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Abstract
To strengthen the effectiveness of approximate reasoning in fuzzy modus ponens (FMP) and 
fuzzy modus tollens (FMT) problems, three approximate reasoning methods with aggrega-
tion functions are developed and their validity are investigated respectively in this paper. We 
firstly study some properties of fuzzy implication generated by an aggregation function. And 
then present an A-compositional rule of inference as an extension of Zadeh’s CRI replacing 
t-norm by aggregation function. The similarity-based approximate reasoning with aggrega-
tion function is further discussed. Moreover, we provide the quintuple implication principle 
method with aggregation function to solve FMP and FMT problems. Finally, the validity of 
three approximate reasoning approaches is analyzed respectively using GMP rules in detail.

Keywords  Implication · Aggregation · Approximate reasoning · Validity · GMP rules

1  Introduction

1.1 � Motivation

Approximate reasoning has been successfully applied for model-based control, data min-
ing, artificial intelligence, image processing, decision making and so on. Generally speak-
ing, approximate reasoning derives some meaningful conclusions from if-then rules and 
a collection of imprecise premises. Their fundamental patterns are fuzzy modus ponens 
(FMP) and fuzzy modus tollens (FMT) generalized from modus ponens (MP) and modus 
tollens (MT) in the classical logic. FMP and FMT can be represented intuitively as:
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Premise 1: IF x is D THEN y is B

Premise 2:  x is D′

Premise 1: IF x is D THEN y is B

Premise 2:                                                   y is B′

Conclusion:                       y is B′, Conclusion: x is D′,

where D and D′ are fuzzy sets on the universe U while B and B′ are fuzzy sets on the uni-
verse V.

To obtain B�(D�) from B(D), the compositional rule of inference (CRI) method was pro-
posed by Zadeh (1975). In Zadeh’s CRI, Premise 1 is translated into a fuzzy relation R 
using Zadeh implication. Then B�(D�) is calculated by combining D�(B�) and fuzzy relation 
R with the sup-min composition. After, the general CRI methods for FMP and FMT are 
developed as follows:

where ∗ is a t-norm, → is a fuzzy implication. Instead of t-norm, Ruan and Kerre also 
extended the CRI method by n-ary operator Tn (Ruan and Kerre 2010). Moreover, Cappelle 
et al. studied the CRI method in case where a binary function F on [0,1] is used to explain 
Premise 1 (that is, Premise 1 is translated into F(D(x), B(y))) (Cappelle et al. 1991). After, 
Kolesárová and Kerre investigated the CRI method in special case where the function F is 
a t-norm (Kolesárová and Kerre 2000).

It is necessary to mention that Trillas et al. represented the following FMT (Trillas et al. 
2004):

(Trillas’ FMT) Premise 1: IF x is  THEN y is B

Premise 2:                      y is not B′

Conclusion: x is not D′.

To solve Trillas’ FMT, the strong negation is used to explain the connective “not”. With 
CRI method, the conclusion is obtained by Trillas et al. as follows

We do not consider Trillas’ FMT in the rest of this work.
Although CRI method is simple in computation, there are still some deficiencies in CRI 

method as pointed out by some researchers (Baldwin 1979; Mizumoto 1985; Turksen and 
Zhong 1988; Wang 1997; Zhou et al. 2015). To overcome these deficiencies, Turksen and 
Zhong suggested similarity-based approximate reasoning (SBR) method which does not 
require to construct the fuzzy relation (Turksen and Zhong 1988). After, Raha et al. devel-
oped an SBR method using a new measure for similarity between two fuzzy sets (Raha 
et al. 2002). In order to provide a logical foundation for FMP and FMT problems, Wang 

B�(y) =
⋁

x∈U

D�(x) ∗ (D(x) → B(y)),

D�(x) =
⋁

y∈V

B�(y) ∗ (D(x) → B(y)),

N(D�(x)) =
⋁

y∈V

N(B�(y)) ∗ (D(x) → B(y)).
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and Pei proposed triple implication principle (TIP) for fuzzy reasoning (Pei 2008; Wang 
1999). To improve the quality of TIP method, Zhou et al. investigated quintuple implica-
tion principle (QIP) for FMP and FMT problems (Zhou et al. 2015). Most importantly, it 
is found that Mamdani-type fuzzy inference is same as fuzzy inference with QIP method 
using Gödel implication.

To measure the validity of inference scheme to solve the FMP and FMT problems, 
(Magrez and Smets 1989) proposed some commonly accepted axioms (Also inferred as 
GMP rules) in the following: 

(GMP1)	�    B ⊆ B′;
(GMP2)	�    If D′ ⊆ D′′ , then B′ ⊆ B′′;
(GMP3)	�    If D� = DC , then B� = V  , where DC is the complement of D;
(GMP4)	�    If D� = D , then B� = B.

In order to make better use of approximate reasoning, it becomes a core topic to meas-
ure the validity of inference scheme using GMP rules (De Baets and Kerre 1993; Cornelis 
et al. 2000, 2002; Mas et al. 2016, 2008).

It is well known that the results of approximate reasoning depend completely on the 
choice of logical connectives. However, as some researchers (Bustince et al. 2012; Fodor 
and Keresztfalvi 1995) pointed out the associativity or commutativity of the connectives 
“and”and “or”is not demanded in classification problems and decision making. Considered 
aggregation functions play an important role in decision making and fuzzy logic, aggrega-
tion functions are a better substitute for the t-norms and t-conorms by in the actual classifi-
cation problems and decision making.

Moreover, fuzzy implication, as an important logical connective, is used to formalize 
“if ... then”rule in fuzzy system. There exist many families of fuzzy implications, such 
as well-known R-, S- and QL-implications, f- and g-implications, probabilistic implica-
tion, probabilistic S-implication and so on. According to the generation methods of fuzzy 
implications, fuzzy implications can be classified into two types as follows: i. generated by 
the binary functions on [0, 1], such as R-, (S, N)-, QL-implications, residual implications 
derived from overlap functions and probabilistic implications (Baczyński and Jayaram 
2008; Dimuro and Bedregal 2015; Dimuro et al. 2014; Grzegorzewski 2013); ii. generated 
by the unary functions on [0, 1], for instance, f- and g-implications (Yager 2004). As the 
t-norm and t-conorm are two special aggregation functions (See Definition 2.5), it is very 
interesting topic to investigate fuzzy implications generated by aggregation functions. As 
mentioned above, the actual classification problems and decision making also trigger us to 
study the fuzzy implications generated by aggregation functions. Thus, our motivation is 
to develop three approximate reasoning approaches using aggregation functions and fuzzy 
implications generated by them. Most importantly, we will pay close attention to the valid-
ity of three approximate reasoning methods.

