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Abstract
Deep learning is a sub-field of artificial intelligence that combines feature engineering and 
classification in one method. It is a data-driven technique that optimises a predictive model 
via learning from a large dataset. Digitisation in industry has included acquisition and stor-
age of a variety of large datasets for interpretation and decision making. This has led to 
the adoption of deep learning in different industries, such as transportation, manufactur-
ing, medicine and agriculture. However, in the mining industry, the adoption and develop-
ment of new technologies, including deep learning methods, has not progressed at the same 
rate as in other industries. Nevertheless, in the past 5 years, applications of deep learning 
have been increasing in the mining research space. Deep learning has been implemented 
to solve a variety of problems related to mine exploration, ore and metal extraction and 
reclamation processes. The increased automation adoption in mining provides an avenue 
for wider application of deep learning as an element within a mine automation framework. 
This work provides a compact, comprehensive review of deep learning implementations in 
mining-related applications. The trends of these implementations in terms of years, venues, 
deep learning network types, tasks and general implementation, categorised by the value 
chain operations of exploration, extraction and reclamation are outlined. The review ena-
bles shortcomings regarding progress within the research context to be highlighted such 
as the proprietary nature of data, small datasets (tens to thousands of data points) limited 
to single operations with unique geology, mine design and equipment, lack of large scale 
publicly available mining related datasets and limited sensor types leading to the majority 
of applications being image-based analysis. Gaps identified for future research and applica-
tion includes the usage of a wider range of sensor data, improved understanding of the out-
puts by mining practitioners, adversarial testing of the deep learning models, development 
of public datasets covering the extensive range of conditions experienced in mines.
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1  Glossary

Artificial intelligence (AI), a computing system or machine capable of solving problems 
typically requiring human or animal intelligence.

Backpropagation, an algorithm in neural network for computing the gradient and 
expected output value with respect to a loss function.

Digital terrain model (DTM), a digitised topographic representation of a geographical 
surface which is commonly discretised into grids.

Facies, the characteristics of a rock body that could be used to determine its origin, fea-
tures and characteristics.

Machine learning (ML), a method that models the ‘rules’ from input data, mapping 
them to the output. Sub-fields of machine learning include neural network and 
deep learning.

Multispectral sensor, an image-based sensor capable of measuring light intensities in 
a discrete number of spectral bands that are not limited to the visible light range.

Open-pit mine, a mine where ore deposits are extracted on the surface of the earth.
Overfitting, a concept in machine learning where the model produced is tightly coupled 

with the training dataset and does not generalised well to other dataset within the 
same domain.

Point cloud, a set of data points representing an object or scene in 3D space.
Remote sensing, a technique of capturing information using sensors from a distance car-

ried by a platform such as a satellite, aircraft or UAV.
Semi-autogenous grinding (SAG), a milling process where gravity is used as a primary 

force to achieve material breakage by inducing material to fall from the upper 
regions of a rotating cylinder to impact with and break material in lower regions 
of the cylinder.

Tailing pond, a reservoir for storing liquid tailings, i.e. mine liquid waste product.
Test set, a portion of a dataset used to validate the performance of a trained machine 

learning model
Train set, a portion of a dataset used by a machine learning algorithm for model optimi-

sation.
Underground mine, a mine where ore deposits are extracted below the surface of the 

earth, which typically requires subsurface excavation.
Unmanned aerial vehicle (UAV), an aircraft without any human operators onboard.
Validation set, a portion of a dataset used to validate a machine learning model during 

training.
Well/borehole logs, a record of geological measurements and analyses of rock surfaces 

exposed within a drill hole.

2 Introduction

Advances in digitisation in industries has led to a big data revolution that has provided 
opportunities for improving performance in many tasks through data-driven methods for 
reasoning, modelling, optimisation and decision making (Thomas and McSharry 2015). 
In the mining industry, the extensive use of sensors and instrumentation has enabled large 
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amounts of data to be collected in real-time from machinery during daily mine operations. 
These data appear in different forms (e.g. images, point clouds, discrete, time series) and 
dimensions (e.g. from 1D to 4D/5D and more) which have the potential to be indexed and 
fused into combined problem space representations. The large amount of collected data 
provides opportunities to be exploited through artificial intelligence (AI) methods, focusing 
on data-driven methods such as machine learning (ML) with its sub-fields including deep 
learning, with the aim of finding correlations, clusters and categories for gaining insights 
for improving both the safety and the productivity of a mine site (RioTinto 2022).

2.1  Deep learning

The theoretical definition and technical details of deep learning (DL) is well explained 
in a number of reference either comprehensively (Lecun et  al. 2015; Goodfellow et  al. 
2016; Chollet 2021) or succinctly as a section of a review (Méndez et  al. 2023; Zhang 
et al. 2021). This section aims to engage potential mining audience by giving a high-level 
explanation to DL. As depicted in Fig. 1, artificial intelligence (AI) encapsulates a range of 
developing technologies. Machine learning (ML) is capable of performing data classifica-
tion and regression. Artificial neural network (ANN) is a subfield of ML that use layers of 
neurons with weightings that are trained to represent the transformation of the data into 
an output. DL consists of multiple layers of neurons derived from ANN capable of feature 
extraction and improved prediction.

In DL methods, the primary data structure is a network of nodes connected by links 
(also known as a network configuration (Pingel 2022)), where each node has a set of input 
links, providing inputs from data inputs or the outputs of other nodes, and output links 
connecting to other nodes or network outputs (Lecun et al. 2015). A node mimics a simpli-
fied model of a biological neural network. Historically, this has been an integrate and fire 
model, where a neuron is modelled as an integrator that sums the input values and gener-
ates an output if the sum exceeds a threshold (Burkitt 2006). A DL is a method that derives 
rules from data for mapping input data to desired outputs and is trained (in the case of 
supervised learning) using an algorithm that uses the error between the outputs generated 
by the DL model from specific examples of inputs and the ground truth outputs provided 
by the training data to modify the weights and biases within the network, aiming to opti-
mise the overall performance (e.g. accuracy and precision). When a target level of perfor-
mance is reached, the training process can end and the resulting DL model can function on 
new data sets to automate the classification of their data vectors.

