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Abstract
This paper intends to exploit point operator-oriented likelihood measures to constitute a 
likelihood-based consensus ranking model aimed at conducting multiple criteria decision 
making encompassing complex uncertain evaluations with Pythagorean fuzzy sets. This 
paper takes advantage of Pythagorean fuzzy point operators and the scalar functions of 
upper and lower estimations to formulate a point operator-oriented likelihood measure for 
preference intensity. On this basis, this paper propounds the notion of penalty weights to 
characterize dominated relations for acquiring the measurement of comprehensive disa-
greement and constituting a likelihood-based consensus ranking model. The primary con-
tributions of this study are fourfold. Firstly, two useful point operators are initiated for 
upper and lower estimations towards Pythagorean membership grades. Secondly, an effec-
tive likelihood measure is exploited for determining outranking relations of Pythagorean 
fuzzy information. Thirdly, a pragmatic concept of penalty weights is proposed for char-
acterizing the dominated relations among alternatives and measuring degrees of compre-
hensive disagreement. Fourthly, a functional likelihood-based consensus ranking model is 
constructed for implementing a multiple criteria evaluation with Pythagorean fuzzy uncer-
tainty. Furthermore, a real-life application relating to a financing problem is presented 
to provide a justification for the practicability of the proposed methodology. This paper 
executes an analysis of parameters sensitivity and comparative studies for showing more 
theoretical insights.
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1  Introduction

Multiple criteria decision analysis (MCDA) predominantly concentrates on a prior-
itizing problem where the decision maker aspires to determine the preference ranking 
concerning candidate choice options from the most advantageous to the most disad-
vantageous on grounds of multiple evaluative criteria (Farrokhizadeh et  al. 2021; Fei 
and Feng 2021; Wang and Chen 2020). Various MCDA methods and techniques have 
been developed successfully in a wide-ranging fashion, and thus, they provide a fre-
quently used tool for tackling human cognitive and decision-making activities (Chen 
2021; Farid and Riaz 2021; Tsao and Chen 2021). Nonetheless, decision makers are 
faced with increasingly convoluted circumstances because of fierce market competition, 
changeable socioeconomic environments, almost real-time response speed, insufficient 
expertise and knowledge, huge hybrid data, and burden of information overload (Farid 
and Riaz 2021; Oztaysi et al. 2021; Phillips-Wren et al. 2006). Accordingly, uncertainty 
and vagueness are frequently encountered in real-world decision circumstances, making 
it more challenging to decision-making works (Jan et al. 2021; Li et al. 2021; Tang et al. 
2020; Wan et al. 2020; Zhang et al. 2021). Making allowance for such difficulties, theo-
retical modeling and manipulation of highly intricate uncertainties in MCDA techniques 
are crucial to manage real-world decision-making affairs in the modern scientific age 
(Farid and Riaz 2021; Iampan et al. 2021).

The sets of intuitionistic fuzziness and Pythagorean fuzziness play a particularly 
important role in computational intelligence, neural network, machine learning, and 
artificial intelligence (Farhadinia 2021; Farid and Riaz 2021; Iampan et al. 2021). For 
convenience, let the notations μ and ν symbolize a membership grade and a nonmem-
bership grade, respectively, in the unit interval [0, 1] throughout this paper. In decision-
making practices, decision makers can employ the membership grade μ to deliver their 
subjective appraisal outcome to which an alternative satisfies a specific criterion; on the 
flip side, the nonmembership grade ν can be utilized to convey the subjective appraisal 
outcome to which an alternative does not satisfy a specific criterion (Tsao and Chen 
2021; Wang and Chen 2020). Atanassov (1986) initiated a general notion of intuition-
istic fuzzy sets that are symbolized through μ and ν fulfilling the prerequisite μ + ν ≤ 1. 
Pythagorean fuzzy (PF) sets, initially propounded by Yager (2013), are expounded as 
a generalized configuration of intuitionistic fuzzy sets (Jan et al. 2021; Siddique et al. 
2021; Zhou and Chen 2021). In a more general way, PF sets are characterized by μ and ν 
that meet the prerequisite μ2 + ν2 ≤ 1. The main difference between the two prerequisites 
is a much broader space possessed by PF sets, which brings about an appealing capabil-
ity of modelling more uncertainties (Garg 2021; Siddique et al. 2021; Wang and Chen 
2020). Moreover, PF sets enjoy greater flexibility in accommodating highly complicated 
ambiguous and equivocal information (Munir et al. 2021; Peng and Luo 2021; Tsao and 
Chen 2021). Figure 1 portrays a geometrical comparison of the intuitionistic fuzzy and 
PF configurations. As sketched in this figure, the space of a Pythagorean membership 
grade is evidently broader than the space of an intuitionistic membership grade. As an 
illustration, suppose that the grade to which an alternative satisfies a criterion is 0.8, 
while the grade to which this alternative dissatisfies such a criterion is 0.4. Because 
0.8 + 0.5 = 1.3 > 1, this example cannot be expounded by use of the intuitionistic fuzzy 
theory. On the contrary, this difficulty can be overcome effectually using the PF the-
ory for the cause that 0.82 + 0.52 = 0.89 ≤ 1. Obviously, PF sets possess a more pow-
erful ability than intuitionistic fuzzy sets in terms of modeling uncertain information 
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in empirical MCDA affairs. In consideration of the aforesaid advantages enjoyed by 
PF sets, this study strives to exploit the PF theory to manage equivocal and nebulous 
assessments in realistic decision situations.

Academics have perceived the PF theory as a forceful tool to support intelligent deci-
sion-making processes under intricate uncertainties (Munir et  al. 2021; Peng and Luo 
2021; Siddique et al. 2021; Tsao and Chen 2021). The evolution and enrichment in the 
PF theory have become very active in realistic MCDA fields because the PF configura-
tion can manage inexact and vague information more effectively and efficiently. There 
have been technological developments in PF MCDA approaches that facilitate decision-
making activities in diverse practical areas such as multiple criteria analysis (Akram 
and Shahzadi 2021; Chen 2021; Siddique et al. 2021), group decision making (Biswas 
and Sarkar 2018, 2019; Garg 2021; Wan et al. 2020; Wang and Chen 2020), clustering 
analysis (Xian and Cheng 2021), risk assessment and evaluation (Akram et  al. 2021; 
Rodriguez 2021; Zhao et al. 2021), medical diagnosis (Sun et al. 2021), investment pro-
ject and strategy (Li et al. 2021; Riaz et al. 2021), and waste disposal location selection 
(Oztaysi et al. 2021).