1.2 � Contribution of this research

As is well known that the FMP and FMT are two models to obtain the conclusion from 
imprecise premises. They also play a pivotal role in decision making. Therefore, it is not 
difficult to see that more options of fuzzy implications and aggregation functions result in 
more flexibility in decision making. Based on the discussion above, we mainly develop 
three approximate reasoning approaches with aggregation functions to solve FMP and 
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FMT problems in this paper. And what’s more, the validity of three approximate reasoning 
methods is respectively discussed using GMP rules. We first investigate some properties of 
fuzzy implication generated by an aggregation function. Based on such fuzzy implication 
and aggregation function, three approximate reasoning approaches are developed to solve 
FMP and FMT problems. In a word, the contributions of this paper include: 

(1)	 To study the properties of fuzzy implication generated by an aggregation function.
(2)	 To construct three approximate reasoning methods using aggregation functions (that 

is, ACRI method, ASBR method and AQIP method).
(3)	 To investigate the validity of these three approximate reasoning methods using GMP 

rules.

This paper is composed as follows. In Sect. 2, some definitions of basic notions and nota-
tions are presented. Section 3 studies some properties of fuzzy implication generated by an 
aggregation function. In Sect. 4, the ACRI method with aggregation function is discussed. 
In Sect. 5, we propose the ASBR method. Section 6 provides the AQIP method for FMP 
and FMT problems.

2 � Preliminary

In order to make this work more self-contained, we introduce the main concepts and prop-
erties employed in the rest of the paper.

2.1 � Negation, aggregation function and fuzzy implication

Definition 2.1  Lowen (1978) A function N ∶ [0, 1] → [0, 1] is called a fuzzy negation if 

(N1)	� N(0) = 1, N(1) = 0;
(N2)	� N(x) ≥ N(y) if x ≤ y, ∀ x, y ∈ [0, 1] . Further, a fuzzy negation N is strict if it satis-

fies the following properties:
(N3)	� N is continuous;
(N4)	� N(x) > N(y) if x < y . A fuzzy negation is strong if it is involutive, i.e.,
(N5)	� N(N(x)) = x,∀ x ∈ [0, 1].

Example 2.2  Lowen (1978) The negation N0(x) = 1 − x is strong. It also is called the stand-
ard negation.

Definition 2.3  Grabisch et al. (2009) A function A ∶ [0, 1]n → [0, 1] is said to be an n-ary 
aggregation function if the following statements hold: 

(A1)	� A satisfies the boundary conditions: A(0, 0,⋯ , 0) = 0 and A(1, 1,⋯ , 1) = 1;
(A2)	� A is non-decreasing in each variable.
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Definition 2.4  Grabisch et al. (2009) Let A be a binary aggregation function. 

	 i.	 An element a ∈ [0, 1] is said to be a left (right) annihilator if A(a, x) = a (A(x, a) = a) 
for any x ∈ [0, 1] ; a is an annihilator if A(a, x) = A(x, a) = a for any x ∈ [0, 1];

	 ii.	 e ∈ [0, 1] is said to be a left (right) neutral element if A(e, x) = x (A(x, e) = x) for any 
x ∈ [0, 1] ; e ∈ [0, 1] is a neutral element if A(e, x) = A(x, e) = x for any x ∈ [0, 1].

Definition 2.5  Grabisch et al. (2009) A binary aggregation function A is said to be 

i.	 Symmetric or commutative if A(x, y) = A(y, x) for any x, y ∈ [0, 1];
ii.	 Associative if A(x,A(y, z)) = A(A(x, y), z) for any x, y, z ∈ [0, 1];
iii.	 Conjunctive if A ≤ min;
iv.	 Disjunctive if A ≥ max;
v.	 Averaging if min ≤ A ≤ max;
vi.	 A semi-copula if 1 is a neutral element;
vii.	A t-norm if it is an associative and commutative semi-copula;
viii.	Dual to a semi-copula if 0 is a neutral element;
ix.	 A t-conorm if it is dual to a t-norm;
x.	 A copula  i f  i t  i s  a  semi-copula  which is  two-increasing,  i .e . , 

A(x1, y1) − A(x1, y2) − A(x2, y1) + A(x2, y2) ≥ 0 holds for all x1, y1, x2, y2 ∈ [0, 1] such 
that x1 ≤ x2 and y1 ≤ y2.

Definition 2.6  Baczyński and Jayaram (2008) A fuzzy implication is a function 
I ∶ [0, 1]2 → [0, 1] which satisfies for any x, y, z ∈ [0, 1] : 

(I1)	� Non-increasing in the first variable, i.e., if x ≤ y then I(x, z) ≥ I(y, z);
(I2)	� Non-decreasing in the second variable, i.e., if y ≤ z then I(x, y) ≤ I(x, z);
(I3)	� I(0, 0) = 1;
(I4)	� I(1, 1) = 1;
(I5)	� I(1, 0) = 0.

By Definition 2.6, we directly obtain the fact that a fuzzy implication satisfies the fol-
lowing properties: 

(LB)	� Left boundary condition, I(0, y) = 1,∀ y ∈ [0, 1];
(RB)	� Right boundary condition, I(x, 1) = 1,∀ x ∈ [0, 1].

Definition 2.7  Baczyński and Jayaram (2008) A fuzzy implication I ∶ [0, 1]2 → [0, 1] 
satisfies: 

(NP)	� Left neutrality property, if I(1, y) = y,∀ y ∈ [0, 1];
(IP)	� Identity principle, if I(x, x) = 1,∀ x ∈ [0, 1];
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(EP)	� Exchange principle, if I(x, I(y, z)) = I(y, I(x, z)),∀ x, y, z ∈ [0, 1];
(CP(N))	� Law of contraposition with a fuzzy negation N if I(x, y) = I(N(y),N(x)),∀ x, y ∈ [0, 1];
(OP)	� Ordering property, if I(x, y) = 1 ⟺ x ≤ y,∀ x, y ∈ [0, 1].

Different classes of implications can be found in many literatures. Among them we only 
emphasize the following classes of fuzzy implications.

Definition 2.8  Baczyński and Jayaram (2008) An R-implication is a function 
IT ∶ [0, 1]2 → [0, 1] associated with a t-norm T defined by IT (x, y) = sup{z|T(x, z) ≤ y}.

Definition 2.9  Pradera et  al. (2016) An (A,  N)-implication is a function 
IA,N ∶ [0, 1]2 → [0, 1] associated with a disjunctor (that is, an aggregation function having 
an annihilator 0) A and a fuzzy negation N defined by IA,N(x, y) = A(N(x), y).

Definition 2.10  Yager (2004) Let f ∶ [0, 1] → [0,∞] be a strict decreasing and continuous 
mapping with f (1) = 0 . An f-generated implication, which is a function If ∶ [0, 1]2 → [0, 1] 
with an f-generator, is defined by If (x, y) = f (−1)(xf (y)) with the understanding that 
0 ×∞ = 0,

where f (−1) is pseudoinverse of f defined as f (−1)(x) =
{

f −1(x) x ≤ f (0)

0 otherwise
.

