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Abstract
Assumption of fuzziness in the vehicle routing problems under extreme conditions is nec-
essary for modelers, because there are usually insufficient objective input data. In extreme 
situations, the complexity of the description of vehicles’ movement on routes may cause by 
two poles: the imprecision of movement time and the uncertainty of the possibility of move-
ment on roads. Traditionally, a fuzzy value has been used to represent the data’s imprecise-
ness; hence, only one pole of expert’s information is taken in the aggregation results. The 
main objective of this paper is to present an efficient way for fuzzy vehicle routing mod-
eling to minimize the decision-making risks in the optimal planning of routes network and 
from distribution centers to demand points. To address this, a new two-stage possibilistic 
bi-criteria vehicle routing problem (VRP) is presented under extreme conditions. In the 
first stage, the sample of so-called “promising” closed routes are selected based on a “con-
structive” approach using a simulation algorithm. The expected times of the vehicle move-
ment between demand points are taken as fuzzy triangular numbers. In the second stage, 
based on Choquet integral’s, a bi-criteria partitioning model for the fuzzy VRP has been 
constructed. The constraint approach has been defined to obtain the optimal solution of 
the model. For numerical experiments, a parallel algorithm is created based on D. Knuth’s 
algorithm of dancing links. An example is presented with the results of our approach for 
the VRP, where all Pareto-optimal solutions are found from the promising routes.
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1  Introduction

1.1 � Problem presentation and work motivation

In the modern world of growing economies and mass consumption, managing the trans-
portation of goods is becoming more and more complicated and diversified. Among the 
many challenges connected with the distribution of goods, one of the most important is 
the selection of optimal routes, which becomes even more difficult in extreme conditions. 
Such situations may include: (1) the management of secure and optimal supply of goods to 
medical, military, or strategic objects in geographical zones damaged by natural disasters, 
earthquakes, weapons of mass destruction, etc.; (2) planning of the rapid and safe assis-
tance to the population in difficult situations; (3) strategic management of transportation 
routes in places of military action; (4) management of optimal vehicle routes on roads with 
overloaded traffic, places of public demonstrations and strikes, slippery, snowy roads, and 
more.

Route planning problems, also known as VRP, have been widely investigated in many 
directions, such as Operations Research, Artificial Intelligence, etc. The standard VRP was 
firstly considered in 1959 by Dantzig & Ramser (1959) and it is a complex combinato-
rial optimization problem. Some versions of the initial problem have been put forward and 
strong formulations offered. These problems often are reduced to discrete programming 
problems. If the finding optimal solutions must be guaranteed, then exact methods are 
used, but solving large-dimensional problems with these methods is generally impossible. 
Therefore, these approaches are usually paired with various heuristic methods in a wide 
scope of applications.

Given that the complex, flexible, and dynamic nature of real logistical planning pro-
duces, a high degree of uncertainty in the modeling process occurred and hence it is not 
expecting that all the necessary information is available at the onset of the problem. The 
most common scenarios provide uncertain and imprecise information of some parameters 
and variables (Sirbiladze 2021, 2022; Sirbiladze et al. 2021; Zacharia et al. 2021). There-
fore, the use of the theory of fuzzy sets in the construction of solving systems for decision-
making is very appropriate. A fuzzy approach to modeling of VRPs—Fuzzy VRPs (FVRP) 
is common in modern literature (Brito et al. 2012). The majority of them assume vague-
ness of the following parameters: travel and service times, time windows are imprecise, as 
well as fuzzy customer demands. Modeling of uncertainty in the FVRP is the main study 
direction of this work which guarantees minimization of vehicle movement risks on routes 
under extreme conditions.

Various difficulties and problems of movement inevitably lead to the imprecision and 
uncertainty of vehicle motion on the routes. For the VRPs presented in this work, when 
observing extreme conditions on roads, stochastic models may not work because the prob-
ability distributions of some input parameters are unknown due to their vagueness. These 
parameters include vehicle movement time, representing a total value of demand point-
to-demand point movement times. In such cases, evaluating and considering the routing 
reliability is also required when various obstacles can hinder the movement on the routes.

Our country, Georgia, is mountainous, and meteorological extreme conditions (earth-
quakes, severe storms, floods, fog, and other reasons causing the lack of visibility, slippery 
or snowy roads, and others) often impede the vehicle routes. The existing VRP software 
doesn’t support the optimal rearrangements of routes and all difficulties are solved based 
on the knowledge and experience of experts (managers or routing network dispatchers). 
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This is why the development of a new approach to FVRP was decided (based on our expe-
rience in similar problems of fuzzy covering and partitioning). The new approach would 
integrate the knowledge of experts and managers into the solution of problems faced by 
the possibilistic approach to VRP. It would add to existing objective criteria (minimization 
of total travel time or travel distance of movement on the closed routes and others) a new 
criterion, which is the minimization of the infeasibility of vehicle movement on the closed 
routes.

1.2 � Brief consideration of multi‑objective FVRP approaches

Due to the high traffic and other daily circumstances found in routing networks, both—
motion and service times are often fuzzy. In Teodorović and Kikuchi (1991), a vehicle 
routing model which treats travel times to customers as fuzzy numbers is introduced. 
The offered model in developing vehicle routes uses the principles of the classical 
Clarke–Wright algorithm. The presented examples describe the route pattern of a vehicle 
which varies significantly according to the fuzziness level of motion time. In Liu (2006) 
the author considers the VRP with time windows while assuming that the travel times are 
inevitably imprecise, and handled as fuzzy numbers. In Tang et al. (2007) the travel time in 
the fuzzy mathematical model of the VRP also has a fuzzy nature.

Sometimes, the information on customers’ (or demand points in our case) needs is not 
sufficiently precise. Thus, there is imprecision regarding the demands vector. In Lucić and 
Teodorović (2007), the authors resolved a VRP where customers’ demand is imprecise and 
is expressed with a triangular fuzzy number (TFN). The model is built on the metaheuris-
tic “sweeping” algorithm, by which it is determined whether to serve a customer. The 
model utilizes special procedures for the calculation of the preference index. The same 
authors have proposed a solution to this problem (Lucić and Teodorović 2007; Lucić and 
Teodorović 2007) when customer demand is measured only after visiting. This is accom-
plished using the fuzzy set theory and Ant Colony systems.

Multi-objective fuzzy VRPs before 2010  years were considered in Ghannadpour 
et  al. (2014); Gupta et  al. (2010). Other approaches of the VRP under fuzzy impres-
sion are also considered in Brito et al. (2008, 2012). The main trends in the FVRP in the 
2010–2015 years can be found in Allahviranloo et al. (2014); Brito et al. (2015); Sandhya 
and Katiyar (2014). A good overview of the literature of these years for the FVRP and the 
ways of its solution is presented in (Brito et al. 2009). The main results on the FVRP in the 
recent 5 years look as follows.

In Yalcın and Erginel (2015) the vehicle routing problem with backhauls (VRPB) is 
presented. This study aims to propose a new algorithm based on fuzzy multi-objective pro-
gramming (FMOP-VRPB algorithm) to solve the VRPB. The FMOP-VRPB algorithm has 
three phases—clustering, routing, and local search. New recent approaches in evolution-
ary programming problems are also developed in Chauhan et  al. (2021a, b, c). In Brito 
et al. (2015) a multi-objective variant of vehicle routing problems is considered, in which 
the customer demands are supposed to be triangular fuzzy numbers and the objective 
functions are also disrupted by fuzziness. However, the propagation of fuzzy demands to 
the objectives can affect the reliability of generated solutions. The new approach tries to 
achieve robust routes that minimize two fuzzy-valued objectives, the total traveled distance 
and total tardiness time. In Nucci (2017) authors study the single-vehicle routing prob-
lem with time windows, multi-shift, and fuzzy uncertainty. In this problem, one vehicle is 
used repeatedly to serve demand over a planning horizon of several days. The problem is 
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inspired by a routing problem in maintenance activities, where one maintenance crew uses 
a vehicle to perform jobs in various locations. The effect of uncertainty in travel and job 
processing time on KPI is studied. An Artificial Immune Heuristic to solve the addressed 
problem is developed. The vehicle routing problem with multiple fuzzy time windows is 
investigated in Cao et al. (2017). The dynamic change of traffic flow and the fuzzy time 
window of customers are considered. A multi fuzzy time window vehicle routing model 
based on time‐varying traffic flow is proposed, and the objective function is to minimize 
the total cost of distribution and maximize customer satisfaction. Wang et al. (2018) inves-
tigates a bi-objective vehicle-routing problem with soft time windows and multiple depots, 
which aims to simultaneously minimize total energy consumption and customer dissatis-
faction. To address the problem, the authors first developed mixed-integer programming. 
Then, an augmented ϵ-constraint method is adopted to obtain the optimal Pareto front for 
small problems. It is very time-consuming for the augmented ϵ-constraint method to pre-
cisely solve even medium-sized problems. For medium- and large-sized problems, two 
Non-dominated Sorting Genetic Algorithm-II-based heuristics with different rules for gen-
erating initial solutions and offspring are designed. In Abad et al. (2019) an optimization 
model is presented for split loading and unloading products by suppliers and customers, 
vehicle routing with fuzzy possibilistic time window constraints among them, assignment 
of vehicles to cross dock, consolidation, and integration of products in the cross dock, and 
allocation of sorted products to outbound vehicles. The mathematical model provided in 
this study has three objective functions. The first and second objectives minimize total 
cost and fuel consumption, and the third one maximizes the satisfaction degrees of sup-
pliers and customers. Two multi-objective meta-heuristic algorithms were utilized to solve 
the model, namely Multi-Objective Grey Wolf Optimizer and Multi-Objective Imperialist 
Competitive Algorithm. To minimize the total distribution cost and mean consumer dis-
satisfaction (Zheng 2020) sets up a VRP model with multiple fuzzy time windows, based 
on time-varying traffic flow. In addition, the Ito algorithm was improved based on time-
varying traffic flow. The model and algorithm were verified through example simulation, 
in comparison with ant colony optimization. Esmaeilidouki et al. (2021) introduces a bi-
objective model for a vehicle routing and scheduling problem of hazardous material dis-
tribution problems under the fuzzy condition to minimize both total distribution time and 
risks. In the proposed model, the fuzzy inference system and fuzzy failure mode and effects 
analysis are applied to identify and calculate the high-level risks instead of the previous 
simple methods for the first time. Considering the impact of charging facilities and carbon 
emission, Zhao et al. 2021) proposes a vehicle routing problem with a mixed fleet of con-
ventional and electric vehicles and soft time windows. A bi-objective programming model 
is established to minimize total operational cost and time penalty cost. Finally, the non-
dominated sorting genetic algorithm II (NSGA-II) is employed to deal with this problem.

