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Abstract
Our aim of writing this manuscript is to found novel rough-approximation operators 
inspired by an abstract structure called “supra-topology”. This approach is more relaxed 
than topological ones and extends the scope of applications because an intersection condi-
tion of topology is dispensed. Firstly, we generate eight types of supra-topologies using 
N
k
-neighborhood systems induced from any arbitrary relation. We elucidate the relation-

ships between them and investigate the conditions under which some of them are identical. 
Then, we create new rough sets models from these supra-topologies and present the main 
characterizations of their lower and upper approximations. We apply these approximations 
to classify the regions of the subset and compute its accuracy measures. The master mer-
its of the current approach are to produce the highest accuracy values compared with all 
approaches given in the published literature under a reflexive relation as well as preserve 
the monotonicity property of accuracy and roughness measures. Moreover, we demonstrate 
the good performance of the followed technique through analysis of some data of den-
gue fever disease. Ultimately, we debate the advantages and disadvantages of the followed 
approach and make a plan for some upcoming work.

Keywords  Nk-neighborhood · Supra-topology · Supra upper and supra lower 
approximations · Accuracy and roughness measures · Dengue fever

1  Introduction

In recent years, rough set theory and its extended models have raised more and more schol-
ars attention in various fields; especially, those who work in computer science and artifi-
cial intelligence. This theory was introduced by Pawlak (1982), as an effective and robust 
tool to cope with imperfect knowledge problems. It starts from an equivalence relation to 
classifying the objects and capture to what extent the information obtained from a set is 
complete. Two core principles in this theory are approximation operators and accuracy 
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measures which supply the decision-makers with the required data regarding the structure 
and size of boundary region.

A strict stipulation of an equivalence relation limits the applications of conventional 
rough set theory, so several generalizations of rough set theory have been introduced under 
an arbitrary relation or a specific relation. Yao (1996, 1998) launched this line of research, 
in 1996, by defining two types of neighborhoods with respect to an arbitrary relation called 
“right neighborhood” and “left neighborhood”. Then, some researchers assumed a specific 
relation to present various types of generalized rough set theory generated from right and 
left neighborhoods such as similarity (Abo-Tabl 2013; Slowinski and Vanderpooten 2000), 
tolerance Skowron and Stepaniuk (1996), quasiorder (Qin et al. 2008; Zhang et al. 2009) 
and dominance Zhang et al. (2016). In the light of this research trend, many authors and 
scholars made use of some operations between Nk-neighborhoods to explore new types 
of neighborhood systems; the recent ones of them are Ck-neighborhoods defined using 
superset relation Al-shami (2021a), Sk-neighborhoods defined using subset relation Al-
shami and Ciucci (2022), Ek-neighborhoods defined using intersection relation Al-shami 
et al. (2021), maximal neighborhoods defined using union relation Dai et al. (2018), core 
neighborhoods defined using equality relation Mareay (2016), and remote neighborhood 
Sun et al. (2019). Admittedly, they were created with the goal of improving approximation 
operators, increasing accuracy measures, and handling some practical problems. In line 
with this trend, Abu-Donia (2008) displayed new generalized rough set models induced 
from a finite family of arbitrary relations. Syau et al. (2021) studied the characterization of 
incomplete decision tables using a variable precision generalized rough set approach. Cam-
pagner et al. (2022) reviewed the most relevant contributions studying the links between 
belief functions and rough sets.

Another interesting orientation of study rough sets is a topology. Skowron (1988) and 
Wiweger (1989) noted the similarity behaviours of topological and rough-set concepts, 
which implies the possibility of replacement of the rough-set concepts by their topologi-
cal counterparts. This motivated many researchers to establish some topological struc-
tures and study rough-set notions and properties via them. Lashin et al. (2005) proposed 
a technique to initiate a topology from Nk-neighborhood systems. This technique is based 
on considering Nk-neighborhoods a subbase utilized to build a topology. Investigation of 
multi knowledge bases using rough approximations and topology was done by Abu-Donia 
(2012). Salama (2010) explored the solution of the missing attribute values problem from 
a topological view. Al-shami (2021b, 2022) benefited from two near open subsets of topo-
logical spaces called somewhere dense and somewhat open sets to introduce different types 
of lower and upper approximations and illustrated their merits compared to the past meth-
ods. A lot of published contributions were done to reformulate the rough set notions using 
topological ideas such as (Abo-Tabl 2014; Hosny 2018; Jin et al. 2021; Kondo and Dudek 
2006; Li et al. 2012; Singh and Tiwari 2020; Zhu 2007). Topological structures were used 
in many applications such as those presented in El-Bably and Abo-Tabl (2021), El-Bably 
and El-Sayed (2022).

In recent years, it has been exploited some topological generalizations such as infra 
topology Al-shami and Mhemdi (2022), minimal structure (Azzam et  al. 2020; El-
Sharkasy 2021) and bitopology Salama (2020) to deal with rough set concepts and address 
some medical problems. Following this line, we suggest novel kinds of rough set mod-
els inspired by another abstract structure called “supra-topology”. This concept was intro-
duced by Mashhour (1983), in 1983, as an extension of topology. Afterward, many authors 
discussed the topological concepts and examined the validity of their characterizations via 
supra-topological structures. We draw attention to that some topological properties such as 
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Int(X ∩ Z) = Int(X) ∩ Int(Z) and Cl(X ∪ Z) = Cl(X) ∪ Cl(Z) are evaporated via supra-topol-
ogy. However, a supra topology frame offers a convenient environment to cope with some 
real-life problems as illustrated in Kozae et al. (2016).

The major inducements to debate rough set models using a “supra-topology” standpoint 
are, first, to relieve some conditions imposed on topological rough set models, which make 
us in a position to dispense with some conditions that limit applications. Second, the fol-
lowed approach preserves most of Pawlak properties of approximation operators, which are 
evaporated in some previous approaches induced from topological structures such as (Abd 
El-Monsef et  al. 2014; Abu-Donia 2008; Dai et  al. 2018; Yao 1996, 1998). Thirdly, the 
values of accuracy and roughness given herein satisfy the monotonic property. Fourthly, 
the best approximations and accuracy values produced by our approach are obtained in 
cases of union and minimal union, whereas they are obtained in cases of intersection and 
minimal intersection in the previous approaches. This implies our approach is more suit-
able to analyze and describe the large samples. Finally, the approximation operators and 
accuracy measures obtained from our approach under a reflexive relation are better than 
all preceding methods defined by topological structures (Abd El-Monsef et al. 2014; Abo-
Tabl 2013; Allam et al. 2006; Al-shami 2021b; Amer et al. 2017; Hosny 2018; Kondo and 
Dudek 2006; Kozae et al. 2007) and their generalizations (Azzam et al. 2020; El-Sharkasy 
2021; Salama 2020) and all the preceding methods directly defined by neighborhood sys-
tems (Abu-Donia 2008; Al-shami 2021a, 2022; Dai et al. 2018; Lashin et al. 2005).

The rest of this paper is designed as follows. Section 2 mentions the basic principles 
and results of rough sets and supra-topology required to understand this context as well as 
elaborates the motivations that led to these developments. In Sect. 3, we show how to con-
struct supra-topology spaces utilizing Nk-neighborhood systems induced from any arbitrary 
relation. Then, we make use of these spaces to establish new rough set models and scru-
tinize their fundamental characterizations in Sect. 4. Also, we build an algorithm to illus-
trate how supra k-exact sets are determined. In Sect. 5, we investigate the effectiveness and 
robustness of the followed approach to analyze the data of dengue fever disease. In Sect. 6, 
we present the pros and cons of the followed approach compared to the past ones. In the 
end, in Sect. 7, we summarize the main contributions and give some thoughts that can be 
applied to expand the scope of this manuscript.

2 � Basic concepts and results

We recall, in this section, the principles and results regarding rough sets and supra-topolog-
ical structures that are required to understand the manuscript context. Also, we tackle the 
historical development of these concepts as well as the motivations of their study. Moreo-
ver, we give proof for equality of accuracy measures induced from Nk-neighborhoods and 
their counterpart topologies under a quasiorder relation.