Definition 2.11  Yager (2004) Let g ∶ [0, 1] → [0,∞] be a strict increasing and continuous 
mapping with g(0) = 0 . A g-generated implication, which is a function Ig ∶ [0, 1]2 → [0, 1] 
with a g-generator, is defined by Ig(x, y) = g(−1)

(
g(y)

x

)
 with the understanding that 

0 ×∞ = ∞ , where g(−1) is pseudoinverse of g.

Definition 2.12  Grzegorzewski (2013) Let C be a copula. A function IC ∶ [0, 1]2 → [0, 1] 

given by IC(x, y) =
{

C(x,y)

x
x > 0

1 otherwise
 is called a probabilistic implication (based on a cop-

ula C).

Definition 2.13  Grzegorzewski (2013) Let C be a copula. A function ĨC ∶ [0, 1]2 → [0, 1] 
given by ĨC(x, y) = C(x, y) − x + 1 is called a probabilistic S-implication (based on a copula 
C).

2.2 � Raha’s similarity‑based approximate reasoning

Similarity-based approximate reasoning methods can be founded in many literatures. In this 
subsection, we only recall the similarity-based approximate reasoning method proposed by 
Raha et al. in Raha et al. (2002). Let F(U) denote all fuzzy sets defined on the universe U.

Definition 2.14  Raha et al. (2002) A function S ∶ F(U) × F(U) → [0, 1] is called a simi-
larity measure if it satisfies the following properties for any D,D� ∈ F(U) : 

(S1)	� S(D,D�) = S(D�,D);
(S2)	� S(D,D�) = 1 if and only if D = D�;
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(S3)	� D,D′ are simultaneously not null, that is, min(D(x),D�(x)) = 0 for all x ∈ U if 
S(D,D�) = 0;

(S4)	� S(D,D��) ≤ min(S(D,D�), S(D�,D��)) if D ⊆ D′ ⊆ D′′.

In order to obtain the conclusion in FMP problem, Raha et al. presented a novel simi-
larity-based approximate reasoning method (Raha et al. 2002). In their proposed method, 
Premise 1 is interpreted as a conditional fuzzy relation R(D,  B) while the conclusion is 
interpreted as a modified conditional relation R(D,B|D�) . And an algorithm for similarity-
based approximate reasoning is shown as follows: 

Step1	� Translate premise 1 and compute R(D,  B) using some suitable translating rules 
(possibly, a t-norm operator).

Step2	� Compute S(D�,D) between the fact D′ and the antecedent D using some suitable 
similarity measures.

Step3	� Modify R(D,  B) with S(D�,D) to obtain the modified conditional relation 
R(D,B|D�) using some schemes.

Step4	� Use the sup-projection operation on R(D,B|D�) to obtain B′ as 

In order to compute the conclusion R(D,B|D�) , the following axioms are proposed: 

(AX1)	� If S(D�,D) = 1 , then R(D,B|D�)(x, y) = R(D,B)(x, y);
(AX2)	� If S(D�,D) = 0 , then R(D,B|D�)(x, y) = 1;
(AX3)	� As S(D�,D) increases from 0 to 1, R(D,B|D�)(x, y) decreases uniformly from 1 to 

R(D, B)(x, y), that is, R(D,B|D�) ⊇ R(D,B) holds for any D� ∈ F(U).

Then R(D, B) is constructed in following ways: 

Case1	� When R(D,B)(x, y) = T(A(x),B(y)) , where T is a t-norm.
Case2	� When R(D,B)(x, y) = IT (A(x),B(y)) , where IT is an R-implication.

Finally, Raha et al. obtained the conclusions B′
1
 and B′

2
 as

2.3 � Quintuple implication principle for FMP and FMT

Zhou et al. proposed the following quintuple implication principle (QIP) for solving FMP 
and FMT problems (Zhou et al. 2015). In Li and Qin (2018), Li and Qin extended the quin-
tuple implication principle for FMP and FMT as follows.

Quintuple implication principle for FMP Let D,D� ∈ F(U) and B ∈ F(V) . Suppose 
the maximum of following formula

B�(y) = sup
x∈U

R(D,B|D�)(x, y).

B�
1
(y) = sup

x∈U

IT (S(D,D
�),T(D(x),B(y))),

B�
2
(y) = sup

x∈U

IT (S(D,D
�), IT (D(x),B(y))).
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exists for every x ∈ U and y ∈ V  , where I is a fuzzy implication on [0,1]. The solution B′ 
of FMP should be the smallest fuzzy subset on V such that Eq.(1) takes its maximum.

Quintuple implication principle for FMT Let D ∈ F(U) and B,B� ∈ F(V) . Suppose 
the maximum of following formula

exists for every x ∈ U and y ∈ V  . The solution D′ of FMT is the smallest fuzzy subset on 
U such that Eq.(2) takes its maximum.

Lemma 2.15  Li and Qin (2018) 

	 i.	 If I satisfies (I2), then the greatest value of the formulas (1) and (2) are 

 and 

	 ii.	 Moreover, if I is right-continuous with respect to the second variable, then the QIP 
solution of FMP (FMT) exists and is unique.

Theorem 2.16  Zhou et al. (2015) Suppose I is an R-implication induced by a left-continu-
ous t-norm T. Then the QIP solutions of FMP and FMT are as follows:

3 � Residual implication generated by an aggregation function

In this section, we will investigate some properties of fuzzy implication generated by an 
aggregation function.

Let A be a function from [0, 1]2 to [0,  1]. Then, we can define a function 
IA ∶ [0, 1]2 → [0, 1] as

For an aggregation function A, if the set {z ∈ [0, 1]|A(x, z) ≤ y} is always nonempty for two 
given x, y ∈ [0, 1] , then we have the following result.

Lemma 3.1  Let A be an aggregation function. Then the following statements are equivalent: 

(1)M(x, y) = I(I(D(x),B(y)), I(I(D�(x),D(x)), I(D�(x),B�(y))))

(2)N(x, y) = I(I(D(x),B(y)), I(I(B(y),B�(y)), I(D(x),D�(x))))

max
x∈U,y∈V

M(x, y) = I(I(D(x),B(y)), I(I(D�(x),D(x)), I(D�(x), 1)))

max
x∈U,y∈V

N(x, y) = I(I(D(x),B(y)), I(I(B(y),B�(y)), I(D(x), 1))).

B�(y) = sup
x∈U

T(D�(x),T(I(D�(x),D(x)), I(D(x),B(y)))),

D�(x) = sup
y∈V

T(D(x), T(I(D(x),B(y)), I(B(y),B�(y)))).

