
Vol.:(0123456789)

Artificial Intelligence Review (2023) 56:5317–5364
https://doi.org/10.1007/s10462-022-10302-5

1 3

RESEARCH

Video restoration based on deep learning: a comprehensive 
survey

Claudio Rota1 · Marco Buzzelli1 · Simone Bianco1 · Raimondo Schettini1

Published online: 27 October 2022 
© The Author(s) 2022

Abstract
Video restoration concerns the recovery of a clean video sequence starting from its 
degraded version. Different video restoration tasks exist, including denoising, deblur-
ring, super-resolution, and reduction of compression artifacts. In this paper, we provide a 
comprehensive review of the main features of existing video restoration methods based on 
deep learning. We focus our attention on the main architectural components, strategies for 
motion handling, and loss functions. We analyze the standard benchmark datasets and use 
them to summarize the performance of video restoration methods, both in terms of effec-
tiveness and efficiency. In conclusion, the main challenges and future research directions in 
video restoration using deep learning are highlighted.

Keywords Video restoration · Super-resolution · Denoising · Deblurring · Compression 
artifact reduction · Deep learning

1 Introduction

Video is widely employed in different fields, ranging from social media to self-driving 
cars. Although modern cameras can capture high-quality videos in many situations, there 
are some cases in which their quality is significantly reduced. For example, when videos 
are captured in poor light conditions or compressed to limit memory occupation, visible 
artifacts are introduced, causing problems to both user experience and many computer 
vision tasks.
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Video restoration aims to recover the clean video sequence from its degraded version. 
Different video restoration tasks can be defined: video denoising aims to remove noise, 
whose level can be high when videos are captured in particular imaging conditions; 
video deblurring aims to remove blur from videos that can be caused by out-of-focus 
subjects, moving objects, or camera shaking; video super-resolution aims to increase the 
spatial resolution of a given video to produce a high-resolution version of it from a low-
resolution one; video compression artifact reduction aims to reduce artifacts introduced 
by compression algorithms that are applied to limit video memory occupation.

Many video restoration methods have been proposed in these years. They can be 
mainly divided into two categories: traditional methods and deep learning-based 
methods. In this paper, we focus our attention on deep learning methods because they 
represent an emerging category among the scientific community. We consider all the 
aforementioned restoration tasks to provide a global picture of the advances in video 
restoration because, although some methods are proposed to address a specific task, 
their building blocks and main features are not task-specific. In fact, some architectures 
were shown to be effective in different restoration tasks.

In this paper, we provide a comprehensive review of recent advances in video resto-
ration using deep learning, analyzing the main features of some representative methods 
in an organized and structured manner, and highlighting their strengths and weaknesses. 
To the best of our knowledge, this is the first review of video restoration methods con-
sidering baseline schemes, architectural design strategies, convolution types, alignment 
techniques, and loss functions. Many surveys related to single-image restoration meth-
ods exist (Wang et al. 2020b; Tian et al. 2020a; Koh et al. 2021; Liu et al. 2020). Here 
we consider the video domain, which has been less investigated and presents several 
and different challenges. Recently, Liu et al. (2022) conducted a study on video super-
resolution based on deep learning, focusing on alignment strategies. In this work, we 
extend the analysis to other video restoration tasks and to other aspects of video restora-
tion methods.

Our main contributions can be summarized as follows:

• We provide a comprehensive review of existing video restoration methods based 
on deep learning, analyzing in a hierarchical manner their main features related 
to architectural choices, motion handling and loss functions, and discussing their 
advantages and limitations.

• We describe the characteristics of standard benchmark datasets, including their size 
in terms of number of sequences and frames, the resolution and the format of the 
contained video sequences, and classify them according to whether they contain 
synthetic or real distortions.

• We summarize the performance of the reviewed methods on the considered bench-
mark datasets, both in terms of effectiveness, reporting the corresponding informa-
tion in terms of the standard metrics Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM), and efficiency, reporting the declared computational 
complexity and/or run time speed on given input resolutions and hardware configu-
rations.

• We discuss the main challenges and future research directions in video restoration 
using deep learning, such as the need for real-time processing, improved strategies 
for frame alignment, multi-distortion restoration methods, better metrics and data-
sets, as well as the combination with traditional methods.
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2  Background

Video restoration is the task that aims to remove artifacts introduced in videos by internal 
factors (e.g., noise) or external factors (e.g., camera shaking), producing a video of better 
quality. There is a huge variety of methods addressing the problem of video restoration. In 
recent years, research has been focused on the use of deep learning techniques. Therefore, 
this article reviews only methods in this category.

It is possible to see video restoration as a multi-image restoration task, where each video 
frame is restored using an image restoration method. However, this solution does not allow 
to exploit the temporal correlation among frames and may obtain suboptimal performance 
when the artifacts are strong, producing temporally inconsistent results because of the 
introduction of new temporal artifacts, such as flickering.

The main difference between image and video restoration methods is that the latter have 
the capability of using the temporal redundancy present in videos. Temporal redundancy 
means that the same information is contained within multiple frames, and video restoration 
methods can take advantage of this redundant information to recover details that may be 
missing in one frame. Indeed, neighboring frames typically contain the same objects, and 
such objects may appear with different levels of detail because of artifacts altering their 
aspect.

For instance, Fig.  1 shows two consecutive frames representing the same scene, but 
some contents in Fig. 1b appear sharper than in Fig. 1a. In such a case, temporal redun-
dancy can be used to improve the quality of the results by aggregating sharper informa-
tion from other frames. Even if neighboring frames contain the same objects, they may be 
located in different positions due to motion. Hence, an appropriate mechanism able to align 
frames is usually implemented.

The general framework of video restoration methods is reported in Fig. 2.
Given the target frame, video restoration methods take advantage of adjacent frames to 

obtain additional information useful to restore it. Typically, N previous and N subsequent 
frames are used to gather information both from the past and the future. Three modules 
with different purposes can be identified: (i) the alignment module is used to align input 

(a) Target frame. The shop sign is
sharp while the person is blurry.

(b) Next frame. The shop sign is
blurry while the person is sharp.

Fig. 1  Example of two consecutive frames containing different levels of distortions. Since in the target 
frame the person is blurry (red rectangle), some information in the next frame (green rectangle) can be used 
to restore the target frame, improving the final outcome. Images reprocessed from the REDS dataset (Nah 
et al. 2019a)
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frames with the target one so that the obtained representations are spatially aligned; (ii) 
the fusion module aggregates the aligned representations and further refines them; (iii) the 
reconstruction module uses the fused representations to reduce artifacts and produce the 
restored frame. These modules can be implemented in different ways by different restora-
tion methods, as discussed in the following sections.

3  Video restoration methods

Video restoration using deep learning is an active research field, and many methods have 
been proposed during these years. Although the differences among these methods may be 
quite large, they share some characteristics related to architectural choices, motion han-
dling approaches and learning strategies. Therefore, instead of analyzing each method in 
isolation, we identify and review the main characteristics of video restoration methods and 
discuss their advantages and possible limitations. A graphical organization of the features 
analyzed in this paper is reported in Fig. 3. Table 1 provides a brief description of each 
feature analyzed, and summarizes its advantages and limitations, which are better clarified 
and motivated in the following.

3.1  Architectures

Defining the right neural architecture is one of the most critical problems in the field of 
video restoration, as it impacts the final performance both in terms of effectiveness and 
efficiency. In this section, we describe the two possible baseline schemes that can be used 

...

Alignment Feature fusion Reconstruction

...

Restored
frame

Degraded
frames

Fig. 2  General framework for video restoration methods. A sequence of adjacent frames is used as input. 
The alignment module aligns adjacent frames with the target one, the feature fusion module fuses the infor-
mation contained in the aligned features, and the reconstruction module reduces the artifacts to produce the 
restored frame

Video Restoration methods

Architecture [3.1]

Baseline scheme [3.1.1] Design strategy [3.1.2] Convolution type [3.1.3]

Motion handling [3.2]

Alignment technique [3.2.1] Alignment level [3.2.2]

Loss function [3.3]

Multi-frame

Recurrent

Residual learning

Dense connections

Attention mechanism

Multi-path learning

Coarse-to-fine processing

2D convolution

3D convolution

Deformable convolution

Efficient convolution

MEMC

Deformable alignment

Non-local search

Implicit alignment

Frame

Feature

Reconstruction loss

Adversarial loss

Perceptual loss

Temporal consistency loss

Detail-preserving loss

Fig. 3  Hierarchical organization of the features of video restoration methods reviewed in this paper. MEMC 
refers to motion estimation motion compensation
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by video restoration methods. Then we review the main design strategies and the convolu-
tion types used to model the spatial and temporal relationships among frames.

3.1.1  Baseline schemes

Video restoration methods take advantage of temporal redundancy to access the informa-
tion contained in the temporal neighborhood. To this end, two baseline schemes can be 
used, i.e., the multi-frame and the recurrent approaches, that are schematically represented 
in Fig. 4.

3.1.1.1 Multi‑frame The simplest strategy to give the network access to temporal informa-
tion is the multi-frame approach. It consists in using a temporal sliding-window of a fixed 
size centered on the target frame. The target frame and its neighboring frames are stacked 
and this represents the input to the restoration methods, as shown in Fig. 4a. The dimen-
sion of the temporal window is a hyperparameter to tune and is usually set between three 
(Caballero et al. 2017; Guan et al. 2019; Claus and Gemert 2019) and seven (Jo et al. 2018; 
Xue et  al. 2019; Deng et  al. 2020). A too small window may prevent the network from 
fully exploiting the potential information in the temporal neighborhood (Zhang et al. 2018a; 
Haris et  al. 2019), whereas a too large window increases the computational complexity 
(Claus and Gemert 2019) and may include frames containing irrelevant information due to 
large object motion (Zhang et al. 2018a). Methods based on the multi-frame scheme usu-
ally process a frame multiple times, depending on the window size, and this might result in 
a waste of computational resources. Although these limitations can be addressed by using 
different strategies, the multi-frame scheme is widely employed also by recent methods 
(Paliwal et al. 2021; Chen et al. 2021; Vaksman et al. 2021), as it is a simple yet effective 
solution to exploit temporal context.