The experimental performance of a DL is typically assessed by separating (e.g. ran-
domly) the data into training set, validation set and test set. The DL learns or extracts 

Fig. 1  Relationship between arti-
ficial intelligence, machine learn-
ing, neural network and deep 
learning inspired by Goodfellow 
et al. (2016) and Kavlakoglu 
(2020)
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features (i.e. weights and biases) from the training set. The validation set is used to com-
pare the model’s performance during training at certain intervals and is not used to opti-
mise the model’s parameters. At the end of the training routine, the model is then tested 
by applying it to the known correct categories for a given input vector in the test set. The 
practice of data separation aims to ensure the validity of a trained model during and after 
training and to identify the model’s generalisation biases at different points i.e. overfitting 
and underfitting as explained in Lei (2021), Wagner et  al. (2021) and Jabbar and Khan 
(2015). The broader question of validity concerns the performance of the DL network 
when applied beyond the initial training and testing context, i.e. to situations where the 
constraints and distribution of data inputs encountered may differ or not, in ways that may 
or may not be known or anticipated, from the data used to develop the DL network.

The term ‘deep’ in deep learning does not refer to the depth of the learning model’s 
comprehension capability but refers to the number of layers in the network architecture 
(Chollet 2021; Kavlakoglu 2020), which raises the question: How many layers does a net-
work architecture need to have to be considered a deep learning method? Although there is 
no general consensus on the definition, in this paper, a network architecture is considered 
to be ‘deep’ if it consists of at least two hidden layers, a total minimum of 4 layers includ-
ing the input and output layers (Kavlakoglu 2020).

DL throughout the recent decade has been a focus of attention because of its proven 
state-of-the-art performance in solving multiple tasks, especially in computer vision thanks 
to the increasing amount of publicly available datasets and computational resources. DL 
gained momentum in 2012 when a convolutional neural network (CNN) called AlexNet 
(Krizhevsky et al. 2012) created by the research team ‘SuperVision’ outperformed all com-
petitors by a significant margin in the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) (Russakovsky et al. 2015). Subsequently DL has been adopted outside the com-
puter vision field in other research domains and industries to solve numerous tasks involv-
ing classification and regression. However, the majority of DL adaptations in other applica-
tion domains have been implemented with minimal architectural modifications. Changes 
are typically limited to the datasets and network training methodology used.

2.2  Deep learning in mining

DL implementations have been extensively reviewed for geochemical mapping (Zuo et al. 
2019), geosciences (Ayranci et al. 2021), ophthalmology (Wang et al. 2021c; Badar et al. 
2020), finance and banking (Huang et al. 2020; Ozbayoglu et al. 2020) and medicine (Liu 
et  al. 2021b; Wang et  al. 2021a; Debelee et  al. 2020; Bizopoulos and Koutsouris 2019; 
Bakator and Radosav 2018). However, DL reviews in the mining context, such as by Jung 
and Choi (2021) and Fu and Aldrich (2020), have not been extensive. The scope of the 
review by Jung and Choi (2021) includes a broader context of ML with a limited number 
of DL approaches (only 63 papers were reviewed). Meanwhile, Fu and Aldrich (2020) only 
include extraction, transportation, and processing of minerals in the mining context, pro-
viding a compact overview of DL methods focusing on implementation in these applica-
tion fields. Other processes in the mining value chain could include exploration, planning, 
safety and reclamation. This paper aims to provide a comprehensive systematic review of 
published work on DL implementations in metal and coal mining-related applications, cat-
egorised based on the mining tier processes in Fig. 2. The aim is to encourage generalising 
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DL adoption in different mining processes. The literature review aims to answer the fol-
lowing questions: 

1. What are the DL implementation trends in the mining context?
2. How are the DL methods implemented for mining processes?

The first question is answered by examining trends such as the distribution of DL usage and 
related network architectures categorised across different mining processes. Answers to the 
second question consider the application context, the problem to solve, network architec-
ture training methods and data. The answer to these questions will be the basis for outlin-
ing the limitations of these implementations. As a summary, the gap between state-of-the 
art deep learning approaches and their adoption in the mining context will be outlined with 
suggestions for possible implementation frameworks.

The knowledge domain of these applications could also be derived from other 
domains such as geotechnics, geoscience, remote sensing, computer vision and robotics 
because mining is an interdisciplinary field which includes a wide variety of processes. 
The included relevant literature in this survey is motivated by mining applications and/or 
applied to data collected from a mine site and not those that might have a potential to be 
applied in a mining context. To avoid redundancy, this paper excludes DL approaches in 
mine operations that have been compiled which include blast-induced impacts (Al-Bakri 
and Sazid 2021), blast vibration (Maulana et al. 2021) and microseismic event classifica-
tion (Jinqiang et al. 2021).

The mining industry could benefit from adopting DL method compared to ML tech-
niques and analytical/numerical modelling in several different ways: (a) The large amount 
of data collected in the mining process could be exploited to make prediction and analysis 
for increase efficiency and productivity given DL is a data driven method. (b) DL meth-
ods do not require feature engineering and extraction which would require minimal data 
processing in comparison to ML techniques. (c) In comparison to analytical or numeral 
modelling, DL methods would require less mining expert intervention in the process of 
developing the model. (d) Finally, DL methods would take less time to make inferences 
given a trained model in comparison to numerical or analytical methods.

Fig. 2  Processes involved in a mining operation adapted from Jung and Choi (2021)
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The articles collated are categorised based on the main processing involved i.e. explora-
tion, extraction and reclamation and breaking it down based on the hierarchy as depicted in 
Fig. 2. The rest of the paper is structured as follows. Section 2 explains the search method-
ology used to find relevant articles. Section 3 outlines the trends of the published articles 
based on publication year, DL architecture and mine processes involved. Section  4 dis-
cusses the DL implementation in the articles categories into subsections based on the 3 
main processes followed by Sect. 5, which discusses the findings, recommendations, and 
future prospects. Finally, the conclusion outlined in Sect. 6.

3  Review methodology

Using research databases such as Google Scholar, Web of Science, Scopus, Springer, Sci-
enceDirect and IEEE Xplore to find relevant deep learning literature, mining processes 
keywords such as ‘Exploration’, ‘Extraction’ and ‘Reclamation’ were used in combination 
with their sub-keywords as shown in Fig.  2. These keywords were combined by adding 
‘deep learning’ keywords and its specific method terms such as deep learning (DL), artifi-
cial neural network (ANN), fully connected network (FCN), convolutional neural network 
(CNN), generative adversarial network (GAN), recurrent neural network (RNN) and other 
derived networks to create an initial list of publications.

