 
of the points to sparsify geometric features in the height direction. Furthermore, it utilizes 
a hybrid distance metric that combines cosine distance and Euclidean distance to quantify 
the similarity between two scenes. This integration of distance metrics reduces the sensi-
tivity typically associated with cosine distance and enhances the overall performance of 
the method. Due to the absence of a unified reference frame and the usage of a simplified 
vector instead of a complete matrix in Scan Context, Shi et al. (2021) introduced a robust 
global place recognition method by enhancing the Scan Context approach. Their improved 
Scan Context employs a three-stage matching algorithm, which effectively enhances the 
performance of place recognition. To further advance the concept of a rotation invari-
ance introduced by Scan Context, Kim et  al. (2021) proposed Scan Context++ (SC++) 
which is capable of generating a versatile descriptor that is resilient to rotation and transla-
tion. SC++ extends the capabilities of its predecessor by incorporating two sub-descrip-
tors, enabling topological place retrieval, and facilitating 1-DOF semi-metric localization 
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thereby bridging the gap between topological place retrieval and metric localization. An 
additional benefit is that SC-like methods can easily integrate into existing LiDAR-based 
SLAM systems (Kim et al. 2022).

To recognize places by analyzing the projection of observed points along the gravity 
direction, Sánchez-Belenguer et  al. (2020) proposed a robust global matching technique 
specifically designed for 3D mapping applications. By leveraging a global projection direc-
tion, the method introduces a matching algorithm that effectively compares places in a two-
dimensional (2D) space and retrieves the corresponding relative three-dimensional (3D) 
transformations between maps.

 Yin et al. (2020) proposed SeqSphereVLAD for orientation-invariant 3D-PCPR. This 
method can recognize places from previous trajectories regardless of variations in view-
point and temporal observation differences. SeqSphereVLAD achieves this by projecting a 
3D point cloud onto a spherical view to extract place descriptors which are then utilized in 
a coarse-to-fine sequence matching module designed to enhance the accuracy of 3D-PCPR. 
To achieve viewpoint-invariant 3D-PCPR while simultaneously balancing matching accu-
racy and search efficiency, Yin et al. (2021) introduced a fast sequence-matching enhanced 
viewpoint-invariant 3D-PCPR framework. This framework comprises two key modules: a 
spherical harmonic place descriptor extraction (SphereVLAD) and fast sequence matching. 
By leveraging this framework, the authors aimed to emulate human-like place recognition 
abilities by employing a novel 3D feature learning method. The SphereVLAD module is 
responsible for extracting unique place descriptors using spherical harmonics, while the 
fast sequence matching module focuses on efficient and accurate sequence matching.

  Jiang et  al. (2020) introduced LiPMatch for 3D LiDAR point cloud-based loop-clo-
sure detection and loop-closure correction. LiPMatch formulates each keyframe as a fully 
connected graph, where nodes represent planes. The method constructs a plane graph for 
each keyframe and leverages the geometric properties of the planes and their relative posi-
tions to detect loop closures. By identifying matched planes between keyframes, LiPMatch 
enhances the accuracy and robustness of SLAM algorithms, thereby improving the overall 
performance of the system.

To overcome the limitations of existing methods in terms of real-time loop recognition 
and full 6-DoF loop pose correction,  Cui et al. (2023) introduced BoW3D, a novel bag-of-
words approach for 3D LiDAR SLAM. BoW3D addresses these challenges by leveraging 
the LinK3D (Cui et al. 2024), which is an efficient, pose-invariant, and accurate point-to-
point matching method specifically designed for 3D LiDAR data. By building a bag-of-
words representation based on LinK3D, BoW3D efficiently recognizes revisited loop loca-
tions while also enabling real-time correction of the full 6-DoF loop pose.

4.2 � 2D Images based

The 2D images based methods in 3D-PCPR first project the raw 3D point clouds to 2D 
images, and then use the 2D images for place recognition. A notable method in this cat-
egory was proposed by  Cao et al. (2018), which accomplishes loop closure detection for 
SLAM. This method adopts an image model named Bearing Angle (BA) to convert 3D 
laser point clouds to 2D images. It then utilizes the ORB features (Rublee et  al. 2011) 
extracted from BA images to perform scene matching and uses a visual Bag of Words 
(BoW) approach (Angeli et  al. 2008; Gálvez-López and Tardos 2012) to improve the 
search efficiency. However, the performance of this method in large-scale unstructured 
environments has not been fully verified.
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Cop et al. (2018) introduced DELIGHT, a highly efficient global localization descriptor 
that solely relies on LiDAR data without requiring robot motion information. This pioneer-
ing work leverages the LiDAR intensity image data and encodes it into a unique descrip-
tor comprising a collection of histograms. DELIGHT stands out as the first solution that 
offers a near real-time approach to global localization by utilizing global intensity descrip-
tors.  Guo et al. (2019) introduced ISHOT, a local descriptor designed to enhance robust 
place recognition by integrating the advantages of both geometry and appearance using 
LiDAR intensity image data. ISHOT combines geometric and texture information obtained 
from calibrated LiDAR intensity images to form a comprehensive local descriptor. The 
method then employs a probabilistic keypoint voting strategy for place recognition.

 Kim et al. (2019) proposed a long-term LiDAR localization technique that leverages the 
structural information of an environment by projecting a raw point cloud to an image. They 
present a novel Scan Context Image descriptor for point clouds and an end-to-end CNN 
that effectively summarizes the unstructured point cloud into a structured form for robust 
long-term place recognition. Unlike existing methods such as M2DP (He et al. 2016) and 
PointNetVLAD like (Uy and Lee 2018) approaches, which rely on pairwise comparisons 
between a query and scans in a database, this method offers faster processing. Moreover, 
experimental results demonstrate consistent and robust year-round localization perfor-
mance, even when trained in just a single day.

Schaupp et  al. (2019) proposed OREOS, oriented place recognition in outdoor sce-
narios using LiDAR scans. Their approach involves several stages: firstly, the current raw 
3D LiDAR point cloud is projected onto a 2D range image. Next, a CNN is employed to 
extract compact descriptors, followed by yaw estimation and local point cloud registration. 
To enhance performance, retrieve nearby place candidates, and estimate yaw discrepancy, 
the method utilizes a triplet loss function during training and incorporates a hard nega-
tive mining strategy. Cao et al. (2020) proposed a season-invariant and viewpoint-tolerant 
3D-PCPR method to achieve long-term robust localization. To achieve robust place recog-
nition across seasons, the method designs a compact cylindrical image model to project 3D 
point clouds to 2D images representing the prominent geometric relationships of scenes. 
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The structure of the algorithm mainly consists of two parts: a novel cylindrical image rep-
resentation of a 3D point cloud and an efficient descriptor based on contexts and layouts 
of the scenes. Additionally, a sequence-based temporal consistency check is introduced to 
handle similar scenes and local structural changes.

OverlapNet (Chen et al. 2021) is a loop closing method for 3D LiDAR-based SLAM. 
It exploits the different cues generated from the point cloud such as range, normal, and 
intensity images, and semantic data to provide overlap and relative yaw angle estimates 
between pairs of 3D scans. The 3D point cloud is first converted to a 2D image, and the 
rotation information is represented as translation of the image. This translation is estimated 
by a differentiable phase correlation. OverlapNet estimates an image overlap generalized 
to range images and provides a relative yaw angle estimate between pairs of scans. Ma et 
al.proposed OverlapTransformer (Ma et  al. 2022), an efficient yaw-angle-invariant trans-
former network for LiDAR-based place recognition. OverlapTransformer has three mod-
ules: Range Image Encoder, Attentional Feature Transformer, and VLAD. It is a light-
weight transformer network that leverages range images projected from raw 3D point 
clouds to achieve faster online inference. In follow-up works, Ma et al.process sequential 
LiDAR scans with a transformer network, named SeqOT (Ma et al. 2023), and multiple 
different views (depth view and BEV) with another transformer network, named CVTNet 
(Ma et al. 2023), for more robust and reliable long-term place recognition.

