
Vol.:(0123456789)

Artificial Intelligence Review (2023) 56:9089–9114
https://doi.org/10.1007/s10462-023-10391-w

1 3

Navigating with chemometrics and machine learning 
in chemistry

Payal B. Joshi1 

Accepted: 9 January 2023 / Published online: 24 January 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Chemometrics and machine learning are artificial intelligence-based methods stirring a 
transformative change in chemistry. Organic synthesis, drug discovery and analytical tech-
niques are incorporating machine learning techniques at an accelerated pace. However, 
machine-assisted chemistry faces challenges while solving critical problems in chemistry 
due to complex relationships in data sets. Even with increasing publishing volumes on 
machine learning, its application in areas of chemistry is not a straightforward endeav-
our. A particular concern in applying machine learning in chemistry is data availability 
and reproducibility. The present review article discusses the various chemometric meth-
ods, expert systems, and machine learning techniques developed for solving problems of 
organic synthesis and drug discovery with selected examples. Further, a concise discus-
sion on chemometrics and ML deployed in analytical techniques such as, spectroscopy, 
microscopy and chromatography are presented. Finally, the review reflects the challenges, 
opportunities and future perspectives on machine learning and automation in chemistry. 
The review concludes by pondering on some tough questions on applying machine learn-
ing and their possibility of navigation in the different terrains of chemistry.
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COVID-19  Coronavirus disease of 2019
DENDRAL  Dendritic algorithm
DNN  Deep neural networks
EROS  Elaboration of reactions for organic synthesis
FAIR  Findable, Accessible, Interoperable, Reusable
FG  Functional group
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ROBIA  Reaction outcomes by informatics analysis
SARS-CoV  Severe acute respiratory syndrome-associated coronavirus
SARS-CoV-2  Severe acute respiratory syndrome coronavirus-2
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SLING  SYNCHEM linear input graphs
SMILES  Simplified molecular-input line-entry system
SMARTS  Simplified molecular-input line-entry system arbitrary target 

specification
SOPHIA  System for organic reaction prediction by heuristic approach
SPRESI  Storage and retrieval of chemical structure information
SVM  Support vector machine
SWATH-MS  Sequential window acquisition of all theoretical fragment ion spectra-

mass spectrometry
SYNCHEM  SYNthetic CHEMistry
SYNCHEM2  SYNthetic CHEMistry2
SYNSUP  Synthetic route design system
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TOM  Target organic molecule
UV  Ultraviolet spectroscopy
WBCs  White blood cells
WODCA  Workbench for the organization of data for chemical applications
WLN  Wiswesser line notation

1 Introduction

Chemistry is the central science—organic synthesis, drug discovery and analytical tech-
niques are the major domains that is utilizing artificial intelligent methods such as, chemo-
metrics and machine learning resulting in a major transformation. Artificial intelligence 
(AI) garnered attention of chemists in early 1950s, yet at that time, computer-based learn-
ing was obscure or esoteric for solving chemistry problems. However, this situation did not 
persist for long. Over centuries, chemists have amassed huge data of chemical structures 
by performing several experiments. At that time, chemometrics was used to demonstrate 
computer usage in chemistry that assisted in solving complex problems. Massart et  al. 
(1997)  defined chemometrics as a “chemical discipline that uses mathematics, statistics, 
and formal logic (a) to design or select optimal experimental procedures; (b) to provide 
maximum relevant chemical information by analysing chemical data; and (c) to obtain 
knowledge about chemical systems.” In 1975, a seminal paper featured ‘chemometrics’ in 
the title bringing a novel idea of utilizing computing tools to study complex chemical data 
(Kowalski 1975). In 1977, Analytical Chimica Acta introduced a section to communicate 
developing area of chemometrics pertaining to computer-assisted analysis especially for 
chromatography, UV, IR, 13C-NMR, and mass spectrometric data (Clerc and Ziegler 1977). 
The section was devoted to pioneering work on NIPALS algorithm for principal compo-
nent analysis, SIMCA and KNN algorithms for pattern recognition. Hence, chemometrics 
was primarily applied in pattern recognition that were influenced by two-fold approaches 
viz.

(a) kernel methods, machine learning, self-organizing maps, and support vector machines
(b) statistical methods such as, discriminant analysis, method validation, Bayesian models.

In a strict sense, chemometrics is typically a mathematical and statistical computer-
based modelling utilized for optimizing methods and extracting results from analytical 
data. It was only from 1988, that the term “machine learning,” made its debut in chemi-
cal literature titles (Appel et al. 1988; Gelernter et al. 1990; Sternberg et al. 1992; Salin 
and Winston 1992) and has ever since been used till date. In essence, chemometrics and 
machine learning has a fine distinction, as the former relies on linear relationships of data, 
while the latter deals with large and non-linear datasets. Machine learning involves the 
training of algorithms with chemical data and allows them to learn by examples. A trained 
machine learning model is deployed to deliver intelligent decisions. This necessitates using 
good data for machine learning models to navigate in solving chemical problems.

Today, chemists are consistently exploiting ML and chemometrics to solve challeng-
ing problems. This upsurge became apparent when Baum et al. (2021) reported the rise in 
journals and patents featuring AI-based methods in chemistry. Considering this increased 
interest and the hype of rapid march towards chemical automation led to the genesis of this 
review. The present review article describes the utilization of chemometrics and ML in 
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chemistry, particularly in organic synthesis and analytical chemistry. It discusses different 
expert systems utilized in organic synthesis. It essentially covers the earliest attempts of 
retrosynthesis and current ML methods applied to organic synthesis with chosen examples. 
Next, we describe reported literature showcasing efforts undertaken by medicinal chemists 
for COVID-19 therapy. Further, the progress of ML techniques applied to spectroscopy, 
microscopy and chromatography  is presented. Due to the interdisciplinary nature of this 
review, discussions between chemists, computer scientists and mathematicians may lead 
to better investigations and unravelling mysteries of the chemical world. An attempt to 
address some tough questions on the current scenario of ML-based methods on chemis-
try is reflected. Rather than focusing on one particular domain, the present review aims to 
address selected domains of chemistry so as to bring out the divergent role of AI wholly.