A second search session was conducted by including distinct relevant literature from the 
list of references and cited papers of the initial list. The literature searches were repeated 
until the references were exhausted, i.e. when the relevant articles from the references and 
cited papers in the respective articles in the collated publication list had been included.

The collated publication list was then filtered by skimming each article, ensuring their 
relevance within the scope of this paper by reading through the abstract, introduction, 
methodology (focusing on the network used) and its data. As mentioned in the introduc-
tion, only articles that matched the following criteria were included in the final review list, 
which comprised 111 articles: (a) Motivated and/or applied in a mining context; (b) Using 
a network consisting of a minimum of two hidden layers; and, (c) Not including the mining 
context of blast-induced impacts, blast vibration and microseismic event classification.

4  Research trends

A total of 111 articles were included for review in this survey. To examine the trends, Fig. 3 
shows the distribution of articles according to their publication year. The number of deep 
learning articles in the mining context increased exponentially with 37 articles in 2021. 
Acknowledging the fact that the publications included were only up to the first quarter of 
2022, the projected publication number in the year 2022 would likely more than double 
the previous year assuming about the same amount of work to be published each quarter. 
The implementation of ANNs in the mining context can be traced back to 1995 (Maxwell 
et al. 1995), where an ANN was used to predict the size of materials on a conveyor belt 
for mineral processing. The limited processing resources and data available then restricted 
the number of layers included in the neural network to one hidden layer. This one-layer 
implementation not only requires fewer resources but also reduces the capacity to overfit 
the machine learning model due to the small amount of data used, however, this does not 
satisfy the deep learning definition in terms of the minimum number of layers required. An 
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Fig. 3  Mining-related publications distribution by year, noting that only the first 4 months of 2022 are con-
sidered

Fig. 4  Distribution of published articles in respective mining processes



14374 F. Azhari et al.

1 3

analysis of articles based on the publication venue is provided in the associated supplemen-
tary information.

Figure 4 shows the distribution of published articles in each respective mining process. 
As shown in Fig. 4, the majority of articles were published covering the topic of minerals 
extraction, which accounts for about 72% of the total articles collated. The rest of the col-
lated articles covered exploration and reclamation processes, with 31 published articles in 
total. The large number of articles focusing on the extraction method could be due to many 
reasons, although it is notable that extraction represents the primary capital investment in 
mining. In addition, the number of extraction sub-processes included in the review is twice 
as many as the number of sub-processes of the other processes individually. Also, some of 
the sub-processes, for example, mineral exploration and land cover, can be generalised into 
the geoscience and remote sensing field, respectively, where the context of application and 
motivation are not restricted to mining. However, only the articles that were applied spe-
cifically in the mining context were included in this review.

Figure  5 shows how the distribution of DL network types were broken down with 
respect to the three main mining processes. As shown in Fig. 5, the majority of DL imple-
mentations adapted a CNN approach which accounted for 78 articles, more than 70% of the 
published articles reviewed. FCN which is the basic implementation of an ANN, accounts 
for a total of 17 articles, about 15% of the total reviewed articles. RNN which is a DL 
architecture suitable for time-series or sequential data, accounts for a total of 13 articles. 2 
articles were published implementing 3D convolutional neural network (3D-CNN) which 
is a type of CNN capable of performing convolution on unorganised volumetric data such 
as point clouds. Finally, one article reported implementing a deep belief network (DBN), 
which is a specific type of DL network that employs a greedy learning method for optimi-
sation rather than the back propagation method used in the other network types included in 
this review.

The emphasis on CNN probably arises because it is a DL technique commonly applied 
for image-based tasks such as object identification and segmentation. This is the type of 
network that was made popular due to the state-of-the-art performance achieved in the 
ILSVRC challenge as mentioned in the introduction. Since then, most development has 

Fig. 5  Distribution of deep learning network used in different mining processes
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focused on CNN architecture compared to other types of DL networks. As a result, many 
simplified libraries and trained models were made easily accessible for a number of well 
known CNN implementations such U-Net (Ronneberger et al. 2015) and Mask R-CNN (He 
et al. 2017). The availability of a large image dataset and the cheap cost of image-based 
sensors in combination with the development of CNN as described are the possible driving 
factors for its adoption in the mining context.

5  Deep learning in mining processes

This section provides a review of deep learning implementations in the mining context, 
categorised based on the three main processes: exploration, extraction and reclamation. 
This review aims to establish existing knowledge of how DL methods have been adapted 
for solving problems in mining, in order to identify the gaps in the research conducted to 
date.

Tables 1, 2, 3, 4, 5 and 6 in the following sub-sections show the publications reviewed 
for each category of mining processes with the general network type used and applications. 
These applications briefly answer the question: ‘What type of problem does the DL imple-
mentation focus on solving?’ and considers only the component in the problem space for 
which DL was implemented. For example, DL is used by Wang et al. (2020) (Table 6) to 
segment the mine site area given a single satellite image with the aim of automating moni-
toring of land usage changes within a given period. However, the proposed change moni-
toring component does not adopt a DL technique, hence the change monitoring method is 
not mentioned in the ‘Specific application’ column. The ‘Specific application’ column also 
highlights the dataset used in each study with regards to their sources, contents, acquisition 
techniques and amount.

DL has been used to solve a variety of problem in domains that require different forms 
of outputs. In the ‘Specific application’ column of Tables 1, 2, 3, 4, 5 and 6 the terms ‘esti-
mating’, ‘classifying’, ‘detecting’, and ‘semantic segmenting’ are used to describe the DL 
task when solving a particular problem. These tasks are defined as follows: 

1. Estimating: determining the value of a subject within a range of a continuous function. 
Estimating is comparable to regression. An example is to determine the cost of an opera-
tion given a set of conditions (Zhang et al. 2020; Guo et al. 2021).

2. Classifying: to identify the group to which a data instance belongs. Groups can be 
obtained by discretising a continuous range of values. For example, a DL method that 
classifies a truck loading capacity according to whether it is empty, 25%, 50%, 75% or 
100% full rather than estimating the loading weight (Sun et al. 2021).

3. Detecting: to determine the location and region of a target, i.e., localising an object or 
agent within an environment. An example is to draw a circle around oversized rocks in 
an image (Loncomilla et al. 2022).

