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Abstract
The Portia spider, a notable member of the jumping spider family (Salticidae), is widely 
recognized for its intricate hunting strategies and remarkable problem-solving prowess. 
Several species fall under the “Portia” genus, with habitats spanning regions in Africa, 
Asia, and Australia. Demonstrating the ability to tackle new challenges, these spiders can 
learn and adapt their strategies based on prior experiences. This study introduces the Portia 
Spider Algorithm (PSA), a swarm-based technique inspired by the unique predatory strate-
gies of the Portia spider. We conducted rigorous assessments of PSA performance against 
23 classical test functions, 29 CEC2017 test cases, and 5 engineering optimization tasks. 
To demonstrate the effectiveness of the PSA, outcomes were juxtaposed with those of 
renowned algorithms. This paper explores the mechanics, advantages, and potential appli-
cations of PSA within the vast domain of computational optimization.
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1 Introduction

Meta-heuristic algorithms, when compared to traditional optimization methods, distin-
guish themselves by their simplicity in terms of both comprehension and implementation. 
Traditional optimization techniques, such as integer programming (Williams 2009), linear 
programming (Dantzig 2002), mixed programming (Hooker and Osorio 1999), and vari-
ous constrained optimization methods (Gautier and Granot 1994), are typically designed 
for well-structured problems. Such problems possess clear structural information, estab-
lished parameters, and a uniquely identifiable global optimum. These traditional methods 
are amenable to rigorous evaluation through computational complexity and convergence 
theories. They are particularly adept at addressing problems characterized by a single 
extremum. However, their performance can be less than satisfactory in scenarios domi-
nated by multi-extremum challenges.

Conversely, meta-heuristic algorithms, through their astute design, manage to strike a 
nuanced balance between evading local optima and ensuring convergence to a viable solu-
tion. This design feature significantly augments the likelihood of pinpointing the global 
optimum in an array of optimization contexts. One of the salient characteristics of meta-
heuristics is their relative indifference to initial conditions, which reinforces the consist-
ency of optimization outcomes. Their inherent robustness, coupled with domain independ-
ence, renders them indispensable in a myriad of practical applications.

Given the pivotal role of optimization across diverse fields, there has been an upswing 
in the emphasis on metaheuristic techniques (Spall 2005). Various domains have lever-
aged these methods (Boussaïd et al. 2013; Parejo et al. 2012; Zhou et al. 2011) that oper-
ate by generating and refining random solutions iteratively [9]. In stark contrast to tradi-
tional methods that necessitate well-defined mathematical models, metaheuristics optimize 
by varying inputs and scrutinizing the corresponding outputs to maximize or minimize 
objective functions. This attribute ensures they are less susceptible to ensnarement in 
local optima compared to their traditional counterparts. Another distinguishing feature of 
metaheuristics is their adaptability. In a broader context, metaheuristics are categorized 
according to the extent of random choices they engender during each optimization itera-
tion. Additionally, they can be classed by their foundational inspiration, which could be 
grounded in swarm intelligence, evolutionary principles, physics, mathematics, or human 
concepts (Fig. 1).

Evolutionary algorithms, a subset of meta-heuristic techniques, emulate the evolution-
ary mechanisms observed in nature. Among these, the genetic algorithm (GA) stands out 
as one of the most renowned. Introduced by Holland (1992), the GA has since garnered 
extensive attention across various domains, serving as a go-to method for optimization 
and search problems. Similarly inspired by natural processes, Simon (2008) unveiled the 
biogeography-based optimization (BBO). This approach taps into the mathematical princi-
ples underlying the habitat distribution of life forms. Simon drew parallels between BBO 
and the evolution of GA and artificial neural networks, particularly emphasizing its prow-
ess in addressing optimization challenges. Storn and Price (1997) contributed to the field 
in the form of an innovative approach - differential evolution (DE) that promises efficient 
minimization of complex, potentially nonlinear, and non-differentiable continuous space 
functions. Their method stands out not only for its rapid convergence and superior cer-
tainty over other prevalent global optimization techniques but also for its inherent simplic-
ity and adaptability to parallel computing. Adding to the tapestry of evolutionary algo-
rithms, Jaderyan and Khotanlou (2016) introduced the virulence optimization algorithm 
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(VOA). Inspired by the intricate infection mechanisms employed by viruses, this method 
involves identifying the fittest viruses, cloning them to amplify infection rates, and judi-
ciously evading already infected zones. When tested against 11 benchmark functions, the 
VOA showcased its potential as a formidable resource for handling complex optimization 
conundrums.

Numerous techniques have drawn inspiration from mathematical concepts and physi-
cal phenomena, as evident in recent advancements in optimization methods. Rezaei et al. 
(2023) presented the geometric mean optimizer (GMO), a parameter-free meta-heuristic 
method grounded in the geometric mean operator. Their research indicated that the GMO 
excels at tackling a diverse array of optimization challenges, surpassing other contemporary 
meta-heuristic algorithms in multiple benchmark tests. Similarly, Abualigah et al. (2021) 
introduced the arithmetic optimization algorithm (AOA). This innovative meta-heuristic 
method uses mathematical arithmetic operators to optimize across varying search spaces. 
Through comprehensive evaluation on test functions and applied engineering design tasks, 
AOA demonstrated superior performance, convergence behavior, and computational com-
plexity compared to eleven other renowned optimization algorithms. Chickermane and Gea 
(1996) proposed the generalized convex approximation (GCA), a cutting-edge method for 
structural optimization. By leveraging design sensitivity data, they constructed a series of 
convex subproblems, which in turn showcased enhanced convergence rates when assessed 
against standard test problems.

Shifting focus to algorithms inspired by physical phenomena, Mirjalili et  al. (2016) 
introduced the multi-verse optimizer (MVO). This nature-inspired algorithm derives its 
concepts from cosmological phenomena such as white holes, black holes, and wormholes. 
Through mathematical modeling of these cosmic events, MVO effectively employs explo-
ration, exploitation, and local search techniques. Kaveh and Mahdavi (2014) have put for-
ward the colliding bodies optimization (CBO) meta-heuristic algorithm, a method under-
pinned by the principles of one-dimensional collisions. When applied to truss designs with 
discrete dimension variables, this approach – devoid of the need for parameter tuning and 
offering a lucid formulation—demonstrated its efficacy in structural optimization. Another 
intriguing method is the gravitational search algorithm (GSA) introduced by Rashedi et al. 
(2009). This strategy, inspired by gravity and mass interactions, adopts masses as searcher 

Fig. 1  Categorization of meta-heuristic methods
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agents. The research underscores its formidable performance in solving diverse nonlinear 
functions, especially when pitted against well-established heuristic search methods.

A Kaveh and Siamak Talatahari (2010) proposed the charged system search (CSS) algo-
rithm, which employs principles from electrostatics and Newtonian mechanics. This algo-
rithm demonstrates superior performance in optimization tasks amidst discontinuous or 
non-convex territories, circumventing the need for gradient information or the smoothness 
of the search area. Abedinpourshotorban et al. (2016) presented the electromagnetic field 
optimization (EFO). This physics-inspired optimization technique integrates the golden 
ratio to dictate attraction-repulsion forces among electromagnetic particles within a tri-
field structure. Remarkably, its superiority concerning precision and speed of convergence 
was evident on the 30 high-dimensional CEC 2014 benchmark problems, outperforming 
other leading optimization algorithms. Kashan (2015) introduced optics-inspired optimi-
zation (OIO) which models numerical optimization processes on the reflective behaviors 
of concave and convex mirrors, yielding a competitive and parameter-efficient method for 
solving complex optimization problems.

Human concepts have increasingly become a source of inspiration for metaheuristic 
techniques, leading to the development of novel optimization methods that mimic various 
human activities and thought processes. Reynolds (1994) presented a computational model 
for cultural evolution, which employs dual inheritance within a population of individuals 
characterized by specific behavioral traits and a collective “belief space”. This model is 
accelerated by GA and version spaces, which serve to enhance learning rates within the 
structure of the cultural algorithm. Rao et  al. (2011) introduced the teaching–learning-
based optimization (TLBO). This method, which is inspired by the pedagogical effect of 
a mentor on learners, proves effective for mechanical design problems. In a series of test 
cases and real-world applications, TLBO showcased performance superiority over other 
population-based optimization algorithms. Gandomi (2014) unveiled the interior search 
algorithm (ISA), a unique optimization technique that takes inspiration from the art and 
craft of interior design. Noteworthy is its simplicity, requiring tuning of just one parameter. 
The ISA stands out for its capability to solve optimization challenges, surpassing estab-
lished algorithms in benchmark tests.