3.1.1.2 Recurrent An alternative solution to capture information from the temporal con-
text is the use of Recurrent Neural Networks (RNNs). Following this approach, illustrated 
in Fig.  4b, each frame is progressively passed through the network that extracts its fea-
tures, aggregates them into a hidden state to be used for future frames, and uses relevant 
information from the previously processed frames to restore it. Methods using the recurrent 
scheme are usually faster than the ones based on multi-frame because each frame is only 

CNNI t-
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I t-
1 I t I t+
1

I t+
2
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t

(a) Multi-frame scheme I t+
1I tI t-
1

RNN RNN RNN
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(b) Recurrent scheme

Fig. 4  Schematic representation of the main baseline schemes
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processed once, and can potentially achieve better performance because they can exploit 
a larger temporal window. However, they require suitable mechanisms to aggregate the 
features extracted from multiple frames. To this end, different strategies have been pro-
posed (Hyun Kim et al. 2017; Nah et al. 2019b; Zhong et al. 2020; Zhou et al. 2019; Isobe 
et al. 2020). Hyun Kim et al. (2017) developed a strategy to blend feature maps of previous 
frames and the ones of the current frame by using a convolutional layer. Nah et al. (2019b) 
realized an iterative procedure using the outputs of RNN cells as inputs to the same cell 
multiple times. Isobe et al. (2020), inspired by Dynamic Filter Networks (Jia et al. 2016), 
implemented a module to adapt the hidden state to the appearance of the current frame by 
using correlation to highlighting only the most similar features.

An important aspect of recurrent methods is how the information is propagated through 
the framework. Usually, it is propagated from the initial frame to the last one (Nah et al. 
2019b; Zhong et al. 2020; Zhou et al. 2019; Hyun Kim et al. 2017; Zhao et al. 2021). Such 
unidirectional propagation may result to be suboptimal because the amount of information 
received when processing different frames is different, as the first frames have access to 
less information than the last ones. Some methods (Huang et al. 2017b; Chan et al. 2021a, 
2022; Zhu et  al. 2022) use bidirectional information propagation, where information is 
propagated both forward and backward so that each frame can also benefit from the infor-
mation coming from subsequent frames. Chan et al. (2021a) conducted a study demonstrat-
ing that bidirectional propagation improves the restoration performance.

3.1.2  Design strategies

When designing a deep neural network, there are several issues that one has to deal with. 
For instance, deep architectures suffer from the vanishing gradient problem, which can 
degrade the performance by preventing layers close to the input to be properly optimized. 
Another issue is feature modulation, since not all the features extracted by neural networks 
carry information that are actually useful for the considered task. To tackle these problems, 
several strategies are proposed and used by researchers to build their networks by combin-
ing them in different ways. Figure 5 reports the most common architectural design strate-
gies, which are analyzed in detail in the following.

3.1.2.1 Residual learning He et al. (2016) proposed ResNet and demonstrated that residual 
learning can facilitate the training process and improve accuracy for image classification. 
Then, it has been widely adopted for other computer vision tasks, including video restora-
tion. There are two possible implementations of residual learning to design a CNN: global 
and local residual learning.

Global residual learning is used to model situations where the output is highly corre-
lated with the input, such that it is easier to learn a direct transformation of the input rather 
than a deep one. It is usually realized by adding a skip connection from the input to the out-
put, so that the network only needs to learn, for example, the difference between input and 
output (Su et al. 2017; Guan et al. 2019; Zhou et al. 2019; Wang et al. 2019; Deng et al. 
2020), as shown in Fig. 5a.

Local residual learning is primarily used to mitigate the vanishing gradient problem, 
and it consists in using blocks composed of groups of convolutions with skip connections, 
as in ResNet or variants of it (Zhang et al. 2018a; Nah et al. 2019b). Some works (Nah 
et  al. 2017; Lim et  al. 2017) empirically experimented that slight modifications of the 
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original ResNet block were beneficial for the restoration performance. Figure 5b illustrates 
the design of a network adopting local residual blocks.

3.1.2.2 Dense connections Dense connections have quickly spread since the introduction 
of DenseNet (Huang et al. 2017a). A dense block is characterized by several skip connec-
tions that forward the output of each layer directly to the input of the subsequent layers, so 
that each layer receives collective knowledge from all the previous layers. Figure 5c shows 
the architecture design of a network with dense connections.

Similar to residual learning, the use of dense connections is beneficial for the vanishing 
gradient problem. In addition, it allows feature reuse making it possible to learn richer pat-
terns, it allows to increase the network receptive field, and it allows to use networks with 
fewer parameters because dense blocks have a relatively small growth rate, i.e., the addi-
tional number of channels for each layer. Some methods (Guan et al. 2019; Jo et al. 2018) 
adopted dense connections observing an improvement in the overall restoration results. 
Zhong et al. (2020) integrated dense blocks within RNN cells mainly to reduce the compu-
tational complexity of their model.

3.1.2.3 Attention mechanism Attention mimics cognitive attention, defined as the abil-
ity to choose and concentrate mainly on relevant stimuli. In computer vision, the attention 
mechanism can be considered as a dynamic selection process that is realized by weighting 
features according to their importance in producing the output. Figure 5d shows a general 
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Fig. 5  Schematic representation of the common architecture design strategies
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implementation of the attention mechanism, where a sigmoid activation is used to produce 
weights between 0 and 1 and element-wise multiplication is used to modulate the input by 
suppressing irrelevant features. Typical attention types are: (i) channel attention, used to 
select the most important channels; (ii) spatial attention, used to select the most important 
regions; (iii) temporal attention, used to select the most important frames (Guo et al. 2022).

Wang et al. (2019) used temporal attention to identify the frames most similar to the tar-
get one, and spatial attention to mitigate errors arising from wrong frame alignment. Mehta 
et  al. (2021) inserted the channel attention module proposed in SqueezeNet (Hu et  al. 
2018) into their network to better model dependencies across channels. Similarly, Zhong 
et al. (2020) adopted the same module but with slight modifications to improve the fusion 
of features from past and future frames. Zhao et  al. (2021) designed a spatial attention 
module using deformable convolutions (Zhu et al. 2019) to highlight artifact-rich areas in 
each frame, such as boundary areas of moving objects, so that their model can focus more 
on removing artifacts in such areas. Paliwal et  al. (2021) combined channel and spatial 
attention to identify errors related to optical flow computation, such as occlusions, by using 
SqueezeNet blocks and Convolution Block Attention Modules (CBAM) (Woo et al. 2018).

Designing architectures with attention modules can increase the overall effectiveness 
because they allow to distinguish relevant features from irrelevant ones and to weight them 
accordingly. The main disadvantage is related to the efficiency, since including attention 
leads to an increase in the number of parameters and operations.

3.1.2.4 Multi‑path learning Multi-path learning refers to processing features using multi-
ple and separate paths that finally merge the complementary information. Multi-path learn-
ing can be either global or local.

In the global version, multiple parallel paths focus on different aspects of the input, as 
shown in Fig. 5e. Usually, two separate paths are used by video restoration methods (Jo 
et al. 2018; Chen et al. 2021; Isobe et al. 2020; Zhou et al. 2019). Jo et al. (2018) used 
one path to learn upscaling filters (Jia et al. 2016) and the other to learn high-frequency 
components, with the two paths sharing most of the weights. Isobe et al. (2020) separated 
low-frequency and high-frequency components, i.e., structures and details in the spatial 
domain, and processed them using separate branches. Chen et al. (2021) proposed a two-
branch network with independent weights, where one branch is used to extract spatial fea-
tures from individual frames and the other one to extract temporal features from multiple 
frames. These features are finally merged using a stack of convolutions.

Local multi-path learning is inspired by Inception modules (Szegedy et al. 2015), which 
are composed of multiple paths containing convolutions with different kernel sizes to ana-
lyze the input using multiple receptive fields. Mehta et al. (2021) included local multi-path 
learning in their network using layers composed of three convolutions with filters of size 
3 × 3 , 5 × 5 and 7 × 7 , whose results are finally summed up. Zhao et al. (2021) employed 
two local branches with different receptive fields to increase the accuracy of offset predic-
tion for deformable convolutions (Zhu et al. 2019).

While global multi-path learning can provide better modeling capabilities, as there are 
multiple paths focusing on improving different aspects of the input, local multi-path learn-
ing allows to extract multi-scale features by looking at the input with multiple receptive 
fields.

3.1.2.5 Coarse‑to‑fine processing In visual recognition, coarse-to-fine processing refers to 
applying a method to a downscaled version of the image, i.e., coarse, and then gradually 
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increasing its resolution and propagating the results to the fine version. In a coarse-to-fine 
architecture, as illustrated in Fig. 5f, the input is downscaled multiple times and processed 
by the network starting from the coarsest level (i.e., the lowest resolution), and the output 
is first upscaled and then propagated to the upper level until the finest level (i.e., original 
resolution) is reached. The main idea behind this approach is that the network can process 
the main structures at the coarsest level, while focusing on the details at the finest level. 
Propagating the outputs to upper levels allows the network to reuse features from lower lev-
els, avoiding repeated computations and focusing on higher-level abstractions. All the levels 
usually share the same structure.

The coarse-to-fine design is typically adopted in the context of optical flow estimation, 
where it is known to be an effective solution for modeling large motion between objects 
and improving the estimation accuracy (Amiaz et al. 2007). Some methods for video resto-
ration (Caballero et al. 2017; Guan et al. 2019; Yang et al. 2018) developed a coarse-to-fine 
module for motion estimation and compensation, which starts by computing optical flow at 
the lowest resolution and then propagates the estimated flow to upper levels for refinement, 
whereas others (Xue et al. 2019; Chan et al. 2021a, 2022) integrated an existing coarse-to-
fine network (Ranjan and Black 2017) inside their framework to increase flow estimation 
accuracy.

A limitation of this approach is that coarse-to-fine networks may struggle in detecting 
small fast moving objects in coarse levels because they are removed by downscaling opera-
tions, and thus they are not suitable to handle large motion in this case (Savian et al. 2020).

3.1.3  Convolution types

In video restoration, both spatial and temporal correlations among neighboring frames 
require to be properly modeled to produce detail-rich and temporally-coherent results. To 
this end, different convolution types can be used.