4. Semantic segmentation: a specific task in image or point cloud perception to classify an 
individual pixel or point into its respective group. For example, to classify all the pixels 
in a satellite image that fall within a mine site rather than its surrounding areas (Wang 
et al. 2020).
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A DL approach could perform multiple tasks such as performing detection, classification 
and semantic segmentation using a single model. An example in a hyperspectral image is 
to draw a bounding box (i.e. detection), classify the mineral group of the bound box sub-
image (i.e. classification), and then classify all the pixels in the bounding box belonging to 
the classified mineral type rather than the background (i.e. semantic segmentation) (Gal-
dames et al. 2022). The text in the following sections also includes further discussion of 
selected implementations and their results as a guide for future studies.

5.1  Exploration

Exploration is the initial process in the mining value chain. During exploration, activities 
such as mapping, and mineral analysis and prospecting are carried out to estimate the min-
eral location and reserve size. This information is then used for mine planning and cost 
estimation to identify a feasible operating approach to gain investment to proceed with set-
ting up the facilities to extract the economically feasible minerals.

Figure 6 shows the distribution of mining processes involved in the mine exploration 
phase and Table 1 outlines the specific DL application applied in each article. These pro-
cesses are categorised into two: (a) Mineral exploration, the process of mapping the geol-
ogy, predicting mineral types and amount; and (b) Mine planning, the process of planning 
and estimating cost for mine operations. As mentioned earlier, mining-related exploration 
articles only accounted for about 13% of the overall articles reviewed. This could be due 

Fig. 6  Distribution of published articles relating to mine exploration activities
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to the broader research field these processes belong to such as earth sciences and geology, 
wherein mining is an applied subfield.

Referring to the distribution in Fig. 6, the majority of articles reviewed involved mineral 
analysis, which accounts for 9 articles, about 65% of the total articles reviewed in mine 
exploration. These articles focused on identifying different types of rocks and minerals 
in images obtained from different types of imaging sensors as input utilising a CNN as 
listed in Table 1. Li et  al. (2022b) proposed a simplified and lightweight network based 
on YOLOv3 by experimentally removing unneeded layers and branches. The dataset used 
was augmented to increase the number of training data which was also implemented by 
Liang et  al. (2021) and Asiedu et  al. (2020). A siamese adversarial-based network was 
proposed by Hao et al. (2022) which takes in the same microscopic image polarised dif-
ferently to classify the type of minerals and their origin in one single architecture based 
on ResNet (He et al. 2016). The proposed network performance by Hao et al. (2022) and 
Filippo et al. (2021) was cross-validated by testing the trained networks with a dataset from 
a different context to the one used for training. Ran et al. (2019) proposed an image crop-
ping method as the input layer and performed scoring by voting for the output confidence 
scores of the cropped images from the same single image to identify the rock type of the 
un-cropped image. Jin et al. (2022) proposed a network that uses U-Net (Ronneberger et al. 
2015) as the backbone incorporating inception blocks (Szegedy et al. 2015) and dense con-
nection blocks (Huang et al. 2017) as layers which achieved a pixel-wise accuracy of 93%, 
similar to its predecessor i.e. U-Net, ResNet and SegNet (Badrinarayanan et al. 2017), but 
was capable of converging faster as well as maintaining its performance across the training 
epochs without any fluctuations during validation. Baraboshkin et al. (2020) compared the 
lithography classification performance of AlexNet, VGG (Simonyan and Zisserman 2015), 
GoogleNet (Szegedy et al. 2015) and ResNet whereby all the network achieved similar f1 
scores ranging from 93% (ResNet) to 96% (VGG). This shows the maturity of image-based 
DL methods whereby the network choice should be based on other aspect such as amount 
of data needed and computational time rather than their raw classification performance.

The article published relating to geotechnical mapping utilised RNN based on a long 
short-term memory (LSTM) network that takes into account well log neighbourhood layers 
for sedimentary facies classification (Santos et  al. 2022). The proposed network outper-
formed traditional ML techniques such as XGBoost, random forest, naive Bayes and sup-
port vector machine (SVM) in terms of classification performance of a geological layer is 
depending on its neighbouring layers within the same borehole and layers from neighbour-
ing boreholes.

Multiple geological information discretised spatially on a map as additional layers for an 
input image to classify ore presence in a particular area was reported by Li et al. (2020b). 
The additional geological information provided the network with the necessary data for 
the classification task. Zhang et al. (2020) introduced an ant colony optimisation algorithm 
alongside an FCN for optimising the weights of the network. An experiment was also con-
ducted comparing the performance by varying the network and optimiser configuration in 
terms of the FCN layers and the number of ants. The experiment suggests that the perfor-
mance increases during training and testing as the number of layers increases. However, 
the performance peaked at 6 layers and started to decrease as more layers were added.
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5.2  Extraction

After completion of the processes required during the planning phase, the mineral deposits 
are ready to be extracted. The extraction process is carried out using surface and/or under-
ground mining methods depending on the environmental conditions (such as the depth of 
mineral deposits in the ground), maximising the profits (NSW 2022; Bustillo 2018). Dif-
ferent mining methods required different processes, equipment, management and safety 
requirements. For example, gas monitoring is more of a concern in underground mines 
given the closed environment compared to open pit mines where gases can readily disperse 
into the open air. This section discusses DL implementation in these various mining extrac-
tion processes.

Figure 7 shows the distribution of DL papers for the various mining processes involved 
in the mine extraction phase. Tables 2, 3, 4 and 5 outline the specific DL methods applied 
in different processes of the mine extraction phase, i.e. equipment management, geotech-
nical management, ore preparation and mine safety, respectively. Equipment management 
in a mine extraction process involves management of the operation and maintenance of 
all machinery used at the mine site. Equipment operations include navigating through the 
mine site, extracting minerals, hauling extracted material, and loading and unloading mate-
rial to/from stockpiles. Maintenance involves detecting and/or predicting failures and fol-
lowing these up with a maintenance activities and routines.

Fig. 7  Distribution of published articles relating to mine extraction activities
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Overall, the majority of the shortlisted reviewed articles in this paper focus on topics 
in the mine extraction process where DL has been applied. Mine extraction-related arti-
cles account for 79 papers, about 79% of the total articles reviewed. The high number of 
published papers on mine extraction processes could be due to the specificity of mineral 
extraction fields to mining and the primacy of this activity for investment and revenue 
generation.