2  Pacing organic synthesis with machine learning

Chemical space is a conceptual area that contains all possible chemical entities. It was 
envisioned by Lipinski and Hopkins (2004) that there are about  10180 number of possible 
molecules and about  1060 number of small organic molecules. Organic chemists are delv-
ing in this chemical space for exploring novel drug molecules. Due to the large possibility 
of molecules in chemical space, the search for novel molecules is challenging as a human 
endeavour bringing machine learning techniques as an attractive technology to the fore.

Chemistry is a new language to be learnt by machines that can efficiently predict 
organic synthesis routes at a faster pace. Before, we delve into machine learning meth-
ods, it is essential to describe earlier attempts made to study and predict organic reaction 
outcomes. Lederberg (1964) made an earliest attempt of an intelligent system in chemis-
try called the DENDRAL project that assisted chemists in identifying organic molecules 
from MS data. DENDRAL has been considered a pioneering expert system that automated 
problem-solving tasks of synthetic chemists. It was coded in INTERLISP and comprised 
of heuristic-DENDRAL and meta-DENDRAL modules. The heuristic-DENDRAL expert 
system worked on ‘Plan-Generate-Test’ sequence for organic structure elucidation using 
MS data. The meta-DENDRAL module predicted correct spectral data of novel molecules 
using chemistry rules. DENDRAL came across as a precursor for upcoming expert systems 
in chemistry and with pioneering work of developing knowledgebase of organic reactions 
by Elias J Corey led to retrosynthesis and their computing tools (Corey 1967). We also 
come across seminal work by Dugundji & Ugi (1973) who conceptualized algebraic matrix 
model called FIEM for understanding organic synthesis and mechanisms. In the follow-
ing sections, various retrosynthetic tools developed by far, are discussed to express their 
growth in synthesis planning.

2.1  Solving maze of organic synthesis using retrosynthesis

The journey of organic synthesis dates to about 200 years ago when Wöhler (1828) pre-
pared urea and oxalic acid. A typical problem in an organic synthesis is the structural 
description of the molecule to be prepared, called as the target organic molecule (TOM). 
TOM are compounds with important properties that could be a promising therapeutic agent 
or an industrially important intermediate.

Routinely, synthetic routes were performed by chemists with innate retrosynthe-
sis—primarily a pen-paper method where chemists hand-draw the pathways based on 
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chemistry-based general rules and their intuition. Retrosynthesis is a conceptual problem-
solving strategy for transforming the TOM to simpler starting materials that allows tracing 
of the feasible organic synthetic route to original target molecule (Fig. 1).

A synthetic chemist works backwards from the TOM by assuming possible disconnec-
tions about the chemical bonds. These disconnections generate synthons that refers to frag-
ments, usually unstable species such as, ion or a radical. All these disconnections are the 
not real bond-breaking steps, rather is a mental foresight of the chemist based on general 
rules. Retrosynthesis is conceived in two forms namely, target-oriented or (whole mole-
cule) and functional group interconversion (FGI) provided as an example of gabapentin 
(TOM), an anticonvulsant drug. It is only axiomatic to predict synthons for gabapentin 
via whole-molecule retrosynthetic strategy; it is FGI that exhibits wider options to arrive 
at possible starting reactants (Santos and Heggie 2020). In Fig.  1b, either 1-methylene 
cyclohexane or cyclohexanone are potential starting materials for synthesizing gabapentin. 
1-methylene cyclohexane is problematic and costly whereas, cyclohexanone is toxic and 
an irritant in nature. Hence, chemists are supposed to make choices with certain trade-offs. 
It is advisable to select synthetic routes on the basis of availability of reagents, cost, and 
fewer reaction steps. Hence, in the case of gabapentin, either choose cyclohexanone or, a 
whole another class of organic reaction that shall generate fewer reaction steps and lesser 
toxic starting materials.

If the TOM is a complex entity, there is a greater chance of various distinct synthetic 
routes to prepare them. One can have over  1018 feasible one-step reaction routes to prepare 
target molecules. This led to Corey and Wipke (1969) to propose logic-oriented computer 
approach referred as synthesis tree search. In this approach, organic reactions are viewed as 
AND/OR tree, where the tree descends from the TOM i.e., goal node to the terminal nodes 

Fig. 1  a Schematic representation of retrosynthesis. DIS means disconnection. b retrosynthesis of gabapen-
tin via whole-molecule or FGI types are depicted. There could be more than one way of interconverting FG 
of gabapentin; other than those depicted in the figure
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that routes further to the simpler molecular fragments. These molecular fragments are the 
possible starting molecules. The branches that connect the goal and terminal nodes are the 
organic reactions. To put it simply, the AND-node and OR node links of the decision tree 
refers to organic reactions and molecules, respectively. Figure  2 depicts FGI scheme of 
AND/OR synthesis tree of gabapentin. Corey’s seminal work was devoted to developing 
retrosynthetic tools that shifted focus of chemists from intuition-based strategies to logic-
based instructions. (Corey et  al. 1985). The earliest known retrosynthetic tool for assist-
ing chemists was the LHASA program (Pensak and Corey 1977). LHASA was based on 
a sixfold strategy for retrosynthesis viz, transform, mechanistic transform, structure goal, 
stereochemical, topological and FG strategies. It used a special language CHMTRN con-
structed to note and search for disconnections.

Following LHASA, almost all retrosynthetic tools worked on these six-fold strategies 
for synthesis planning. CASP (Salatin and Jorgensen 1980) and CAMEO (Jorgensen et al. 
1990) expert systems assisted chemists to find feasible synthetic routes and predict prod-
ucts respectively.

