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Abstract
In his seminal paper of 2004, Ulrich Junker proposed the QUICKXPLAIN algorithm, which

provides a divide-and-conquer computation strategy to find within a given set an irre-

ducible subset with a particular (monotone) property. Beside its original application in the

domain of constraint satisfaction problems, the algorithm has since then found widespread

adoption in areas as different as model-based diagnosis, recommender systems, verifica-

tion, or the Semantic Web. This popularity is due to the frequent occurrence of the problem

of finding irreducible subsets on the one hand, and to QUICKXPLAIN’s general applicability

and favorable computational complexity on the other hand. However, although (we reg-

ularly experience) people are having a hard time understanding QUICKXPLAIN and seeing

why it works correctly, a proof of correctness of the algorithm has never been published.

This is what we account for in this work, by explaining QUICKXPLAIN in a novel tried and

tested way and by presenting an intelligible formal proof of it. Apart from showing the

correctness of the algorithm and excluding the later detection of errors (proof and trust
effect), the added value of the availability of a formal proof is, e.g., (i) that the workings of
the algorithm often become completely clear only after studying, verifying and compre-

hending the proof (didactic effect), (ii) that the shown proof methodology can be used as a

guidance for proving other recursive algorithms (transfer effect), and (iii) the possibility of

providing ‘‘gapless’’ correctness proofs of systems that rely on (results computed by)

QUICKXPLAIN, such as numerous model-based debuggers (completeness effect).
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1 Introduction

The task of finding within a given universe an irreducible subset with a specific monotone

property is referred to as the MSMP (Minimal Set subject to a Monotone Predicate)
problem (Marques-Silva et al. 2007, 2013). Take the set of clauses S :¼ f:C;A _ :B;C _
:B;:A;Bg as an example. This set is obviously unsatisfiable. One task of interest

expressible as an MSMP problem is to find a minimal unsatisfiable subset (MUS) of these

clauses (which can help, e.g., to understand the cause of the clauses’ inconsistency). At

this, S is the universe, and the predicate that tells whether a given set of clauses is

satisfiable is monotone, i.e., any superset (subset) of an unsatisfiable (satisfiable) clause set

is unsatisfiable (satisfiable). In fact, there are two MUSes for S, i.e., f:C;C _ :B;Bg and

fA _ :B;:A;Bg. We call a task, such as MUS, that can be formulated as an MSMP

problem a manifestation of the MSMP problem.
MSMP is relevant to a wide range of computer science disciplines, including model-

based diagnosis (Jannach and Schmitz 2016; Rodler 2015; Kalyanpur 2006; Rodler and

Herold 2018), constraint satisfaction problems (Junker 2001, 2004; Lecoutre et al. 2006),

verification (Bradley and Manna 2007, 2008; Nadel 2010; Andraus et al. 2008), configu-

ration problems (Felfernig et al. 2004; White et al. 2010), knowledge representation and

reasoning (Darwiche 2001; McCarthy 1980; Eiter et al. 2009; Marquis 1995), recom-

mender systems (Felfernig et al. 2006, 2009), knowledge integration (Rodler et al. 2013;

Meilicke 2011), as well as Description Logics and the Semantic Web (Kalyanpur 2006;

Rodler et al. 2019; Shchekotykhin et al. 2012; Horridge 2011; Schlobach et al. 2007;

Schekotihin et al. 2018). In all these fields, (sub)problems are addressed which are man-

ifestations of the MSMP problem. Example problems—most of them related to the Boo-

lean satisfiability problem—are the computation of minimal unsatisfiable subsets
(Marques-Silva et al. 2013; Dershowitz et al. 2006; Oh et al. 2004; Liffiton and Sakallah

2008) (also termed conflicts (Reiter 1987; de Kleer and Williams 1987) or minimal
unsatisfiable cores (Dershowitz et al. 2006)), minimal correction subsets (Birnbaum and

Lozinskii 2003; Marques-Silva et al. 2013; Rodler 2020) (also termed diagnoses (Reiter

1987; de Kleer and Williams 1987)), prime implicants (Slagle et al. 1970; Quine 1959)

(also termed justifications (Horridge 2011)), prime implicates (Marquis 1995; Manquinho

et al. 1997; Déharbe et al. 2013), and most concise optimal queries to an oracle (Rodler

et al. 2013; Schekotihin et al. 2018; Rodler 2016; Rodler et al. 2017).

Numerous algorithms to solve manifestations of the MSMP problem have been sug-

gested in literature, e.g., Marques-Silva et al. (2013), Rodler (2015), Junker (2001), Junker

(2004), Bradley and Manna (2007), Bradley and Manna (2008), Rodler et al. (2017),

Shchekotykhin et al. (2014), Shchekotykhin et al. (2015), Felfernig et al. (2012), Belov

and Marques-Silva (2012). For instance, the algorithm proposed by Felfernig et al. (2012)

addresses the problem of the computation of minimal correction subsets (diagnoses), and

the one suggested by Rodler et al. (2017) computes minimal oracle queries that preserve

some optimality property. In general, an algorithm A for a specific manifestation of the

MSMP problem can be used to solve arbitrary manifestations of the MSMP problem if

(i) the procedure used by A to decide the monotone predicate is used as a black-box (i.e.,

given a subset of the universe as input, the procedure outputs 1 if the predicate is true for

the subset and 0 otherwise; no more and no less), and (ii) no assumptions or additional

techniques are used in A which are specific to one particular manifestation of the MSMP

problem.
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Not all algorithms meet these two criteria. For instance, there are algorithms that rely on

additional outputs beyond the mere evaluation of the predicate (e.g., certificate-refinement-

based algorithms (Marques-Silva et al. 2013)), or glass-box approaches that use non-trivial

modifications of the predicate decision procedure to solve the MSMP problem (e.g., the-

orem provers that record the axioms taking part in the deduction of a contradiction while

performing a consistency check (Kalyanpur 2006)). These methods violate (i). Moreover,

e.g., algorithms geared to the computation of minimal unsatisfiable subsets that leverage a

technique called model rotation (Marques-Silva and Lynce 2011) are not applicable, e.g.,

to the problem of finding minimal correction subsets, since there is no concept equivalent

to model rotation for minimal correction subsets (Marques-Silva et al. 2013). Thus, such

algorithms violate (ii).

Among the general MSMP algorithms that satisfy (i) and (ii), QUICKXPLAIN (Junker

2004) (QX for short), proposed by Ulrich Junker in 2004, is one of the most popular and

most frequently adopted.1 Likely reasons for the widespread use of QX are its mild

theoretical complexity in terms of the number of (usually expensive2) predicate evaluations

required (Marques-Silva et al. 2013; Junker 2004), as well as its favorable practical per-

formance for important problems (such as conflict (Shchekotykhin et al. 2008) or diagnosis

(Shchekotykhin et al. 2014) computation for model-based diagnosis). In literature, QX is

utilized in different ways; it is (a) (re)used as is for suitable manifestations of MSMP

(Felfernig et al. 2004), (b) adapted in order to solve other manifestations of MSMP

(Rodler 2015), as well as (c) modified or extended, respectively, e.g., to achieve a better

performance for a particular MSMP manifestation (Marques-Silva et al. 2013), to solve

extensions of the MSMP problem (Rodler et al. 2017), or to compute multiple minimal

subsets of the universe in a single run (Shchekotykhin et al. 2015).