In a blend of music, Lee and Geem (2005) presented the harmony search (HS) method. 
Drawing inspiration from the musical process of seeking harmony, this method sets itself 
apart by not relying on gradient information. The research evidences the robustness and 
effectiveness of HS in addressing diverse engineering optimization problems, often deliv-
ering solutions that may surpass those derived from traditional algorithms. Sadollah et al. 
(2013) have proposed the mine blast algorithm (MBA), an innovative population-based 
optimization method influenced by the explosive dynamics of mine blasts. The results 
obtained from their research underscore the algorithm’s efficiency and its exceptional per-
formance in addressing both constrained optimization and engineering design tasks, espe-
cially when juxtaposed against well-established optimization methods. Kashan (2014) 
introduced the league championship algorithm (LCA). This method simulates a sporting 
championship environment, where artificial teams vie for dominance in a league. Teams 
adapt their strategies or solutions based on game results, while also modeling player trans-
fers at season’s end. Empirical analysis conducted on a variety of benchmark functions 
showcases its promising performance, hinting at its potential suitability for practical appli-
cations in the future.

In recent years, metaheuristic techniques that draw inspiration from animal behavior 
have garnered significant attention from researchers, as highlighted in Table 1. Kennedy 
and Eberhart (1995) presented the concept of optimizing nonlinear functions through the 
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particle swarm optimization (PSO) technique. Their research delved into the evolution of 
different paradigms within this approach, executed one such paradigm, and subjected it to 
benchmark tests. They further identified potential applications, notably in nonlinear func-
tion optimization and neural network training. Gandomi et al. (2013) presented the cuckoo 
search (CS) metaheuristic optimization algorithm, which is enriched by Lévy flights. 
Through comprehensive testing on benchmark nonlinear constrained optimization tasks 
and structural engineering design challenges, CS demonstrated a distinct edge over other 
cutting-edge techniques. The authors also emphasized its unique search features, position-
ing it as a valuable subject for future research endeavors. Seyyedabbasi and Kiani (2023) 
introduced the sand cat swarm optimization (SCSO) algorithm. Drawing inspiration from 
the survival strategies of sand cats, SCSO proves adept at solving optimization challenges 
by skillfully balancing exploration and exploitation phases. The algorithm’s exceptional 
performance, evident in benchmark tests and intricate engineering design problems, places 
it a notch above other metaheuristic competitors.

Chen et al. (2022) unveiled the egret swarm optimization algorithm (ESOA), an inven-
tive meta-heuristic technique influenced by the hunting behaviors of two egret species. 
Across an array of benchmark functions and engineering challenges, ESOA showcased its 
marked effectiveness and robustness, often overshadowing other optimization algorithms. 

Table 1  A summary of swarm-based algorithms

Author(s) Method Inspiration Year

Gandomi et al. (2013) Cuckoo search algorithm Cuckoo 2013
Cuevas et al. (2013) Social-spider optimization Social spider 2013
Cheng and Prayogo (2014) Symbiotic organisms search Symbiotic 2014
Bansal et al. (2014) Spider monkey optimization algorithm Spider monkey 2014
Mirjalili (2015a) Ant lion optimizer Ant lion 2015
Mirjalili (2015b) Moth-flame optimization algorithm Moth-flame 2015
James and Li (2015) Social spider algorithm Social spider 2015
Mirjalili and Lewis (2016) The whale optimization algorithm Whale 2016
Saremi et al. (2017) Grasshopper optimisation algorithm Grasshopper 2017
Mirjalili et al. (2017) Salp Swarm Algorithm Salp Swarm 2017
Mirjalili et al. (2018) Grasshopper optimisation algorithm Grasshopper 2018
Alsattar et al. (2020) bald eagle search optimisation algorithm bald eagle 2020
Xue and Shen (2020) Sparrow search algorithm Sparrow 2020
Zhao et al. (2020) Manta ray foraging optimization Manta 2020
Abualigah et al. (2021) Aquila optimizer Aquila 2021
Połap and Woźniak (2021) Red fox optimization algorithm Red fox 2021
Xie et al. (2021) Tuna swarm optimization Tuna swarm 2021
Abdollahzadeh et al. (2022) Mountain gazelle optimizer Mountain gazelle 2022
Chen et al. (2022) Egret swarm optimization algorithm Egret swarm 2022
Chopra and Ansari (2022) Golden jackal optimization Golden jackal 2022
Hashim et al. (2022) Honey Badger Algorithm Honey Badger 2022
Sadeeq and Abdulazeez (2022) Giant trevally optimizer Giant trevally 2022
Wang et al. (2022) Artificial rabbits optimization Rabbit 2022
Seyyedabbasi and Kiani (2023) Sand cat swarm optimization Sand cat 2023
Zhao et al. (2023) Sea-horse optimizer Seahorse 2023
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Abualigah et al. (2021) brought to light the Aquila optimizer (AO), a metaheuristic method 
that mirrors the predatory strategies of Aquila birds. Their work delineates four distinct 
methods that reflect the bird’s hunting strategies. The AO algorithm underwent rigorous 
validation, with tests on renowned functions, the intricate CEC2017 and CEC2019 func-
tions, and real-world engineering scenarios. Mirjalili et  al. (2017) introduced the salp 
swarm algorithm (SSA) and its multi-objective counterpart (MSSA), inspired by salps’ 
swarming patterns, and validated their effectiveness on mathematical and applied engineer-
ing design tasks, showcasing their ability to efficiently converge to optimal solutions and 
approximate Pareto fronts. Bansal et al. (2014) introduced the spider monkey optimization 
(SMO) method, an innovative approach to numerical optimization inspired by the adapt-
able hunting behaviors of spider monkeys, animals known for their fission-fusion social 
dynamics.

The behavior of spiders in addressing optimization challenges has also inspired the 
development of metaheuristics and is applied in various fields. Cuevas et al. (2013) intro-
duced the social spider optimization (SSO) technique, inspired by the cooperative interac-
tions of social spiders, featuring distinct evolutionary operators for male and female agents, 
and exhibits high proficiency in locating global optima on various benchmark functions. 
Ouadfel and Taleb-Ahmed (2016) explored the effectiveness of the flower pollination (FP) 
and SSO method in image segmentation through multilevel thresholding, demonstrating 
that while both outperform the PSO and BAT algorithms, SSO maintains superior stabil-
ity and efficiency across various threshold numbers, making it a compelling choice for 
complex image thresholding tasks. Ewees et  al. (2017) presented an enhanced adaptive 
neuro-fuzzy inference system (ANFIS) optimized using the SSO algorithm for forecast-
ing biochar yield from manure pyrolysis, showcasing superior performance over classical 
ANFIS and other methodologies such as artificial bee colony, PSO, and least square-sup-
port vector machine. Nguyen and Vo (2020) introduced an improved SSO technique that 
enhances the solution generation process for optimal reactive power dispatch problems, 
demonstrating reduced computational steps and parameters, faster simulation times, and 
consistently superior solution quality when benchmarked against standard SSO and other 
leading methods.

In an independent study, James and Li (2015) unveiled a novel social spider algorithm 
(SOSA) for global optimization. This algorithm uniquely harnesses web vibrations, which 
social spiders use to locate prey, deviating from conventional swarm intelligence strate-
gies and showing superior results in benchmark assessments. SOSA has been applied in a 
variety of fields. For instance, Elsayed et al. (2016) presented a modified version of SOSA 
to address the non-convex economic load dispatch task, which includes real-world restric-
tions like valve point impacts and prohibited operating areas. The enhanced algorithm 
demonstrates improved performance across four benchmark systems, surpassing the origi-
nal SOSA and displaying a competitive advantage in the existing literature. El-Bages and 
Elsayed (2017) presented an SOSA model for static transmission expansion planning that 
provides cost-effective solutions, validated on benchmark systems with varying degrees of 
complexity. Baş and Ülker (2020) introduced a binary version of SOSA, augmented with 
similarity measures and logic gates, and their results indicate superior performance in solv-
ing unimodal, multimodal, and uncapacitated facility location problems when compared 
with traditional algorithms.

