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Abstract

With the advent of the Internet of Everything, the proliferation of data has put a huge bur-
den on data centers and network bandwidth. To ease the pressure on data centers, edge
computing, a new computing paradigm, is gradually gaining attention. Meanwhile, arti-
ficial intelligence services based on deep learning are also thriving. However, such intel-
ligent services are usually deployed in data centers, which cause high latency. The com-
bination of edge computing and artificial intelligence provides an effective solution to
this problem. This new intelligence paradigm is called edge intelligence. In this paper, we
focus on edge training and edge inference, the prior training models using local data at
the resource-constrained edge devices. The latter deploying models at the edge devices
through model compression and inference acceleration. This paper provides a comprehen-
sive survey of existing architectures, technologies, frameworks and implementations in
these two areas, and discusses existing challenges, possible solutions and future directions.
We believe that this survey will make more researchers aware of edge intelligence.
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1 Introduction

With the constant development of algorithms, big data and computing power, artificial
intelligence (AI) is flourishing in today’s era. Among them, deep learning (DL) (Hinton
et al. 2006) has yielded breakthrough achievements in various fields, from computer
vision (Krizhevsky et al. 2012) to natural language processing (Bengio et al. 2003). The
rapid development in these fields has produced many DL-based smart application ser-
vices, which bring great convenience to our lives. However, existing smart application
services are often computationally intensive, and these DL-based services are usually
deployed in data centers. Such cloud-based DL services have several drawbacks: (1)
computation tasks are deployed in data centers, which can impose a huge burden on net-
work bandwidth and data centers; (2) it cannot provide low-latency services; (3) data is
uploaded to the cloud, which can be a potential threat to user privacy.

As the extension of cloud computing, edge computing (Shi et al. 2016) can effec-
tively alleviate the issues mentioned above. It relieves the pressure on network band-
width and data centers by sinking part of the computation to the edge. Compared to
cloud computing, edge computing has the following advantages: (1) computation is per-
formed locally or at the edge servers, lowering latency; (2) data does not need to be
uploaded to the cloud, reducing bandwidth consumption; (3) data is stored at the edge,
which protects user privacy. Edge computing offers an effective solution to the key chal-
lenges of Al In fact, the combination of edge computing and Al has formed a new intel-
ligence paradigm, edge intelligence. Edge intelligence deploys a portion of DL services
to the edge, improving the speed of data processing, avoiding user privacy leakage and
reducing bandwidth consumption.

As far as we know, there exists some efforts related to our work (Zhou et al. 2019b; Xu
et al. 2020; Wang et al. 2020; Tang et al. 2020; Deng et al. 2020; Yang et al. 2019; Kholod
et al. 2021; Yang et al. 2020a). Specifically, Tang et al. (2020) provided a comprehensive
survey on communication-efficient distributed training. They classified distributed train-
ing architectures into three types from the system-level, which are also involved in our
work. Yang et al. (2019) provided a comprehensive survey about federated learning (FL),
which they classified as horizontal FL, vertical FL, and federated transfer learning. FL
is also an important component of our survey. Kholod et al. (2021) investigated open-
source frameworks for FL. They conducted experiments on three datasets and evaluated
the applicability of the FL frameworks to Internet of Things (IoT) systems in terms of five
dimensions: ease of use and deployment, development, analysis capabilities, accuracy, and
performance. Yang et al. (2020a) presents the main contributions of 35 papers on edge
intelligence. Some of these papers are also involved in our survey. The survey of Wang
et al. (2020), Deng et al. (2020) consists of two parts: (1) how to train and deploy models
in resource-constrained edge devices; and (2) how to utilize Al to solve problems in edge
computing. The former is the focus of our survey, and the latter is outside the scope of our
survey. In addition, their survey was conducted from a macro perspective. Compared to
their work, we provide more detailed information and the latest research.

To the best of our knowledge, Zhou et al. (2019b) and Xu et al. (2020) are the two
most relevant reviews to our survey. Xu et al. (2020) investigated the works on edge intel-
ligence from four perspectives: edge caching, edge training, edge inference, and edge off-
loading. The efforts of these four areas are also involved in our survey. The difference is
that we focus on the efforts on edge training and edge inference. For edge caching as well
as edge offloading, we focus on their applications to edge intelligence. In addition to this,
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we provide a more detailed introduction and the latest research. Zhou et al. (2019b) intro-
duced the works on edge training and edge inference from a macroscopic perspective. Dif-
ferently, our investigation is conducted from a microscopic perspective. Moreover, (Zhou
et al. 2019b) was published in 2019. Therefore, we investigated the most recent studies and
provided more detailed information. We compare these efforts in Table 1.

In this paper, we mainly focus on edge training and edge inference. The former uses fed-
erated learning to train models on edge devices. The latter uses techniques such as model
compression and inference acceleration to deploy models on edge devices. The remain-
der of this paper is organized as follows. We introduce the foundations of edge computing
and Al in Sects. 2 and 3, respectively. In Sects. 4 and 5, we provide a detailed introduc-
tion, discussion, and analysis of the techniques, architectures, open-source frameworks and
developments in edge training and edge inference, separately. The implementations of edge
intelligence is presented in Sect. 6. Finally, we provide open challenges, possible solutions
and future directions for edge intelligence in Sect. 7.

2 The foundations of edge computing

In this section, we introduce some fundamental concepts of edge computing, which consists of
four parts: cloud computing, fog computing, edge computing, and cloud-edge collaboration.

(1) Cloud computing: the National Institute of Standards and Technology (NIST) defined
cloud computing as a ubiquitous, easily accessible, and on-demand accessed shared
pool of computing resources that can be rapidly deployed with minimal management
(Mell and Grance 2011). Cloud computing brings together numerous computing
resources and manages them automatically through software. Cloud computing pro-
vides fast and secure computing and data storage services that allow everyone to utilize
the huge computing resources on the network.

(2) Fog computing: Bonomi et al. (2012) first introduced fog computing, defined it as a
highly virtualized computing platform that migrates computing tasks from the cloud
to network edge for execution. Different from cloud computing, fog computing is not
composed of powerful servers, but of weaker and more decentralized computing nodes.
It is an IoT-oriented distributed computing infrastructure that can significantly reduce
latency by sinking computation power and data analysis to the edge of the network.

(3) Edge computing: edge computing is located at the edge of the network that is close to
devices. The edge can be any entity from the data source to the data center and provides
services such as computation, storage, and data analysis to the devices. It is worth noting
that the edge is not the device itself. Although both edge computing and fog computing
move computation and storage to the edge of the network, there are certain differences
between the two computation paradigms. Group OCAW et al. (2017) pointed out that fog
computing provides computation, storage, and control services for all requests between
the cloud and devices, while edge computing is only for edge devices.

(4) Cloud-edge collaboration: cloud computing can provide powerful support for com-
putationally intensive tasks such as DL, however it cannot provide low-latency ser-
vices. Although edge computing can effectively alleviate this problem, it is difficult
to run computationally intensive tasks on resource-constrained devices. Collaboration
between cloud and edge can provide low-latency DL services. For example, Huang
et al. (2019) split deep neural network (DNN) between cloud, edge and devices, allow-

@ Springer



Al on the edge: a comprehensive review 6129

ing a portion of the computation to be performed at the edge or devices, thus achieving
trade-offs between latency, bandwidth consumption and device energy consumption.

3 The foundations of Al

In this section, we introduce some subfields of machine learning and focus on deep neu-
ral network.

3.1 Machine learning

Machine learning is a technique that uses algorithms to parse data and make classifica-
tions and predictions about real-world things. Machine learning comes directly from
the early days of the AI field. Its traditional algorithms include decision trees, cluster-
ing, Bayesian classification, support vector machines (SVM), Adaboost, etc. Here we
introduce several subfields of machine learning: incremental learning, active learning,
reinforcement learning, deep learning and deep reinforcement learning.

(1) Incremental learning: general machine learning models forget what they have learned
while they acquire new knowledge, which is known as “catastrophic forgetting”. Mod-
els can be retrained with the help of data centers. However, this can be time- and
energy-consuming. Incremental learning can be an efficient solution to this problem.
Models obtained by training with incremental learning can perform well on both old
and new tasks. It is worth noting that the concept, incremental learning, is similar to
continuous learning and lifelong learning.

(2) Active learning: supervised learning requires a complete annotated dataset to train the
model. Data annotation is costly when the dataset is extremely large. Active learning is
an effective way to alleviate this problem. The core idea of active learning is to allow
the learning algorithm to proactively propose annotation requests and hand over some
relatively difficult annotation tasks to human experts for further annotation. In this way,
the costs of data annotation can be effectively decreased.

(3) Reinforcement learning: reinforcement learning emphasizes how to maximize ben-
efits by taking actions based on the environment. In contrast to supervised learning,
reinforcement learning (Bellman 1953) does not require any data. It acquires learning
information and updates model parameters by accepting the feedback from the environ-
ment. Reinforcement learning is often used in applications such as Go and games, e.g.,
AlphaGo (Silver et al. 2016) is an implementation based on reinforcement learning.

(4) Deep learning: as one of the main driving engines of Al development, DL has attracted
wide attention of researchers since AlexNet (Krizhevsky et al. 2012) won the ImageNet
competition, after which more excellent network models were proposed, such as VGG
(Simonyan and Zisserman 2014), GoogleNet (Szegedy et al. 2015). DL has made sig-
nificant breakthroughs in many fields such as data mining, machine translation, face
recognition, natural language processing, etc. It has solved a number of complicated
pattern recognition problems and enabled the rapid development of Al

(5) Deep reinforcement learning: DL has a high perceptual ability but lacks a certain
degree of decision-making ability. Whereas, reinforcement learning possesses decision-
making ability but cannot perceive the target well. Deep reinforcement learning (Mnih
et al. 2013) integrates the perceptual ability of DL and the decision-making ability of
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(a) MLP (b) CNN

Fig.1 Three types of common neural networks

reinforcement learning. It can control directly based on the input image. This approach
is closer to the pattern of human thought.

3.2 Deep neural network

DNN can be comprehended as a neural network structure that includes multiple hidden
layers. Here, we focus on three structures of DNN: multilayer perceptron (MLP), Con-
volutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

The earliest neural network is perceptron, which has an input layer, an output layer
and a hidden layer. The input feature vector is transformed through the hidden layer to
the output layer, and the results are obtained in the output layer. To fit more complex
functions, (McCulloch and Pitts 1943) proposed MLP. As shown in Fig. la, MLP is a
series of fully-connected layers. The problem of fully connected DNNs is the excessive
number of parameters. To alleviate this problem, LeCun et al. (1989) introduced con-
volution kernels in CNN. The weights of the same convolution kernel are shared. The
image still retains its original position relationship after being convolved. In this way,
CNN effectively reduces the number of parameters. CNN is mainly applied to computer
vision, but it can also be applied to natural language processing (Zhang and Wallace
2015). RNN can represent the changes of time-series, and it is widely applied in natu-
ral language processing. In order to better handle time-series tasks, a series of RNN
variants had been proposed, such as LSTM (Hochreiter and Schmidhuber 1997), Trans-
former (Vaswani et al. 2017). Recently, a number of researchers have paid attention to
the application of Transformer in computer vision (Dosovitskiy et al. 2020; Touvron
et al. 2020). All these works obtained good performance.

4 Edge training

Cloud-based DL requires a complete dataset in the data center for training. However,
training tasks in the edge environment are mainly done through the collaboration of
multiple participants. Such distributed learning is known as FL, which can effectively
save bandwidth and protects user privacy.

There are some differences between FL and distributed learning (Table 2). First, the
purpose of distributed learning is to process large amounts of data in parallel, while
the purpose of FL is to train models locally and protect user privacy. Second, tradi-
tional distributed learning usually works with independent and identically distributed
(IID) data, while FL. works with non-independent and identically distributed (Non-IID)
data. Finally, traditional distributed learning uses high-performance compute nodes for
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Table 2 The difference between distributed learning and federated learning

Distributed learning Federated learning

Aims  Processing large amounts of data in parallel ~ Training models locally and protecting user privacy

Data IID data with almost the same size Non-IID data; the amount of data varies greatly
from client to client

Nodes High performance computing nodes Resource-constrained edge nodes

training, while FL uses resource-constrained edge nodes for training. In this section, we
focus on training architectures of distributed learning and the development of FL.

4.1 Training architecture

(1) Parameter server: in the parameter server (PS) architecture (Smola and Narayanamurthy
2010), there are two roles, the server and working nodes. As shown in Fig. 2a, first, the
working nodes train the model and update the parameters locally. Then the updated
parameters are sent to the server. Finally, the server aggregates the updates to get a
global model and distributes the parameters to each node. The main challenges of the
PS architecture are communication bottlenecks and single-point-of-failure.

(2) All-reduce: to avoid single-point-of-failure, All-Reduce is an optional solution (Pata-
rasuk and Yuan 2009). As shown in Fig. 2b, All-Reduce removes the PS. Each working
node communicates with other working nodes and gets updates from all the nodes.
Therefore, each node has a consistent global model. The collective communication
pattern of All-Reduce prevents it from being utilized for asynchronous communica-
tion. Moreover, this solution results in significant bandwidth consumption due to fre-
quent communication. In order to reduce bandwidth consumption, Gibiansky (2017)
proposed Ring-All-Reduce. As shown in Fig. 2c, they constructed the working nodes
into a ring structure, where each node delivers updates to the next node in a clockwise
direction. At the same time, it also receives updates from the last node.

(3) Gossip: in contrast to the PS architecture, the gossip architecture has neither PS nor a
consistent global model. As shown in Fig. 2d, in this architecture, the working nodes
randomly (Blot et al. 2016) or conditionally (Roy et al. 2019) select several nodes to
exchange updates at each iteration. Therefore, in each iteration, all the local models
are different from each other. However, it guarantees that the final model is consistent.