Despite its popularity and common use, from the author’s experience and a recently

conducted structured survey3, QX appears to be quite poorly understood by reading and

thinking through the algorithm, and, for most people, requires significant and time-con-

suming attention until they are able to properly explain the algorithm. In particular, people

often complain they do not see why it correctly computes a minimal subset of the universe.

This is not least because no proof of QX has yet been published.

In this work, we account for this by (1) explaining QX by means of an alternative tried

and tested ‘‘flat’’ notation that proved to convey the intuition behind the algorithm well and

to be more accessible to people than the usually adopted tree notation in our experience,

and by (2) presenting a clear and intelligible proof of QX. The public availability of a

proof comes with several benefits and serves i.a. the following purposes:

1 Judged by taking the citation tally on Google Scholar as a criterion; as of October 2021, the QUICKXPLAIN

paper boasts 510 citations.
2 In many manifestations of the MSMP problem, predicate decision procedures are implemented by the-
orem provers, e.g., SAT-solvers (Marques-Silva et al. 2013) or description logic reasoners (Rodler 2015).
3 In our research and teaching on model-based diagnosis, we frequently discuss and analyze QX—one of
the core algorithms used in our works and prototypes—with students as well as other faculty (including
highly proficient university professors specialized in, e.g., algorithms and data structures). The feedback of
people is usually that they cannot fully grasp the workings of QX before they take significant time to go
through a particular example thoroughly and noting down all single steps of the algorithm. According to
people’s comments, the main obstacle appears to be the recursive nature of the algorithm. A recent
structured survey among computer science researchers and university teachers in this regard made these
experiences even more explicit and concrete (the results of the survey can be accessed at http://isbi.aau.at/
ontodebug/evaluation).
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Proof Effect (a) It shows QX’s correctness and makes it verifiable for everyone in a

straightforward step-by-step manner (without the need to accomplish the non-trivial task

of coming up with an own proof). (b) It creates compliance with common scientific

practice. That is, every proposal of an algorithm should be accompanied with a (full and

public) formal proof of correctness. This demand is even more vital for a highly

influential algorithm like QX.

Didactic Effect (a) It promotes (proper and full) understanding (Hanna and Jahnke 1996)

of the workings of QX, which is otherwise for many people only possible in a laborious

way (e.g., by noting down and exercising through examples and attempting to verify

QX’s soundness on concrete cases). (b) It provides the basis for understanding (hundreds
of) other works or algorithms that use, rely on, adapt, modify or extend QX.

Completeness Effect It is necessary to establish and prove the full correctness of other

algorithms that rely on (the correctness of) QX, such as a myriad of algorithms in the

field of model-based diagnosis.

Trust and Sustainability Effect It excludes the possibility of the (later) detection of flaws

in the algorithm, and is thus the only basis for placing full confidence in the proper-

functioning of QX.4

Transfer Effect It showcases a proof template for recursive algorithms and may thus

provide guidance to researchers when approaching the (often challenging task of

formulating a) proof of other recursive algorithms.

The rest of this paper is organized as follows. We discuss related work in Sect. 2, before

we briefly introduce the theoretical concepts required for the understanding and proof of

QX in Sect. 3. Then, in Sect. 4, we state the QX algorithm in a (slightly) more general

formulation than originally published in Junker (2004), i.e., we present QX as a general

method to tackle the MSMP problem.5 In addition, we explain the functioning of QX, and

present an illustrative example using a notation that proved particularly comprehensible in

our experience.6 The proof is given in Sect. 5. In Sect. 6 we explain the proof template we

adopted in our proof, which may serve as a reference point for proving other recursive

algorithms as well. Concluding remarks are made in Sect. 7.

2 Related work

Bradley and Manna (2007, 2008) discuss and prove an MSMP algorithm dubbed MIN. As a

side note in Bradley and Manna (2008), they mention that MIN is equivalent to an algorithm

also called QUICKXPLAIN which was proposed earlier in Junker (2001) (we refer to this latter

4 A prominent example which shows that even seminal papers are not charmed against errors in absence of
formal proofs, and thus underscores the importance of (public) proofs, is the highly influential paper of
Raymond Reiter from 1987 (Reiter 1987). It proposes the hitting set algorithm for model-based diagnosis,
but omits a formal proof of correctness. And, indeed, a critical error in the algorithm was later found (and
corrected) by Greiner et al. (1989).
5 The original algorithm was depicted specifically as a searcher for explanations or relaxations for over-
constrained constraint satisfaction problems (CSPs). Although the proper interpretation of the original
formulation to address arbitrary MSMP problems different from CSPs may be relatively straightforward (for
people familiar with CSPs), we believe that our more general depiction (cf. Marques-Silva et al. (2013)) can
help readers non-familiar with the domain of CSPs to understand and correctly use QX without needing to
properly re-interpret concepts from an unknown field.
6 We (informally) experimented with different variants how to explain QX, and found out (through the
feedback of discussion partners, e.g., students) that the shown representation was more accessible than
others.
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algorithm by QXold). Apart from the fact that there is no proof that MIN is indeed equivalent

to QXold (which is not clear from the descriptions in Bradley and Manna (2007, 2008)),

both of these algorithms, MIN and QXold, are different to QX.

First, QXold, although returning the same output, is not equal to QX. A critical dif-

ference, e.g., is the algorithm part consisting of lines 5–11 in QXold (Junker 2001, Fig. 3),

which is not used in QX and which affects the algorithm’s complexity. Also, note that no

public proof is available for QXold. Second, MIN, although being similar to QX and having

the same worst-case complexity given that QX uses a divide-and-conquer strategy that

splits sets into equally-sized subsets, works in fact differently from QX. To see this,

consider a universe of elements f1; 2; 3; 4; 5; 6g which subsumes exactly the two minimal

subsets X1 ¼ f1; 2; 4g and X2 ¼ f4; 6g subject to a monotone predicate p. In this case, MIN

would return X2, whereas QX would output X1. Table 1 summarizes the discussed dif-

ferences between our work and related ones (Junker 2001, 2004; Bradley and Manna

2007, 2008).

Consequently, the correctness proof of MIN given in Bradley and Manna (2007, 2008)

proves an algorithm that is different from QX. Moreover, the proof of MIN does not appear

to be of great help to better understand the related QX algorithm, as the reader needs to

become familiar with the notation and concepts used in Bradley and Manna (2007, 2008)

in the first place, and needs to map the pseudocode notation of Bradley and Manna

(2007, 2008) to the largely different one adopted by Junker in the original QX-paper

(Junker 2004).

In contrast, our proof does show the correctness of the QX algorithm, and we present the

algorithm in a very similar notation as used in Junker’s original paper (Junker 2004).