In general, fuzzy optimization approaches presented above, four different types of prob-
lems can be considered. Two of these problems include an imprecision in the objective 
function(s), such as the case with fuzzy goals and the case with fuzzy costs. The remain-
ing two problems consider fuzzy comparison in the constraints and the coefficients of the 
technological matrix. In addition, a fifth problem, the general fuzzy problem could be 
studied in which all of the parameters will be subject to fuzzy considerations. In practice, 
the search for optimal solutions to FVRP can be done with the following approaches. The 
simplest approach applies procedures for the fuzzification and defuzzification of variables. 
It transforms the imprecise information in fuzzy parameters and uses procedures that inte-
grate fuzzy arithmetic to obtain fuzzy solutions. The fuzzy solution is then transformed 
into a crisp one using some known formulation. This approach may also be used for the 
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introduction of sophisticated fuzzy rules in the decision-making processes to improve their 
quality. Linguistic variables could be used to facilitate the incorporation of “intelligent” 
procedures as automatic reasoning, adaptive control, or automatic learning. In this paper, 
the optimization two-step approach, which deals with vehicle routing planning in extreme 
conditions, is different from presented here five directions of optimization in FVRP.

1.3 � Briefly on extremal poles of experts’ data in the new FVRP

Assumption of fuzziness in the vehicle routing modeling under extreme environments is a 
necessary action for modelers, because usually, there are insufficient objective input data, 
from the statistical point of view, at the starting of classical or stochastic VRP models. In 
the extreme environment for the efficient action of VRP models, the experts’ evaluations 
play a crucial role. The reader probably has noticed that most of the existing researches of 
FVRP (discussed in subsection 1.2) considers the imprecise nature of different parameters 
(transportation costs, movement time, service windows, etc.) by representing them as fuzzy 
numbers. When the movement (travel) on routes is complicated due to different reasons, 
fuzzified parameters (travel time, time windows, and others) evaluated in fuzzy numbers 
represent only one pole of expert information—called information imprecision (Klir and 
Wierman 1999; Sirbiladze 2013). Thus, existing researches, presented above, ignore the 
second pole of expert information—uncertainty, represented by a fuzzy (monotone) meas-
ure (Sirbiladze 2013; Wang and Klir 2009) which deals with the possibility of the vehicle 
movement on the routes. It is important to consider uncertainty when expert judgment of 
the possibility of movement on routes in FVRP models has been introduced. An aggrega-
tion of information contained in these two poles creates believe and plausible objective 
functions in optimization models of FVRP. This is the primary reason why the existing 
FVRP models are less reliable for optimal routing planning in extreme conditions on the 
roads.

The target functions and restrictions in the approaches presented above, use only fuzzy 
set theory as an instrument to describe imprecision of expert data and no research would 
consider possibility measure (in general monotone measure) (Klir and Wierman 1999; Sir-
biladze 2020, 2013; Sirbiladze et al. 2019, 2018; Sugeno 1974; Wang and Klir 2009) of 
information uncertainty, which is the second pole of expert evaluations. To be more spe-
cific, the weak side of these studies is that their authors introduce fuzzy imprecision in 
the form of fuzzy values, related to the expert evaluations, but don’t use such well-known 
instruments for aggregation of fuzzy data as Choquet Integral (Choquet 1954), Sugeno 
Integral (Sugeno 1974), OWA type operators (Sirbiladze 2020; Sirbiladze et  al. 2019, 
2018; Yager 1988). The reason is understandable—such aggregations require the use of 
nontrivial monotone measures of the second pole of expert information—uncertainty. On 
the other hand, the use of aggregations with imprecision and uncertainty in FVRP models 
will make them more consistent, because the expert evaluations of the difficulty of move-
ment on the routes in extreme conditions will be also considered. These evaluations can be 
represented by the levels of the possibility of the vehicle movement on the routes (the sec-
ond pole of expert information). The possibility theory was presented by Zadeh (1978) and 
investigated by Dubois and Prade (1988). Beginning from the 1980s, the possibility theory 
becomes significant in the decision-making and optimization fields of research (Verdegay 
1982). The core differences between probability and possibility theories are considered in 
Sect. 2.
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Although VRP, generally speaking, by its nature is a single-objective optimization prob-
lem (that is to find the minimum value of traveling distance or time), however, there is 
a need to achieve several objectives simultaneously having involved into consideration of 
different aspects of the problem, even the uncertainty associated with feasibility (unfeasi-
bility) of chosen routes under extreme conditions.

1.4 � On new two‑stage FVR methodology (TSFVRM) and problem solution scheme

The paper presents a two-stage new methodology in FVRP under extreme conditions. Its 
multi-criterion optimization problem creates a fuzzy model of the bi-criteria partitioning 
problem. One criterion is classical—minimization of the total length of vehicles move-
ment on a partitioning of closed routes and second criterion is novation—minimization 
of the fuzzy infeasibility of vehicles movement on a partitioning of closed routes. Under-
standably, in the real-world environment, the new criterion does not define anything in the 
FVRP model under natural environment. But it is also clear that it contains very important 
details in extreme situations where some degree of damage to the roads between custom-
ers (demand points) is expected. Delays in the traffic on the roads are expected at this time. 
A creation of completely new optimal routes for the fast supply of aids needed in demand 
points is also expected. The interactive algorithm for the assessment of the degree of non-
mobility on the roads has involved an expert—a route network dispatcher, who visually 
receives information about road damage through drones, helicopters, or video-photo equip-
ment of distance vision from space. The dispatcher processes this information and divides 
the network of routes into geographical zones according to the degree of road damage (see 
Appendix A). His/her knowledge of these damages will then be accumulated through the 
interactive algorithm to the degrees of impossibility of vehicles movement on these roads. 
The new criterion is the aggregation value for the fuzzy travel times and degrees of impos-
sibility of vehicles movement on these roads. The aggregation tool is the Choquet finite 
integral, which aggregates two poles of expert information—imprecision (fuzzy travel 
times) and uncertainty (degrees of impossibility).

The two stages of the methodology are as follows:
Stage 1

1.	 Start-of-the-paper problems include generation and formation of objective input data 
(the demands for goods by demand points in extreme conditions, the constraints of 
maximum load and mileage of the vehicles, and others) for Vehicle Routing Problem 
under extreme conditions. The formation of objective data and software implementation 
is done using Google Directions API. Users of Intelligent Support System—Optimal 
Route Planning for Transportation of Goods (ORPTG) have the functionality to input 
customer coordinates and the system will mark them on Google Maps, create a customer 
network model, and calculate a matrix of distances between them. This matrix is the 
input parameter for the problem in the following task. Based on this matrix expected 
fuzzy times of vehicle’s movement between demand points are created.

2.	 Generation of “promising routes” on the routing network (Algorithm 1). The heuristic 
approach has been developed which generates so-called “promising routes” from the 
large set of possible routes.

3.	 Based on the Monte-Carlo approach, the efficient interactive simulation algorithm of 
estimation of conditional possibilities of vehicle movement between demand points is 
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constructed. For the formation of input expert information in the algorithm, the routing 
network’s dispatcher is included in the interactive regime (Algorithm 3, Appendix A).

4.	 Construction of a fuzzy infeasibility level of vehicle movement on a closed “promising 
route” based on Choquet finite integral.

5.	 Construction of new objective function—a fuzzy infeasibility of the vehicle movement 
on a partitioning of closed “promising routes”.

6.	 Construction of classical objective function—a total distance traveled on a partitioning 
of closed “promising routes”.

Stage 2

1.	 Creation of Bi-criteria Partitioning Model for the FVRP.
2.	 Modification of �-constraint approach based on a parallel extension of D. Knuth’s algo-

rithm of dancing links (DLX).
3.	 Construction of Pareto front of new FVRP solutions by the extended �-constraint 

approach (Algorithm 2).

In Sect. 2, the brief preliminary concepts on the lattice of fuzzy numbers and probabil-
ity-possibility interrelationship are given. In Sect. 3, the basic VRP with the criterion—
minimization of the total distance is considered. In the same section, subjective expert 
parameters for a new approach to the VRP are presented. In Sect. 4, using a finite Choquet 
integral, fuzzy infeasibility level of movement on a closed route is defined. In the same 
section, a new criterion—minimization of the fuzzy infeasibility of vehicle movement on 
the closed routes is built and VRP is reduced to a bi-criteria partitioning problem. �-con-
straint approach to the determination of all Pareto-optimal solutions for the constructed 
bi-criteria partitioning problem is given in Sects. 5, 6. Section 7 illustrates the results of the 
new approach of VRP for an offered numerical example. Finally, a concrete conclusion is 
presented in Sect. 8.

2 � Preliminary concept

The fuzzy numbers (FN) have been studied by many authors (Dubois and Prade 1988). 
They can be represented in a more complete way as an imprecision variable of incomplete 
expert information.

Definition 1  𝜉(𝜏) ∶ R1
→ [0;1] is called a FN which is defined as:

where �1 ≤ �
�

2
≤ �

��

2
≤ �3 ∈ R1.

Let 𝜉 and 𝜁 be two triangular FNs (TFNs), where 𝜉 =
(
𝜉1, 𝜉2, 𝜉3

)
 and 𝜁 =

(
𝜁1, 𝜁2, 𝜁3

)
 , 

then some basic arthimetic operations for TFNs (for which � �

2
= �

��

2
≡ �2 ) are stated as.

𝜉(𝜏) =

⎧
⎪⎪⎨⎪⎪⎩

1, if 𝜏 ∈
�
𝜏�
2
;𝜏��
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�
𝜏−𝜉1

𝜏�
2
−𝜉1

, if 𝜏 ∈
�
𝜉1, 𝜏

�
2

�
𝜉3−𝜏

𝜉3−𝜏
��
22

, if 𝜏 ∈
�
𝜏��
22
, 𝜉3

�
0, otherwise

,
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1.	 𝜉 + 𝜁 =
(
𝜉1 + 𝜁1, 𝜉2 + 𝜁2, 𝜉3 + 𝜁3

)
;

2.	 𝜉 − 𝜁 =
(
𝜉1 − 𝜁3, 𝜉2 − 𝜁2, 𝜉3 − 𝜁1

)
;

3.	 𝜉 × k =
(
k𝜉1, k𝜉2, k𝜉3

)
, k > 0;

4.	 𝜉k =
(
𝜉k
1
, 𝜉k

2
, 𝜉k

3

)
, k > 0, 𝜉i > 0;

5.	 𝜉 ⋅ 𝜁 =
(
𝜉1𝜁1, 𝜉2𝜁2, 𝜉3𝜁3

)
, 𝜉i > 0, 𝜁i > 0;

6.	 1∕𝜉 =
{

1

𝜉3
,
1

𝜉2
,
1

𝜉1

}
, 𝜉i > 0.