However, there are some motivational considerations that are needed to be resolved 
in the existing literature. The motivations for this study are threefold: (1) the necessity 
of using PF point operators for measuring dominance relationships, (2) the inappropri-
ate or unjustifiable delineations of current PF likelihood measures, and (3) the lack of 
developing the consensus ranking methodology in PF circumstances. Firstly, the uncer-
tainty in conjunction with PF sets can be lessened under the influence of some recently 
propounded point operators, such as PF point operators in Biswas and Sarkar (2018), 
Chen (2021), Peng and Yuan (2016), Wan et al. (2020), Zhou and Chen (2021), and Zhu 
et al. (2018), on Pythagorean membership grades. Previous studies have made progress 
towards averaging operators and aggregation operations for PF sets through the utility 
of PF point operators (Biswas and Sarkar 2018; Peng and Yuan 2016; Wan et al. 2020; 
Zhu et al. 2018). However, few studies have hitherto concentrated on the usage of PF 
point operators to ascertain dominance relationships to render rankings of PF evaluation 
values by predominance, which creates the first research motivation.

Secondly, there was considerable diversity in current PF MCDA methods and tech-
niques; but the likelihood measures for a comparison between Pythagorean member-
ship grades have been limited investigated (Fei et  al. 2019; Garg 2018). Garg (2018) 
exploited a likelihood measure that was elucidated in ordinary interval numbers, not in 
the PF context. Fei et al. (2019) put forward a soft likelihood function that aimed to set 

Fig. 1   A geometrical contrast of 
intuitionistic fuzzy and PF sets
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forth an aggregation operation, not to determine the likelihood of PF preference rela-
tions. Liang et al. (2020) took advantage of a uniform distribution to randomly choose 
the approval and disapproval for allocating the indeterminacy part to the belonging-
ness portion and the non-belongingness portion, respectively. However, the designation 
of uniform distribution-based likelihood suffered from certain limitations, such as the 
appositeness of probability density functions and implemented complexity in distinct 
surroundings. Tsao and Chen (2021) employed a beta distribution to delineate a fresh 
PF likelihood function. By the same token, their assumption about the probability den-
sity function of beta distributions was justified difficultly. As a matter of course, the 
aforesaid considerations establish the second motivation for performing this study.

The third motivation concerns the necessity of developing an appropriate consensus 
ranking model within PF environments. The consensus ranking techniques are simple and 
easy-to-understand models for solving ordinal consensus ranking problems (Beck and Lin 
1983; Cook and Kress 1985). By measuring the distance between two ranking orders, the 
consensus ranking method is sufficiently competent for handling the issue by merging vari-
ous rankings into one overall ranking in a computationally simple manner (Chen 2018a; 
Tavana et al. 2007). Giving consideration to the effectiveness and user-friendliness of the 
consensus ranking method, it is practicable and favorable to utilize relevant consensus 
ranking techniques for tackling decision-making activities with multiple criteria (Yu et al. 
2021; Zhang et al. 2020; Zhang et al. 2021). The consensus ranking methodology has been 
used for the determination of consensus ranking from various individual rankings, such as 
a consensus ranking technique (Teng and Tzeng 1994), an ideal-seeking consensus ranking 
approach (Tavana et al. 2007), a weighted sum-based ordinal consensus ranking approach 
(Tavana et  al. 2008), a consensus ranking model predicated on a mixed choice strategy 
(Chen 2018a), and a three-stage distance-based consensus ranking procedure (Aghayi and 
Tavana 2019). However, except Chen (2018a), the previous consensus ranking methods 
cannot manipulate PF information and process MCDA tasks in PF settings. The enrich-
ment of the consensus ranking methodology within PF environments has been encouraging 
enough to merit further investigation. This topic highlights the third motivation for per-
forming this research.

The research objective of this study is to set forth a point operator-oriented likelihood 
measure and formulate a likelihood-based consensus ranking model for effectively manag-
ing an MCDA problem containing complex uncertain information developed on PF sets. 
In contrast to existing PF point operators, this paper initiates two easy-to-use point opera-
tors to conveniently transmute uncertain PF information into another adapted outcome for 
the construction of rational upper and lower estimations in PF contexts. In particular, the 
use of allocation parameters can facilitate the ascertainment of rational expectations in an 
optimistic or pessimistic attitude. For example, the PF point operator with optimism exerts 
an effective influence over positive (or favorable) perceptions and outcome expectations, 
which leads to rational upper estimations of PF information. In contrast, the PF point oper-
ator with pessimism exerts potent influence over negative (or unfavorable) perceptions and 
outcome expectations, which yields rational lower estimations about PF information.

Instead of the existing approach in accordance with probability distributions, this paper 
makes use of scalar functions to advocate a beneficial PF likelihood measure through the 
medium of the upper and lower estimations towards Pythagorean membership grades under 
PF surroundings. Regarding the strength of the favorable and advantageous properties, the 
point operator-oriented likelihood measure can be used to appraise the possibility of an 
outranking relation separating two PF evaluative ratings in decision contexts involving 
Pythagorean fuzziness. Using the new PF likelihood measure, this paper proposes a useful 
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concept of penalty weights as a substantial basis to ascertain measurements of comprehen-
sive disagreement. Specifically, these penalty weights can facilitate the identification of an 
overall predominate ranking of an alternative over all others with respect to each criterion. 
By integrating penalty weights and PF importance weights, this paper develops advanta-
geous measures of comprehensive disagreement indicators and indices to establish a PF 
likelihood-based consensus ranking model. This consensus ranking model is represented 
by the agency of a zero–one linear programming format that is straightforward and simple 
to implement.