Wang et al. (2020) proposed a global 3D LiDAR point cloud descriptor to improve the 
speed and accuracy of loop-closure detection. Their method projects a point cloud to a 
binary signature image after a couple of Gabor-filtering and thresholding operations on the 
LiDAR-Iris image representation. Point cloud pairs are matched by calculating the Ham-
ming distance of their corresponding binary signature images. This work is somewhat sim-
ilar to Scan Context (Kim and Kim 2018) but differs in three main ways: Firstly, it encodes 
the height information as the pixel intensity of the LiDAR-Iris image. Secondly, it extracts 
a binary feature map from the LiDAR-Iris image for loop-closure detection. Thirdly, the 
loop-closure detection is rotation-invariant with respect to the LiDAR’s pose.

Leveraging high-resolution 3D LiDAR point clouds, Shan et  al. (2021) proposed a 
method for robust, real-time place recognition. Their method extracts ORB features from 
the intensity images of point clouds and encodes them into bag-of-words vectors. Candi-
date frames are found by matching visual feature descriptors, and outliers are rejected by 
applying PnP and RANSAC. This method is specifically designed for LiDAR imaging and 
is the first to use projected LiDAR intensity images for place recognition.  Di Giammarino 
et  al. (2021) used different datasets to investigate the practicality of applying techniques 
from VPR to LiDAR intensity data. Their results suggest that visual representations (such 
as intensity images) of places are useful for place recognition and are an effective means 
for determining loop closures.

In order to solve the problem that the network models of place recognition methods 
with higher detection accuracy are usually very large, while the application speed of the 
methods with smaller network models are not fast enough in actual scenarios,  Ye et al. 
(2022) proposed an efficient 3D-PCPR approach based on feature point extraction and 
transformer(FPET-Net). The method first projects the raw 3D point cloud to range image 
to get the horizontal index and scan index of each point and then calculates the curvature 
value to filter the feature points. Then, a point transformer module is developed to extract 
global descriptors. Finally, a feature similarity network module is used to calculate global 
descriptor similarity.

 Ma et al. (2023) presented SeqOT, a transformer-based network designed for place rec-
ognition using sequential 3D LiDAR scans obtained from an onboard sensor. The method 
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aims to effectively utilize the temporal and spatial information present in the sequential 
range images derived from the LiDAR data. SeqOT is an end-to-end network for long-term 
place recognition and uses a multiscale transformer to generate global descriptors for each 
LiDAR range image sequence. It finds similar places by matching the descriptor of the cur-
rent query sequence with the descriptors stored in the map.

4.3 � Bird‑eye view based

Bird-eye view (BEV) based methods first project the raw 3D point clouds to BEV, then 
use the BEV information for subsequent place recognition. A prominent method in this 
category is DiSCO (Xu et al. 2021) (Differentiable Scan Context with Orientation) which 
can simultaneously find the scan at a similar place and estimate the relative orientation. 
The main idea of DiSCO is to convert the rotation-invariant signature to the translation-
invariant frequency spectrum. It efficiently estimates the global optimal relative orienta-
tion by projecting a 3D point cloud to a polar BEV image and reorganizes the same height 
voxel values into image channels to construct a multi-layer BEV. Low overlap between 
input point clouds may lead to registration failures, especially in scenes where non-overlap-
ping regions contain similar structures. To solve this problem and inspired by DiSCO (Xu 
et al. 2021),  Li et al. (2023) presented a unified BEV model for jointly learning of 3D local 
features and overlap estimation for simultaneous pairwise registration and loop closure.

BVMatch (Luo et al. 2021) is a LiDAR-based frame-to-frame place recognition method 
that is able to estimate 2D relative poses. Since the ground area can be approximated as a 
plane, BVMatch employs a BEV image which is projected from the raw 3D point cloud as 
the intermediate representation and introduces the BVFT descriptor to perform matching. 
Leveraging the BVFT descriptors, the method unifies the 3D-PCPR task and pose esti-
mation. However, BVMatch cannot generalize well to unseen environments. In a follow-
up work, the authors proposed a rotation-invariant network called BEVPlace (Luo et  al. 
2023), as shown in Fig. 7. It uses group convolution (Cohen and Welling 2016) to extract 
rotation-equivariant local features from BEV images, and NetVLAD (Arandjelovic et al. 
2016) for global feature aggregation. Furthermore, BEVPlace observes that the distance 
between BEV features correlates with the geometric distance of point clouds. Based on 
the above structure, BEVPlace is able to estimate the position of the query point cloud for 
place recognition.

4.4 � Summary

To summarize, the main idea of the projection-based 3D-PCPR methods is to first project 
the raw 3D point clouds to 2D planes, images, or BEV information, and then use the pro-
jected information for subsequent processing to achieve place recognition. Based on the 
planar projection, it lays the foundation for hand-crafted descriptors, such as Scan Contex 
(Kim and Kim 2018), BOW3D (Cui et al. 2023), and other methods. Projection is followed 
by image feature extraction or a deep learning network to construct place recognition algo-
rithms, such as OREOS (Schaupp et al. 2019), OverlapNet (Chen et al. 2020a), Overlap-
Transformer (Ma et  al. 2022), SeqOT (Ma et  al. 2023), etc. Furthermore, the projected 
image or BEV information sequence (or their combination) can also be used to construct 
new place recognition algorithms, such as BEVPlace (Luo et  al. 2023), etc. Projection-
based methods have achieved great success recently, however, in the process of project-
ing 3D point clouds to planes, images, or BEV, there is inevitable information loss, which 
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can undermine the place recognition accuracy. Multi-projection-based methods (Ma et al. 
2023) can mitigate the information loss, however, such methods increase the processing 
time, resulting in a trade-off between accuracy and time cost.

5 � Segment based methods

Segment-based methods are another popular category in 3D-PCPR. The main idea is to 
segment the raw point cloud and then use the post-segment features, semantic information, 
or graph structure for subsequent processing to realize place recognition. We divide seg-
ment-based methods into three categories: post-segment features-based, semantic-based, 
and graph-based methods.

5.1 � Post‑segment features based

Post-segment features-based methods utilize the post-segment features of the raw 3D point 
clouds for subsequent place recognition. A pioneering method in this category is SegMatch 
(Dubé et al. 2017) which is the first to present real-time loop-closure detection and locali-
zation in 3D point clouds (see Fig. 8). SegMatch first segments the raw 3D point cloud 
into sets of point clusters and then uses post-segment features encoded by a CNN on the 
clusters to find place matches. Finally, a geometric verification step is applied to turn the 
candidate matches into place recognition candidates. Since segmentation provides a good 
compromise between local and global descriptions by combining their advantages while 
mitigating their disadvantages, this method not only reduces the matching time but also 
decreases the likelihood of false matches. In a follow-up work, Dubé et al. (2018) proposed 
an incremental segment-based localization for 3D-PCPR, which utilizes an incremental 
segmentation algorithm to track the evolution of single segments. It is the first work to pro-
pose combining incremental solutions to normal estimation, segmentation, and recognition 
for finding global associations in 3D point clouds. It is interesting to investigate incremen-
tal updates of learning-based descriptors that can potentially gain discriminative power and 
reliability over time. To precisely estimate a robot’s pose in unstructured, dynamic envi-
ronments,  Dube et al. (2020) also put forward SegMap, a 3D segment mapping method 
using Data-Driven Descriptors. SegMap decomposes the robot’s surroundings into a set of 
segments, each represented by a distinctive, low-dimensional learning-based descriptor. It 
is the first work on robot localization proposing to reuse the extracted features for recon-
structing 3D environments and extracting semantic information.