Beyond that, the intention of our proof is to prove and explain QX (Hanna 2000, 1990),

rather than to solely prove it. To this end, e.g., we (1) segment our proof into small,

intuitive, and easily digestible chunks, thus putting a special focus on its clarity, eluci-
dation, and didactic value, (2) provide visualizations of the interrelations between and of

the sequence and meaning of the individual proof steps by means of diagrams (cf. Figs. 1

and 2), (3) organize the proof in a way it is illustrative and amenable to a mental
‘‘tracking’’ in that it can be viewed as directly traversing the algorithm’s call-recursion-tree

while verifying the correctness of all transitions in the tree (cf. Fig. 1), and (4) explicate
the proof template adopted in our proof in order to promote the reader’s comprehension of

Table 1 Comparison of the present work with related works wrt. the discussed algorithm and proof. By min

we refer to the algorithm stated in (Bradley and Manna 2007, Fig. 2) as well as in (Bradley and Manna 2008,
Fig. 3), by QXold to the algorithm also named QUICKXPLAIN given in (Junker 2001, Fig. 3), and by QX to the

algorithm given in (Junker 2004, Fig. 1). The Uð�Þ holds under the condition that the SPLIT function (which
rules the divide-and-conquer mechanism, cf. Sect. 4) used in QX is defined to partition sets into equally-
sized subsets

Alg. 1 (this work) min QXold QX

Equivalence to QX U � � U

Same complexity as QX U U
ð�Þ � U

Same output as QX U � U U

Correctness proof given U U � �
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the underlying general proof principle and to provide them with well-founded justifications

for the individual proof steps (cf. Sect. 6).

3 Basics

QX can be employed to find, for an input set U, a minimal7 subset X � U that has a certain

monotone property p. An example would be an (unsatisfiable) knowledge base (set of

logical sentences) U for which we are interested in finding a minimal unsatisfiable subset

(MUS) X.
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Fig. 1 Call-recursion-tree produced by QX (cf. Sect. 4). The grayscale part of the figure provides a
schematic illustration of the procedure calls executed in a single run of QX (where the recursion is entered,
i.e., no trivial case applies). Each node (ellipse) represents one call of the procedure named within the
ellipse. Edge labels (7,16,17) refer to the lines in Alg. 1 where the respective call is made. White ellipses
(non-leaf nodes) are calls that issue further recursive calls (in lines 16 and 17), whereas gray ellipses (leaf
nodes) are calls that directly return (i.e., in line 10 or 12). The colored part of the figure visualizes the
meaning and consequences of the theorem (T1) and the various propositions (Pi, for i 2 f3; 4; 5; 6; 7; 8g) that
constitute the proof (cf. Sect. 5). Red arrows indicate proven propagations of the invariant property Invar
(see Definition 4) between calls. Green arrows and labels indicate that respective calls return correct outputs.
Start to read the colored illustrations from the top, just like QX proceeds. That is, due to P3, direct returns

yield correct outputs. If QX0 is called, Invar holds by P4. If Invar holds for some call, then it is always
propagated downwards to the left subtree because of P5. At the first leaf node, a correct output is returned,
also due to P5. If the output of a left subtree is correct, then Invar propagates to the right subtree (P6). If the
output of both the left and the right subtree is correct, then the output of the root is correct (P7). If Invar
holds at the root call of some (sub)tree, then this root call returns a correct output (P8). Note how these
propositions guarantee that Invar, and thus correct outputs, can be derived for all nodes of the call-recursion-
tree. Intuitively, red arrows propagate Invar downwards through the tree, which then ensures correct
outcomes at the leafs, from where these correct outputs enable further propagation of Invar to the right, from
where the inferred correct outputs are recursively propagated upwards until the root node is reached

7 Throughout this paper, minimality always refers to minimality wrt. set-inclusion.
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Definition 1 (Monotone Property) Let U be the universe (a set of elements) and p : 2U !
f0; 1g be a function where pðXÞ ¼ 1 iff property p holds for X � U. Then, p is a monotone
property iff pð;Þ ¼ 0 and

8X0;X00 � U : X0 � X00)pðX0Þ � pðX00Þ

So, p is monotone iff, given that p holds for some set X0, it follows that p also holds for

any superset X00 of X0. An equivalent definition is: If p does not hold for some set X00, p
does not hold for any subset X0 of X00 either.

In practical applications it is often a requirement that (a) some elements of the universe

must not occur in the sought minimal subset, or (b) the minimal subset of the universe

should be found in the context of some reference set. Both cases (a) and (b) can be

subsumed as searching for a minimal subset of the analyzed set A given some background
B. In case (a), B is defined as a subset of the universe U (e.g., in a fault localization task,

those sentences of a knowledge base U that are assumed to be correct) and A is constituted

by all other elements of the universe U n B (those sentences in U that are possibly faulty);

in case (b), B is some additional set of relevance to the universe (e.g., a knowledge base of

general medical knowledge), whereas A is the universe itself (e.g., a knowledge base

describing a medical sub-discipline). For example, the problem of finding a MUS wrt. A
given background B would be to search for a minimal set X of elements in A such that

X [ B is unsatisfiable.

Definition 2 (p-Problem-Instance) Let A (analyzed set) and B (background) be (related)

finite sets of elements where A \ B ¼ ;, and let p be a monotone predicate. Then we call

the tuple A;Bh i a p-problem-instance (p-PI).

Definition 3 (Minimal p-Set (given some Background)) Let A;Bh i be a p-PI. Then, we
call X a p-set wrt. A;Bh i iff X � A and pðX [ BÞ ¼ 1. We call a p-set X wrt. A;Bh i
minimal iff there is no p-set X0 � X wrt. A;Bh i.

Immediate consequences of Definitions 1 and 3 are:

Proposition 1 (Existence of a p-Set)

(1) A (minimal) p-set exists for A;Bh i iff pðA [ BÞ ¼ 1.

(2) ; is a—and the only—(minimal) p-set wrt. A;Bh i iff pðBÞ ¼ 1.8

8 Cf. (2) with Proposition 5 (unproven) in Junker (2004).
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4 Brief review and simple explanation of QX

The QX algorithm is depicted by Alg. 1. It gets as input a p-PI A;Bh i and assumes a sound

and complete oracle that answers queries of the form p(X) for arbitrary X � A [ B.9 If

existent, QX returns a minimal p-set wrt. A;Bh i; otherwise, ’no p-set’ is output. Note, in
order to not overload the discussion, we focus in this work on QX’s property of computing

a minimal p-set (instead of a preferred one, as in the original paper (Junker 2004)). That is,

Alg. 1 does not include line 6 of the original algorithm. The minimality property of QX is

key to solving the general MSMP problem which has numerous manifestations in a wide

variety of research and application fields, as outlined in Sect. 1. In a nutshell, QX works as

follows:

Trivial Cases: Before line 7 is reached, the algorithm checks if trivial cases apply, i.e., if

either no p-set exists (line 2; cf. Proposition 1.(1)) or a p-set does exist and the analyzed set
A is empty (line 4), and returns according outputs. In case the execution reaches line 7, the

recursive procedure QX
0 is called. In the very first execution of QX0, the presence of two

other trivial cases for the original input p-PI A;Bh i is checked in lines 9 and 11.10

(Line 9): If pðBÞ ¼ 1, then the empty set, the only minimal p-set in this case (cf. Propo-

sition 1.(2)), is directly returned and QX terminates.11 Otherwise, we know the empty set is

9 The analyzed set, denoted by A in Alg. 1, is referred to by C in the original algorithm (Junker 2004).
10 Clearly, the checks in lines 9 and 11 are executed in every recursive QX

0-call. However, in all further
recursive calls, these tests serve to determine whether a particular given subset of the analyzed set must be
further processed or not. We separately discuss the first two such checks related to the original input
problem in this paragraph in order to cover all trivial cases before moving on to elucidate the recursion.
11 Remarks: (1) D ¼ B in the very first execution of QX0, cf. lines 7 and 8. (2) pðBÞ ¼ 1 implies that the

first condition D 6¼ ; checked in line 9 is true as well (cf. Definition 1). (3) Actually, the check in line 9 in

the very first execution of QX
0 complements the one in line 4. The reason is that in line 4 A ¼ ; and

pðBÞ ¼ 1 (due to line 2) holds, whereas in line 9 A 6¼ ; and pðBÞ ¼ 1 is true.
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not a p-set, i.e., every (minimal) p-set is non-empty. (Line 11): If the analyzed set A is a

singleton, then A is directly returned and QX terminates.