To scrutinize the appropriateness and achievability of the initiated methodology, this 
paper investigates a down-to-earth application relating to a financing problem involving 
working capital policies. In addition, this paper conducts comparison studies that consist 
of an effectiveness analysis, two sensitivity studies, and a comparative study to highlight 
beneficial theoretical insights contained in the proposed methods. Specifically, this paper 
executes an effectiveness analysis to describe the application results through the agency of 
the degrees of appropriateness. Furthermore, this paper performs two sensitivity analyses 
and scrutinizes the effects of diverse settings concerning the allocation parameters. Also, 
this paper administers a comparative study with other well-developed decision-making 
techniques to corroborate the usefulness and strengths of the evolved PF likelihood-based 
consensus ranking method.

Consider the practical motivation and implications linked to artificial intelligence in this 
paper. Although numerous MCDA models and techniques have been investigated compre-
hensively for promoting an intelligent decision support system in the past few years, few, if 
any, researches have manipulated a likelihood-based architecture of the consensus ranking 
methodology for the manipulation of decision information involving Pythagorean fuzzi-
ness. Traditional consensus ranking methods have often been conducted within the deci-
sion environment on the basis of precise information. To handle ambiguity and vagueness 
in MCDA processes, the consensus ranking methodology has been extended to uncertain 
conditions, such as Yu et  al. (2021), Zhang et  al. (2020), and Zhang et  al. (2021). Pre-
vious research has demonstrated the potential of the consensus ranking model in fuzzy 
circumstances. However, the specific advancement of the consensus ranking model in the 
PF framework has not been explored, and rare studies have exclusively devoted effort to 
such issues in an intelligent decision support system. Considering needs on an appropri-
ate consensus ranking methodology for decision informatics, this paper intends to make 
an effort at establishing an evolved likelihood-based consensus ranking model predicated 
on Pythagorean fuzziness. By developing a point operator-oriented likelihood measure 
and some relevant useful notions, this paper advances the systematic thinking of smart 
and intelligent decision making in PF uncertain circumstances. More importantly, the pro-
pounded model and techniques are expected to create grounds for intelligent decision sup-
port in business and management. The potential usefulness of the propounded methodol-
ogy can be anticipated in the realm of artificial intelligence, including the enrichment of an 
intelligent decision support system and the construction of a sophisticated decision-aiding 
tool under unpredictable and highly uncertain conditions.

The remainder of this research is arranged along these lines. Section  2 reviews the 
relevant works concerning MCDA methods in PF decision contexts and identifies some 
research gaps. Section  3 exhibits essential notions about PF sets to provide an essential 
foundation. Section 4 first highlights the theoretical bases of the proposed methodology; 
next, it initiates two new PF point operators to exploit the upper and lower estimations of 
PF information and critically examines several helpful and appealing properties. Section 5 
constructs an effective PF likelihood measure and reveals an ingenious likelihood-based 
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consensus ranking model for tackling MCDA tasks involving Pythagorean fuzziness. Sec-
tion  6 presents an investigation of evaluating financing policies for working capitals to 
demonstrate the propounded algorithmic procedure. Also, sensitivity analyses and com-
parisons are put into practice to justify the effectuality and major strengths of the initi-
ated methodology. At last, Sect. 7 provides a conclusion and several prospective research 
suggestions.

2 � Relevant literature and research gaps

PF sets, as a generalized format of intuitionistic fuzzy sets, have the clear ability to accom-
modate imprecise and equivocal information during human decision-making processes. 
PF sets provide forceful tools necessary to address the ambiguity and vagueness that arise 
in realistic and pragmatic situations and guide the multiple criteria evaluation procedure 
from conception through completion (Munir et al. 2021; Peng and Luo 2021; Wang and 
Chen 2020). Accordingly, the theory of PF sets is becoming widespread in the MCDA 
field, and many studies have been launched to develop systematically quantitative methods 
and procedures and provide decision-aiding assistance in PF decision contexts (Akram and 
Shahzadi 2021; Akram et al. 2021; Fei and Feng 2021; Garg 2021; Riaz et al. 2021; Zhao 
et al. 2021).

PF sets have been broadly employed in diverse MCDA problems in actual decision 
situations. Moreover, the methods and applications of exploiting PF sets to investigate 
MCDA issues have also received widespread attention. By way of illustration, Deng et al. 
(2021) investigated Muirhead mean operators in the context of 2-tuple linguistic PF infor-
mation for decision support with multiple criteria analysis. Farhadinia (2021) advanced 
several diverse types of PF similarity measures and put forward a PF similarity-based 
MCDA technique. Garg (2021) brought forward sine trigonometric operational laws and 
then developed the PF aggregation operators for treating group decision-making matters. 
Oztaysi et al. (2021) propounded a PF regime method to appraise qualitative evaluations 
and then exploited it to solve the selection issue of waste disposal locations. Rodriguez 
(2021) propounded a risk-assessing method for decision making via an artificial-neuron-
like evaluation node predicated on PF contexts. Siddique et al. (2021) launched PF hyper-
soft weighted average and weighted geometric operators and established a useful MCDA 
method with PF hypersoft sets. Sun et al. (2021) exploited grey relational analyses to pose 
a group decision-making method of roughly approximating uncertainty information with 
PF sets in two multi-granular spaces of the universe. Tsao and Chen (2021) exploited a 
beta distribution to work out a PF likelihood function and brough forward a dominance 
ordering model aimed at processing MCDA tasks in PF circumstances. Xian and Cheng 
(2021) advanced a n-PF time series model by virtue of PF c-means and an evolved Markov 
prediction approach for better forecasting accuracy. Zulqarnain et al. (2021) explored PF 
soft information contained in MCDA problems to unfold PF soft interaction weighted aver-
age and weighted geometric operators.