Further, it is stated that 𝜉 > 𝜁 if 𝜉2 > 𝜁2 , and 
if𝜉2 = 𝜁2 then 𝜉 > 𝜁 if

𝜉1+𝜉3

2
>

𝜁1+𝜁3

2
, otherwise𝜉 = 𝜁.

The set of all TFNs is denoted by Ψ and nonnegative TFNs ( �i ≥ 0 ) by Ψ+ . Note that on 
the lattice Ψ+ 1Ψ+ = (1, 1, 1) and 0Ψ+ = (0, 0, 0) . The latest notion of inequality induces the 
total ordering ≥t on the lattice Ψ+ and say that 𝜉≥t𝜁 iff 𝜉 > 𝜁 or 𝜉 = 𝜁 . The operations of 
max and min based on the total ordering ≥t is stated as 𝑚𝑎𝑥t{𝜉;𝜁} = 𝜉 and 𝑚𝑖𝑛t{𝜉;𝜁} = 𝜁 
iff 𝜉≥t𝜁.

Before constructing a new, expert knowledge-based criterion for vehicle routing prob-
lem in extreme and uncertain environment, let’s say few words about possibility theory. 
According to the possibility theory (Dubois and Prade 1988; Zadeh 1978), the possibility 
of any event is maximal among its supportive elementary events possibilities:

Compared to the event possibility, the probability is an additive sum of elementary 
probabilities:

Possibility of occurrence of the event is a potential exposure of an object to achieve 
desired goal, degree or level of which is reflected within [0, 1] numbers as a result of the 
expert’s intellectual activity. i.e., the more expectable the occurrence of an event the higher 
is the possibility level of this event. I.e., the simpler is an event occurrence the higher is the 
event possibility level. And, unlike probability with “tough” additive feature for incompat-
ible events:

��(V ∪ D) = ��(V) + ��(D), if V ∩ D = ∅,

possibility has the ability to undertake maximum:

Also, if probability sum of elementary events is 1:

possibility distribution is not limited to it. This requirement is replaced with the follow-
ing principle: the highest possibility is limited by 1 and at least one event will be under-
taken with the possibility value equal to 1:

Pos(D) = max
y∈D

�(y).

Pr(D) =
∑
y∈C

pr(y).

Pos(V ∪ D) = ���{Pos(V);Pos(D)}.

∑
y

pr(y) = 1,

max
y

�(y) = 1.
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For evaluating infeasibility levels of movement between customers possibility measure 
has been choosen, since it can lead us to the reasonable models, where route infeasibility is 
defined as maximum infeasibility of its roads.

3 � The basic VRP and incorporating expert data

In the beginning, as a basic task, we examine the following well-known problem of optimal 
routing of vehicles. Let the set of geographical points (customers) I = {1, 2, … , n + 1} 
be given, where the n + 1-th point is a depot. Customers are supplied from the depot by 
vehicles with uniform goods. The demands of goods from customers are known, as well 
as maximum load and mileage of the vehicles. The specifics of the problem (type of dis-
tribution network) influences the maximum distance of the vehicle, but generally, we can 
assume that the maximum distance for the vehicle is the distance the vehicle (with a full 
tank) or a driver can cover in the given situation. The problem consists of the following: 
The goods should be delivered to the customers so that the overall mileage of the vehicles 
is minimal. It is meant that the demand for goods by each customer is much less than the 
maximum load of vehicles.

Suppose that Q and D are real numbers—consequently the constraints of maximum load 
and mileage of the vehicles. Let Ep,p = 1, 2, .., n , represent the demands for goods by 
p-th customer 0 < Ep < Q,p = 1, 2, .. , n , and be also real numbers. ‖�pq‖,p, q ∈ I , is a 
matrix of non-negative real numbers and represents the distances between customers.

We have to figure out such closed routes M̄ =
{
Mk

}
 , k = 1, 2, … , m , 

Mk =
{

n + 1, pk
1
, … , pk

�k
, n + 1

}
 , wherepk

j
∈ { 1, 2, , .. n}, j = 1, .. , �k , 

�k ∈ {1, .., n} ( m and �k are not fixed beforehand), which comply with the following 
constraints.

and that have minimal total distance (objective function)

The formulated problem represents a combinatorial optimization NP-hard problem 
(Bodin et al. 1983; Toth and Vigo 2002). The generalization of the VRP (1)-(2) for uncer-
tain and extreme environments will be presented in Sect. 3.

m⋃
k=1

Mk = I;Mk ∩Ms = { n + 1},

(1)k, s ∈ { 1, 2, .. , m }, k ≠ s;

�k∑
j=1

Epk
j
≤ Q;

Distance
(
Mk

)
= �n+1, pk

1

+ �pk
�k
, n+1 +

�k−1∑
j=1

�pk
j
, pk

j+1
≤ D, k = 1, .. , m;

(2)g1 ≡
m�
k=1

Distance
�
Mk

�
=

m�
k=1

⎛⎜⎜⎝
�n+1, pk

1

+ �pk
�k
, n+1 +

�k−1�
j=1

�pk
j
, pk

j+1

⎞⎟⎟⎠
→ min
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Various difficulties and problems of movement inevitably lead to the imprecision and 
uncertainty of vehicle motion on the routes. For the VRPs presented in this work, when 
observing extreme conditions on roads, stochastic models may not work because the prob-
ability distributions of some input parameters are unknown due to their vague nature (an 
overview of the stochastic VRPs is presented in Oyola et  al. (2016). These parameters 
include transport movement time, representing a total value of customer-to-customer 
movement times. Evaluating and considering the route reliability is also required when 
various obstacles can hinder the movement on the route. For a vehicle, let’s call an “admis-
sible route” a closed route, which satisfies the restrictions of maximum distance and maxi-
mum capacity. If the vehicle is at customer p of an admissible route, conditional probabil-
ity distribution of shifting to customer q—

{
Ppq

}
q∈I�{p}

 is unknown, as well as time spent 
on moving. In extreme situations, it is impossible even to evaluate these distributions due 
to a lack of appropriate statistical data.

In the stated approach, we use expert knowledge to introduce the following input 
parameters:

A.	 What will be an approximate time of motion of a vehicle from customer p to customer 
q ? Let us denote the value by 𝜏pq . This is a characteristic of the first pole of the expert 
information—information imprecision;

B.	 What is a possibility that a vehicle will not be able to move from customer p to customer 
q ? Let us denote this value by �pq, 0 ≤ �pq ≤ 1 . So, 

{
�pq

}
pq,q∈I−{p}

 reflect on the possible 
impediments on the roads. This is the second pole of expert information—information 
uncertainty;

We can generate approximate (fuzzy) times of movements between customers and 
depot points based on Google Maps Direction API, which gives approximate travel times. 
Google Maps service can also take into consideration the current traffic on the roads and 
provide approximate times based on that information. Generally, Google can provide three 
type of travel times:

–	 So called “best guess”: refers to the time that is the best regarding the estimates of aver-
age statistical and live stream of traffic;

–	 “Pessimistic”: refers to the time that exceeds the real motion time on most days, though 
accidental cases with particularly overloaded traffic may return greater value;

–	 “Optimistic”: refers to the time that does not exceed the real-time on most days, though 
accidental cases with particularly free traffic may return lesser value;

Based on these three values we can build a triangular fuzzy number (Dubois and Prade 
1988), which will represent fuzzy times of movements between the points (customers, plus 
depot). The experts can modify 𝜏pq = (pessimistic, bestguess, optimistic) values for the 
roads, for which they will have information about the high traffic or other types of delays.

By default, values �pq can be set to zero (or to some small number) and experts can 
modify them for the routes, for which they will have information about the impediments. 
Usually, experts (e.g., distribution network dispatchers) provide �pq possibility values using 
some scale, convenient for them (e.g., 10-point grade scale—{1, 2, …, 10}) and later these 
values are normalized into [0, 1]. Based on experts’ knowledge reflections on a routing net-
work in extreme conditions, an interactive simulation algorithm for generating a possibility 
distribution of movement see in Appendix A.
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4 � Construction of bi‑criteria partitioning model for the new VRP

Assumption of fuzziness in the VRP under extreme conditions is a necessary action for mod-
elers, because usually, there are insufficient objective input data, for the starting of classical or 
stochastic vehicle routing modeling. In extreme conditions, the complexity of the description 
of vehicles’ movement on routes may cause by two poles: the imprecision of time of move-
ment and the uncertainty of the possibility of movement. Most of the existing researches of 
fuzzy vehicle routing modeling considers the imprecise nature of different parameters (trans-
portation costs, movement time, service windows, etc.) by representing them as fuzzy val-
ues. Therefore, aggregation results, developed in such researches, contain only one pole of 
expert’s imprecision information. An efficient aggregation of information, contained in these 
two poles, in new objective functions, is the main goal of modern fuzzy vehicle routing mod-
eling for the decreasing of decision-making risks in the optimal planning of routes network for 
humanitarian and other type aids from distribution centers to demand points.

It has been noted that most of the existing researches of FVRP (discussed in Sect. 1) con-
siders the imprecise nature of different parameters (transportation costs, movement time, ser-
vice windows, etc.) by representing them as fuzzy numbers. When the movement (travel) on 
routes is complicated due to different reasons, these fuzzy numbers represent only one pole 
of expert information—called information imprecision (Ghvaberidze and Machaidze 1989; 
Liu 2006). Thus, existing researches ignore the second pole of expert information—uncer-
tainty, represented by a fuzzy (monotone) measure, in our case a possibility measure (Sirbi-
ladze 2013; Wang and Klir 2009). It is important to consider uncertainty when we introduce 
expert judgment of the possibility of vehicle movement on routes in FVRP models. This is the 
primary reason why the existing FVRP models are less reliable for optimal route planning in 
extreme conditions on the roads. This was revealed during the research of fuzzy covering and 
fuzzy partitioning problems in uncertain and extreme environments performed by the authors 
of this paper (Sirbiladze 2013; Sirbiladze et al. 2009, 2014a, b, c, 2010a, b, 2011).

Considering both poles of expert information—imprecision and uncertainty, we can con-
struct a new criterion for VRPs in extreme environments. The criterion will serve for mini-
mizing the infeasibility of timely movement on the routes. It gives preference to those routes 
which are more realistic than the others.

As stated above, different impediments on the roads can be described by two parameters: 
fuzzy time of movement and possibility of failure of movement between points. Let T̃ = {𝜏pq} 
be the matrix of triangular fuzzy numbers—fuzzy times of movement from customer p to 
customer q and Π = {�pq} be the matrix of possibility levels of failure of movement from cus-
tomer p to customer q in extreme conditions on the roads (p, q ∈ {1, 2, ..., n + 1}).