2.1 � Rough approximation operators and neighborhood systems

Through this manuscript, an approximation space is the ordered pair (E, �) such that E is a 
nonempty finite set and � is an arbitrary relation on E. (E, �) is called Pawlak approxima-
tion space if � is an equivalent relation, i.e. reflexive, symmetric and transitive.

The following definition, introduced by Pawlak (1982), is the cornerstone of this 
research scope.
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Definition 1  We associate each subset X of Pawlak approximation space (E, �) with two 
sets defined with respect to the equivalences classes E∕� by the next formulas.

The sets �(X) and �(X) are respectively recognized as lower and upper approxima-
tions of X. The core properties of these approximations are listed in the next proposition 
which is the key point of rough set theory.

Proposition 1  (Pawlak 1982) Let X and Z be subsets of Pawlak approximation space (E, �) . 
The next properties are satisfied.

The approximation operators are exploited to divide every subset into three regions 
helping us to specify the knowledge induced from a subset and discover its structure.

Definition 2  (Pawlak 1982) Every subset X of Pawlak approximation space (E, �) is associ-
ated with three regions called positive, boundary, and negative. They are respectively given 
by the following formulas.

To capture the degree of completeness and incompleteness of knowledge obtained 
from a subset, the next measures were familiarized.

Definition 3  (Pawlak 1982) Every subset X of Pawlak approximation space (E, �) is asso-
ciated with two measures (or values) called accuracy and roughness measures. They are 
respectively defined as follows.

𝛿(X) = ∪{U ∈ E∕𝛿 ∶ U ⊆ X}, and

𝛿(X) = ∪{U ∈ E∕𝛿 ∶ U ∩ X ≠ �}

(L1) 𝛿(X) ⊆ X (U1) X ⊆ 𝛿(X)

(L2) 𝛿(�) = � (U2) 𝛿(�) = �

(L3) 𝛿(E) = E (U3) 𝛿(E) = E

(L4) IfX ⊆ Z, then 𝛿(X) ⊆ 𝛿(Z) (U4) IfX ⊆ Z, then 𝛿(X) ⊆ 𝛿(Z)

(L5) 𝛿(X ∩ Z) = 𝛿(X) ∩ 𝛿(Z) (U5) 𝛿(X ∩ Z) ⊆ 𝛿(X) ∩ 𝛿(Z)

(L6) 𝛿(X) ∪ 𝛿(Z) ⊆ 𝛿(X ∪ Z) (U6) 𝛿(X ∪ Z) = 𝛿(X) ∪ 𝛿(Z)

(L7) 𝛿(Xc) = (𝛿(X))c (U7) 𝛿(Xc) = (𝛿(X))c

(L8) 𝛿(𝛿(X)) = 𝛿(X) (U8) 𝛿(𝛿(X)) = 𝛿(X)

(L9) 𝛿((𝛿(X))c) = (𝛿(X))c (U9) 𝛿((𝛿(X))c) = (𝛿(X))c

(L10) IfX ∈ E∕𝛿, then 𝛿(X) = X (U10) IfX ∈ E∕𝛿 then 𝛿(X) = X

P+(X) =�(X),

B(X) =�(X) ⧵ �(X),

P−(X) =E ⧵ �(X)
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As it is well known the equivalence relation limits the application scope of rough 
sets, this motivated Yao (1996, 1998) to come up with a brilliant idea called “right and 
left neighborhoods” which are formulated under any arbitrary relation as follows.

Definition 4  (Yao 1996, 1998) Let (E, �) be an approximation space (herein, � is an arbi-
trary relation need not be an equivalence relation). Then

Then, Yao formulated the approximation operators with respect to right and left 
neighborhoods as follows.

Definition 5  (Yao 1996, 1998) For k ∈ {r, l} , the k-lower and k-upper approximations 
induced from an approximation space (E, �) are defined as follows.

Remark 1  It should be noted that some features of Pawlak approximation space, displayed 
in Proposition 1, are lost, for instance, the properties report that “the k-lower approxima-
tion of the empty set is empty” and “the k-upper approximation of the universal set is the 
universal set” are generally false. Also, the distributive properties of intersection and union 
under k-lower and k-upper approximations, respectively, are evaporated.

Posteriorly, the researchers investigated different types of generalized rough sets with 
aim of increasing the accuracy measures and improving the approximations of rough sub-
sets. These efforts produced several types of neighborhood systems listed in the following.

Definition 6  (Abd El-Monsef et  al. 2014; Allam et  al. 2005, 2006) For k ∈ {⟨r⟩, ⟨l⟩, i,
u, ⟨i⟩, ⟨u⟩} , the k-neighborhoods of each w ∈ E , denoted by Nk(w) , induced from an approxi-
mation space (E, �) are formulated as follows. 

	 (i)	   

	 (ii)	   

M(X) =
∣ �(X) ∣

∣ �(X) ∣
, where X is nonempty.

R(X) = 1 −M(X).

The right neighborhood of w ∈ E, denoted by Nr(w), is defined by

Nr(w) = {x ∈ E ∶ (w, x) ∈ �}, and

The left neighborhood of w ∈ E, denoted by Nl(w), is defined by

Nl(w) = {x ∈ E ∶ (x,w) ∈ �}.

𝛿
k
(X) = {w ∈ E ∶ Nk(w) ⊆ X}, and

𝛿k(X) = {w ∈ E ∶ Nk(w) ∩ X ≠ �}

N⟨r⟩(w) =

� ⋂
w∈N

r
(x)

N
r
(x) there exists N

r
(x) including w

� Otherwise
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	 (iii)	 Ni(w) = Nr(w) ∩ Nl(w).
	 (iv)	 Nu(w) = Nr(w) ∪ Nl(w).
	 (v)	 N⟨i⟩(w) = N⟨r⟩(w) ∩ N⟨l⟩(w).
	 (vi)	 N⟨u⟩(w) = N⟨r⟩(w) ∪ N⟨l⟩(w).

The neighborhoods above were applied to introduce novel kinds of approximation 
operators following similar technique given in Definition 5. We draw attention to the 
shortcoming caused by using Pawlak accuracy measures when � is not a reflexive rela-
tion, that is, we sometimes obtain accuracy measures greater than one or undefined as 
illustrated in the next example.

Example 1  Consider � = {(w,w), (w, x), (x, y)} is a relation on E = {w, x, y, z} . It is 
clear that Nr(w) = {w, x} , Nr(x) = {y} and Nr(y) = Nr(z) = � . It follows from Defini-
tion 5 that �

k
({x, y}) = {x, y, z} and �k({x, y}) = {w, x} . According to Definition 3 we 

find M({x, y}) =
3

2
> 1 which is a contradiction. Also, note that �

k
({z}) = {y, z} and 

�k({z}) = � , which means that M({z}) is undefined.

To get rid of these failures, it was proposed a slight modification for accuracy meas-
ure definition as given below.

Definition 7  (Abd El-Monsef et al. 2014; Allam et al. 2005, 2006; Yao 1996, 1998) For 
each k, the accuracy measures of a set X in an approximation space (E, �) is given by

Remark 2    

	 (i)	 If � is a quasiorder (reflexive and transitive), then Nk = N⟨k⟩ for each k ∈ {r, l, i, u}

	 (ii)	 If � is reflexive, then the formula given in Definition 7 is written as follows 
Mk(X) =

∣�
k
(X)∣

∣�k(X)∣
.

To investigate the monotonicity property of our accuracy and roughness measures, 
the next result will be helpful.

Proposition 2  (Al-shami 2022) Let (E, �1) and (E, �2) be approximation spaces such that 
𝛿1 ⊆ 𝛿2 . Then N1k(w) ⊆ N2k(w) for each w ∈ E and k ∈ {r, l, i, u}.