Overall, the majority of mining extraction articles implemented a CNN, which 
accounted for 53 papers or 67% of all the mine extraction articles included. As explained 
in the previous section, the wider adoption of CNN might be due to its maturity and eas-
ily available data. The implementation of FCN and RNN accounted for 11 and 12 articles, 
respectively. Additionally, in Table 3: Description of articles surveyed for equipment man-
agement in mine extraction processes, one article implemented a DBN and two articles 
implemented 3D-CNN, a DL network that is designed for 3D point cloud.

In the equipment management literature, Liu et al. (2021a) implemented early stopping 
for training a CNN model. Early stopping is an implementation during DL training that 
monitors the objective function, typically the loss function, and stops the training when 
no improvement is made for a certain number of epochs. The aim of DL is to create a gen-
eralised model that shows robust performance on a different dataset beyond those it was 
trained with. The early stopping method prevents the learning algorithm from overfitting 
the model to the training set after reaching stable objective function values. DL methods 
require a large amount of data to be able to produce a generalised model that is robust to 
data variations during testing. Having a small dataset could either cause the model to not 
learn anything or overfit the model. In the case of overfitting a model, whilst the model 
would achieve high performance during training, it would be very likely show poor perfor-
mance when tested with different datasets even in the same context.

Rocky-CenterNet was proposed for detecting rocks in an image using ellipses rather 
than boxes to bound the region of a detected object (Loncomilla et al. 2022). An ellipse 
provides a tighter bounding box around a rock compared to using a rectangular box, which 
tends to include more background area around the detected rock. The tighter-fit bounding 
region allowed for a more accurate rock parameters estimation, such as width-to-length 
ratio which achieved a mean average precision of 0.73 at intersection over union (IoU) of 
0.5 and 0.75 which is outperformed Mask R-CNN (mean average precision of 0.71).

Gomilanovic et al. (2022) proposed a method based on an LSTM network to estimate 
machinery (i.e. a bucket-wheel excavator and belt-conveyor) failure based on the history of 
failure data collected for a particular machinery used on a mine site. The likelihood score 
of the machinery to fail over a period of time was then compared to an analytical method 
which produced a mean failure RMSE across different types of errors i.e. mechanical, elec-
trical and others of 0.008 versus 0.068 that of the analytical solution.

Other than comparing DL method to analytical method, Mansouri et al. (2019b) com-
pared different CNN architectures for classifying junction types from images obtained from 
a UAV flown in an underground tunnel. The results showed that AlexNet performed the 
best compared to GoogleNet and Inceptionv3 (Szegedy et al. 2016) with and average accu-
racy of 89% compared to 74% and 63%, respectively. This should be a common practice 
when implementing DL methods in different environments where the base performance of 
multiple networks should be identified before applying network modifications to better suit 
the applied environment.

In geotechnical management, Lu et  al. (2020) proposed a network which uses U-Net 
as the based network and incorporated feature extraction blocks which is made up of 
VGG and Inceptionv3 network in the encoder to perform semantic segmentation of rock 
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fractures. Due to the small amount of dataset, transfer learning was performed to train the 
network which produced a pixel-wise f1 score of 93% compared to 78% of Inceptionv3-U-
Net and 21% of U-Net.

Point clouds of rock surfaces were discretised into smaller chunks by means of voxelisa-
tion for the task of joint and fracture semantic segmentation by Battulwar et al. (2020) and 
Azhari et al. (2021). A dense point cloud is required for semantic segmentation of small 
objects such as a fracture on a relatively large area coverage of surfaces. The voxelisation 
of a point cloud limits the number of points used per sample, which reduces the memory 
usage during training on limited computing resources rather than using the whole scan in 
a single data sample. Point clouds produced from a LiDAR scanner could exhibit uneven 
point density distribution due to the distance differences between objects and the scanner 
in a scene. A voxel-based down-sampling method was introduced by Azhari et al. (2021) 
to preserve low-density regions in a LiDAR-produced point cloud. This approach ensures 
low-density points representing cracks are preserved for the network to sufficiently distin-
guish the different geometrical features of a cracked surface.

In the ore preparation application, a number of articles proposed a hybrid type archi-
tectures that combines parts of network to perform specific task into an existing network 
architecture. Xiao et  al. (2020) proposed RDUNet which combines residual network of 
ResNet and DUNet (Jin et al. 2019), Li et al. (2022a) replaced CNN layers with deformable 
convolutional layers (Dai et al. 2017) in YOLOv3 while Chen et al. (2022) proposed Res-
SSD which integrates ResNet with SSD (Liu et al. 2016) to perform semantic segmenta-
tion for different purposes. The deformable YOLOv3 (Li et al. 2022a) managed to achieve 
a mean average precision of 98% compared to 96% of YOLOv3 with normal convolutional 
layers while Res-SSD managed to score a mean average precision of 84% compared to 71% 
and 74% that of SSD and YOLOv3, respectively.

In the mining industry, data for a particular application might be hard to obtain for 
research purposes due to intellectual property considerations, poor data quality or the fact 
that the data have never been collected before. In the latter case, a sensor rig might need 
to be established and the data collected over a long time period before having sufficient 
data to be able to train a DL model. To overcome this issue, images were taken in a lab 
of a model haulage truck with varying amounts of load capacity to train a DL model to 
learn the load capacity class (Sun et al. 2021). The lab images were then added on top of 
images taken on a mining site as the training set. As for the test set, only mine site images 
were used to verify the model’s performance in real world conditions. Since the research 
was targeted for adaptation and deployment at mine sites, it is important that only the data-
set collected from the mine site was used during testing. The environmental differences 
between a lab and on-site might influence the images taken and hence the model trained 
using the dataset. Such differences could include variations in lighting conditions, presence 
of dust and sensor setup.

Data augmentation is another method for increasing the number of available data-
sets during training. For an image-based model, the input image could be augmented by 
rotating, flipping, scaling, cropping, skewing, noise addition or any combination of these 
at once (Si et al. 2020; Alzubaidi et al. 2022; Lu et al. 2020; Suprunenko 2020; Mustafa 
et al. 2020; Olivier et al. 2020; Liu et al. 2021c, e, g; Pan et al. 2022). Similar image data 
augmentation could also be applied to a 3D point cloud. Additionally, point clouds could 
be discretised by using overlapping grids such as overlapping voxels (Azhari et al. 2021). 
Similar to creating images in the lab, the augmented dataset is used only in the dataset for 
training and should not be included for testing the trained model. When designing a data 
augmentation pipeline, a sanity check should be performed to ensure the augmented data 
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would still represent real data. This is especially true when applying data skewing which 
could distort an image such that the object in the image does not represent how the object 
is in reality.