(4) Neighbor: similar to the gossip architecture, the neighbor architecture does not have
a consistent global model either. As shown in Fig. 2e, in each iteration, each working
node communicates only with its neighbor nodes. Therefore, the model on each node is
changed in each iteration. Of course, it also ensures the consistency of the final model.

4.2 Federated learning

FL was proposed by Google. It is a distributed learning that takes place in mobile edge
systems. The most common application scenario of FL. (McMahan et al. 2017) has the
following characteristics: (1) network instability: edge devices are often disconnected;
(2) data imbalance: the data volume may be significantly different between edge devices;
(3) Non-IID data: the data distribution of each edge device cannot represent the total data
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Parameter Worker 1 Worker n

server

Worker 2 Worker n-1

Worker 1 Worker 2 Worker n-1 Worker n Worker 3 Worker n-2 Worker 3 Worker n-2

(a) PS Architecture (b) All-Reduce Architecture (¢) Ring-All-Reduce
Architecture

Worker 1 Worker n Worker 1 Worker n
Random or conditional
choice

Worker 2 Worker n-1 | | Worker 2 Worker n-1

Worker 3 Worker n-2 Worker 3 Worker n-2

(d) Gossip Architecture (€) Neighbor Architecture

Fig.2 Five types of training architectures

distribution due to the different preferences among users; (4) large number of devices:
there are a huge number of devices in the edge.

FL with PS architecture appeared relatively early. Then, FL. with peer-to-peer architec-
ture emerged, which reduces bandwidth consumption and avoids the single-point-of-failure
compared to FL with PS architecture. We classify these efforts into four categories: (1)
communication-efficient FL, (2) privacy preserving FL, (3) FL with Non-IID data, and (4)
Decentralized FL. The major efforts of FL are summarized in Table 3.

4.2.1 Communication-efficient FL

As shown in Fig. 3, for FL with PS architecture, edge devices send updates to the PS
and get the global parameters from the PS. However, In the edge environment, network
bandwidth resources are limited. Therefore, communication optimization is essential. We
categorize the efforts of communication optimization into two types: (1) communication
frequency optimization and (2) communication costs optimization. Among them, the opti-
mization of communication frequency avoids frequent update exchanges by controlling
communication rounds. The optimization of communication costs reduce the size of the
updates in each communication round.

Communication frequency optimization McMahan et al. (2017) first proposed FL and
presented the Federated Averaging (FedAvg). They reduced the number of communica-
tion rounds by adding additional computations on local devices. Compared to synchronized
stochastic gradient descent, FedAvg reduces communication rounds by a factor of 10-100.
Wang et al. (2019) proposed a control algorithm which can dynamically adjust the global
aggregation frequency to minimize the learning loss under a fixed resource budget. Reisiza-
deh et al. (2020) proposed a periodic average and quantization (FedPAQ) algorithm. FedPAQ
allows clients to perform gradient updates locally, capturing the updates of devices in phases
and sending them to the server. Moreover, the information sent to the server is simply a quan-
tified version of the local information. The periodic average reduces the number of communi-
cation rounds and the quantization decreases the costs of each communication round.

@ Springer



6133

Al on the edge: a comprehensive review

[opout Y3

urex) o3 ejep I-UON JO 9213ap Jomo[ [IIm SJUID Sunod[es
josejep [ ewrxoidde ue wioy pue JoAI0S

3y 01 B1ep 113y peojdn 03 MO[[e SIUSI[O MI B Jey) Surunssy

BIRp J[-UON U0
Sururen 10y A[[eqo[S pareys sI Jey} BIep Jo 1asqns e Sunear)

ureyoyoo[q ym Aoearid [enuareyip Suruiquio)

SOATIUIUT
pue Aiqeypne [euoneindwod ‘ANeNuapyuod elep SuIpraoig
Sururen
ur 93e3U9 0} SIUSI[O JIOW JORIIE 0] SIAUADUT SUIINPOINU]
Koearid [enuaIYIp IM TJ J0J SISA[euE [2O112109Y) SUIPIAOI]

uonendwod
Kyed-ninw 21no9s ym Koearid renuarayip Suruiquo)

uoneindwoo Kyred-ninw a1noss Suikjddy
Koeard renuaiayp Suikddy
uondAoue orydrowowoy Suikjddy

sIoAe] mo[reys pue doap 10j sarouanbaiy uonedai3se Juaroyiq
Surunid paynqusip pue Surunad fenrur Surpnpouy
UONBIIUNUILIOD JUSI[O-0)-I10AIS SUISNO0]

IpImpueq uonesunuwod yurjdn oyl Suronpay

8AYPaISD

T4-PHAAH

ureyDdoea(g

143019
TAVAN

[090101d uoneSa13Se amoeg v

uonegai3se paysSom
A[rezodw) pue SutuIed] SNOUOIYIUASY

TJeunig
nodoip pajeropa]
sojepdn payojeys pue sajepdn parmonng

BIEp (QI[-UON SuIssao01g
BIEp (JI[-UON SuIssaooig

B1Ep [[-UON SuIssao0iq
sopou Sunjiom woij Koeard Sunosoid

sopou Suryiom woij Aoeard Sunoojoig

sopou Juryiom woiy Aoeard Sunosjoig
Sd woiy Koearid Sunosjoig

Sd woiy Koearid Sunosjoig
Sd woiy Koearid Junosjoig
Sd woiy Koearid Junosjoig
Sd woiy Koearid unosjoig

1S09 UOT)BIIUNUIO))
1S09 UOT)BIIUNWIWO))
1S09 UOT)BITUNWIWO))
1S09 UOT)EITUNWIWO))

(q1202) 'Te 30 Sueyz
(0T0T) "Te 32 BpIYsox

(e8107) 'Te 32 oeyZ
(0202) 'Te 10 oeyZ

(1207) Te 10 Suopm

(6100) 'Te 10 wry
(0200) T8 10 Tom

(6107) Te 30 xonu[,
(L102) T8 10 Z3meuog
(L100) ' 12 1okoD)
(L10T) 'Te 30 ouoy

(6107) 'Te 10 Uy
(6102) Te 30 Suelf
(8107) 'Te 32 sep[eD)
(9102) 'Te 10 Lugouoy]

AorIndoe [opour 0] aeWEp ON o0d 1509 UONEIIUNUWIWOD) (9L107) TR 1R U]

syse) T4 wiograd 01 syuard Jo AIqe Y Sunenfeaq SODINPaH Kouanbaiy uonesrunwwo)  (0z0g) T8 10 Uewye[Npqy
uoneznuenb pue o3eIoAr OIPOLIN] Ovdpad 1500 pue Aouanbarj uonesTUNUILIO)) (0207) 'Te 1° yopezIsioy

K[reorweuAp Aouonbaiy uonedai3se (eqol3 ayy Sunsnlpy wylIo3[e [0Nuod Y Kouanbaiy uonesuNWWo)) (6107) 'Te 10 Suepy
Areoo] uoneindwod [euonippe Suppy 3aypaq Kouanbaiy uonesUNWWO)) (L102) T 12 UeYRIADIA

y31ysi NIOMOWEBL}/WIIOF Y A192[q0 JI0M paje[oy

SurureoT pejeIopa, Jo syIoye Jofew Ay, € d|qel

pringer

As



W.Suetal.

6134

ammoyore dIsson) YIM T PIZI[eNudq
ammoyore dIsson) YIIM T PIZI[eNuddq
amoyore disson) YIIm T pZI[enuaddq
QIMOAIYOIE 10qYSIIAU YIIM T PIZI[eNUIRJ
QIMOAIYOIE 10qYSIAU YIM T PIZI[eNUIRJ

Qoue
-[equuT BJEPp [BOO] PUE dJUB[RqUIT BJEP [BQO[S o) SUNeSnIN

SwIoS[e SAYP,] PISeq-snsuasuo))
JuoIIO T UTRIg

yoeoidde disso3 pajuowides y

4 PAZI[enudq

T PAZI[enudq
1505 UOT)ESTUNUITOD)

Kouonbaiy uonesuNWWoO))

T4 PIZI[enuadq

ejep I[-UON SuIssao0id

(0207) 'Te 10 1ZZeARS
(6107) Te 30 Koy
(6107) T2 nH
(0207) Tere g
(6107) Te 10 eyI[e]

(0202) 'Te 30 ueng

WSIUSIH

SIOMAWBI/ W0y

2A12[q0

SHom paje[ay

(ponunuod) € sjqer

pringer

A s



Al on the edge: a comprehensive review 6135

-
| |
I I
I I
| Client1 1 |
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Fig.3 FL with PS Architecture

The aforementioned works randomly selected clients during each training round,
which may lead to unreliable client selection and cause unnecessary bandwidth consump-
tion. AbdulRahman et al. (2020) maximizes the number of users involved in training and
reduced the number of discarded communication rounds by evaluating the ability of users
to perform FL tasks from multiple perspectives, including CPU, memory, energy and time.

Communication costs optimization In contrast to communication frequency optimiza-
tion, the optimization of communication costs focuses on reducing the size of the updates
in each round of communication. Lin et al. (2017b) discovered that in distributed stochastic
gradient descent, up to 99% of the gradient exchanges are unnecessary. Therefore, com-
munication costs can be decreased by reducing redundant gradient exchanges. To achieve
this goal, gradient quantization and gradient sparsification are widely used. For example,
Seide et al. (2014) used 1-bit quantization to reduce bandwidth consumption in stochastic
gradient descent. Aji and Heafield (2017) sparsified the gradient updates by removing a
certain percentage of the gradients based on the absolute value of the threshold, and used
a global threshold with layer normalization. However, these works either added additional
layer normalization or brought a loss of accuracy. Lin et al. (2017b) proposed deep gradi-
ent compression (DGC). Compared to the works mentioned above, DGC does not require
extra layer normalization and uses momentum correction and local gradient clipping to
ensure that the model accuracy is not degraded.

Konec¢ny et al. (2016) proposed two approaches for reducing the uplink communication
bandwidth, structured updates and sketched updates. Structured updates refer to updates
that can be learned from parameterized constrained space that uses fewer variables.
Sketched updates refer to learning the complete model updates and then compressing them
before sending to the server. Different from Konecny et al. (2016), Caldas et al. (2018)
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focused on server-to-client communication. In addition, inspired by the Dropout (Srivas-
tava et al. 2014), they proposed the Federated Dropout, which allows each device locally
trains sub-models. These sub-models are subsets of the global model. Thus, local updates
can be considered as updates of the global model.

Jiang et al. (2019) proposed PruneFL, an adaptive distributed parameter pruning method
based on FL. PruneFL includes initial pruning and distributed pruning. It also contains a
low-complexity adaptive pruning method that achieves a trade-off between accuracy and
computation time. Chen et al. (2019) proposed an asynchronous learning strategy and a
temporally weighted aggregation strategy. In the asynchronous learning strategy, DNN lay-
ers are divided into shallow layers and deep layers. The parameters of shallow layers are
updated more frequently than the parameters of deep layers, which reduce communica-
tion costs between the server and clients. In addition, the temporally weighted aggregation
strategy can aggregate the local models more efficiently, improving the performance of the
model.

4.2.2 Privacy preserving FL

Although FL protects user privacy to a certain degree, some works have demonstrated that
it is possible to obtain certain user information from trained models. For example, Hitaj
et al. (2017) designed a distributed DL attack based on generative adversarial network
(GAN). Any user involved in collaborative training can use this attack to generate sensi-
tive information about the victim’s device. This attack is effective even when the client
uses differential privacy to obfuscate parameters. The authors claimed that this attack is
also effective for FL. Further, Melis et al. (2019) attacked to FL. They demonstrated that
gradient updates can leak participants’ training data and proposed active and passive infer-
ence attacks. Despite the fact that FL can average gradient updates, they still successfully
exploited gradient updates for the attack.

In FL with PS architecture, privacy threats are from two main sources: (1) PS; and (2)
malicious edge nodes. Early works mainly focused on privacy threats from PS (Aono et al.
2017; Geyer et al. 2017; Bonawitz et al. 2017). These works mainly protected user privacy
through differential privacy, homomorphic encryption, and secure multi-party computa-
tion. Later, researchers used blockchain to eliminate privacy threats from PS and to miti-
gate privacy threats from malicious nodes to some extent.

Privacy threats from PS Shokri and Shmatikov (2015) proposed a privacy-preserving
DL system that allows participants to train on their own datasets and selectively share a
portion of the parameters. Sharing parameters can improve model accuracy, but brings pri-
vacy loss. The system can adjust the shared parameters to make a trade-off between pri-
vacy loss and model accuracy. However, Aono et al. (2017) found that even if only a por-
tion of the parameters are shared, useful information about the users can still be obtained.
Therefore, the authors used homomorphic encryption to protect the participants’ informa-
tion from being leaked to the server.

Geyer et al. (2017) applied differential privacy to FL for hiding the contribution of cli-
ents participating in training. The algorithm can achieve good convergence performance
for a given privacy level, especially when a sufficient number of clients are involved in
the training. Bonawitz et al. (2017) applied secure multi-party computation to FL and
proposed an efficient secure aggregation protocol. This method makes it impossible to
check individual updates for each client. Truex et al. (2019) proposed a FL algorithm that
combines differential privacy and secure multi-party computation. In which, differential
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privacy protects user privacy and secure multi-party computation ensures that the informa-
tion exchange without being protected by differential privacy is not disclosed.