Recursion: Subsequently, the recursion is started. The principle is to partition the analyzed

set A ¼ fa1; . . .; ajAjg into two non-empty (e.g., equal-sized) subsets A1 ¼ fa1; . . .; akg
and A2 ¼ fakþ1; . . .; ajAjg (SPLIT and GET functions; lines 13–15), and to analyze these

subsets recursively (divide-and-conquer). In this vein, a binary call-recursion-tree is built

(as sketched by the grayscale part of Fig. 1), including the root QX0-call made in line 7 and

two subtrees, the left one rooted at the call of QX0 in line 16 which analyzes A2, and the

right one rooted at the call of QX0 in line 17 which analyzes A1. Let the finally returned

minimal p-set be denoted by X, and let us call all elements of X relevant, all others
irrelevant. Then, the left subtree (finally) returns the subset of those elements (X2) from A2

that belong to X, and the right subtree (finally) returns the subset of those elements (X1)

from A1 that belong to X.

– Arguments of the recursive procedure QX
0: The arguments D; A;Bh i passed to the

procedure QX0 can be intuitively understood as follows. A;Bh i is the p-PI analyzed by

the respective QX
0-call. D is (only12) relevant when QX

0 was called in line 17 and

essentially indicates whether some relevant element was found while analyzing A2 in

the left subtree (QX0-call in line 16). If so (D ¼ X2 6¼ ;), then D ‘‘activates’’ the test

(pðBÞ ¼ 1?) in line 9 that checks if an exploration of the right subtree (A1) is

superfluous (or, in other words, if a full minimal p-set is already contained in A2).

Otherwise (D ¼ X2 ¼ ;; no relevant element in A2), D ‘‘deactivates’’ this check since a

relevant element must be included in A1 (because at least one of A1 and A2 must

include a relevant element), and therefore returning ; in line 10 as a result for A1 must

be precluded.

– Left subtree (recursive QX
0-call in line 16): The first question is: Are all elements of

A2 irrelevant? Or, equivalently: Does B [A1 already contain a minimal p-set, i.e.,
pðB [A1Þ ¼ 1? This is evaluated in line 9; note: D ¼ A1 6¼ ;. If positive, ; is returned

and the subtree is not further expanded. Otherwise, we know there is some relevant

element in A2. Hence, the analysis of A2 is started. That is, in line 11, the singleton test

is performed for A2. In the affirmative case, we have proven that the single element in

A2 is relevant. The reason is that pðB [A1Þ ¼ 0, as verified in line 9 just before, and

that adding the single element in A2 makes the predicate true,13 i.e.,

pðB [A1 [A2Þ ¼ pðB [AÞ ¼ 1, as verified in line 2 at the very beginning. If A2 is

a non-singleton, it is again partitioned and the subsets are analyzed recursively, which

results in two new subtrees in the call-recursion-tree.

– Right subtree (recursive QX
0-call in line 17): Here, we can distiguish between two

possible cases, i.e., either the set X2 returned by the left subtree is (i) empty or (ii) non-
empty.

Given (i), we know that A1 must include a relevant element. Reason: B [A1 contains a

minimal p-set (as verified in the left subtree before returning the empty set) and every

p-set is non-empty (as verified in line 9 in the course of checking the Trivial Cases, see
above). Hence, A1 is further analyzed in lines 11 et seqq. (which might lead to a direct

12 If QX
0 was called in line 7, the truth of the condition tested in line 9 depends only on pðBÞ (cf.

Footnote 11) and thus D has no effect. Similarly, given that QX0 was called in line 16, D always corresponds
to the non-empty set A1 and, again, pðBÞ alone determines the truth value of the condition in line 9.
13 Such an element is commonly referred to as a necessary or a transition element (Belov and Marques-
Silva 2012).
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return if A1 is a singleton and thus relevant, or to further recursive subtrees otherwise).

For (ii), the question is: Given the subset X2 of the p-set, are all elements of A1

irrelevant? Or, equivalently: Does B [ X2 already contain a minimal p-set, i.e.,

pðB [ X2Þ ¼ 1? This is answered in line 9; note: D ¼ X2 6¼ ; due to case (ii). In the

affirmative case, the empty set is returned, i.e., no elements of A1 are relevant and the

final p-set X found by QX is equal to X2. If the answer is negative, A1 does include

some relevant element and is thus further analyzed in lines 11 et seqq. (which might

lead to a direct return if A1 is a singleton and thus relevant, or to further recursive

subtrees otherwise).

Finally, the union of the outcomes of left (X2) and right (X1) subtrees is a minimal p-set
wrt. A;Bh i and returned in line 18.

Example 1 We illustrate the functioning of QX by means of a simple example.

Input Problem and Parameter Setting: Assume the analyzed set A ¼ f1; 2; 3; 4; 5; 6; 7; 8g,
the initial background B ¼ ;, and that there are two minimal p-sets wrt. A;Bh i, X ¼
f3; 4; 7g and Y ¼ f4; 5; 8g. Further, suppose that QX pursues a splitting strategy where a

set is always partitioned into equal-sized subsets in each iteration, i.e., splitðnÞ returns dn
2
e

(note: this leads to the best worst-case complexity of QX, cf. Junker (2004)).

Notation: Below, we show the workings of QX on this example by means of a tried and

tested ‘‘flat’’ notation.14 In this notation, the single-underlined subset denotes the current

input to the function p in line 9, the double-underlined elements are those that are already

fixed elements of the returned minimal p-set, and the grayed out elements those that are

definitely not in the returned minimal p-set. Finally, � signifies that the tested set (single-

underlined along with double-underlined elements) is a p-set (function p in line 9 returns

1); �0 means it is no p-set (function p in line 9 returns 0).15

How QX Proceeds: After verifying that there is a non-empty p-set wrt. A;Bh i and that

jAj[ 1 (i.e., after the checks in lines 2 and 4 are negative, QX0 is called in line 7, and the

checks in the first execution of lines 9 and 11 are negative), QX performs the following

actions:

14 We intentionally abstain from a notation which is guided by the call-recursion-tree or which lists all
variables and their values (which we found was often perceived difficult to understand, e.g., since same
variable names are differently assigned in all the recursive calls). The reason is: While explaining QX to
people (mostly computer scientists) using various representations, we found out via people’s feedback that
the presented ‘‘flat’’ notation could best convey the intuition behind QX; moreover, it enabled people to
correctly solve new examples on their own.
15 An example of a different notation that describes the workings of QX based on the call-recursion-tree can
be found, e.g., in Fig. 4.1 in Rodler (2015).