Definition 8  (see, Al-shami 2022) We call the approximations spaces (E, �1) and 
(E, �2) have the property of monotonicity accuracy (resp. monotonicity roughness) if 
M�1

(X) ≥ M�2
(X) (resp., M�1

(X) ≤ M�2
(X) ) whenever 𝛿1 ⊆ 𝛿2.

N⟨l⟩(w) =

� ⋂
w∈N

l
(x)

N
l
(x) there exists N

l
(x) including w

� Otherwise

Mk(X) =
∣ �

k
(X) ∩ X ∣

∣ �k(X) ∪ X ∣
, where X is nonempty.
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2.2 � Rough set concepts via topological structures

A subcollection � of the power set of a nonempty set E is called a topology on E pro-
vided that it is closed under finite intersection and arbitrary union as well as ∅ and E are 
members of �.

Pawlak (1982) noted that the equivalences classes form a base for a specified type 
of topology (known as a quasi-discrete topology), which means there is a similarity 
between the behaviors of some topological and rough set concepts, for example, inte-
rior topological operator and lower approximation, and closure topological operator and 
upper approximation. Then, Skowron (1988) and Wiweger (1989) studied topological 
structures of rough sets. These pioneering works paved to conducting deep investiga-
tions concerning rough set concepts from a topological standpoint. Later on, Nk-neigh-
borhood systems were used to establish new sorts of rough approximations inspired by 
topological structures. One of the suggested manners to do that is demonstrated by the 
next interesting result.

Theorem 1  Abd El-Monsef et al. (2014) The topology on E generated from an approxima-
tion space (E, �) given by 𝜏k = {U ⊆ E ∶ Nk(w) ⊆ U for each w ∈ U} for each k.

The approximation rough operators were familiarized topologically depending on 
Theorem 1 as follows.

Definition 9  (Abd El-Monsef et  al. 2014) The k-lower and k-upper approximations and 
accuracy measure of a set X induced from a topological space (E, �k) are respectively given 
by

The regions of a subset were formulated using O
k
(X) and Ok(X) following a similar 

manner to their counterparts given in Definition 2.
Now, we prove that accuracy measures produced by Nk-neighborhood systems are 

better than accuracy measures produced by topological approaches under an arbitrary 
relation, then we demonstrate that they are identical under a quasiorder relation.

Proposition 3  For every subset X of an approximation space (E, �) , we have Tk(X) ≤ Mk(X)

.

Proof  Suppose that w ∈ O
k
(X) . Then, there exists U ∈ �k such that w ∈ U ⊆ X and 

Nk(U) ⊆ U . This implies that Nk(w) ⊆ Nk(U) ⊆ X , so w ∈ �
k
(X) . This means that

Now, let w ∉ Ok(X) . Then, there exists U ∈ �k such that w ∈ U and U ∩ X = � , so U ⊆ Xc . 
Therefore, Nk(w) ⊆ Nk(U) ⊆ Xc . This means that Nk(w) ∩ X = � , thus w ∉ �k(X) . Hence, 
we get

O
k
(X) = ∪{U ∈ 𝜏k ∶ U ⊆ X},

Ok(X) = ∩{F ∶ Fc ∈ 𝜏k and X ⊆ F}, and

Tk(X) =
∣ O

k
(X) ∣

∣ Ok(X) ∣
, where X is nonempty.

(1)∣ O
k
(X) ∣≤∣ �

k
(X) ∩ X ∣
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It follows from (1) and (2) that ∣O
k
(X)∣

∣Ok(X)∣
≤

∣�
k
(X)∩X∣

∣�k(X)∪X∣
 . This completes the proof that 

Tk(X) ≤ Mk(X) . 	�  ◻

To illustrate that the converse need not be true, consider a subset {y, z} of an approximation 
space (E, �) given in Example 1. Now, �r = {�,E, {y}, {z}, {y, z}, {x, y}, {x, y, z}, {w, x, y}} . 
By calculation, we find that Mr({y, z}) =

2

3
 whereas Tr({y, z}) =

1

2
.

Proposition 4  Let (E, �) be an approximation space such that � is quasiorder. Then 
Tk(X) = Mk(X) for every X ⊆ E.

Proof  By proposition 3, we have Tk(X) ≤ Mk(X) . To prove that Mk(X) ≤ Tk(X) , it suffices 
to show that Nk(w) ∈ �k for each w ∈ E . In other words, Nk(w) = Nk(Nk(w)) . It follows 
from the reflexivity of � that Nk(w) ⊆ Nk(Nk(w)) . Conversely, without lose of generality, 
we consider k = r . let x ∈ Nr(Nr(w)) . Then there is z ∈ Nr(w) such that (z, x) ∈ � . Now, 
we have (w, z) ∈ � . By transitivity of � we obtain (w, x) ∈ � , which means that x ∈ Nr(w) . 
Thus, Nr(Nr(w)) ⊆ Nr(w) . Hence, Tk(X) = Mk(X) , as required. 	�  ◻

Remark 3  There are different methods to form a topological structure from Nk-neighbor-
hood systems such as studied by Lashin et al. (2005). Its methodology depends on consid-
ering the collection {Nk(w) ∶ w ∈ E} as a subbase for a topology on E.

In 1983, Mashhour (1983) extended the concept of topology to “supra-topology” by 
neglecting the intersection condition. That is, a supra-topology is defined on a nonempty 
set E as a subcollection U of the power set of E satisfying two axioms 1)�,E ∈ U , and 2) U 
is closed under arbitrary union.

Definition 10  (Mashhour 1983) Let U be a supra-topology on E and X ⊆ E . We call X a 
supra-open (resp. supra-closed) set if it is a member of U (resp., its complement belongs 
to U ). We define the supra-interior points of a set X, denoted by Int(X), as a union of all 
supra-open subsets of this set, and we define the supra-closure points of a set, denoted by 
Cl(X), as the intersection of all supra-closed supersets of this set.

3 � Generating supra‑topologies from N
k
‑neighborhoods induced 

by an arbitrary relation

We dedicate this part to introducing new techniques for initiating supra-topologies from Nk

-neighborhoods under any arbitrary relation. With the help of an illustrative example, we 
make some comparisons between these supra-topologies and determine under which rela-
tions we get equivalences between some of them. As we note from the techniques in the 
published literature that the largest structures are obtained in cases of intersection and min-
imal intersection, whereas our techniques produce the largest structures in cases of union 
and minimal union, which is convenient to model some phenomena.

Let us start with the next lemma which assists us to prove that Nk-neighborhood systems 
are closed under a union operator.

(2)∣ �k(X) ∪ X ∣≤∣ Ok(X) ∣
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Lemma 1  If Nk-neighborhood systems are induced from an approximation space (E, �) , 
then Nk(X ∪ Z) = Nk(X) ∪ Nk(Z) for each X, Z ⊆ E.

Proof  It is apparent that Nk(X) ⊆ Nk(X ∪ Z) and Nk(Z) ⊆ Nk(X ∪ Z) , so 
Nk(X) ∪ Nk(Z) ⊆ Nk(X ∪ Z) . Conversely, let w ∈ Nk(X ∪ Z) . Then there exists x ∈ X ∪ Z 
such that w ∈ Nk(x) . This implies that Nk(x) ⊆ Nk(X) or Nk(x) ⊆ Nk(Z) . Accordingly, 
w ∈ Nk(X) ∪ Nk(Z) , which means that Nk(X ∪ Z) ⊆ Nk(X) ∪ Nk(Z) . Hence, the proof is 
complete. 	�  ◻

The next result presents a method of generating supra-topology structures from Nk

-neighborhood systems.

Theorem  2  Assume (E, �) is an approximation space. Then, the collection 
U = {E} ∪ {U ⊆ E ∶ U ⊆ Nk(U)} forms a k-supra topology on E.