Tinchev et  al. (2018) proposed Natural Segmentation and Matching (NSM), an 
extension of SegMatch (Dubé et al. 2017), for place recognition in both urban and nat-
ural environments. Their method first uses a feature extraction module to extract stable 
and reliable object-sized segments from point clouds. Next, repeatable oriented key 
poses are extracted and matched with a reliable shape descriptor using Random Forests 
to estimate the current sensor’s position within the target map. The key poses extrac-
tion module segments and defines consistent orientated coordinate frames for object-
sized segments, and the descriptor is employed to recognize different instances of the 
same segment. To adapt to online applications, Tinchev et  al. (2019) then explored 
laser-based localization in both urban and natural environments and proposed a deep 
learning approach capable of learning meaningful descriptors directly from 3D point 
clouds as well as a feature space representation for the set of segmented point clouds. 
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Their main contribution is a novel description method for segment-based 3D-PCPR, 
using a lightweight model that can be deployed using only a CPU.

SEED (Fan et al. 2020) is a segmentation-based egocentric 3D point cloud descrip-
tor for loop closure detection. For robustness to noise and low/varying resolution, the 
method first obtains different segmented objects and then encodes their topological 
information into descriptors. The method is rotation invariant and insensitive to trans-
lation variations. However, its performance drops significantly when there are fewer 
objects in the scene.

Tomono (2020) proposed a method that uses geometric segments, such as planes, 
lines, and balls, to reduce the number of matching elements in the point cloud registra-
tion process for loop detection. Their method uses geometric constraints between the 
segments to achieve robustness and reduce matching element combinations, for real-
time loop detection. However, when the environment lacks a sufficient number of sali-
ent objects and physical features, it struggles to find good loop hypotheses due to the 
lack of geometric segments. Locus (Vidanapathirana et al. 2021) is another 3D-PCPR 
method for large-scale environments. It encodes topological and temporal information 
related to components (obtained through segmentation) of the scene. To generate a 
fixed-length global descriptor, a second-order pooling along with a nonlinear trans-
form is used to aggregate the extracted multi-level features.

Wietrzykowski and Skrzypczyński (2021) proposed an extension to the segment-
based global localization method for LiDAR SLAM using descriptors learned from 
the visual context of the segments. This method represents one of the pioneering 
approaches that utilize intensity images to enhance the learned descriptors of 3D seg-
ments and investigate the learning of segment descriptions that are visible in images. 
The solution falls between learning to describe segments that occupy part of the image 
and finding the context in the description. This method is inherited from SegMap 
(Dube et al. 2020) but achieves better performance.
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Fig. 7   Illustration of BEVPlace modules (from Luo et  al. (2023)). The BEVPlace network projects point 
clouds to BEV images and extracts rotation-invariant global features. The position estimator module recov-
ers geometry distances from feature space and estimates the positions of query point clouds
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5.2 � Semantic based

Semantic-based methods for 3D-PCPR utilize the semantic information of the seg-
mented 3D point cloud for subsequent place recognition. For example, Zaganidis et al. 
(2019) presented a SLAM pipeline based on semantic-assisted NDT and PointNet++ 
(Qi et al. 2017) for place recognition and loop closure detection. Their method first seg-
ments the raw 3D point cloud and then utilizes geometric and semantic information of 
the environment and a single deep semantic segmentation network for registration and 
loop closure detection.

Semantic scan context (SSC) (Li et al. 2021) is a large-scale place recognition method 
that leverages high-level semantics features and corrects the translation between point 
clouds for improved accuracy. The algorithm framework mainly consists of two parts: a 
two-stage global semantic iterative closest point (ICP) (Besl et  al. 1992) algorithm and 
a semantic scan context (SSC). Semantic segmentation is first performed on the raw 3D 
point cloud, and then the semantic information is used to preserve representative objects 
and project them into the x-y plane. The two-stage global semantic ICP is performed on the 
projected point cloud to obtain the 3D pose which is used to align the original point cloud 
and generate global descriptors. Finally, the similarity score is obtained by matching the 
global descriptors. Similar to most place recognition methods, the SSC method does not 
consider pitch and roll angles, leading to a possible failure in some extreme cases. Li et al. 
(2021) presented a global semantic descriptor for 3D-PCPR. To resolve ambiguous geo-
metric features in scenes containing similar objects, their algorithm mainly relies on static 
semantic information such as trunks, poles, traffic signs, buildings, roads, and sidewalks. 
The descriptors not only record the geometrical structure of a 3D LiDAR scan but also 
encode the semantic distribution information.

 Yin et al. (2021) proposed PSE-Match, a viewpoint-free place recognition method with 
parallel semantic embedding. PSE-Match incorporates a divergence place learning network 
to capture different semantic attributes in parallel through the spherical harmonics. This 
way, the observed variance of semantic attributes is smaller than the original point cloud.

Point Cloud 
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Descriptor 
Extrac�on Matching Geometric 

Verifica�on

Online 
Segmenta�on Target Map

Pose Graph 
Mapping

Disk

Odometry3D Point Cloud

Loop-Closure CandidatesMap and Posi�on Es�mate

Fig. 8   Illustration of SegMatch block (from Dubé et al. (2017)). SegMatch is a modular place recognition 
algorithm composed of 4 main modules: point cloud segmentation, feature extraction, segment matching, 
and geometric verification
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5.3 � Graph based

Graph-based 3D-PCPR methods utilize the graph structure information of the segmented 
point cloud for subsequent place recognition. Semantic graph-based place recognition 
(SGPR) (Kong et al. 2020) is a pioneer semantic graph representation and graph matching 
method for 3D-PCPR. Getting its inspiration from how humans perceive the environment 
by distinguishing scenes through semantic objects and their topological relations, SGPR 
utilizes semantic segmentation on raw 3D point clouds to obtain instances and further col-
lects semantic and topological information together to acquire nodes forming the seman-
tic graph. It leverages the semantic level to achieve superior robustness to environmen-
tal changes. The method is rotation invariant since the network can capture topological 
and semantic information from the point cloud. However, given its reliance on semantic 
segmentation, SGPR still suffers from bottlenecks, such as the test dataset’s pre-defined 
semantic classes.

Zhu et al. (2020) proposed GOSMatch, a graph-of-semantics matching method for loop 
detection and 3D-PCPR. GOSMatch leverages the spatial relationship between semantics 
to generate descriptors and employs a coarse-to-fine strategy to efficiently search for loop 
closures. Once the loop closure is confirmed, GOSMatch can give an accurate 6-DOF 
initial pose estimate. This is the first method that leverages object-level semantics graphs 
to detect loop closures in 3D laser data. Instead of manually constructing the graph, Shi 
et  al. (2021) employed an extension of graph data analysis methods Graph Neural Net-
work (GNN) (Waikhom and Patgiri 2022) to facilitate the keypoint matches between two 
point clouds, which were subsequently utilized for point cloud registration and place rec-
ognition (Shi et  al. 2023). Utilizing a GNN-based approach allows for the extraction of 
improved point matches, leading to enhanced accuracy and robustness in pose estimation 
and place recognition outcomes. SA-LOAM (Li et  al. 2021) is a semantic-aided LiDAR 
SLAM method with loop closure detection. It leverages a semantic-assisted ICP, including 
semantic matching, downsampling, and planar constraint, and integrates a semantic graph-
based place recognition method in the loop closure detection module. SA-LOAM exploits 
semantic information to improve the accuracy of point cloud registration and designs a 
semantic-graph-based loop closure detection module to eliminate the accumulated error.