(3)IA(x, y) = sup{z ∈ [0, 1]|A(x, z) ≤ y},∀x, y ∈ [0, 1].
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	 i.	 A is left-continuous with respect to the second variable;
      ii.   A and IA defined in Eq.(3) satisfy the residuation property (RP), i.e. 

      iii.	 IA(x, y) = max{z ∈ [0, 1]|A(x, z) ≤ y},∀x, y ∈ [0, 1].

Proof  This proof is similar to that of Proposition 2.5.2 in Baczyński and Jayaram (2008) 
and Theorem 2 in Król (2011). 	�  ◻

Remark 1  The above proposition also appeared in Demirli and De Baets (1999); Jayaram 
and Mesiar (2009) when A is a semi-copula. In Król (2011), Król considered the case 
where A is a conjunctor. However, it is sufficient to demand that A is an aggregation func-
tion here.

Considering an aggregation function A ∶ [0, 1]2 → [0, 1] under certain conditions, it is pos-
sible to define a class of fuzzy implications according to Eq.(3). In Ouyang (2012), it is proved 
that IA is a fuzzy implication if the aggregation function A satisfies the following conditions:

In this case, we say IA is a residual implication induced by the aggregation function A (for 
short, R-implication). Notice that the above result also appeared in Król (2011).

We try to obtain an aggregation function from a fuzzy implication in turn. Let I be a 
fuzzy implication. The function AI ∶ [0, 1]2 → [0, 1] is defined by:

Similar to Lemma 3.1, we have the following result.

Lemma 3.2  Baczyński and Jayaram (2008); Król (2011) Let I be a fuzzy implication. Then, 
the following statements are equivalent: 

	 i.	 I is right-continuous with respect to the second variable;
      ii.   AI defined Eq.(6) and I satisfy the residuation property, i.e. 

      iii.	 AI(x, y) = min{z ∈ [0, 1]|I(x, z) ≥ y},∀x, y ∈ [0, 1].

Lemma 3.3  If the fuzzy implication I satisfies the condition I(1, y) < 1 for all y ∈ [0, 1) , 
then the function AI defined in Eq.(6) is an aggregation function.

Proof  Obviously, 0 ∈ {z|I(0, z) ≥ 0} holds. This implies AI(0, 0) = 0 . Similarly, we have 
AI(1, 1) = inf{z|I(1, z) = 1} = 1 by the condition I(1, y) < 1 for all y ∈ [0, 1).

It is not difficult to obtain the fact that AI is nondecreasing in two variables since a fuzzy 
implication I satisfies (I1) and (I2). 	�  ◻

Remark 2  Indeed, the above lemma also appeared in Król (2011). In this case, 0 is an anni-
hilator of the aggregation function AI.

A(x, z) ≤ y ⟺ z ≤ IA(x, y), ∀x, y, z ∈ [0, 1]; (RP)

(4)A(1, y) > 0 for any y > 0,

(5)A(0, y) = 0 for any y < 1.

(6)AI(x, y) = inf{z ∈ [0, 1]|I(x, z) ≥ y},∀x, y ∈ [0, 1].

AI(x, z) ≤ y ⟺ z ≤ I(x, y), ∀x, y, z ∈ [0, 1]; (RP ∗)
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As an extension of the Theorem 2.5.14 in Baczyński and Jayaram (2008), we further get 
the following statement.

Theorem 3.4  Let fuzzy implication I be right-continuous with respect to the second vari-
able. Then I = IAI

 , i.e., I(x, y) = max{z|AI(x, z) ≤ y} for any x, y ∈ [0, 1] , where the func-
tion AI is defined in Eq.(6).

Proof  We firstly verify that IAI
 is a fuzzy implication. Obviously, IAI

 satisfies (I1) and 
(I2) by the definition of AI . Therefore, it is sufficient to verify IAI

(0, 0) = IAI
(1, 1) = 1 

and IAI
(1, 0) = 0 . Since I is right-continuous with respect to the second variable, 

AI(1, z) ≤ 1 ⟺ z ≤ I(1, 1) = 1 holds for all z ∈ [0, 1] by Lemma 3.2. This implies that 
IAI

(1, 1) = sup{z|AI(1, z) ≤ 1} = 1.
Since I satisfies (RB), I(0, y) ≥ z holds for all y, z ∈ [0, 1] . According to the definition of 

AI , we have IAI
(0, 0) = sup{0|AI(0, z) = 0} = 1.

Assume that AI(1, z) = 0 . That is, min{y|I(1, y) ≥ z} = 0 . The right-continuity of I with 
respect to the second variable implies z = 0 . This implies IAI

(1, 0) = 0.
Next, we prove I = IAI

 . Since I(x, y) ≤ I(x, y) and AI(x, I(x, y)) ≤ y hold for all 
x, y ∈ [0, 1] , I(x, y) ≤ IAI

(x, y) holds.
On the other hand, we can assert that AI is left-continuous with respect to the second 

variable. Indeed, let any x, yi ∈ [0, 1] and i ∈ S . AI(x,∨
i
yi) ≥ ∨

i
AI(x, yi) holds for every 

i ∈ S . Let ∨
i
AI(x, yi) = y . Then we have AI(x, yi) ≤ y for every i ∈ S . According to Lemma 

3.2, yi ≤ I(x, y) holds for every i ∈ S . This implies that ∨
i
yi ≤ I(x, y) . Again, we obtain 

AI(x,∨
i
yi) ≤ y by Lemma 3.2.

Obviously, the left-continuity of AI with respect to the second variable implies 
that IAI

(x, y) ≥ IAI
(x, y) ⟺ AI(x, IAI

(x, y)) ≤ y holds for any x, y ∈ [0, 1] . Since 
AI(x, z) ≤ AI(x, z) , we have I(x,AI(x, z)) ≥ z for any x, z ∈ [0, 1] by (RP*). Espe-
cially, take z = IAI

(x, y) . Then we obtain I(x,AI(x, IAI
(x, y))) ≥ IAI

(x, y) . This implies 
I(x, y) ≥ I(x,AI(x, IAI

(x, y))) ≥ IAI
(x, y).

By the discussion above, we get I(x, y) = IAI
(x, y) . 	�  ◻

Remark 3 

	 i.	 In Król (2011), the fuzzy implication I not only is right-continuous with respect to 
the second variable but also satisfies the condition I(1, y) < 1 for all y ∈ [0, 1).

	 ii.	 Theorem 2.5.14 in Baczyński and Jayaram (2008) demands that I satisfies (I2), (EP), 
(OP) and is right-continuous with respect to the second variable. In this case, AI is a 
t-norm.

	 iii.	 The above result shows that all right-continuous with respect to the second vari-
able fuzzy implications (including well-known R-, S- and QL-implications, f- and 
g-implications, probabilistic implications, probabilistic S-implications, etc.) can be 
obtained as R-implications induced by aggregation functions.
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4 � A‑compositional rule of inference satisfying GMP rules

4.1 � A‑compositional rule of inference with aggregation function

In this subsection, we study the composition rule of inference method based on the aggre-
gation function A satisfying GMP rules.