3.1.3.1 2D convolutions 2D convolutions are the most commonly used type, which con-
sists in centering a 2D filter on each spatial element of the features and then summing up 
the element-wise product between element neighbors and filter weights. The 2D convolu-
tion transforms a 2D matrix of features into a different 2D matrix of features that is passed 
as input to the next layer. Video restoration methods use 2D convolutions to process and 
fuse features coming from multiple input frames. The first convolutional layer typically 
fuses all the frames, and the next layers have only a limited effect in modeling additional 
temporal information because, after the application of the first layer, the temporal dimension 
is squeezed and later convolutions only operate on the spatial dimension (Fan et al. 2019). 
Therefore, 2D convolutions are effective in abstracting spatial dependencies, but they are not 
fully adequate in capturing temporal ones.

3.1.3.2 3D convolutions A solution to take into account the temporal correlation among 
frames is the use of 3D convolutions. The main difference is that filter depth and input depth 
in 3D convolutions are not constrained to be equal as in 2D convolutions. Thus, a 3D filter 
can move in all the three dimensions, i.e., height, width, and depth. At each position, the 
element-wise product and addition produce one number, hence the output is a 3D data struc-
ture. 3D convolutions can capture spatial relationships in the input data, as 2D convolutions 
do, but they can model temporal relationships as well (Tran et al. 2015). While Zhang et al. 
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(2018a) employed only 3D convolutions, other methods (Jo et al. 2018; Chen et al. 2021; 
Vaksman et al. 2021) used 3D convolutions together with 2D ones to better handle spatial 
and temporal information. The main limitation of 3D convolutions is related to efficiency, 
since applying them increases the number of operations to perform.

3.1.3.3 Deformable convolutions Deformable convolutions were introduced by Dai et al. 
(2017) to address the limited capability of CNNs in modeling large and unknown trans-
formations, originated by the rigid sampling grid of standard convolutions. In deformable 
convolutions, 2D offsets are added to the regular grid sampling locations, deforming the 
constant receptive field of the standard convolution operation. For each location, the applied 
deformation depends on the input features: the offsets are computed from the input feature 
map using additional convolutional layers, whose weights are learned during training. Zhu 
et al. (2019) proposed an enhanced version of deformable convolutions, where modulation 
scalars, i.e., position-specific weights used to modulate the weights of each convolution 
operation, are learned along with 2D offsets. In video restoration, deformable convolutions 
are typically used for frame alignment (Wang et al. 2019; Tian et al. 2020b; Deng et al. 
2020; Yue et al. 2020; Chan et al. 2022; Zhao et al. 2021). Using deformable convolutions, 
a network can adapt its receptive field according to object scales, being so able to handle the 
large pixel displacement caused by motion. However, additional parameters representing the 
2D offsets and modulation scalars must be learned during training.

3.1.3.4 Efficient convolutions Model efficiency is crucial in real-time applications. A pos-
sible solution to reduce model complexity is to replace standard convolutions with more 
efficient learnable layers, such as separable and depth-wise convolutions (Chollet 2017; 
Howard et al. 2017; Mehta et al. 2021; Xiao et al. 2021; Vaksman et al. 2021).

Separable convolutions exploit the separability of the standard convolution operation 
along the spatial dimensions, so that a two-dimensional kernel can be separated into two 
one-dimensional kernels, reducing the number of parameters. However, since not all ker-
nels can be separated, the use of separable convolutions may degrade the performance.

In depth-wise convolutions, each input channel is convolved with each kernel channel, 
but instead of summing them up as in standard convolutions, the output channels are sim-
ply stacked together. These kinds of convolutions were introduced to increase efficiency 
because the total number of operations to perform is lower than the one in regular convolu-
tions, but they also may lead to a decrease in performance (Bao et al. 2020).

3.2  Motion handling

Motion is an intrinsic characteristic of video data. Video restoration methods must deal 
with it if they want to be able to exploit spatial information of adjacent frames. In this sec-
tion, we first analyze the main alignment techniques used by video restoration methods to 
align neighboring frames with the target one, then we discuss why some methods perform 
alignment at feature level instead of at frame level.

3.2.1  Alignment techniques

Alignment techniques are used by video restoration methods to spatially align adjacent 
frames with the target one, so that information referring to the same objects in multiple 
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frames will be located at the same spatial positions, and it will be aggregated and accessed 
more easily. Many solutions to align frames were proposed and can be grouped in a few 
categories, as reported in the following. The decision of using an alignment technique 
instead of another one is important for a video restoration method since it can have a meas-
urable impact on the final performance, as some studies demonstrated (Chan et al. 2021a, 
b; Zhou et al. 2022).

3.2.1.1 Motion Estimation Motion Compensation (MEMC) The most common technique 
for handling motion in video restoration is the Motion Estimation Motion Compensation 
(MEMC) approach (Xue et al. 2019). This solution aligns frames in two steps: first, it per-
forms motion estimation, which aims to estimate per-pixel motion between a source and a 
target frame, and then applies motion compensation, which aims to warp the source frame 
to the target one according to the estimated motion. Motion estimation is typically done by 
optical flow computation (Beauchemin and Barron 1995), which is the task that computes 
per-pixel motion vectors between two frames. Given the source frame Is and the target frame 
It , the flow map Fs→t describing how pixels moved can be defined as:

where ME is the motion estimation operation. Motion compensation shifts the pixel posi-
tions in the source frame Is according to the per-pixel vectors contained in the flow map 
Fs→t . The warped frame Ît is obtained as:

where MC is the warping operation that can be implemented by using bilinear interpolation 
or the sampling layer of a Spatial Transformer Network (STN) (Jaderberg et al. 2015).

Optical flow computation was originally defined as a handcrafted optimization problem 
(Weinzaepfel et al. 2013; Revaud et al. 2015; Hu et al. 2017), but the growing spread of 
deep learning has led to the development of CNN-based models that can produce more 
accurate results than traditional methods (Dosovitskiy et al. 2015; Ranjan and Black 2017; 
Sun et al. 2018; Teed and Deng 2020). Some video restoration methods (Xue et al. 2019; 
Pan et al. 2020; Chan et al. 2021a; Son et al. 2021; Paliwal et al. 2021) directly integrated 
an existing CNN-based method for optical flow estimation within their architectures. Xue 
et al. (2019) adopted SpyNet (Ranjan and Black 2017) as flow estimation network and STN 
(Jaderberg et al. 2015) to perform frame warping, while Chan et al. (2021a) used the same 
model but opted for plain bilinear interpolation. In contrast, Pan et  al. (2020) employed 
PWC-Net (Sun et  al. 2018), Paliwal et  al. (2021) used RAFT (Teed and Deng 2020), 
whereas Son et al. (2021) adopted LiteFlowNet (Hui et al. 2018) due to its efficiency. Other 
methods (Caballero et al. 2017; Yang et al. 2018; Guan et al. 2019) developed their own 
modules to perform frame alignment using MEMC. Caballero et al. (2017) built a Spatio-
Temporal Motion Compensation (STMC) module, adopting a coarse-to-fine processing 
approach that propagates coarser flows to upper levels for progressive refinements. Due to 
excessive downscaling, the accuracy of the estimated motion vectors was reduced. There-
fore, Yang et al. (2018) and Guan et al. (2019) later improved upon STMC by introducing 
an additional flow estimation layer without any downscaling operation.

Existing optical flow estimation methods do not expect to receive degraded frames as 
input, hence a retraining procedure is necessary for the adaptation to the considered task, 
typically using pretrained models as starting point. Accurate ground truth for optical flow 
estimation cannot be obtained, unless a dataset is synthetically generated. A possibility is 

(1)Fs→t = ME(Is, It)

(2)Ît = MC(Is,Fs→t)
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to estimate flow maps using pretrained models on ground truth frames and use the obtained 
maps as ground truth to adapt flow estimation methods to degraded frames. However, the 
domain gap between datasets for optical flow methods and video restoration methods may 
lead to inaccurate flow estimations (Son et  al. 2021). Therefore, a common solution is 
represented by self-supervised training, where the model is used to compute optical flow 
between two frames, warping operation is performed to align them according to the esti-
mated flow, and a warping loss is employed to guide the learning procedure (Caballero 
et al. 2017; Xue et al. 2019; Pan et al. 2020; Son et al. 2021; Paliwal et al. 2021).

The MEMC strategy for motion handling is widely used by video restoration meth-
ods and has multiple advantages and disadvantages. Accurate flow map prediction ena-
bles accurate alignment, making the process of information extraction and fusion easier 
because information referring to the same objects in multiple frames are located in the 
same spatial locations. In addition, self-supervised learning represents an effective train-
ing strategy to adapt models to compute optical flow even on frames affected by artifacts 
when ground truth flow maps are not available. However, when videos contain luminance 
changes, fast motion, or occluded objects, the performance of methods based on MEMC 
alignment may considerably degrade (Savian et al. 2020). Errors in flow map prediction 
imply errors in frame alignment, introducing new artifacts that damage the entire resto-
ration process (Tassano et  al. 2020). Figure  6 shows an example of artifacts introduced 
by wrong motion estimation. To address this problem, different solutions were proposed 
(Tassano et al. 2019; Paliwal et al. 2021; Son et al. 2021). Tassano et al. (2019) suggested 
to preprocess input frames individually using a CNN with the aim of removing part of the 
artifacts before flow estimation, because optical flow is highly sensitive to noise. In con-
trast, Paliwal et  al. (2021) postprocessed warped frames using residual modules (Zamir 
et al. 2020) with attention mechanisms (Hu et al. 2018; Woo et al. 2018) to discard artifacts 
introduced by MEMC errors. Son et al. (2021) provided multiple alignment candidates so 

(a) Source frameFs (b) Target frameFt

(c) Optical flowFs→t (d) Warped frame F̂t

Fig. 6  Example of motion estimation and compensation between two frames. In the warped frame F̂
t
 , 

motion estimation and compensation artifacts are visible (red squares). Black pixels on the right-hand side 
of F̂

t
 are due to occlusions. Images reprocessed from the DVD dataset (Su et al. 2017)
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that the network can leverage on multiple alignment solutions and find the most appropri-
ate one. Another drawback in using MEMC for frame alignment is related to the compu-
tational complexity, since the estimation of per-pixel flow maps and the warping operation 
on high-resolution frames considerably impact the overall complexity (Bovik 2009).

3.2.1.2 Deformable alignment Deformable convolutions in video restoration were intro-
duced as an alternative strategy to align frames without the need to explicitly compute the 
optical flow between them (Tian et al. 2020b). Depending on the input, the network can 
decide the best transformations to apply to obtain aligned features, from which it will extract 
the information needed to restore the target frame.