To leverage the spatial relations of internal structures for place recognition, Gong et al. 
(2021) presented a two-level framework based on a spatial relation graph. The frame-
work first segments the 3D point cloud into multiple clusters, then extracts features from 
each cluster and the spatial relation descriptors between clusters to represent the 3D point 
cloud scene. Finally, a two-level matching model is proposed for accurately and efficiently 
matching the spatial relation graph. Dai et  al. (2022) proposed a new place recognition 
method named SC-LPR, which uses spatiotemporal contextual information from LiDAR 
scans to increase the capacity of feature representation. A semantic graph is constructed to 
represent the topological geometric map, and an end-to-end network is designed to predict 
similarity.

5.4 � Summary

To sum up, the main idea of the segment-based 3D-PCPR methods is to segment the raw 
3D point cloud and then use the segmented point cloud features, semantic information, 
or graph structure information for place recognition. Post-segment features-based place 
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recognition methods can reduce the number of calculations and extract more effective point 
cloud features, such as SegMatch (Dubé et al. 2017), Locus (Vidanapathirana et al. 2021), 
etc. Semantic-based place recognition methods introduce high-level semantic information 
after segmentation to improve the accuracy of place recognition, such as SSC (Li et  al. 
2021), PSE-Match (Yin et al. 2021), etc. Graph-based place recognition methods use the 
instance information formed after segmentation to construct the graph structure and recog-
nize the scene by identifying object-object relationships, such as SGPR (Kong et al. 2020), 
GOSMatch (Zhu et  al. 2020), etc. Segment-based 3D-PCPR methods have further pro-
moted the development of place recognition algorithms. However, this category of meth-
ods relies heavily on the accuracy of point cloud segmentation and semantic recognition. 
Further research is required to overcome this bottleneck.

6 � Multimodal based methods

In adverse conditions, place recognition with a single-sensor or single-method could 
become challenging. Therefore, multimodal-based methods are also popular where the 
main idea is to combine 3D point clouds with other data (or sensor) modalities, such as 
RGB images, range images, and/or BEV information, etc. The combined multimodal data 
is then used as input for the subsequent place recognition processing. We divide multi-
modal-based methods into three categories: camera-LiDAR based, radar-LiDAR based, 
and multi-view fusion based methods.

6.1 � Camera‑LiDAR based

Camera-LiDAR based methods for 3D-PCPR mainly combine 3D point clouds with cam-
era image information as input data for subsequent place recognition. LiDAR suffers from 
limitations such as motion distortion, degenerate environment, and limited range (since 
the laser may not reflect back with sufficient strength from far off objects). On the other 
hand, cameras do not have these limitations but encounter problems associated with vary-
ing illumination, occlusions, and season changes. Therefore, increasing attention has been 
paid to developing methods for fusing the information from cameras and LiDAR sensors. 
For example, Żywanowski et al. (2020) made a comparison of camera-based, 3D LiDAR-
based, and joint camera-LiDAR-based place recognition across different weather condi-
tions and concluded the need for more research on loop closures performed with multi-
sensory fusion.

Xie et al. (2020) proposed a fusion algorithm that robustly captures the image and point 
cloud descriptors to solve the place recognition problem. In their method, point cloud 
descriptors are obtained with PointNetVLAD (Uy and Lee 2018) and image-based descrip-
tors are extracted using ResNet50. A fully-connected layer is then employed to produce a 
compact global multimodal descriptor for each place. Their network finally learns an opti-
mal metric to describe the similarity of the fused global descriptors for end-to-end place 
recognition.  Lu et al. (2020) proposed PIC-Net, a point cloud and image collaboration net-
work for large-scale place recognition. PIC-Net uses spatial attention VLAD to fuse the 
discriminative points and pixels, and mines the complementary information between the 
image and point cloud. Comparative results show that PIC-Net outperforms the image-
based and point cloud-based methods.  Pan et  al. (2021) presented CORAL, a bi-modal 
descriptor place recognition method that can extract a compound global descriptor from 
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camera and LiDAR data. It first builds an elevation image generated from the 3D point 
cloud as a structural representation. The elevation image is then enhanced with projected 
RGB image features and processed using a deep neural network. A NetVLAD layer is 
employed to aggregate the extracted local features.

MinkLoc++ (Komorowski et al. 2021) was proposed by Komorowski et al.as a LiDAR 
and monocular image fusion method for place recognition. As shown in Fig.  9, Min-
kLoc++ puts forward a discriminative multimodal descriptor based on a point cloud from 
a LiDAR and an image from an RGB camera. The method uses a fusion approach, where 
each modality is processed separately and fused in the final part of the processing pipe-
line. MinkLoc++ is an effective solution for the problem of dominating modality which 
adversely affects the discriminability of a multimodal descriptor.

By leveraging the benefits of semantic understanding, Cramariuc et  al. (2021) intro-
duced SemSegMap, an extension of SegMap (Dube et al. 2020), which seamlessly com-
bines color and semantic information from an RGB camera with LiDAR data in real-time. 
SemSegMap introduces novel processes for segmentation and descriptor extraction. The 
integration of cameras into a LiDAR-equipped platform is typically straightforward in real-
world robotic applications. This method has demonstrated commendable performance and 
holds promising prospects for practical applications.

Many existing camera-LiDAR fusion methods simply combine the two sensors with-
out considering their performance characteristics in different environments. To address this 
limitation, Lai et  al. (2022) introduced AdaFusion, an adaptive weighting visual-LiDAR 
fusion method. AdaFusion goes beyond conventional approaches by dynamically learning 
the weights for both image and 3D point cloud features. By utilizing an attention branch 
network, AdaFusion adaptively assigns weights to the camera and LiDAR sensors based 
on the current environmental conditions which enhances the system’s recognition accuracy 
and robustness across various environments. AdaFusion represents a significant improve-
ment in fusion techniques, enabling more effective utilization of camera and LiDAR data.

6.2 � Radar‑LiDAR based

Radar-LiDAR based 3D-PCPR methods combine 3D point clouds obtained from a radar 
and a LiDAR to perform subsequent place recognition. A notable multimodal range dataset 
for this line or research is MulRan (Kim et al. 2020) that contains radar and LiDAR data of 
urban environments. MulRan focuses on range sensor-based place recognition and provides 
6D baseline trajectories of a vehicle for ground truth place recognition. This dataset is 
expected to promote the development of range-LiDAR based place recognition technology.

  Yin et  al. (2021) introduced Radar-to-LiDAR, a heterogeneous measurement-based 
framework for long-term place recognition. This method retrieves query radar scans from 
an existing LiDAR map. Initially, the radar and LiDAR points are encoded using Scan 
Context (Kim and Kim 2018) and then a shared U-Net transforms the handcrafted features 
to learned representations. Applying this method on a current radar scan, a robot can rec-
ognize the revisited LiDAR submaps.