Suppose, that the expert evaluation of the movement time from customer p to customer q is 
represented by the positive triangular fuzzy number 𝜏pq =

(
𝜏1
pq
, 𝜏2

pq
, 𝜏3

pq

)
 , the membership 

function of which is defined by the following formula (Dubois and Prade 1988):

The closed route turns to be feasible if the difference between the expected travel time 
and the planned one is minimal. Simply saying, when the delay is minimal. This factor will 

(3)𝜇𝜏pq
(t) =

⎧⎪⎪⎨⎪⎪⎩

0; t ≤ 𝜏1
pq

t−𝜏1
pq

𝜏2
pq
−𝜏1

pq

; 𝜏1
pq

< t ≤ 𝜏2
pq

𝜏3
pq
−t

𝜏3
pq
−𝜏2

pq

, ; 𝜏2
pq

< t ≤ 𝜏3
pq

0; t ≥ 𝜏3
pq
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be used in constructing the second criterion within the framework of this paper—minimiz-
ing the infeasibility of vehicle movement on closed routes.

With the consideration that the bigger the speed of movement is, the smaller is the 
imprecision related to the timely movement between the points (customers and depot). We 
define the imprecision of movement time between customers p and q with the inverse value 
of the fuzzy movement speed:

Finally, the imprecision of movement time between customers p and q as a normalized 
value of 𝜓̃pq is defined as

where 𝜓̃𝑚𝑎𝑥{𝜓̃pq}
max  , p, q ∈ {1, 2, ..,n + 1}.

Let us also normalize the matrix of the possibility levels of failure of movement between 
customers p and q by using denominator �Max = ���{�pq} , p, q ∈ {1, 2, ..,n + 1} , to satisfy 
the requirement max

p,q
{�pq} = 1.

Let us assume M =
{
n + 1, p1, p2, ..., pk, n + 1

}
 is some closed route and introduce the 

set of arcs of the route M , denoted by A(M):

1 2 … k + 1

n + 1 → p1 p1 → p2 … pk → n + 1

We consider 𝛿pq and �pq , p, q ∈ {1, 2, ..,n + 1} , quantities for each closed route M:

We say that a closed route M is as feasible as small are both—𝛿pq (imprecision) and 
�pq (uncertainty) values. For the construction of the infeasibility level as aggregation 
information of the movement on the closed route, we use finite Choquet integral (Choquet 
1954), which is one of the most stable aggregation tools for condensation of imprecision 
and uncertainty represented in expert data (Kandel 1978; Sirbiladze et  al. 2019, 2018). 
Therefore, we use this aggregation operator for the definition of the infeasibility level of 
the movement on the closed route.

For the construction of the infeasibility level of the movement on the closed route, we 
should aggregate both poles of expert information: imprecision related to the movement 
fuzzy times between customers ( ̃𝛿pq values) and uncertainty related to the possible compli-
cations on the route between customers ( �pq values). Heuristic procedures of the generation 
of closed routes (see Sect. 4.1) usually create interactive chains of points (routes). There-
fore, an aggregation function cannot be additive like mathematical expectation or other 
additive instruments. We use Choquet averaging aggregation operator (Choquet 1954) 
as a non-additive and monotone expectation operator (Kandel 1978). Choquet averaging 
aggregation operator not only considers the importance of the arguments or their ordered 

𝜓̃pq =
1

Ṽpq

=
𝜏pq

𝜌pq
.

𝛿pq =
𝜓̃pq

𝜓̃max

,

(4)
⎛⎜⎜⎝

1 2 ... k + 1

𝛿1 = 𝛿n+1,p1 𝛿2 = 𝛿p1,p2 ... 𝛿k+1 = 𝛿pk ,n+1
𝜋1 = 𝜋n+1,p1 𝜋2 = 𝜋p1,p2 ... 𝜋k+1 = 𝜋pk ,n+1

⎞⎟⎟⎠
.
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positions but also reflects the interactions between combinations of points (customers) on a 
closed route.

Definition 2  A fuzzy infeasibility level of the movement (FILM) on the closed route M is 
a Choquet integral of the triangular fuzzy valued − 𝛿pq function relative to the possibility 
measure (denoted by g� ) defined by the possibility distribution �M ≡ {

�1,�2, ...,�k+1
}
:

where A(M) = {a1, a2, ..., ak+1} is the set of the arcs of closed route M , 
A∗(M) = {a∗

1
, a∗

2
, ..., a∗

k+1
} is the permutation of elements of A(M) , which orders 

𝛿∗
i
≡ 𝛿(a∗

i
) values of triangular fuzzy valued function 𝛿M in non-decreasing order; 

A∗
i
(M) ≡ {a∗

i
, a∗

i+1
, ..., a∗

k+1
} , A∗

k+2
(M) ≡ � , ���

l=k+2,k+1
{�∗

l
} ≡ 0.

Since the 90  s of the past century, the min–max (pessimistic-optimistic, dual) type 
aggregation fuzzy technologies were introduced in the methods of expert data aggrega-
tions. In our case, for introducing a new criterion in FVRP for the construction of fea-
sible closed routes in extreme conditions on the roads we use the min–max aggregation 
modeling.

Let M =
{
M1,M2, ..., Mm

}
 be the set of all admissible closed routes. Any of its subsets 

can be described with Boolean vector x =
{
x1, x2, ..., xm

}
 , where.

We can define the overall fuzzy infeasibility level of vehicle movement on the closed 
routes M′ as a maximum of fuzzy infeasibility levels of its closed routes:

Finally, let us define the bi-criteria partitioning problem on M . In this problem we con-
sider the partitioning of closed routes, satisfying two criteria: the total distance traveled 
and the fuzzy infeasibility of motion on these routes are minimal:

(5)
ILM̃(M) =(Ch)∫ A(M)

𝛿Mdg𝜋 =
∑k+1

i=1
𝛿∗
i

[
Pos(A∗

i
(M)) − Pos(A∗

i+1
(M))

]

=
∑k+1

i=1
𝛿∗
i

[
𝑚𝑎𝑥

l=i,k+1
{𝜋∗

l
} − 𝑚𝑎x

l=i+1,k+1
{𝜋∗

l
}
]
,

xj =

{
1, ←−−→ ifMj ∈ M�

0, ifMj ∉ M�
, j = 1, ..., m.

(6)ILM̃(M�) = max
j=1,m

{ILM̃(Mj) ⋅ xj}.

g1 =

m∑
j=1

Distance
(
Mj

)
⋅ xj → min,

g̃2 = max
j=1,m

{
ILM̃

(
Mj

)
⋅ xj

}
→ min,

m∑
j=1

apjxj = 1, p = 1, ..., n,

(7)xj ∈ {0, 1}, j = 1, ...,m,
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where apj = 1 if customer p belongs to the route Mj , otherwise aij = 0 ; p = 1, ..., n , 
j = 1, ...,m.

5 � Generation of promising routes

During the last years, among many techniques applied to the solution of multi-objective 
problems some authors (Ehrgott 2005; Ehrgott and Gandibleux 2002; Jozefowiez et  al. 
2008a) discern three general groups: scalar methods, Pareto methods, and methods that 
are beyond these two groups. The first group consists of those methods which utilize inten-
sive mathematical transformations, for example, a weighted linear aggregation. The second 
group consists of those methods which utilize a notion of Pareto dominance concerning the 
quality of a solution or comparison of solutions. The last group comprises those techniques 
which consider the different objectives independently. Our approach to the solution of the 
built BC-VRP belongs to the second group and to the class of two-phase strategies [clas-
sification by Laporte et al. (2000)]. We can observe similar methods of solving VRPs with 
partitioning problems in Renaud et al. (1996); Ropke and Cordeau (2009). The promising 
routes can be constructed in different ways. Here we present just one of the variants which 
is based on an analysis of customers’ demands and their locations.

The promising routes are formed as n -dimensional binary vectors, in which the p-th 
component equals 1 if and only if point p is included in the route.

Algorithm 1 Generating Promising Routes  Stage 1. Building individual routes.

1.	 For each point (customer) p ∈ {1, 2, ... , n} an individual route is constructed, which 
together with point p may include the following points:

a.	 Points located in the close neighborhood either to the point p or to the depot;
b.	 Points located on the shortest route between the point p and the depot;

The route is being enriched with new points until one of the constraints (1) are violated;
Stage 2. Extension of the routes.

1.	 Extension #1. If satisfying constraints (1), the following type of routes are added to the 
set of promising routes:

a.	 (n + 1, p, n + 1) , p ∈ {1, 2, .. , n}

b.	 (n + 1, p, q, n + 1)p, q ∈ {1, 2, .. , n} , p ≠ q

2.	 Extension #2. The following type of routes are included in the set of promising routes:

a.	 In every route, except the routes of type (n + 1, p, n + 1) , the point with the biggest 
demand is replaced with the points located in the close neighborhood to it if the 
constraints (1) are not violated;
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Remark 1  After the new promising route is constructed, it is checked against the already 
existing promising routes. In case of coincidence, the route is rejected.

Remark 2  For finding the optimal tour on the route (order of visiting the points), the 
Traveling Salesman Problem (TSP) is solved for each generated promising route. As it is 
known, TSP is an NP-hard problem, but often in practical situations the number of points 
in a single route is not big, and finding the optimal solution quickly is not a problem.

Remark 3  The extension (1.a) guarantees the existence of at least one partitioning. We 
obtain a nonempty set of feasible solutions to the partitioning problem.

Construction of promising routes happens until their number exceeds some limit, fixed 
in advance, and is considered as a parameter of the algorithm. In Ghvaberidze et al. (1985) 
the practice showed that 5n could be taken as a value of the limit, where n is the number of 
customers, but taking into account computers’ capabilities today, we can set a much bigger 
limit value.

6 � "‑Constraint approach of solution of the constructed bi‑criteria 
partitioning problem

After generating the promising routes, we have to solve the BCPP (7). Generally, for 
multi-objective optimization problems, we can rarely find the solutions which satisfy 
(minimize) all criteria simultaneously. Therefore, usually, we have to find in some sense 
compromise solutions. From here we consider real numbers as TFNs—� = (�, �, �) and 
all following images of functions are considered as a lattice—Ψ+ and operations on 
numbers as operations on TFNs.

Below we consider the following problem:

where X is the set of all workable solutions for the partitioning problem, which means, the 
elements of X satisfy the constraints given in (7).

Definition 3  x ∗∈ X is called an efficient solution, if there does not exist x� ∈ X , for which 
gi(x

�) ≤ gi(x ∗), i = 1, 2; and where at least one inequality is strict.
Let P(X) be the set of all Pareto-optimal solutions. Let Y  be the objective space—the 

image of the set X with respect to g ∶ X → (Ψ+ × Ψ+).

Definition 4  The point g ∗= (g1(x ∗), g2(x ∗)), x ∗∈ P(X) of the objective space is called 
non-dominated. The set of all non-dominated points is called Pareto front P(Y) = g(P(X)).