Different implementations of deformable alignment exist (Tian et al. 2020b; Wang et al. 
2019; Chan et al. 2022; Deng et al. 2020). The general framework is illustrated in Fig. 7. 
Given the features extracted from the target frame and the ones extracted from an adjacent 
frame, they are initially fused (e.g., by concatenation) and then processed by a CNN to esti-
mate the deformable offsets that will be used to deform the sampling grid of the standard 
convolution used to process, and consequenty align, the features of the adjacent frame. As 
a result, since deformable convolutions can capture motion cues, the produced features will 
be spatially aligned with the reference ones.

Tian et al. (2020b) were the first to propose deformable alignment in video restora-
tion, adopting an alternating sequence of regular convolutions for deformable offset esti-
mation and deformable convolutions to perform alignment. Inspired by this work, Wang 
et al. (2019) developed a deformable alignment module implementing a coarse-to-fine 
processing approach that propagates the learned offsets from lower levels to upper ones, 
progressively increasing offset accuracy. A similar solution was later used by Yue et al. 
(2020). These solutions perform deformable alignment in a pairwise manner, i.e., com-
puting the deformable offsets by taking into account the target frame and only one of 
its adjacent frames at a time, thus failing to fully exploit temporal correlations among 
multiple frames. To address this limitation, some methods (Deng et al. 2020; Zhao et al. 

CNN
Reference
features

Adjacent
features

Offsets

Aligned
Features

Deformable
convolution

Fig. 7  Deformable alignment. Reference features and features from adjacent frames are processed together 
to estimate position-specific spatial offsets to deform the rigid sampling grid of standard convolutions
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2021; Xu et  al. 2021) adopted an encoder-decoder architecture to predict deformable 
offsets by jointly processing the entire stack of frames, better exploiting temporal cor-
relations among frames and also increasing offset prediction accuracy due to the large 
receptive field of encoder-decoder architectures.

Using deformable alignment instead of MEMC for handling motion brings multiple 
advantages. While in optical flow only one spatial offset for each spatial location is esti-
mated, deformable convolutions learn multiple and complementary offsets (e.g., nine in 
the case of a 3 × 3 kernel) that can mitigate the problem of occlusions and reduce errors 
caused by large motion (Chan et al. 2021b). Deformable alignment is also less sensitive 
to varying illumination and motion conditions than the MEMC approach. Moreover, the 
module for deformable alignment can be trained together with the restoration frame-
work in an end-to-end manner, without requiring any adaptation as in MEMC. The main 
issue in using deformable alignment is related to the training process, which may suffer 
from instability due to offset overflow, degrading the overall performance of the models 
(Chan et  al. 2021b). Chan et  al. (2022) tackled this issue by designing a flow-guided 
deformable alignment scheme, where optical flow is used to guide the deformable align-
ment. More precisely, they employed optical flow to warp features from the previous 
frame to the target ones and used them to predict offsets for deformable convolutions.

3.2.1.3 Non‑local search In video restoration, non-local search represents an alignment 
strategy mainly introduced to obtain a global receptive field, thus overcoming the limita-
tion of convolution operations that perform computations in local areas. The main idea 
behind this approach is to allow even distant pixels to contribute to the alignment process 
regardless of motion magnitude. The goal of non-local search is to find pixels within the 
adjacent frame that are most similar to the ones in the target frame, and use them to per-
form alignment. Computing pixel similarity between two frames allows to detect region 
patches belonging to the same objects, whose similarity is expected to be high. Figure 8 
shows an example of similar patches in three adjacent frames. Using non-local search, 
video restoration methods can compute pixel similarity to find matching region patches 
and combine them to perform frame alignment.

Several methods using non-local search to handle object motion have been proposed 
(Yi et al. 2019; Xu et al. 2019; Li et al. 2020a; Davy et al. 2019; Vaksman et al. 2021). 
While some methods (Yi et al. 2019; Xu et al. 2019; Li et al. 2020a) integrate non-local 
search within their network as a learnable component, others (Davy et al. 2019; Vaks-
man et al. 2021) employ it to generate aligned frames to use as inputs to their CNNs by 
adopting a handcrafted procedure. Inspired by non-local networks (Wang et al. 2018), 

Fig. 8  Example of similar patches in consecutive frames. Using non-local search, video restoration methods 
can localize matching patches in multiple frames and use them to produce aligned features. Images repro-
cessed from the BSD dataset (Zhong et al. 2020)
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Yi et  al. (2019) computed pixel correlation between each pixel of the target frame 
and all the pixels of adjacent frames, then they generated output pixels by performing 
a weighted sum of pixels of adjacent frames using correlations as weights. Xu et  al. 
(2019) included non-local search within ConvLSTM modules (Xingjian et  al. 2015). 
They computed the similarity between the pixels of the current frame and all the pixels 
of the previous frame to generate a similarity matrix, which is later used to update the 
ConvLSTM outputs. Instead of working at pixel level, Li et al. (2020a) locally selected 
the top-K patches in the adjacent frames that are most correlated with a given patch in 
the reference frame. They are sorted according to their similarity, fused using convolu-
tional layers, and used to generate aligned feature maps. Davy et al. (2019) proposed a 
non-local search to produce aligned feature maps to use as input to their CNN. For each 
pixel in the target frame, they centered a patch on it and searched for similar patches in 
the temporal neighborhood. Then, they sorted these patches and created a vector con-
taining the central pixels of each patch. Since the use of only central pixels does not 
allow to properly consider the spatial dependencies among pixels, thereby limiting the 
alignment effectiveness, Vaksman et  al. (2021) crafted different versions of the target 
frame by directly aggregating patches from adjacent frames. After finding all the pos-
sible overlapping patches of the target frame, they searched for the most similar patches 
in the adjacent frames for each of them. Then, they created different versions of the tar-
get frame by stitching non-overlapping patches together, starting from the most similar 
ones.

Methods adopting non-local search are less sensitive to motion magnitude, since 
arbitrarily distant pixels can be involved in the alignment process. Their main drawback 
is related to the increase in computational complexity caused by the computation of 
pixel similarity. Some methods (Davy et al. 2019; Vaksman et al. 2021; Li et al. 2020a) 
addressed this problem by limiting the search area, which becomes a hyperparameter to 
tune. Instead, Xu et al. (2019) proposed to reduce the frame spatial dimension using pool-
ing operations before computing pixel similarity, at the cost of reduced accuracy.

3.2.1.4 Implicit alignment Methods adopting implicit alignment do not include any spe-
cific module for frame alignment, but they rely on the capability of the networks to learn 
proper transformations that allow them to make the most of the information shared across 
frames. The key element in implicit alignment is the network layer receptive field that has 
to be large enough to cover possible pixel displacement to accurately align frames. Con-
volutions have a receptive field restricted to the kernel size, which is typically constrained 
between 3 × 3 and 7 × 7 . A common solution to enlarge the receptive field is to stack con-
volutions and to use pooling operations. Thus, video restoration methods usually implement 
encoder-decoder architectures, in which the encoder typically contains pooling operations 
(Su et al. 2017; Zhou et al. 2019; Wang et al. 2020a; Tassano et al. 2020; Chen et al. 2021), 
or adopt residual blocks, which contain stacked convolutions (Zhang et al. 2018a; Nah et al. 
2019b; Isobe et al. 2020).

Su et  al. (2017) demonstrated that state-of-the-art performance could be obtained by 
using implicit alignment, developing an encoder-decoder architecture to extract and fuse 
information from multiple frames. Later, Nah et  al. (2019b) proposed to combine an 
encoder-decoder architecture with residual blocks at the bottleneck, and to insert it within 
RNN cells for both frame restoration and hidden state update. Zhong et al. (2020) used a 
similar approach, replacing residual blocks with dense blocks and adding attention mod-
ules (Hu et  al. 2018) for feature reweighting. Tassano et  al. (2020) proposed to cascade 
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two encoder-decoders, developing a two-stage architecture to avoid flow-related artifacts. 
A similar approach was later adopted by Wang et al. (2020a), who used the same two-stage 
architecture but preceded by an encoder-decoder to restore single frames before the aggre-
gation. Some methods (Jo et al. 2018; Zhang et al. 2018a; Chen et al. 2021) also included 
3D convolutions for better motion handling, since these are more suitable to model video 
data because they can also move along the temporal dimension. Jo et al. (2018) combined 
2D and 3D convolutions within dense blocks, developing a dense residual network. Zhang 
et al. (2018a) adopted only 3D convolutions, integrating them in residual blocks and cas-
cading multiple modules. In contrast, Chen et al. (2021) used an encoder-decoder architec-
ture with 3D convolutions to generate aligned features, while using a parallel network with 
2D convolutions to obtain only spatial information from single frames. Zhou et al. (2019) 
proposed to enrich an encoder-decoder with a Filter Adaptive Convolutional (FAC) module 
that assigns position-specific weights to regular convolutions, as objects in the scene do not 
have the same motion and should be treated accordingly.

Using implicit alignment allows to prevent artifacts related to wrong motion estima-
tion, typically introduced by methods using the MEMC technique. In addition, it avoids the 
need of designing ad-hoc modules for frame alignment because the burden of finding suit-
able frame transformations is entirely left to the network. However, the lack of dedicated 
mechanisms for alignment might make it difficult to properly align features, especially in 
presence of large motion, because of the fixed and limited receptive field of convolutions, 
which could not have access to a context large enough to properly combine the information 
coming from the input frames (Chan et al. 2021a). Enlarging the receptive field by stacking 
convolutions quickly increases the computational complexity, while using pooling opera-
tions may remove important details.

3.2.2  Alignment levels

Different alignment techniques can be adopted to align adjacent frames with the target one. 
These strategies can be applied either directly to input frames or to features extracted from 
them.