Notably, point operators are beneficial and efficient tools that can be used to regulate the 
uncertainty of evaluation data by virtue of administrative parameters that depend on the 
decision maker’s attitude and thus lead to the acquisition of more comprehensive informa-
tion during the MCDA process (Chen 2021). Because existing fuzzy point operators are not 
available for adapting PF uncertain environments, several scholars have proposed appropri-
ate point operators to enable them conform to Pythagorean membership grades under PF 
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state of affairs. By way of explanation, Biswas and Sarkar (2018), Chen (2021), Peng and 
Yuan (2016), Wan et al. (2020), and Zhu et al. (2018), inspired by intuitionistic fuzzy point 
operators, proposed new point operators for PF sets. To resolve MCDA problems, Peng and 
Yuan (2016) brought forward certain point operators in PF settings and advanced PF point-
weighted averaging operators to regulate the degree of aggregated arguments by control-
ling the parameters. Biswas and Sarkar (2018) exploited PF point operators to reveal sev-
eral helpful similarity measures for PF sets and further defined new aggregation operators, 
i.e., PF‐dependent averaging operators and geometric operators, for conducting collective 
decision analysis. Zhu et al. (2018) employed PF point operators with the goal of diminish-
ing uncertainties in the evaluation data and enhancing the accuracy of the evaluated infor-
mation; they also combined the analytic hierarchy process (AHP) to launch a fresh AHP-
based MCDA technique. Wan et  al. (2020) devised two PF point operators to provide a 
representation about points in the space associated with a Pythagorean membership grade 
and then showed the relative distance along with reliability information to acquire a valu-
able order with respect to PF information. Further, Zhou and Chen (2021) employed Wan 
et al.’s PF point operators to stand for the decision maker’s risk preference that reveals an 
attitude about emerging science and technology. Chen (2021) made use of the notion of PF 
scalar functions to generalize dual point operators and applied them to formulate a fresh 
PF preference ranking organization method (PROMETHEE) for enriching evaluations and 
supporting decisions.

In addition to PF environments, Biswas and Sarkar (2019) and Peng and Yang (2016) 
promoted the growth of fuzzy point operators for use under interval-valued PF circum-
stances. Strictly speaking, Peng and Yang (2016) conceived of new point operators with 
interval-valued PF sets and generated weighted averaging operators with an interval‐val-
ued PF format that would regulate the grade of aggregated arguments. Biswas and Sarkar 
(2019) advanced beneficial similarity measures supported by point operators and interval-
valued PF sets and proposed an interactive MCDA method. As a recapitulation of PF sets, 
q-rung orthopair fuzzy sets possess great flexibility and adjustability due to the dynamic 
adaptability of changing information via parameter q (Peng and Luo 2021; Tang et  al. 
2020; Zeng et al. 2021). Xing et al. (2019) proposed new point operators concerning q-rung 
orthopair fuzzy numbers and procured a category of point-weighted aggregation operators 
with the goal of synthesizing uncertain information via q-rung orthopair fuzziness. In a 
general sense, the point operators appropriate for interval‐valued PF contexts or for q-rung 
orthopair fuzzy environments are particularly apposite compared to PF information.

On the flip side, the fundamental propositions and broad applicability of PF sets can be 
managed to convoluted and complex uncertainties involved in realistic decision informa-
tion. In particular, the likelihood measure differentiating between two Pythagorean mem-
bership grades can be exploited to facilitate paired comparisons for PF assessments and 
evaluations. Garg (2018) suggested new exponential operational laws along with the cor-
responding aggregation operators to tackle MCDA problems with interval-valued PF sets. 
Garg used the likelihood between two interval numbers for the construction of the possibil-
ity degree matrix, while this likelihood was available in ordinary interval numbers instead 
of Pythagorean membership grades. Fei et al. (2019) developed the soft likelihood function 
of PF sets to aggregate multiple pieces of probabilistic evidence. Basically, the soft likeli-
hood function belongs to a type of logical “anding” operation of criteria for a given alter-
native. Thus, Fei et al. proposed the notion of ordered weighted averaging soft likelihood 
functions for managing decision-making affairs. Nonetheless, their proposed soft likeli-
hood function was exploited to set up an aggregation method, not to assess the likelihood 
of PF preference relations between PF evaluation values. In contrast with the approaches of 
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Fei et al. (2019) and Garg (2018), Liang et al. (2020) studied the probability information of 
PF evaluation values and proposed a new likelihood measure for managing PF preference 
relations. They made a simplified assumption that Pythagorean membership grades gener-
ate an associated uniform distribution. Working on this assumption, the probability density 
that aligns with a uniform distribution was used to ascertain a likelihood measurement for 
PF evaluation values. Liang et al. formulated a generalized linear assignment method on 
the grounds of their proposed likelihood measure and partitioned fuzzy measures for find-
ing a solution to PF MCDA problems. Furthermore, Tsao and Chen (2021) utilized a sym-
metric beta distribution for ascertaining the possibilities of outranking/outranked relation-
ships about PF information and put forward a PF likelihood function for formulating the 
dominance ordering model. However, in the PF likelihood measure developed by Liang 
et  al. (2020) and the PF likelihood function by Tsao and Chen (2021), the assumptions 
concerning the probability density functions, i.e., uniform distribution or symmetric beta 
distribution, remain unsubstantiated in practice.

The foregoing discussions of the relevant literature can help identify three research 
gaps. Firstly, the uncertainty with respect to PF sets (or more generally, interval‐valued 
PF formats and the q-rung orthopair fuzzy framework) can be reduced under the influ-
ence of these newly developed point operators on Pythagorean membership grades. The PF 
point operators also demonstrate proficiency with the change in the degree of the aggre-
gated argument by virtue of certain administrative parameters. The emphasis of most pre-
vious studies has been incorporating PF point operators into any aggregation process for 
exploitation of new averaging operators in PF contexts, as illustrated in Biswas and Sarkar 
(2018), Peng and Yuan (2016), Wan et al. (2020) and Zhu et al. (2018). Thus, grounded in 
these previous studies, it is understood that PF point operators play key roles for modeling 
aggregation operations with respect to PF information. Nonetheless, the range of applica-
bility of PF point operators for decision support and exposure of influential information 
remains limited. So far, few researches have concerned the exploration of employing PF 
point operators in ascertaining dominance relationships for PF evaluation values. There-
fore, the necessity of using PF point operators for rendering rankings of PF evaluation val-
ues by predominance forms the first research gap.