Definition 5  x ∗∈ X element is called a weakly efficient solution, if there doesn’t exist 
x� ∈ X such that gi(x�) < gi(x ∗), i = 1, 2.

g(x) =
(
g1(x), g2(x)

)
→ min,

x ∈ X,
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Suppose that S(X) is a set of all weakly efficient solutions. It is obvious that P(X) ⊂ S(X) . 
Let us also define two important points from the objective space—Ideal ( gI ) and Nadir 
( gN ) points, which we use below:

where gI
1
= min

g∈Y
g1 and gI

2
= min

g∈Y
g2 , and

where gN
1
= min

g∈Y
{g1 ∶ g2 = gI

2
} and gN

2
= min

g∈Y
{g2 ∶ g1 = gI

1
}.

These points define Ideal and Nadir bounds on the values of efficient solutions.
Various methods are being used in discrete optimization problems to find efficient solu-

tions (Ehrgott and Gandibleux 2002). Branch and bound type algorithms are among them. 
For solving the minimum covering problem in Ehrgott (2005), a well-known weighted sum 
scalarization method is used, which solves different single objective sub-problems gener-
ated by a linear scalarization of the multiple objectives. Therefore, we solve the sub-prob-
lems having an objective function �g1 + (1 − �)g2 , � ∈ [0, 1] . However, this method has 
some disadvantages:

1.	 In the general case, the method cannot generate exact Pareto front (although it should 
be mentioned, that in practical situations, the number of Pareto-optimal solutions is big 
and we do not always need to generate all of them);

2.	 We can get the same solutions for different values of � , which means computational 
inefficiency of the method;

3.	 It is necessary to have all objective functions scaled to a common scale (switch to 
dimensionless values) before forming the weighted sum (scalarized single objective 
function);

In this paper, for solving problem (7), we use the approach utilizing � -constraint method 
(Bérubé et al. 2009), which is reputed to be fine in a solution of multi-objective combina-
torial optimization problems. By transforming all but one objective into constraints this 
method creates �-constraint problems, which represent single objective sub-problems. 
The upper bounds of these constraints are given by the �-vector and, by varying it, the 
exact Pareto front can theoretically be generated. However, in real-world cases, the number 
of sub-problems may be large and construction of the efficient scheme of variation for �
-vector may be difficult, therefore, generally speaking, it is hard to find exact Pareto front 
and heuristic schemas are used (Bérubé et al. 2009). But, as we will see later, in certain 
cases, such as bi-criteria optimization problems, �-constraint method can generate the exact 
Pareto front.

There are optimization problems where �-constraint method was effectively applied, 
such as a set partitioning problem (SPP) (Ehrgott and Ryan 2000), a special class of the 
TSP (Bérubé et  al. 2009), facility location problem (Leitner et  al. 2015). In Mavrotas 
(2009) the author presents a successful application of the �-constraint method for multi-
criteria optimization problems and shows how we can avoid generating weakly efficient 
solutions.

Let us discuss �-constraint method for problem (7) in detail. In a bi-criteria optimiza-
tion problem, the idea of the method is to minimize one of the objective functions, while 
the second objective function is transformed into a constraint with some � parameter. By 

gI = (gI
1
, gI

2
)

gN =
(
gN
1
, gN

2

)
,
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varying the � parameter and solving the corresponding sub-problems, we obtain weakly 
efficient solutions. And in the case of the uniqueness of the solution, efficiency (Pareto-
optimality) of the solution is guaranteed (Bérubé et al. 2009; Ehrgott 2005). Depending 
on the choice of criteria, which will be transformed into constraint, we can get the fol-
lowing two sub-problems:

Let us denote these sub-problems by Pk(�m) . Therefore, for the bi-criteria problem 
we have two sub-problems: P1(�2) and P2(�1).

Let us now consider the algorithm for finding the Pareto front of bi-criteria optimi-
zation problems with integer arguments. In this algorithm, a sequence of � -constraint 
problems are solved, where � is decreased by a constant value Δ . Setting Δ = 1 guar-
antees that in the case of integer objective values no solution will be missed. The cor-
rectness of the algorithm is proved in Bérubé et al. (2009). Let us note that if objective 
functions don’t have integer values (as in the case of (7)), we can apply 10k type multi-
plier, where the value of k depends on the needed precision of the objective function’s 
values.

Algorithm  2 Exact Pareto Front of Bi‑criteria Optimization Problems with Integer 
Objective Values 

1.	 Compute the Ideal and Nadir points;
2.	 Set k = 1, m = 2 or k = 2, m = 1;
3.	 Set P(Y) = {(gI

k
, gN

m
)} and �m = gN

m
− Δ (Δ = 1);

4.	 While �m ≥ gI
m
 , do:

a.	 Solve the sub-problem Pk(�m) through branch and cut method and add the optimal 
solution value (gk ∗, gm ∗) to P(Y);

b.	 Set �m = gm ∗ −Δ;

5.	 Remove dominated points from P(Y) if required.

The step #5 is needed since some dominated points might be found throughout this 
procedure: there might exist many solutions to Pi(�j) with different values for the objec-
tive function j . Generally, we have two options for removing dominated solutions:

(a)	 Since all non-dominated points will be found after algorithm stops, we can simply 
exclude the non-efficient solutions to obtain the exact Pareto front;

(b)	 We can solve both sub-problems P1(�2) and P2(�1) at every iteration of the algorithm. 
It is shown by Chankong and Haimes (1983), that in this case we obtain Pareto-optimal 
solution;

Although option (b) guarantees Pareto-optimality and quantity of sub-problems is 
reduced to the exact quantity of points on the Pareto front, these sub-problems may be 

gk(x) → min,

gm(x) ≤ �k,

k,m = 1, 2; k ≠ m; x ∈ X.
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more complicated and often require more computational time as compared to the option 
(a).

Since we use branch and bound type algorithm in single objective optimization prob-
lems, ε-constraint method fits our multi-objective optimization problem (7) particularly 
well since it adds new constraints to a branch and bound procedure and this is quite natural 
because it often decreases the size of the search tree.

Our algorithm is built on Knuth’s “DLX” algorithm (2000) and uses DLX technique, 
which effectively consumes computer memory. This is achieved by using the dynamic 
memory data structures, which allows us to remove and restore the elements very easily 
and quickly, without creating the copy of the whole data. So, during the navigation in a 
search tree, we do not have to copy and save the entire state for backtracking at each level, 
which might also be quite time-consuming.

The modified variant of DLX algorithm offered in this work solves MCPP and MCCP, it 
can be parallelized and distributed on a multiple-processor platform. Proceeding from this 
algorithm, we built a new algorithm for the ε-constraint method, where the exact Pareto 
front can be generated for integer-valued BCPP.

We have made slight modification to our algorithm to exclude dominated solutions: 
For the partitioning problems with a single objective function (single criterion), our algo-
rithm finds all optimal solutions. This is implemented in the following way: if the objec-
tive function’s value on the current solution equals the objective function’s value on the 
saved optimal solution(s), the current solution is added to the set of saved optimal solu-
tions. Obviously, if the current solution gives a better value for the objective function, the 
set of saved optimal solutions is emptied and the current solution is saved as the optimal 
solution. We can effectively modify the algorithm for the ε-constraint method in a way, that 
it will not save dominated solutions and it will output Pareto-optimal solutions only: on the 
step, where we compare the objective function’s value on the current solution to the objec-
tive function’s value on the saved optimal solution(s), if we find that the values are equal, 
we are comparing the values of the second objective function on the same solutions and we 
keep the solution,, which assigns better value to it.

For the convenient and simple presentation of the new FVRP methodology the 
Scheme 1 is constructed.

7 � An illustrative example

For illustration purpose we present an example, which is based on test data from TSPLIB 
(online library of sample instances for different combinatorial optimization problems). Our 
example has 18 customers (labeled “1”, “2”, …, “18”) and a depot (labeled “19”). The 
demand for goods for each customer is given in Table 1. The matrix of distances between 
the points (customers, depot) is shown in Table 2. The constraints of maximum capacity 
and maximum mileage for the vehicles are Q = 100 and D = 200 , respectively.

Let us solve the VRP with the input data given above, considering only the first, 
classic criterion of minimizing total distance traveled ( g1 ) and also satisfying the con-
straints. As discussed in Sect. 4.1, we should generate at least 5n = 5 ⋅ 18 = 90 promis-
ing routes to get reasonable solutions, so let u generate 90 promising routes following 
the procedures given in Sect. 4.1. After generating the promising routes, we can solve 
the single-criterion partitioning problem and find the solution, which minimizes the 
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total distance traveled while visiting each of the customers and delivering demanded 
goods. We get the following optimal solution:

Total distance ( g1 ): 288. Closed routes: (1) 19-11-14-12-3-17-16-8-19; (2) 19-18-5-
13-15-9-7-19; (3) 19-4-10-2-6-19; (4) 19-1-19;

Now let us imagine that there is information about some impediments on the cen-
tral highway, which is part of the routes of the solution given above, with minimal total 

Scheme 1   The scheme of the FVRP methodology

Table 1   Customers’ demands—{Ep}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 30 16 23 11 31 15 28 14 8 7 14 19 11 26 17 6 15
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distance. Specifically, based on the information, there might be some obstacles on the roads 
between the customers 2 and 6, 4 and depot, 5 and 18, 11 and 14. Taking into account 
the information of routing network dispatcher (by the interactive Algorithm 3) the level of 
impossibility of a vehicle movement on the problematic road is equal to 0.9. Let us also 
generate the matrix of movement times, based on the matrix of distances, and apply some 
randomization factor (at this stage, let us assume, that the movement times are more or less 
proportional to the distances). So, having considered the matrix of approximate movement 
times given in Table 3 and the matrix of possibilities of road impasses given in Table 4 
and, using the formula (6), and calculating the infeasibility level of the solution given 
above ( g2 ), we get the value 0.836853, which indicates on a large risk of ability to imple-
ment the solution in practice.

As seen in the Table 4, small possibilities (with the value 0.1) are taken for the roads for 
which there is no information about impediments. This is done in order to avoid vanishing 
second multipliers in the sum of formula (5), which would cause ignoring the informa-
tion contained in the first multipliers ( ̃𝛿∗

i
 ) of the same sum. Instead of 0.1 one can take any 

small value greater than zero (e.g., 0.001).
The same problem (given in Tables 1, 2, 3 and 4) as bi-criteria optimization problem 

(7) may have other solutions, with smaller infeasibility levels of movement on the routes, 
which means smaller risks of implementation failure of these solutions. For example, 
the following solution has a bit longer total distance, but much better feasibility level of 
movement:

Total distance: g1=306. Expectation of fuzzy Infeasibility level: g2=0.101117. 
Closed routes: (1) 19-10-8-16-17-3-12-14-19; (2) 19-11-4-1-6-18-19; (3) 19-2-19; (4) 
19-5-13-15-9-7-19;

Actually, this solution, as well as the previous one, is Pareto-optimal solution.
And finally, one can see what will be the complete Pareto front when some impediments 

are expected not only on the above mentioned four roads, but on others too. For this reason, 
let us replace Tables 4 with 5, which has more possible impediments on the roads. Now, 
solving the problem by the new approach and generating again 90 promising routes, we get 
the Pareto front, presented on Fig. 1.