The evolution and enhancement of existing algorithms have become a focal point for 
researchers in recent years. The thrust to augment existing algorithms for emerging chal-
lenges has driven significant academic interest. Kaveh and Talatahari (2010a) brought forth 
an advanced version of the ant colony optimization (ACO), termed the improved ACO. 
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Crafted for constrained engineering design challenges, this approach deftly manages both 
continuous and discrete problems. Central to its design is the sub-optimization mecha-
nism (SOM), inspired by finite element principles, which efficiently trims down phero-
mone matrices, decision vectors, function evaluations, and optimization durations without 
jeopardizing the likelihood of pinpointing optimal solutions. Chakraborty et  al. (2009) 
embarked on refining the harmony search (HS) algorithm, which finds its muse in musical 
improvisation. Their method hybridizes HS with the differential evolution (DE) algorithm, 
aiming to mitigate slow and premature convergence challenges on intricate fitness terrains. 
Performance metrics of this hybrid were juxtaposed against classical HS, global best HS, 
and a renowned DE variant. Assessments were made across diverse benchmark functions 
and practical optimization challenges, based on criteria like precision, computational pace, 
and consistency in reaching optima.

Son and Nguyen Dang (2023b) showcased a composite model named the hybrid multi-
verse optimizer (hDMVO), which integrates MVO and the sine cosine algorithm (SCA). 
This model is adept at managing discrete time-cost trade-off (TCTO) quandaries in con-
struction project orchestration. Its prowess shines through benchmark evaluations and its 
knack for devising superior solutions in large-scale TCTO scenarios for intricate projects. 
Abd Elaziz et  al. (2017) unveiled an augmented SCA, enriched with opposition-based 
learning (OBL). This enhancement broadens the exploration horizon of the search domain, 
leading to heightened precision and overall performance. Its efficacy is evident from 
benchmark evaluations and complex engineering tasks, underscoring the value of this syn-
ergistic approach. Pham, Trang, et al. (2023) articulated a proficient scheduling optimiza-
tion technique for ready-mix concrete (RMC) truck dispatches. At its core is a novel hybrid 
swarm intelligence algorithm fusing the grey wolf optimizer (GWO) with the dragonfly 
algorithm (DA). The resultant algorithm excels in performance compared to its standalone 
counterparts and heralds a leap in multi-independent batch plant cooperation for refined 
RMC deliveries in construction sectors.

In recent years, optimization techniques have found widespread applications across 
diverse fields. Pham, Nguyen Dang, et al. (2023) introduced an enhanced SCA that inte-
grates roulette wheel selection with OBL, demonstrating superior performance over tra-
ditional optimization algorithms in various engineering optimization contexts. Son and 
Nguyen Dang (2023a) presented the MVO model as an effective tool for addressing 
time–cost optimization issues in construction project management, surpassing other tech-
niques in small-scale applications. Kumar et al. (2023) unveiled the multi-objective MVO, 
a dual-archive metaheuristic tailored for complex structural optimization, and illustrated its 
superior performance in real-world applications over leading algorithms such as MOEA/D 
and NSGA-II through comprehensive evaluations employing established performance 
metrics. Aye et al. (2023) introduced an innovative surrogate-aided optimization approach 
for enhancing airfoil shapes, incorporating both CFD and XFoil simulations. This method 
demonstrated superior performance in comparison to conventional surrogate-assisted 
techniques.

Nonut et al. (2022) advocated for the application of metaheuristics in the system iden-
tification of fixed-wing UAVs by optimizing aerodynamic and stability derivatives to 
minimize R-squared errors, with the L-SHADE algorithm proving to be the most effective 
method through extensive statistical analysis. Singh et al. (2022) unveiled an improved fol-
low-the-leader (iFTL) technique, inspired by the foraging behaviors of sheep. Comprehen-
sive testing within the Comparing Continuous Optimisers framework, alongside a suite of 
benchmark functions and truss design problems, revealed that iFTL outperforms fourteen 
well-established optimization algorithms in terms of performance and stability. In another 
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study, Kumar et al. (2022) enhanced the efficacy of discrete meta-heuristics for truss design 
by incorporating both a random mutation search phase and selection based on simulated 
annealing into five pre-existing algorithms. The resultant modifications led to improved 
search diversification and intensification, yielding superior optimization results in complex 
structural engineering challenges. Kumar, Tejani, Pholdee, Bureerat, et  al. (2022) intro-
duced a groundbreaking multi-objective TLBO method. This novel approach incorporates 
non-dominated sorting and an external archive, adeptly mitigating early convergence and 
preventing local optima entrapment in multi-objective contexts.

Recent trends in algorithmic research spotlight both the inception of new algorithms 
and the refinement of pre-existing ones. The burgeoning interest in this area owes much 
to the No Free Lunch (NFL) theorem (Wolpert and Macready 1997), which posits that no 
single optimization technique can universally address all optimization challenges.

In light of the NFL theorem, this study introduces the Portia spider algorithm (PSA), 
inspired by the predatory strategies of the Portia spider. The PSA’s efficacy was rigorously 
assessed using a suite of benchmarks: 23 classical test cases, 29 CEC2017 benchmark test 
functions, and five practical engineering optimization tasks. The algorithm’s performance 
was then benchmarked against a collection of established meta-heuristic algorithms.

The primary attributes and contributions of the PSA include:

• Absence of any tunable parameters.
• An agile adjustment of solution positions, grounded in the spider’s stalking and strik-

ing hunting behaviors, fostering expansive exploration and ensuring robust population 
diversity.

• The updating of solution positions, blending the stalking and striking tactics (explora-
tion phase) with the invading and imitating tactics (exploitation phase), which harmo-
nizes the exploration and exploitation phases.

The subsequent sections of this study are structured as follows: Sect.  2 introduces a 
comprehensive framework for the PSA. In Sects. 3, 23 classical and 29 CEC2017 test func-
tions were employed to probe the convergence properties of the PSA. Section 4 evaluates 
the real-world applicability of the PSA through five engineering optimization scenarios. 
Finally, Sect. 5 summarizes the findings, spotlighting the study’s novel contributions, and 
signposting avenues for prospective research in this domain.

2  Portia spider algorithm

2.1  Inspiration

Over 48,000 unique spider species coexist on our planet. Much like humans who have 
evolved to inhabit diverse environments over millennia, spiders have undergone adapta-
tions spanning millions of years. These adaptations have produced species ranging from 
fishers to desert inhabitants, high-altitude enthusiasts, and astute strategists like the Portia 
spider. The Portia spider primarily resides in tropical forests, typified by their humid and 
warm climate. Intriguingly, this spider preys on various other spiders, some of which pos-
sess the ability to turn the tables on the predator-prey relationship (Robson 2020).

On an average hunting day, a Portia spider might discreetly stalk another jumping spider 
or cautiously venture into the web of an orb-weaving spider. Both pursuits come with risks, 
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as the spiders Portia targets can invert the prey-predator dynamic, posing a threat to Portia. 
The necessity to confront such hazardous scenarios for sustenance has likely sculpted Por-
tia into a master strategist.

One of the most notable strategies employed by the Portia spider (Fig.  2) becomes 
apparent when it detects chemical signals from a fellow jumping spider. Even devoid of 
direct visual cues, the Portia ascertains the presence of its quarry through these chemical 
indicators. In response to this chemical intelligence, the Portia adjusts its customary move-
ment, initiating an abrupt leap to momentarily divert the attention of the observant jumping 
spider. This fleeting action momentarily breaks the latter’s camouflage, betraying its loca-
tion. With calculated patience, the Portia waits for its target to divert its attention before 
drawing nearer, primed for its climactic strike (Jackson and Wilcox 1998).

Additionally, Portia spiders employ another strategy: invading the webs of other spiders. 
To lure their prey, they imitate the vibrations of an ensnared insect by disturbing the web 
(Cross and Jackson 2005) (Fig. 3a). Yet, many web-spinning spiders seem to have decoded 
this tactic, making discreet stalking frequently a more successful approach. Observations 
have revealed that Portia spiders occasionally capitalize on natural web vibrations caused 
by ambient breezes. If circumstances necessitate, they can even produce these vibrations 
independently. Researchers documented higher prey capture success rates for Portias in 
environments where webs were intermittently perturbed, compared to scenarios with static 

Fig. 2  Portia spider

Fig. 3   Portia spiders’ hunting behavior when invading the webs of other spiders
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webs. At times, when the direct vibratory mimicry falls short in attracting prey, the Portia 
spider opts for an alternate approach, positioning a silk dragline directly above the web, 
and then pouncing once in close proximity to its target (Fig. 3b).