Definition 4.1  Let R and S be two fuzzy relations on U × V  and V ×W , respectively. A 
sup−A composition of the fuzzy relations S and R is defined as a relation S◦AR on U ×W 
in the following:

Based on it, the ACRI methods for FMP and FMT problems can be developed as follows:

where A is an aggregation function and I a fuzzy implication.
Next, we shall look for the aggregation functions which the ACRI methods for FMP and 

FMT problems satisfy GMP rules for an arbitrary fixed fuzzy implication I.

Theorem 4.2  Let I be a fuzzy implication and f (y) = I(1, y) a strictly increasing function 
on [0, 1]. Then there exists an aggregation function AI defined as Eq.(6) such that the fol-
lowing statements of ACRI hold: 

	 i.	 ACRI satisfies (GMP1) if D′ is normal;
      ii.   ACRI satisfies (GMP2);
      iii.  ACRI satisfies (GMP3) if DC is normal;
      iv.   ACRI satisfies (GMP4) if D is normal.

Proof  We only consider the ACRI method for FMP. The ACRI for FMT can be considered 
similarly. 

	 i.	 Since D′ is normal, there exists x0 ∈ U  such that D�(x0) = 1 . And then 
B�(y) =

⋁
x∈U

AI(D
�(x), I(D(x),B(y))) ≥ AI(D

�(x0), I(D(x0),B(y))) ≥ AI(1, I(1,B(y))) = 

inf{z ∈ [0, 1]|I(1, z) ≥ I(1,B(y))} = B(y) holds, where we use the strict increase of 
f (y) = I(1, y).

	 ii.	 By Lemma 3.3, we can immediately get the fact that ACRI satisfies (GMP2).
	 iii.	 Since DC is normal, there exists x0 such that DC(x0) = 1 . This implies 

B�(y) =
⋁
x∈U

AI(D
C(x), I(D(x),B(y))) ≥ AI(D

C(x0), I(D(x0),B(y))) = AI(1, I(0,B(y))) = 

AI(1, 1) = 1.

(7)(S◦AR)(x, z) = sup
y∈V

A(S(x, y),R(y, z)).

(8)B�(y) =
⋁

x∈U

A(D�(x), I(D(x),B(y))),

(9)D�(x) =
⋁

y∈V

A(B�(y), I(D(x),B(y))),
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	 iv.	 Let D� = D . This means B�(y) =
⋁
x∈U

AI(D(x), I(D(x),B(y))) . Since D is normal, we 

have B(y) = AI(1, I(1,B(y))) ≤
⋁
x∈U

AI(D(x), I(D(x),B(y))) ≤ B(y) . Thus, B = B�.

	�  ◻

Corollary 4.3  Let I be an (A, N)-implication and f (y) = A(0, y) a strictly increasing func-
tion on [0, 1]. Then there exists an aggregation function AI defined as Eq.(6) such that the 
following statements of ACRI hold: 

	 i.	 ACRI satisfies (GMP1) if D′ is normal;
      ii.   ACRI satisfies (GMP2);
      iii.  ACRI satisfies (GMP3) if DC is normal;
      iv.   ACRI satisfies (GMP4) if D is normal.

Proof  For an (A, N)-implication, we have f (y) = I(1, y) = A(0, y) . Then the results can be 
proved similarly. 	�  ◻

Remark 4  As showed in Pradera et  al. (2016), all fuzzy implications can be obtained as 
(A, N)-implications. This means that we can construct ACRI method using the aggregation 
function A according to Corollary 4.3.

Similarly, we can verify the following results.

Corollary 4.4  Let I be an f-implication or g-implication. Then there exists an aggregation 
function AI defined as Eq.(6) such that the following statements of ACRI hold: 

	 i.	 ACRI satisfies (GMP1) if D′ is normal;
      ii.   ACRI satisfies (GMP2);
      iii.  ACRI satisfies (GMP3) if DC is normal;
      iv.   ACRI satisfies (GMP4) if D is normal.

Corollary 4.5  Let I be a probabilistic implication or probabilistic S-implication and 
f (y) = C(1, y) a strictly increasing function on [0,  1]. Then there exists an aggregation 
function AI defined as Eq.(6) such that the following statements of ACRI hold: 

	 i.	 ACRI satisfies (GMP1) if D′ is normal;
      ii.   ACRI satisfies (GMP2);
      iii.  ACRI satisfies (GMP3) if DC is normal;
      iv.   ACRI satisfies (GMP4) if D is normal.

In turn, we look for the fuzzy implications which the ACRI methods for FMP and 
FMT problems satisfy GMP rules for an arbitrary fixed aggregation function A.

Theorem 4.6  Let A be a left-continuous with respect to the second variable aggregation 
function. If A has a left neutral element 1 and satisfies Eq.(5). Then there exists a fuzzy 
implication IA defined as Eq.(3) such that the following statements of ACRI method based 
on A hold: 
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       i	     ACRI satisfies (GMP1) if D′ is normal;
       ii.   ACRI satisfies (GMP2);
       iii.  ACRI satisfies (GMP3) if DC is normal;
       iv.   ACRI satisfies (GMP4) if D is normal.

Proof  This result comes from Lemma 3.1. 	�  ◻

Theorem 4.7  Let A be a left-continuous with respect to the second variable aggregation 
function and I a fuzzy implication. If A has a left neutral element 1 and I satisfies (NP), 
then the ACRI based on A and I satisfies (GMP1)-(GMP4) if and only if I ≤ IA.

Proof  (⟹) Since the ACRI method satisfies GMP4, A(x, I(x, y)) ≤ y holds for any 
x, y ∈ [0, 1] . By Lemma 3.2, we obtain I(x, y) ≤ IA(x, y).

(⟸) Let us verify the ACRI method satisfies (GMP1)–(GMP4). 

	 i.	 Since D′ is normal, there exists x0 ∈ U  such that D�(x0) = 1 . And then 
B�(y) =

⋁
x∈U

A(D�(x), I(D(x),B(y))) ≥ A(D�(x0), I(D(x0),B(y))) ≥ AI(1, I(1,B(y)) = B(y) holds.

	 ii.	 Obviously, ACRI method satisfies (GMP2).
	 iii.	 Since DC is normal, there exists x0 such that DC(x0) = 1 . This implies 

B�(y) =
⋁
x∈U

A(DC(x), I(D(x),B(y))) ≥ A(DC(x0), I(D(x0),B(y))) = A(1, I(0,B(y))) ≥ AI(1, 1) = 1

.
	 iv.	 Let D� = D . In this case B�(y) =

⋁
x∈U

A(D(x), I(D(x),B(y))) . Since D is normal, we have 

B(y) = A(1, I(1,B(y))) ≤
⋁
x∈U

A(D(x), I(D(x),B(y))) ≤
⋁
x∈U

A(D(x), IA(D(x),B(y))) ≤ B(y) . Thus, 

B� = B.