Proof  According to the collection definition, E ∈ U , also, Nk(�) = � which means that 
� ∈ U . To prove that U is closed under union operator, let U1,U2 ∈ U . Then U1 ⊆ Nk(U1) 
and U2 ⊆ Nk(U2) . We automatically obtain U1 ∪ U2 ⊆ Nk(U1) ∪ Nk(U2) . By Lemma 1, we 
get U1 ∪ U2 ⊆ Nk(U1 ∪ U2) . Thus, U1 ∪ U2 ∈ U . Hence, U is a supra-topology on E, as 
required. 	�  ◻

Definition 11  The triple system (E, �,Uk) is said to be a k-supra topological space (briefly, 
kSTS), where Uk is a k-supra topology on E generated by Theorem 2.

We call a subset of E a k-supra open set if it is a member of Uk , and we call a subset of 
E a k-supra closed set if its complement is a member of Uk . The family of all k-supra closed 
subsets of E will be denoted by Uc

k
.

It is very important to note that the collection given in Theorem  2 need not be a 
topology, which makes this method is completely different than a method given in The-
orem 1. To validate this note, consider {w, x} and {w, y} which are members of Uu given 
in Example 2; obviously, their intersection {w} is not a member of Uu.

To investigate these structures topologically, we need to put forward the counterparts 
of interior and closure topological operators.

Definition 12  The k-supra interior and k-supra closure points of a subset X of a kSTS 
(E, �,Uk) are defined respectively by

The next example demonstrates how to produce k-supra topologies from an approxi-
mation space.

Example 2  Consider � = {(y, y), (w, x), (w, y), (z, x)} is a binary relation on E = {w, x, y, z} . 
Then, we first compute a neighborhood of each point in E in the Table 1.

Intk(X) = ∪{G ∈ Uk ∶ G ⊆ X}, and

Clk(X) = ∩{Y ∈ U
c
k
∶ X ⊆ Y}
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According to Definition 11, the k-supra topologies Uk generated from these neighbor-
hoods are the following.

Now, we reveal the relationships between these structures and study the conditions under 
which some of these structures are identical.

Proposition 5  Let (E, �,Uk) be a kSTS. Then 

	 (i)	 Ui ⊆ Ur ⊆ Uu.
	 (ii)	 Ui ⊆ Ul ⊆ Uu.
	 (iii)	 U⟨i⟩ ⊆ U⟨r⟩ ⊆ U⟨u⟩.
	 (iv)	 U⟨i⟩ ⊆ U⟨l⟩ ⊆ U⟨u⟩.

Proof  To prove (i) and (ii), let X be a set in Ui . Then X ⊆ Ni(X) . It is well recognized that 
Ni(X) ⊆ Nr(X) and Ni(X) ⊆ Nl(X) , so X ⊆ Nr(X) and X ⊆ Nr(X) . This means that X ∈ Ur 
and X ∈ Ul . Thus, Ui ⊆ Ur and Ui ⊆ Ul . Similarly, we prove that Ur ⊆ Uu and Ui ⊆ Uu.

Following similar arguments, (iii) and (iv) are proved. 	�  ◻

Corollary 1  Let (E, �,Uk) be a kSTS and X ⊆ E . Then 

	 (i)	 Inti(X) ⊆ Intr(X) ⊆ Intu(X) and Clu(X) ⊆ Clr(X) ⊆ Cli(X).
	 (ii)	 Inti(X) ⊆ Intl(X) ⊆ Intu(X) and Clu(X) ⊆ Cll(X) ⊆ Cli(X).
	 (iii)	 Int⟨i⟩(X) ⊆ Int⟨r⟩(X) ⊆ Int⟨u⟩(X) and Cl⟨u⟩(X) ⊆ Cl⟨r⟩(X) ⊆ Cl⟨i⟩(X).
	 (iv)	 Int⟨i⟩(X) ⊆ Int⟨l⟩(X) ⊆ Int⟨u⟩(X) and Cl⟨u⟩(X) ⊆ Cl⟨l⟩(X) ⊆ Cl⟨i⟩(X).

(3)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

Ur = {�,E, {y}};

Ul = {�,E, {y}, {w, y}};

Ui = {�,E, {y}};

Uu = {�,E, {y}, {w, x}, {w, y}, {x, z}, {w, x, y}, {w, x, z}, {x, y, z}};

U⟨r⟩ = {�,E, {x}, {y}, {x, y}};

U⟨l⟩ = {�,E, {w}, {y}, {z}, {w, y}, {w, z}, {y, z}, {w, y, z}};

U⟨i⟩ = {�,E, {y}};

U⟨u⟩ = P(E).

Table 1   N
k
-neighborhoods w x y z

 Nr {x, y} ∅ {y} {x}

Nl ∅ {w, z} {w, y} ∅

Ni ∅ ∅ {y} ∅

Nu {x, y} {w, z} {w, y} {x}

N⟨r⟩ ∅ {x} {y} ∅

N⟨l⟩ {w} ∅ {w, y} {w, z}

N⟨i⟩ ∅ ∅ {y} ∅

N⟨u⟩ {w} {x} {w, y} {w, z}
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It follows from Example 2 and Example 3 that relations given in the four items of 
Proposition 5 are proper. Also, these examples show that Ur and Ul ( U⟨r⟩ and U⟨l⟩ ) are 
independent of each other. Moreover, these examples demonstrate the converses of the 
four items of Corollary 1 are false in general.

Proposition 6  Let (E, �,Uk) be a kSTS such that � is symmetric. Then 

	 (i)	 Ur = Ul = Ui = Uu.
	 (ii)	 U⟨r⟩ = U⟨l⟩ = U⟨i⟩ = U⟨u⟩.

Proof  Follows from the fact that Nr(w) = Nl(w) and N⟨r⟩(w) = N⟨l⟩(w) under a symmetric 
relation. 	� ◻

Corollary 2  Let X be a subset of a kSTS (E, �,Uk) . If � is symmetric, then 

	 (i)	 Intu(X) = Intr(X) = Intl(X) = Inti(X) and Clu(X) = Clr(X) = Cll(X) = Cli(X).
	 (ii)	 Int⟨u⟩(X) = Int⟨r⟩(X) = Int⟨l⟩(X) = Int⟨i⟩(X) and Cl

⟨u⟩(X) = Cl
⟨r⟩(X) = Cl

⟨l⟩(X) = Cl
⟨i⟩(X).

Example 2 emphasizes that the symmetry condition of Proposition 6 and Corollary 2 
is indispensable.

Recall that a relation � is called serial if every element has a nonempty Nr-neighbor-
hood. And it is called inverse serial (or surjective) if every element has a nonempty Nl

-neighborhood.

Proposition 7  If � is an inverse serial relation on E, then U⟨r⟩ and U⟨u⟩ are identical; moreo-
ver, they are discrete topologies.

Proof  Since � is an inverse serial relation, we have 
⋃
w∈E

Nr(w) = E . This means that 

N⟨r⟩(w) ≠ � . In this case we have w ∈ N⟨r⟩(w) for each w ∈ E . This implies that any single-
ton subset of E is an r-supra open. Hence, U⟨r⟩ is a discrete topology. Since U⟨r⟩ ⊆ U⟨u⟩ , we 
obtain U⟨u⟩ is also a discrete topology. 	�  ◻

Proposition 8  If � is a serial relation on E, then U⟨l⟩ and U⟨u⟩ are identical; moreover, they 
are discrete topologies.

Proof  Similar to the proof of Proposition 7. 	�  ◻

Corollary 3  If a relation � is serial and inverse serial on E, then all U⟨k⟩ are identical; 
moreover, they are discrete topologies.

In Example 2, note that Nr(x) = Nl(z) = � , which means that a relation � is neither 
serial nor inverse serial. On the other hand, U⟨u⟩ is a discrete topology. So that, the con-
verses of Proposition 7, Proposition 8 and Corollary 3 are false in general.
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The significance of the following result is that we will rely on it to prove that the method 
introduced in the next section is better than all previous ones to produce approximations 
and accuracy values under a reflexive relation.

Proposition 9  If � is a reflexive relation on E, then all Uk are discrete topologies.