Distinctly, while many predators employ natural elements for camouflage or utilize 
environmental facets for stealth, Portia spiders display a novel behavior, serving as the first 
documented instance where an organism effectively creates its own diversion. The inge-
nuity of Portia spiders extends to adaptive learning during hunts. They engage in intri-
cate signaling on their prey’s web, dynamically adjusting their methods based on observed 
responses. This indicates a trial-and-error approach in their hunting style. Occasionally, 
upon detecting prey from afar, Portia spiders adopt an indirect route, often embarking on 
journeys lasting up to two hours, showcasing their aptitude for strategic anticipation.

This particular species appears to determine its approach or web signal for a specific 
target spider through a sophisticated process of trial and error, enhanced by cues from the 
prey or its web. The signaling tactics of Portia continuously evolve until the targeted prey 
inadvertently responds, often sealing its fate. Such behaviors exemplify a problem-solving 
acumen seldom seen among spiders. It is this unparalleled hunting aptitude that inspired 
the development of the Portia spider algorithm (PSA).

2.2  Mathematical model

In the PSA framework, the behaviours and strategies of the Portia spider are abstracted and 
transformed into a computational model. Here, each individual Portia spider is treated as 
a unique solution to a given problem. The specific location or position of each spider (or 
solution) is defined by a set of variables, potentially representing different parameters or 
attributes of the solution.

To visualize and manage these solutions, they are organized within a matrix. In this 
matrix, every row could represent an individual Portia spider (or a solution) while every 
column could correspond to a specific variable or parameter of the solution:

In Eq. (1), the variable N stands for the number of Portia spiders, equating to the popu-
lation size, while d denotes the parameters associated with the optimization issue. This 
matrix provides a holistic representation of all possible solutions along with their specific 
attributes. Over the course of the algorithm, the positions of the Portia spiders (which rep-
resent solutions) may alter, indicating the optimization or evolution of the solution toward 
the problem’s objective. The fitness scores of these spiders are then ranked and compiled 
into a vector according to the following expression:

Besides the Portia spiders, the prey is pivotal to the PSA framework. As outlined in Eq. 
(2), the prey vector represents the optimal solution identified up to that point. All Portia 
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spiders orient their movement relative to this prey. The position of the prey is detailed in 
Eq. (3).

The movement of the Portia spiders, oriented relative to their prey, is crucial for obtain-
ing optimal results. By emulating the hunting strategies of the Portia spider, the PSA can 
adaptively explore the solution space. This approach enables the algorithm to use trial-
and-error and adjust strategies based on feedback, mirroring how Portia spiders modify 
their hunting techniques in response to their prey’s behaviors. In subsequent sections, the 
mechanism for updating positions in the PSA is detailed, encompassing both the stalking 
and striking actions (during the exploration phase) as well as the invading and imitating 
actions (during the exploitation phase).

2.2.1  Stalking and striking (exploration phase)

This stage is inspired by the hunting strategies of the Portia spider, especially its reaction 
to chemical signals from another jumping spider (Fig. 2). When these signals are detected, 
the Portia spider momentarily deviates from its typical waddling gait, executing what can 
be described as a spontaneous jump. This sudden move induces the prey to break its cam-
ouflage, inadvertently revealing its position to the Portia spider. This observed behavior is 
then translated into the following mathematical formulation:

subject to:

where tj symbolizes the jth parameter of the prey (which is the best solution identified up 
to this point); sij denotes the jth parameter of the ith solution; α1 is a random value that falls 
between 0 and 1; NF(Si) and F(Si) correspond to the standardized fitness score and the 
actual fitness score of solution Si, respectively.

This mechanism triggers sudden variations, promoting a more extensive search or 
exploration and ensuring population diversity. In optimization techniques, striking a bal-
ance between exploration and exploitation is crucial. While exploitation focuses on refining 
solutions within a localized region, exploration delves into uncharted areas of the solution 
landscape in search of superior alternatives. This concept parallels the crossover technique 
in GA, which emphasizes thorough traversal of the search domains.

2.2.2  Invading and imitating (exploitation phase)

This phase is inspired by a unique hunting strategy displayed by the Portia spider: the act of 
encroaching upon the webs of other spiders. In this behavior, the Portia spider sneaks into 
the webs of other spiders and lures its prey by producing web vibrations. These vibrations 
mimic the movements of a trapped insect (Fig. 3a). While the Portia spider sometimes takes 
advantage of naturally occurring vibrations in the web, like those caused by a gentle breeze, it 
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is also skilled at producing these vibrations on its own when necessary. This intriguing natural 
behavior is translated into the subsequent mathematical model, which draws inspiration from 
the vibration function that incorporates damping:

However, many web-weaving spiders seem to have caught on to these tricks. When simple 
vibrational mimicry fails to attract the prey, the Portia spider employs an alternative strategy. 
It attaches a silk dragline just above the web and descends cautiously, stopping only when it’s 
within striking distance of its intended prey (Fig. 3b). With this hunting method, Portia spiders 
engage in direct pursuit of their prey, foregoing the mimicry of movements characteristic of 
trapped insects. This observed behavior is captured in Eq. (7), wherein the current solution 
position is adjusted directly based on the optimal solution identified up to that point, a strategy 
that differs from the solution position modification presented in Eq. (6).

These two equations Eq. (6) and Eq. (7) are combined to be used as follows:

subject to:

where tj represents the jth parameter of the prey (the best solution identified thus far); sij 
denotes the jth parameter of the ith solution; α2, α4 and α5 are random values within the 
range [0,1]; α3 is determined by Eq. (9) ensuring a harmony between the exploration and 
exploitation phases. Icur and Imax denote the current and the maximum iteration number, 
respectively.

Specifically, Table 2 presents the PSA algorithm in the form of pseudocode. This structured 
breakdown elucidates the algorithm’s step-by-step progression, allowing readers to intuitively 
understand its logic and sequence of operations. Furthermore, Fig. 4 depicts the exploration 
and exploitation mechanisms of the PSA. A mathematical model inspired by the stalking and 
striking behavior of the Portia spider, as expressed in Eq. (5), induces abrupt changes in the 
solution position to enhance exploration (see Fig. 4a). In contrast, a model derived from the 
invading and imitating behavior typical of the Portia spider, detailed in Eq. (8), refines the 
solution position to foster exploitation (refer to Fig. 4b). Complementing these models, Fig. 5 
presents a flowchart that succinctly outlines the PSA framework.

2.3  Differences between PSA and other spider‑inspired algorithms

In recent years, the field has seen the emergence of numerous swarm intelligence algo-
rithms, inspired by the collective behavior observed in nature. Prominent among these are 
social spider optimization (SSO) (Cuevas et al. 2013) and social spider algorithm (SOSA) 
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(James and Li 2015), which are metaheuristic algorithms that mimic spider behavior. 
While PSA also draws inspiration from spider behavior, it diverges significantly from SSO 
and SOSA in various aspects of its operational methodology and design principles.

The divergence between PSA and SSO originates from their respective sources of inspi-
ration and intricacies of design. SSO takes cues from the sophisticated mating behavior of 
social spiders, incorporating a system of gender distinction into its search strategy. This 
model allows male and female agents within the algorithm to undertake unique roles and 
engage in distinct search behaviors. In contrast, PSA takes a cue from the isolated foraging 
patterns of the Portia spider. By discarding gender distinctions, all agents in PSA adhere to 
a uniform search approach, which simplifies the algorithm’s application.

The strategies to ensure diversity in solutions also show significant differences. SSO 
employs a mating algorithm, simulating mate selection to generate a range of solutions 
akin to the genetic diversity found in spider populations. Conversely, PSA uses mathe-
matical models to abstract the predatory behavior of Portia spiders, such as stalking and 

Fig. 4   PSA exploration and exploitation concept

Table 2  Pseudocode of the PSA Input: Population size (N); number of iteration (Imax)

Begin
Generate random Portia spiders;
while (I_cur < I_max) do
Calculate and sort the fitness value;
Determine prey position;
Stalking and striking (exploration phase)
Update value of alpha_1;
Calculate standardized fitness score;
Update Portia spider position using Eq. (4);
Invading and imitating (exploitation phase)
Update value of alpha_2, alpha_3, alpha_4, and alpha_5;
Update Portia spider using position Eq. (8);
end
Update Portia spider set;
Determin the best solution;
I_cur = I_cur + 1;
end
Output: Optimal solution and its fitness score.
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striking, to introduce significant and strategic variations in the search patterns of the algo-
rithm, as detailed in Eq. (5). This approach bolsters the exploratory capabilities of the algo-
rithm, allowing for more effective navigation through complex search spaces.