Traditional 3D-PCPR methods assume that reliable prior maps are available. Tang 
et  al. (2021) proposed a different approach which assumes that an overhead view of 
the workspace is available instead. The overhead view is used as a map for radar and 
LiDAR based localization. Their method consists of three steps: rotation inference, 
image generation, and pose estimation. To compare overhead imagery with ground-
range sensor data, they propose a learned metric localization method that handles 
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modality differences. This metric is cost-effective to train and can learn in a self-super-
vised manner without the need for metric-accurate ground truth. Based on this idea, off-
the-shelf, publicly available overhead imagery (such as Google satellite imagery) can 
become a ubiquitous, low-cost, and powerful localization tool when prior maps are not 
available or convenient.

6.3 � Multi‑view fusion based

Multi-view fusion based 3D-PCPR methods mainly combine 3D point clouds and multi-
view fusion information for place recognition. A notable method in this category is 
FusionVLAD (Yin et al. 2021), which is a parallel fusion network structure that learns 
the point cloud representations from multi-view projections and embeds them into 
viewpoint-free low-dimensional place descriptors for efficient global recognition. This 
method consists of a spherical-view branch for orientation invariant feature extraction 
and a top-down view branch for translation insensitive feature extraction. Moreover, a 
parallel fusion module is designed to enhance the combination of region-wise feature 
connection between the two branches.

Many existing 3D-PCPR methods adopt a shared representation of the input point 
cloud, disregarding different views and potentially underutilizing the LiDAR sensor’s 
information. Ma et al. (2023) proposed CVTNet, a novel approach based on cross-view 
transformers, aimed at fusing range image views and Bird’s Eye View (BEV) repre-
sentations derived from LiDAR data. CVTNet leverages intra-transformers to capture 
correlations within each view and inter-transformers to capture correlations between 
the two distinct views. By utilizing CVTNet, a yaw-invariant global descriptor is gener-
ated for each LiDAR point cloud in an end-to-end fashion. This descriptor enables the 
retrieval of previously visited places by matching descriptors between the current query 
scan and a pre-built database.

The task of localizing images on a large-scale point cloud map is still relatively unex-
plored. To address this challenge, Li et al. (2023) introduced I2P-Rec, a method designed 
for image recognition on large-scale point cloud maps using BEV Projections. The BEV 
image serves as an intermediate representation, which is then fed into a CNN to extract 
global descriptors for matching purposes.

6.4 � Summary

In summary, multimodal-based 3D-PCPR methods aim to overcome the limitations of 
single-sensor or single-modality approaches by fusing point cloud information with other 
modalities. This fusion leverages the complementary nature of multimodal information, 
such as Camera-LiDAR, Radar-LiDAR, and Multi-view Fusion, among others. These 
methods, exemplified by MinkLoc++ (Komorowski et  al. 2021), AdaFusion (Lai et  al. 
2022), Radar-to-LiDAR (Yin et al. 2021), CVTNet (Ma et al. 2023), and others, strive to 
achieve robust and adaptable place recognition in complex and dynamic environments. 
Whereas multimodal 3D-PCPR methods enhance the robustness of place recognition, they 
also require careful synchronization and calibration of sensors, which can be a challenging 
task. Continued development in the field of multimodal-based 3D-PCPR holds promise for 
further advancements and improvements in place recognition capabilities.
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7 � Datasets and performance

Given the emergence of numerous advanced algorithms for 3D-PCPR, conducting a com-
prehensive and unbiased performance evaluation and comparison of existing methods 
becomes crucial. In this section, we present a selection of prominent 3D-PCPR datasets 
and evaluation metrics commonly utilized for assessing the performance of these meth-
ods.  Additionally, we present a performance comparison of mainstream algorithms in the 
field of 3D-PCPR to aid readers in gaining a clearer understanding of the strengths and 
limitations associated with different existing approaches.

7.1 � Datasets

Public datasets play a pivotal role in advancing 3D-PCPR research. Numerous 3D point 
cloud datasets have been utilized to evaluate the performance of place recognition algo-
rithms, serving as benchmark baselines and providing valuable ground truth information. 
These datasets enable researchers worldwide to conduct their investigations without being 
constrained by system or data limitations. In the following, we introduce a selection of pop-
ular and representative public datasets within the field, which are listed in Table 2. These 
datasets serve as valuable resources for evaluating and comparing different approaches, 
fostering progress and innovation in the domain of 3D-PCPR.

Ford Campus (Pandey et al. 2011): Ford Campus Vision and LiDAR dataset was col-
lected by an autonomous ground vehicle testbed. The dataset consists of time-registered 
data from sensors mounted on the vehicle, collected while driving around the Ford 
Research campus and downtown Dearborn, Michigan during November-December 2009. 
The vehicle paths in the Ford campus dataset contain several large and small-scale loop 
closures, to assist in developing and testing place recognition algorithms. The dataset con-
tains the vehicle’s ground truth pose in the local coordinate system, including the vehicle’s 
3D rotation angle (roll, pitch, and yaw), 3D acceleration, 3D velocity, and timestamp.

KITTI (Geiger et al. 2013): KITTI (Karlsruhe Institute of Technology and Toyota Tech-
nological Institute) is one of the most popular datasets in mobile robotics, autonomous 
driving, and computer vision research. It consists of hours of traffic scenarios recorded with 
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a variety of sensor modalities, including high-resolution RGB, grayscale stereo cameras, 
and a 3D laser scanner. 3D-PCPR methods mainly use the 3D LiDAR data. The dataset 
provides 11 sequences with ground truth trajectories for training (00–10) and 11 sequences 
without real trajectories for evaluation (11–21).

NCLT (Carlevaris-Bianco et al. 2016): NCLT is a large-scale, long-term autonomy data-
set, including 34.9 h of logs covering 147.4 km of robot trajectory collected on the Uni-
versity of Michigan’s North Campus. It consists of omnidirectional imagery, 3D LiDAR, 
planar LiDAR, GPS, and ground-truth pose information. It has 27 sessions, each contain-
ing both indoor and outdoor environments, spaced approximately biweekly over the course 
of 15 months. Although the same area is repeatedly explored, the path for each session 
is varied, as is the time of the day for each session-from early morning to just after dusk. 
NCLT can facilitate long-term place recognition research in challenging environments such 
as moving obstacles, changing lighting, varying viewpoints, seasonal and weather changes, 
and long-term structural changes caused by construction projects. The dataset uses LiDAR 
scan matching and high-precision RTK GPS to provide ground truth robot pose.

Oxford RobotCar (Maddern et al. 2017): This dataset was collected by repeatedly tra-
versing an approximately 10  km route in central Oxford, UK for over one year. It con-
tains 100+ traversals of a consistent route, capturing the large variation in appearance and 
structure of a dynamic city environment over long periods of time. The dataset contains 
images, LiDAR, GPS, and INS ground truth data, captured in many different combinations 
of weather, traffic, and pedestrians, along with longer-term changes such as construction 
and roadworks.

USRABD (Uy and Lee 2018): USRABD dataset is a collection of three datasets pro-
posed by the authors of PointNetVLAD (Uy and Lee 2018) for 3D-PCPR. The three data-
sets include a university sector (U.S.), a residential area (R.A.), and a business district 
(B.D.) dataset. USRABD dataset was collected using a LiDAR sensor mounted on a car. 
The data collection vehicle traveled through three areas of U.S., R.A., and B.D. covering a 
distance of 10, 8, and 5 km repeatedly at different time periods. This dataset has been used 
as a mainstream benchmark often together with the Oxford RobotCar dataset (Maddern 
et al. 2017). Ground truth GPS coordinates for the three datasets can be found in the cor-
responding csv files.