In DL, the weights and biases of the function that maps the input to the output are typi-
cally optimised using backpropagation. As mentioned earlier, many datasets are required to 
find the optimised weights and biases that generalise the problem space. Transfer learning 
is a method where a model’s weights and biases are initialised using those from a model 
trained using a different dataset. In the mining extraction process, transfer learning was 
applied by Bewley and Upcroft (2017), Mansouri et al. (2019b), D’Angelo et al. (2019), 
Yi et al. (2022), Olivier et al. (2019), Liu et al. (2021d), Yang et al. (2021) and Wang et al. 
(2022b) for initialising their DL network using weights and biases of ImageNet dataset-
trained layers respectively.

A question to ask in DL implementation is: How generalised and/or robust is the trained 
model?. This question identifies if the trained model is overfitting to the dataset used for 
training and testing and would likely show poor performance when applied to a new batch 
of data. Cross validation is a method in ML whereby a trained model is tested with dif-
ferent combinations and permutations of different datasets or dataset splits. In the k-fold 
validation method, a k number of dataset pool is created by uniquely splitting the collected 
dataset to train and test k number of times assuring high variability in terms of the data 
combinations in each set, as implemented by Baek and Choi (2020), Choi et al. (2021) and 
Erdogan Erten et al. (2021). The deep learning model is then trained k times using a dif-
ferent dataset pool in each training session. The average performance across the sessions is 
then considered to be the final performance.

In cases where a number of datasets are available, the DL model generalisation perfor-
mance can be validated across the different datasets. These datasets are collected in dif-
ferent contexts to each other, with different factors such as different sensors, locations and 
weather. Rather than splitting a single dataset into training and test sets, the whole dataset 
is used for training and the trained model is tested on a different dataset. For example, in 
Azhari et al. (2021), extra cross-validation was performed by testing the trained model on 
different datasets captured from different rock formations. The CNN proposed by Mansouri 
et al. (2018) was trained using a dataset collected from a mine and tested using a dataset 
collected from a different mine, and vice versa. The trained model for heading estimation 
was tested by applying different datasets collected by varying the mine environment and 
location, and aerial vehicle parameters such as sensors, illumination and velocity. A sensi-
tivity analysis allows determining the robustness of a trained model to changes in param-
eters of the system.

5.3  Reclamation

Reclamation is the process of minimising the negative effects of mining activity on the 
environment and restoring used land either to its former ecological functionality or for 
economically beneficial purposes. Land usage after reclamation could include agriculture, 
farming, development for residential or commercial purposes and wildlife habitation. The 
process of transforming mine lands happens after the mine’s end of life when the mineral 
deposit has depleted or is not profitable enough to be extracted.

Even though the land transformation happens after mine closure, the planning required 
and related work for reclamation starts during the mine planning phase and stretches 
through the extraction process. Related activities for mine reclamation include land cover 
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mapping, change of land usage monitoring, and mine hazard investigation such as land-
slide, subsidence and pollution analysis.

Figure 8 shows the distribution of mining processes involved in the mine reclamation 
phase and Table 6 outlines the specific DL application applied in each article. Recla-
mation processes are categorised into two: (a) Land cover, the process of mapping the 
change in mine land usage; and (b) Mine hazard, the process of monitoring and prevent-
ing mine hazards that could have an effect on the environment. Overall, DL-based mine 
reclamation articles account for about 16% of the total DL in mining articles reviewed 
in this survey. Out of all the reclamation articles, the majority, i.e. 15 articles, imple-
mented a CNN which takes in images either from a camera or derived from other sen-
sors such as LiDAR and satellite images. The rest, i.e. 3 articles, implemented an FCN 
to perform classification or estimation using 1D mine data.

Referring to the DL articles in mine reclamation distribution in Fig. 8, 4 articles were 
published relating to change detection which accounted for about 22%. Even though the 
research is focused on detecting changes in land usage, only one article uses a DL tech-
nique to segment out the differences in land change over time (Tang et al. 2021). This 
is achieved with a Siamese CNN which takes in two images as input i.e. images of the 
same area from different time frames and outputs the differences in land use between 
the two time frames. Meanwhile, the rest of the change detection articles used DL as a 
tool to segment different types of land use from an image of the same area taken over 
a period of time. A non-DL-based technique is then applied to the segmentation out-
put comparing the area differences over the period. Wang et  al. (2020) implemented 
a Mask R-CNN which is a DL network that outputs bounding boxes surrounding the 
region around the object of interest and segments the pixels within the bounding box 
representing the object. This method provides better classification performance com-
pared to a network that is purposely designed for semantic segmentation such as U-Net. 
Mask R-CNN restricts the region in the image for semantic segmentation to regions of 
high confidence where the objects of interest are localised.

The majority of mine reclamation articles reviewed are related to land cover map-
ping, which accounts for 10 articles, about 56% of all reclamation articles reviewed. 
Malik et al. (2021) used a multi-input approach by combining image and surface models 
derived from UAV imagery. For a DL network that takes in multiple inputs rasterised 
as an image layer, Chen et al. (2020) proposed a feature input reduction method to filter 
and keep input data that contributes to the performance of the network. Yan et al. (2021) 
applied transfer learning during model training using weight and biases from the same 
model trained using a different image dataset, ImageNet. Other than transfer learning, 
data augmentation can also be used to increase the number of datasets for training, for 
example, Xie et al. (2021) flipped and rotated the training images in different ways to 
increase the number of training images and randomly changed the luminance and colour 
space of these images to simulate images taken in different seasons and lighting condi-
tions. These generated images were then used to trained a hybrid DL architecture based 
on U-Net and SegNet which during testing achieved a pixel-wise f1 score of 67% com-
pared to 63% and 65% from U-Net and SegNet, respectively.