Secondly, due to the sophistication and imprecision of PF information, ways to perform 
trustworthy paired comparisons for PF assessments and evaluations remain unclear. In par-
ticular, there was limited research on the possibility of comparing Pythagorean member-
ship grades using likelihood measures (Fei et al. 2019; Garg 2018). The likelihood measure 
adopted by Garg (2018) was delineated in ordinary interval numbers, not in PF settings. 
The soft likelihood function developed by Fei et  al. (2019) aimed to set up an aggrega-
tion approach, not to determine the likelihood of PF preference relations. Over and above 
that, the likelihood measure and the PF likelihood function launched by Liang et al. (2020) 
and Tsao and Chen (2021), respectively, were based on assumptions, not evidence. The 
assumptions concerning the probability density functions (i.e., uniform and beta distribu-
tions based on Liang et al.’s and Tsao and Chen’s proposals, respectively) remain unproven, 
which brings about the second research gap.

Thirdly, making allowance for the usefulness and user-friendliness of the consensus 
ranking method, it is more advantageous to use relevant consensus ranking techniques 
for coping with MCDA issues (Yu et  al. 2021; Zhang et  al. 2020; Zhang et  al. 2021). 
For example, Teng and Tzeng (1994) exploited a consensus ranking technique to gener-
ate an overall ranking due to minimum recognition differences among all decision mak-
ers. Tavana et al. (2007) built a useful ideal-seeking consensus ranking technique by use 
of hybrid distances for decision-aiding analysis. Considering the weights generated by a 
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sigmoid function, Tavana et al. (2008) developed a weighted sum-based ordinal consensus 
ranking approach for synthesizing individual rankings to yield a representative consensus 
ranking result. By determining an amalgamation of criterion-specific and category-based 
schemes, Chen (2018a) constructed a pragmatic consensus ranking technique with a mixed 
choice strategy to produce an overall ranking of competing alternatives under the uncer-
tainty of Pythagorean fuzziness. Aghayi and Tavana (2019) proposed a consensus rank-
ing method using three-stage distances in an attempt to yield group ranks of alternatives. 
However, relevant studies for the advancement and promotion of the consensus ranking 
methodology have not been investigated in detail. The existing consensus ranking models 
and techniques, excluding the mixed-choice-strategy-based approach developed by Chen 
(2018a), seem incapable of manipulating PF information and managing MCDA issues in 
PF circumstances. Thus, the extension or enrichment of PF sets in uncertain circumstances 
is inevitably necessary to theoretically develop and apply consensus ranking methodology, 
which gives rise to the third research gap.

From a conspectus of the need to resolve the three research gaps in relevant literature, 
this paper attempts to provide an effectual approach to surmount the previously described 
difficulties and limitations. In subsequent contents, this paper will propose an advanced 
methodology that is beneficial and possesses certain special points in theory and practice 
compared to existing techniques. This paper makes concrete features in theoretical models 
and relevant techniques, as shown:

(1)	 Given the effectiveness of likelihood measures and point operators, this paper would 
like to conceive the conception of a PF point operator-oriented likelihood measure 
with an eye towards a beneficial MCDA method within uncertain environments with 
Pythagorean fuzziness.

(2)	 Rather than using existing PF point operators and their corresponding averaging/
aggregation operations, this paper proposes two simple and straightforward PF point 
operators to generate upper and lower estimations for the rational determination of the 
appropriate measurements of dominant relationships within PF environments.

(3)	 Through fusing the notion of scalar functions, this paper puts forward a workable likeli-
hood measure using the proposed PF point operators. The initiated PF point operator-
oriented likelihood measure provides decision makers not only an estimate of rational 
upper and lower adapted outcomes for this likelihood but also the possibility of finding 
an outranking relation between PF evaluative ratings in uncertain PF circumstances.

(4)	 Most importantly, this paper advances a likelihood-based consensus ranking model for 
enriching the current consensus ranking methodology and addressing MCDA issues 
involving PF uncertainties.

3 � General background for PF sets

This section presents certain elementary notions concerning PF sets, including the charac-
terization parameters, Pythagorean membership grades, arithmetic operations, and scalar 
functions. PF theory was initially developed by Yager (2013). Following pioneering works 
(e.g., Yager 2013; Yager and Abbasov 2013), Chen (2019) put forward a comprehensive 
mathematical expression for depicting a PF set, as presented in the subsequent relevant 
definitions.
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Definition 1  (Chen 2019, Yager 2014) Let X signify a finite universe of discourse. To 
have established on X, a PF set P is an object possessing the subsequent representation:

which is delineated using the membership grade �P(x) ∶ X → [0, 1] , nonmembership grade 
�P(x) ∶X → [0, 1] , strength of commitment rP(x) ∶ X → [0, 1] , and the direction of commit-
ment dP(x) ∶X → [0, 1] of an element x ∈ X to P.

Definition 2  (Yager 2016; Yager and Abbasov 2013) In the matter of a PF set P defined 
in X, a Pythagorean membership grade p of an element x ∈ X affiliated with P is repre-
sented via four characterization parameters:

that is constrained by 0 ≤ (�P(x))
2 + (�P(x))

2 ≤ 1 . Moreover,

where �P(x) is indicated as radians in the interval [0,�∕2] . Furthermore, the strength and 
direction characterization parameters relative to p are given by:

Definition 3  (Chen 2018b, Yager 2014, 2016) The indeterminacy grade �P(x) ∶X → [0, 1] 
associated with p for each x ∈ X to P is derived in this way:

The relationship between �P(x) and rP(x) accommodates the property of duality:

Moreover, the standard complement corresponding to p is derived as shown:

Definition 4  (Yager 2013, 2014) On grounds of the Takagi–Sugeno approach grounded 
in fuzzy rule foundations, the scalar function V(p) ∈ [0, 1] of p is computed like this:

(1)P =
{⟨

x,
(
�P(x), �P(x);rP(x), dP(x)

)⟩|||x ∈ X
}
,

(2)p =
(
�P(x), �P(x);rP(x), dP(x)

)

(3)�P(x) = rP(x) ⋅ cos
(
�P(x)

)
,

(4)�P(x) = rP(x) ⋅ sin
(
�P(x)

)
,

(5)rP(x) =

√
(�P(x))

2 + (�P(x))
2,

(6)dP(x) =
� − 2 ⋅ �P(x)

�
.