Proof  Let U be an arbitrary subset of E. Since � is a reflexive relation, we obtain U ⊆ Nk(U) 
for each k. Therefore, U ∈ Uk , which means that every subset of E belongs to Uk . Hence, Uk 
is the discrete topology on E, as required. 	�  ◻

Again, Example 2 serves as a fantastic tool to illustrate the invalidity of some results. It 
illuminates that the converse of Proposition 9 is generally not true. Note that U⟨u⟩ is a dis-
crete topology in spite of � is not reflexive.

Proposition 10  A relation � on E is reflexive iff Uk is a discrete topology, where k ∈ {r, l, i}.

Proof  The condition of necessity comes from Proposition 9. We prove the sufficient 
part for k = r and the other two cases are proved similarly. Since Ur is discrete, we have 
{w} ∈ Ur for each w ∈ E . This means that {w} ⊆ Nr(w) , i.e. (w,w) ∈ � for each w ∈ E . 
Hence, � is reflexive. 	�  ◻

The following result will help us to prove the monotonicity and roughness properties of 
rough sets models presented in the next section.

Proposition 11  Let (E, �1,U1k) and (E, �2,U2k) be kSTSs such that 𝛿1 ⊆ 𝛿2 . Then U1k ⊆ U2k 
for each k ∈ {r, l, i, u}.

Proof  Let X be a set in U1k , where k ∈ {r, l, i, u} . Then X ⊆ N1k(X) . Since 𝛿1 ⊆ 𝛿2 we get 
N1k(X) ⊆ N2k(X) . So that, X ⊆ N2k(X) , which means that X ∈ U2k . Hence, we obtain the 
desired result. 	�  ◻

4 � New rough models generated by supra‑topology

In this section, we will establish novel rough models depending on k-supra topologies 
induced from Nk-neighborhood systems. We investigate their main properties and give an 
algorithm to illustrate how the supra accuracy values are calculated. To show the impor-
tance of these models, we elucidate that they improve the approximations and produce 
accuracy values which are better than all previous ones if the relation is reflexive.

4.1 � Supra k‑lower and supra k‑upper approximations

Definition 13  We define supra k-lower approximation �
k
 and supra k-upper approximation 

�k of a subset X of a kSTS (E, �,Uk) as follows.

𝜆
k
(X) = ∪{U ∈ Uk ∶ U ⊆ X}, and

𝜆k(X) = ∩{F ∈ U
c
k
∶ X ⊆ F}.
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Note that �
k
(X) and �k(X) represent the supra-interior and supra-closure points of X, 

respectively. Accordingly, we obtain w ∈ �k(X) iff U ∩ X ≠ � for each U ∈ Uk containing 
w. As a special case, if � is an equivalence relation, then �

k
(X) and �k(X) represent the 

lower and upper approximations in sense of Pawlak.
Foremost, we prove the first advantage of the current approximations which is to pre-

serve most of properties of Pawlak approximations.

Proposition 12  Let X and Z be subsets of a kSTS (E, �,Uk) . Then the next properties are 
satisfied. 

	 (i)	 𝜆
k
(X) ⊆ X.

	 (ii)	 �
k
(�) = �.

	 (iii)	 �
k
(E) = E.

	 (iv)	 If X ⊆ Z , then 𝜆
k
(X) ⊆ 𝜆

k
(Z).

	 (v)	 �
k
(Xc) = (�k(X))

c.
	 (vi)	 �

k
(�

k
(X)) = �

k
(X).

Proof  The proofs of (i) and (ii) come from Definition 13.
The proof of (iii) comes from the fact that E is the largest supra-open subset of a kSTS 

(E, �,Uk).
(iv): Let X ⊆ Z . Then ∪{U ∈ Uk ∶ U ⊆ X} ⊆ ∪{U ∈ Uk ∶ U ⊆ Z} and so 𝜆

k
(X) ⊆ 𝜆

k
(Z)

.
(v): Let w ∈ �

k
(Xc) . Then there is a supra-open set U satisfying w ∈ U ⊆ Xc , so 

U ∩ X = � , which means that w ∉ �k(X) . Thus, w ∈ (�k(X))
c . On the other hand, let 

w ∈ (�k(X))
c . Then w ∉ �k(X) , which means there is a supra-open set U satisfying w ∈ U 

and U ∩ X = � . So w ∈ U ⊆ Xc . Hence w ∈ �
k
(Xc).

(vi): From (i) we get 𝜆
k
(𝜆

k
(X)) ⊆ 𝜆

k
(X) . Conversely, let w ∈ �

k
(X) . Then there is a 

supra-open set U such that w ∈ U ⊆ X . It follows from (iv) that 𝜆
k
(U) ⊆ 𝜆

k
(X) . According 

to Definition 13 we have U = �
k
(U) , so w ∈ 𝜆

k
(U) ⊆ 𝜆

k
(𝜆

k
(X)) . Thus, 𝜆

k
(X) ⊆ 𝜆

k
(𝜆

k
(X)) . 

Hence, we get the wished result. 	�  ◻

Corollary 4  Let X and Z be subsets of a kSTS (E, �,Uk) . Then 𝜆
k
(X ∩ Z) ⊆ 𝜆

k
(X) ∩ 𝜆

k
(Z) 

and 𝜆
k
(X) ∪ 𝜆

k
(Z) ⊆ 𝜆

k
(X ∪ Z).

Proof  Directly follows from (iv) of Proposition 12. 	�  ◻

In a uSTS (E, �,Uu) given in eq. (3) consider X = {w, x} , Y = {x, y} and Z = {w, y, z} . 
Then 

1.	 𝜆
u
(Z) = {w, y} ⊂ Z.

2.	 𝜆
u
(Y) = {y} ⊂ 𝜆

l
(Z) = {w, y} whereas Y ⊈ Z.

3.	 𝜆
u
(X ∩ Z) = � ⊂ 𝜆

u
(X) ∩ 𝜆

u
(Z) = {w}.

4.	 𝜆
u
(X) ∪ 𝜆

u
(Z) = {w, x, y} ⊂ 𝜆

u
(X ∪ Z) = E.
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It follows from these computations that the inclusion relations of (i) and (iv) of Proposi-
tion 12 as well as Corollary 4 are proper.

Proposition 13  Let X and Z be subsets of a kSTS (E, �,Uk) . Then the next properties are 
satisfied. 

	 (i)	 X ⊆ 𝜆k(X).
	 (ii)	 �k(�) = �.
	 (iii)	 �k(E) = E.
	 (iv)	 If X ⊆ Z , then 𝜆k(X) ⊆ 𝜆k(Z).
	 (v)	 �k(X

c) = (�
k
(X))c.

	 (vi)	 �k(�k(X)) = �k(X).

Proof  Similar to the proof of Proposition 12. 	�  ◻

Corollary 5  Let X and Z be subsets of a kSTS (E, �,Uk) . Then 𝜆k(X ∩ Z) ⊆ 𝜆k(X) ∩ 𝜆k(Z) 
and 𝜆k(X) ∪ 𝜆k(Z) ⊆ 𝜆k(X ∪ Z).

Proof  Directly follows from (iv) of Proposition 13. 	�  ◻

In a uSTS (E, �,Uu) given in equation (3) consider X = {w, x} , Y = {x, z} and Z = {w, z} . 
Then 

1.	 X ⊂ 𝜆u(X) = {w, x, z}.
2.	 𝜆u(Y) = Y ⊂ 𝜆u(X) whereas Y ⊈ X.
3.	 𝜆u(X ∩ Z) = {w} ⊂ 𝜆u(X) ∩ 𝜆u(Z) = {w, x, z}.
4.	 𝜆u({w}) ∪ 𝜆u({z}) = {w, z} ⊂ 𝜆u({w, z}) = {w, x, z}.

It follows from these computations that the relations of inclusion given in (i) and (iv) of 
Proposition 13 as well as Corollary 5 are proper.