While PSA and SOSA both emulate spider predatory behavior, they diverge in opera-
tional mechanisms. SOSA is based on the social behavior of spiders, using web vibrations 
to pinpoint the location of prey. In contrast, PSA takes cues from the Portia spider hunting 
strategy, which involves simulating the vibrations of trapped insects to attract other spi-
ders, with the mathematical model for this behavior expressed in Eq. (6). Additionally, the 

Fig. 5  Flowchart of the PSA
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solution position adjustment mechanism in PSA is more varied. When vibrational mimicry 
fails in attracting prey, the Portia spider employs an alternative strategy: it attaches a silk 
dragline above the web and descends cautiously, stopping when it is within striking dis-
tance of its prey, as modeled in Eq. (7).

Furthermore, PSA also introduces abrupt changes in the solution position to enhance 
exploration, like the crossover technique in GA which greatly expands exploration of the 
search space. This exploratory mechanism, inspired by the Portia spider’s stalking and 
striking behavior, is expressed mathematically in Eq. (5). In terms of algorithm parameters, 
PSA operates without the need for tunable parameters, which simplifies its implementa-
tion. On the other hand, SOSA uses three user-controlled parameters, named ra, pc, and pm, 
to steer the search process.

3  Convergence analysis

In the context of optimization, especially when considering evolutionary algorithms and 
metaheuristics, demonstrating algorithmic efficiency relies on the application of predefined 
test cases. Given the intrinsically stochastic attributes of these methodologies, the attain-
ment of optimal outcomes mandates the deployment of a meticulously curated test func-
tion suite. It remains quintessential to ascertain that any discerned enhancements are not 
merely manifestations of stochastic variance. Presently, the field is devoid of a universally 
endorsed benchmarking paradigm, thus driving scholars to delve into an extensive assort-
ment of test instances. Considering this, the present investigation encompasses an eclectic 
compilation of test functions, integrating 23 classical test cases and the CEC2017 test func-
tions, with diverse traits, to facilitate an exhaustive appraisal of algorithmic prowess.

3.1  Classical test functions

The efficacy of PSA was thoroughly evaluated using a diverse set of twenty-three test func-
tions (Yao et al. 1999), segmented into three unique categories: unimodal, multimodal, and 
composite functions, as detailed in Table 3. The unimodal functions, which are defined by 
a singular global optimum devoid of local optima, serve to gauge the algorithm’s profi-
ciency in rapid convergence and effective exploitation. In contrast, the multimodal func-
tions encompass several local optima alongside a global optimum. They present an oppor-
tunity to assess the algorithm’s capability to navigate beyond local optima and explore 
the search terrain comprehensively. Lastly, the fixed functions are derived by strategically 
modifying certain unimodal and multimodal functions through methods such as rotation, 
shifting, and the introduction of bias. These functions play a crucial role in dissecting 
PSA’s performance under intricate optimization circumstances.

To evaluate the optimization capability of PSA, a cohort of 25 search agents was 
deployed across 500 iterations, with the aim of identifying the optimal solution that PSA 
could determine from the group of 23 test functions. The efficacy of PSA was contrasted 
with several other prominent population-based optimization algorithms, namely SSA, 
GOA, MFO, and ALO. Given the stochastic nature of these methodologies, each technique 
was executed 30 times to affirm the reliability and consistency of outcomes. Central statis-
tical metrics, particularly mean values (avg) and standard deviations (std) were calculated 
and presented in Table 4. This table offers a comprehensive analysis of the performance 
metrics for each algorithm.
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From the data presented in Table 4, PSA surpasses other metaheuristic techniques when 
evaluated on unimodal test functions. Specifically, PSA demonstrates a remarkable apti-
tude for exploitation, consistently surpassing benchmark techniques such as SSA, GOA, 
MFO, and ALO. This underscores the prowess of PSA in tackling unimodal optimization 
tasks. Further, within the realm of multimodal functions, the performance of PSA is exem-
plary, often besting other competing techniques. This is indicative of its superior ability 
to comprehensively explore the search terrain, thereby avoiding premature convergence to 
local optima. Upon delving into the fixed function tests, the performance of PSA aligns 
closely with the average achievements of other algorithms. It is noteworthy that, in the con-
text of functions f14 to f21, PSA remains competitive with SSA, GOA, MFO, and ALO. 
However, its superiority becomes more pronounced for functions f22, and f23, where PSA 
emerges as the leader. Collectively, these results underscore the commendable expertise of 
PSA when juxtaposed against other contemporary optimization methods.

To assess the statistical significance of performance disparities between the PSA and 
other well-established algorithms on classical test functions, a t-test was conducted with 
a 95% confidence level. The outcomes of this t-test are detailed in Table 5. In this table, a 
“+” symbol indicates that the PSA holds a statistically significant advantage over the com-
parison method at the 95% confidence level, a “-” symbol shows that the PSA performs 
significantly worse, and “≈” denotes no significant difference in performance between the 
techniques. It is revealed by the data in Table 5 that superior performance is exhibited by 
the PSA across most of the classical test cases when compared to other techniques such as 
GOA, SSA, MFO, and ALO.

Additional evaluation measures, such as the convergence curve, mean fitness across 
all solutions, trajectory of the first solution, and search history, were employed to assess 
the effectiveness of PSA. For this analysis, 250 iterations with 20 search agents were 
used across three categories of test functions: unimodal (f1, f4, f7), multimodal (f9, f12), 
and specific functions (f15, f17, f23), as presented in Fig. 6. Upon examining the conver-
gence graph and average fitness value, a discernible decline in the quality of search agents 
emerges as the iterations advance. This trend highlights the capacity of PSA to improve 
the quality of initially randomized solutions tailored to specific optimization challenges. 
The trajectory of the first solution underscores the adeptness of PSA in ensuring conver-
gence during a localized search. This proficiency is further illuminated by marked varia-
tions in mean fitness value during the discovery phase, followed by minor adjustments in 
the refinement phase (Van den Bergh and Engelbrecht 2006). Furthermore, the search his-
tory associated with these functions underscores the robust efficiency of PSA in navigating 
the exploration domain and pinpointing areas of promise. Figure 7 subsequently delves into 
the convergence patterns observed in the 23 classical test functions, analysed over a span 
of 150 iterations with the assistance of 20 search agents. From this data, the superiority of 
PSA becomes clear, especially when benchmarked against other techniques such as SSA, 
GOA, MFO, and ALO. PSA consistently demonstrates superior convergence performance 
primarily in the considered test functions.

3.2  CEC2017 benchmark test functions

The CEC2017 test functions comprise a set of benchmark functions introduced during the 
2017 IEEE Congress on Evolutionary Computation (CEC) competition, with a primary 
focus on real-parameter optimization. Held in high regard within the evolutionary compu-
tation community and associated domains, these benchmarks serve as instrumental tools 
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for gauging and contrasting the effectiveness of optimization techniques. Building upon the 
benchmark suites from preceding years, the CEC2017 collection has been meticulously tai-
lored to offer a diverse range of challenges to optimization techniques. Notably, these func-
tions are perceived as more realistic compared to the 23 traditional benchmark functions. 
Their comprehensive scope includes both unimodal and multi-modal domains, embracing 
both separable and non-separable functions. Furthermore, they incorporate shifted and 
rotated variations, providing a thorough testbed for algorithms. Such a diverse set of test 
cases allows researchers to discern the merits and demerits of various optimization tech-
niques across different settings.

In line with this discussion, the effectiveness of PSA is validated using the IEEE 
CEC2017 (Wu et al. 2017) test suites. These suites are primarily classified into four dif-
ferent classifications: unimodal, multimodal, hybrid, and composition. Table 6 delineates 
the detailed definitions of the CEC2017 benchmark problems. To rigorously evaluate the 
capability of the PSA in handling complex optimization problems, all functions within the 
CEC2017 suite were configured to have 30 dimensions. This increase in dimensionality 
presents a more challenging scenario, aimed at thoroughly testing the algorithm’s profi-
ciency in navigating and optimizing within a high-dimensional search space.