3.2.2.1 Frame level Alignment at frame level is typically adopted by methods using the 
MEMC alignment strategy. Indeed, several methods perform alignment by computing 
optical flow and warping frames before the actual restoration process (Caballero et al. 
2017; Xue et al. 2019; Yang et al. 2018; Guan et al. 2019; Pan et al. 2020; Paliwal et al. 
2021). The warping operation is directly applied to adjacent frames to align them with 
the target one for later processing. However, spatial warping introduces information loss 
on frame details because of the interpolation operation required to handle fractional flow 
offsets (Chan et al. 2021b). Chan et al. (2021a) experimented that performing alignment 
at frame level using optical flow may also introduce blurriness and other types of arti-
facts. Some methods based on deformable alignment strategy (Deng et al. 2020; Zhao 
et al. 2021; Xu et al. 2021) apply deformable convolutions to input frames to produce 
aligned feature maps later used as inputs to their restoration networks. Similarly, some 
methods (Davy et al. 2019; Vaksman et al. 2021) applied non-local search to input frames 
to create multiple frame versions to be fed to their restoration networks. The main advan-
tage of performing alignment at frame level is the possibility of using self-supervised 
training, where alignment can be directly guided via loss functions imposed between 
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aligned and reference frames. Moreover, with this approach the interpretability of the 
alignment phase is increased, allowing a straightforward inspection of the results.

3.2.2.2 Feature level Instead of directly trying to align frames, an alternative solution 
is to align features extracted from them. All the methods adopting an implicit alignment 
strategy perform alignment at feature level by progressively applying feature transfor-
mations. Chan et  al. (2021a,  2021b) conducted a study on the impact of moving the 
alignment phase from frame to feature level, showing that the latter improved the per-
formance. This outcome motivated the development of some video restoration methods 
(Chan et al. 2021a, 2022), which adopt a MEMC alignment strategy with optical flow 
estimated and applied to features rather than to frames. Similarly, some methods adopt-
ing deformable alignment (Tian et al. 2020b; Wang et al. 2019; Yue et al. 2020) apply 
deformable convolutions to features maps instead of frames. In this case, an encoder is 
used to extract features from frames before alignment, and deformable convolutions are 
applied to them. The key advantage of feature alignment is that it leverages the capability 
of neural networks to learn the most suitable internal representations of input frames to 
make the alignment process easier and more accurate. Besides, alignment at feature level 
makes models more robust to noise (Sun et al. 2018).

3.3  Loss functions

Loss functions are used in training to quantify the error made by the network in the for-
ward pass. Backpropagation is then used to adjust the network weights so that in the fol-
lowing iteration the network makes its outputs closer to the ground truth. In this section, 
we discuss the main loss functions used to train deep video restoration methods.

3.3.1  Reconstruction loss

The most used loss function is the reconstruction loss, which measures the pixel-wise 
difference between restored and ground truth frames. Common reconstruction loss func-
tions are L2 loss (Mean Squared Error) and L1 loss (Mean Absolute Error). L2 loss is 
known to have the problem of producing oversmooth results because of the low weight 
given to small errors. To alleviate this problem, several methods adopt loss functions 
based on L1 loss. Variants of simple L1 and L2 loss are Huber loss (Huber 1992), used 
to make the model less sensitive to outliers, and Charbonnier loss (Charbonnier et  al. 
1994), which adds a small term to be sure the loss will never be zero. The main draw-
back of using a reconstruction loss is that frames are compared without considering any 
kind of texture-awareness, which may lead to perceptually unsatisfying results. There-
fore, using a reconstruction loss in combination with other types of loss functions is 
often preferred (Zhang et al. 2018a; Zhou et al. 2019; Li et al. 2020a; Chen et al. 2021; 
Paliwal et al. 2021).

3.3.2  Adversarial loss

In video restoration applying adversarial learning (Goodfellow et al. 2014) means using 
the restoration network as a generator and then adding a discriminator to judge whether 
the input frame is real or not. In this way, the generator can be improved by making 
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frames more and more similar to real ones, so that the discriminator will not be able to 
recognize them anymore. Since the task of the generator is more complex, the training 
typically starts from the generator, and the discriminator is added after a number of iter-
ations (Lucas et al. 2019). The adversarial loss is useful to force the generator to remove 
some artifacts that may be still present in the restored frames. Paliwal et al. (2021) con-
ditioned the discriminator using a gradient-based mask for the identification of textured 
regions, allowing it to detect high-frequency artifacts in smooth areas and classify them 
as fake, consequently encouraging the generator to remove them. In general, using only 
adversarial loss for training restoration methods leads to training instability (Gulrajani 
et al. 2017), and the restoration network may produce results substantially different from 
the desired ones (Mustafa et al. 2022). Consequently, the adversarial loss is often used 
in combination with the reconstruction loss, requiring a hyperparameter optimization 
for the regularization terms to weight the contribution of each loss (Zhang et al. 2018a; 
Paliwal et al. 2021).

3.3.3  Perceptual loss

The perceptual loss allows to assess the semantic difference between two frames and 
measures visual similarity by comparing frame content at feature level. The features are 
extracted by a neural network usually trained on other tasks, such as image classification. 
A common practice is to adopt VGG-based features (Chen and Koltun 2017) using a VGG 
model (Simonyan and Zisserman 2014). Although perceptual loss can produce perceptu-
ally satisfying results, using it alone may lead to training instability (Blau and Michaeli 
2018). Therefore, it is usually used in combination with a reconstruction loss, with the 
additional cost of assigning the proper regularization term to each of the components of 
the total loss (Zhou et al. 2019). Using the perceptual loss adds a computational overhead 
to the training process, increasing the overall time required to train the network and the 
memory needed.

3.3.4  Temporal consistency loss

Temporal consistency is an important feature of video restoration methods because they should 
restore frames without introducing new temporal distortions, such as flickering. Although tem-
poral consistency can be addressed by leveraging information from multiple frames, it can be 
further improved with the use of proper loss functions. A temporal consistency loss allows to 
enforce temporal coherence between consecutive frames by focusing on the temporal domain 
rather than on the spatial one. Typically, the output of the network at timestep t is compared to 
the outputs at timesteps t − 1 and t + 1 , which are aligned with it via optical flow estimation. 
Different implementations of temporal consistency loss exist (Yue et al. 2020; Lai et al. 2018; 
Chen et al. 2021). Yue et al. (2020) first restored the frame at timestep t using its adjacent 
frames at timesteps t − 1 and t + 1 , and then generated two new versions of the restored frame 
using two redundant noisy shots at timestep t, respectively. Finally, they imposed L1 loss 
between the restored frame and each of the two generated frames. Lai et al. (2018) proposed to 
employ a temporal consistency loss based on warping error between consecutive frames, that 
is, the output of the network at timestep t − 1 is warped to the output at timestep t via optical 
flow estimation and L2 loss is computed between them. Similarly, Chen et al. (2021) used 
optical flow estimation to warp the previous restored frame to the current restored frame, and 
did the same for ground truth frames. Then, they computed L1 loss on the difference between 
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restored frames and the difference between ground truth frames. The application of tempo-
ral consistency loss is beneficial for video restoration methods because temporal consistency 
can be explicitly enforced via loss function and learned during training. When introduced into 
methods using a multi-frame baseline scheme, the main drawbacks of using a temporal con-
sistency loss is that it requires either redundant computations (Yue et al. 2020) or a modifica-
tion of the output of the network (Chen et al. 2021), as it requires to restore multiple frames 
in a single training iteration. It also requires to be used in combination with the reconstruction 
loss, requiring a proper regularization term (Yue et  al. 2020; Chen et  al. 2021). Moreover, 
optical flow computation in the temporal consistency loss increases the training time.

3.3.5  Detail‑preserving loss

Restoration methods usually treat low and high frequencies in the same way, consequently 
producing oversmooth results (Hang et al. 2020). A detail-preserving loss allows restoration 
methods to improve their capability of recovering details by forcing the details contained 
within restored and ground truth frames to be the same. To this end, several solutions have 
been proposed (Li et al. 2020a; Xu et al. 2021; Isobe et al. 2020). Li et al. (2020a) used an edge 
detector to extract edge information from ground truth frames, generating a mask to highlight 
edges and force their model to pay more attention to them. Xu et al. (2021) introduced a loss 
function based on the Fast Fourier Transform (FFT) (Nussbaumer 1981): they computed the 
FFT on restored and ground truth frames and used L2 loss on both amplitude and phase com-
ponents. Isobe et al. (2020) extracted high-frequency components on both restored and ground 
truth frames and computed a Charbonnier loss (Charbonnier et al. 1994) between them. Since 
the goal of a detail-preserving loss is to improve the detail recovery capability of neural net-
works, it should be used in combination with other loss functions, thus requiring a regulariza-
tion term to weight its contribution in the overall loss (Li et al. 2020a; Xu et al. 2021; Isobe 
et al. 2020).

3.4  State of the art

Here we summarize the characteristics of the state-of-the-art video restoration methods intro-
duced in the previous sections, according to the hierarchical organization in Fig. 3. Table 2 
reports the main features of the architecture used (baseline scheme, design strategy, convolu-
tion type), how the methods handle motion (alignment technique and alignment level), and the 
loss functions used (reconstruction loss, adversarial loss, perceptual loss, temporal consist-
ency loss, detail-preserving loss). For each method based on MEMC some details about how 
optical flow is computed and how the warping operation is performed are present. Besides, 
we report the number of frames used as input for those methods based on the multi-frame 
baseline scheme. Note that some methods in Table 2 have two baseline schemes, which means 
that they are recurrent methods but, at each timestep, they use a stack of frames as done by 
multi-frame methods.

4  Benchmark datasets

Video restoration methods based on deep learning require benchmark datasets both for 
training and evaluation. Through the years, several datasets have been proposed for the dif-
ferent restoration tasks. We summarize their characteristics in Table 3.
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Some datasets provide both degraded input and pristine ground truth sequences, while 
others only provide the pristine ground truth and the degraded input sequences must be syn-
thetically generated. This solution could be feasible for video compression artifact reduc-
tion, because the artifacts introduced by using compression algorithms, such as JPEG2000 
(Marcellin et al. 2000) or High Efficiency Video Coding (HEVC) (Sze et al. 2014), appear 
exactly as in the final application. Conversely, for video denoising, deblurring and super-
resolution, this solution may not be optimal because the introduced distortions are merely 
an approximation of the real ones. For instance, artifacts introduced by adding Gaussian 
white noise are different from the ones derived from real low-light conditions.

Methods trained on synthetically generated approximated artifacts may perform subop-
timally when applied to real-world distortions and, hence, creating datasets with realistic 
distortions is important to ensure the practical applicability of the restoration methods.

4.1  Datasets with real distortions

Creating video datasets containing real distortions, such as noise and blur, is a challeng-
ing task because this requires an acquisition system able to capture noisy/blurry and clean 
frames simultaneously. Different methods were proposed to generate paired datasets with 
videos affected by real-world artifacts. In the following, we shortly describe how existing 
datasets were created.