123

6194 P. Rodler



Explanation: After splittingA into two subsets of equal size, in step (1), QX tests if there is

a p-set in the left half f1; 2; 3; 4g. Since negative, the right half f5; 6; 7; 8g is again split

into equal-sized subsets, and the left one f5; 6g is added to the left half f1; 2; 3; 4g of the

original set. Because this larger set f1; 2; 3; 4; 5; 6g still does not contain any p-set, the right
subset f7; 8g is again split and the left part (7) added to the tested set, yielding

f1; 2; 3; 4; 5; 6; 7g. Due to the positive predicate-test for this set, 7 is confirmed as an

element of the found minimal p-set, and 8 is irrelevant. From now on, 7, as a fixed element

of the p-set, takes part in all further executed predicate tests.

In step (4), the goal is to figure out whether the left half f5; 6g of f5; 6; 7; 8g also contains
relevant elements. To this end, the left half f1; 2; 3; 4g of A, along with 7, is tested, and

positive. Therefore, a p-set is included in f1; 2; 3; 4; 7g and f5; 6g is irrelevant. At this point,
the output of the left subtree of the root, the one that analyzed f5; 6; 7; 8g, is determined and

fixed, i.e., is given by 7. The next task is to find the relevant elements in the right subtree, i.e.,

among f1; 2; 3; 4g. As a consequence, in step (5), 7 alone is tested to check if all elements of

f1; 2; 3; 4g are irrelevant. The result is negative, which is why the left half is split, and the left
subset f1; 2g is tested along with 7, also negative. Thus, f3; 4g does include relevant ele-

ments. In step (7), QX finds that the element 3 alone from the set f3; 4g does not suffice to

produce a p-set, i.e., the test for f1; 2; 3; 7g is negative. This lets us conclude that 4 must be in

the p-set. So, 4 is fixed. To check the relevance of 3, f1; 2; 4; 7g is tested, yielding a negative
result, which proves that 3 is relevant. The final test in step (9) if f1; 2g includes relevant

elements as well, is negative, and 1,2 marked irrelevant. The set f3; 4; 7g is finally returned,
which coincides with X, one of our minimal p-sets. h

5 Proof of QX

In this section, we give a formal proof16 of the termination and soundness of the QX

algorithm depicted by Alg. 1. By ‘‘soundness’’ we refer to the property that QX outputs a

minimal p-set wrt. the p-PI it gets as an input, if a p-set exists, and ’no p-set’ otherwise.
While reading and thinking through the proof, the reader might consider it insightful to

16 In the proof, we will often talk about different calls of QX0ðD; A;Bh iÞ while QXð A;Bh iÞ executes. To
account for the facts that (a) the actual parameters passed to QX

0 will generally differ at each call, and

(b) the actual parameters passed to QX
0 will generally not be equal to the original A;B (passed to QX), we

(have to) use different designators X0; �X; _X and €X for these parameters X 2 fD;A;Bg for each discussed

QX
0-call.
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keep track of the meaning, implications, and interrelations of the various propositions in

the proof by means of Fig. 1. Moreover, Fig. 2 summarizes the steps of the proof in a

flowchart-like diagram.

Proposition 2 (Termination) Let A;Bh i be a p-PI. Then QXð A;Bh iÞ terminates.17

Proof First, observe that QX either reaches line 7 (where QX
0 is called) or terminates

before (in line 3 or line 5). Hence, QXð A;Bh iÞ always terminates iff QX
0ðB; A;Bh iÞ

always terminates. We next show that QX0ðB; A;Bh iÞ terminates for an arbitrary p-PI
A;Bh i.

Fig. 2 Summary of the main proof steps (boxes; bold black font) and associated propositions, lemma, and
theorem (blue font). Gray arrows show the sequence of the proofs steps. Dashed blue arrows indicate
dependencies, i.e., the step from where the arrow originates depends on the step to which the arrow points

17 Cf. Theorem 1 (unproven) in Junker (2004).
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QX
0ðB; A;Bh iÞ either terminates directly (in that it returns in line 10 or line 12) or calls

itself recursively in lines 16 and 17. However, for each recursive call QX0ðD0; A0;B0� �
Þ

within QX
0ðB; A;Bh iÞ it holds that ; � A0 � A as A0 2 A1;A2f g (see lines 14 and 15)

and ; � A1;A2 � A due to the definition of the SPLIT and GET functions.

Now, assume an infinite sequence of nested recursive calls of QX0. Since A is finite

(Definition 2), this means that there must be a call QX0ð �D; �A; �B
� �

Þ in this sequence where

j �Aj ¼ 1 and lines 16 and 17 (next nested recursive call in the infinite sequence) are

reached. This is a contradiction to the fact that the test in line 11 enforces a return in

line 12 given that j �Aj ¼ 1. Consequently, every sequence of nested recursive calls during

the execution of QX0ðB; A;Bh iÞ is finite (i.e., the depth of the call tree is finite).

Finally, there can only be a finite number of such nested recursive call sequences

because no more than two recursive calls are made in any execution of QX
0 (i.e., the

branching factor of the call tree is 2). This completes the proof. h

The following proposition witnesses that QX is sound in case the sub-procedure QX
0 is

never called.

Proposition 3 (Correctness of QX When Trivial Cases Apply)

(1) QXð A;Bh iÞ returns ’no p-set’ in line 3 iff there is no p-set wrt. A;Bh i.
(2) If QXð A;Bh iÞ returns ; in line 5, ; is a minimal p-set wrt. A;Bh i.
(3) If the execution of QXð A;Bh iÞ reaches line 7, pðA [ BÞ ¼ 1 holds.

Proof We prove all statements (1)–(3) in turn.

Proof of (1): The fact follows directly from Proposition 1.(1) and the test performed in

line 2.

Proof of (2): Because line 5 is reached, pðA [ BÞ ¼ 1 (as otherwise a return would have

taken place at line 3) and A ¼ ; (due to line 4) must hold. Since pðA [ BÞ ¼ 1 implies the

existence of a p-set wrt. A;Bh i by Proposition 1.(1), and since any p-set wrt. A;Bh i must

be a subset of A by Definition 3, ; is the only (and therefore trivially a minimal) p-set wrt.
A;Bh i.
Proof of (3): This statement follows directly from the test in line 2 and the fact that line 7

is reached. h

We now characterize an invariant which applies to every call of QX
0 throughout the

execution of QX.

Definition 4 (Invariant Property of QX0) Let QX0ðD; A;Bh iÞ be a call of QX0. Then we

say that InvarðD;A;BÞ holds for this call iff

ðD 6¼ ; _ pðBÞ ¼ 0Þ ^ pðA [ BÞ ¼ 1

The next proposition shows that this invariant holds for the first call of QX0 in Alg. 1.

Proposition 4 (Invariant Holds For First Call of QX
0) Invarð �D; �A; �BÞ holds for

QX
0ð �D; �A; �B

� �
Þ given that QX0ð �D; �A; �B

� �
Þ was called in line 7.

123

A formal proof and simple explanation of the QuickXplain algorithm 6197



Proof Since QX
0ð �D; �A; �B

� �
Þ was called in line 7, we have �D ¼ B, �A ¼ A and �B ¼ B.