Table  7 presents comprehensive statistical results comparing the PSA with other 
swarm-based methods, including GOA, SSA, MFO, and ALO. To guarantee a thorough 
and unbiased assessment, each technique was subjected to 30 runs for every benchmark 

Table 5  T-test results on 23 
classical test functions

Alg./ Func. PSA/GOA PSA/SSA PSA/MFO PSA/ALO

f1 + + + +
f2 + ≈ + +
f3 ≈ + + +
f4 + ≈ + +
f5 + + ≈ +
f6 + − + +
f7 + + ≈ +
f8 + ≈ + +
f9 + + + +
f10 + + + +
f11 + + + +
f12 ≈ + + +
f13 + + ≈ −
f14 + + + +
f15 + + ≈ +
f16 + + − +
f17 + + − +
f18 ≈ + − +
f19 + + ≈ −
f20 + + + +
f21 + + + +
f22 + + + +
f23 + + + +
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Fig. 6  Search history, convergence curve, average fitness of all solutions and trajectory of the first solution
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function. Following these simulations, statistical evaluations were conducted to ascertain 
both the mean values (avg) and the standard deviations (std) from these trials. For this 
study’s framework, 50 search agents were employed, with each confined to a limit of 400 
iterations. An examination of the data in Table  7 clearly demonstrates the outstanding 

Fig. 7  Convergence behavior of PSA, GOA, SSA, MFO, and ALO for classical test functions
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effectiveness of PSA over other techniques like GOA, SSA, MFO, and ALO, particularly in 
the multimodal, hybrid, and composition benchmark domains.

A t-test, conducted with a 95% confidence level, was employed to evaluate the statistical 
significance of performance disparities between the PSA and other established algorithms 

Fig. 7  (continued)
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on the CEC2017 test functions, similar to the methodology applied to classical test cases. 
The results of this t-test are detailed in Table 8. The data in Table 8 reveal that the PSA 
exhibits superior performance across most of the CEC2017 test cases when compared to 
other techniques such as GOA, SSA, and ALO. Notably, the PSA outperformed the MFO 
in all CEC2017 test cases.

4  Engineering optimization problems

The objective of this section is to thoroughly evaluate the effectiveness of the PSA by 
applying it to five practical engineering optimization challenges, each distinguished by 
multiple inequality constraints. The overarching goal is to ascertain the algorithm’s adept-
ness in handling these constraints throughout the entire optimization process.

Table 6  CEC2017 benchmark function data

Function Type Name Range n Fmin

f1 Unimodal Shifted and Rotated Bent Cigar Function [− 100, 100] 30 100
f2 Unimodal Shifted and Rotated Zakharov Function [− 100, 100] 30 200
f3 Multimodal Shifted and Rotated Rosenbrock’s Function [− 100, 100] 30 300
f4 Multimodal Shifted and Rotated Rastrigin’s Function [− 100, 100] 30 400
f5 Multimodal Shifted and Rotated Expanded Scaffer’s F7 Function [− 100, 100] 30 500
f6 Multimodal Shifted and Rotated Lunacek Bi_Rastrigin Function [− 100, 100] 30 600
f7 Multimodal Shifted and Rotated Non-Continuous Rastrigin’s 

Function
[− 100, 100] 30 700

f8 Multimodal Shifted and Rotated Levy Function [− 100, 100] 30 800
f9 Multimodal Shifted and Rotated Schwefel’s Function [− 100, 100] 30 900
f10 Hybrid Hybrid Function 1 (N = 3) [− 100, 100] 30 1000
f11 Hybrid Hybrid Function 2 (N = 3) [-100, 100] 30 1100
f12 Hybrid Hybrid Function 3 (N = 3) [− 100, 100] 30 1200
f13 Hybrid Hybrid Function 4 (N = 4) [− 100, 100] 30 1300
f14 Hybrid Hybrid Function 5 (N = 4) [− 100, 100] 30 1400
f15 Hybrid Hybrid Function 6 (N = 4) [− 100, 100] 30 1500
f16 Hybrid Hybrid Function 7 (N = 5) [− 100, 100] 30 1600
f17 Hybrid Hybrid Function 8 (N = 5) [− 100, 100] 30 1700
f18 Hybrid Hybrid Function 9 (N = 5) [− 100, 100] 30 1800
f19 Hybrid Hybrid Function 10 (N = 6) [− 100, 100] 30 1900
f20 Composition Composition Function 1 (N = 3) [− 100, 100] 30 2000
f21 Composition Composition Function 2 (N = 3) [− 100, 100] 30 2100
f22 Composition Composition Function 3 (N = 4) [− 100, 100] 30 2200
f23 Composition Composition Function 4 (N = 4) [− 100, 100] 30 2300
f24 Composition Composition Function 5 (N = 5) [− 100, 100] 30 2400
f25 Composition Composition Function 6 (N = 5) [− 100, 100] 30 2500
f26 Composition Composition Function 7 (N = 6) [− 100, 100] 30 2600
f27 Composition Composition Function 8 (N = 6) [− 100, 100] 30 2700
f28 Composition Composition Function 9 (N = 3) [− 100, 100] 30 2800
f29 Composition Composition Function 10 (N = 3) [− 100, 100] 30 2900
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4.1  Tension string design task

The primary objective of this task is to minimize the weight of the tension string. Key 
variables in this pursuit include the wire diameter (d), the mean coil diameter (D), and 
the number of active coils (n), each clearly illustrated in Fig. 8. A detailed mathematical 
representation of this challenge is provided as:

Consider:

Minimize:

Subject to:

�⃗x =
[
x1x2x3

]
= [dDN]

f
(
�⃗x
)
=
(
x3 + 2

)
x2x

2

1

Table 8  T-test results on 
CEC2017 test functions

Alg./Func. PSA/GOA PSA/SSA PSA/MFO PSA/ALO

f1 + + + −
f2 + ≈ + −
f3 + + + −
f4 + + + −
f5 + + + +
f6 ≈ - + +
f7 + + + +
f8 + + + +
f9 + + + +
f10 + ≈ + +
f11 + + + +
f12 + ≈ + −
f13 ≈ + + +
f14 + + + ≈
f15 + ≈ + +
f16 + ≈ + +
f17 - + + +
f18 + ≈ + −
f19 + + + +
f20 + + + −
f21 + + + +
f22 + + + −
f23 + + + −
f24 + + + −
f25 + + + +
f26 + + + +
f27 + + + −
f28 + ≈ + ≈
f29 + ≈ + ≈
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Variable range:

Results from the comparative analysis of PSA with established algorithms, in the 
context of the best outcome, are presented in Table 9. Examination of this data sug-
gests that PSA exhibits enhanced performance relative to various methods, including 
ES (Mezura-Montes and Coello 2008), HS (Chakraborty et al. 2009), RO (Kaveh and 
Khayatazad 2012), WOA (Mirjalili and Lewis 2016), RFO (Połap and Woźniak 2021), 
SCSO (Seyyedabbasi and Kiani 2023), SSA (Mirjalili et al. 2017), and MVO (Mirjalili 
et al. 2016). This finding reinforces the notion that the newly introduced PSA, in con-
junction with OBSCA (Abd Elaziz et al. 2017), and GMO (Rezaei et al. 2023), holds 
considerable practical significance in engineering applications. Figure 9 illustrates the 
best solutions attainable by different algorithms. Based on this figure, it is evident that 
PSA demonstrates notable efficacy, positioning it competitively when compared to 
other cutting-edge algorithms.

g1
(
�⃗x
)
= 1 −

x3
2
x3

71, 785x4
1

≤ 0

g2
(
�⃗x
)
=

4x2
2
− x1x2

12, 566(x2x
3

1
− x4

1
)
+

1

5108x2
1

≤ 0

g3
(
�⃗x
)
= 1 −

140.45x1

x2
2
x3

≤ 0

g4
(
�⃗x
)
=

x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.0

Fig. 8  Tension string design task
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4.2  Cantilever beam design task

This task examines a cantilever beam composed of five hollow square blocks. The first block 
is firmly anchored, while the fifth block is subjected to a vertical load. The primary goal is 
to minimize the beam’s weight. Figure 10 depicts the five parameters that define the cross-
sectional shape of the blocks. Detailed formulations for this problem are provided as:

Consider:

Minimize:

�⃗x =
[
x1x2x3x4

]
=
[
TsThRL

]

f
(
�⃗x
)
= 0.6224x1x3x4 + 1.7781x2x

2

3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

Fig. 9  Comparison of optimal outcomes in tension string design task

Table 9  The best design of tension string design task obtained by different algorithms