Below, one may observe the closed routes for each Pareto-optimal solution, presented 
on Fig. 1.

Solution #1: Total distance: g1=288. Expectation of fuzzy infeasibility level: g2
=0.833292. Closed routes: (1) 19-11-14-12-3-17-16-8-19; (2) 19-18-5-13-15-9-7-19; (3) 
19-4-10-2-6-19; 4) 19-1-19;

Solution #2: Total distance: 294. Expectation of fuzzy infeasibility level: 0.640664. 
Closed routes: (1) 19-11-14-12-3-17-16-8-19; (2) 19-6-19; (3) 19-7-2-10-4-1-19; (4) 
19-9-15-13-5-18-19;

Solution #3: Total distance: 297. Expectation of fuzzy infeasibility level: 0.612624. 
Closed routes: (1) 19-3-17-16-8-2-19; (2) 19-6-19; (3) 19-9-15-13-5-18-19; (4) 
19-7-10-12-14-11-4-1-19;

Solution #4: Total distance: 307. Expectation of fuzzy infeasibility level: 0.587578. 
Closed routes: (1) 19-14-12-3-17-16-8-19; (2) 19-5-2-10-11-4-1-19; (3) 19-18-13-15-9-7-
19; (4) 19-6-19;

Solution #5: Total distance: 363. Expectation of fuzzy infeasibility level: 0.528593. 
Closed routes: (1) 19-14-12-3-17-16-8-19; (2) 19-13-15-9-2-19; (3) 19-1-4-10-7-6-19; (4) 
19-5-18-19; (5) 19-11-19;
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Solution #6: Total distance: 487. Expectation of fuzzy infeasibility level: 0.473878. 
Closed routes: (1) 19-18-5-13-15-9-7-19; (2) 19-3-17-16-8-2-19; (3) 19-4-19; (4) 19-6-19; 
(5) 19-1-19; (6) 19-11-19; (7) 19-10-19; (8) 19-14-19; 9) 19-12-19;

Solution #7: Total distance: 519. Expectation of fuzzy infeasibility level: 0.442286. 
Closed routes: (1) 19-3-17-16-8-2-19; (2) 19-4-19; (3) 19-6-19; (4) 19-5-13-15-9-7-19; (5) 
19-1-19; (6) 19-11-19; (7) 19-10-19; (8) 19-14-19; (9) 19-12-19; (10) 19-18-19;

The solutions were calculated in less than 0.5 s using desktop computer (Intel(R) Core 
(TM) i7 CPU 860 @ 2.80 GHz, 4 GB RAM). As mentioned above, for real-life scenarios 
much more promising routes can be generated and since the RAM consumed by the algo-
rithm almost does not depend on the size of initial matrix of promising routes, it is just the 
matter of time for obtaining better results. The decision-maker person may define the wait-
ing time, acceptable for him/her. For example, if the solutions should be calculated in 10 s 
maximum, then must be generated around 1000 promising routes and still solve the parti-
tioning problem using the exact algorithm. This means that tens of millions of partitionings 
will be evaluated and the optimal ones will be selected.

Table 3   The matrix of fuzzy travel times (parts 1 and 2)—{𝜏pq}

1 2 3 4 5 6 7 8 9

1

2 14; 21; 28

3 20; 26; 32 18; 27; 36

4 11; 15; 19 29; 37; 45 14; 23; 32

5 19; 30; 41 8; 15; 22 20; 37; 54 22; 43; 64

6 9; 13; 17 6; 10; 14 23; 29; 35 16; 26; 36 12; 17; 22

7 14; 25; 36 3; 4; 5 19; 26; 33 20; 29; 38 6; 9; 12 7; 11; 15

8 14; 22; 30 13; 17; 21 7; 11; 15 23; 37; 51 19; 36; 53 19; 25; 31 11; 19; 27

9 18; 31; 44 10; 13; 16 24; 32; 40 33; 45; 57 10; 15; 20 18; 28; 38 11; 13; 15 10; 18; 26

10 5; 9; 13 12; 23; 34 12; 16; 20 10; 14; 18 20; 28; 36 12; 22; 32 19; 26; 33 11; 18; 25 16; 27; 38

11 19; 23; 27 30; 37; 44 19; 25; 31 5; 8; 11 30; 43; 56 28; 35; 42 28; 44; 60 26; 38; 50 37; 59; 81

12 14; 19; 24 16; 25; 34 7; 11; 15 9; 14; 19 39; 49; 59 22; 33; 44 22; 35; 48 15; 19; 23 33; 43; 53

13 26; 48; 70 18; 25; 32 28; 41; 54 27; 49; 71 7; 10; 13 16; 25; 34 14; 19; 24 29; 44; 59 17; 22; 27

14 12; 21; 30 21; 33; 45 12; 19; 26 6; 11; 16 29; 42; 55 31; 41; 51 25; 41; 57 12; 22; 32 23; 41; 59

15 21; 30; 39 13; 22; 31 30; 41; 52 43; 59; 75 7; 9; 11 16; 29; 42 8; 12; 16 16; 27; 38 10; 13; 16

16 22; 30; 38 20; 28; 36 8; 10; 12 27; 33; 39 21; 37; 53 21; 39; 57 24; 33; 42 6; 9; 12 14; 22; 30

17 35; 46; 57 35; 44; 53 9; 13; 17 34; 45; 56 37; 50; 63 27; 41; 55 21; 38; 55 10; 16; 22 18; 33; 48

18 14; 22; 30 8; 13; 18 18; 35; 52 26; 36; 46 6; 7; 8 5; 9; 13 10; 13; 16 18; 31; 44 16; 23; 30

19 10; 15; 20 18; 26; 34 33; 43; 53 19; 25; 31 18; 26; 34 10; 14; 18 20; 27; 34 19; 36; 53 26; 45; 64

10 11 12 13 14 15 16 17 18

11 12; 23; 34
12 8; 11; 14 16; 21; 26
13 32; 47; 62 44; 57; 70 34; 56; 78
14 8; 14; 20 8; 11; 14 5; 7; 9 47; 60; 73
15 25; 34; 43 26; 50; 74 30; 47; 64 5; 7; 9 27; 47; 67
16 17; 28; 39 35; 45; 55 14; 25; 36 25; 45; 65 21; 33; 45 22; 35; 48
17 14; 25; 36 38; 51; 64 13; 20; 27 31; 59; 87 23; 29; 35 29; 47; 65 5; 8; 11
18 22; 31; 40 35; 55; 75 33; 47; 61 14; 19; 24 32; 50; 68 15; 23; 31 20; 33; 46 30; 44; 58
19 16; 26; 36 31; 41; 51 28; 37; 46 24; 39; 54 27; 39; 51 23; 39; 55 32; 51; 70 28; 47; 66 17; 22; 27
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Table 4   The matrix of possibility levels of movement failure (impossibilities of movement)—{�pq}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2 0.1
3 0.1 0.1
4 0.1 0.1 0.1
5 0.1 0.1 0.1 0.1
6 0.1 0.9 0.1 0.1 0.1
7 0.1 0.1 0.1 0.1 0.1 0.1
8 0.1 0.1 0.1 0.1 0.1 0.1 0.1
9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
14 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1
15 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
17 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
18 0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
19 0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 5   The matrix of possibility levels of movement failure (impossibilities of movement)—{𝛿pq}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2 0.9
3 0.7 0.9
4 0.3 1 0.2
5 0.2 0.3 0.5 0.7
6 0.8 0.9 0 0.5 0.7
7 0.3 0.6 0 1 0.6 0.7
8 0.2 0.4 0.7 0.1 0.8 0.7 0.2
9 0.2 0.4 0 0.2 0.4 0 0 0.5
10 0.9 0.6 0.9 0 0.9 0.8 0.7 1 0.8
11 0.5 0.7 0 0.5 1 0.9 0.1 0.1 0.5 0.4
12 1 0.2 0 0.3 0.2 0.7 0.4 0.9 0.1 0.6 0.4
13 0.9 0.7 0.1 0.4 0.2 0.7 0.2 0.3 0.8 0.8 0.1 0.8
14 0.9 0.2 0 0.4 0.7 0.2 0.2 0.8 0.5 0.7 0.9 0.7 0.5
15 0.4 1 0 0.1 0.2 0.6 0.5 0.4 0.7 0.3 0.6 0.3 0.7 0.3
16 0.4 0.4 0.2 0.2 1 0.1 0.8 0.2 0.1 0.2 0.2 0.5 0.7 0.2 0.3
17 0.3 0.5 0.1 0.6 0.4 0.7 0.2 0.8 0 0.7 0.9 0.1 0.6 0.4 1 0.2
18 0.8 0.4 0.4 0.4 0.9 1 0 0.9 0.3 0.5 0.3 0.1 0.5 0.2 0.1 0.8 0.3
19 0.4 0.5 0.7 0.9 0.2 0.7 0.7 0.3 0.5 0.1 0.2 0.4 0.2 0.4 0.3 0.7 1 0.3
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As a final remark, we can admit that, after generating the promising routes, our algo-
rithm of partitioning can be stopped any time and it will provide so called “current” opti-
mal solution, based on already evaluated partitionings.

8 � Conclusion

With the growth of complexity of a system, the system expert always looks for cred-
ible decisions about system behavior to reduce the uncertainty and conflicts between the 
objects. As a result, there is a need to handle the fuzziness in the classical models and use 
the fuzzy models under extreme conditions. This study aims to present a new possibilistic 
method for the VRP with complicated motion on the routes as stated in Eq.  (7), which 
is an efficient tool for FVRP to minimize the decision-making risks the optimal planning 
of routes network. To address this, a new two-stage possibilistic bi-criteria optimization 
approach to solve the VRP is presented under extreme conditions. In the first stage, a new 
heuristic algorithm (in Algorithm 1) is created to generate the “promising routes” on the 
routing network. Hence, the conditional possibilities of vehicle movement are designed 
based on the efficient interactive Monte-Carlo simulation approach. The routing network’s 
dispatcher is included in the interactive regime (Algorithm 3, Appendix A). In the second 
stage, by utilizing the Choquet integral, two poles’ expert information—expected fuzzy 
times of vehicles’ movement on a closed route and impossibility of vehicles movement on 
a closed route are aggregated in this criterion. Together with the classic criterion, a new 
bi-criteria partitioning problem for the “promising” routes is defined and hence obtain their 
optimal solution by using �—constraint approach. An exact parallel algorithm for the parti-
tioning problem is implemented based on D. Knuth’s DLX technique and algorithm DLX. 
To demonstrate the working of stated approach, a numerical example has been considered 

Fig. 1   Objective space and Pareto front ( g1 , g2)
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in which optimal routes are constructed and compared for extreme conditions on the roads. 
Future studies plan to extend this approach for complex routing problems like VRP with 
time windows and q-rung orthopair triangular fuzzy environments. We also plan to use 
EDA (Estimation of Distribution Algorithm) approaches and combine it with the new exact 
algorithm for the cases of big distribution networks.