The provision of graphical knowledgebase editor was an innovative step in CASP that 
allowed communication with the chemist. CAMEO was a forward prediction tool that had 
selected rules on nucleophilicity, pKa, nature of leaving groups and steric effects which 
were used to rank the chemical reactions that the target molecule undergoes during substi-
tution reactions. The forward prediction programs SOPHIA (Satoh and Funatsu 1995) and 
EROS (Gasteiger and Jochum 1978) assisted chemists in identification of active functional 
groups using reactivity rules and calculations. Ellerman et al. (1997) reported COSYMA 

Fig. 2  AND/OR synthesis tree representation of FGI scheme of gabapentin. The AND node is the organic 
reaction and OR node refers to molecules. There can be more AND/OR nodes than those shown in the fig-
ure. The dashed boxes and lines of D, E and F refer to different chemical routes generating different starting 
materials other than those depicted in retrosynthetic scheme
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program that searched for FGI and protecting-deprotecting groups. With advancing com-
puting power, the task moved from number crunching to logic and reasoning leading to 
SYNCHEM and SYNCHEM2 programs. In SYNCHEM program, the initial stage involved 
chemists’ choice of synthetic strategies to be tried out called ‘synthemes.’ Each syntheme 
had its own set of transforms that led to retrosynthetic routes and resultant precursors were 
assessed and ranked. The higher ranked precursors were processed further, which led 
to suitable material search in the reaction library in SYNCHEM (Gelernter et  al. 1977). 
Further, Benstock et  al. (1988) included stereochemistry that led to development of the 
SYNCHEM2 program. They entered chemical structures in SYNCHEM using WLN repre-
sentation, whereas in SYNCHEM2, a linear SLING representation was used. Mehta et al. 
(1998) reported the SESAM program that utilized a backtracking algorithm to determine 
suitable starting materials to the target molecule. Hanessian et  al. (1990) demonstrated 
CHIRON database search for synthetic routes to stereochemical compounds to obtain start-
ing materials that showed maximum overlap of carbon skeleton, FGs and stereochemistry.

Many programs helped retrosynthetic planning such as PASCOP (Choplin et al. 1978), 
RETROSYN (Blurock 1990), WODCA (Gasteiger and Ihlenfeldt 1990), KOSP (Satoh and 
Funatsu 1999), ROBIA (Socorro et al. 2005), and CAOSP (Bersohn 1972; Tanaka et al. 
2010) that were either a retrosynthetic or a forward prediction program. It is evident that 
synthetic chemists were utilizing computer-aided retrosynthesis. Further, if one incorpo-
rates machine learning in organic synthesis, it shall lead to evolutionary change in pro-
posing forward syntheses. It is evident that post-LHASA, many expert systems allowed 
automation for planning multistep synthesis in chemistry laboratories. However, they 
could visualize only one step at a time for simpler target organic molecules. Thus, such a 
program caused an impediment for its application in multistep natural product syntheses. 

Table 1  Features of present computer programs that support organic synthesis planning

Name of the program Features

ChemPlanner 1.0 Analysing known synthetic target molecules and generating one-step reaction 
pathways from literature (Stark et al. 2016)

Chematica Algorithms that draw utilizing hand-coded rules available in the database. It 
allows both retro- and forward- prediction of reactions. It avoids predicting 
patented synthetic routes (Klucznik et al. 2018)

Spaya AI Based on deep machine learning using databases such as Mcule, Chemspace, 
EMolecules (Parrot et al. 2021)

LillyMol Utilizes machine learning approach, atom mapping and train reaction transfor-
mation rules (Watson et al. 2019)

AutoSynRoute Utilizes Montel-Carlo tree search with heuristic scoring function, transformer-
type-seq-2-seq model (Lin et al. 2020)

AiZynthFinder Monte Carlo tree search by ANN policy that allowed prioritizing reaction 
templates to generate novel precursors (Genheden et al. 2020)

IBM RXN for Chemistry Forward prediction, one-step retrosynthetic tool that uses seq-2-seq database, 
natural language approach and trained on automatic extracted chemical data 
(IBM 2018)

ICSYNTH Utilizes machine learning to generate chemical rules from SPRESI database 
(Bøgevig et al. 2015)

PostEra Manifold Open-source retrosynthesis tool that allows search for different synthetic routes 
and generates comparison of raw materials from different vendors (PostEra 
2021)
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Table 1 enlists the current programs that assist chemists for selecting novel route of organic 
syntheses.

As the computing capacity kept increasing, algorithms needed improvisations and 
organic reaction forward prediction programs were visualized in two modalities viz, tem-
plate-based and template-free methods, both of which had their trials in a chemical predic-
tion task. Template-based methods are rule-based with reaction libraries and scoring func-
tions; those that are discussed earlier in this section. Template-based approach may be a 
good starting point, but the basic premise of generating and extracting algorithms from set 
templates may spruce bias in the data as it largely relies on chemists’ intuition. Template-
free approach solves the bias issue which includes utilizing NNs and seq-2-seq models.

Nam and Kim (2016) pioneered neural machine translation for predicting reactions 
from patent dataset and Wade’s Organic chemistry textbook. They trained their model 
with patent reactions spanning from 2001 to 2013 US applications and 75 reactions for 
five different starting molecules given as text problem in Wade’s book. Liu et al. (2017) 
pioneered data-driven model that learnt reaction predictions by seq-2-seq recurrent NNs 
that was trained with 50,000 experiments from the US patent literature using SMILES text 
representation.

Recalling the point to consider chemistry as a language by machines (refer Fig.  3), 
Schwaller et al. (2018) moved a step ahead by demonstrating computational liguistics to solve 
chemical predictions. They related organic chemistry to a language and applied template-free 
seq-2-seq models. Adopting a model reported by Vaswani et al. (2017) and using SMILES 
representation, Schwaller’s team developed Molecular Transformer that demonstrated higher 
accuracy for predicting reaction outcomes (Schwaller et  al. 2019). Further, it could accu-
rately predict selectivity, specificity, regioselectivity and chemoselectivity of the reactions. 