Since pðA [ BÞ ¼ 1 holds in line 7 on account of Proposition 3.(3), we have that

pð �A [ �BÞ ¼ 1. To show that ð �D 6¼ ; _ pð �BÞ ¼ 0Þ, we distinguish the cases B ¼ ; and

B 6¼ ;. Let first B ¼ ;. Due to Definition 1, we have that pð �BÞ ¼ pðBÞ ¼ pð;Þ ¼ 0. Sec-

ond, assume B 6¼ ;. Since �D ¼ B, we directly obtain that �D 6¼ ;. h

Given the invariant of Definition 4 holds for some call of QX0, we next demonstrate that

the output returned by QX
0 is sound (i.e., a minimal p-set) when it returns in line 10 or 12

(i.e., if this call of QX0 represents a leaf node in the call-recursion-tree). Moreover, we

show that the invariant is ‘‘propagated’’ to the recursive call of QX0 in line 16 (i.e., this

invariant remains valid as long as the algorithm keeps going downwards in the call-

recursion-tree).

Proposition 5 (Invariant Causes Sound Outputs and Propagates Downwards) If

InvarðD;A;BÞ holds for QX0ðD; A;Bh iÞ, then:

(1) QX
0ðD; A;Bh iÞ returns ; in line 10 iff ; is a (minimal) p-set wrt. A;Bh i.

(2) If the execution of QX0ðD; A;Bh iÞ reaches line 11, then pðBÞ ¼ 0 holds.

(3) If QX0ðD; A;Bh iÞ returns A in line 12, then A is a minimal p-set wrt. A;Bh i.
(4) If the execution of QX0ðD; A;Bh iÞ reaches line 16, where QX0ð �D; �A; �B

� �
Þ is called,

then Invarð �D; �A; �BÞ.

Proof We prove all statements (1)–(4) in turn.

Proof of (1): ‘‘)’’: We assume that QX0ðD; A;Bh iÞ returns in line 10. By the test per-

formed in line 9, this can only be the case if pðBÞ ¼ 1. By Proposition 1.(2), this implies

that ; is a (minimal) p-set wrt. A;Bh i.
‘‘(’’: We assume that ; is a (minimal) p-set wrt. A;Bh i. To show that a return takes

place in line 10, we have to prove that the condition tested in line 9 is true. First, we

observe that pðBÞ ¼ 1 must hold due to Proposition 1.(2). Since InvarðD;A;BÞ holds (see
Definition 4), we can infer from pðBÞ ¼ 1 that D 6¼ ;. Hence, the condition in line 9 is

satisfied.

Proof of (2): Proposition 5.(1) shows that line 11 is reached iff ; is not a p-set wrt. A;Bh i
which is the case iff pðBÞ ¼ 0 due to Proposition 1.(2).

Proof of (3): A return in line 12 can only occur if the test in line 11 is positive, i.e., if

line 11 is reached and jAj ¼ 1. Moreover, since InvarðD;A;BÞ holds, it follows that

pðA [ BÞ ¼ 1.

First, pðA [ BÞ ¼ 1 is equivalent to the existence of a p-set wrt. A;Bh i. Second, by
Definition 3, a p-set wrt. A;Bh i is a subset of A. Third, jAj ¼ 1 means that ; and A are all

possible subsets of A. Fourth, since line 11 is reached, we have that pðBÞ ¼ 0 by state-

ment (2) of this Proposition, which implies that ; is not a p-set wrt. A;Bh i according to

Proposition 1.(2). Consequently, A must be a minimal p-set wrt. A;Bh i.
Proof of (4): Consider the call QX0ð �D; �A; �B

� �
Þ at line 16. Due to the definition of the SPLIT

and GET functions (1� k� jAj 	 1, A1 includes the first k, A2 the last jAj 	 k elements of

A) and the fact that �D ¼ A1, the property �D 6¼ ; must hold. Moreover,
�A [ �B ¼ A2 [ B [A1 ¼ A [ B. Due to InvarðD;A;BÞ, however, we know that

pðA [ BÞ ¼ 1. Therefore, pð �A [ �BÞ ¼ 1 must be true. According to Definition 4, it fol-

lows that Invarð �D; �A; �BÞ holds. h
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Note, immediately before line 17 is first reached during the execution of QX, it must be the

case that, for the first time, a recursive call QX0ðD; A;Bh iÞ made in line 16 returns (i.e., we

reach a leaf node in the call-recursion-tree for the first time and the first ‘‘backtracking’’

takes place). By Proposition 5.(1)?(3), the output of this call QX0ðD; A;Bh iÞ, namely X2

in line 16, is a minimal p-set wrt. A;Bh i. We now prove that the invariant property given

in Definition 4 in this case ‘‘propagates’’ to the first-ever call of QX0 in line 17.

Proposition 6 (If Output of Left Subtree is Sound, Invariant Propagates to Right Subtree)

Let InvarðD;A;BÞ be true for some call QX
0ðD; A;Bh iÞ and let the recursive call

QX
0ð _D; h _A; _BiÞ in line 16 during the execution of QX0ðD; A;Bh iÞ return a minimal p-set

wrt. h _A; _Bi. Then Invarð €D; €A; €BÞ holds for the recursive call QX0ð €D; h €A; €BiÞ in line 17

during the execution of QX0ðD; A;Bh iÞ.

Proof As per Definition 4, we have to show that ð €D 6¼ ; _ pð €BÞ ¼ 0Þ ^ pð €A [ €BÞ ¼ 1.

We first prove pð €A [ €BÞ ¼ 1. Since X2, the set returned by QX
0ð _D; h _A; _BiÞ ¼

QX
0ðA1; hA2;B [A1iÞ in line 16, is a minimal p-set wrt. h _A; _Bi ¼ hA2;B [A1i, we infer

by Definition 3 that pðX2 [ B [A1Þ ¼ 1. However, it holds that

QX
0ð €D; h €A; €BiÞ ¼ QX

0ðX2; A1;B [ X2h iÞ. Therefore, pð €A [ €BÞ ¼ pð½A1
 [ ½B [ X2
Þ ¼ 1.

It remains to be shown that ð €D 6¼ ; _ pð €BÞ ¼ 0Þ holds, which is equivalent to

ðX2 6¼ ; _ pðB [ X2Þ ¼ 0Þ. If X2 6¼ ;, we are done. So, let us assume that X2 ¼ ;. In this

case, however, we have pðB [ X2Þ ¼ pðBÞ. As InvarðD; A;Bh iÞ holds and line 17 is

reached during the execution of QX
0ðD; A;Bh iÞ, we know by Proposition 5.(2) that

pðBÞ ¼ 0. Hence, pðB [ X2Þ ¼ pðBÞ ¼ 0.

Overall, we have demonstrated that Invarð €D; h €A; €BiÞ holds. h

At this point, we know that the invariant property of Definition 4 remains valid up to and

including the first recursive call of QX0 in line 17 (i.e., until immediately after the first leaf

in the call-recursion-tree is encountered, a single-step ‘‘backtrack’’ is made, and the first

branching to the right is executed). From then on, as long as only ‘‘downward’’ calls of QX0

in line 16, possibly interleaved with single calls of QX
0 in line 17, are performed, the

validity of the invariant is preserved.

Due to the fact that QX terminates (Proposition 2), the call-recursion-tree must be finite.

Hence, the situation must occur, where QX
0 called in line 16 directly returns (i.e., in

line 10 or 12) and the immediately subsequent call of QX0 in line 17 directly returns (i.e.,

in line 10 or 12) as well (i.e., we face the situation where both the left and the right branch

at one node in the call-recursion-tree consist only of a single leaf node). As the invariant

holds in this right branch, the said call of QX0 in line 17 must indeed return a minimal p-set
wrt. its p-PI given as an argument, due to Proposition 5.(1)?(3).