4.1.1  Beam‑splitter deblurring (BSD) (Zhong et al. 2020)

The dataset was built using a beam splitter acquisition system with two synchronized cam-
eras. The system could capture pairs of blurred and sharp videos in one shot by controlling 
the exposure time and the exposure intensity. A center-aligned synchronization scheme was 
adopted, so that the sharp exposure time lies exactly in the middle of the blurry expo-
sure time. The dataset contains sharp/blurry videos captured at 15 frames per second (FPS) 
with different exposure times: 1ms-8ms, 2ms-16ms and 3ms-24ms.

4.1.2  Captured raw video denoising (CRVD) (Yue et al. 2020)

The dataset contains RAW videos captured using a surveillance camera at 20 FPS. Since 
capturing dynamic scenes using low International Organization for Standardization (ISO) 
generates motion blur, sequences containing objects were recorded, and the objects were 
manually moved to create object motion. For each static moment, multiple frames were 
captured, and the ground truth is obtained by averaging them, with the additional applica-
tion of the Block-Matching and 3D filtering (BM3D) denoising algorithm (Dabov et  al. 
2007) to remove the remaining noise. Videos were captured using different ISO, ranging 
from 1600 to 25600, to capture different levels of noise.

4.1.3  MFQEv2 (Guan et al. 2019)

The dataset is composed of multiple sequences coming from different sources, i.e., 
Xiph.org1, VQEG2 and JCT-VC (Bossen 2013), containing different contents. The video 
sequences in this dataset are provided in the YUV domain without compression, and 
1 https:// www. xiph. org/.
2 https:// www. its. bldrd oc. gov/ vqeg/ video- datas ets- and- organ izati ons. aspx.

https://www.xiph.org/
https://www.its.bldrdoc.gov/vqeg/video-datasets-and-organizations.aspx
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compressed sequences are obtained using the HEVC compression standard (Sze et  al. 
2014). We called this dataset MFQEv2 to differentiate it from MFQE2.0, which is instead a 
state-of-the-art method.

4.2  Datasets with synthetic distortions

A common practice to generate video sequences for training video restoration methods is 
to take the clean video sequences and synthetically add the artifacts to obtain input/output 
pairs. Several datasets proposed for video restoration contain videos collected either from 
the web or from datasets for other related tasks, such as quality assessment or segmenta-
tion, that are synthetically distorted. In the following, we describe these datasets and the 
types of artifacts present.

4.2.1  GOPRO (Nah et al. 2017)

The dataset was generated using a camera capturing 240 FPS videos. Based on the idea 
that a long shutter speed can be approximated by averaging frames captured with a short 
shutter speed (i.e., 1/240 in the case of 240 FPS videos), each blurred frame is obtained by 
averaging from 7 to 13 sharp frames to produce different blur effects, and the mid-frame 
among the averaged frames is considered the ground truth.

4.2.2  Deep Video Deblurring (DVD) (Su et al. 2017)

Since a long exposure can be approximated by accumulating a number of short exposures 
(Telleen et al. 2007), motion blur at 30 FPS can be obtained by recording videos at 240 
FPS, subsampling them every 8 frames and finally averaging each group of 7 consecu-
tive frames. To use all the frames, optical flow was computed between adjacent high FPS 
frames to generate additional frames, which are then averaged. To avoid bias towards a 
specific device, different devices were used to capture the sequences. In addition, to avoid 
problems related to noise, all the sequences were recorded in good lighting conditions.

4.2.3  Realistic and Dynamic Scenes (REDS) (Nah et al. 2019a)

Proposed for the New Trends in Image Restoration and Enhancement (NTIRE) 2019 video 
restoration challenges, the dataset was recorded with a camera at 120 FPS. A CNN-based 
method (Niklaus et al. 2017) was used to increase the frame rate from 120 to 1920 FPS, 
and a duty cycle of 0.8 was used to generate blurry frames (from 1920 FPS sharp frames to 
24 FPS blurry frames), whereas potential noise and compression artifacts were suppressed 
by downscaling the original frames. To better mimic the camera imaging pipeline and pro-
duce more realistic results, the Camera Response Function (CRF) and inverse CRF were 
estimated, and the blurry frames are computed in the signal space (obtained by applying 
the estimated inverse CRF) and converted back to the RGB color space (using the esti-
mated CRF). For another challenge, additional distortions were introduced by compressing 



5346 C. Rota et al.

1 3

the blurry frames using MPEG-4 (Sikora 1997) with quality 60%. Moreover, for video 
super-resolution, both the sharp and blurry frames were downscaled by a factor of four 
using bicubic interpolation.

4.2.4  Vimeo90K (Xue et al. 2019)

The dataset is composed of sequences with different contents downloaded from the Vimeo3 
video platform. Since only ground truth sequences are provided, any kind of artifact must 
be introduced synthetically. The authors of the dataset released the code to add noise, i.e., 
Gaussian noise and mixed noise (Gaussian + Salt & Pepper) for video denoising, to com-
press videos using the JPEG2000 algorithm (Marcellin et al. 2000) for video compression 
artifact reduction, and to reduce the spatial resolution by a factor of four using bicubic 
interpolation for video super-resolution.

4.2.5  Densely Annotated Video Segmentation 2017 (DAVIS) (Pont‑Tuset et al. 2017)

Originally proposed for video object segmentation, this dataset is also employed in video 
restoration, in particular by video denoising methods. No code to add artifacts is provided.

5  Performance evaluation

5.1  Evaluation metrics

Defining common evaluation metrics to assess deep learning methods is important to 
objectively measure and compare their performance.

Metrics for the evaluation of restoration methods can be: (i) full-reference, which use 
reference frames; (ii) reduced-reference, which use partial information of reference frames 
(e.g., features); (iii) no-reference, which do not use any reference. Many metrics have been 
proposed to assess video quality (Li et al. 2019). Among them, the most common in video 
restoration are Peak Signal-to-Noise Ratio (PSNR) (Hore and Ziou 2010) and Structural 
Similarity Index (SSIM) (Wang et al. 2004). In the following, we describe them more in 
detail, and we mention other metrics seldom used.

5.1.1  Peak signal‑to‑noise ratio

Peak Signal-to-Noise Ratio (PSNR) (Hore and Ziou 2010) is a full-reference metric used 
to measure the quality of reconstruction algorithms. It is defined as the ratio between the 
maximum possible power of a signal and the power of corrupting noise that affects the 
fidelity of its representation. PSNR is based on a function of Mean Squared Error (MSE). 
When dealing with images, MSE allows to compare the true pixel values of the original 
image with those of the degraded one. Given two images I and K of size n × m , where I is 
the original image and K is its degraded version, MSE is computed as follows:

3 https:// vimeo. com/.

https://vimeo.com/
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Given MSE between I and K, PSNR is computed as follows:

where MAX is the maximum pixel value of the dynamic range of the images, i.e., 255 for 
8-bit images. Since MSE measures pixel errors, and low values of MSE imply high values 
of PSNR, the higher the PSNR, the better. When the compared images are identical, MSE 
is 0 and PSNR tends towards infinity.

5.1.2  Structural similarity index

Structural Similarity Index (SSIM) (Wang et al. 2004) is a full-reference metric for meas-
uring the perceptual similarity between two images. SSIM considers image degradation as 
the perceived change in structural information, relying on the idea that image pixels have 
strong inter-dependencies, especially when they are spatially closed. These dependencies 
carry important information about the structure of the objects in the visual scene. Instead 
of using traditional error summation methods, such as PSNR, SSIM models image distor-
tions as a combination of three factors: luminance distortion, contrast distortion and struc-
tural distortion. Given two images X and Y of the same size, SSIM is computed as follows:

where �x and �y are the average pixel values, �2
x
 and �2

y
 are the pixel variances and �xy is the 

pixel covariance of X and Y. The constants c1 and c2 are used to stabilize the division when 
the denominator is close to zero. They are respectively computed as k1L and k2L , where 
L is the dynamic range of pixel values (255 for 8-bit images), k1 = 0.01 and k2 = 0.03 by 
default. SSIM assumes values in the [0, 1] range. Also in this case, the higher the SSIM, 
the better. When the compared images are identical, SSIM is equal to 1.

5.1.3  Other metrics

Zhang et  al. (2018b) proposed Learned Perceptual Image Patch Similarity (LPIPS), a 
full-reference metric that first uses a pretrained CNN to extract neural features from 
both degraded and reference frames, and then compares them. MOtion-tuned Video 
Integrity Evaluation (MOVIE) index (Seshadrinathan and Bovik 2009) is a full-ref-
erence metric that uses a multi-scale framework to evaluate video fidelity, integrating 
both spatial and temporal aspects of distortion assessment. Soundararajan and Bovik 
(2012) proposed Spatio-Temporal Reduced Reference Entropic Differencies (STRRED), 
a reduced-reference metric that computes wavelet coefficients of frame differences mod-
eled as Gaussian scale mixture, and measures the difference in the amount of spatial 
and temporal information contained in distorted and reference frames. Lai et al. (2018) 
proposed Warping Error (WE), a full-reference metric to evaluate temporal consistency 
of enhanced frames that makes use of optical flow to estimate pixel motion between two 

(3)MSE(I,K) =
1

n × m

n−1
∑

i=0

m−1
∑

j=0

(Ii,j − Ki,j)
2

(4)PSNR(I,K) = 20 ⋅ log10
MAX

√

MSE(I,K)

(5)SSIM(X, Y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)
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Table 4  Performance of the state-of-the-art denoising methods

Method name Dataset Tested noise PSNR SSIM

Train Test

ToFlow Xue et al. (2019) Vimeo90K Vimeo90K AWGN ( � = 15) 36.63 0.963
AWGN(� = 25) 34.89 0.952

EVRNet Mehta et al. (2021) Vimeo90K Vimeo90K AWGN (� = 10) 32.37 0.900
FITVNet Wang et al. (2020a) Vimeo90K Vimeo90K AWGN ( � = 15) 37.70 0.955

AWGN ( � = 25) 35.45 0.933
AWGN ( � = 35) 33.89 0.912
AWGN ( � = 45) 32.68 0.893
AWGN(� = 55) 31.72 0.874

MMNet Chen et al. (2021) Vimeo90K Vimeo90K AWGN ( � = 10) 41.26 0.978
AWGN ( � = 20) 38.59 0.964
AWGN ( � = 30) 36.85 0.950
AWGN ( � = 40) 35.62 0.938
AWGN ( � = 50) 34.60 0.927