Fig. 3  Representation of typical Diels–Alder reaction between cyclopentadiene and maleic anhydride. a 
Kekulé type reaction graph; b parameter table allows optimization data capture for chemical reaction; c and 
d uses markup and natural languages respectively, of which the former is of greater significance; e, f and g 
describes reactions as ReactionSMILES, chemical fingerprints and descriptors that is easier for machines to 
understand. CGR means Condensed Graph of Reaction
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Intriguingly, this model is utilized in IBM RXN (refer Table 1). Other efforts of ML in organic 
synthesis worth mentioning are automation in chemical sciences (Dragone et al. 2017), ML-
based reaction optimization (Gao et  al. 2018), and DL-based chemical pattern prediction 
(Cova and Pais 2019).

It is opined that natural product synthesis, organocatalysis and drug discovery are the three 
fundamental areas of chemistry that are utilizing state-of-the-art ML techniques. Natural prod-
uct synthesis and organocatalysis particularly, fall under the category of organic chemistry and 
have witnessed major transformation in terms of retrosynthesis, and hence covered in the next 
section. Considering the expanse of drug discovery and repurposing, it is discussed in a sepa-
rate Sect. 3.

2.1.1  Natural product syntheses

Natural products are complex target molecules with multiple cyclization reactions making the 
synthetic routes difficult to interpret. Chemists find planning multistep natural product syn-
thesis a challenging endeavour. If one integrates computational methods with AI technique, it 
shall be of great relevance to understand natural product synthesis. Tantillo (2018) discussed 
typical questions that can be solved using computational modelling of natural product synthe-
sis. Marth et al. (2015) reported natural product synthesis of weisaconitine D and liljestrandi-
nine by modelling network analysis along with AI- assisted retrosynthesis. Kim et al. (2019) 
reported total synthesis of Paspaline A and Emindole PB using a computational model inte-
grated with AI assisted retrosynthesis. Chematica team designed machine-tuned natural 
product syntheses of ( −)-dauricine, (R,R,S)-tacamonidine and lamellodysidine A that were 
reported to be comparable to those designed by skilled chemists (Klucznik et al. 2020).

2.1.2  Organocatalysis

Asymmetric enantioselective organocatalysis is ranked as one of the emerging chemically sus-
tainable technologies (Gomollón-Bel 2019). The effect of isoxazole additives on carbon–nitro-
gen coupling Buchwald-Hartwig reaction was reported that used machine learning to predict 
reaction outcomes using random forest (Ahneman et al. 2018). Kondo et al. (2020) demon-
strated atom-efficient organocatalyzed enantioselective Rauhut-Currier and [3 + 2] annulation 
reactions for chiral spirooxindole analogue in a flow system. The authors applied Gaussian 
regression to multi-parameter reaction screening processes. It is realized that determining 
transition states of enantioselective reactions is time-consuming and lacks accuracy, bringing 
ML to the rescue. Gallarati et  al. (2021) developed ML model that predicted enantioselec-
tivity of Lewis-catalysed propargylation reactions. Further, the ML model predicted absolute 
configuration of enantiomeric excess product independently. This work is unique, as enan-
tioselectivity of an organocatalyst is a challenging task to be predicted by ML models. The 
authors represented propargylation reaction to ML model trained an algorithm for calculating 
activation energies of competing catalytic pathways. This novel strategy of utilizing activation 
energy differences of organocatalytic products has paved way of deploying ML algorithms to 
solve complex enantioselective catalyst systems.
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3  Facilitating drug discovery and repurposing

Drug discovery process involves identifying new chemical entities as potential therapeutic 
agents. By now, it is realized that emerging infectious diseases (EIDs) are a part of the 
human race, AI-based methods are sought after for their predictive modelling. It is felt 
that intelligent systems, if in place, shall be able to predict emerging diseases, prior to its 
occurrence. ML methods are particularly robust, when applied as predictive model in drug 
discovery and public health. Figure 4 describes supervised, unsupervised or reinforcement 
learning to represent drug molecules and understand their therapeutic potential. Target 
validation, biomarker identification and computational pathology are the three key areas 
of drug discovery that have adapted DL methods particularly, for therapeutics in cancer, 
and most recently in SARS-CoV-2 disease. Considering the expanse of drug discovery, 
this section is particularly focused to highlight the recent efforts undertaken for discover-
ing antiviral COVID-19 agents using advanced ML methods. A brief section is devoted to 
describe the recent progress witnessed in drug repurposing methods for COVID-19. For 
a more comprehensive review on drug discovery, readers can refer reviews by Dara et al. 
(2022), Kolluri et al. (2022), Shehab et al. (2022) and Pillai et al. (2022). Though, drug 
discovery is described separately, the understanding of organic synthesis is symbiotic with 
this field.

3.1  Drug discovery for COVID‑19

Drug discovery, particularly the stages of target drug identification, compound screening 
and preclinical studies necessitates tremendous scope for applying ML-based methods. If 
machine learning and deep learning techniques can assist in bringing a causal relationship 
between target novel molecule and the disease, drug discovery shall become cost and time 
efficient endeavour for pharmaceutical industries. In this section, a concise discussion is 
presented on the progress of drug discovery for antiviral agents against COVID-19.