Ji and Luo (2021) proposed an ensemble learning methodology based on CNN to per-
form semantic segmentation of different land types in a multispectral image. The pro-
posed method was then compared to other DL and machine learning methods whereby 
proposed ensemble method achieved a pixel-wise accuracy of 94% compared to 87%, 
83%, 76% and 72% of those from the base CNN, ANN, extreme learning machine 
(ELM) and SVM, respectively.
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The rest of the published mine reclamation articles related to mine hazards, which 
accounts for 4 articles, about 22% of the reclamation articles reviewed. Among these 
articles, Luo et al. (2019) performed feature filtering for the input data and a k-fold vali-
dation process.

6  Discussion

The implementation of DL methods in the mining research context has grown expo-
nentially since 2017, as shown in Fig.  3. This adoption is most likely driven by the 
maturity of DL algorithms, which have rapidly advanced since the outstanding achieve-
ment of AlexNet (Krizhevsky et al. 2012) in 2012 and the success of DL implementa-
tions in other industries. Additionally, the availability of large datasets in combination 
with capable computing resources enables rapid implementations of DL in the mining 
research context, enabling the kinds of implementations and trials documented in this 
paper as a basis for better understanding the potential economic impacts of DL applied 
in mining. The aim of the study was to provide a generalised and compact comprehen-
sive review of DL implementation in the mining industry. The review outlines the gen-
eral type of network used in each study including the tasks that the respective DL meth-
ods were aimed to solve. The specifics of the network designs and datasets used have 

Fig. 8  Distribution of published articles relating to mine reclamation activities
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not been detailed since they have been applied to different cases that might not work for 
or generalise to other cases.

The review has shown that firstly, the trend of DL adoptions in the mining context 
shows an exponential increase and secondly, there are wide range of different situations 
across the exploration, extraction and reclamation process for which DL methods were 
implemented and that the reason for applying deep learning are estimation, classifica-
tion and, to a lesser extent, semantic segmentation. It is important to discuss some of 
the learnings from the review in term of the range of methods applied, the availability 
of data and the challenges that the mining environment created for the implementations.

6.1  Range of deep learning methods applied

The majority (70%) of the articles included in this review implemented a CNN method. 
This could be due to the maturity of this type of network following its rapid improve-
ment post-AlexNet. The affordability of high-quality image-based sensors and their 
ease of deployment drive the availability of large mining datasets for developing the DL 
model. CNN is widely used in the included articles such that other forms of data such 
as point clouds, geological data and hyperspectral spectrum are rasterised into images 
to be used as the CNN input. The conversion of data types from these sensing technolo-
gies could cause the loss of rich information captured from the complexity of a mine 
environment.

While CNNs have been proven to work effectively on images, it is not necessarily con-
firmed that they would be as effective on other data types converted to images. The conver-
sion itself could cause loss of valuable information. As an example, an FCN could be used 
for image classification tasks by flattening 2D image pixel matrices into 1D vectors. Such 
an FCN implementation for image classification could produce good results but was more 
effective when using a CNN. Similarly with point cloud processing where point clouds 
were converted or projected into images and other forms of point cloud projection prior to 
the proposal of PointNet (Charles et al. 2017). This showed that selecting the correct DL 
approach for the data types is vital. Hence, it might be worth developing new architectures 
for different data types rather than just relying on data conversion to fit the input require-
ments of a particular network type.

Apart from CNN, the other type of networks adopted in the mining literature are FCN, 
RNN, DBN and 3D-CNN. A wider range of techniques, such as GAN and graph neural 
network (GNN) and transformers should be considered for performing tasks such as image 
classification and detection, air particle estimation, point cloud segmentation, and dust 
and pollution estimation that can be important to quantify the influence of mines on their 
environment.

6.2  Data and implementation access

A DL model is a generalised function of a specific task given input data and training the 
DL algorithm to find the optimal weights and biases that maps the input data to the labelled 
output. Hence, having the right data for the task is crucial not only for DL but for any 
AI applications. A common problem of DL mining applications is the limited and poor-
quality data that arises from slow adoption of sensor data. The consequences will be over-
fitting whereby the model fits the training data well but performs significantly worse during 
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evaluation and applicability to other sites with different geology, design and equipment 
will be limited.

In comparison with the many thousands or millions of data points in image and finan-
cial analysis, the limited number of data points available for mining DL studies shown in 
Tables 1, 2, 3, 4, 5 and 6 include such small numbers as 305 images with 8 features up to 
what could bee seen as large in the mining context as 2 mills with 15,905 data points taken 
only at half hour intervals. Other studies show researcher using Kaggle concrete datsets 
to simulate rock (Yi et al. 2022). This suggests the opportunity for improved DL focussed 
data collection in mining and for researchers to work together to combine datasets for more 
generic results.

In terms of data availability, the majority of the datasets used in the included articles 
were collected in particular mine sites and were not publicly accessible. A dataset collected 
from a particular mine site might not be generalisable to the same application in a differ-
ent mine site, or even at the same mine site over time. This could be due to differences in 
sensors, sensor setup and environmental conditions, and also changes in the nature and 
content of excavated material as mining progresses at a site. A number of articles used 
publicly available datasets obtained from government led projects, organisations and gen-
eral internet searches. These articles mostly focused on applications that use mapping data. 
The topological map of mining areas in West Virginia, USA obtain from WVU (2022), 
USGS (2022a) and USGS (2022b) were used by Maxwell et  al. (2020a, 2020b) to clas-
sify land usage in mine sites. Similarly, data from Google Earth (Google Earth 2022) and 
images obtained from satellites such as Sentinel (ESA 2022), Landset (NASA 2022), and 
Gaofen (CRESDA 2022) were used to obtain RGB and hyperspectral images of a mining 
areas where the respective satellite covers either a full site (Balaniuk et al. 2020; Tang et al. 
2021; Kumar and Gorai 2022; Xie et al. 2021; Meng et al. 2021; Chen et al. 2020) or by 
combining images from different sources taken of the same area (Malik et al. 2021; Luo 
et al. 2019; Wang et al. 2020). Even though these satellite datasets are publicly available, 
the proposed methods were not cross-validated with images of different mine sites. Simi-
larly, well logs from Rio Bonito, Brazil collected by the SGB (2022) were used to classify 
different types of facies by Santos et al. (2022) and should be tested against data from other 
countries. Images of different rock types collected from general search engines were used 
to train a rock type classifier (Asiedu et al. 2020), however, the collected images were not 
detailed or published for replication.