The works mentioned above only proved the experimental results by simulation, but
lacked theoretical analyses. Wei et al. (2020) provided a theoretical analysis of FL’s conver-
gence properties when differential privacy is used. The authors demonstrated theoretically
that there is a trade-off between convergence performance and privacy preservation. They
presented NbAFL, a framework that adds noise to the client’s parameters before aggrega-
tion. In addition, the authors proposed a K-client stochastic scheduling strategy. They dis-
covered that there is an optimal number of clients, K, for a given level of privacy, allowing
the model to achieve the best convergence performance.

Privacy threats from edge nodes The works mentioned above focused on privacy threats
from PS. However, dishonest clients can also impair training. For example, Bagdasaryan
et al. (2020) demonstrated that dishonest clients can be used to attack FL through model
replacement. In addition, clients participating in FL have absolute control over their local
data. As a result, anomaly detection can’t be used to discover malicious nodes. Researchers
are already focusing on the application of blockchain in FL to protect privacy from mali-
cious nodes.

Kim et al. (2019) proposed BlockFL, a blockchain-based architecture, which eliminates
the privacy threats and single-point-of-failure posed by PS. Additionally, they introduced
incentives to attract clients to engage in training and mitigate privacy threats from dishon-
est clients. Similarly, DeepChain Weng et al. (2021) can provide data confidentiality, com-
putational auditability, and incentives to the parties involved in collaborative training. Tak-
ing a step further, differential privacy was introduced in the work of Zhao et al. (2020) for
further protecting user privacy. Besides, the authors also proposed a normalization tech-
nique. This normalization technique outperforms batch normalization (BN) when the data
features are under differential privacy protection.

4.2.3 FL with Non-IID data

Although there have been some studies focusing on the processing of unbalanced data dis-
tribution (Du et al. 2020, 2021), most of the existing studies on machine learning assume
that the data distribution is identical. However, in FL, Non-IID data is even more of a non-
negligible problem.

Li et al. (2019c) demonstrated that the heterogeneity of the data slows down the conver-
gence rate. Similarly, Duan et al. (2019) proved that unbalanced distributed training data
can reduce the accuracy of a FL-trained model. Although the FedAvg algorithm proposed
by McMabhan et al. (2017) is robust to a certain degree of Non-IID data, (Zhao et al. 2018a)
proved that the accuracy of models trained with FedAvg is significantly decreased when
the training dataset is highly-skewed Non-IID. They demonstrated that the accuracy reduc-
tion is caused by weight differences. The authors quantified the weight differences by Earth
Mover’s distances. In addition, they suggested creating a subset of data that is shared glob-
ally across devices to improve training on Non-IID data. However, users may refuse to
install unknown data on their own devices due to security concerns.

Yoshida et al. (2020) proposed a new learning mechanism, Hybrid-FL, to solve the
Non-IID data problem. They assumed that a few clients allow their data to be uploaded to
the server in order to form an approximate IID dataset. The IID dataset is utilized to train a
model. This model is aggregated with other models trained with Non-IID data. Zhang et al.
(2021b) observed that there are weight differences between clients with different degrees of
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Fig.4 Decentralized FL

Non-IID data and those with IID data. Based on this, CSFedAvg, an efficient FL algorithm,
was proposed. They identified the degree of Non-IID data that clients have by the weight
differences and selected clients with lower degree of Non-IID data to train the model.

All the works mentioned above only considered the effect of local data distribution
imbalance. Duan et al. (2019), Duan et al. (2020) mitigated the global data imbalance
by data augmentation. For local data distribution imbalance, they introduced a mediator,
which can rearrange clients training based on the Kullback—Leibler divergence of clients’
data distribution. However, the data distribution of clients may disclose their privacy to
some extent.

4.2.4 Decentralized FL

FL with PS architecture can protect user privacy to a certain degree. However, this archi-
tecture has two drawbacks: (1) it causes communication bottlenecks; (2) it is over-reliant
upon the PS, which demands that all clients collectively choose a trusted PS. Moreover,
the failure of PS can disrupt the entire training process. To alleviate these problems, some
of the existing works discard PS, which can be achieved by blockchain (Weng et al. 2021;
Kim et al. 2019; Lu et al. 2019; Zhao et al. 2020) and other communication methods (Lali-
tha et al. 2019; Hegedfis et al. 2019; Lu et al. 2020; Hu et al. 2019).

As shown in Fig. 4a, Lalitha et al. (2019) distributed all the nodes on a network. Each
node communicated with its neighbors to train the model, in this way a decentralized FL
was achieved. Hegediis et al. (2019) systematically compared the aggregation costs of dis-
tributed learning for PS architecture and Gossip architecture and evaluated some additional
techniques. They found that the performance of the two architectures are comparable.

Lu et al. (2020) and Hu et al. (2019) optimized the decentralized FL from the perspec-
tive of communication frequency and communication costs, respectively. In the work of
Lu et al. (2020), clients update the gradients locally for certain rounds before communicat-
ing with their neighbors. By this way communication rounds can be effectively reduced.
Hu et al. (2019) partitioned the model into mutually non-overlapping segments. Each node
updated by aggregating local segments and segments from the other k nodes. During the
training process, each node randomly selects a certain number of other nodes to transmit
the model segments. Compared with transmitting the entire model, communication costs
are significantly reduced.
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4.2.5 Open-source FL frameworks

Several open-source frameworks have been proposed to facilitate the development of FL.
Here we introduce four FL open-source frameworks, which are TensorFlow Federated
Framework (TFF),' Federated Al Technology Enabler Framework (FATE),” Paddle Feder-
ated Learning Framework (PFL)* and PySyft Framework.*Kholod et al. (2021) provided
a detailed introduction and evaluation of FL frameworks, which is helpful for those inter-
ested in FL frameworks.

TensorFlow federated framework TFF is an open-source framework proposed by Google
for distributed machine learning. TFF was developed to promote open research and experi-
mentation in FL. With TFF, developers can use models and data to simulate the FL algo-
rithms it contains. TFF implements base classes for FedAvg and the Federated Stochastic
Gradient Descent algorithm, which are simple implementations of federated evaluation.

TFF’s interface can be divided into two layers: (1) FL API: this layer provides a high-
level interface that enables developers to apply all the FL algorithms it contains to existing
Tensorflow models. (2) Federated Core API: the core of this layer is a set of low-order
interfaces, which allow new FL algorithms to be developed succinctly with a combination
of Tensorflow and distributed communication operators. This layer is the basis for develop-
ers to build FL.

Federated Al technology enabler framework FATE is an open-source project initiated by
the Al department of WeBank. To the best of our knowledge, FATE is the most popular FL.
framework. FATE builds secure computing protocols with multi-party secure computation
and homomorphic encryption. Moreover, FATE supports secure computation for different
kinds of machine learning including logistic regression, DL, transfer learning, etc.

FATE currently supports two deployment methods. (1) Naive deployment, which
includes stand-alone deployment and cluster deployment. Stand-alone deployment helps
developers to develop quickly and test FATE. Cluster deployment is for big data sce-
narios. It is worth noting that migrating from stand-alone deployment to cluster deploy-
ment requires only a configuration file change and no algorithm changes. (2) KubeFATE
deployment, with KubeFATE, FATE can be deployed via docker-compose or Kubernetes.
Docker-compose is suitable for development or testing, while Kubernetes is suitable for
large-scale deployments in production environments.

Paddle federated learning framework PFL is an open-source FL framework based on
PaddlePaddle, both of which were proposed by Baidu. PFL can process horizontally par-
titioned and vertically partitioned data, and the algorithms for these two types of data par-
titioning are implemented in the paddle_fl package and the mpc package, respectively. In
PFL, the components for defining FL tasks are as follows.

Components for compiling: (1) FL-strategy: defining the FL strategy; (2) User-Defined-
Program: defining the machine learning model structure and training strategy; (3) Distrib-
uted-Config: defining the information about distributed training nodes; (4) FL-Job-Gener-
ator: generating FL-jobs for the server side and worker side. FL-jobs are distributed to the
server side and worker side for joint training.

! https://github.com/tensorflow/federated.

2 https://github.com/Federated A/FATE.

3 https://github.com/PaddlePaddle/PaddleFL.
4 https://github.com/OpenMined/PySyft.
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Components for running: (1) FL-Server: a parameter server for model aggregation;
(2) FL-Worker: worker nodes that train the model locally; (3) FL-Scheduler: scheduling
worker nodes during training and deciding which workers can participate in training.

Notably, PFL requires at least 6GB of RAM and 100GB of hard disk space to run prop-
erly (Kholod et al. 2021), which prevents PFL from being used in IoT systems. In addition,
PFL is based on PaddlePaddle, a DL framework proposed by Baidu. PaddlePaddle has a
smaller user base than Tensorflow and Pytorch, which may be detrimental to the develop-
ment of PFL.

PySyft framework PySyft is an open-source python framework that supports secure, pri-
vate computation in DL. PySyft integrates FL, secure multi-party computation and differ-
ential privacy into different DL frameworks such as PyTorch, Keras or TensorFlow.

In order to extend PySyft to implement FL. on mobile or edge devices, some other
libraries are necessary such as KotlinSyft (Android) and SwiftSyft (i0S). These libraries
belong to the Syft ecosystem. However, these libraries alone cannot connect user data to
the real world. The Syft ecosystem can be supported by the Grid ecosystem, which focuses
on the deployment, scalability, and other issues that arise when real-world systems are used
to process and compute data.

5 Edge inference

Edge training is achieved through the collaboration between multiple participants. How-
ever, edge inference can be performed not only through collaboration between cloud, edge
and devices, but also through the model on a single device. In this section, we focus on the
deployment and optimization of Al models on edge devices.

5.1 Inference architecture

We divide these inference architectures into three categories based on the inference partici-
pants: Solo-inference, Hybrid co-inference, and Peer-to-peer co-inference.

5.1.1 Solo-inference

Solo-inference refers to model inference being performed on a single working node. This
working node is either device, edge or cloud. Therefore, Solo-inference can be further
divided into three types: Device-only, Edge-only, and Cloud-only.

(1) Device-only: as shown in Fig. 5a, the inference task is performed entirely at the device.
Obviously, this type of inference is only suitable for powerful devices, such as smart-
phones. In addition, it is necessary to optimize the model using model compression
and inference acceleration for successful deployment on the device.

(2) Edge-only: as shown in the Fig. 5b, in this inference architecture, the model is deployed
at the edge server. The device collects the data and sends it to the server, which per-
forms inference and returns the results to the device. This type of inference has no
performance requirements for the device. Moreover, it has lower latency than the
Cloud-only inference architecture.
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Fig.5 Three types of Solo-inference

(3) Cloud-only: as shown in the Fig. 5c, in this inference architecture, the device collects
data and uploads it to the cloud. Then the cloud processes the data and returns the
results to the device. It is worth noting that most of existing DL services are based on
this inference architecture. Although the cloud can provide powerful arithmetic support
for inference tasks, this approach can cause communication bottlenecks and privacy
leakage to some extent.

5.1.2 Hybrid co-inference

Hybrid co-inference allows inference tasks to be performed between the cloud, the edge,
and devices. We divide these inference architectures into four categories based on the infer-
ence participants: Device-edge co-inference, Edge-cloud co-inference, Device-cloud co-
inference and Device-edge-cloud co-inference.

(1) Device-edge co-inference: as shown in the Fig. 6a, in this inference architecture, the
device first performs a portion of the inference task and then sends the results to the
edge server for further inference. This approach can efficiently utilize the resources of
edge devices.

(2) Edge-cloud co-inference: as shown in the Fig. 6b, in this inference architecture, the
device only collects data and sends it to the edge server. Then, the edge server per-
forms the initial inference and sends the results to the cloud to perform the remaining
inference. Compared to the Cloud-only architecture, this approach alleviates the com-
munication bottlenecks to some extent.

(3) Device-cloud co-inference: as shown in the Fig. 6c¢, in this inference architecture, the
device and the cloud perform the inference task together. Compared with Cloud-only
architecture, it is more beneficial to protect user privacy.

(4) Device-edge-cloud co-inference: as shown in the Fig. 6d, in this inference architecture,
the computation resources of cloud, edge and devices are all effectively utilized. In
addition, the user’s privacy is protected to a certain extent.

5.1.3 Peer-to-peer co-inference
Different from Hybrid co-inference, the participants in Peer-to-peer co-inference are
all peer nodes. We divide these inference architectures into two categories based on the

difference of the participants: Co-inference between devices and Co-inference between
processors.

@ Springer



6142 W.Suetal.

Fr==""""7"" "I ST ST T T T 1

] %08 I@ : = :

I:> D :>| | :>| |

1 ! I 1

1 ! : 1

i I
Device Edge Device :_ Ed_gi _______ ] I‘ _ flfu_d ________ :
(a) Device-edge co-inference (b) Edge-cloud co-inference
fom———————— LR e T Satataintataiata a fom———————— Sy ——
| 1 i T 1 | 1 1 1
1 I | | | 1 1 1 1 H
1 I ! | 1 1 1 1 1 1
=% (= B> %
| 1 : o 1 | 1 1 i
{_Deviee b _Gewd DD I L Gew T }
(¢) Device-cloud co-inference (d) Device-edge-cloud co-inference

Fig. 6 Four types of Hybrid co-inference

fm========- ) f==—===—==--= 3 PR - e
| I I I I cpy I I GPU !
1 | 1 | 1 1 | ]
I ! I I | | | 1
I | I I I | | 1
| | 1 | 1 1 | 1
e I | I I I I 1
bl m e I IS S S ! e ___ ] e 1

(a) Co-inference between devices (b) Co-inference between processors

Fig.7 Two types of Peer-to-peer co-inference

(1) Co-inference between devices: as shown in Fig. 7a, this inference architecture discards
the edge and cloud, which cause computation burden on devices. However, different
from Device-only architecture, it is not necessary for the devices in this architecture
to be powerful, as collaboration between multiple devices can speed up convergence.