Appendix A

Simulation algorithm for the evaluation of possibility levels of vehicle 
movement on closed routes

Introduction

The possibility theory is grounded on a fuzzy set notion (Dubois and Prade 1988; Zadeh 
1978, 1965). A level of membership of an element in a set, as well as a level of possibility 
of the same element, can be any number of the unit interval [0, 1], and not only one of the 
two values {0,1} (Dubois and Prade 1988; Zadeh 1965).

The formalization of this definition has turned out very helpful in developing the prin-
ciples of applied intelligent systems which model the knowledge of experts in various 
spheres of man’s activity. The theory of fuzzy sets and the related possibility theory are 
significant tools for the solution of these problems.

The aim is to create the method of generation of levels of possibilities of vehicle move-
ment between the neighboring customers’ zones on routes network when the traffic is com-
plicated by extreme processes or phenomena and also when the absence of past statistical 
data makes it impossible to obtain a probability distribution of vehicle movement from 
one customer to another customer. In such situations, stochastic analysis (and the more 
so an exact method) cannot be used for determining the optimal routes of vehicle move-
ment. In that case, the possibility theory is applied when data on transport movement can 
be provided only by an expert. As different from stochastic or exact analysis, one of the 
advantages of the possibility theory consists in allowing us to simultaneously model the 
imprecision of expert’s incomplete information (in the form of a fuzzy set) and to quanti-
tatively characterize the uncertainty of the same incomplete information (in the form of a 
pair of numbers: “possibility” and “necessity” (Dubois and Prade 1988).

The methodology is based on the use of the concept of level sets (Toth and Vigo 2002) 
induced by the possibility distribution (Dubois and Prade 1988) on the set of customers 
lying in the neighborhood of a given customer. We construct the process of definition of 
level sets (defined by experts or routes network’s dispatchers, managers, and so on), which, 
in its turn, will provide the generation of possibility levels for vehicle movement from a 
given customer to a neighboring customer. Finally, we obtain the matrix of possibilities of 
vehicle movement between the neighboring customers.
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A matrix of movement possibilities

Often, in a large-scale customers’ network model, the construction of a movement possibil-
ity distribution will be reduced by determining a movement possibility distribution between 
zones created by customers with equal movement possibilities.

Let us assume that customers’ network can be divided into several disjoint zones, 
there in every such as zone movement possibilities able to be same equal level. Let 
Z(zo) =

{
z1, z2, ..., zno

}
 be the set of directly neighboring customers zones for some custom-

ers zone zo on the routes network. Denote by �(zo)
(
zi
)
= �

(
zi
) ≡ �i the conditional pos-

sibility levels of vehicle movement from the customers’ zone zo to the customers’ zone 
zi
(
i = 1, 2, ..., no

)
 . Without loss of generality, we may assume that the elements (zones) of 

the set Z(zo) are indexed so that �
(
zi
) ≥ �

(
zj
)
 if  i > j and �

(
zno

)
= 1 (i.e., the movement 

from zo inZ(zo) occurs with a maximal possibility level equal to 1).
We get the distribution of possibilities on the set of customers zones—Z(zo) . To this dis-

tribution, we may put into correspondence a fuzzy subset of the set Z(zo) that contains all 
customers zones, where the level of possibilities of vehicle movement is equal at least to 
𝛼(0 < 𝛼 ≤ 1) ∶ Z𝛼 =

{
z∕z ∈ Z(z0),𝜋(z) ≥ 𝛼

}
 . Note that Z𝛼2 ⊇ Z𝛼1 if 𝛼1 > 𝛼2.

Before we describe the procedure of determining the levels of possibilities 
0 ≤ �1 ≤ �2 ≤ ... ≤ �n0 = 1 , we will discuss a random experiment, in which the notion of a 
level set Z� is used. Then we can easily write the level sets.

for 0 < 𝛼 ≤ 𝜋1, Z𝛼 =
{
z1, z2, ..., zno

} ≡ Z1,

for 𝜋1 < 𝛼 ≤ 𝜋2, Z𝛼 =
{
z2, ..., zno

} ≡ Z2,

for 𝜋2 < 𝛼 ≤ 𝜋3, Z𝛼 =
{
z3, ..., zno

} ≡ Z3,

…………………………………
for 𝜋no−2 < 𝛼 ≤ 𝜋no−1, Z𝛼 =

{
zno−1, zno

} ≡ Zno−1,

for 𝜋no−1 < 𝛼 ≤ 𝜋no = 1, Z𝛼 =
{
zno

} ≡ Zno .

In the experiment, the values for � are chosen randomly (with uniform distribu-
tion on (0, 1) ). Then the probability that one of the customers of the set Zj will be cho-
sen as a point to which vehicle will move from the initial customers’ zone zo equals 
P
(
Zj
)
= �i − �i−1, j = 1, 2, ..., no;

(
�o ≡ 0

)
.

We suppose that in the process of construction of a closed route the choice of some 
customers’ zone zi from the set Zj is directly proportional to the inverse value of the 
expectation of movement fuzzy time between the customers’ zones zo and zi . We denote 
this value by ei ≡ EPos(𝜏ij) . Then to define these probabilities we use the definition of 
geometrical probability.

For the construction of the next step of the generation method we need is necessary to 
introduce the definition of a body of evidence that is well known as an instrument for creat-
ing decision-making structures for expert data (Klir and Wierman 1999; Shafer 1976).

Definition 6 

(a)	 A Basic Probability Assignment (BPA) on Z(zo) is a map m:2Z
(zo )

→ [0;1] , fulfilling the 
conditions:

(8)

P
�
zi∕Zj

� ≡ P{customers zone zi is chosen for the movment∕Zj} =

�
0, zi ∉ Zj

ei
−1

∑
zk∈Zj

ek
−1
, zi ∈ Zj

.
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	 (i)	 (i) m(∅) = 0,

	 (ii)	
∑

D⊂Zm(D) = 1.

(b)	 Every D ∈ 2Z
(zo ) for which m(D) > 0 is usually called a focal element of m . If ℑ denotes 

the set of all focal elements, then the pair < ℑ,m > is called a Body of Evidence.

Definition 7  Let m be a BPA on Z(zo) . The plausibility Pl and belief Bel measures associ-
ated to m are given by the formulas.

The relationship between m(D) and Bel(D) consists in the following—while m(D) 
describes the degree of evidence or belief that the element in consideration belongs to the 
set D alone (i.e. exactly to set D ), Bel(D) denotes the total evidence of the belief that the 
element belongs to D, as well as to many special subsets of D. The plausibility measure 
Pl(D) has a different sense: it characterizes not only the total evidence or belief that the ele-
ment in question belongs to set D or to any of its subsets, but also the additional evidence 
or belief associated with sets that overlap with D . Hence Pl(D) ≥ Bel(D).

As a result, the set sequence Zz0 = Z1 ⊃ Z2 ⊃ ... ⊃ Zno−1 ⊃ Zno creates the embedded 
consonant structure (Klir and Wierman 1999) of focal elements with the Basic Probability 
Assignment:

It is known (Klir and Wierman 1999) that for the consonant structure the plausibility 
measure is a possibility one. Using the structure of focal elements in the role of a complete 
system of events and applying the formula of a complete probability, we define the proba-
bility that the customers’ zone zi ∶ zi ∈ Z(zo) will be chosen as the customers’ zone to which 
vehicle will move from the customers’ zone zo.

It is a priori assumed that when the vehicle movement transfer takes place in extreme 
conditions, the probabilities of movement transfer (10) from one customers zone to another 
become unknown values, which can be estimated only using an expert’s knowledge of a 
possibility of transfer of vehicle movement to the direct neighboring customers’ zones.

Using formulas (10), we can calculate the probabilities P
(
zi
)
 of such transfer:

Pl(D) =
∑

D∩L≠∞,L∈ℑ

m(L),Bel(D) =
∑

L⊂D,L∈ℑ

m(L), ∀D ∈ 2X(x0).

(9)m
(
Zj
)
= �j − �j−1, j = 1, .., no;�o = 0.

(10)

P
(
zi
) ≡ P

(
Customers zone zi is chosen for themovement

)
=

no∑
j=1

P

(
zi

Zj

)
⋅ m

(
Zj
)
.

(11)

P
�
z1
�
=

e−1
1∑

zj∈Z1
e−1
j

⋅ �1;

P
�
z2
�
=

e−1
2∑

zj∈Z1
e−1
j

⋅ �1 +
e−1
2∑

zj∈Z2
e−1
j

⋅

�
�2 − �1

�
;

P
�
z3
�
=

e−1
3∑

zj∈Z1
e−1
j

⋅ �1 +
e−1
3∑

zj∈Z2
e−1
j

⋅

�
�2 − �1

�
+

e−1
3∑

zj∈Z3
e−1
j

⋅

�
�3 − �2

�
;
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One may easily verify that (11) is a probabilistic distribution on the set X(xo) . Therefore

The probabilistic distribution (11) can also be rewritten in a simple recurrent form

P
�
zno−1

�
=

e−1
no−1∑

zj∈Z1
e−1
j

⋅ �1 +
e−1
no−1∑

zj∈Z2
e−1
j

⋅

�
�2 − �1

�
+ ... +

e−1
no−1∑

zj∈Zno−1
e−1
j

⋅

�
�no−1 − �no−2

�
;

P
�
zno

�
=

e−1
no∑

zj∈Z1
e−1
j

⋅ �1 +
e−1
no∑

zj∈Z2
e−1
j

⋅

�
�2 − �1

�
+ ... +

e−1
no∑

zj∈Zno−1
e−1
j

⋅

�
�no−1 − �no−2

�
+

e−1
no∑

zj∈Zno
e−1
j

⋅

�
�no − �no−1

�
.

P
�
z1
�
+P

�
z2
�
+ P

�
z3
�
+ ... + P

�
zno−1

�
+ P

�
zno

�
==

1∑
zj∈Z1

e−1
j

⋅

�
e−1
1

+ e−1
2

+ .. + e−1
no

�

⋅ �1 +
1∑

zj∈Z2
e−1
j

⋅

�
e−1
2

+ e−1
3

+ .. + e−1
no

�
⋅

�
�2 − �1

�
+

1∑
zj∈Z3

e−1
j

⋅

�
e−1
3

+ .. + e−1
no

�

⋅

�
�3 − �2

�
+ .. +

1∑
zj∈Zno−1

e−1
j

⋅

�
e−1
no−1

+ e−1
no

�
⋅

�
�no−1

− �no−2

�

+
1∑

zj∈Zno
e−1
j

⋅ e−1
no

⋅

�
�no

− �no−1

�
= �1 +

�
�2 − �1

�

+
�
�3 − �2

�
+ ... +

�
�no−1

− �no−2

�
+
�
�no

− �no−1

�
= �no

= 1.