Despite the limited publicly available data, organisations such as Humyn.ai (Humyn 
2022) have been organising data science challenges to solve proprietary mining and 
resources-related problems proposed by mining companies. However, these challenge out-
comes remain confidential and cover a wide range of disciplines, which includes data min-
ing (analysis of large datasets to extract patterns), giving talks as well as machine learning.

Apart from publicly accessible datasets, an open access to the code written associated 
with the published articles provides a detailed technical implementation which might not 
be sufficient with the high-level ideas and methodology presented in a research article. 
Appending source code to a published article should be encouraged as a part of submission 
requirements such as currently practised in Computers and Geosciences (Jin et al. 2022; 
Hao et al. 2022; Liu et al. 2021d; Xu et al. 2021).
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6.3  Challenges for deep learning in the mining industries

A general question to ask is whether a deep learning method developed in a research or 
prototyping context is suitable to be deployed in the industrial context. Two factors for 
consideration includes the model’s suitability in the deployment environment as well 
as the feasibility of adopting such technology, e.g., cost benefit analysis. Deep learn-
ing is a data driven method where the model produced is optimised for the particular 
dataset used during model development. A model should perform comparatively well 
in the operational environment if the model was well fitted to the training dataset used 
to develop it, i.e., in terms of noise and systematic variations. However, including the 
same noise and variance as expected in the output can be difficult in an environment 
where the geology and operational processes are varying continuously in space and 
time. This is a general challenge for a priori learning of models that are intended to 
be applied in dynamic environments. This will require further evaluation in terms of 
the contextual similarities between the experiment and the deployment in the mining 
environment and would benefit from conducting a sensitivity analysis and more testing 
in different, real environments than is often indicated in the papers. Potential methods 
for addressing this challenge include the development and application of methods for 
characterising operational dynamism, the integration of prediction in learning methods 
and their resulting models, and the use of adaptive models. This paper does not go into 
these topics since they go beyond the current focus on reviewing the literature on DL 
in mining.

This review highlights the reported comparison between the proposed DL method to 
other methods such as ML and DL of other architecture if available in the collated arti-
cles. This should be a common practice when proposing a DL framework especially if the 
dataset and/or the implementation code is not publicly accessible in order to provide a fair 
point of reference to compare the propose performance to. Although the DL approaches 
were shown to be beneficial in comparison, the difference in these task-specific networks 
and the performance uncertainties in the very different mining environments and methods 
as well as the challenging data collection conditions make it difficult to predict the perfor-
mance of a specific DL implementation in other mining conditions.

6.4  Future directions

The future step after DL implementations in the mining research space should be to 
transfer the technology for practical adoption. This can be done by making DL an ele-
ment of an automation process/framework whereby sensor data is interpreted online 
rather than relying on data collection for offline testing. The automation framework 
could include sensors more than just a stand-alone camera, such as LiDAR, radar, 
hyperspectral, environmental/weather sensors and encoders. The automation process 
should include a sensor interpretation fusion for thorough situational modelling rather 
than just relying on one sensor and data type for a single task.

One reason why DL is not yet popular in terms of adoption in the mining context 
could be due to how DL is treated by practitioners as a black box without much under-
standing of the uncertainties in the model, especially in terms of what computations the 
model carries out when making a decision. A DL method that incorporates symbolic 
representation (Yi et al. 2018) enabling a human-level understanding of the network’s 
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inference logic has been proposed in an effort for explainable DL. Understanding the 
network’s explainability i.e. the rationale of a model’s output, would strengthen trust 
in DL adoption in the mining and other industries. Trust might also be improved by 
better mathematical modelling of the bounds and degradation characteristics of a DL 
model and in relation to the dynamism of its operational context.

In terms of uncertainties, performing a sensitivity analysis should be conducted 
before deploying DL into a complex environment such as a mining operation. Mining 
specific datasets with adversarial attacks applied, similar to Barbu et al. (2019), should 
be established to develop a robust DL model for such disturbances (Ren et al. 2020). A 
model capable of handling adversarial attacks would be more robust when deployed in 
the real world. The dataset collected in developing a deep learning model could be just 
a subset of the full environmental context. Incorporating an adversarial network could 
handle the uncertainties from the out-of-distribution context to a certain extent.

7  Conclusion

This work presents a compact comprehensive review of DL implementations in mining 
processes. The review has considered which DL methods are implemented in mining 
research to try to automate the solution of various tasks in exploration, extraction and 
reclamation-related processes. The adoption rate showed a sharp increase over the last 5 
years, even with the slow initial start after DL became mainstream within research com-
munities. DL can be useful in the mining industry applications where subjective opin-
ions are used to make decisions including cases where available models are inaccurate 
or unsuitable given a large amount of available data and long analysis times due to mine 
specific trends resulting from the extraction sequence overlaid on the geological forma-
tion, care is required to apply models and celebrate successes outside of their train-
ing domain. However, further investigations are required to understand the relationships 
between the development and deployment environment as well as to understand how a 
model works i.e. the rational of the model’s output.

The similarity of DL frameworks implemented for mining tasks led to a focus on 
the processes that facilitate learning such as data pre-processing, training and validation 
methods. These complementary processes enable learning of the model specific to the 
task and enable the understanding of the trained uncertainties and optimum operational 
conditions.

Compared to processes such as exploration and reclamation, the extraction pro-
cess accounts for 71% of articles; extraction is specific to the mining application field, 
whereas the other applications share knowledge domains such as geoscience and geo-
technical engineering.

Most articles adopted a CNN designed for 2D image-based processing taking in 
image data from vision-based sensors such as cameras, microscopes and satellite 
images. Different types of data such as point clouds, geological data and signal data 
were converted into image pixels to enable their use as a CNN input. The implementa-
tion of other types of networks such as GAN and GNN should be beneficial to mining 
research, since these networks have been proven to show better performance in similar 
applications in different industries.

With the increasing number of deep learning implementations in mining research, 
deep learning methods have the potential for wider adoption in practice on-site. 
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Importantly, the transition of the mining industry to remote control or automated equip-
ment to enhance the safety of the mining environment provides an important oppor-
tunity to integrate Deep Learning within the automation pipeline, which includes the 
interaction and fusion with sensors and IoT devices. The understanding of trained model 
uncertainties and model inference could better enforce the trust for the mining industry 
to adopt deep learning methods in the real world.
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