Definition 14  The supra k-accuracy and supra k-roughness measures (or values) of a set X 
in a kSTS (E, �,Uk) are defined respectively by

Note that for every set X ⊆ E the two values Ak(X) and Rk(X) lie in the closed interval 
[0, 1].

Definition 15  We call the kSTSs (E, �1,U1k) and (E, �2,U2k) have the property of 
monotonicity accuracy (resp. monotonicity roughness) if A1k(X) ≤ A2k(X) (resp., 
R1k(X) ≥ R2k(X) ) whenever �1 is a subset of �2.

Ak(X) =
∣ �

k
(X) ∣

∣ �k(X) ∣
, where X ≠ �.

Rk(X) = 1 −Ak(X).
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The next two result illustrate that the supra k-accuracy and supra k-roughness measures 
satisfy the monotonicity property.

Proposition 14  Let (E, �1,U1k) and (E, �2,U2k) be two kSTSs such that �1 is a subset of �2 . 
Then for k ∈ {r, l, i, u} and any set X ⊆ E we have A1k(X) ≤ A2k(X).

Proof  Since �1 is a subset of �2 , it follows from Proposition 11 that U1k is a subset of U2k for 
each k ∈ {r, l, i, u} . This automatically means that ∣ �

1k
(X) ∣≤∣ �

2k
(X) ∣ and 1

∣�1k(X)∣
≤

1

∣�2k(X)∣
 . 

Therefore, ∣�1k(X)∣
∣�1k(X)∣

≤
∣�

2k
(X)∣

∣�2k(X)∣
 . Hence, A1k(X) ≤ A2k(X) , as required. 	� ◻

Corollary 6  Let (E, �1,U1k) and (E, �2,U2k) be two kSTSs such that �1 is a subset of �2 . Then 
for k ∈ {r, l, i, u} and any set X ⊆ E we have R1k(X) ≥ R2k(X).

Definition 16  The supra k-positive, supra k-boundary, and supra k-negative regions of a 
set X in a kSTS (E, �,Uk) are defined respectively by

Proposition 15  Let (E, �1,U1k) and (E, �2,U2k) be kSTSs such that �1 is a subset of �2 . Then 
for k ∈ {r, l, i, u} and any set X ⊆ E the following results hold true. 

	 (i)	 B2k(X) ⊆ B1k(X).
	 (ii)	 𝛿−

1k
(X) ⊆ 𝛿−

2k
(X).

Proof  Follows from Proposition 11 and Proposition 14. 	�  ◻

Definition 17  A subset X of a kSTS (E, �,Uk) is called supra k-exact if �
k
(X) = �k(X) = X . 

Otherwise, it is called a supra k-rough set.

Proposition 16  A subset X of a kSTS (E, �,Uk) is supra k-exact iff Bk(X) = �.

Proof  Assume that X is a supra k-exact set. Then Bk(X) = �k(X) ⧵ �k(X) = �k(X) ⧵ �k(X) = � . 
Conversely, Bk(X) = � implies that �k(X) ⧵ �k(X) = � ; therefore, 𝜆k(X) ⊆ 𝜆

k
(X) . But it is 

well recognized that 𝜆
k
(X) ⊆ 𝜆k(X) . Thus, �k(X) = �

k
(X) . Hence, X is supra k-exact. 	� ◻

In Algorithm 1 and Flow chart (in Fig. 1), we elaborate how we can determine whether 
a subset of a k-supra topology is supra k-exact or supra k-rough.

�+
k
(X) = �

k
(X),

Bk(X) = �k(X) ⧵ �k(X), and

�−
k
(X) = E ⧵ �k(X).
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Fig. 1   Flow chart of determining 
supra k-exact and supra k-rough 
subsets of k-supra topologies
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4.2 � Comparison of our approach with the previous ones

In the following results, we explain some unique characteristics of our approximations and 
accuracy measures. As we will see they produce best approximations and highest accu-
racy measures in cases of union neighbourhood Nu and minimal union neighbourhood N⟨u⟩ , 
which is more different than topological approaches. In fact, this behaviour is attributed to 
the way of creating our neighbourhood systems given in Theorem 2. Then, we prove that 
the current method produces higher accuracy and better approximations than all approaches 
defined in the published literatures under a reflexive relation such as those given in Abd El-
Monsef et al. (2014); Abo-Tabl (2013); Abu-Donia (2008); Allam et al. (2006), Al-shami 
(2021a, 2021b, 2022), Amer et al. (2017), Azzam et al. (2020), El-Sharkasy (2021), Dai 
et al. (2018), Kondo and Dudek (2006), Kozae et al. (2007), Lashin et al. (2005), Salama 
(2020).

Proposition 17  Let X be a subset of a kSTS (E, �,Uk) . Then 

	 (i)	 𝜆
i
(X) ⊆ 𝜆

r
(X) ⊆ 𝜆

u
(X).

	 (ii)	 𝜆
i
(X) ⊆ 𝜆

l
(X) ⊆ 𝜆

u
(X).

	 (iii)	 𝜆⟨i⟩(X) ⊆ 𝜆⟨r⟩(X) ⊆ 𝜆⟨u⟩(X).
	 (iv)	 𝜆⟨i⟩(X) ⊆ 𝜆⟨l⟩(X) ⊆ 𝜆⟨u⟩(X).
	 (v)	 𝜆u(X) ⊆ 𝜆r(X) ⊆ 𝜆i(X).
	 (vi)	 𝜆u(X) ⊆ 𝜆l(X) ⊆ 𝜆i(X).
	 (vii)	 𝜆⟨u⟩(X) ⊆ 𝜆⟨r⟩(X) ⊆ 𝜆⟨i⟩(X).
	(viii)	 𝜆⟨u⟩(X) ⊆ 𝜆⟨l⟩(X) ⊆ 𝜆⟨i⟩(X).
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Proof  To prove (i) and (ii), let w ∈ �
i
(X) . Then there is U ∈ Ui such that w ∈ U ⊆ X . 

By Proposition 5, Ui is a subfamily of Ur and Ul , so U ∈ Ur and U ∈ Ul . Thus, 
w ∈ Intr(X) = �

r
(X) and w ∈ Intl(X) = �

l
(X) . Hence, 𝜆

i
(X) ⊆ 𝜆

r
(X) and 𝜆

i
(X) ⊆ 𝜆

l
(X) . 

Similarly, the relations 𝜆
r
(X) ⊆ 𝜆

u
(X) and 𝜆

l
(X) ⊆ 𝜆

u
(X) are proved.

Following similar arguments, one can prove the other cases. 	�  ◻

Corollary 7  Let X be a subset of a kSTS (E, �,Uk) . Then 

	 (i)	 Ai(X) ≤ Ar(X) ≤ Au(X).
	 (ii)	 Ai(X) ≤ Al(X) ≤ Au(X).
	 (iii)	 A⟨i⟩(X) ≤ A⟨r⟩(X) ≤ A⟨u⟩(X).
	 (iv)	 A⟨i⟩(X) ≤ A⟨l⟩(X) ≤ A⟨u⟩(X).

Proof  (i): It follows from Proposition 17 that 𝜆
i
(X) ⊆ 𝜆

r
(X) ⊆ 𝜆

u
(X) and �u(X) ⊆ �r(X) ⊆ �i(X) , 

so we get

and

By (4) and (5) we get

In a similar way, we prove the other cases. 	�  ◻

The data given in Tables  2 and 3 are computed for a different kinds of a kSTSs 
(E, �,Uk) displayed in Example 2. These computations emphasize the validity of the 
results presented in Proposition 17 and corollary 7.

The following two results demonstrate the conditions under which we obtain some 
equivalences.

Proposition 18  Let X be a subset of a kSTS (E, �,Uk) such that � is symmetric. Then 

	 (i)	 �
u
(X) = �

r
(X) = �

l
(X) = �

i
(X) and �u(X) = �r(X) = �l(X) = �i(X).