(2) Co-inference between processors: as shown in Fig. 7b, this inference architecture splits
the inference task among different processors in the same device, thus reducing the
energy consumption caused by long-term use of the GPU.

5.2 Model compression

The improvement of model performance is typically accompanied by the increasing of
its depth or width. In the training phase, complicated DNN can be well-trained with
the help of data centers. However, it is difficult to deploy such DNN to edge devices.
The reason for this comes from two main sources. On the one hand, the model occu-
pies too much storage. On the other hand, model inference consumes too much compu-
tation resources. Much of the existing efforts used model compression to reduce stor-
age and accelerate inference. The efforts in this area mainly fall into five categories:
model pruning, low-rank approximation, parameter quantization, knowledge distilla-
tion, and lightweight model design. We summarize the main efforts of model compres-
sion in Table 4.

5.2.1 Model pruning

Denil et al. (2013) demonstrated that most of the parameters in neural networks are redun-
dant. They trained several networks by learning a few weights and predicting the remaining
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Fig. 8 Unstructured pruning

ones. The main idea of model pruning is to transform a dense network into a sparse net-
work by removing redundant parameters from the network. According to the type of prun-
ing, the existing efforts can be divided into unstructured pruning and structured pruning.
Unstructured pruning can achieve a high compression rate, but it causes irregular memory
access. In contrast, structured pruning can avoid this problem. However, it cannot achieve
the same compression rate as unstructured pruning. Existing studies focus on structured
pruning.

Unstructured pruning The earliest work on unstructured pruning can be traced back to
LeCun et al. (1990). They used the Hessian matrix to represent the contribution of param-
eters and then removed parameters with less contribution. They demonstrated that this
pruning method is more accurate than size-based pruning. To simplify the computation,
this work assumed the Hessian matrix as a diagonal matrix, which can lead to incorrect
weight removal. Different from LeCun et al. (1990), Hassibi et al. (1993) did not impose
any restrictions on the Hessian matrix and achieved better effects. However, these meth-
ods are mainly based on second-order derivatives, which can cause expensive computation
costs. Therefore, they are not suitable for deep models.

As shown in Fig. 8, Han et al. (2015b) proposed a threshold-based weight pruning
method. First, the weights of the connections are obtained by training the network. Then
connections whose weights are below a certain threshold are removed. Finally, the pruned
network is retrained to fine-tune the weights of the remaining connections. This approach
achieved 9% and 13X pruning rates for AlexNet and VGG-16, respectively, while maintain-
ing accuracy. It is highly effective for network compression. However, it has several draw-
backs: (1) it consumes a lot of time and computing resources; (2) the authors assumed that
connections with lower weights contribute less, which may lead to important connections
being removed; (3) it leads to irregular memory access, so it only compresses the model
and does not speed up the inference; (4) they set a threshold for all layers, which may not
be optimal for a single layer.

Several works improved the work of Han et al. (2015b) from different perspectives.
Guo et al. (2016) proposed dynamic network surgery. This method contains two opera-
tions, pruning and splicing. Among them, the splicing is to prevent important connections
from being removed. Molchanov et al. (2016) used a new criterion based on Taylor expan-
sion to measure the importance of connections and showed better performance than other
criterias. Han et al. (2016) proposed an efficient inference engine (EIE) to accelerate the
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Fig.9 Three levels of pruning

inference of compressed models. Manessi et al. (2018) jointly optimized thresholds and
network weights to achieve a higher compression rate. Moreover, since each layer has a
threshold, a single layer can be optimized independently of the other layers. Building on
Han et al. (2015b), Han et al. (2015a) further compressed DNN with quantization and huft-
man coding. The storage required for AlexNet and VGG-16 was reduced by a factor of 35
and 49, respectively. However, huffman coding can cause inconvenience to the inference
phase because its decoding process brings additional computation overhead.

The methods mentioned above reduced the model size by pruning unimportant param-
eters of the model, but the energy consumption in the inference phase was not considered.
Yang et al. (2017) argued that although the model parameters are mainly derived from the
fully connected layers, the convolutional layers account for most of the energy consump-
tion. Thus, the amount of weights does not serve as a direct indicator of energy consump-
tion. Therefore, they proposed an energy-aware pruning approach. It can identify the most
energy-consuming part of the CNN for energy-saving.

Structured pruning The model obtained after structured pruning remains the same in
terms of network structure. As a result, it can be perfectly supported by existing DL librar-
ies. According to the pruning level, the existing efforts can be divided into four categories:
layer-level pruning, filter-level pruning, kernel-level pruning and intra-kernel pruning. It
is worth noting that filter-level pruning and channel pruning are the same concept. The
reason for this is that when a filter is pruned, its corresponding channel is also trimmed (as
shown in Fig. 9b). Since intra-kernel pruning has been less studied, here we mainly present
the first three pruning efforts.

(1) Layer-level pruning Huang et al. (2016) proposed stochastic depth. During training,
they randomly skipped some layers to shorten the network. The network with deeper
layers was used for testing. This simple and effective method significantly reduces the
training time and testing error. Wen et al. (2016) proposed a structural sparse learning
(SSL) method to regularize the structure of DNN. Specifically, during training, SSL
learns a compact structure directly through Group Lasso, which can reduce the number
of layers in the network. Li et al. (2018a) proposed DeepRebirth. The authors found that
layers with few parameters consume a lot of computation time due to memory access
speed and other factors. They divided the network layers into tensor and non-tensor
layers. By merging the tensor and non-tensor layers, the run-time can be significantly
decreased. Layer-level pruning does not cause irregular memory access. However, the
whole layer is pruned, so layer-level pruning is not flexible. In contrast, filter-level
pruning has great flexibility and ease-of-implementation (Liu et al. 2017).

(2) Filter-level pruning The key of filter-level pruning is to measure the importance of
filters. Li et al. (2016b) proposed filter-level pruning. They used the absolute value of
weights to measure the importance of filters. Liu et al. (2017) used the scaling factor
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3

of the BN layer to evaluate the importance of filters. Specifically, they performed L1
regularization on the scaling factor and removed channels with a scaling factor of 0
after regularization. Luo et al. (2017) presented ThiNet, an efficient and uniform CNN
framework. It crops channels by minimizing feature reconstruction errors. Similarly,
(He et al. 2017) also performed channel selection by minimizing the feature recon-
struction error. The difference is that the former used a greedy algorithm for channel
selection, while the latter used Lasso regression for channel selection. Luo et al. (2017)
and He et al. (2017) only considered the importance of neurons in a single layer or two
consecutive layers. However, trimming neurons that seem to be unimportant may have
an influence on the response output of subsequent layers. Therefore, the importance
of neurons needs to be considered in a holistic manner. Yu et al. (2018) demonstrated
that greedy layer-by-layer pruning leads to severe reconstruction error propagation. In
addition, they proposed the Neuronal Importance Score Propagation (NISP). Specifi-
cally, they defined the second-to-last layer before classification as the final response
layer (FRL) and decided the importance of each feature in the FRL by feature selection.
Then, the importance scores were back-propagated to the neurons in all layers. Finally,
unimportant neurons were cropped. You et al. (2019) estimated the importance of the
global filters by Taylor expansion. Specifically, they multiplied the output of the CNN
module with the channel scaling factor. When the channel scaling factor is set to 0,
the corresponding filter is removed. Taylor expansion was used to estimate the change
in the loss function and rank the importance of the global filters. Finally, unimportant
filters are removed. All the efforts mentioned above treated pruning and fine-tuning
as two independent steps. In contrast, (Luo and Wu 2020) combined the two steps and
proposed an end-to-end training system, AutoPruner. They proved that the two steps
can be mutually beneficial. Specifically, they took the activation of the previous layer
as input, which resulted in a binary code. Then, filters corresponding to the value of
0 in the binary code were removed. Zuo et al. (2020) found that previous filter-level
pruning corrupted the network capacity. To cope with this problem, they proposed a
filter-level pruning method with no damage to the network capacity. Specifically, they
pruned redundant filters in the network. Then, new feature maps are generated based
on the remaining feature maps to recover the original capabilities.

Kernel-level pruning Filter-level pruning allows pruning the filters and their corre-
sponding channels for compressing and accelerating the CNN. However, it causes
dimensionality mismatch in multi-branch networks. As shown in Fig. 10, in which
n denotes the number of filters that are pruned. In addition, the kernels in the filter
may still have an important role even if the filter is regarded as redundant. Therefore,
filter-level pruning may result in loss of accuracy of the model (Zhu et al. 2021). This
was also demonstrated by both (Anwar et al. 2017; Zuo et al. 2020). Anwar and Sung
(2016) proposed kernel-level pruning for reducing model complexity. Anwar et al.
(2017) explored filter-level, kernel-level, and intra-kernel pruning. They demonstrated
that the expressive ability of the model would be impaired when filter-level pruning
is applied in a high ratio. Lin et al. (2018a) used synaptic strength to measure the
importance of connections. The non-important connections are identified by sparse
regularization. Then connections with lower synaptic strength are pruned to generate
kernel-level sparse CNN. Li et al. (2019d) combined kernel-sparsity with entropy to
measure the importance of feature maps. In addition, they utilized kernel clustering
to reduce the number of kernels. Zhu et al. (2021) designed a progressive kernel-level
pruning. Specifically, they pruned kernels in both filters and layers, which can avoid
the local optimum that occurs when pruning directly in the layers.
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Fig. 10 The illustration of channel mismatch problem

5.2.2 Low-rank approximation

Decomposing a matrix into two smaller matrices can improve computation efficiency. For
example, a m X k-dimension weight matrix W can be decomposed into m X d and d X k
-dimension matrices. The computation complexity of the matrix W is O(m X k) , while the
computation complexity of the decomposed matrix is O(m X d + d X k). The computation
can be effectively decreased by controlling the value of d. Tensor can be decomposed if we
extend this idea to multi-dimensional space. The existing decomposition methods can be
divided into four categories: Tensor Train decomposition, Singular Value Decomposition
(SVD), Canonical Polyadic (CP) Decomposition and Tucker decomposition.

A part of the early efforts focused on the decomposition of general DNN. For exam-
ple, to reduce the parameters in DNN, Sainath et al. (2013) decomposed the final
weight layer of DNN with low-rank matrix. Similarly, Xue et al. (2013) used SVD to
decompose the weight matrices in DNN for reducing the model size while maintaining
accuracy.

With the development of CNN, this method has been widely applied in CNN. Rigamonti
et al. (2013) first proposed to accelerate convolution operations with low-rank approxima-
tion. Denton et al. (2014) used low-rank approximation and filter clustering to achieve the
2-3x speed-up in the first convolutional layer. Similarly, Jaderberg et al. (2014) decom-
posed the w X h-dimension convolutional layer matrix of into w X l-dimension matrix
and 1 X h-dimension matrix. Lebedev et al. (2014) used CP decomposition to decompose
a convolutional layer into multiple layers of low complexity. In contrast to the methods
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mentioned above, Novikov et al. (2015) mainly targeted the fully-connected layer. They
converted the dense weight matrix in the fully-connected layer to the Tensor Train format.
The expressive power of the original network is preserved while reducing the parameters.

Denton et al. (2014), Jaderberg et al. (2014) and Lebedev et al. (2014) only focused on
the decomposition of one or several layers. These methods show good acceleration on shal-
low models, but lack acceleration on deep models. Zhang et al. (2015) proposed a method
to compress and accelerate deep CNN. They considered non-linear units and reduced the
error accumulation when using low-rank approximation for multi-layer CNN. This method
achieved a 4x full-model speed-up with only a 0.3% increase in top-5 error for the Ima-
geNet classification task. Kim et al. (2015) achieved acceleration of the entire model with
Tucker decomposition. First, they used Variational Bayesian Matrix Factorization for rank
selection. Then Tucker decomposition was performed on the kernel tensors. Finally, the
entire model was fine-tuned. Block term decomposition (BTD) based on low-rank and
group sparse was proposed in Wang and Cheng (2016). For convolutional layers, each ker-
nel tensor is decomposed into the sum of a few low-rank tensors. These low-rank tensors
are used to replace the original tensor in the convolutional layer. Astrid and Lee (2017)
successfully applied CP decomposition for full model compression. Due to the instability
of CP decomposition, previous methods (Lebedev et al. 2014) did not successfully com-
press the entire CNN with CP decomposition. The authors argued that CP decomposition
of the entire CNN would lead to error accumulation. They overcame the instability of CP
decomposition by iterative fine-tuning.

Most of the aforementioned efforts focused on accelerating the convolutional layers
(Denton et al. 2014; Jaderberg et al. 2014; Lebedev et al. 2014) or compressing the fully
connected layers (Novikov et al. 2015) instead of aiming for joint optimization. Lin et al.
(2018b) proposed a holistic CNN compression framework which acts on both the convolu-
tional and fully connected layers. Specifically, they presented a global CNN compression
method based on low-rank decomposition and knowledge transfer. They used a low-rank
decomposition with a closed-form solver to accelerate the convolution computation and
reduce the memory overhead.

To further compress the network, Swaminathan et al. (2020) introduced pruning tech-
niques. They considered the importance of neurons in the low-rank decomposition and
achieved better compression rate by keeping the unimportant neurons at low-rank. The
above decomposition methods were trained in a decomposition manner. To further accel-
erate inference, Lee et al. (2021) proposed an alternating tensor compose-decompose
(ATCD) method for training low-rank CNN. For example, for a rank-1 CNN, in the training
phase, the 3-D filters of rank-1 CNN are decomposed into one-dimension vectors to form
3-D filters again. In the test phase, the 3-D filters are permanently decomposed into one-
dimension vectors. This allows the rank-1 CNN to maintain its original accuracy, but with
the same inference speed as the one-dimension vector.