CRVD (sRGB) CRVD (sRGB) Real 38.79 0.978
RViDeNet Yue et al. (2020) CRVD (RAW) CRVD (RAW) Real 43.97 0.987

CRVD (sRGB) CRVD (sRGB) Real 39.95 0.979
MaskDNGAN Paliwal et al. (2021) CRVD (RAW) CRVD (RAW) Real 43.96 0.988

CRVD (sRGB) CRVD (sRGB) Real 40.40 0.981
DVDNet Tassano et al. (2019) DAVIS 2017 DAVIS 2017 AWGN ( � = 10) 38.13 –

AWGN ( � = 20) 35.70 –
AWGN ( � = 30) 34.08 –
AWGN ( � = 40) 32.86 –
AWGN ( � = 50) 31.85 –

Set8 AWGN ( � = 10) 36.08 –
AWGN ( � = 20) 33.49 –
AWGN ( � = 30) 31.79 –
AWGN ( � = 40) 30.55 –
AWGN ( � = 50) 29.56 –

FastDVDNet Tassano et al. (2020) DAVIS 2017 DAVIS 2017 AWGN ( � = 10) 38.71 –
AWGN ( � = 20) 35.77 –
AWGN ( � = 30) 34.04 –
AWGN ( � = 40) 32.82 –
AWGN ( � = 50) 31.86 –

Set8 AWGN ( � = 10) 36.44 –
AWGN ( � = 20) 33.43 –
AWGN(� = 30) 31.68 –
AWGN ( � = 40) 30.46 –
AWGN ( � = 50) 29.53 –

PaCNet Vaksman et al. (2021) DAVIS 2017 DAVIS 2017 AWGN ( � = 10) 39.97 –
AWGN ( � = 20) 36.82 –
AWGN ( � = 30) 34.79 –
AWGN ( � = 40) 33.34 –
AWGN(� = 50) 32.20 –
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adjacent frames, aligns them according to the estimated flow, and measures the pixel-
wise error. Recently, Agarla et al. (2020, 2021) presented a no-reference video quality 
assessment method based on a CNN that approximates Mean Opinion Score (MOS) by 
considering both quality attributes, such as sharpness and noisiness, and semantics of 
videos.

The tested noise column provides information about the type of noise considered. AWGN represents addi-
tive white Gaussian noise with standard deviation �

Table 4  (continued)

Method name Dataset Tested noise PSNR SSIM

Train Test

Set8 AWGN ( � = 10) 37.06 –
AWGN(� = 20) 33.94 –
AWGN ( � = 30) 32.05 –
AWGN ( � = 40) 30.70 –
AWGN ( � = 50) 29.66 –

Table 5  Performance of the state-of-the-art deblurring methods

Method name Dataset PSNR SSIM

Train Test

DBN Su et al. (2017) DVD DVD 30.05 0.964
STRCNN Hyun Kim et al. (2017) – DVD 29.11 –
MB2D Park et al. (2020) GOPRO GOPRO 32.16 0.953

DVD DVD 32.34 0.947
ESTRNN Zhong et al. (2020) REDS REDS 32.63 0.911

DVD DVD 31.07 0.902
BSD (1–8 ms) BSD (1–8 ms) 33.36 0.937
BSD (2–16 ms) BSD (2–16 ms) 31.95 0.925
BSD (3–24 ms) BSD (3–24 ms) 31.39 0.926

CDVD-TSP Pan et al. (2020) GOPRO GOPRO 31.67 0.928
DVD DVD 32.13 0.927

PVDNet Son et al. (2021) DVD DVD 32.31 0.926
GOPRO GOPRO 31.98 0.928

EDVR Wang et al. (2019) REDS REDS 36.96 0.966
DBLRGAN Zhang et al. (2018a) DVD DVD 33.19 –
STFAN Zhou et al. (2019) DVD DVD 31.24 0.934
IFI-RNN Nah et al. (2019b) GOPRO GOPRO 29.97 0.895

DVD DVD 30.80 0.899
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5.2  Performance evaluation of the methods

Here we analyze the performance of the state-of-the-art video restoration methods on 
the different restoration tasks. Tables 4, 5, 6 and 7 respectively report the performance of 
video denoising, video deblurring, video super-resolution and video compression artifact 

Table 6  Performance of the state-of-the-art super-resolution methods

Only the performance referring to ×4 upscaling factor is reported. In the degradation column, BI refers to 
bicubic downscaling, whereas BD to Gaussian downscaling. Y is the Y channel of the YCbCr color space

Method name Dataset Channel(s) Degradation PSNR SSIM

Train Test

VESPCN Caballero et al. (2017) – Vid4 Y BI 25.35 0.756
DUF Jo et al. (2018) – Vid4 Y BD 27.34 0.833
ToFlow Xue et al. (2019) Vimeo90K Vimeo90K RGB BI 33.08 0.942

Vid4 RGB BI 23.54 0.807
EDVR Wang et al. (2019) REDS REDS RGB BI 31.09 0.880

Vimeo90K Vimeo90K RGB BI 35.79 0.937
Y 37.61 0.949

Vid4 RGB BI 25.83 0.808
Y 27.35 0.826

EVRNet Mehta et al. (2021) Vimeo90K Vimeo90K Y BI 35.98 0.931
TDAN Tian et al. (2020b) Vimeo90K Vid4 RGB BI 26.24 0.780

BD 26.58 0.801
MuCAN Li et al. (2020a) REDS REDS RGB BI 30.88 0.875

Vimeo90K Vimeo90K RGB BI 35.49 0.934
Y 37.32 0.947

RSDN Isobe et al. (2020) Vimeo90K Vimeo90K RGB BD 35.32 0.934
Y 37.23 0.947

Vid4 RGB BD 26.43 0.835
Y 27.92 0.851

UDM10 RGB BD 37.46 0.956
Y 39.35 0.965

PFNL Yi et al. (2019) – Vid4 Y BD 27.40 0.838
BasicVSR Chan et al. (2021a) REDS REDS RGB BI 31.42 0.891

Vimeo90K Vimeo90K Y BI 37.18 0.945
BD 37.53 0.950

Vid4 Y BI 27.24 0.825
BD 27.96 0.855

UDM10 Y BD 39.96 0.969
BasicVSR++ Chan et al. (2022) REDS REDS RGB BI 32.39 0.907

Vimeo90K Vimeo90K Y BI 37.79 0.950
BD 38.21 0.955

Vid4 Y BI 27.79 0.840
BD 29.04 0.875

UDM10 Y BD 40.72 0.972
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reduction methods. For each method we report information about the datasets used for 
training and evaluation, and their performance in terms of PSNR and SSIM as reported 
in the original papers. We only considered the results obtained on the datasets reported 
in Sec. 4, even though some methods have also been evaluated on some less common or 
custom datasets (Pan et al. 2017; Maggioni et al. 2012). Note that entries in each table are 
grouped by method to highlight the source of the reported information. A direct compari-
son among different methods may be not fair since each of them is potentially trained with 
different settings (such as the software used for synthetic distortion generation).

Video denoising methods are commonly tested on videos containing additive white 
Gaussian noise (AWGN) (Xue et al. 2019; Mehta et al. 2021; Chen et al. 2021; Tassano 
et  al. 2019, 2020; Wang et  al. 2020a; Vaksman et  al. 2021). Some methods (Paliwal 
et al. 2021; Yue et al. 2020; Chen et al. 2021) are also evaluated on real noisy scenes. 
Here, video denoising is performed either in the sRGB or in the RAW domain, directly 
processing the output of camera sensors. Based on the results reported in Table  4, 
MMNet (Chen et  al. 2021) and PaCNet (Vaksman et  al. 2021) are the best perform-
ing methods in removing AWGN from videos. Concerning the removal of real noise 
from sRGB frames, MaskDNGAN (Paliwal et al. 2021) can produce better results than 

Table 7  Performance of the state-of-the-art compression artifact reduction methods

The tested compression column provides information about the compression algorithm used to compress 
videos. Performance on Vimeo90K is measured in RGB, while on MFQEv2 is measured on the Y channel 
of the YUV color space

Method name Dataset Tested compression PSNR SSIM ΔPSNR ΔSSIM

Train Test

ToFlow Xue et al. 
(2019)

Vimeo90K Vimeo90K JPEG2000 ( q = 20) 36.92 0.966 – –

JPEG2000 ( q = 40) 34.97 0.953 – –
JPEG2000 ( q = 60) 34.02 0.945 – –

EVRNet Mehta et al. 
(2021)

Vimeo90K Vimeo90K JPEG2000 ( q = 20) 36.65 0.967 – –

JPEG2000 ( q = 40) 36.33 0.948 – –
MFQE2.0 Guan et al. 

(2019)
MFQEv2 MFQEv2 HEVC ( QP = 42) – – 0.59 1.65

HEVC ( QP = 37) – – 0.56 1.09
HEVC ( QP = 32) – – 0.52 0.68
HEVC ( QP = 27) – – 0.49 0.42
HEVC ( QP = 22) – – 0.46 0.27

STDF Deng et al. (2020) MFQEv2 MFQEv2 HEVC ( QP = 37) – – 0.83 1.51
HEVC ( QP = 32) – – 0.86 1.04
HEVC ( QP = 27) – – 0.72 0.57
HEVC ( QP = 22) – – 0.63 0.34

RFDA Zhao et al. 
(2021)

MFQEv2 MFQEv2 HEVC ( QP = 42) – – 0.82 2.20

HEVC ( QP = 37) – – 0.91 1.62
HEVC ( QP = 32) – – 0.87 1.07
HEVC ( QP = 27) – – 0.82 0.68
HEVC ( QP = 22) – – 0.76 0.42
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RViDeNet (Yue et al. 2020) and MMNet (Chen et al. 2021). In the RAW domain, Mask-
DNGAN (Paliwal et al. 2021) and RViDeNet (Yue et al. 2020) achieve almost the same 
denoising performance.

The performance of deblurring methods is reported in Table 5. Here the best methods 
are MB2D (Park et al. 2020) and PVDNet (Son et al. 2021). EDVR (Wang et al. 2019) and 
DLBRGAN (Zhang et al. 2018a) also achieve competitive performance.