Oxford Radar RobotCar (Barnes et al. 2020): This dataset is a radar extension to The 
Oxford RobotCar dataset. It mainly utilizes a Navtech CTS350-X Millimetre-Wave FMCW 
radar and Dual Velodyne HDL-32E LiDARs for 280 km of driving around Oxford, UK. 
The dataset was gathered in January 2019 over 32 traversals of a central Oxford route and 
includes a variety of weather, traffic, and lighting conditions. In addition to the raw sensor 
recordings from all sensors, this dataset provides an updated set of calibrations, ground 
truth trajectories for the radar sensor as well as MATLAB and Python development tools 
for leveraging the data.

MulRan (Kim et al. 2020): MulRan is a multimodal range dataset for radar and LiDAR 
specifically targeting the urban environment. It focuses on the 3D-PCPR problem and pro-
vides 6D baseline trajectories of a vehicle for place recognition ground truth. MulRan cap-
tures both temporal and structural diversities for 3D place recognition research.

Haomo (Ma et  al. 2022): This dataset was collected in urban environments of Beijing 
by a mobile robot built by HAOMO.AI Technology company equipped with a HESAI Pan-
darXT 32-beam LiDAR sensor, a SENSING-SG2 wide-angle camera, and an ASENSING-
INS570D RTK GNSS. There are currently five sequences: seq 1–1 and 1–2 were collected 
from the same route on 8th December 2021 with opposite driving directions. An additional 
seq 1–3 from the same route is utilized as the online query with respect to both 1–1 and 1–2 
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respectively to evaluate place recognition performance of forward and reverse driving. Seq 
2–1 and 2–2 are collected along a much longer route from the same direction, but on different 
dates i.e. 28th December 2021 and 13th January 2022, respectively. The former is used as a 
database while the latter one is used as query. The two sequences are for evaluating the perfor-
mance for large-scale long-term place recognition.

HPointLoc (Yudin et al. 2023): HPointLoc is a point cloud-based indoor place recognition 
dataset with synthetic RGB-D images. It is based on the popular Habitat (Savva et al. 2019) 
simulator from 49 photorealistic indoor scenes from the Matterport3D (Chang et  al. 2017) 
dataset and contains 76,000 frames. The HPointLoc dataset is split into two parts: the valida-
tion HPointLoc-Val, which contains only one scene, and the complete HPointLoc-All dataset, 
containing all 49 scenes, including HPointLoc-Val. Although the dataset does not have ground 
truth poses, it provides an estimate of an average registration error between corresponding 
surface points of 1 cm or less.

Perth-WA (Ibrahim et  al. xxx): Perth-WA dataset was first presented in (Ibrahim et  al. 
2023), and contains 6DoF annotations for localization in a 3D point cloud map of the Perth 
city in Western Australia. The 3D map is constructed using a 64-channel LiDAR and covers 
4 km2 region of the Perth Central Business District.  The dataset scenes contain commercial 
structures, residential areas, food streets, complex routes, and hospital buildings etc. Perth-WA 
was collected in 3 different 2-hour sessions under day/night conditions with sunny and cloudy 
weather. Particularly, its labels come directly from the LiDAR frames themselves. This dataset 
leverages the map creation process itself to extract ground truth poses and contains loop data 
with LiDAR frames and their ground truth pose labels in text files.

  Wild-Places (Knights et  al. 2023): Wild-Places is a challenging large-scale dataset for 
3D-PCPR in unstructured, natural environments. It contains 8 LiDAR sequences collected 
with a handheld sensor payload over the course of 14 months, containing a total of 63K undis-
torted LiDAR submaps along with accurate 6DoF ground truth. Wild-Places contains multiple 
revisits and uses Wildcat (Ramezani et al. 2022) system to generate accurate intra-sequence 
ground truth.

7.2 � Evaluation metrics

Numerous evaluation metrics have been proposed to test the effectiveness of place recognition 
methods (Li et al. 2021; Cui et al. 2023; Ferrarini et al. 2020). Here, we introduce some of the 
commonly used evaluation metrics.

Precision (P): Precision denotes the ratio between the correct matches and the total of the 
predicted positive matches. Precision is defined as:

where TP are the number of True Positives (i.e. correct matches), FP are False Positives 
(i.e. incorrect matches), FN are False Negatives (i.e. matches erroneously excluded from 
the query results).

Recall (R): Recall is the proportion of real positive cases that are correctly identified as 
positive matches. Formally:

(1)P =
TP

TP + FP
,

(2)R =
TP

TP + FN
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Recall@N is also commonly used which measures the proportion of relevant items 
retrieved in the top N results. Particularly, Average Recall@1 (AR@1) measures the 
proportion of relevant items retrieved as the first item in the list of results and Average 
Recall@1% (AR@1%) is calculated taking into account top-k matches, where k is 1% of 
the database size. Higher values of Recall@N, Recall@1, and Recall@1% indicate better 
performance.

PR-Curve: PR-Curve is a graph with recall values on the x-axis and precision values on 
the y-axis. It shows the relationship between precision and recall values.

F1 score: F1 score combines the precision and recall values into a single metric by tak-
ing the harmonic mean of P and R. It treats P and R as equally important and measures the 
overall performance of the test systems. The F1 score is defined as:

where P and R represent the Precision and Recall values, respectively.
Extended Precision (EP): Extended Precision (EP) provides more comprehensive 

insights into place recognition performance. It is designed specifically for evaluating place 
recognition algorithms. The Extended Precision is defined as:

where PR0 is the precision at minimum Recall value, and RP100 is the max Recall at 100% 
Precision, i.e. it is the highest value of the recall that can be reached without any False 
Positives (FP).

7.3 � Performance comparison

We present the comparative performance of some representative algorithms in 3D-PCPR 
on typical public datasets, including Oxford RobotCar dataset (Maddern et  al. 2017), 
USRABD dataset (Uy and Lee 2018): University Sector (U.S.), Residential Area (R.A.), 
Business District (B.D.), and KITTI dataset (Geiger et al. 2013). The results are collected 
from the original papers (Uy and Lee 2018; Komorowski 2021, 2022; Kong et al. 2020; Li 
et al. 2021; Cui et al. 2023; Liu et al. 2019; Luo et al. 2023; Hou et al. 2022; Xu et al. 2021; 
Lai et al. 2022).

In Table  3, we present a performance comparison of some state-of-the-art 3D-PCPR 
methods (including PointNetVLAD1 (Uy and Lee 2018), PCAN2 (Zhang and Xiao 2019), 
LPD-Net3 (Liu et  al. 2019), EPC-Net4 (Hui et  al. 2022), SOE-Net5 (Xia et  al. 2021), 
HiTPR (Hou et  al. 2022), MinkLoc3D6 (Komorowski 2021), NDT-Transformer7 (Zhou 

(3)F1 = 2 ×
P × R

P + R

(4)EP =
1

2

(

PR0 + RP100

)

,EP ∈ [0, 1]

1  https://​github.​com/​mikac​uy/​point​netvl​ad.​git.
2  https://​github.​com/​XLech​ter/​PCAN.​git.
3  https://​github.​com/​Suoivy/​LPD-​net.​git.
4  https://​github.​com/​fpthi​nk/​EPC-​Net.​git.
5  https://​github.​com/​Yan-​Xia/​SOE-​Net.​git.
6  https://​github.​com/​jac99/​MinkL​oc3D.​git.
7  https://​github.​com/​dache​ngxia​ocheng/​NDT-​Trans​former.​git.