5.2.3 Parameter quantization

Parameter quantization is an effective method for network compression and accelera-
tion and is widely used in the field of image compression. According to the nature of
these works, we divide these efforts into two main parts: vector quantization and low-bit
quantization.

Vector quantization The main idea of vector quantization is to divide the weights
into groups and each group shares the same weight. Gong et al. (2014) used vector
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quantization for network compression. They focused on operating on the fully con-
nected layers. Therefore, this work does not involve inference acceleration. The authors
found that 8-16 compression ratio can be achieved by simply using the K-means algo-
rithm for quantization with no more than 0.5% loss in top-5 accuracy. Chen et al.
(2015b) proposed HashNets. First, they used a hash function to classify the connection
weights. Then, connections that were grouped into the same hash bucket shared a com-
mon weight. Chen et al. (2016) further extended this idea. They transformed the filter
weights to the frequency domain. Then a hash function was used to group the param-
eters in the frequency domain.

The efforts mentioned above compressed the model without accelerating the infer-
ence. Wu et al. (2016) proposed a product quantization-based approach to simultane-
ously accelerate and compress CNN. They quantified both convolutional layers and fully
connected layers by minimizing the response error.

Low-bit quantization In general, the parameters of neural networks are represented
by 32-bit floating-point numbers. In fact, it is not necessary to maintain such a high
accuracy. Quantification can reduce the storage at the expense of accuracy. Therefore,
the model size can be reduced while maintaining accuracy by rationally quantizing the
network.

In the inference phase, floating-point multiplication consumes a lot of time and com-
putation resources, while fixed-point quantization can effectively alleviate this problem.
There are two main reasons for this. First, fixed-point computation is typically faster
than floating-point and consumes much less energy and hardware resources. In addition,
lower precision data representation reduces memory footprint, allowing larger models to
be deployed on resource-constrained devices.

Holi and Hwang (1993) first provided a theoretical analysis of the error caused by the
finite precision computation. They demonstrated that 8—16 bits of quantization is suf-
ficient to train a small neural network. However, Chen et al. (2014) found that although
16-bit fixed point format can meet the need for inference to a great extent, it may lead
to a decrease in accuracy or even prevent the model from converging. In a further step,
Gupta et al. (2015) presented stochastic rounding, which allows training DNN using
16-bit fixed point with almost no degradation in classification accuracy.

Binary quantization, as a special case of low-bit quantization, can theoretically
achieve 32X compression rate. By limiting the weights to two values (e.g., 1 or —1),
the multiplication operations can be replaced with additive operations. Since the multi-
plier is the most computationally resource-intensive component, binarization operation
can bring significant benefits to the hardware used for DL (Courbariaux et al. 2015).
Soudry et al. (2014) proposed the expectation back propagation (EBP) algorithm. They
binarized the network by Variational Bayesian and proved the high performance of the
binary network trained with EBP. Courbariaux et al. (2015) presented BinaryConnect.
They constrained the weights to 1 or —1, which eliminates the multiplication operation
in the forward propagation and thus accelerates the training process. However, experi-
ments in Rastegari et al. (2016) showed that this method cannot be applied to large-
scale datasets.

If only the weights are quantified, time-consuming arithmetic operations are still
required. Courbariaux et al. (2016) further extended the work of Courbariaux et al. (2015).
They quantified both activations and weights. In this case, bit-wise operations can be
used in forward-propagation, thus further accelerating the inference. A similar approach
was adopted by Rastegari et al. (2016). In Courbariaux et al. (2016) and Rastegari et al.
(2016), although the weights are binary, the gradients are full precision. Therefore, bit-wise
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operations cannot be used in the back-propagation. This means that during the training pro-
cess, Courbariaux et al. (2016) and Rastegari et al. (2016) would spend a lot of time in the
back-propagation. To further speed up the inference, the gradients were also quantified in
Zhou et al. (2016). Specifically, the gradients were randomly quantified to low-bit during
back-propagation. Since the weights, activations, and gradients during forward-propaga-
tion and back-propagation are all low-bit, bit-wise operations can be used during the whole
training process.

Although the network after low-bit quantization can lead to high compression rate, this
method leads to a decrease in accuracy. For example, the test results of binarized neural
network (Courbariaux et al. 2016) on the ImageNet dataset showed that the difference in
top-1 accuracy between real-valued ResNet-18 and binary ResNet-18 is a staggering 28%.
Therefore, many existing works have focused on how to maintain model accuracy after
low-bit quantization. Li et al. (2016a) proposed ternary weight networks (TWN). They
restricted the weights to 1, 0, or —1 thus achieving a trade-off between accuracy and com-
pression ratio. Zhou et al. (2017) presented incremental network quantization (INQ), which
can convert a pre-trained full-precision network into a lossless low-precision network. INQ
contains three processes: weight partition, group-wise quantization, and retraining. And it
can achieve five-bit lossless quantization. Mishra et al. (2017) compensated the accuracy
degradation caused by low-bit quantization through increasing the width of the network.
Lin et al. (2017a) proposed ABC-Net. They used a linear combination of multiple binary
weights to approximate full precision weights. Kim et al. (2018) combined low-bit quanti-
zation and knowledge distillation. They proved that knowledge distillation can significantly
improve the accuracy of low-bit networks. Hu et al. (2018b) presented a hash-based train-
ing method for binary networks. They revealed the tight connection between inner prod-
uct hashing and binary networks. In addition, the authors demonstrated that the network
parameter binarization problem can be converted into a hash problem. This method can
effectively reduce the accuracy loss.

Rastegari et al. (2016) proposed the binary weight network (BWN) and XNOR-Net.
They introduced a real-valued scaling factor to adjust the output of the binary convolu-
tion, which can compensate the error caused by the binary quantization to some extent. On
the foundation of XNOR-Net, Bulat and Tzimiropoulos (2019) proposed XNOR-Net++.
They fused the activation and weight scale factor into a single factor, which is learned by
back-propagation. Compared with XNOR-Net, the accuracy of XNOR-Net++ is improved
by 6%. Similar to Bulat and Tzimiropoulos (2019), Rastegari et al. (2016) and Martinez
et al. (2020) improved the performance of the network by rescaling the output of the
binary convolution. Specifically, before binarization, they used the real-valued activation
of the binary network to compute a scaling factor. After applying the binary convolution,
this scaling factor was utilized to adjust the activations. Compared to XNORNet++, this
method improves 8.3% accuracy on Top-1 error.

5.2.4 Knowledge distillation

The core idea of knowledge distillation is to train a lightweight neural network with the
help of a large neural network. The large neural network is called the teacher network,
and the lightweight neural network is called the student network. Knowledge distilla-
tion is a learning process for the student network. What knowledge to learn and how to
learn the knowledge are two cores of knowledge distillation. According to the number of
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Fig. 11 Knowledge distillation

participants in the knowledge distillation, we classify these efforts into three categories:
three-paticipant distillation, two-paticipant distillation and self-distillation.

Long before the concept of knowledge distillation was introduced, Bucilua et al. (2006)
attempted to have a small model learn the representation of a large model. Specifically,
they used a data generation algorithm to obtain unlabeled data and labeled them with a
well-trained teacher network. These data contain the knowledge of the teacher network.
The student network trained with these data performs better than the one trained with origi-
nal data. However, this approach is not suitable for deep models. Ba and Caruana (2013)
extended this work to a shallow and wide student network. In which, the output of the
teacher network was used to train the student network. The trained student network has
similar performance to the teacher network. Hinton et al. (2015) first proposed knowledge
distillation. As shown in Fig. 11, they obtained soft labels utilizing a well-trained teacher
network. Then, both soft and true labels are used to train a small network. Sau and Bal-
asubramanian (2016) argued that the knowledge from a single teacher may be restricted.
Building on this idea, they proposed a noise-based regularization method to mimic the
guidance of multiple teachers.

Besides mimicking the output of teachers, some efforts suggest learning the hidden fea-
tures of the teacher network. For example, Romero et al. (2014) presented FitNets. They
used intermediate representations of the teacher network to train the student network. Yim
et al. (2017) argued that simply learning the intermediate representations of the teacher
network may constrain the performance of the student network. Therefore, they defined
distillation knowledge as a feature relationship between layers and utilized the flow of solu-
tion procedure (FSP) matrix to represent it. Zagoruyko and Komodakis (2016a) introduced
attention mechanisms to knowledge distillation. The attention map of the teacher network
is utilized to train the student network, which significantly improved the performance of
the student network. Kim et al. (2018) suggested learning the interpreted information of the
teacher network. They used two convolutional modules as paraphraser and translator. The
paraphraser extracted the features of the teacher network as teacher factors and the transla-
tor extracted the features of the student network as student factors. The translator of the
student network can help the student understand the teacher factors of the teacher network.
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Considering the relevance of the generalization performance of a classifier to its decision
boundary, Heo et al. (2019) defined distillation knowledge as the decision boundary. Spe-
cifically, they used self-adversarial techniques to move the original samples near the deci-
sion boundary. The moved samples are called boundary support samples (BSS), which
contain information about the decision boundary. Training the student network with BSS
allows the student network to better learn the decision boundary of the teacher network.

All the efforts mentioned above required two steps to obtain a lightweight student
model: (1) training a complex teacher network. (2) using the teacher network to train the
student network. This process is time-consuming. Besides that, it is difficult to find a suit-
able teacher. For the former, several efforts proposed to train the teacher network and
the student network together. For example, Mishra and Marr (2017) presented a scheme
to jointly train the teacher network and the student network. Similarly, Zhou et al. (2018)
argued that the knowledge of the teacher network exists not only in the final output, but
also in the training process of the entire network. Based on this idea, they presented Rocket
Launcing, which consists of a light net and a booster net. Specifically, in the training phase,
the light net and the booster net are trained on the same task. Meanwhile, the light net
continuously learns the knowledge of the booster net, thus improving the performance of
the light net. Zhang et al. (2019) proposed self-distillation. Specifically, they added several
branches to the network, which were trained with the help of the main network.

Although (Mishra and Marr 2017; Zhang et al. 2019; Zhou et al. 2018) improved the
time-consuming process of knowledge distillation, they did not address the impact of the
teacher-student performance gap on training student networks. To solve this problem, Mir-
zadeh et al. (2020) introduced a teaching assistant network. Their experiments showed that
the performance of the student network would decrease if the gap between teacher and stu-
dent is relatively large. To bridge the gap between the student network and the teacher net-
work, they introduced the intermediate model (i.e., the teaching assistant network). Unlike
the work of Mirzadeh et al. 2020, Zhang et al. 2018c improved network performance
through mutual learning of student networks. This work found that a powerful teacher net-
work is not essential and that the student network obtained by mutual learning performs
better than the student network guided by the teacher network. With this approach, student
networks can be trained well while eliminating the impact of performance gaps between
networks on training.

5.2.5 Lightweight model design

Much of the existing works improved the performance of the network by increasing the
width and depth of the network (Szegedy et al. 2015; He et al. 2016), which makes it dif-
ficult to deploy the model on resource-constrained devices. To enable the model to be
deployed on edge devices, an increasing amount of works has focused on designing effi-
cient and lightweight network model. 1 X 1 convolution, group convolution and depth-wise
separable convolution have been widely used in lightweight model design because they can
effectively reduce floating-point operations per second (FLOPs).

Lin et al. (2013) proposed the Network-In-Network (NIN). To reduce the computation
complexity, they suggested using 1 X 1 convolution and replacing the fully connected layers
with global average pooling layers. GoogleNet Szegedy et al. (2015) and ResNet He et al.
(2016) both adopt these ideas. In addition, the earliest lightweight model, SqueezeNet Ian-
dola et al. (2016), also made extensive use of 1 X 1 convolution instead of 3 X 3 convolution.
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Howard et al. (2017) proposed depth-wise separable convolution and MobileNetV1.
Depth-wise separable convolution is composed of depth-wise convolution and point-
wise convolution. The depth-wise convolution convolves each channel of the input image
separately, and the point-wise convolution uses 1 X 1 convolution kernels to convolve the
feature maps generated by the depth-wise convolution. Compared with common convolu-
tion, depth-wise separable convolution reduces the parameters by a factor of 9. Guo et al.
(2018a) analyzed the mathematical relationship between common convolution and depth-
wise separable convolution. They proved theoretically that common convolution and depth-
wise separable convolution are similar in effect. Likewise, Xception (Chollet 2017) also
used depth-separable convolution. However, this work aimed at improving network perfor-
mance rather than reducing parameters. On the basis of MobileNetV1, Sandler et al. (2018)
proposed MobileNetV2. They introduced an inverted residual structure with a linear bottle-
neck. Compared with MobileNetV 1, the accuracy is improved and the model size is further
reduced. In a further step, Howard et al. (2019) proposed MobileNetV3. They improved
blocks by updating the activation function and introducing the Squeeze-and-Excite module
(Hu et al. 2018a). MobileNetV3-Large improves the accuracy by 3.2% over MobileNetV2
in the ImageNet classification task, while reducing the 20% latency.