Optimization technique Optimal parameters Optimal weight

h l t

ES (Mezura-Montes and Coello 2008) 0.051643 0.35536 11.39793 0.0126978
HS (Chakraborty et al. 2009) 0.051154 0.349871 12.07643 0.0128872
RO (Kaveh and Khayatazad 2012) 0.05137 0.349096 11.76279 0.0126786
WOA (Mirjalili and Lewis 2016) 0.051207 0.345215 12.00403 0.0126766
MVO (Mirjalili et al. 2016) 0.05251 0.37602 10.33513 0.0127891
OBSCA (Abd Elaziz et al. 2017) 0.0523 0.31728 12.54854 0.012626
SSA (Mirjalili et al. 2017) 0.051207 0.345215 12.004032 0.0126763
GMO (Rezaei et al. 2023) 0.051792 0.359198 11.145041 0.0126654
SCSO (Seyyedabbasi and Kiani 2023) 0.0500 0.3175 14.0200 0.0127170
RFO (Połap and Woźniak 2021) 0.05189 0.36142 11.58436 0.01321
PSA (This study) 0.205341 3.261517 9.034808 0.0126674
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Subject to:

Variable range:

The results from this study have been rigorously analyzed and are presented in Table 10. 
Upon detailed examination of the data, it is evident that PSA consistently delivers results 
commensurate with, if not superior to, cutting-edge optimization methods such as COA 
(Jia et al. 2023), RFO (Połap and Woźniak 2021), GOA (Saremi et al. 2017), MVO (Mir-
jalili et  al. 2016), ALO (Mirjalili 2015a), MMA (Chickermane and Gea 1996), GCA_I 
(Chickermane and Gea 1996), GCA_II (Chickermane and Gea 1996), CS (Gandomi et al. 
2013), and SOS (Cheng and Prayogo 2014). Figure 11 offers a comprehensive visualiza-
tion of the optimal solutions derived from various algorithms. The data underscores PSA’s 
distinct edge over its contemporaries. These findings underscore the unparalleled efficacy 
of PSA in addressing and refining complex, constraint-laden challenges. Furthermore, this 
analysis accentuates the relevance of PSA in engineering and allied fields, demonstrating 
its adeptness at tackling sophisticated problem structures.

4.3  Gear train design task

The objective of the gear train design task, as depicted in Fig. 12, is to secure the minimal 
gear ratio by optimizing four discrete parameters: the total of teeth on each gear, denoted 
as nA, nB, nC, and nD. The gear ratio establishes the correlation between the angular veloci-
ties of the output and input shafts. Each parameter, being intrinsically discrete, increments 
by one unit. Central to the problem formulation is the task of constraining the feasible 

g1
(
�⃗x
)
= −x1 + 0.0193x3 ≤ 0

g2
(
�⃗x
)
= −x2 + 0.00954x3 ≤ 0

g3
(
�⃗x
)
= −𝜋x2

3
x4 −

4

3
𝜋x3

3
+ 1, 296, 000 ≤ 0

g4
(
�⃗x
)
= x4 − 240 ≤ 0

0 ≤ x1, x2 ≤ 99

10 ≤ x3, x4 ≤ 200

Fig. 10  Cantilever beam design task



Portia spider algorithm: an evolutionary computation approach…

1 3

Page 31 of 42 24

domains of these variables. A detailed mathematical representation of this task is provided 
as follows:

Consider:

Minimize:

Variable range:

Table 11 offers a detailed comparison of PSA with several esteemed optimization tech-
niques. A thorough analysis of the data underscores the congruence between solutions 
obtained through PSA and those from leading optimization methodologies, including 
MVO (Mirjalili et al. 2016), ABC (Sadollah et al. 2013), MBA (Sadollah et al. 2013), CS 
(Gandomi et al. 2013), ISA (Gandomi 2014), as well as frameworks proposed by Kannan 
and Kramer (1994), as well as Deb and Goyal (1996). These results compellingly validate 
the proposition that PSA can not only match but potentially surpass contemporary optimi-
zation strategies, particularly in scenarios rife with discrete parameters. PSA’s adeptness in 
handling discrete parameters accentuates its versatility, further cementing its position as an 
essential tool for handling diverse optimization tasks across various domains.

4.4  Welded beam design task

In the design task presented in Fig.  13, the system is defined by several crucial structural 
parameters. The design specifically pivots around four primary variables: the length of the 
attached bar (l), weld thickness (h), bar thickness (b), and bar height (t). The predominant 
objective of this engineering pursuit is to minimize the fabrication costs inherent to the design 

�⃗x =
[
x1x2x3x4

]
=
[
nAnBnCnD

]

f
(
�⃗x
)
=

(
1

6.931
−

x2x3

x1x4

)2

12 ≤ x1, x2, x3, x4 ≤ 60

Fig. 11  Comparison of optimal outcomes in cantilever beam design task
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of this apparatus. For the design to maintain both its practicality and structural integrity, adher-
ence to seven essential constraints is vital, particularly when a load is applied to the bar. These 
constraints encompass a variety of considerations, including lateral constraints, end deflec-
tion of the beam (δ), shear stress (τ), bending stress exhibited in the beam (θ), and the buck-
ling load sustained by the bar (Pc). A comprehensive mathematical exposition of this complex 
challenge is provided as:

Consider:

Minimize:

Subject to:

�⃗x =
[
x1x2x3x4

]
= [hltb]

f
(
�⃗x
)
= 1.10471x2

1
x2 + 0.04811x3x4(14.0 + x2)

g1
(
�⃗x
)
= 𝜏

(
�⃗x
)
− 𝜏max ≤ 0

g2
(
�⃗x
)
= 𝜎

(
�⃗x
)
− 𝜎max ≤ 0

g3
(
�⃗x
)
= 𝛿

(
�⃗x
)
− 𝛿max ≤ 0

Fig. 12  Gear train design task

Table 11  The best design of gear train design task obtained by different algorithms

Optimization technique Optimal parameters Optimal gear ratio

nA nB nC nD

Kannan and Kramer (1994) 33 15 13 41 2.1469E-08
Deb and Goyal (1996) 49 16 19 43 2.7019E-12
MBA (Sadollah et al. 2013) 43 16 19 49 2.7009E-12
ABC (Sadollah et al. 2013) 49 16 19 43 2.7009E-12
CS (Gandomi et al. 2013) 43 16 19 49 2.7009E-12
ISA (Gandomi 2014) N/A N/A N/A N/A 2.7009E-12
MVO (Mirjalili et al. 2016) 43 16 19 49 2.7009E-12
PSA (This study) 43 16 19 49 2.7009E-12
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Variable range:

where:

g4
(
�⃗x
)
= x1 − x4 ≤ 0

g5
(
�⃗x
)
= P − Pc

(
�⃗x
)
≤ 0

g6
(
�⃗x
)
= 0.125 − x1 ≤ 0

g7
(
�⃗x
)
= 1.10471x2

1
+ 0.04811x3x4

(
14 + x2

)
− 5.0 ≤ 0

0.1 ≤ x1, x4 ≤ 2

0.1 ≤ x2, x3 ≤ 10

𝜏
�
�⃗x
�
=

�
(𝜏�)

2 +
2𝜏�𝜏��x2

2R
+ (𝜏��)

2
, 𝜏� =

P√
2x1x2

, 𝜏�� =
MR

J

M = P
�
L +

x2

2

�
,R =

�
x2
2

4
+

�
x1 + x3

2

�2

, J = 2

�√
2x1x2

�
x2
2

4
+

�
x1 + x3

2

�2
��

Fig. 13  Welded beam design task
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Table 12 conducts a detailed comparative analysis of PSA against a range of contem-
porary optimization methods. The data within this table unequivocally showcases PSA’s 
prowess in consistently outperforming results derived from renowned algorithms such as 
RFO (Połap and Woźniak 2021), COA (Jia et al. 2023), SO (Hashim and Hussien 2022), 
MVO (Mirjalili et al. 2016), GSA (Mirjalili et al. 2016), CPSO (Mirjalili et al. 2016), GA 
(Coello Coello 2000), GA1 (Deb 1991), GA2 (Deb 1991) and HS (Lee and Geem 2005). 
Figure 37 visually delineates the optimal solutions attained by each algorithm. From this 
illustration, it’s clear that PSA not only aligns with but often surpasses the performance 
of other cutting-edge methods. Furthermore, the insights gleaned from Table 12; Fig. 14 
unequivocally indicate that PSA demonstrates exceptional capability in pinpointing opti-
mal solutions, even within the intricate matrix of multi-dimensional constraints.