https://github.com/mikacuy/pointnetvlad.git
https://github.com/XLechter/PCAN.git
https://github.com/Suoivy/LPD-net.git
https://github.com/fpthink/EPC-Net.git
https://github.com/Yan-Xia/SOE-Net.git
https://github.com/jac99/MinkLoc3D.git
https://github.com/dachengxiaocheng/NDT-Transformer.git
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et al. 2021), PPT-Net8 (Hui et al. 2021), SVT-Net9 (Fan et al. 2022), TransLoc3D10 (Xu 
et  al. 2021), MinkLoc3Dv211 (Komorowski 2022), OREOS (Schaupp et  al. 2019), Scan 
Context12 (Kim and Kim 2018), DiSCO13 (Xu et al. 2021), BEVPlace14 (Luo et al. 2023), 
PIC-Net (Lu et  al. 2020), MinkLoc++15 (Komorowski et  al. 2021), CORAL (Pan et  al. 
2021), AdaFusion16 (Lai et al. 2022) ) according to the categories of feature-based, pro-
jection-based, and multimodal-based methods.The evaluation is based on the AR@1 and 
AR@1% metrics. The performance of each method shown in this table is mainly evalu-
ated on the Oxford RobotCar dataset (Maddern et al. 2017) and USRABD dataset (Uy and 
Lee 2018). These results provide valuable insights into the performance of the examined 
methods under specific conditions and facilitate comparison and analysis within the field 
of 3D-PCPR.

Table  3 provide a comprehensive overview of the advancements in the field of 
3D-PCPR, highlighting the emergence of numerous state-of-the-art algorithms in recent 
years. Starting from the pioneering algorithm PointNetVLAD (Uy and Lee 2018), signifi-
cant improvements have been made, as seen in the LPD-Net algorithm (Liu et al. 2019), 
which exhibits enhanced performance. More recently, the MinkLoc3D series algorithms 
(Komorowski 2021, 2022), the BEVPlace algorithms (Luo et  al. 2023), and the AdaFu-
sion (Lai et al. 2022) have further advanced the state-of-the-art. These algorithms demon-
strate impressive performance on standard benchmark datasets and continue to progress 
and evolve in the field of 3D-PCPR.

  According to the categories of feature-based, projection-based, and segment-based 
methods, Table 4 gives a performance comparison of some state-of-the-art methods (Point-
NetVLAD17 (Uy and Lee 2018), M2DP18 (He et  al. 2016), ISC19 (Wang et  al. 2020), 
LiDAR Iris20 (Wang et  al. 2020), Scan Context21 (Kim and Kim 2018), OverlapNet22 
(Chen et al. 2021), BoW3D23 (Cui et al. 2023), SGPR24 (Kong et al. 2020), SSC-RN25 (Li 
et al. 2021) ) in terms of the F1 max scores and Extended Precision ( F1/EP), along with 
their capability to accurately correct the full 6-DoF loop pose on the KITTI dataset (Geiger 
et al. 2013). The evaluation focuses specifically on the sequences with loop closures (00, 
02, 05, 06, 07, and 08) from the KITTI dataset. These sequences are selected to facili-
tate a convenient and standardized evaluation process. By examining the results in Table 4, 

8  https://​github.​com/​fpthi​nk/​PPT-​Net.​git.
9  https://​github.​com/​Zhenb​oSong/​SVTNet.​git.
10  https://​github.​com/​sloth​fulxtx/​Trans​Loc3D.​git.
11  https://​github.​com/​jac99/​MinkL​oc3Dv2.​git.
12  https://​github.​com/​irapk​aist/​scanc​ontext.​git.
13  https://​github.​com/​Maver​ickPe​ter/​DiSCO-​pytor​ch.​git.
14  https://​github.​com/​zjulu​olun/​BEVPl​ace.​git.
15  https://​github.​com/​jac99/​MinkL​ocMul​timod​al.​git.
16  https://​github.​com/​MetaS​LAM/​AdaFu​sion.​git.
17  https://​github.​com/​mikac​uy/​point​netvl​ad.​git.
18  https://​github.​com/​LiHeUA/​M2DP.​git.
19  https://​github.​com/​wh200​720041/​isclo​am.​git.
20  https://​github.​com/​BigMo​Wangy​ing/​LiDAR-​Iris.​git.
21  https://​github.​com/​irapk​aist/​scanc​ontext.​git.
22  https://​github.​com/​PRBonn/​Overl​apNet.​git.
23  https://​github.​com/​Yunge​Cui/​BoW3D.​git.
24  https://​github.​com/​kxhit/​SG_​PR.​git.
25  https://​github.​com/​lilin-​hitcrt/​SSC.​git.

https://github.com/fpthink/PPT-Net.git
https://github.com/ZhenboSong/SVTNet.git
https://github.com/slothfulxtx/TransLoc3D.git
https://github.com/jac99/MinkLoc3Dv2.git
https://github.com/irapkaist/scancontext.git
https://github.com/MaverickPeter/DiSCO-pytorch.git
https://github.com/zjuluolun/BEVPlace.git
https://github.com/jac99/MinkLocMultimodal.git
https://github.com/MetaSLAM/AdaFusion.git
https://github.com/mikacuy/pointnetvlad.git
https://github.com/LiHeUA/M2DP.git
https://github.com/wh200720041/iscloam.git
https://github.com/BigMoWangying/LiDAR-Iris.git
https://github.com/irapkaist/scancontext.git
https://github.com/PRBonn/OverlapNet.git
https://github.com/YungeCui/BoW3D.git
https://github.com/kxhit/SG_PR.git
https://github.com/lilin-hitcrt/SSC.git
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valuable insights can be gained regarding the performance and effectiveness of the ana-
lyzed state-of-the-art methods in the context of loop pose correction on the KITTI dataset.

As can be seen from Table  4, based on the KITTI dataset and F1 max scores and 
Extended Precision (EP) evaluation metrics, many advanced 3D-PCPR algorithms have 
emerged (He et al. 2016; Uy and Lee 2018; Wang et al. 2020, 2020; Kong et al. 2020; Kim 
and Kim 2018; Chen et al. 2021; Li et al. 2021; Cui et al. 2023). The BOW3D (Cui et al. 
2023) algorithm recently proposed by Cui et  al.has not only achieved excellent perfor-
mance (mean F1/EP: 0.885/0.906) but also can be used to correct the full 6-DoF loop pose.

8 � Applications and future trends

This section delves deeper into the downstream applications of 3D-PCPR technology and 
highlights the anticipated trends in future development. By exploring these applications 
and trends, researchers can gain a more holistic and expedited understanding of the poten-
tial uses and advancements within the realm of 3D-PCPR methods.

8.1 � Applications

3D-PCPR is a key task in the navigation and localization of mobile robots, especially in 
large-scale, long-term, and complex scenes with closed loops. It has a wide range of appli-
cations, ranging from land to air and even interstellar exploration (Yin et al. 2022).

Firstly, major on land applications of 3D-PCPR on a large scale include robotics and 
autonomous driving. Autonomous driving is crucial for achieving intelligent transporta-
tion in the future. Currently, most research and development vehicles for autonomous driv-
ing are equipped with high-precision LiDAR sensors, enabling real-time acquisition of 3D 
point cloud data of the surrounding environment. We can expect that 3D-PCPR will play a 
key role in realizing Simultaneous Localization and Mapping (SLAM) (Chen et al. 2020a; 
Kim et al. 2022) in autonomous vehicles. Additionally, in the domain of robotics, there are 
numerous smart application scenarios that can benefit from 3D-PCPR, such as smart logis-
tics distribution (Wang et al. 2019) and smart indoor navigation (Xiang et al. 2018), among 
others. These applications demonstrate the versatility and potential impact of 3D-PCPR in 
advancing various robotics-related endeavors.