Group convolution is a method between common convolution and depth-wise separa-
ble convolution. Given a group number n, it can reduce the number of parameters by a
factor of n. The earliest use of group convolution can be traced back to AlexNet (Kriz-
hevsky et al. 2012). Xie et al. (2017) also used group convolution and proposed ResNeXt.
However, the aim of ResNeXt is to improve performance instead of reducing parameters.
Although 1 X 1 convolution has been proven its ability to reduce model complexity by a
large number of works (Szegedy et al. (2015), He et al. (2016), Iandola et al. (2016), Lin
et al. (2013)), Zhang et al. (2018b) argued that dense 1 X 1 convolution can degrade the
performance of the model. Based on this idea, they used group convolution to reduce the
complexity of 1 X 1 convolution. In addition, the authors proposed channel shuffle to fuse
the feature information of different groups. The works mentioned above mainly designed
lightweight models by reducing FLOPs. However, Ma et al. (2018) pointed out that direct
metrics (e.g., speed) rather than indirect metrics (e.g., FLOPs) should be considered when
designing network architectures. Based on this, the authors proposed four guidelines for
designing network architectures and a new network, ShuffleNetV2.

Previous works improved the performance of the model by increasing the depth (He
et al. 2016) and width (Zagoruyko and Komodakis 2016b) of the network. Tan and Le
(2019) investigated the effects of width, depth, and image resolution on the network and
presented EfficientNet, where EfficientNet-B7 is 8.4 smaller and 6.1X faster compared to
the model with the highest accuracy back then. However, the increase in image resolution
leads to significant memory usage. To address this problem, Tan and Le (2021) proposed
a progressive learning strategy that adjusts the regularization factor according to the image
size.

Most of the networks mentioned above are designed by humans. In addition, there are
some works that used Neural Network Architecture Search (NAS) to build networks. For
example, EfficientNet-BO in Tan and Le (2019) is designed through NAS. Since NAS con-
sumes a lot of resources and these works are not oriented towards resource-constrained
edge devices, we do not present it here. For readers who are interested in NAS, you can
view (Elsken et al. 2019; Wistuba et al. 2019).
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5.3 Inference acceleration

Due to the limited energy of edge devices, it is important to accelerate inference thus
reducing latency and lowering energy consumption. According to the difference of these
efforts, we divide them into three categories: model partition, edge caching, and condi-
tional computation. Among them, the conditional computation can be further divided into
model early exit, input filtering, and model selection. We summarize the works on infer-
ence acceleration in Table 5.

5.3.1 Model partition

The general DNN services are provided through the cloud, which can result in high band-
width usage and privacy concerns. Kang et al. (2017b) evaluated DNN services on both
cloud and edge devices. They found that uploading data to the cloud is the largest bot-
tleneck for DNN services due to the huge data transfer load. Although edge computing
can reduce transmission overhead, compute-intensive tasks are difficult to be deployed on
resource-constrained devices. By partitioning DNN between cloud, edge and devices, the
requirements of DNN services in terms of energy consumption, latency and throughput can
be met. According to the difference of DNN partition, we classify these works into the fol-
lowing two categories: (1) hybrid partition and (2) peer-to-peer partition.

Hybrid partition As shown in Fig. 12, Hybrid partition consists of partition between
device-edge, partition between device-cloud and partition between device-edge-cloud.
A key point of these efforts is how to determine the optimal partition point. Kang et al.
(2017b) proposed Neurosurgeon, which is capable of predicting the latency and energy
consumption of each DNN layer without performing DNN. Based on these predictions, the
current bandwidth and data center load level, an optimal DNN partition point that meets
the energy consumption and latency requirements can be found. Ko et al. (2018) parti-
tioned the DNN at the end of the convolutional layers. Moreover, they reduced the energy
consumption of the edge and the bandwidth consumption during transmission by perform-
ing lossy encoding on the feature map. Finally, they retrained DNN on the host after DNN
partition to mitigate the accuracy degradation caused by lossy coding. Similarly, Li et al.
(2018b) also compressed the feature map before it is transferred to the cloud. Moreover, for
different models and bandwidth situations, they found a correct splitting point using integer
linear programming.

Besides finding the optimal DNN partition point, there are many challenges for DNN
partition. For example, the instability of the network, the scheduling problem when multi-
ple devices request DNN services, and the impact of user mobility on DNN services. Sev-
eral works optimized model partition with these perspectives. Considering the real-world
network environments, Li et al. (2019b) designed two strategies for static and dynamic
environments. Moreover, to further improve the performance, they combined model parti-
tion with model-early-exit and proposed Edgent, which can maximize the inference accu-
racy while satisfying the latency requirement. DeePar (Huang et al. 2019) divided DNN
between cloud, edge and devices. They considered not only the DNN partition optimiza-
tion problem, but also the multi-task scheduling problem. To reduce the delay caused by
the mobility of users to the DNN partition, Tian et al. (2021) proposed a mobility-included
DNN partition offloading algorithm (MDPO). It is worth noting that MDPO is applicable
not only to DNN with chain topology [e.g., AlexNet (Krizhevsky et al. 2012)], but also to
DNN with directed acyclic graph topology [e.g., ResNet (He et al. 2016)].
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(a) Device-edge-cloud partition (b) Device-edge partition (€) Device-cloud partition
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(d) Partition between devices (e) Partition between processors

Fig. 12 Five types of DNN partition

Peer-to-peer partition As shown in Fig. 12, Peer-to-peer partition consists of partition
between devices and between processors. It discards the edge and cloud, partitioning DNN
between devices or between processors. For example, Mao et al. (2017a) partitioned the
trained DNN model onto multiple devices to accelerate inference. In the computing cluster,
the device carrying the test data is the group owner and the other devices act as work-
ing nodes. Moreover, they proposed two partition schemes according to the difference of
convolutional layers and fully-connected layers. Mao et al. (2017b) proposed greedy two
dimensional Partition (GTDP), which can adaptively partition a DNN to different devices
according to the resources of mobile devices. In addition, they presented structured model
compact deployment (SMCD), which utilizes structured sparse pruning to accelerate DNN
execution. Zhou et al. (2019a) traded off the computation and communication capabilities
of devices and designed a dynamic programming algorithm to find the optimal partition
policy under the criterion of minimizing the system response time.

Zhao et al. (2018b) proposed fusion tile partitioning (FTP) to divide CNN into inde-
pendent tasks. Additionally, they considered the allocation of FTP in dynamic scenarios
and presented a new scheduling scheme to maximize the reuse of overlapping data between
adjacent FTP partitions. However, they did not take into account weight partitioning. This
is an important factor because it is not possible to store a large amount of weight data on
a single resource-constrained edge device. On the basis of Zhao et al. (2018b) and Stahl
et al. (2021) considered weight partitioning. In addition, they proposed an integer linear
programming (ILP) approach to find the optimal CNN partition thus minimizing the com-
munication requirements.

Unlike the above works, Lane et al. (2016) partitioned and assigned the network to
local heterogeneous processors. They proposed two strategies: runtime layer compression
(RLC) and deep architecture decomposition (DAD). First, they compressed the DNN with
SVD. Then, the compressed model was partitioned and assigned to specific processors for
computing.
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5.3.2 Edge caching

There are two types of redundancy in edge environments (Xu et al. 2020): data redundancy
and computation redundancy. Data redundancy is caused by users repeatedly accessing
data with high prevalence, while computation redundancy is caused by users requesting
the same service. Redundancy can be mitigated by caching data or computation results
in edge servers. There exists a large amount of research in edge caching, including cache
deployment, cache replacement, etc. Here, we focus on the application of edge caching
in edge intelligence. According to the nature of the works, we classify these efforts into
three categories: (1) data cache, (2) computation results cache, and (3) research on caching
mechanisms.

Data cache A large amount of research in edge caching has been focusing on real-time
mobile vision. These works usually utilize DNN to accurately detect the object in the ini-
tial frame. Then the tracking algorithm is used to track subsequent frames that are cached
locally. Glimpse Chen et al. (2015a) first applied the cache techniques to DNN inference.
Glimpse selectively sends some key frames to the server, which marks the objects in the
key frames. The local device caches a portion of the subsequent frames. Then the target
objects in the subsequent frames are tracked based on the results returned by the server.
To enable fast detecting targets to maintain tracking accuracy, (Liu et al. 2019) designed a
dynamic regions of interest (ROI) encoding technique and a parallel stream and inference
method to reduce transmission delay. In addition, they proposed a moving vector-based
target tracking technique.

All the efforts mentioned above offload some tasks to the cloud or edge servers. How-
ever, this is accompanied by the transmission delay. Different from them, MARLIN (Api-
charttrisorn et al. 2019) does not offload tasks to the cloud or edge. It contains two parts: a
target detector and a target tracker. First, MARLIN determines the location of targets based
on the initial input frame. Then subsequent frames are cached in the target tracker and the
targets are continuously tracked in the subsequent frames. DNN is re-triggered when the
targets in the frames change significantly. However, in MARLIN, the target detector and
target tracker run sequentially, which is not suitable for scenarios where the video con-
tent changes frequently. Different from MARLIN, AdaVP (Liu et al. 2020) runs the target
detector and the target tracker in parallel. Among them, the target detector corrects the
error of the target tracker. They designed two models as target detectors and dynamically
selected a model for tracking based on the environment.

Computation results cache Since there are limited targets in the same environment, the
images captured by mobile devices are often very similar. The core idea of computation-
results-cache is that image features are stored at the local edge server. Therefore, when the
local device requests the DNN service, the server only needs to match the image features
and return results (Fig. 13).
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Fig. 14 The illustration of model early exit

Drolia et al. (2017b) cached the computation results at the edge server. As shown in
Fig. 13, when a user requests DNN services, the edge device uploads the captured images
to the edge server. Then, the server extracts the image features and finds the best match in
the cache. For further accelerating inference, Drolia et al. (2017a) suggested utilizing the
available resources of the device to reduce the communication latency. Specifically, they
used a Markov model to predict the user’s next request. The computation results are stored
on the device in advance. In addition, they could dynamically adjust the parameters and
cache contents based on the results predicted by the Markov model.

Research on caching mechanisms To reuse computation results more efficiently, a por-
tion of the research focused on designing schemes and mechanisms for edge caching. To
enable reusing computation results according to the similarity of the input information,
Guo et al. (2018b) proposed two schemes: adaptive locally sensitive hashing (A-LSH) and
homogenized kNN (H-kNN). The former enables fast and constant lookup, and the latter
guarantees highly accurate computation reuse. Xu et al. (2018) proposed a new caching
mechanism. They used the input video frames as keys and the reusable regions in feature
maps as values. During the CNN runtime, the cached reusable regions are used to replace
the CNN computation.

5.3.3 Conditional computation

The main idea of conditional computation is to selectively perform DNN inference for
reducing computation. We divide this part of the works into three parts: model early exit,
input filtering, and model selection.

Model early exit The key to model-early-exit is determining when the sample exits from
the network. The concept of model-early-exit was first introduced in Teerapittayanon et al.
(2016). As shown in Fig. 14, they added several branches at specific layers. When the con-
fidence of the inferred result is high enough, the sample is allowed to exit from the network
early through the branches. They used the entropy of the classification result to determine
whether the sample can exit from the network. When the entropy is less than a pre-defined
threshold, it means that the inferred result is trustworthy. At this point, the sample exits
from the network. Different from the work of Teerapittayanon et al. (2016), Panda et al.
(2017) compared the maximum confidence of the prediction with the threshold. If the con-
fidence is greater than the threshold, the prediction is considered as reliable. Similarly,
Laskaridis et al. (2020) also used the comparison of confidence and the threshold for deter-
mining if the sample should exit from the network. The authors combined model-early-exit
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Fig. 15 The workflow of Noscope

with model partition. They set up an analyzer and a dynamic scheduler to find the optimal
partition points and exit points. First, the analyzer analyzes the metrics of the model. Then
the dynamic scheduler selects an optimal result based on the current situation. Finally,
the results that prioritize satisfying the most important optimization objective are found
according to the importance of the objectives.

The thresholds in the works mentioned above are user-defined, while (Lo et al. 2017)
defined thresholds using a statistical method. They added an Authentic Operation (AO)
unit to the network. The AO unit sets different thresholds for different DNN output classes.
These thresholds determine whether the samples need to be transferred to the server for
further inference. Moreover, they set up corresponding strategies according to the stability
of the channel. When the channel is unstable, the input samples are traversed across the
entire network at the edge for maintaining accuracy. Otherwise, more workload is trans-
ferred to the main network at the cloud.

Laskaridis et al. (2020), Lo et al. (2017), Panda et al. (2017) and Teerapittayanon et al.
(2016) determined whether the current sample needs to be further inferred by confidence
and threshold. Unlike the above works, Bolukbasi et al. (2017) introduced a decision func-
tion for determining when the current sample exits from the network. Moreover, they intro-
duced model selection to make trade-offs in terms of inference time and accuracy.

Although DNN model with multiple exit points can dynamically select the best exit
point for each sample, each exit point incurs additional computation complexity. Lee et al.
(2020) investigated how the number of exit points affects model performance. They found
that when using models with a single exit point, higher accuracy can be obtained with
fewer calculations.

Input filtering Similar to the model-early-exit, input filtering speeds up inference by
selectively processing data. According to the difference of these works, we divide the
efforts into two categories: (1) Filtering of video data; (2) Filtering in edge offloading.

(1) Filtering of video data As shown in Fig.15, Noscope (Kang et al. 2017a) contains a
specialized DNN and a difference detector. The specialized DNN abandons the gener-
alization capability and performs inference only in the specified task. The difference
detector checks the differences between frames. Frames with little or no change are
skipped to speed up inference. Hsieh et al. (2018) proposed a two-stage filtering sys-
tem, Focus. In the input stage, Focus uses a lightweight CNN to classify the objects.
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Then, similar objects are clustered and the top-k results are used to index the cluster
centers. In the query phase, Focus uses a complicated CNN for further inference and
return frames containing the query target. Zhang et al. (2018a) and Zhang et al. (2020)
proposed a three-stage filtering system, FFS-VA. It contains three models: a stream-
specialized difference detector (SDD), a stream-specialized network model (SNM) and
a Tiny-YOLO-Voc model. Among them, the SDD is used to remove frames that only
contain background. The SNM is used to identify frames that contain target objects.
The Tiny-YOLO-Voc is used to filter frames where the confidence of target objects is
less than a pre-defined threshold. The above methods only filtered the input of a single
video. Unlike the above methods, Jain et al. (2020) and Jain et al. (2018) built a cross-
camera spatio-temporal correlation model from unlabeled video data. In the inference
phase, they used this model to filter frames that have no spatio-temporal correlation
with the current location of the query entity, thus reducing inference.