	 (ii)	 �⟨u⟩(X) = �⟨r⟩(X) = �⟨l⟩(X) = �⟨i⟩(X) and �⟨u⟩(X) = �⟨r⟩(X) = �⟨l⟩(X) = �⟨i⟩(X).

Proof  From the equalities �
k
(X) = Intk(X) and �k(X) = Clk(X) as well as Corollary 2, the 

proof follows. 	�  ◻

Corollary 8  Let X be a subset of a kSTS (E, �,Uk) such that � is symmetric. Then 

(4)∣ �
i
(X) ∣≤∣ �

r
(X) ∣≤∣ �

u
(X) ∣

(5)
1

∣ �i(X) ∣
≤

1

∣ �r(X) ∣
≤

1

∣ �u(X)(X) ∣

∣ �
i
(X) ∣

∣ �i(X) ∣
≤

∣ �
r
(X) ∣

∣ �r(X) ∣
≤

∣ �
u
(X) ∣

∣ �u(X) ∣
which is equivalent to Ai(X) ≤ Ar(X) ≤ Au(X).
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	 (i)	 Au(X) = Ar(X) = Al(X) = Ai(X).
	 (ii)	 A⟨u⟩(X) = A⟨r⟩(X) = A⟨l⟩(X) = A⟨i⟩(X).

Proposition 19  Let (E, �) be an approximation space such that � is reflexive. Then 
�
k
(X) = �k(X) = X for each X ⊆ E.

Proof  Since � is a reflexive relation, it follows from Proposition 9 that Uk is a discrete topol-
ogy for each k. This implies that �

k
(X) = Intk(X) = X and �k(X) = Clk(X) = X . Hence, we 

obtain the desired result. 	�  ◻

Corollary 9  Let (E, �) be an approximation space such that � is reflexive. Then Mk(X) = 1 
for each nonempty subset X of E.

Proposition 19 and Corollary 9 give an important characteristic of our method under 
a reflexive relation is that it is better than all previous methods defined by topological 
structures (Abd El-Monsef et  al. 2014; Abo-Tabl 2013; Allam et  al. 2006; Al-shami 
2021b; Amer et al. 2017; Hosny 2018; Kondo and Dudek 2006; Kozae et al. 2007) and 
their generalizations such as minimal structures (Azzam et al. 2020; El-Sharkasy 2021) 
and bitopological spaces (Salama 2020). Also, it is better than all previous methods 
which were directly defined by some neighborhood systems such as (Abu-Donia 2008; 
Allam et  al. 2005, 2006; Yao 1996, 1998) and those methods introduced depending 
on neighborhood systems and ideal structures (Hosny 2020; Hosny et  al. 2022, 2021; 
Kandil et al. 2020; Nawar et al. 2022).

Proposition 20  Let (E, �) be an approximation space and X ⊆ E . If � is reflexive, then 

	 (i)	 𝛿
k
(X) ⊆ 𝜆

k
(X).

	 (ii)	 𝜆k(X) ⊆ 𝛿k(X).

Proof  Let w ∈ �
k
(X) . According to Definition 5, Nk(w) ⊆ X . Since � is reflexive, 

w ∈ Nk(w) ⊆ X , and Nk(w) is a supra-open set in Uk . This means that w ∈ Intk(X) = �
k
(X) . 

Hence, the proof is complete.
Following similar arguments, (ii) is proved. 	� ◻

Corollary 10  Let (E, �) be an approximation space such that � is reflexive. Then 
Mk(X) ≤ Ak(X) for each X ⊆ E.

To validate that the current method produces higher accuracy and better approxima-
tions than those given (Abd El-Monsef et al. 2014; Allam et al. 2005, 2006; Yao 1996, 
1998), we provide the following example.

Example 3  Consider � = {(w,w), (x, x), (y, y), (w, y), (y, x)} is a binary relation on 
E = {w, x, y} . Then, we suffice by computing Nr-neighborhood of each point in E as fol-
lows: Nr(w) = {w, y} , Nr(x) = {x} and Nr(y) = {x, y} . According to Theorem  1, the 
r-topology �k generated from Nr-neighborhoods is �r = {�,E, {x}, {x, y}} . Since � is reflex-
ive, the generated supra-topology Uk is the discrete topology for each k. Now, we calculate, 
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in Table 4, the approximations and accuracy values of each subset induced from Nr-neigh-
borhood, rTS (E, �, �r) , and rSTS (E, �,Ur).

5 � Analysis of dengue fever using the supra‑topology approach

In this section, we examine the performance of our method to analyze the data of dengue 
fever disease and prove it is better than the previous ones given in Abd El-Monsef et al. 
(2014), Allam et al. (2005, 2006), Yao (1996, 1998).

Dengue fever disease which is a global problem. It is transmitting to humans by virus-
carrying Dengue mosquitoes Prabhat (2019). The symptoms of this disease mostly start 
from the third day of infection. The period of recovery takes a few days; usually, 2-7 days 
Prabhat (2019). According to the statistics of the World Health Organization (EHO), it 
spreads in more than 120 nations and causes a huge number of deaths around the world; in 
particular, Asia and South America World Health Organization (2016). Accordingly, this 
disease occupies an important place worldwide, which motivates us to analyze it by the 
approach introduced in this manuscript.

The data displayed in Table 5 decide this disease such that the columns give the symp-
toms of dengue fever as follows joint and muscle aches O1 , headache with puke O2 , skin 
rashes O3 , a temperature O4 with three levels (normal (n), high (h), very high (vh)), and 
finally the decision D of infected or not. In contrast, the rows represents the patients under 

Table 4   The approximations and accuracy values induced from N
r
-neighborhood, r-topology and r-supra 

topology

X �
r
(X) �

r
(X) M

r
(X) O

r
(X) O

r
(X) T

r
(X) �

r
(X) �

r
(X) A

r
(X)

{w} ∅ {w} 0 ∅ {w} 0 {w} {w} 1
{x} {x} {x, y} 1

2
{x} E 1

3
{x} {x} 1

{y} ∅ {w, y} 0 ∅ {w, y} 0 {y} {y} 1
{w, x} {x} E 1

3
{x} E 1

3
{w, x} {w, x} 1

{w, y} {w} {w, y} 1

2
∅ {w, y} 0 {w, y} {w, y} 1

{x, y} {x, y} E 2

3
{x, y} E 2

3
{x, y} {x, y} 1

Table 5   Information system of 
dengue fever

E O1 O2 O3 O4 Dengue fever

w1 ✓ ✓ ✓ vh ✓

w2 ✓ ✗ ✗ h ✗
w3 ✓ ✗ ✗ h ✓

w4 ✗ ✗ ✗ vh ✗
w5 ✗ ✓ ✓ h ✗
w6 ✓ ✓ ✗ vh ✓

w7 ✓ ✓ ✗ n ✓

w8 ✓ ✓ ✗ vh ✓
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study E = {w1,w2,w3,w4,w5,w6,w7,w8} . The mark ‘ ✓ ’ (resp., ‘✗’) denotes the patient 
has a symptom (resp., the patient has no symptom).

Now, the descriptions of attributes {Oi ∶ i = 1, 2, 3, 4} will be transmitted into quan-
tity values showing the degree of similarities among the patients’ symptoms; see, Table 6. 
We calculate similarity degree function between the patients a, b, denoted by s(a, b), with 
respect to m conditions attributes by the next formula.

The next procedure is proposing a relation, it is given according to the requirements of 
the standpoint of system’s experts. In this example, we propose the following relation

Note that the given relation ≥ and number 0.5 can be replaced according to the conceptions 
of system’s experts. It is clear that the suggested relation � is reflexive and symmetric, so 
it produces two types of Nk-neighborhood systems. But � is not transitive. This means that 
the Pawlak approximations space fails to describe this system.