Fig. 4  Supervised, unsupervised and reinforcement learning in drug discovery
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Amilpur and Bhukya (2022) reported LSTM model for searching and generating novel 
molecules that can potentially bind with main 3CLPro protease of coronavirus. They 
screened about 2.9 million molecules from ChemBL, Moses and RDKit databases and rep-
resented by SMILES prior to deploying on generative LSTM model. Using binding affin-
ity scores, 10 potential drug candidates were suggested by their model for treating infec-
tions. A state-of-the-art quantum computing ML-based framework was designed as an in 
silico tool for discovering novel drug candidates against COVID-19 (Mensa et al. 2022). 
A novel MP-GNN model and featurization was reported to designing COVID-19 drugs 
(Li et al. 2022). Their model comprised of two unique properties viz, multiscale interac-
tions that utilized more than one type of molecular graph and simplified feature genera-
tion. They validated MP-GNN model with datasets from PDBbind. Over 185 complexes 
of inhibitors for SARS-CoV-2 were evaluated for their binding affinities using their unique 
model. Drug molecules and chirality have always presented a unique relationship. Exploit-
ing this premise for natural remedies, natural products were screened for finding novel drug 
candidates. Vasighi et al. (2022) proposed a ML-based technique to classify and discover 
COVID-19 inhibitors obtained from natural products. They prepared docking protocol with 
125 ligands and analyzed protein–ligand interactions and drug-likeness properties of inhib-
itors using statistical exploratory data analyses. Structural characteristics of SARS-CoV-2 
especially the spike proteins were immensely investigated. It was revealed that Cathepsin-L 
(CSTL) increased the severity of COVID-related infections by activating spike protein of 
the coronavirus (Zhao et al. 2021). Hence, CSTL became a promising target and the search 
for their inhibitors were widely investigated using advanced DL-based techniques and sta-
tistical models. Yang et  al. (2022a) reported DNN alongwith Chemprop for identifying 
novel molecules and approved drugs that blocked CSTL activity. Five molecules namely, 
daptomycin, Mg-132, Mg-102, Z-FA-FMK and calpeptin potentially blocked CSTL activ-
ity and alleviated severity of secondary COVID infections.

All these reports elicit that most researchers did not solely rely on vaccines, but rather 
focused on novel molecules as potential drug candidates for alleviating COVID infections. 
Inspite of public misinformation, vaccines are a safer therapy to combat the disease, albeit 
it cannot be entirely relied upon essentially due to resistance of mutant SARS-CoV-2 and 
subsequent breakthrough infections.

3.2  Drug repurposing for COVID‑19

When the world was hit by COVID-19 pandemic, there was an urgent need to han-
dle the spread of coronavirus and its treatment. With no vaccines then, the pandemic 
forced researchers to innovate and strategize antiviral treatment using AI-based tech-
niques. This urgency also led researchers to find old drugs utilizing AI-based learn-
ing methods for treating COVID infection. This process of finding existing approved 
drugs for treating emerging diseases is called drug repurposing. As SARS-CoV and 
SARS-CoV-2 viruses display similar receptor binding mode (Lan et  al. 2020), AI-
assisted models utilized their structural data and predicted drug molecules that could 
alleviate COVID-19 symptoms. Until the vaccines arrived, these old, marketed drugs 
were repositioned for treating COVID-19 infected patients (Mohanty et al. 2020). The 
AI-assisted drug repurposing required an open drug database, repurposed drug data-
base as input labels and then various algorithms are applied to them. All these pro-
cesses generate the drug molecule required for the purpose. The critical issue in drug 
repurposing is the determination of a unique drug-disease relationship. AI-learning 



9100 P. B. Joshi 

1 3

modelled with molecular descriptors, functional-class fingerprints (FCFPs), chemical 
fingerprints, and physico-chemical properties like partition coefficients could screen 
and identify drugs for treating coronavirus patients. It is revealed that drug repurpos-
ing for COVID-19 primarily utilized three types of algorithms viz, network-based (Ge 
et al. 2021), expression-based (Pham et al. 2021) and integrated docking simulations 
(Ahmed et al. 2022). Sibilio et al. (2021) examined three different network-based algo-
rithms to identify potential drug molecules using transcriptomic data from the WBCs 
of COVID infected patients. They performed in silico studies that predicted drug-
disease association and disease-likeness of COVID with other diseases. Yang et  al. 
(2022b) demonstrated utilization of a novel web-server called D3AI-CoV for target 
identification and screening of drugs to combat COVID infections. They employed 
advanced DL-based models with canonical SMILES representation and more than 800 
bioactives and 29 targets against nine coronavirus variants. Xie et al. (2022) proposed 
a compressed sensing algorithm combined with centered kernel alignment that short-
listed total 15 drug candidates as therapeutics for COVID-19.

Most of the reported literature focused on network-based, expression-based and 
docking simulation algorithms for identifying drug-disease relationships, viral gene 
expressions and host protein target interactions. It is argued that even with these 
reports, DL-based are limiting in scope while determining repurposed drugs for their 
potential use as COVID-19 treatment. Most of the DL-based methods require huge 
patient dataset that is not publicly available hindering the infection and survival pre-
dictions of COVID-19 infection. Hence, most of the reported literature utilized smaller 
data set that cannot be extrapolated for public health studies.

Proceeding with the discussion, the review now shifts focus to analytical chem-
istry especially, chemometrics and ML techniques on spectroscopy, microscopy and 
chromatography. A tremendous scope of successful chemometrics and ML-based tech-
niques are witnessed in analytical chemistry. It is envisioned that, on further advances, 
automated analytical systems will be a reality. Following section describes the cur-
rent progress of AI-based techniques and automation in spectroscopy, microscopy and 
chromatography.

4  AI and automation in analytical chemistry

Modern analytical techniques create huge data for heterogenous samples that needs to 
be interpreted by the chemists. Analytical chemists spend most of their time identi-
fying and quantifying molecules in laboratory samples ranging from food, drug mol-
ecules to industrially important molecules. Chromatograms and spectra are generated 
that undergo chemometric and standard mathematical algorithms to derive useful 
information, though a huge subset of data remains ignored. Earlier, the Library Search 
Algorithm was employed to obtain crucial information about molecular structures 
from spectral data. Today, the situation has matured to a certain extent that utilizes 
machine learning techniques such as, convoluted neural networks on spectral peaks, 
microscopic images and chromatograms.