	�  ◻

4.2 � Approximate reasoning in ACRI method with multiple fuzzy rules

We have studied ACRI method for a single fuzzy rule above. In practical applications, it needs 
to deal with approximate reasoning with multiple fuzzy rules. Therefore, this subsection 
extends the ACRI method in the case of multiple fuzzy rules involved. It is well known that 
IF-THEN rule base is the main parts of fuzzy system. And the fuzzy rule base of multiple-
input and single-output (MISO) fuzzy system consists of rules as follows:

where xi(i = 1, 2,⋯ ,m) and y are variables and Di
j
(j = 1, 2,⋯ , n) and Bj are specific lin-

guistic expressions expressing properties of values of xi and y, respectively.
Let Dj = D1

j
× D2

j
×⋯ × Dm

j
 and � = (x1, x2,⋯ , xm) . Then each fuzzy rule R j can be 

regarded as a fuzzy relation Rj with a membership function Rj(�, y) = Dj(�) → Bj(y) . Further, 
t-norms are employed to evaluate the ANDs in the fuzzy rules. In order to obtain the result of 
inference B′ from an input and fuzzy rules, we employ two schemes in general (Wang 1997). 
One is First Infer Then Aggregate (FITA). That is, for a given input D′ , we first compose D′ 
with each fuzzy rule to infer m individual B′

j
 . And then aggregate B′

j
 into the overall output 

B′
FITA

 . In this case, the output can be written as follows:

(10)Rj ∶ IF x1 is D
1
j
AND x2 is D

2
j
AND⋯ AND xm is Dm

j
THEN y is Bj,
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where A is an m-ary aggregation function.
The other is First Aggregate Then Infer (FATI). Concretely, the all fuzzy rules are 

aggregated into a single fuzzy relation, and then obtain the output by composing an input 
D′ with the single fuzzy relation. With this scheme, the output can be expressed as follows:

With the background as required in Zeng and Singh (1995), we assume that Di
j
 and Bj are 

normal, continuous, complete and consistent pseudo-trapezoid-shaped which often form a 
Ruspini partition in the fuzzy rule base as a form (10). This means that the fuzzy rules are 
complete and consistent.

Lemma 4.8  Assume that the number of fuzzy rules in (10) is greater than two. If the follow-
ing conditions satisfy: 

      i.	     the operator → is chosen as a t-norm in inference algorithms (11) and (12),
      ii.    0 is an annihilator of the aggregation functions A and A , then B�

FITA
= B�

FATI
≡ 0.

Proof  Since the fuzzy rules are complete and form a Ruspini parti-
tion, there exists j such that Dj(�0) = 0 for an arbitrary given input 
�0 ∈ Un . Therefore, we have B�

FITA
(y) = A(A(D�(�0), T(D1(�0),B1(y))), 

⋯ ,A(D�(�0), T(Dm(�0),Bm(y)))) = A(A(D�(�0), T(D1(�0), 
B1(y))),⋯ ,A(D�(�0), T(0,Bj(y))),⋯ ,A(D�(�0),T(Dm(�0),Bm(y)))) = 0.

Similarly, we can obtain B�
FATI

= 0 . 	�  ◻

Remark 5  This result shows that we cannot choose aggregation functions having annihila-
tor element 0 (Especially t-norms) to aggregate the inference results in Mamdani fuzzy 
system (Mamdani 1977).

We can similarly obtain the following result.

Lemma 4.9  Assume that the number of fuzzy rules in (10) is greater than two. If the follow-
ing conditions satisfy: 

	 i.	 the operator → is chosen as a fuzzy implication in inference algorithms (11) and (12),
      ii.   1 is an annihilator of the aggregation functions A and A , then B�

FITA
= B�

FATI
≡ 1.

Remark 6  This result shows that we cannot choose aggregation functions having annihila-
tor element 1 (Especially t-conorms) to aggregate the inference results in fuzzy logic con-
troller (Lee 1990; Li et al. 2002).

(11)B�
FITA

= A(D�
◦A(D1 → B1),⋯ ,D�

◦A(Dm → Bm)),

(12)B�
FATI

= D�
◦AA(D1 → B1,⋯ ,Dm → Bm).



5589Approximate reasoning with aggregation functions satisfying…

1 3

5 � Similarity‑based approximate reasoning with aggregation function

      In this section, we will extend the methods in Feng and Liu (2012); Li et al. (2016); 
Raha et  al. (2002) using an aggregation function. And then investigate the validity of 
ASBR method. Based on Definition 2.14, we say an inference scheme to solve the FMP 
and FMT problems satisfies

(GMP2′ ) S(B�,B) ≤ S(B��,B) if S(D�,D) ≤ S(D��,D).

Remark 7  Obviously, (GMP2′ ) describes the fact that B and B′ is more similar if D′ and D 
is more similar.

Now, we extend the methods in Feng and Liu (2012); Li et al. (2016); Raha et al. (2002) 
to obtain the conclusion B′ of FMP problem. Inspired by the ideas in Feng and Liu (2012); 
Raha et al. (2002), the following two modified conditional relations are considered to sat-
isfy (AX1)–(AX3) proposed in Raha et al. (2002):

where A is an aggregation function and I a fuzzy implication.
We further consider the following ways to construct the fuzzy relation R(D, B): 

Case1	� When R(D,B)(x, y) = A(D(x),B(y)) , where A is an aggregation function.
Case2	� When R(D,B)(x, y) = I(D(x),B(y)) , where I is a fuzzy implication.

Using sup-projection and inf-projection operations on R1(D,B|D�) and R2(D,B|D�) in 
case 1 and 2 respectively, we obtain

Lemma 5.1  Let A be an aggregation function and I a fuzzy implication. Suppose that D is 
normal. For all corresponding inferred conclusions B�

i
(i = 1, 2, 3, 4) , then we have 

	 i.	 If A has a left neutral element 1 and I satisfies (NP), then B ⊆ B′
1
;

      ii.   If I is right-continuous and satisfies (NP), then B ⊆ B′
2
;

      iii.  If A has a left neutral element 0, then B ⊆ B′
3
;

      iv.   If A is right-continuous and has a left neutral element 0, then B ⊆ B′
4
;

R1(D,B|D�)(x, y) = A(S(D,D�),R(D,B)(x, y)),

R2(D,B|D�)(x, y) = I(S(D,D�),R(D,B)(x, y)),

B�
1
(y) = sup

x∈U

I(S(D,D�),A(D(x),B(y))),

B�
2
(y) = inf

x∈U
I(S(D,D�), I(D(x),B(y))),

B�
3
(y) = sup

x∈U

A(S(D,D�),A(D(x),B(y))),

B�
4
(y) = inf

x∈U
A(S(D,D�), I(D(x),B(y))).
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Proof  i. Since D is normal, there exists x0 ∈ U such that D(x0) = 1 . Thus,
B�
1
(y) = sup

x∈U

I(S(D,D�),A(D(x),B(y))) ≥ I(S(D,D�),A(D(x0),B(y))) = I(S(D,D�),A(1,B(y)))

= I(S(D,D�),B(y)) ≥ I(1,B(y)) = B(y)
.

ii-iv can be proved similarly to i. 	�  ◻

Lemma 5.2  Let I be a right-continuous fuzzy implication satisfying (NP). Suppose that A 
has a left neutral element 1. If the inferred conclusion is determined by B′

1
 or B′

2
 , then the 

method satisfies (GMP2′).