(7)�P(x) =

√
1 − (�P(x))

2 − (�P(x))
2.

(8)(�P(x))
2 + (rP(x))

2 = 1.

(9)pc =
(
�Pc (x), �Pc (x);rPc (x), dPc (x)

)
=
(
�P(x),�P(x);rP(x), 1 − dP(x)

)
.

(10)V(p) =
1

2
+ rP(x) ⋅

(
dP(x) −

1

2

)
=

1

2
+ rP(x) ⋅

(
1

2
−

2 ⋅ �P(x)

�

)
.
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Definition 5  (Yager 2014, Yager and Abbasov 2013) Place two Pythagorean member-
ship grades p1 = (�P(x1), �P(x1);rP(x1), dP(x1)) and p2 = (�P(x2), �P(x2);rP(x2), dP(x2)) . 
Let ≻

Q
 delineate a natural quasi-ordering in PF contexts; herein, p1≻Q

p2 if and only if 
�P(x1) ≥ �P(x2) and �P(x1) ≤ �P(x2).

Definition 6  (Zhang and Xu 2014) Consider three Pythagorean membership grades p, p1, 
and p2 in P. Let p� = (�P(x), �P(x)) , p�1 = (�P(x1), �P(x1)) , and p�

2
= (�P(x2), �P(x2)) denote 

the two-dimensional representations of p, p1, and p2, respectively, for notational conveni-
ence. Let 𝜆 > 0 . Some arithmetic operations are given by:

4 � Theoretical highlights and PF point operators

This section first highlights and summarizes the theoretical basis about the evolved PF like-
lihood-based consensus ranking methodology. Next, this section unfolds the notions of PF 
point operators that are the solid foundation of the propounded techniques.

4.1 � Overview of the theoretical framework

The PF likelihood-based consensus ranking model is constructed on a solid foundation on 
theory and conceptions. Figure 2 manifests the theoretical bases of the propounded meth-
odology, involving the theoretical development processes of PF point operators, PF likeli-
hood measures, and the PF likelihood-based consensus ranking model.

As exhibited in this figure, on the subject of the theoretical bases of PF point operators, 
this study takes advantage of allocation parameters to reveal two functional PF point opera-
tors that can be used to rationally determine upper and lower estimations relating to Pythag-
orean membership grades. Several valuable properties, such as reformation outcomes of 
recurrent upper and lower estimations, are inspected in detail to validate the applicabil-
ity and significance towards new point operators. Next, give consideration to the theoreti-
cal bases of PF likelihood measures. This paper exploits the scalar functions of upper and 
lower estimations to formulate a point operator-oriented likelihood measure for determin-
ing the preference intensity. The proposed likelihood measure possesses certain beneficial 
and attractive properties, which facilitate the assertation of the possibility of an outranking 
relation. In what follows, consider the theoretical foundation of the PF likelihood-based 

(11)p�
1
⊕ p�

2
=

(√
(𝜇P(x1))

2 + (𝜇P(x2))
2 − (𝜇P(x1))

2 ⋅ (𝜇P(x2))
2, 𝜈P(x1) ⋅ 𝜈P(x2)

)
,

(12)p�
1
⊗ p�

2
=

(
𝜇P(x1) ⋅ 𝜇P(x2),

√
(𝜈P(x1))

2 + (𝜈P(x2))
2 − (𝜈P(x1))

2 ⋅ (𝜈P(x2))
2

)
,

(13)𝜆 ⊙ p� =

(√
1 −

(
1 − (𝜇P(x))

2
)𝜆
, (𝜈P(x))

𝜆

)
,

(14)p�� =

(
(�P(x))

�,

√
1 −

(
1 − (�P(x))

2
)�)

.
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consensus ranking model. To have established on the PF likelihood measure, this study 
delivers the idea of penalty weights for characterizing dominated relations and acquiring 
the measurement of comprehensive disagreement. Penalty weights can be used to iden-
tify an overall predominate ranking of an alternative for each criterion. By integrating the 

Fig. 2   Theoretical foundation of 
the PF likelihood-based consen-
sus ranking methodology
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concepts of penalty weights and PF importance weights, this paper propounds a compre-
hensive disagreement indicator and index for constituting a likelihood-based consensus 
ranking model. In the end, an efficient computational algorithm is launched to use the initi-
ated consensus ranking model aimed at resolving multiple-criteria evaluation issues on the 
grounds of Pythagorean fuzziness.

4.2 � Upper and lower estimations via PF point operators

This section develops two useful point operators to estimate the adapted outcomes of PF 
information and investigate several critical and attractive properties. The advocated PF 
point operators provide effective ways of transforming Pythagorean membership grades 
into other grades for the establishment of upper and lower estimations in PF contexts.

Different from Chen’s (2021) dual point operators, this study propounds two simple-
to-use PF point operators Mα in Definition 7 and Nβ in Definition 8 that can be utilized 
conveniently to regulate the uncertainty of evaluation data by dint of allocation parameters 
α and β. As mentioned by Definition 7, the PF point operator Mα embodies positive (or 
favorable) outcome expectations, which generates rational upper estimations. Conversely, 
as stated by Definition 8, the PF point operator Nβ embodies negative (or unfavorable) out-
come expectations, which produces rational lower estimations.

Definition 7  To have established on a finite universe of discourse X, place a PF set P 
= {⟨x, (�P(x), �P(x);rP(x), dP(x))⟩�x ∈ X} . Let � ∈ [0, 1] represent an allocation parameter. 
The PF point operator Mα of P is expressed by:

which is elucidated using a Pythagorean membership grade M�(p) like this:

where �M� (P)
(x) and �M� (P)

(x) are calculated on this wise:

Definition 8  To have established on X, place a PF set P 
= {⟨x, (�P(x), �P(x);rP(x), dP(x))⟩�x ∈ X} . Let � ∈ [0, 1] indicate an allocation parameter. 
The PF point operator Nβ of P is depicted like this:

it is elucidated by a Pythagorean membership grade N�(p) on this wise:

where �N� (P)
(x) and �N� (P)

(x) are calculated in such manner:

(15)M�(P) =
{⟨

x,
(
�M� (P)

(x), �M� (P)
(x);rM� (P)

(x), dM� (P)
(x)

)⟩|||x ∈ X
}
,

(16)M�(p) =
(
�M� (P)

(x), �M� (P)
(x);rM� (P)

(x), dM� (P)
(x)

)
,

(17)�M� (P)
(x) =

√
(�P(x))

2 + �(�P(x))
2,

(18)�M� (P)
(x) = �P(x).