(12)

P
�
z1
�
=

e−1
1∑

zj∈Z1
e−1
j

⋅ �1;

P
�
z2
�
=

e−1
2

e−1
1

⋅ P
�
z1
�
+

e−1
2∑

zj∈Z2
e−1
j

⋅

�
�2 − �1

�
;

P
�
z3
�
=

e−1
3

e−1
2

⋅ P
�
z2
�
+

e−1
3∑

zj∈Z3
e−1
j

⋅

�
�3 − �2

�
;

P
�
zno−1

�
=

e−1
no−1

e−1
no−2

⋅ P
�
zno−2

�
+

e−1
no−1∑

zj∈Zno−1
e−1
j

⋅

�
�no−1 − �no−2

�
;

P
�
zno

�
=

e−1
no

e−1
no−1

⋅ P
�
zno−1

�
+

e−1
no∑

zj∈Zno
e−1
j

⋅

�
�no − �no−1

�
.
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Description of a Monte‑Carlo simulation for the evaluation 
of possibility levels of vehicle movement on the routes

The real problem, in the solution of which we are interested, occurs when the possibility 
levels are not given by experts and the problem exists only in terms of an expert who evalu-
ates �1 ≤ �2 ≤ ... ≤ �no = 1.

The problem consists in trying to determine the possibility levels as a result of generat-
ing possibility levels in a random experiment. Using the results of the preceding section, 
we can construct a consistent method of generation of possibility levels.

Let us express the possibility levels �i via the probabilities P
(
Zj
)
 . From system (12), 

after algebraic transformations, we obtain

Recall that if i > j , then �i ≥ �j . From system (13) we see that if we know the prob-
abilities with which in the experiment described here the customers’ zones are chosen from 
Z(zo) , then this information can be used for determining the possibility levels. Therefore, if 
we know how to derive estimates for the probabilities contained in the right-hand parts of 
the equations of the system (12), then we can use these estimates for calculating the vehicle 
movement possibilities.

With customers zone zi we connect the value Ti , initially equal to zero, which will be 
equal to the number of occurrences of xi in the role of the sampling of customers zone from 
Xi.

Algorithm 3 

	 1.	 Fix the initial customers zone zo and the set Z(zo).
	 2.	 Determine the size of the sampling M (e.g., M = 25,M = 50,M = 100 ) needed for 

successful work.
	 3.	 Divide the unit interval into M parts of equal length. For example, if M = 50 , we obtain 

{1, 0.98, 0.96, ...., 0.02} . Denote this set by S.
	 4.	 Choose randomly without replacing an element � from S.
	 5.	 Ask the expert(s) (routing network’s dispatchers and so on), who determines the pos-

sibility levels of customers zone—to—customers zone vehicle movement, which are 
the zones from all zones Z(zo) with movement from the initial customers’ zone zo at the 
chosen level �.

(13)

�1 =

∑
zj∈Z1

e−1
j

e−1
1

⋅ P
�
z1
�
;

�2 =

∑
zj∈Z2

e−1
j

e−1
2

⋅ P
�
z2
�
+ P

�
z1
�
;

�3 =

∑
zj∈Z3

e−1
j

e−1
3

⋅ P
�
z3
�
+ P

�
z2
�
+ P

�
z1
�
;

�no−1 =

∑
zj∈Zno−1

e−1
j

e−1
no−1

⋅ P
�
zno−1

�
+
�no−2

j=1
P
�
zj
�
;�no = P

�
zno

�
+
�no−1

j=1
P
�
zj
�
= 1.
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	 6.	 If k is the quantity of customers zones included in the level set, which is constructed 
in step 4, then for each occurrence of a new customers zone xi in the generation pro-
cess, for this level we must add e−1

i∑
zs∈Zk

e−1
s

 to Ti ; Ti = Ti +
e−1
i∑

zs∈Zk
e−1
s

.

	 7.	 Repeat steps 3–5 until all � from S are used.
	 8.	 Calculate P

(
Zi
)
;P
(
Zi
)
=

Ti

M
.

	 9.	 Arrange the obtained probability estimates in the increasing order and substitute them 
into (13). Calculate the levels of possibilities of the set of neighboring customers zones 
Z(zo).

	10.	 Repeat steps 0–8 for each customer z, z ∈ I and determine all levels of possibilities in 
the customers’ zones distribution graph.

	11.	 Form the matrix of vehicle movement possibilities for all customers zones—
{�ij}, i, j ∈ T , i ≠ j , and, therefore, form the matrix of vehicle movement possibilities 
for all customers on the routing network.

Numerical example

Let Z(zo) = {f , e, d, c, b, a} . Suppose that the expectations of fuzzy movement time from the 
initial customers’ zone zo to the customers’ zones of Z(zo) are as follows:

Based on experts’ knowledge, it is supposed that 

Assume that the sampling size is M = 25 . Then S = {1, 0.96, 0.92, ...., 0.8, 0.4}.
Suppose that, choosing the values of the level randomly, we obtain from the expert the follow-

ing level sets of neighboring customers zones (they can be obtained in the interactive mode):

Using the obtained answers of the process of intelligent simulation of the expert’s 
knowledge, we can calculate T for each customer.

First, we compile Table 6 of the values of Pi∕ k ≡ P(zi∕Zk) =
e−1
i∑

zs∈Zk

e−1
s

 , which depend on 

two indexes i and k:
Then

ea = 1.5min, eb = 2.0min, ec = 3.0min, ed = 1.5min,

ee = 3.5min, ef = 1.8min.

0 < 𝜋(f ) ≤ 𝜋(c) ≤ 𝜋(a) ≤ 𝜋(e) ≤ 𝜋(b) ≤ 𝜋(d) = 1.

Z0.92 = {d} Z0.04 = {f , a, c, de, b} Z0.56 = {e, d, b}

Z0.60 = {e, d, b} Z0.68 = {e, d, b} Z1.00 = {d}

Z0.36 = {c, a, b, d, e} Z0.24 = {c, a, b, d, e} Z0.28 = {e, a, c, b, d}

Z0.32 = {c, a, e, b, d} Z0.76 = {b, d} Z0.16 = {c, a, b, d, e}

Z0.72 = {d, b} Z0.52 = {e, d, b} Z0.20 = {c, a, b, d, e}

Z0.44 = {a, b, d, e} Z0.40 = {c, a, b, d, e} Z0.48 = {a, b, e, d}

Z0.88 = {d, b} Z0.12 = {c, e, d, b, a} Z0.96 = {d}

Z0.08 = {f , c, d, b, a, e} Z0.80 = {d, b}

Z0.84 = {d, b} Z0.64 = {e, d, b}



6703Uncertainty modeling in multi‑objective vehicle routing problem…

1 3

Substituting the obtained probability values into (13), we calculate the levels of pos-
sibilities of a vehicle movement from the customers’ zone zo to the customers’ zones 
f , e, d, c, b, a:

Let us compile the table of the values of 1

Pi∕i

=

∑
zs∈Zi

e−1
s

e−1
i

 needed for calculation of the lev-
els of possibilities in (13) (Table 7):

Then we obtain

�c = 1 ⋅ 0.4552 + 0.0147 + 0.0521 + 0.1296 + 0.0945 + 0.2539 = 1.
At the end of the example, we give the combined probability and possibility data for the 

zones  f , e, d, c, b, a (Table 8):

Ta = 2 ⋅ 0.222 + 8 ⋅ 0.271 + 2 ⋅ 0.314 = 3.24 ⇒ P(a) =
Ta

25
= 0.1296

Tb = 2 ⋅ 0.167 + 8 ⋅ 0.206 + 2 ⋅ 0.238 + 5 ⋅ 0.347 + 5 ⋅ 0.431 = 6.348 ⇒ P(b) = 0.2539

Tc = 2 ⋅ 0.111 + 8 ⋅ 0.135 = 1.302 ⇒ P(c) = 0.0521

Td = 2 ⋅ 0.221 + 8 ⋅ 0.272 + 2 ⋅ 0.314 + 5 ⋅ 0.458 + 5 ⋅ 0.569 + 3 ⋅ 1 = 11.381 ⇒ P(d) = 0.4552

Te = 2 ⋅ 0.095 + 8 ⋅ 0.116 + 2 ⋅ 0.134 + 5 ⋅ 0.195 = 2.361 ⇒ P(e) = 0.0945

Tf = 2 ⋅ 0.184 = 0.368 ⇒ P(f ) = 0.0147

�f = 5.434 ⋅ 0.0147 = 0.0798

�c = 7.407 ⋅ 0.0521 + 0.0147 = 0.4006

�a = 3.185 ⋅ 0.1296 + 0.0147 + 0.0521 = 0.4796

�e = 5.128 ⋅ 0.0945 + 0.0147 + 0.0521 + 0.1296 = 0.6810

�b = 2.320 ⋅ 0.2539 + 0.0147 + 0.0521 + 0.1296 + 0.0945 = 0.8799

Table 6   Values of the set Pi∕k

i K

Z1 = {f , c, a, d, b, e}Z2 = {c, a, d, b, e} Z3 = {a, d, b, e} Z4 = {e, d, b} Z5 = {d, b} Z6 = {d}

1 f 0.184
2 c 0.111 0.135
3 a 0.222 0.271 0.314
4 e 0.095 0.116 0.134 0.195
5 b 0.167 0.206 0.238 0.347 0.431
6 d 0.221 0.272 0.314 0.458 0.569 1
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and the diagram of the neighboring customers of zo if the ranging of the choice of the 
customer was like this: f ≺ c ≺ a ≺ e ≺ b ≺ d (see Fig. 2).

Remark 4  In this appendix, it is developed a simulation algorithm for the determination of 
the possibility levels of vehicle motion between the customers. These parameters define the 
possibility levels of failure of movement between customers.

Table 7   Values of the set 1

Pi∕i

1

P1∕1

1

P2∕2

1

P3∕3

1

P4∕4

1

P5∕5

1

P6∕6

5.434 7.407 3.185 5.128 2.320 1

Table 8   Vehicle movement 
probabilities and possibilities

i P(⋅) �(⋅)

1 f 0.0147 0.0798
2 c 0.0521 0.4006
3 a 0.1296 0.4796
4 e 0.0945 0.6810
5 b 0.2539 0.8799
6 d 0.4552 1

Fig. 2   Diagram of customers 
zones in the neighborhood of  zo 
with expectations of movement 
fuzzy time and possibilities
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