Video super-resolution can be performed using different upscaling factors, i.e., ×2 , ×3 
and ×4 . In Table  6 we only report the performance obtained by video super-resolution 
methods using the ×4 upscaling factor, which is the most common one. Two degradation 
types are usually evaluated: bicubic downscaling (BI), which is performed by downscaling 
frames using bicubic interpolation, and Gaussian downscaling (BD), which is performed 
by applying a Gaussian filter (with standard deviation � = 1.6 ) to frames and then downs-
caling them using bicubic interpolation. The performance on the Y channel of the YCbCr 
color space is usually evaluated in addition to the one in RGB. BasicVSR++ (Chan et al. 
2022) achieves the best performance on all the considered datasets, color channels, and 
degradation types, demonstrating its superiority compared to the other methods. It is fol-
lowed by BasicVSR (Chan et al. 2021a) and EDVR (Wang et al. 2019), which obtain com-
petitive performance.

Table 7 documents the results obtained by video compression artifact reduction meth-
ods in restoring videos compressed using JPEG2000 (Marcellin et  al. 2000) and HEVC 
(Sze et al. 2014). ToFlow (Xue et al. 2019) achieves PSNR higher than EVRNet (Mehta 
et al. 2021) in removing compression artifacts introduced by JPEG2000 when the compres-
sion is high ( q = 20 ), while the latter is considerably better when the compression is lower 
(q is higher). The two methods are equal in terms of SSIM. The performance on MFQEv2 
(Guan et al. 2019) is commonly measured using ΔPSNR and ΔSSIM: ΔPSNR is obtained 
as PSNR(F̂, F̄) - PSNR(F, F̄) , where F̂ is the enhanced frame, F̄ is the ground truth frame 
and F is the compressed frame; ΔSSIM is computed in a similar way. The higher the Δ
PSNR and ΔSSIM, the better. Moreover, the restoration performance is evaluated on the Y 
channel of the YUV color space. The best performing method is RFDA (Zhao et al. 2021), 
which obtains the highest ΔPSNR and ΔSSIM at every compression level. It is followed by 
STDF (Deng et al. 2020) and MFQE2.0 (Guan et al. 2019).

Efficiency is another important criterion for the evaluation of video restoration meth-
ods. In Table  8, we report the results using five metrics commonly adopted to evaluate 
efficiency of CNNs. Giga operations per second (GOPs), Giga floating point operations 
per second (GFLOPs) and Giga multiply-accumulate operations per second (GMACs) 
refer to the number of operations performed in one second. The lower, the better. Runtime 
reports how many seconds the methods require to restore a frame at a given resolution. All 
the values are taken from the original papers. Note that the methods may not be directly 
comparable because these metrics were computed on different devices and using different 
software, which might produce slightly different results. In addition, runtime is computed 
using different Graphic Processor Units (GPUs), whose performance change based on the 
specific model. For video super-resolution methods we report only information using the 
×4 upscaling factor. Since the number of operations performed by the methods is positively 
correlated with the running time, i.e., a higher number of operations implies a higher run-
ning time (Bianco et al. 2018), here we comment only aspects related to the running time.

We take into account high-resolution videos, i.e., videos containing frames whose size 
is greater than 1280 × 720 pixels. Since real videos at 30 FPS require a processing time 
lower than 0.03 seconds for each frame, we can observe that none of these methods can 
achieve real-time restoration performance even using high-performing GPUs. Based on the 
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results in Table 8, RSDN (Isobe et  al. 2020) and BasicVSR (Chan et  al. 2021a) are the 
most efficient methods, approaching real-time restoration performance.

EVRNet (Mehta et al. 2021) uses two slight different models to perform the different 
tasks: one for super-resolution (first row) and one for denoising and compression artifact 
reduction (second row). In contrast to the other models, it is very lightweight because it 
was designed to work on edge devices, such as smartphones. PaCNet (Vaksman et al. 2021) 
requires about 30 seconds to restore a frame at 854 × 480 resolution even if it has a limited 
amount of parameters. This is due to the preliminary alignment process based on non-local 
search that explicitly tries to craft artificial frames by aggregating similar patches coming 
from adjacent frames. DVDNet (Tassano et al. 2019) requires about 8 seconds on frames 
at 960 × 540 resolution, where 6 seconds are dedicated to the alignment process performed 
using MEMC.

6  Challenges and future trends

Despite the progress made in video restoration using deep learning, there are still many 
issues to address. In this section, we point out the main challenges and future trends as 
emerged from the analysis presented in this paper.

6.1  Real‑time restoration

State-of-the-art video restoration methods are characterized by high reconstruction per-
formance. Nevertheless, efficiency still represents an obstacle that makes their application 
to several real-world problems challenging, especially those requiring real-time compu-
tations. Recent methods are typically evaluated on highly performing hardware, such as 
GPUs, that may not be available in some practical scenarios. Due to the increasing popu-
larity of mobile devices, for example, one may expect to run these models on smartphones 
and hand-held cameras, which are characterized by limited resources in terms of compu-
tational power, memory, and battery consumption. Designing lightweight models able to 
run on such devices in real time would considerably extend their applicability to real-world 
problems, and investigations towards this direction are important.

6.2  Improved alignment strategies

The effectiveness of video restoration methods strictly depends on the adopted solution 
for motion handling. Methods based on optical flow are sensitive to light changes, fast 
motion, and occluded objects, while methods using implicit alignment are limited by the 
local receptive field of standard convolutions. Some solutions, such as deformable convo-
lutions, were proposed to address these limitations, but they introduce training instability 
and increase computational complexity. According to the investigation made by Chan et al. 
(2021b, 2022), a possible future trend is the exploration of the relationships among exist-
ing alignment strategies, with the purpose of developing new solutions that combine all the 
underlying advantages.
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6.3  All‑in‑one video restoration methods

Most of the video restoration methods proposed during the past few years tackle only 
one restoration task. Although some methods demonstrated to be flexible to differ-
ent types of distortion (Xue et  al. 2019; Wang et  al. 2019; Mehta et  al. 2021), they 
have been optimized for only one task at a time. In real-world scenarios, videos may 
be simultaneously affected by multiple distortions, because artifacts are introduced at 
different levels of the camera pipeline: for example, noisy videos are also later com-
pressed. Therefore, designing robust all-in-one methods that can address multiple resto-
ration tasks at the same time, i.e., restoring videos containing multiple distortion types, 
would extend their applicability to real-world cases. Some methods towards this direc-
tion have been recently developed (Rota et al. 2022; Katsaros et al. 2021).

6.4  More representative evaluation metrics

Common metrics for the evaluation of video restoration methods are PSNR and SSIM. 
However, their values are not well correlated to human perception, meaning that high 
values of these metrics can be obtained even if the results are unpleasant for humans. To 
this end, several metrics that better correlate to human perception have been proposed, 
both for image (Zhang et  al. 2018b; Kim and Lee 2017; Reisenhofer et  al. 2018) and 
video assessment (Park et al. 2012; Bampis et al. 2018; Agarla et al. 2020, 2021), but 
currently there is not a globally-accepted measure for video restoration. Thus, there is 
the need to define and converge to an accurate and perceptual-based metric for the eval-
uation of restoration results. Temporal consistency is an important aspect of video res-
toration, but it is usually underestimated and only occasionally evaluated. In most video 
restoration papers only metrics applied to each individual frame are typically used, 
without taking into account any dependency among them. It would be instead appro-
priate to employ metrics also for temporal consistency evaluation, such as STRRED 
(Soundararajan and Bovik 2012), MOVIE (Seshadrinathan and Bovik 2009) or Warping 
Error (Lai et al. 2018).

6.5  Datasets with realistic distortions

Despite the large availability of video datasets for training video restoration methods, 
the distortions they contain are usually synthetically generated (e.g., noise is typically 
modeled as additive Gaussian white noise and downscaling degradation is modeled 
using interpolation methods). Since real-world distortions could have different charac-
teristics with respect to synthetic ones, methods trained on these datasets may under-
perform when applied to real scenarios. Some datasets with realistic artifacts were 
proposed (Zhong et al. 2020; Yue et al. 2020), but the difficulty of the collection task 
largely constrained the acquisition conditions, thereby limiting their potential applica-
bility. Developing complex acquisition systems able to model realistic distortions is a 
challenge, but could be beneficial to extend the applicability of restoration methods to 
real-world tasks.
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6.6  Combining traditional and deep learning methods

Video restoration methods based on deep learning have three main disadvantages with 
respect to traditional methods (López-Tapia et  al. 2021): (i) they are less frequently 
found to incorporate domain knowledge, which in turn makes them less robust to videos 
containing unseen degradations; (ii) they need a large amount of data to learn the non-
linear mapping between inputs and outputs, which requires a time-consuming video col-
lection process; (iii) they are less interpretable, which limits their applicability to some 
sensitive contexts. These problems could potentially be tackled using Deep Unfolding 
Networks (DUNs), which implement the conventional iterative optimization process 
of traditional methods using deep neural networks (Gregor and LeCun 2010). Despite 
many works adopting DUNs have been proposed for different image restoration tasks 
(Dong et al. 2018; Zhang et al. 2020; Gong et al. 2020; Li et al. 2020b; Ren et al. 2021), 
fewer are designed for the video domain (Chiche et al. 2020; Sun et al. 2021).

7  Conclusions

In this paper, we provided a review of video restoration methods based on deep learning. 
We selected well-established and recent methods for video restoration, and analyzed in a 
structured manner their main features related to architectural choices, strategies for motion 
handling, and loss functions.

For each restoration task we detailed the characteristics of benchmark datasets and clas-
sified them based on the types of distortions they contain. Despite the large availability of 
video datasets, we highlighted that most of them contain synthetic distortions that may dif-
fer from real ones, limiting the applicability of video restoration methods.

The main evaluation criteria are also discussed and used to compare the performance 
of the considered methods, providing an overview the most promising methods in terms 
of both effectiveness and efficiency. We noticed that even if video restoration quality made 
much progress in recent years, video restoration methods cannot yet restore high-resolution 
frames in real time.

Possible improvements of the research include the development of methods able to run 
on resource-limited devices in real time, the study of more robust alignment strategies, the 
development of methods to address multiple restoration tasks at the same time, the defini-
tion of more suitable and globally-accepted metrics for result evaluation, the acquisition of 
freely available datasets containing real-world distortions, and the combination of tradi-
tional and deep learning methods.
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