In Table 7, we compute the two types of Nk and N⟨k⟩ neighborhoods for each patient wi.
All supra-topologies produced from Table 7 are the discrete topologies because � is a 

reflexive relation. To confirm the performance of our approach, we consider two subsets 
U = {w1,w2,w3,w4,w7} and V = {w5,w6,w8} . Then, the approximations and accuracy 

(6)s(w, x) =

∑m

j=1
(Xk(w) = Ak(x))

m

(w, x) ∈ � ⟺ s(w, x) ≥ 0.5.

Table 6   Similarity degrees 
between patients’ symptoms

w1 w2 w3 w4 w5 w6 w7 w8

w1 1 0.25 0.25 0.25 0.5 0.75 0.5 0.75
w2 0.25 1 1 0.5 0.25 0.5 0.5 0.5
w3 0.25 1 1 0.5 0.25 0.5 0.5 0.5
w4 0.25 0.5 0.5 1 0.25 0.5 0.25 0.5
w5 0.5 0.25 0.25 0.25 1 0.25 0.25 0.25
w6 0.75 0.5 0.5 0.5 0.25 1 0.75 1
w7 0.5 0.5 0.5 0.25 0.25 0.75 1 0.75
w8 0.75 0.5 0.5 0.5 0.25 1 0.75 1

Table 7   N
k
 and N⟨k⟩ of each 

w
i
∈ W

N
k

N⟨k⟩

 w1 {w1,w6,w8} {w1}

w2 {w2,w3} {w2,w3}

w3 {w2,w3} {w2,w3}

w4 {w4} {w4}

w5 {w1,w5} {w1,w5}

w6 {w1,w6,w7,w8} {w6,w8}

w7 {w6,w7,w8} {w6,w7,w8}

w8 {w1,w6,w7,w8} {w6,w8}
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measures of these two sets are computed with respect to Nk-neighborhoods and k-supra 
topology.

According to Table 8, the approximations and accuracy measures induced from k-supra 
topology are better than those induced from Nk-neighborhoods and N⟨k⟩-neighborhoods.

6 � Discussions: strengths and limitations

This section demonstrates the main advantages of technique followed herein as well as 
shows its limitations.

–	 Strengths 

1.	 The approach of supra-topological structures that we rely on to initiate new models 
of rough set theory in this manuscript is more relaxed than topological structures. 
This gives us a large scope for describing many phenomena because we get rid of 
an intersection condition that is unsuitable to them.

2.	 This approach also enables us to deal with some practical problems under any arbi-
trary relation, where as Pawlak approach stipulates an equivalent relation to model 
the problems under study.

3.	 It can be compared the different types of approximations and accuracy values gen-
erated from our approach as it is proved in the obtained results; see Proposition 17 
and Corollary 7. But this characteristic does not hold for some previous approaches 
such as those produce approximations and accuracy values from near open subsets 
of topological spaces like �-open, pre-open, semi-open, b-open, and �-open sets.

4.	 The accuracy and roughness measures induced from the current approach are mono-
tonic; whereas, this property is lost in some preceding topological approaches like 
those investigated in Abd El-Monsef et al. (2014), Abo-Tabl (2013), Al-shami 
(2021b).

5.	 The current method preserves all Pawlak properties of lower approximation operator 
except for the distributive property of intersection; see Proposition 12. Also, it pre-
serves all Pawlak properties of upper approximation operator except for the distribu-
tive property of union; see Proposition 13. In contrast, some previous approaches 
such as Yao (1996, 1998) lose most of these properties.

6.	 The current approach is more suitable to handle the large samples because the best 
approximations and accuracy measures are obtained in cases of k = u, ⟨u⟩ which 
represent the largest Nk-neighbourhoods as we elaborated in Proposition 17 and 
Corollary 7. The importance of this matter is that we obtain a more accurate deci-
sion for the problems in which these cases are the appropriate frame to describe 
them; for instance, infectious diseases like COVID-19, flu, etc., in which the infec-
tion is proportional to the sample size. That is, the decision made in these two cases 
is more accurate. On the other hand, the performance of these cases via rough set 
models induced from topology is the weakest in terms of approximation operators 
and accuracy measures; hence, lack of confidence in the made decision.

7.	 The present method is more accurate than all foregoing methods with respect to 
the approximations and accuracy values obtained under a reflexive relation. More 
precisely, it represents an ideal case under reflexivity, so it is better than all previous 
methods defined by topological structures (Abd El-Monsef et al. 2014; Abo-Tabl 
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2013; Allam et al. 2006; Al-shami 2021b; Amer et al. 2017; Hosny 2018; Kondo 
and Dudek 2006; Kozae et al. 2007) and their generalizations such as minimal 
structures (Azzam et al. 2020; El-Sharkasy 2021) and bitopological spaces Salama 
(2020). Also, it is better than all previous methods which were directly defined by 
some neighborhood systems such as Abu-Donia (2008), Allam et al. (2005, 2006), 
Yao (1996), Yao (1998) and those methods introduced depending on neighborhood 
systems and ideal structures (Hosny 2020; Hosny et al. 2022, 2021; Kandil et al. 
2020; Nawar et al. 2022).

–	 limitations 

1.	 The present approach is generally incomparable with the topological approach 
introduced in Abd El-Monsef et al. (2014) when the relation is not reflexive. To 
illustrate this point, consider the neighborhoods system displayed in Example 1. It is 
clear that �r = {�,E, {y}, {z} , {y, z}, {x, y}, {x, y, z}, {w, x, y}} is an r-topology on E 
induced by Theorem 1, and Ur = {�,E, {w}, {w, x}, {w, x, y}} is a supra r-topology 
on E induced by Theorem 2. By calculations, we obtain Tr({w}) = 0 < Ar({w}) =

1

4
 

whereas Tr({y}) =
1

3
> Ar({y}) = 0.

2.	 The distributive property of intersection and union operators are respectively lost by 
the supra k-lower and supra k-upper approximations introduced herein, whereas this 
property holds under rough models induced from topological or infra-topological 
structures.

7 � Conclusion

Rough approximation operators and values of accuracy are the most significant character-
istic of rough set theory. In practice, they provide a conception of the data contained in a 
subset and determine to what extent this subset is complete. Improvement of these opera-
tors and increase their values of accuracy lead to an accurate prediction. There are two 
main techniques to do that, one is to define new types of neighborhood systems such as 
those introduced in Abu-Donia (2008), Allam et al. (2005, 2006), Al-shami (2021a, 2022), 
Al-shami and Ciucci (2022), Dai et al. (2018), Hosny (2018), and the second is obtained 
by studying rough-sets concepts using their counterparts via topological spaces and their 
related structures as those given in Abd El-Monsef et al. (2014), Abo-Tabl (2013), Amer 
et al. (2017), Azzam et al. (2020), El-Sharkasy (2021), Hosny (2020).

Through this manuscript, we have followed the second technique to generate rough sets 
models. We have applied the concept of “supra-topology” to create new models which are 
more relaxed than topological models because a finite intersection stipulation is removed. 
We have begun our work by forming supra-topology spaces from an approximation space. 
Then, we have established novel rough set models by these spaces and investigated their 
master properties. We have explained their main advantages to improve approximation 
operators and accuracy values better than all previous models existing in the literature 
under a reflexivity condition. As an application, we have discussed the followed technique 
to describe dengue fever disease. Finally, we have demonstrated the merits of our approach 
and its failures compared with the foregoing ones.

In the future, we are going to study the next themes. 
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	 (i)	 Discuss the rough models introduced herein with respect to the recent neighborhood 
systems such as Ck-neighborhoods Al-shami (2021a) and Sk-neighborhoods Al-shami 
and Ciucci (2022).

	 (ii)	 Form a new frame consisting of ideal structure and supra-topology to improve the 
approximation operators and accuracy values given herein similarly to the combina-
tion of classical topology and ideal (Hosny 2020; Kandil et al. 2020; Nawar et al. 
2022).

	 (iii)	 Investigate the manuscript thoughts with respect to some celebrated extensions of 
supra-open sets.

	 (iv)	 Reformulate the concepts studied herein in some frames such as soft rough set and 
fuzzy rough set.
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