The next proposition evidences—as a special case—that the combination (set-union) of

the two outputs X2 (left leaf node) and X1 (right leaf node) returned in line 18 in fact

constitutes a minimal p-set for the p-PI given as an input argument to the call of QX0 which
executes line 18. More generally, the proposition testifies that, given the calls in line 16

and line 17 each return a minimal p-set wrt. their given p-PIs—whether or not these calls

directly return—the combination of these p-sets is again a minimal p-set for the respective
p-PI at the call that executed lines 16 and 17.
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Proposition 7 (If Output of Both Left and Right Subtree is Sound, then a Sound Result is

Returned (Propagated Upwards)) Let the recursive call QX0ð _D; h _A; _BiÞ in line 16 during

the execution of QX0ð �D; �A; �B
� �

Þ return a minimal p-set wrt. h _A; _Bi, and let the recursive

call QX0ð €D; h €A; €BiÞ in line 17 during the execution of QX0ð �D; �A; �B
� �

Þ return a minimal p-

set wrt. h €A; €Bi. Then QX
0ð �D; �A; �B

� �
Þ returns a minimal p-set wrt. �A; �B

� �
.

Proof The statement is a direct consequence of Lemma 1 below. h

Lemma 1 Let A1;A2 be a partition of A. If (a) X2 is a minimal p-set wrt. A2;B [A1h i
and (b) X1 is a minimal p-set wrt. A1;B [ X2h i, then X1 [ X2 is a minimal p-set wrt.
A;Bh i.18

Proof We first show that X1 [ X2 is a p-set, and then we show its minimality.

p-Set Property: First, by Definition 3, X1 � A1 due to (a), and X2 � A2 due to (b), which

is why X1 [ X2 � A1 [A2 ¼ A. From the fact that X1 is a minimal p-set wrt.

A1;B [ X2h i, along with Definition 3, we get pðX1 [ ½B [ X2
Þ ¼ 1 ¼ pð½X1 [ X2
 [ BÞ.
Hence, X1 [ X2 is a p-set wrt. A;Bh i due to Definition 3.

Minimality: To show that X1 [ X2 is a minimal p-set wrt. A;Bh i, assume that X � X1 [ X2

is a p-set wrt. A;Bh i. The set X can be represented as X ¼ X0
1 [ X0

2 where

(1) X0
1 :¼ X \ X1 � X1 and (2) X0

2 :¼ X \ X2 � X2. In addition, the �-relation in (1) or (2)

must be a �-relation, i.e., X0
1 ¼ X1 and X0

2 ¼ X2 cannot both hold.

Let us first assume that � holds in (1). Then, X ¼ X0
1 [ X0

2 where X
0
1 � X1 and X0

2 � X2.

Since X is a p-set wrt. A;Bh i, we have pðX [ BÞ ¼ pð½X0
1 [ X0

2
 [ BÞ ¼
pðX0

1 [ ½B [ X0
2
Þ ¼ 1. By monotonicity of p, it follows that pðX0

1 [ ½B [ X2
Þ ¼ 1. Because

of X0
1 � X1 � A1, we have that X

0
1 is a p-set wrt. A1;B [ X2h i, which is a contradiction to

the premise (b).

Second, assume that � holds in (2). Then, X ¼ X0
1 [ X0

2 where X0
1 � X1 and X0

2 � X2.

Since X is a p-set wrt. A;Bh i, we have pðX [ BÞ ¼ pð½X0
1 [ X0

2
 [ BÞ ¼
pðX0

2 [ ½B [ X0
1
Þ ¼ 1. By monotonicity of p, and since X0

1 � X1 � A1, it follows that

pðX0
2 [ ½B [A1
Þ ¼ 1. As X0

2 � X2 � A2, we obtain that X0
2 is a p-set wrt. A2;B [A1h i,

which is a contradiction to premise (a). h

Proposition 8 (If Invariant Holds for Tree, Then a Minimal p-Set is Returned By Tree) If

Invarð �D; �A; �B
� �

Þ holds for QX0ð �D; �A; �B
� �

Þ, then it returns a minimal p-set wrt. �A; �B
� �

.

Proof We prove this proposition by induction on d where d is the maximal number of

recursive19 calls of QX0 on the call stack throughout the execution of QX0ð �D; �A; �B
� �

Þ.
Induction Base: Let d ¼ 0. That is, no recursive calls are executed, or, equivalently,

QX
0ð �D; �A; �B

� �
Þ returns in line 10 or 12. Since Invarð �D; �A; �B

� �
Þ is true, a minimal p-set

wrt. �A; �B
� �

is returned, which follows from Proposition 5.(1)?(3).

Induction Assumption: Let the statement of the proposition be true for d ¼ k. We will now

show that, in this case, the statement holds for d ¼ k þ 1 as well.

18 Cf. Proposition 6.2 (unproven) in Junker (2004).

19 That is, additional calls made, not taking into account the running routine QX
0ð �D; �A; �B

� �
Þ that we

consider in the proposition.
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Induction Step: Assume that (at most) k þ 1 recursive calls are ever on the call stack while

QX
0ð �D; �A; �B

� �
Þ executes. Since Invarð �D; �A; �B

� �
Þ holds, Proposition 5.(4) lets us conclude

that Invarð _D; h _A; _BiÞ holds for the first recursive call QX0ð _D; h _A; _BiÞ issued in line 16 of

QX
0ð �D; �A; �B

� �
Þ. Now, we have that, for QX0ð _D; h _A; _BiÞ, the maximal number of recursive

calls ever on the call stack while it executes, is (at most) k. Therefore, by the Induction

Assumption, QX0ð _D; h _A; _BiÞ returns a minimal p-set wrt. h _A; _Bi.
Because Invarð �D; �A; �B

� �
Þ holds and QX

0ð _D; h _A; _BiÞ called in line 16 during the exe-

cution of QX0ð �D; �A; �B
� �

Þ returns a minimal p-set wrt. h _A; _Bi, we deduce by means of

Proposition 6 that Invarð €D; h €A; €BiÞ holds for the call QX
0ð €D; h €A; €BiÞ made in line 17

during the execution of QX0ð �D; �A; �B
� �

Þ. Again, it must be true that the maximal number of

recursive calls ever on the call stack while QX
0ð €D; h €A; €BiÞ executes is (at most) k. Con-

sequently, QX
0ð €D; h €A; €BiÞ returns a minimal p-set wrt. h €A; €Bi due to the Induction

Assumption.

As both recursive calls made throughout the execution of QX
0ð �D; �A; �B

� �
Þ return a

minimal p-set wrt. their given p-PIs h _A; _Bi and h €A; €Bi, respectively, we conclude by

Proposition 7 that QX0ð �D; �A; �B
� �

Þ returns a minimal p-set wrt. �A; �B
� �

.

This completes the inductive proof. h

Theorem 1 (Correctness of QX) Let A;Bh i be a p-PI. Then, QXð A;Bh iÞ terminates and
returns a minimal p-set wrt. A;Bh i if a p-set exists for A;Bh i. Otherwise, QXð A;Bh iÞ
returns ’no p-set’.20

Proof QX terminates due to Proposition 2.