Filtering in edge offloading Besides the above efforts, some works applied input filter-
ing in edge environments to determine which data needs to be offloaded. Wang et al.
(2018a) used MobileNet and SVM to filter irrelevant frames on Unmanned Aerial
Vehicles, thus saving bandwidth when offloading. However, they did not optimize for
the multi-tenant problem. In a further step, FilterForward (Canel et al. 2019) set up
micro-classifiers (MCs) at the edge to filter irrelevant frames. Moreover, FilterForward
can run tens of micro-classifiers simultaneously, which compensates for the shortcom-
ing of Wang et al. (2018a). The works mentioned above performs filtering at the edge.
Pakha et al. (2018) allowed the server to decide which frames to be filtered. In this
work, the client sends images with different resolution to the server, which processes
the images and returns the results to the client. Specifically, the client sends a low-
resolution frame to the server. If the target object is not detected in the low-resolution
frame, the frame is filtered. On the contrary, if the target object is detected with a
certain degree of confidence, the regions of interest are cropped and sent to the server
at a high resolution.

Model selection The main idea of model selection is to adaptively select the most suit-

able DNN for inference tasks according to factors such as inference difficulty, accuracy
requirements and inference time. According to the nature of these efforts, we divide the
efforts in this area into two categories: (1) Selection of independent model; (2) Selection of
partial model.

6]

&

Selection of independent model Park et al. (2015) is the earliest work on model selec-
tion. For a given sample, they first performed inference with a light-weight DNN. When
the confidence is lower than a pre-defined threshold, a complex DNN is used for infer-
ence. Stamoulis et al. (2019) treated model selection as a hyperparameter optimization
problem under hardware constraints and solved it with Bayesian optimization. Marco
et al. (2019) and Taylor et al. (2018) trained a predictor with machine learning. For
given input samples, it is able to dynamically select the optimal DNN according to
the desired accuracy and inference time. MobiSR Lee et al. (2019) generates a lighter
super-resolution (SR) model based on the original SR model with model compression.
Then, an appropriate model is selected according to the difficulty of upgrading the
low-resolution input image and the load of the computing engine. Yang et al. (2020b)
proposed RANet, an adaptive network, which contains subnets with different input
resolution. The samples are identified starting from the smallest subnet and can be
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exited early if the confidence of the sample is greater than the threshold. Otherwise,
the next-level subnet fuse the features of the current subnet and continue to identify
samples.

Selection of partial model All of the works mentioned above select independent model
for inference. Although this approach can speed up inference, the total size of the mod-
els and the training time also increase significantly. To alleviate this problem, Tann
et al. (2016) used incremental learning to train the network and dynamically adjusted
the channels in the network according to multiple factors such as response time, power,
and accuracy targets. They devised a method to determine the appropriate network
width and dynamically adjust the network when inference errors occur. Unlike the
above works, only the weights of a complete network need to be stored in this work.
Similarly, Panda et al. (2016) constructed a tree of classifiers, where the shallow clas-
sification network classifies the common features and selectively activates subsequent
networks based on the features of the samples. Wang et al. (2018b) proposed SkipNet.
They added gating modules to the network, which maps the activation of the previous
layer as a binary to decide whether to skip the next layer.

5.3.4 Open-source frameworks for inference accleration

ey

@)

3

TensorRT TensorRT? is a high-performance inference framework proposed by NVIDIA
that enables well-trained DL models to be deployed on NVIDIA GPUs with low latency
and high throughput. TensorRT is a C++ library that provides C++ API and Python
API. In addition, it supports mainstream DL frameworks such as Caffe, Tensorflow,
Pytorch, MxNet, etc. It is necessary to obtain a runtime engine with TensorRT in order
to deploy a trained model. It is worth noting that for network models built with Caffe
and Tensorflow, TensorRT maps the layers in them and optimizes them for NVIDIA’s
GPUs. However, models trained with other frameworks have to be first converted to a
generic ONNX model and then parsed by TensorRT. ONNX is a file format designed
for machine learning to store trained models. It enables different DL frameworks to
store models in the same format.

Tensorflow Lite Tensorflow Lite® is a lightweight solution for embedded and mobile
devices proposed by Google. With Tensorflow Lite, developers can run Tensorflow
models on embedded, mobile and IoT devices. Tensorflow Lite is composed of two
main components: (1) Tensorflow Lite interpreter: it allows optimized models to be
run on different types of hardware such as cell phones and embedded devices. (2)
Tensorflow Lite Converter: it reduces binary file size and improves performance, thus
optimizing the model for the interpreter. In addition to model-specific optimizations,
Tensorflow Lite supports the Andriod neural network API to take full advantage of
available hardware accelerators of mobile devices. When the hardware accelerator is
unavailable, Tensorflow Lite uses the CPU for computation, ensuring that the model
can still be run on a large number of devices.

Paddle Lite Paddle Lite’ is a high-performance, lightweight, flexible and easy-to-extend
DL framework that supports multiple hardware platforms including mobile, embedded
and server-side. It is proposed by Baidu and provides three APIs including C++, Java,

5 https://github.com/NVIDIA/TensorRT.
® https://github.com/tensorflow/tflite-micro.
7 https://github.com/PaddlePaddle/Paddle-Lite.
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and Python. Paddle Lite optimizes machine learning on mobile devices, compressing
model and binary file sizes and accelerating inference. It is worth noting that Paddle
Lite directly supports the model file format saved by PaddlePaddle. For models built
with other DL frameworks (e.g. Tensorflow, Pytorch), X2Paddle® needs to be used to
convert the model files to PaddlePaddle format. Paddle Lite supports multiple types
of computational graph optimization including operator fusion, computation prun-
ing, memory optimization, and quantization computation. In addition, it also supports
hybrid scheduling between different hardware, which can make full use of various
hardware resources.

6 Al appllications on the edge

In the above sections, we have introduced the techniques, architectures and open-source
frameworks of edge training and edge inference. In this section, we introduce the efforts
of edge training and edge inference from an application perspective. We summarize these
efforts in Table 6.

6.1 Training models on the edge
6.1.1 FL for healthcare

The development of DL has brought revolutionary changes in disease diagnosis. However,
a large amount of data is necessary for getting a well-trained DL model. However, it is dif-
ficult to share data among various medical institutions due to privacy issues. FL can get a
well-trained model while protecting patients’ privacy. Thus, it can facilitate the develop-
ment of Al in the medical field. For example, with the help of FL, Sheller et al. (2018)
trained a brain tumor segmentation model with data from multiple medical institutions.
The model performs similarly to a model trained with centralized data. Further, to avoid
the privacy threat posed by PS. Roy et al. (2019) proposed BrainTorrent, a peer-to-peer FL
framework for medical collaboration. In addition, they found that the server-less BrainTor-
rent approach outperforms the traditional server-based approach.

6.1.2 FL for recommendation system

Traditional recommendation system models are trained with centrally stored user behavior
data. However, centralized data storage may lead to privacy issues. FL can provide users
with personalized recommendations while protecting their privacy. For example, by using
FL, Qi et al. (2020) trained a news recommendation model while keeping private data
on the user’s device. In addition, they further protected user privacy by adding noise to
the gradients. Extensive experiments on real-world datasets showed that the method can
achieve a performance comparable to that of the state-of-the-art news recommendation
methods at that time. Similarly, with the help of FL, Hartmann et al. (2019) improved the
suggestion ranking of Firefox URL without collecting users’ data, which allows the users
to type about half a character less before selecting an item.

8 https://github.com/PaddlePaddle/X2Paddle.
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6.1.3 FL for industrial internet of things

Training Al models usually requires large amounts of high-quality labeled data. However,
it is often difficult and expensive to collect data in industrial scenarios. Obviously, collect-
ing data from different clients to train the model is a good solution. However, data sharing
is not widely used in practical industrial scenarios due to potential conflicts of interest. FL.
can get a well-trained model without leaking clients’ data. Therefore, some existing works
used FL to solve the data island problem that exists in industrial scenarios. For example,
Zhang et al. (2021a) proposed a FL-based approach for mechanical fault diagnosis. Specifi-
cally, clients train local models, and the server aggregates local models to obtain a global
model. Gradients rather than data are exchanged between clients and the server. In addi-
tion, they proposed a self-supervised learning strategy to improve the performance of the
model.

Edge devices failing can have a serious impact on industrial production. Moreover, edge
devices often contain private information about users. In order to detect anomalous devices
while protecting user privacy, Liu et al. (2021) proposed an on-device FL-based anomaly
detection framework for sensing time-series data in IoT environments. In addition, they
proposed a gradient compression strategy based on top-k selection for improving commu-
nication efficiency. The framework detects anomalies accurately and timely while reducing
communication overhead by 50% compared to FL without a gradient compression policy.

The two efforts mentioned above utilizes the PS architecture-based FL. Different from
them, (Savazzi et al. 2020) revisited the FedAvg algorithm in the context of industrial IoT
and proposed several FedAvg algorithms based on the Gossip protocol, which provide reli-
able robustness and scalability.

6.1.4 FL for vehicular networks

The mission of vehicular network requires a huge amount of road test data, which is trans-
mitted to the cloud for processing. However, the large amount of data transmission can
cause communication delays. In addition, there are a long business process and complex
environments in vehicle networks. Traffic conditions vary greatly from location to loca-
tion. Therefore, the development of secure transportation is limited due to the data island
problem. Samarakoon et al. (2020) applied FL to solve joint power and resource allocation
problems in vehicular networks. First, vehicles train local models and transmit them to the
roadside units. The roadside units aggregate the local models transmitted by each vehicle
to obtain a global model and then return it to the vehicles. With FL, vehicles can pre-
dict the queue tail distribution locally without sharing actual queue length samples, which
reduces unnecessary overheads. Based on the queue information, resource allocation can
be optimized better. The method’s accuracy is comparable to that of a centralized solution.
Moreover, the amount of data exchanged can be reduced by 79%.

6.2 Model inference on the edge
6.2.1 Collaborative inference

(1) Co-inference for object tracking The development of DL has greatly enhanced the
accuracy of object tracking. However, due to the computationally intensive nature
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of DL, it is difficult to perform target tracking tasks on resource-constrained edge
devices. Although the cloud or edge can provide arithmetic support to the devices,
cloud-based or edge-based inference suffers from unbearable communication latency.
Chen et al. (2015a) utilized cloud-device co-inference for target tracking. Specifically,
they performed target tracking algorithms at the device and maintained accuracy with
a cloud-based object detection model. Further, Liu et al. (2019) designed a system and
proposed dynamic ROI encoding techniques and a parallel stream inference method
to further reduce latency. The system can improve detection accuracy by 20.2-34.8%,
while only 2.24 ms latency is required for target tracking on AR devices. The two stud-
ies mentioned above do not optimize small object detection. Du et al. (2020b) presented
DNN-Driven Streaming (DDS). Specifically, DDS allows the server to determine the
areas of the frame that need to be re-encoded. Then, the camera recodes the areas con-
taining small objects and offloads them to the server for inference. Compared to the
solutions available at the time, DDS maintains higher accuracy and reduces bandwidth
usage by 59%. Although DDS improves the small object detection accuracy, it increases
the latency of object detection. To alleviate this problem, Wang et al. (2021) presented
EdgeDuet. Specifically, EdgeDuet performs large object detection on low-resolution
video frames with a lightweight model, while offloading high quality video frames for
small object detection. EdgeDuet offers a 233% improvement in accuracy over local
object detection on small object detection tasks. In addition, it improves total latency
by 44.7% and end-to-end latency by 34.2% over the state-of-the-art offloading strategy.
Co-inference for industrial internet of things With the rapid development of IOT and
network infrastructures, there are a large number of sensors in industrial scenarios,
resulting in a surge in data volume. If all these data are offloaded to the cloud for
processing, it would put a huge burden on network bandwidth and servers. Therefore,
it is necessary to offload some data to the edge for processing. Some existing works
utilize co-inference between device-edge-cloud to ease the pressure on data centers.
Li et al. (2018c) designed Deeplns, a manufacturing inspection system. To enable
real-time data processing, they used edge servers and cloud servers as exit points,
speeding up response time and reducing network traffic. Zeng et al. (2019) combined
model partition and model-early-exit and proposed Boomerang. They found optimal
partition points and exit points with deep reinforcement learning, achieving maxi-
mum accuracy while meeting latency. The efforts mentioned above utilize cloud-edge-
device co-inference to accelerate inference. Unlike them, Zhou et al. (2019a) proposed
AAIOT, which can allocate inference tasks to each device in multi-layer IoT systems,
accelerating inference through collaboration between devices. Similarly, Zhao et al.
(2018b) proposed DeepThings, a framework that can adaptively allocate inference
tasks on resource-constrained IoT devices. DeepThings enables 1.7x-2.2X inference
acceleration on 2—6 edge devices with less than 23 MB memory.