4.5  Pressure vessel design task

The primary objective of this task is to minimize the fabrication costs related to the design 
of a pressure vessel. As depicted in Fig. 15, the vessel embodies a distinctive geometric con-
figuration, juxtaposing a flat section with a hemispherical profile. Central to the optimization 

𝜎
(
�⃗x
)
=

6PL

x4x
2

3

, 𝛿
(
�⃗x
)
=

6PL3

Ex2
3
x4
,Pc

(
�⃗x
)
=

4.013E

√
x2
3
x6
4

36

L2

(
1 −

x3

2L

√
E

4G

)

P = 6000lb,L = 14in., �max = 0.25in.,E = 30 × 10
6psi,G = 12 × 10

6psi,

�max = 13, 600psi, �max = 30, 000psi

Fig. 14  Comparison of optimal outcomes in welded beam design task
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process are parameters such as the inner radius (R), shell thickness (Ts), the length of the 
cylindrical segment excluding the head (L), and the head thickness (Th). These parameters, 
representing pivotal structural aspects, significantly influence the vessel’s optimal design. To 
comprehensively formulate the problem, precise mathematical delineations and constraints 
have been devised to both encapsulate the aim of cost reduction and adhere to the stipulated 
design benchmarks. The ensuing equations provide a rigorous mathematical exposition of this 
sophisticated endeavor.

Consider:

Minimize:

Subject to:

Variable range:

�⃗x =
[
x1x2x3x4

]
=
[
TsThRL

]

f
(
�⃗x
)
= 0.6224x1x3x4 + 1.7781x2x

2

3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

g1
(
�⃗x
)
= −x1 + 0.0193x3 ≤ 0

g2
(
�⃗x
)
= −x2 + 0.00954x3 ≤ 0

g3
(
�⃗x
)
= −𝜋x2

3
x4 −

4

3
𝜋x3

3
+ 1, 296, 000 ≤ 0

g4
(
�⃗x
)
= x4 − 240 ≤ 0

0 ≤ x1, x2 ≤ 99

Table 12  The best design of welded beam design task obtained by different algorithms

Optimization technique Optimal parameters Optimal cost

h l t b

GA1 (Deb 1991) 0.2489 6.173 8.1789 0.2533 2.43
GA2 (Deb 1991) 0.2918 5.2141 7.8446 0.2918 2.59
GA (Coello Coello 2000) 0.1828 4.0483 9.3666 0.2059 1.82455147
HS (Lee and Geem 2005) 0.2442 6.2231 8.2915 0.2443 2.3807
GSA (Mirjalili et al. 2016) 0.182129 3.856979 10 0.202376 1.87995
CPSO (Mirjalili et al. 2016) 0.202369 3.544214 9.04821 0.205723 1.72802
MVO (Mirjalili et al. 2016) 0.205463 3.473193 9.044502 0.205695 1.72645
RFO (Połap and Woźniak 2021) 0.21846 3.51024 8.87254 0.22491 1.86612
COA (Jia et al. 2023) 0.205557662 3.25636618 9.04034118 0.20575381 1.696251144
SO (Hashim and Hussien 2022) 0.2057 3.4714 9.0366 0.2057 1.72491
PSA (This study) 0.205745 3.252936 9.036665 0.205748 1.695390
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Table 13 presents a comprehensive analytical review of the challenge, meticulously 
evaluating the existing data. The furnished evidence robustly attests to the enduring effi-
cacy of the proposed PSA. Figure 16 elucidates the elevated performance benchmarks 
achieved by distinct algorithms. This depiction underscores PSA’s capability to yield 
outcomes surpassing other avant-garde techniques. Impressively, it provides solutions 
aligning with, or in some cases, surpassing the benchmarks established by recognized 
optimization strategies such as ACO (Kaveh and Talatahari 2010a), RFO (Połap and 
Woźniak 2021), SCSO (Seyyedabbasi and Kiani 2023), MVO (Mirjalili et  al. 2016), 
GSA (Mirjalili et al. 2016), PSO (Lee and Geem 2005), multiple variants of GA (Coello 
Coello 2000), (Coello and Montes 2002), (Deb 1997), ES (Mezura-Montes and Coello 
2008), DE (Li et  al. 2007), ACO (Kaveh and Talatahari 2010a) and AOA (Abualigah 
et al. 2021). Beyond the primary insights, this scrutiny emphasizes the relevance of PSA 
in practical engineering design tasks, especially in scenarios where the characteristics 
of the investigatory domain are nebulous or indeterminate.

10 ≤ x3, x4 ≤ 200

Fig. 15  Pressure vessel design 
task

Fig. 16  Comparison of optimal outcomes in pressure vessel design task
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5  Conclusion

Portia spiders are known for their ability to solve novel problems. For instance, when 
faced with an obstacle that hinders a direct path to their prey, these spiders can choose a 
detour, even if it leads to a temporary loss of sight of the target. Furthermore, they dem-
onstrate a capacity for learning from past experiences and adjusting tactics accordingly.

This article introduces a nature-inspired model based on the hunting behaviours of 
the Portia spider, termed the Portia spider algorithm (PSA). Within this framework, the 
stalking and striking behaviours of the Portia spider inform the exploration phase, while 
the tactics of invading and imitating guide the exploitation phase.

Our extensive evaluations, which range from 23 classical test functions to 29 
CEC2017 benchmarks and five engineering optimization problems, highlight the robust-
ness and adaptability of PSA. Significantly, when compared to other meta-heuristic 
algorithms, PSA exhibits potential advantages, underscoring its potential in compu-
tational optimization. PSA is well-equipped to adapt and traverse complex optimiza-
tion landscapes, marking its distinctive position in the field of evolutionary algorithms. 
Subsequent studies could explore further refinements to PSA, leveraging its inherent 
strengths and customizing it to address specific domain challenges.

Although PSA offers innovative approaches to optimization, it may encounter limita-
tions such as slow convergence rates, particularly when applied to high-dimensional or 
intricate optimization challenges. To enhance its performance, integrating techniques 
like Lévy flights, mutation, and additional evolutionary operators could be beneficial. 
These methods can introduce new diversity into the population of solutions and allow 
the algorithm to escape local optima more effectively.

Moreover, hybridizing the PSA with other stochastic optimization algorithms could 
further improve its efficacy. By combining the strengths of PSA with other proven strat-
egies, it is possible to create a more robust algorithm that leverages the advantages of 

Table 13  The best design of pressure vessel design task obtained by different algorithms

Optimization technique Optimal parameters Optimal cost

Ts Th R L

GA (Deb 1997) 0.9375 0.5 48.329 112.679 6410.381
GA (Coello Coello 2000) 0.8750 0.5000 42.0939 177.0850 6069.3267
GA (Coello and Montes 2002) 0.8125 0.4375 42.0974 176.6541 6059.946
PSO (Lee and Geem 2005) 0.8125 0.4375 42.09127 176.7465 6061.078
DE (Li et al. 2007) 0.8125 0.4375 42.09841 176.6377 6059.734
ES (Mezura-Montes and Coello 2008) 0.8125 0.4375 42.09809 176.6405 6059.746
ACO (Kaveh and Talatahari 2010a) 0.8125 0.4375 42.10362 176.5727 6059.089
MVO (Mirjalili et al. 2016) 0.8125 0.4375 42.09074 176.7387 6060.807
GSA (Mirjalili et al. 2016) 1.125 0.625 55.98866 84.4542 8538.836
ACO (Kaveh and Talatahari 2010a) 0.8125 0.4375 42.10362 176.5727 6059.089
AOA (Abualigah et al. 2021) 0.830374 0.416206 42.751270 169.345400 6048.784400
RFO (Połap and Woźniak 2021) 0.81425 0.44521 42.20231 176.62145 6113.3195
SCSO (Seyyedabbasi and Kiani 2023) 0.7798 0.9390 40.3864 199.2918 5917.46
PSA (This study) 0.77844 0.38477 40.33164 199.86613 5886.769
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each component method. This could lead to improved convergence speeds, better solu-
tion quality, and increased reliability across a wider range of optimization problems.

Such enhancements would be particularly useful in complex optimization landscapes, 
where the balance between exploration (diversification) and exploitation (intensification) 
is crucial for finding global optima. The adaptive capabilities of hybrid algorithms can be 
particularly adept at navigating these challenges, offering a powerful tool for complex opti-
mization tasks.
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