Proposition 3.(1), first, proves that ’no p-set’ is returned if there is no p-set wrt. A;Bh i.
Second, it shows that, if there is a p-set wrt. A;Bh i, QX will either return in line 5 or call

QX
0 in line 7.

We now show that, in both of these cases, QX returns a minimal p-set wrt. A;Bh i. This
then implies that a minimal p-set is returned by QX whenever such a one exists.

First, if QX returns in line 5, then the output is a minimal p-set wrt. A;Bh i due to

Proposition 3.(2).

Second, if QX-calls QX0ð �D; �A; �B
� �

Þ in line 7, then Invarð �D; �A; �BÞ holds according to

Proposition 4. Finally, since Invarð �D; �A; �BÞ holds for QX
0ð �D; �A; �B

� �
Þ, Proposition 8

establishes that QX0ð �D; �A; �B
� �

Þ returns a minimal p-set wrt. A;Bh i. h

6 On the used proof template

To devise the proof presented in Sect. 5, we adhered to a specific proof template. Although

several textbooks, e.g., Cormen et al. (2009), Velleman (2006), Edmonds (2008), Klein-

berg and Tardos (2006), provide general hints and techniques helpful for proving (recur-

sive) algorithms, we briefly outline the specific template we used in the proof next. The

20 Cf. Theorem 1 in Junker (2004).
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reasons for making this explicit are that knowing the underlying proof template can both

promote the understanding of the given proof and serve as a reference point when con-

fronted with the problem of showing the correctness of other recursive procedures.

The foundation for our used template is provided by the proof principle for (non-

recursive) algorithms based on loop invariants detailed in Cormen et al. (2009). The idea

underlying their framework (which we shall call L-INV) is to prove that a loop invariant,
i.e., a predicate that is always true while a loop executes, (1) holds when the loop is entered
(L-initialization), (2) remains true for the next loop iteration if it is true for the current

iteration (L-maintenance), and (3) yields a property at termination of the loop that is useful

to prove the algorithm’s correctness (L-termination).21 The template (which we will refer

to as R-INV) adopted in our proof is an adaptation of L-INV to recursive algorithms. It

– relies on a recursion invariant, i.e., a predicate that is true for every recursive call of a

procedure, and

– involves the proof that this invariant

– holds for the first call of the recursive procedure (R-initialization),
– remains true for any further (recursive) call of the procedure

(R-maintenance), and
– entails correctness of the procedure’s output (R-termination).

In spite of the resemblance between R-INV and L-INV, it is essential to understand the

different nature of the proof when considering a recursive as opposed to a non-recursive

procedure. Whereas R-initialization, similarly as L-initialization, will often be quite easily

shown due to its independence from the recursion, addressing R-maintenance and R-ter-

mination is more elaborate than L-maintenance and L-termination in general. The reasons

are as follows:

1. There is only one entry point into a loop, whereas there may be multiple different

places where a recursive procedure can be called. Consequence: There is one case to

be analyzed for L-maintenance, whereas there can be multiple cases to be
distinguished for R-maintenance.

2. For a loop, there is no return value and often22 only one termination condition, whereas

there are multiple termination conditions23 for a recursion, and for each such condition

a different value can be returned. In particular, a recursive procedure can return due to

some trivial case that applies (no nested recursive calls) or after recursively processing

a non-trivial case (nested recursive calls). Consequence: There is usually one case to

be analyzed for L-termination, whereas multiple cases need to be considered for

R-termination. Moreover, demonstrating R-termination when a non-trivial case is

processed by the recursive procedure requires an induction proof.
3. In case the recursion implements a divide-and-conquer approach, there can be

combine-steps where partial solutions are integrated to a complete solution (cf. Alg. 1,

line 18). Consequence: These combine-steps need to be addressed when proving

R-termination.

21 The three stages of the proof are originally called initialization, maintenance and termination in Cormen
et al. (2009); we added the L-prefix to distinguish these terms relating to loops from the newly introduced
ones, which are associated with recursion (R-prefix).
22 If break-statements do not occur within the loop.
23 One such ‘‘condition’’ is reaching the last statement of the procedure.
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As an illustration, the following table shows how the building blocks of our proof are

assigned to the three different proof phases of R-INV:24

R-initialization (abbreviations: P...Proposition, T...Theorem)

P4 (invariant holds for first call of QX0)

R-maintenance

(case 1: recursive QX
0-call 1) P5.(4) (invariant ) invariant holds for recursive call in line 16)

(case 2: recursive QX
0-call 2) P6 (invariant ) invariant holds for recursive call in line 17)

R-termination

(correctness of combine-step) P7 (correct outputs in lines 16, 17 ) correct output in line 18)

(trivial case) P5.(1) ? P5.(3) (invariant ) correct output if no nested recursive calls)

(general case: proof by induction) P8 (invariant ) correct output given nested recursive calls)

Finally, two remarks: (1) The finding of a ‘‘right’’ invariant can be tricky and will often

represent the key to success in proving a recursive algorithm by means of the R-INV

template. However, once an appropriate invariant has been determined, the rest of the

proof can be relatively straightforward provided that the systematic steps suggested by R-

INV are followed. (2) There can be multiple (logically non-equivalent) invariants that

allow to prove one and the same algorithm by means of the R-INV template. Indeed, also

in the case of QX, a second possible invariant exists and is given by:

A 6¼ ; ^ pðA [ BÞ ¼ 1 ^ pðB n DÞ ¼ 0.25

7 Conclusion

QUICKXPLAIN (QX) is a very popular, highly cited, and frequently employed, adapted, and

extended algorithm to solve the MSMP problem, i.e., to find a subset of a given universe

such that this subset is irreducible subject to a monotone predicate (e.g., logical consis-

tency). MSMP is an important and common problem and its manifestations occur in a wide

range of computer science disciplines. Since QX has in practice turned out to be hardly

understood by many—experienced academics included—and was published without a

proof, we account for that by providing for QX an intelligible proof that explains. The
availability and accessibility of a formal proof is instrumental in various regards. Beside

allowing the verification of QX’s correctness (proof effect), it fosters proper and full

understanding of QX and of other works relying on QX (didactic effect), it is a necessary

foundation for ‘‘gapless’’ correctness proofs of numerous algorithms, e.g., in model-based

diagnosis, that rely on (results computed by) QX (completeness effect), it makes the

intuition of QX’s correctness bullet-proof and excludes the later detection of algorithmic

errors, as was already experienced even for seminal works in the past (trust and sustain-
ability effect), as well as it might be used as a template for devising proofs of other

recursive algorithms (transfer effect). Since (i) we exemplify the workings of QX using a

novel tried and tested well-comprehensible notation, and (ii) we put a special emphasis on

the clarity and didactic value of the given proof (e.g., by segmenting the proof into small,

24 To be precise, the table shows the steps of the proof that QX0, i.e., the recursive part of QX, is correct. To
show that QX is correct, Theorem 1 roughly combines the correctness of the trivial cases (checked before

QX
0 is called) with the correctness of QX0 (cf. Fig. 2).

25 We thank a researcher colleague for making us aware of this alternative invariant for proving QX.
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intuitive, and easily-digestible chunks, by showing how our proof can be ‘‘directly traced’’

using the recursive call tree produced by QX, and by explaining the underlying proof

template with the intention to make it reusable for other proofs), we believe that this work

can decisively contribute to a better understanding of QX, which we expect to be of great

value for both practitioners and researchers.
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