Co-inference for continuous mobile vision There are a huge number of cameras in
modern cities, which are generating a huge amount of video data. DL-based video
analysis can significantly improve the efficiency of video processing. However, upload-
ing such a huge amount of data to the cloud would put a tremendous strain on the net-
work infrastructure. Obviously, how to perform video analysis efficiently and quickly
has become an important issue. Wang et al. (2018a) utilized MobileNet and SVM to
filter irrelevant video frames on drones, thus reducing network bandwidth consump-
tion and accelerating video analysis. As a further step, Canel et al. (2019) proposed
FilterForward. Specifically, they utilized small neural networks rather than SVMs to
determine whether frames should be filtered, which improves the accuracy of filter-
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ing. In addition, they optimized for the multi-tenancy problem. FilterForward reduces
bandwidth usage by an order of magnitude while maintaining accuracy. In order to be
able to find missing people in large, crowded cities, Yi et al. (2020) designed EagleEye,
which contains several complex DNNs including face detection network, resolution
enhancement network, and face recognition network. To provide low latency services,
they developed Content-Adaptive Parallel Execution, using devices and cloud to opti-
mize multi-DNN model execution pipeline. Compared to naive execution, EagleEye
reduces latency by 9.07x while offloading only 108k of data.

6.2.2 Solo inference

ey

@)

3)

Solo-inference for smart driving Due to transmission latency, cloud-based or edge-
based inference cannot provide real-time detection for smart driving. Therefore, it is
necessary for devices to participate in inference. There are many efforts that applied
the works mentioned in the above sections for smart driving. For example, to assist
people with driving, Chen et al. (2019a) presented a shallow model called concat-
enated feature pyramid network for real-time embedded traffic flow prediction. They
proposed concatenated blocks to reduce the number of convolutional layers and con-
nections. Dwisnanto Putro et al. (2020) proposed an eyes detector that can be run in
real time on the CPU for detecting driver’s fatigue states. It consists of two modules,
a backbone network for feature extraction and a detection module for predicting eye
regions. The eyes detector can reach a detection speed of 467 frames per second on the
Intel-15-6600.

Solo-inference for object recognition Since there are limited objects in the edge envi-
ronments, duplication of recognition tasks in the same scene may occur. Drolia et al.
(2017b) cached the computation results in the edge server. When the client sends
images to the edge server, the edge server performs feature extraction and feature
matching on the sent images. For objects that are already cached in the edge server, rec-
ognition results are returned directly. To be able to accurately identify prescription pills
on mobile devices, Zeng et al. (2017) developed a pills identification system named
MobileDeepPill. They utilized a multi-CNNs model to collectively capture the shape,
color, and imprints features of the pills. In addition, for speeding up the inference, they
utilized a knowledge distillation-based model compression technique to reduce the
number of parameters and FLOPs of the multi-CNNs model. However, MobileDeepPill
simply extracts different features without considering the complementary relationship
between different features. Ling et al. (2020) proposed two training strategies, Batch
ALL and Batch Hard, to allow different features to compensate each other for better
recognizing hard samples.

Solo-inference for human activity recognition With the popularity of smart devices,
there has been a tremendous growth in the data collected by smart devices. However,
these data contain the personal information of the user. To protect user privacy, it
is necessary to process the data from smart devices locally. Almaslukh et al. (2018)
designed an efficient and lightweight model for smartphone-based human activity rec-
ognition. They used time-domain statistical features to extract more distinguishable fea-
tures. In addition, they explored a new data augmentation method, which can improve
the accuracy of smartphone-based human activity recognition. Sensors collect a large
amount of data in the edge environment. However, these data are difficult to interpret
and label. For providing human activity recognition labels to sensor data, Radu and
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Henne (2019) proposed a framework, Vision2Sensor, which synchronizes the visual
images captured by the camera with the sensor data to generate labels. The system can
be run on embedded devices in real time, thus protecting user privacy.

7 Open challenges and future directions

From the discussion above, we can see that the benefits of edge intelligence are obvious. It
relieves the pressure on data centers and brings intelligent services down to the edge. How-
ever, there are still many challenges on the way to achieve edge intelligence. In this section,
we present open challenges, possible solutions and future directions for edge intelligence.

7.1 The specialties of data in edge environments

Unlike the data in data centers, data in edge environments often have the following charac-
teristics: (1) Persistence of data; (2) Unlabeled data; (3) Non-IID data; (4) Data with noise.
We provide possible solutions for the specialties of data in edge environments.

(1) Persistence of data: in the edge environment, data is continuously generated. For super-
vised learning, the models are trained with pre-collected static datasets and cannot
learn new knowledge when the training is over. Clearly, models cannot be retrained
on resource-constrained edge devices. In addition, it is not possible to get all the train-
ing data at once in edge environments. For this situation, we believe that incremental
learning may be a solution. Actually, there are already some efforts to explore online
incremental learning on edge devices, which requires less computational resources than
training models from scratch. In addition, models trained with incremental learning are
able to perform equally well on new tasks and old ones. For example, Li et al. (2019a)
proposed the RILOD system, which progressively trains an existing object detection
model so that it can detect new targets without compromising its original capabilities.
In addition, they designed a real-time dataset construction pipeline for collecting train-
ing images and automatically labeling images. Experiments have shown that RILOD
can learn to detect a new object in a few minutes. With incremental learning, the prob-
lem of persistence of edge data can be solved to a great extent. In addition, the model
can be extended without hurting its original capabilities. However, there are still some
challenges with incremental learning on edge devices, such as hardware. Traditional
hardware platforms such as CPUs and GPUs are not able to handle DNNs on edge
devices efficiently. CPU cannot be used for parallel computing and therefore is com-
putationally inefficient. GPU can provide high throughput but its low energy efficiency
prevents it from being deployed on edge devices. In fact, there has been some efforts
to design efficient hardware architectures. For example, (Luo and Yu 2021) proposed a
compute-in-memory-based accelerator, AILC, for on-chip incremental learning using
spin-transfer-torque magnetic random access memory (STT-MRAM) technology.

(2) Unlabeled data: for supervised learning, a complete labeled dataset is required for
training. However, data in edge environments is often unlabeled. Active learning may
be a solution to alleviate this problem. It allows learning algorithms to proactively
make annotation requests and hand over the filtered data to human experts for further
annotation. Although it can reduce the costs of data annotation, human annotations
are still needed. In fact, several works have attempted to utilize active learning to solve
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the problem of unlabeled data in edge environments. For example, Diethe et al. (2016)
proposed hierarchical Bayesian active learning methods to label data in smart home.
Shahmohammadi et al. (2017) used active learning to label the sensor data collected
by the smartwatch for human activity recognition. In addition, unsupervised learning is
also an optional solution. Unlike supervised learning, it is able to learn from unlabeled
data. Janjua et al. (2019) proposed IRESE, a rare-event detection system that processes
input data utilizing unsupervised machine learning. It achieves over 90% accuracy in
detecting audio rare events such as gunshot, scream, and siren.

(3) Non-IID data: models trained with IID data can learn the data distribution characteris-
tics well. However, the data generated by edge devices is usually Non-IID, which means
the data distribution of each edge device cannot represent the total data distribution.
A portion of existing research has been focusing on how to process Non-IID data in
FL. For example, Zhao et al. (2018a) suggested creating a subset of data that is shared
globally to improve the training on Non-IID data. Yoshida et al. (2020) assumed that a
few clients allow their data to be uploaded to the server in order to form an approximate
IID dataset. The collected IID dataset was utilized to train a model. Then the model is
aggregated with other local models trained with Non-IID data.

(4) Data with noise: for IoT devices in different edge environments, the noise in environ-
ments may affect the data and consequently the model performance. We believe that
input filtering may be a good solution. For example, Li et al. (2020) filtered invalid
data in IoT environments, thus avoiding its impact on sentiment detection. However,
when there is too much noise in the edge environment, a small number of high-quality
labeled samples may not be enough to train a model. In this situation, we believe
that the following technologies may be potential solutions. First, data augmentation,
which can enhance the generalization ability of the network by increasing the number
of samples. For example, Mathur et al. (2018) used data augmentation to address
noise pollution caused by sensor heterogeneity. Second, few-shot learning, which can
improve the accuracy when the number of samples in a category is small. For example,
Lungu et al. (2020) proposed an improved Siamese Networks for few-shot learning.
In a 5-way, 1-shot classification task, this network improves accuracy by up to 22% on
average across four datasets.

7.2 Privacy and security issues

For cloud-based DL services, data needs to be uploaded to the cloud for inference, which can
be a threat to user privacy. Moreover, for organizations like medical centers, they need to pro-
tect the privacy of patients. Therefore, it is not possible to exchange data with other organiza-
tions to train models. FL can be a good solution to this problem. For example, Sheller et al.
(2018) used data from multiple institutions to train a brain tumor segmentation model without
sharing data. However, one of the disadvantages of FL with PS architecture is the dependence
on PS. For application scenarios like smart home, it is not difficult to find a trusted third party
as PS. However, for collaboration between medical centers, it is difficult to find a trusted third
party (Roy et al. 2019). Decentralized FL can be a good solution to this problem, which is
mainly achieved through blockchain (Weng et al. 2021; Kim et al. 2019) or other communica-
tion methods (Lu et al. 2020; Hu et al. 2019). For example, Roy et al. (2019) proposed a peer-
to-peer FL framework for medical collaboration, which does not require a trusted third party
to aggregate local models.
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7.3 Scheduling and trade-offs of DNN services

There are often multiple DNN service requests in edge enviroments. For example, requests
from vehicles in autonomous driving for services such as object detection and path planning.
In this case, multiple DNN programs compete for limited resources. Therefore, service provid-
ers need to optimize the scheduling of DNN services. There have been works exploring the
DNN scheduling problem in edge environments. For example, Huang et al. (2019) designed
an efficient heuristic online algorithm for multitask scheduling.

In addition, various factors such as model accuracy, inference time need to be traded off
in order to reduce resource consumption. We believe that model selection and model-early-
exit are optional solutions. The former selects the most suitable model by measuring various
factors such as accuracy and inference time (Taylor et al. 2018). This method is suitable for
devices with large storage such as smartphones since the weights of multiple models need to
be stored. Similarly, the latter determines which layer to exit for samples by measuring the
difficulty of inference (Teerapittayanon et al. 2016). The difference is that for the latter, only
the weights of one model need to be stored, which makes it suitable for devices with small
storage. In fact, quite a few efforts have been made to use both techniques in edge environ-
ments to achieve the accuracy-inference time trade-off. Bolukbasi et al. (2017) utilized model
selection to make a trade-off in terms of inference time and accuracy. Zeng et al. (2019)
achieved maximum accuracy while meeting the inference time by utilizing model partition
and model-early-exit.

7.4 Incentives and penalties

Many existing works on FL suffer from several problems: (1) device resources are inevitably
consumed when users participate in collaborative training, which may lower the willingness
of users to engage in training; (2) users, as providers of the data, may refuse to participate
in training due to privacy concerns; (3) many of existing works on FL considered only pri-
vacy threats from PS (Bonawitz et al. 2017; Geyer et al. 2017; Truex et al. 2019; Wei et al.
2020). However, there are likely to be malicious nodes during the training process, which can
seriously disrupt the training. Moreover, in FL, local nodes have absolute control over their
own data. Therefore, anomaly detection cannot be used for checking malicious nodes. Block-
chain can be a promising solution for the above problems. For example, in FLChain (Bao et al.
2019), honest users can earn more partition profits with a well-trained model, and malicious
users are promptly detected and severely penalized.

7.5 The development of training models dynamically

In order to deploy the model to edge devices, two training methods can be used: dynamic
training and static training. Among them, static training means that once training is com-
plete, the model cannot be fine-tuned. It is dependent on high performance computing
nodes. Dynamic training refers to training with computation resources of edge nodes. Due
to the specificity of the data generated at the edge, models obtained by static training may
not be available for edge environments all the time. On the contrary, the model obtained by
dynamic training can be applied to the edge environments well. Moreover, when the data
in the environment changes, the model can be adjusted by fine-tuning. It is obvious that
the development of dynamic training plays a crucial role in the implementation of edge
intelligence.
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7.6 The development of cloud-edge-device collaborative inference

A part of the existing works (Mao et al. 2017a, b; Zhou et al. 2019a) performed inference
completely on devices for avoiding transmission latency. We believe that edge computing, as
an extension of cloud computing, can provide low latency to the cloud. Moreover, the cloud
can provide computing support to the edge. The collaboration between cloud, edge and
devices can achieve a great trade-off between latency, inference accuracy and energy con-
sumption. Especially in the future 6G era, powerful network bandwidth and communication
capability can provide strong support for the collaboration between cloud, edge and devices.

7.7 The extension of edge intelligence

From the discussion in the above sections, we can see that edge intelligence can provide
better services in several aspects such as user privacy, communication bandwidth, and
transmission latency. However, intelligent services can be deployed on more fine-grained
devices. Tiny machine learning (TinyML) (Sanchez-Iborra and Skarmeta 2020; Banbury
et al. 2020), as an extension of edge intelligence, can be deployed on micro-controllers.
This intelligence paradigm can provide more reliable intelligent services. Although
research on TinyML is still in its initial stage, we believe that only through the collabora-
tion between cloud-based intelligence, edge intelligence and TinyML can we effectively
build a complete intelligence eco-system.

8 Conclusion

Edge computing, as the extension of cloud computing, is promising to bring compute-
intensive DL services down to the edge. The combination of Al and edge computing has
produced a new paradigm, edge intelligence, which is gradually attracting the attention
of researchers in academia and industry. In this paper, we provided a detailed introduc-
tion of techniques, architectures, frameworks and implementations for edge training and
edge inference, and compared their advantages and disadvantages from multiple per-
spectives. In addition, we discussed the challenges, possible solutions and future direc-
tions of edge intelligence. We believe that in the near future, with the rapid development
of Al and edge computing, more and more researchers will be dedicated to implement-
ing edge intelligence.
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