Prior to data interpretation, chemical data retrieved from instrumental techniques are 
composed of distortions called artefacts. These artefacts are caused due to noise lev-
els from instruments, sample type, solvent effects and physico-chemical factors. Their 
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presence in spectral and chromatogram data adversely affects crucial data sets leading to 
loss of chemical information. When these distortions are eliminated or suppressed for data 
enhancement, it is called pre-processing method. It involves correcting peak shifts, base-
line corrections, noise removal, stray light suppression and retrieving missing data values 
(Chalmers 2006). In the following section, chemometrics and ML methods employed in 
spectroscopy, microscopy and chromatography are discussed (refer Fig. 5).

4.1  Chemometrics and machine learning in spectroscopy

Chemometrics became successful as a statistical technique for its application in near-
infrared spectroscopy. Near-infrared spectra contain deeply convoluted signals that are not 
separated by baseline, thus making it difficult to quantify crucial information regarding 
molecules. Vibrational spectroscopy, NMR, MS, and hyphenated techniques generate mul-
tidimensional spectral data that contains a plethora of critical information related to molec-
ular structures. These data are optimized and studied using chemometrics and machine 
learning methods with enhanced precision and accuracy.

4.1.1  Vibrational spectroscopy

NIR, IR and Raman spectroscopy are typical vibrational spectroscopic methods that 
derives structural information by measuring vibrations of molecules. An open-source 
python module called “nippy” was employed for NIR spectral data (Torniainen et al. 2020). 
Roger et al. (2020) reported the utilization of sequential and orthogonal PLS regression for 
pre-processing NIR spectral data of wheat grains, tablet and meat samples. Martyna et al. 
(2020) applied genetic algorithm to Raman spectral data. The deployed genetic algorithm 
assessed the pre-processing technique by calculating variance ratios and validated it by 

Fig. 5  Overview of chemometrics and ML methods applied to analytical techniques. Spectroscopy, chro-
matography and microscopy are depicted on the left panel (not drawn to scale, not representative of any 
data). The right panel depicts chemometrics and ML models applied on analytical data after pre-process-
ing. Finally, it depicts navigation towards automation that utilizes IoT, sensory devices, flow chemistry and 
mobile robots
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applying it on forensic Raman spectral data. Post chemical data enhancement, they applied 
various chemometric algorithms to obtain critical information from spectroscopic data. 
Raman and SERS techniques produce complex vibrational spectra of chemical mixtures 
which are exploited to obtain critical information.

Until now, LR analysis was performed to obtain useful data from Raman and SERS 
vibration spectra, but deep learning has replaced these statistical models. Weng et  al. 
(2020) modelled a deep learning with CNN and PCANet that identified drugs in human 
urine with an accuracy above 98.05%. They also measured pirimiphos-methyl in wheat 
extract that was quantified using fully convoluted neural networks with a determination 
coefficient of 0.9997. Table 2 lists selected spectroscopic techniques, different chemomet-
ric and ML-based techniques with their potential applications.

4.1.2  NMR spectroscopy and mass spectrometry

NMR spectroscopy and mass spectrometry are sophisticated analytical techniques that pro-
vide critical information on type of nuclei and m/z of chemical molecules respectively. Par-
ticularly, deep neural networks gained importance in NMR spectral interpretation to enable 
time-efficient data acquisition and lower chemists’ training endeavours (Chen et al. 2020). 
Kong et al. (2020) reported deep learning through CNN coupled with sparse matrix com-
pletion to suppress noise and speeding up 2D nanoscale NMR spectroscopy. A momentum 
of interest was witnessed for DNNs being utilized for reconstructing non-uniformly sam-
pled NMR to enhanced resolution at shorter time (Hansen 2019; Karunanithy and Hansen 
2021). One particular concern was to unravel critical structural information from multidi-
mensional NMR spectra obtained during metabolomic studies. Metabolomic study gener-
ates large data with crowded NMR spectral peaks and hence peak picking is an old yet a 
hard problem. Conventional peak picking methods in a routine NMR instrument may be 
insufficient. The specialized DNNs are providing respite to analytical chemists to decode 
these utilizing advanced GUI interface (Rahimi et  al. 2021) and DNNs (Li et  al. 2022). 
Native MS spectrometry is utilized for unravelling macromolecule structures particularly 
nucleic acids and proteins. An intriguing study was reported by Allison et  al. (2022) on 
applying native MS for structural elucidation of selected protein complexes that comple-
mented ML methods.

When spectrometric methods are combined with chromatography, they are called 
hyphenated techniques. Hyphenated techniques such as, LC–MS, GC–MS, etc. produce 
multidimensional data that requires advanced DL techniques for data interpretation. Qiu 
et al. (2018) reported GC–MS data interpretation without spectral library database query 
and efficiently prioritized biological candidate molecules by orthogonal datasets of reten-
tion indices, mass spectra and other physicochemical parameters of compounds. Recently, 
a deep learning algorithm called ‘peakonly’ was developed by Melnikov et al. (2020) that 
provided precise peak identification and integration in LC–MS data.

4.2  Chemometrics and machine learning in microscopy and chromatography

The advances in chemometrics and ML methods have led to utilizing them in chemical 
data image processing in electron microscopy, atomic force microscopy and 2D chroma-
tographic techniques. It has allowed insights to crucial information about the molecular 
structures where chemical images are obtained either as grayscale or hyperspectral images.
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In this section, the recent advancement of ML methods reported in imaging techniques 
and chromatography is explored.