In aerial settings, the widespread adoption and utilization of unmanned aerial vehicles 
(UAVs) equipped with high-precision LiDAR sensors have paved the way for the exten-
sive application of place recognition technology. This technology holds great potential in 
various fields such as smart agriculture, aerial photography localization, rapid delivery, and 
even military reconnaissance (Maffra et al. 2018; Patel et al. 2020; Hongming et al. 2022; 
Aslan et al. 2022). With the aid of UAVs, place recognition technology can significantly 
contribute to enhancing aerial navigation and mapping capabilities, enabling efficient and 
accurate operations in these domains.

Finally, in the realm of interstellar exploration, where traditional positioning signals 
like GPS or Beidou are unavailable in outer space or on alien planets, the significance and 
criticality of autonomous localization and navigation based on 3D point clouds become 
paramount. This technology finds practical application in well-known interstellar missions 
such as NASA’s robotic rover (Perseverance) operating on Mars and CNSA’s teleoperated 
rover (Yutu-2) on the Moon (Witze 2020; Ding et al. 2022). The utilization of 3D-PCPR 
technology in these missions demonstrates its crucial role in enabling precise positioning, 
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navigation, and mapping in extraterrestrial environments. As humankind ventures further 
into space exploration, the reliance on 3D-PCPR for autonomous localization and naviga-
tion will continue to grow, making it an essential component of interstellar missions and 
the exploration of alien worlds.

8.2 � Research trends

3D-PCPR technology has witnessed widespread application and rapid development. Sin-
gle frame-based 3D-PCPR methods, exemplified by high-accuracy algorithms like Min-
kLoc3Dv2 (Komorowski 2022) and others, have achieved remarkable progress. However, 
despite these advancements, numerous challenges and open issues remain to be addressed 
in this field.  Based on our comprehensive analysis of over 180 research works, we now 
delve into the future research trends of 3D-PCPR. By providing a concise overview, we 
aim to inspire and guide future researchers in their exploration of this domain. By tack-
ling these challenges, we can further enhance the accuracy, robustness, and efficiency 
of 3D-PCPR methods. The identified research trends are poised to shape the future of 
3D-PCPR and drive its continued evolution as an essential technology for robotics, autono-
mous vehicles, aerial mapping, interstellar exploration, and beyond.

8.2.1 � Based on sequence frames

Sequence-based 3D-PCPR methods leverage serialized multi-frame point clouds as input, 
enabling spatio-temporal feature fusion and descriptor generation. These methods sur-
pass single-frame approaches by incorporating a broader range of information, mitigat-
ing the risk of overemphasizing intra-frame features. By employing inter-frame continu-
ous consistency detection, sequence-based methods can capture more comprehensive and 
discriminative features, resulting in superior recognition performance over extended time 
periods. Prominent examples of sequence-based approaches, such as SeqLPD (Liu et  al. 
2019), SeqsphereVLAD (Yin et  al. 2020), FSEPR (Yin et  al. 2021), SeqOT (Ma et  al. 
2023), among others, have showcased inspiring and representative work in this direction. 
Figure 10 illustrates the structural diagram of SeqOT (Ma et al. 2023), a sequence-based 
method proposed by our team members. We anticipate that future research will yield fur-
ther advancements in sequence-based 3D-PCPR, facilitating even more robust and accurate 
place recognition capabilities.

8.2.2 � Based on long‑term learning

To address the rapid decline in robustness exhibited by many classic place recogni-
tion algorithms when there is a significant time gap between the given map data and the 
input query data, researchers have recently proposed long-term learning-based strategies 
for 3D-PCPR. Long-term 3D-PCPR aims to dynamically update the model as new data 
streams in, enabling continuous learning of the evolving environment. This approach also 
tackles the challenge of catastrophic forgetting, which involves preserving the memory of 
the original environment while incorporating new information.

Minimizing catastrophic forgetting is a key challenge in long-term learning place recog-
nition. Several noteworthy approaches have emerged in this area, including 1-Day Learn-
ing 1-Year Localization (Kim et  al. 2019), Radar-to-LiDAR (Yin et  al. 2021), SVLPR 
(Cao et al. 2020), InCloud (Knights et al. 2022), CCL (Cui and Chen 2023), among others. 
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These methods have undertaken meaningful and valuable explorations, yielding promising 
results in the context of long-term learning for 3D-PCPR.

8.2.3 � Cross‑modal localization

As the application scenarios for place recognition continue to expand, there are situations 
where the sensors used to collect offline map data and query data differ or multiple sensors 
are employed for data collection. In such cases, conventional 3D-PCPR methods that rely 
on single-modal information suffer from severe performance degradation. Hence, cross-
modal place recognition has emerged as a promising research direction. Cross-modal place 
recognition aims to address the challenges of integrating data from different modalities for 
improved performance. Several notable approaches have paved the way for future cross-
modal 3D-PCPR, including PIC-Net (Lu et al. 2020), MinkLoc3D++ (Komorowski et al. 
2021), Get to the point (Tang et al. 2021), AdaFusion (Lai et al. 2022), Text2Pos (Kolmet 
et al. 2022), (LC)2 (Lee et al. 2023), I2P-Rec (Li et al. 2023), UnLoc (Ibrahim et al. 2023), 
among others. However, several challenges remain in achieving more efficient cross-modal 
data synchronization, calibration, fusion, and the integration of high-dimensional semantic 
information with 3D point cloud data. Cross-modal place recognition still has a long way 
to go and researchers need to overcome these challenges to unlock its full potential in the 
future.

8.2.4 � Global metric localization

Conventionally, place recognition focused only on identifying the current localization 
within a given map. However, to enable more advanced navigation and localization tasks, 
there is a growing demand for place recognition methods that can estimate precise poses or 
6-DoF (degrees of freedom) while recognizing the place, ultimately providing global pose 
localization. Fortunately, some researchers have recognized this need and made significant 
contributions in this direction. Methods such as DH3D (Du et al. 2020), LCDNet (Cattaneo 
et al. 2022), BoW3D (Cui et al. 2023), Slice Transformer (Ibrahim et al. 2023), and others 
have emerged, offering the capability to estimate 6-DoF poses alongside place recognition. 
The development of these methods has accelerated the progress of 3D-PCPR based on 
global pose localization. It is foreseeable that this will become a prominent research trend 
in the future as the demand for precise pose estimation and global localization continues to 
grow in robotics and related fields.

9 � Conclusion

This article presents a comprehensive survey of 3D-PCPR (3D Point Cloud-based Place 
Recognition) methods, aiming to provide readers with a thorough understanding of the 
field. The survey categorizes 3D-PCPR methods into four main categories based on the 
source of extracted features: feature-based, projection-based, segment-based, and multi-
modal-based methods. Each category is discussed in detail, providing relevant introduc-
tions and explanations. To enhance readers’ understanding, the survey also introduces com-
mon public datasets and evaluation methods used in the field of 3D-PCPR.  Additionally, it 
compares the performance of mainstream methods in 3D-PCPR to highlight the algorithm 
performance of various methods. The article further explores the technical applications and 
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future development directions in the field of 3D-PCPR. Importantly, this survey represents 
the first comprehensive overview of 3D-PCPR methods that utilize 3D point clouds from 
different resources. It is intended to provide future researchers with a comprehensive view 
of the field, enabling them to contribute to the further advancement of 3D-PCPR.
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