Proof  Assume that D′,D′′ are two promises in FMP problem satisfying S(D,D�) ≤ S(D,D��) 
and B′,B′′ are their corresponding conclusions. Then we have 
B�
1
(y) = sup

x∈U

I(S(D,D�),A(D(x),

B(y))) ≥ sup
x∈U

I(S(D,D��),A(D(x),B(y))) = B��
1
(y) . By Lemma 5.1, B ⊆ B′′

1
⊆ B′

1
 holds. 

This implies S(B,B�
1
) ≤ S(B,B��

1
).

We can similarly obtain S(B,B�
2
) ≤ S(B,B��

2
) if S(D,D�) ≤ S(D,D��) . 	�  ◻

Lemma 5.3  Let A be an aggregation function and I a fuzzy implication. If the conclusion of 
FMP problem is B′

3
 or B′

4
 , then the method satisfies (GMP2).

Proof  This result comes from the monotonicity of aggregation function.
For two fuzzy sets D and D′ , it is reasonable to assume that the measure of similar-

ity is zero if and only if min(D(x),D�(x)) = 0 holds for all x ∈ U . Therefore, we suppose 
S(D,DC) = 0 in order to discuss whether the above method satisfies (GMP3). And then we 
have the following results. 	�  ◻

Lemma 5.4  If the inferred conclusion is determined by B′
1
 or B′

2
 , then the method satisfies 

(GMP3).

Proof  Obviously. 	�  ◻

Lemma 5.5  Let A have a neutral element 0. Suppose that D is normal. If the inferred con-
clusion is determined by B′

3
 , then the method satisfies (GMP3).

Proof  Since 0 is a neutral element of A, A(1, x) = 1 holds for any x ∈ [0, 1] . For any 
y ∈ [0, 1] , we have B�

3
(y) = sup

x∈U

A(S(D,D),A(D(x),B(y))) = sup
x∈U

A(1,A(D(x), B(y))) = 1 . 	

� ◻

Remark 8  However, it is difficult to ensure B′
4
 satisfying (GMP3).

Lemma 5.6  Let A have a left neutral element 1 and I satisfy (NP). Suppose that D is nor-
mal. If the inferred conclusion is determined by B′

1
 , then the method satisfies (GMP4).

Proof  Let D� = D . By the monotonicity of A and I, I(S(D,D),A(D(x),B(y))) = I(1,A(D(x), 
B(y))) = A(D(x),B(y)) ≤ A(1,B(y)) = B(y) holds for any x ∈ U . This means 
B�
1
(y) = sup

x∈U

I(S(D,D),A(D(x),B(y))) ≤ B(y) . According to Lemma 5.1, we have B = B�
1
 . 	

� ◻
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Lemma 5.7  Let I be right-continuous and satisfy (NP). Suppose that D is normal. If the 
inferred conclusion is determined by B′

2
 , then the method satisfies (GMP4).

Proof  This proof is similar to that of Lemma 5.6. 	�  ◻

Lemma 5.8  Let A have a left neutral element 1. Suppose that D is normal. If the inferred 
conclusion is determined by B′

3
 , then the method satisfies (GMP4).

Proof  This proof is similar to that of Lemma 5.6. 	�  ◻

Lemma 5.9  Let A be right-continuous and have a left neutral element 1. Suppose that D is 
normal. If the inferred conclusion is determined by B′

4
 , then the method satisfies (GMP4).

Proof  This proof is similar to that of Lemma 5.6. 	�  ◻

6 � Quintuple implications principle method of fuzzy inference 
with aggregation function

This section will consider the AQIP method and its validity. Based on Lemma 2.15, we 
always suppose that the fuzzy implication is right-continuous with respect to the second 
variable in the rest of this paper.

Theorem 6.1  Let I be a right-continuous with respect to the second variable fuzzy implica-
tion. If I satisfies the condition I(1, y) < 1 for all y ∈ [0, 1) . Then the QIP solutions of FMP 
and FMT are as follows:

where AI is an associative aggregation function defined as Eq.(6).

Proof  We only prove the QIP solution for FMP. The proof of FMT is similar. Since I is 
right-continuous with respect to the second variable, the QIP solutions of FMP is unique 
by Lemma 2.15. Let B′ be defined as in Eq.(13). We firstly can verify that B′ can ensure 
that Eq.(1) takes its maximum 1. The right-continuous with respect to the second variable 
of I implies that AI defined in Eq.(6) and I satisfy (RP*) by Lemma 3.2. Then we have 
I(I(D(x),B(y)), I(I(D�(x),D(x)), I(D�(x),B�(y)))) = I(I(D(x),B(y)), I(I(D�(x),D(x)), I(D�(x),

sup
x∈U

AI(AI(D
�(x),AI(I(D

�(x),D(x)), I(D(x),B(y)))), 1)))) ≥ 1 ⇔ AI(I(D(x),B(y)), 1) ≤

I(I(D�(x),D(x)), I(D�(x), sup
x∈U

AI(AI(D
�(x),AI(I(D

�(x),D(x)), I(D(x),B(y)))), 1))) ⇔ AI(I

(D�(x),D(x)),AI(I(D(x),B(y)), 1)) ≤ I(D�(x), sup
x∈U

AI(AI(D
�(x),AI(I(D

�(x),D(x)), I(D(x),

B(y)))), 1) ⇔ AI(AI(D
�(x),AI(I(D

�(x),D(x)), I(D(x),B(y)))), 1) ≤ sup
x∈U

AI(AI(D
�(x),AI(I(

D’(x), D(x)), I(D(x), B(y)))), 1)

.