4.2.1  Atomic force microscopy (AFM)

AFM is an advanced analytical topographic imaging technique that produces high—
resolved images at atomic resolution allowing nanoscale characterization of important 
materials such as biological and inorganic samples. Previous attempts were made to mini-
mize heuristic probe conditioning while imaging using algorithms (Villarrubia 1997), 
inverse imaging of probe (Schull et  al. 2011; Welker and Giessibl 2012; Chiutu et  al. 
2012) and probe manipulation in atomic force microscopy (Paul et  al. 2014). However, 
these methods are not suitable for large dataset acquisition. AFM imaging presents chal-
lenges such as scan speed, optimization, and artefacts in scanned images. An autonomous 
atomic force microscopy utilizing an AI framework was reported by Krull et al. (2020) that 
allowed probe quality assessment, conditioning, and its repair along with large data acqui-
sition. Javazm and Pishkenari (2020) proposed adaptive and multi-layered neural fuzzy 
inference system NNs for solving the problem of AFM restricted scan speeds. Payam et al. 
(2021) reported AFM data acquisition and imaging using continuous wavelet transform 
on photodetector data. Their approach generated data rapidly and provided information of 
amplitude and phase for AFM probe with variation of sample materials.

4.2.2  Electron microscopy (EM)

In EM, an electron beam illuminates the sample to generate an image that provides criti-
cal information of surface characteristics and their detailed morphology. In EM imaging 
technique, chemists scan selected regions of the sample and assess the quality of the image 
based on their past experiences. If the chemist considers the EM scan as a poor-quality 
image, they shall change the conditions of the instrument and rescan another region of the 
specimen. Thus, most of the endeavour is based on trial- and error that is often time-con-
suming due to optimizing specimen region scan, probe type, voltage pulse between speci-
men and the probe for obtaining highly—resolved images.

Ilett et  al. (2020) reported a validated automated agglomerate measurement for char-
acterizing dispersion of nanoparticles in biological fluids using machine learning open-
source software called ilastik and CellProfiler. Their approach utilized automated STEM 
imaging to obtain statistically relevant image data coupled with machine learning analysis. 
Further, the approach was extrapolated to confirm FeO nanoparticles agglomerate in cell 
culture medium that was deficient of surface-stabilising serum proteins. Yu et al. (2020) 
applied semantic image segmentation technique to analyze pore spaces of sandstone and 
its relationship with permeability characteristics. Their work demonstrated deep learning 
using neural networks precisely recognizing SEM images that led to improved identifica-
tion of pores in sandstone samples. Wang et  al. (2021) developed an unsupervised ML 
algorithm for automated transmission electron microscopic image analysis of metal nano-
particles. They explored the automated algorithm on palladium nanocubes and CdSe/CdS 
quantum dots that showed quantitative results.
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4.2.3  Chromatography

Chromatography is a separation technique that involves partitioning of individual com-
pounds of complex mixtures between mobile and stationary phases. This method of separa-
tion faces a problem of peak overlaps and analysing one type of data over time. With need 
to separate multiple samples with complex matrices led to development of 2D chromatog-
raphy. 2D chromatography uses two chromatographic columns with different phases. Dur-
ing separation run, the sequential aliquots collected from the first chromatographic column 
are reinjected onto the second chromatographic column (Jones 2020). Thus, the compo-
nents that could not be separated in the first column, get separated in the second column. 
The resulting data after separation is plotted in 2D or 3D space leading to complex data 
generation that is essentially solved using algorithms (Huygens et al. 2020).

Pérez-Cova et  al. (2021) developed ROIMCR (Region of Interest Multivariate Curve 
Resolution) method for 2D liquid chromatographic separation method. Retention index 
(RI) is a critical parameter of chromatography that depends on the chemical structure and 
type of stationary phase employed during chromatographic separation. Several efforts are 
taken to determine retention indices that enhances the identification of analyte moelcules. 
Matyushin and Buryak (2020) utilized four machine learning models viz, 1D and 2D CNN, 
deep residual multilayer perceptron, and gradient boosting. They described molecules for 
input labels as strings notation, 2D representation, molecular fingerprints and descriptors 
in all the four machine learning models. The model was deployed and tested on flavor-
ing agents, essential oils and metabolomic compounds of interest and exhibited error of 
about 0.8–2.2% only. Further, they utilized a free software, thereby demonstrating their 
models as being easily transferrable on a lab bench towards automation. Vrzal et al. (2021) 
proposed DeepReI model based on deep learning for accurate retention index prediction. 
They used SMILES notation as input labels and a predictive model of 2D CNN layers that 
had percentage error of < 0.81%. Qu et  al. (2021) described the training of graph neural 
networks to predict retention indices for NIST listed compounds and compared the results 
with earlier published work. They demonstrated that RI predictive, systematic and data-
driven approach of deep learning outperforms previous machine learning models.

5  Challenges, opportunities and future perspectives

Organic synthesis, drug discovery and analytical  techniques are no longer a sole human 
activity that requires numerous experiment protocols and reaction optimization. Even with 
a significant uptick of ML methods in chemistry, we are facing failures in applying them. 
As uncomfortable as it may sound, there are some serious problems which are presented as 
questions below and their subsequent reflections:

(1) How mature is the status of machine learning and chemometrics in chemistry?
(2) Are we training and deploying ML models in chemistry in the right manner? and;
(3) Can we completely automate our chemical laboratory bench?

It is already known that utility and application of ML models in chemistry rely heav-
ily on quality and quantity of data. In most chemical experiments, protocols are based on 
previously optimized reaction conditions that lack reproducibility (Bergman and Dan-
heiser 2016). Over the years, chemical data reproducibility issues are being addressed that 
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includes, reaction optimization with minimal information (Reker et al. 2020; Shields et al. 
2021). Efforts are initiated in this direction by employing FAIR guidelines (Wilkinson 
et al. 2016) for chemical data. These guidelines are now transpiring as a research consor-
tium amongst chemists for data sharing practices and fostering digital chemistry culture 
(Herres-Pawlis et  al. 2019). Next, chemical process optimization that remained in dor-
mancy is gradually showing progress as flow chemistry methods (Cherkasov et al. 2018). 
Mateos et  al. (2019) reported continuous flow self-optimization platforms that included 
intelligent algorithms and monitoring techniques for a chemical reaction. Inspired by FAIR 
guidelines, two novel open-source machine learning benchmarking frameworks Summit 
(Felton et al. 2021) and Olympus (Häse et al. 2021) were reported for rapid optimization 
of reaction conditions. In same breath, it is reiterated that the emergence of ML in organic 
synthesis must not take away the elegance of discussing synthetic routes amongst chemists.