(19)N�(P) =

{⟨
x,
(
�N� (P)

(x), �N� (P)
(x);rN� (P)

(x), dN� (P)
(x)

)⟩||||x ∈ X

}
;

(20)N�(p) =
(
�N� (P)

(x), �N� (P)
(x);rN� (P)

(x), dN� (P)
(x)

)
,
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From the basis in Definitions 7 and 8, using the proposed Mα and Nβ can facilitate the 
transformation of a PF set into another PF set to estimate the adaptational outcomes of 
Pythagorean membership grades. More importantly, these two PF point operators enjoy 
certain desirable features, as demonstrated in the upcoming theorem.

Theorem 1  Concerning an element x ∈ X affiliated with a PF set P, place a Pythagorean 
membership grade p = (�P(x), �P(x);rP(x), dP(x)) . By employing the PF point operators 
Mα and Nβ, the upper estimation M�(p) = (�M� (P)

(x), �M� (P)
(x);rM� (P)

(x), dM� (P)
(x)) and the 

lower estimation N�(p) = (�N� (P)
(x),�N� (P)

(x);rN� (P)
(x), dN� (P)

(x)) of p possess the subsequent 
properties:

	(T1.1)	 0 ≤ (�M� (P)
(x))2 + (�M� (P)

(x))2 ≤ 1 and 0 ≤ (�N� (P)
(x))2 + (�N� (P)

(x))2 ≤ 1;
	(T1.2)	 �N� (P)

(x) = �P(x) ≤ �M� (P)
(x) and �M� (P)

(x) = �P(x) ≤ �N� (P)
(x);

	(T1.3)	 M𝛼(p)≻Q
p≻

Q
N𝛽(p);

	(T1.4)	 max
{
�M� (P)

(x), �N� (P)
(x)

}
≤ �P(x) and min

{
rM� (P)

(x), rN� (P)
(x)

}
≥ rP(x);

	(T1.5)	 dN� (P)
(x) ≤ dP(x) ≤ dM� (P)

(x) and �M� (P)
(x) ≤ �P(x) ≤ �N� (P)

(x) ; and
	(T1.6)	 (M�(p

c))c = N�(p);
	(T1.7)	 (N�(p

c))c = M�(p).

Proof  See “Appendix A.1”.

If the decision maker performs multiple Mα operations on a Pythagorean membership 
grade p, the recurrent upper estimation corresponding to M�(p) can be generated, as pre-
cisely delineated in Definition 9. Moreover, the relevant properties of such a recurrent 
upper estimation are investigated in Theorem 2.

Definition 9  Consider the upper estimation M�(p) of p = (�P(x), �P(x);rP(x), dP(x)) , where 
� ∈ [0, 1] . Let η be a nonnegative integer. Denote M0

�
(p) = p and M�

�(p) = M
�
�(M

�−1
� (p)) . 

The recurrent upper estimation after η reformations is shown like this:

Theorem 2  Employing the PF point operator Mα on p after η reformations, the recurrent 
upper estimation M�

�(p) accommodates the succeeding properties:

	(T2.1)	 �M
�
� (P)

(x) =

�
(�P(x))

2 +
�
1 − (�P(x))

2
�
(1 − (1 − �)�) − �(�P(x))

2

�∑�−1

k=0
(1 − �)k

�
;

	(T2.2)	 �M�
� (P)

(x) = �P(x);
	(T2.3)	 r

M
�
� (P)

(x) =

�
(�P(x))

2 + (�P(x))
2 +

�
1 − (�P(x))

2
�
(1 − (1 − �)�) − �(�P(x))

2

�∑�−1

k=0
(1 − �)k

�
;

	(T2.4)	 M𝜂
𝛼(p)≻Q

M
𝜂−1
𝛼 (p);

(21)�N� (P)
(x) = �P(x),

(22)�N� (P)
(x) =

√
(�P(x))

2 + �(�P(x))
2.

(23)M�
�
(p) =

(
�M

�
� (P)

(x), �M�
� (P)

(x);rM�
� (P)

(x), dM�
� (P)

(x)
)
.
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	(T2.5)	 lim
�→∞

M
�
�(p) =

�√
1 − (�P(x))

2, �P(x);1,
�−2⋅sin−1(�P(x))

�

�
.

Proof  See “Appendix A.2”.

In an analogous way, when the decision maker performs multiple Nβ operations on p, 
the recurrent lower estimation in connection with N�(P) can be rendered, as manifested 
in Definition 10. Furthermore, the relevant properties of such a recurrent lower estima-
tion are explored in Theorem 3.

Definition 10  Consider the lower estimation N�(P) of p = (�P(x), �P(x);rP(x), dP(x)) , 
where � ∈ [0, 1] . Let η be a nonnegative integer. Denote N0

�
(p) = p and 

N
�

�
(p) = N

�

�
(N

�−1

�
(p)) . The recurrent lower estimation after η reformations is shown like 

this:

Theorem 3  Employing the PF point operator Nβ on p after η reformations, the recurrent 
lower estimation N�

�
(p) accommodates the following properties:

	(T3.1)	 �N
�

�
(P)(x) = �P(x);

	(T3.2)	 �N�

�
(P)(x) =

�
(�P(x))

2 +
�
1 − (�P(x))

2
�
(1 − (1 − �)�) − �(�P(x))

2

�∑�−1

k=0
(1 − �)k

�
;

	(T3.3)	 r
N

�

�
(P)(x) =

�
(�

P
(x))2 + (�

P
(x))2 +

�
1 − (�

P
(x))2

�
(1 − (1 − �)�) − �(�

P
(x))2

�∑�−1

k=0
(1 − �)k

�
;

	(T3.4)	 N𝜂−1

𝛽
(p)≻

Q
N

𝜂

𝛽
(p);

	(T3.5)	 lim�→∞ N
�

�
(p) =

�
�P(x),

√
1 − (�P(x))

2;1,
�
� − 2 ⋅ cos−1(�P(x))

��
�

�
.