(13)B�(y) = sup
x∈U

AI(AI(D
�(x),AI(I(D

�(x),D(x)), I(D(x),B(y)))), 1),

(14)D�(x) = sup
y∈V

AI(AI(D(x),AI(I(D(x),B(y)), I(B(y),B
�(y)))), 1),
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On the other hand, suppose that C is an arbitrary fuzzy subset on V such that 
I(I(D(x), B(y)),  I(I(D�(x),D(x)), I(D�(x),C(y)))) ≡ 1 holds for any x ∈ V  and y ∈ U . Since 
AI and I satisfy (RP*), then

For B′ defined as in Eq.(13), this means that B�(y) ≤ C(y) holds for all x ∈ U and y ∈ V .
The following example shows that QIP method for FMP does not satisfy (GMP1). 	

� ◻

Example 6.2  Let D = 1∕x1 + 0.2∕x2 + 0.5∕x3 , B = 0.5∕y4 + 1∕y5 and D� = 0.5∕x2 + 1∕x3+ 

0.2∕x4 . If I is chosen Goguen implication, that is, I(x, y) =
{ y

x
∧ 1 x > 0

1 x = 0
 , then we have

B�(y5) = 0.5 < 1 = B(y5).

Lemma 6.3  Let I satisfy (NP) and (OP). For the solution of QIP method, then we have 
B′ ⊆ B.

Proof  We can assert that AI defined as Eq.(6) is commutative and associa-
tive similarly to Theorem  2.5.15 in Baczyński and Jayaram (2008). Therefore, 
AI(D

�(x),AI(I(D
�(x),D(x)), I(D(x),B(y)))) ≤ AI(D(x), I(D(x), B(y))) ≤ B(y) holds. This 

implies that B′ ⊆ B . 	�  ◻

Lemma 6.4  Let I satisfy (NP), (OP) and the equation AI(x, I(x, y)) = x ∧ y for any 
x, y ∈ [0, 1] . Then the solution of QIP method for FMP satisfies (GMP2).

Proof  Obviously.
The following example shows that QIP method for FMP does not satisfy (GMP3). 	

� ◻

Example 6.5  Let D = 1∕x1 + 0.2∕x2 + 0.5∕x3 and B = 0.5∕y4 + 1∕y5 . We can compute 
DC = 0.8∕x2 + 0.5∕x3 + 1∕x4 + 1∕x5 . If I is chosen Goguen

implication, then we get B�(y1) = 0 < 1.

Lemma 6.6  Let I satisfy (NP) and (IP). If D is normal, then the QIP method for FMP satis-
fies (GMP4).

Proof  Let D� = D . We have I(D(x),D(x)) = 1 for all x ∈ U . It is not difficult to see that I(I(
D(x), B(y)), I(I(D(x), D(x)), I(D(x),  B(y)))) = 1 holds for all x ∈ U and y ∈ V  . According 
to quintuple implication principle for FMP, we have B�(y) ≤ B(y) . Since I satisfies (NP) and 
(IP), AI(1, x) = AI(x, 1) = x holds for all x ∈ [0, 1] by Theorem 3.4. Considering that D is 

I(I(D(x),B(y)), I(I(D�(x),D(x)), I(D�(x),C(y)))) ≡ 1

⟺ AI(I(D(x),B(y)), 1) ≤ I(I(D�(x),D(x)), I(D�(x),C(y)))

⟺ AI(I(D
�(x),D(x)),AI(I(D(x),B(y)), 1)) ≤ I(D�(x),C(y))

⟺ AI(D
�(x),AI(I(D

�(x),D(x)),AI(I(D(x),B(y)), 1))) ≤ C(y).
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normal, there exists x0 ∈ U such that D(x0) = 1 . This means 
B�(y) = sup

x∈U

AI(AI(D(x),AI(I(D(x),D(x)),

I(D(x),B(y)))), 1) ≥ AI(AI(1,AI(I(1, 1), I(1,B(y)))), 1) = B(y) . Thus, B� = B . 	�  ◻

7 � Discussion on three approximate reasoning methods

In this section, we always assume that both D′ and DC are normal. For convenience, let 
ASBRi(i = 1, 2, 3, 4) denote the ASBR method to obtain B�

i
(i = 1, 2, 3, 4) in Section  5. 

From the above discussion, we can list together the three approximate reasoning methods 
and the GMP rules by which they satisfy as shown in Table  1. Notice that the satisfac-
tion (dissatisfaction, respectively) of GMP rule is denoted by a 

√
 ( × , respectively) in the 

column.
Clearly, it depends completely on the fuzzy implication and aggregation function 

whether the three approximate reasoning methods satisfy the GMP rules. Especially, the 
more properties of fuzzy implication and aggregation function are required in order to sat-
isfy the GMP rules in the ASBR method and AQIP method. Therefore, it is not difficult to 
see that the ACRI methods should be a top priority of approximate reasoning according to 
the GMP rules. However, notice that the ASBR method and AQIP method can effectively 
overcome the deficiency of ACRI method (Li and Qin 2018; Raha et  al. 2002; Turksen 
and Zhong 1988; Zhou et al. 2015). This implies that other properties (such as robustness, 
universal approximation capability etc.) should be utilized to measure the validity of afore-
mentioned three approximate reasoning methods.

Since the FMT is an extension of MT, as mentioned by Trillas et al. (2004), it is not 
trivial to further verify that whether the three approximate reasoning methods satisfy the 
following GMP rule:

(GMP5)   If D� = BC , then B� = DC.
Moreover, it is reasonable to involve some linguistic modifiers, such as very or little, 

in Premise 2 and conclusions of FMP and FMT problems. Therefore, we need to consider 
another GMP rule as follows.

(GMP6)   If D� = m(D) , then B� = m(B) , where m is a modifier.

Table 1   three approximate 
reasoning methods and GMP 
rules

Approximate 
reasoning 
methods

(GMP1) (GMP2) (GMP2′) (GMP3) (GMP4)

ACRI method
√ √ √ √

ASBR1 method
√ √ √ √

ASBR2 method
√ √ √ √

ASBR3 method
√ √ √ √

ASBR4 method
√ √

×
√

AQIP method
√

× ×
√
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8 � Conclusions

Considering that the aggregation functions play a vital role in approximate reasoning and 
decision-making under imprecision or uncertainty, we firstly have utilized aggregation 
functions to construct three approximate reasoning methods. The validity of these three 
approximate reasoning methods with aggregation functions has been further investigated. 
In our study, we have 

(1)	 Analyzed some properties of fuzzy implication generated by an aggregation function,
(2)	 Given the ACRI method with aggregation function,
(3)	 Studied the similarity-based approximate reasoning with aggregation function,
(4)	 Investigated the QIP solutions of FMP and FMT problems with aggregation function,
(5)	 Discussed the validity of three approximate reasoning methods aforementioned, respec-

tively.

These results may act as a bridge between approximate reasoning and aggregation func-
tion. In the future, we wish to investigate the capability of fuzzy inference system based 
on these methods. We also will apply them in prediction problems and decision making in 
real-life situation.
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