Though ML methods are transforming chemistry, yet these methods must not be exag-
gerated as we navigate on the Gartner hype cycle of AI (not a cycle, but a curve) (Gartner 
2022). When Beker et al. (2022) investigated application of ML model on Suzuki–Miyaura 
reaction optimization, it was quite evident that data acquisition is a problem. Most of the 
data fed to machines are extracted from published journal papers and patents that are 
skewed towards high yielding reactions. Hence, the bias creeps in the data thereby, causing 
the ML deployment in organic synthesis planning dicey. As we advocate the success of AI 
in chemistry, we need to obtain reproducible data of high yielding reactions and standard-
ize low yielding reactions. Utilizing and augmenting both the data sets is a better propo-
sition, rather than merely feeding huge datasets of popular organic reactions. The same 
scenario holds true for drug discovery where, medicinal chemists are searching for drug 
molecules in infinity chemical space. Recalling Lipinski’s idea of chemical space, medici-
nal chemists are utilizing rule of five (or Ro5) to search drug molecules (Lipinski 2016). 
DL methods are robust techniques when applied to drug discovery and repurposing. These 
holds promise in prediction modelling studies of emerging diseases for potential target 
identification. Medicinal chemists have plethora of choices to represent molecules. Apart 
from SMILES  and SMARTS notations, Coulomb matrices, bag-of-bonds, fingerprinting 
and deep tensor networks are successfully implemented to find druggable molecules.

Another concern of experimental chemists is the failure to generate large datasets for 
“data crazy” ML models. It necessitated the application of transfer learning in chemistry 
that allowed algorithms to extract knowledge from the pre-trained model. Apart from a 
standard dataset, the pre-trained model with a similar application task as the target set is 
fed to the machine model to enhance performance. Few reports were published that trialled 
for applying transfer learning in chemical science (Tran et al. 2017; Wen et al. 2022). How-
ever, one cannot be fool-proof with transfer learning if the chemist chooses a pre-trained 
model dataset that has lower similarity index with the target set.

The final question is based on the premise that chemists are data generators whereas, 
computer scientists are programming experts. We are convinced that machines are good 
with images; hence their application on spectral, chromatogram and microscopic data is 
less problematic. The images are broken down to pixels and affixed a numeric value which 
is fairly easy yet, images generated are with artefacts. Artefacts are resolved easily with 
chemometric pre-processing methods prior to deploying ML models to extract crucial 
information. As AI-based models are good at deriving critical information from large high-
quality data sets, it is possible to deploy them in atomic force microscopy, chromatography, 
and spectroscopy as discussed in Sect. 4. These sophisticated analytical methods have large 
data sets available for training and easily available to chemists. Machine learning models 
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are easily navigating in the different areas of analytical techniques, although cannot be fully 
automated, as the analytical instrument hardware are designed to be operated by humans.

Just as we wonder if AI is a dream for chemists, some path-breaking reports on 
mobile robots (Peplow 2014; Burger et  al 2020; Fakhruldeen et  al 2022) on a chemi-
cal lab bench brings our hype back. A chemical reaction robotic system controlled by 
machine-learning algorithm explored over 6000 organic reactions faster than those car-
ried out by synthetic chemist’s laboratory processes (Granda et  al. 2018). All efforts 
discussed by far, are signalling towards digitization of chemical laboratories. However, 
automation in chemistry is not new, in fact the earliest attempt on chemical automation 
was demonstrated by Merrifield (1965) called solid phase peptide synthesis. Till date, 
solid phase peptide synthesis finds its applications in biochemical laboratories. We are 
not far from automated lab bench with sensory devices, IoT, digital twin and robust 
hardware in place. Yet, the scaling-up of the robotic work-flow from lab to industrial 
bench needs practical augmentation. We are in a triad of hope, disillusion and produc-
tivity when it comes to reflecting AI in drug discovery, organic synthesis and analytical 
methods, respectively (Fig. 6).

Digging further, most of the published literature lacks author diversity that go beyond 
gender. Few laboratories are working in silos on AI applications in chemistry, which is 
plausible, considering data privacy issues and funding constraints. Chemists, engineers, 
mathematicians and data scientists need to have a dialogue and solve the challenging 
problems of chemistry collaboratively. Automated robots in chemical laboratories are 
daunting task for scientists, especially those coming from middle-income nations, where 
grant funding is a problem. It is argued that, AI-based applications must go beyond bor-
ders and fruitfully contribute to the research community. One example is DREAM Chal-
lenges, a competition solving challenging problems in biomedicine that elicits the need 
for more such platforms. Such competitions, if explored for chemistry, shall stir up dis-
cussions leading to solving complex problems through diverse collaborations. Another 

Fig. 6  Triad of hope, disillusion and productivity in drug discovery, organic synthesis and analytical chem-
istry, respectively
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perspective is to introduce ML in chemistry curriculum that focuses only about solv-
ing chemistry. There are separate programs for machine learning and artificial intelli-
gence, yet, these courses are curated for engineers rather than chemists. This effort of 
ML in chemistry curricula shall inspire young chemists to design their own machine 
algorithms to solve chemistry problems, without taking away the collaborative spirit of 
interdisciplinary AI research.

With a renaissance of Industry 4.0, chemometrics and machine learning have yet 
to explore and provide solutions to chemical problems. However, we are not far from 
reaching advanced ML-based solutions for the challenge. It is well understood that AI 
essentially derives power by learning from data; in this case, chemical data. If the flaws 
of data acquisition get resolved for chemical patterns, ML methods shall function more 
than an auxiliary-checkbox and navigate to explore the intricate chemical world.
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