Proof  The proofs of (T3.1) − (T3.5) are analogously to the proving process of Theorem 2.

This paper exploits two allocation parameters, α and β, to identify beneficial PF point 
operators Mα and Nβ, respectively, to determine the upper estimation M�(p) and lower 
estimation N�(p) of Pythagorean membership grade p. To enhance the understanding 
from a geometric perspective, Fig.  3 portrays a two-dimensional space representation 

(24)N
�

�
(p) =

(
�N

�

�
(P)(x), �N�

�
(P)(x);rN�

�
(P)(x), dN�

�
(P)(x)

)
.

Fig. 3   Two-dimensional space 
representations of the upper and 
lower estimations
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concerning the upper and lower estimations in PF contexts. The possible range of M�(p) 
is concisely described through the agency of a two-dimensional representation M�

�
(p) 

(i.e., by virtue of �M� (P)
(x) and �M� (P)

(x) ), where M�
�
(p)=

�√
(�P(x))

2 + �(�P(x))
2, �P(x)

�
 . 

The limit of the recurrent upper estimation M�
�(p) is shown by the representation 

lim�→∞ M
��
� (p) =

�√
1 − (�P(x))

2, �P(x)
�
 . Specifically, the membership grade �M� (P)

(x) of 
the upper estimation M�(p) is acquired from the square root of the sum of the squared 
membership grade (�P(x))

2 and part of the squared indeterminacy grade (�P(x))2 . In par-
ticular, the repeated use of the PF point operator Mα on p would yield the highest possi-
ble membership grade (i.e., 

√
1 − (�P(x))

2 =
√
(�P(x))

2 + (�P(x))
2 ) when the time to 

redistribute the indeterminacy grade is sufficiently large. The use of the PF point opera-
tor Mα encompasses positive (or favorable) perceptions and outcome expectations but 
does not deny negative (or unfavorable) outcomes by maintaining identical nonmember-
ship grades. Thus, the result of M�(p) represents the adapted outcome under rational 
expectation in an optimistic attitude about information on the decision environment. It 
is reasonable and desirable to use the PF point operator Mα to determine a rational upper 
estimation of PF information.

The possible range of N�(p) is briefly expressed using �N� (P)
(x) and �N� (P)

(x) , as dem-
onstrated in the two-dimensional representation N�

�
(p) in Fig.  3, in which N�

�
(p) =�

�P(x),
√
(�P(x))

2 + �(�P(x))
2

�
 . The limit of the recurrent lower estimation N�

�
(p) is 

exhibited with the aid of the representation lim�→∞ N
��

�
(p) =

�
�P(x),

√
1 − (�P(x))

2

�
 . 

The nonmembership grade �N� (P)
(x) of the lower estimation N�(p) is determined from the 

square root of the sum of the squared nonmembership grade (�P(x))2 and part of the 
squared indeterminacy grade (�P(x))2 . The repeated use of the PF point operator Nβ on p 
leads to the highest possible nonmembership grade, 

√
1 − (�P(x))

2=
√
(�P(x))

2 + (�P(x))
2 , 

when the time to redistribute the indeterminacy grade is sufficiently large. The employ-
ment of the PF point operator Nβ encompasses negative (or unfavorable) perceptions 
and outcome expectations but does not deny positive (or favorable) outcomes by main-
taining the same membership grades. Accordingly, the result of N�(p) expresses the 
adapted outcome under a rational expectation based on a pessimistic attitude about the 
information in the decision environment. It is appropriate to use the PF point operator 
Nβ to determine a rational lower estimation N�(p) for Pythagorean membership grades 
in the surroundings with PF sets.

5 � The PF likelihood‑based consensus ranking method

This section describes an uncertain decision-making problem via the agency of a PF rep-
resentation, develops a new likelihood measure for PF evaluation information, launches a 
workable PF likelihood-based consensus ranking model, and provides an effective algorith-
mic procedure for tackling MCDA problems in PF uncertain circumstances.

5.1 � Presentation of MCDA problems with PF sets

This subsection develops a configuration regarding an MCDA problem under uncertain 
circumstances predicated on PF sets. We construct an MCDA representation involving m 
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candidate alternatives and n evaluative criteria, where m, n ≥ 2 . Let A = {a1, a2,… , am} 
to state a discrete set of candidate alternatives; moreover, let C = {c1, c2,… , cn} describe a 
finite set of evaluative criteria.

Place a Pythagorean membership grade pij to signify the PF evaluative rating concern-
ing an alternative ai ∈ A (for i = 1, 2,… ,m ) relevant to criterion cj ∈ C (for j = 1, 2,… , n

):

with the prerequisite 0 ≤ (�ij)
2 + (�ij)

2 ≤ 1 , in which �ij = rij ⋅ cos(�ij) , �ij = rij ⋅ sin(�ij) , 
rij =

√
(�ij)

2 + (�ij)
2 , and dij = (� − 2 ⋅ �ij)

/
� for �ij ∈ [0,�∕2] . Herein, μij and νij represent 

the satisfaction grade and dissatisfaction grade, respectively, of ai in connection with cj 
derived from subjective appraisals and discernments. The indeterminacy grade with rele-
vance to the PF evaluative rating pij is produced by �ij =

√
1 − (�ij)

2 − (�ij)
2.

Let a PF set Pi delineate the PF characteristic for each ai ∈ A ; it is defined as a collec-
tion of all pij of ai over the n criteria:

The PF evaluation matrix P can be succinctly represented by collecting all PF character-
istics as follows:

Let a Pythagorean membership grade wj indicate the PF importance weight of criterion 
cj:

such that 0 ≤ (�j)
2 + (�j)

2 ≤ 1 for each j ∈ {1, 2,… , n} , in which �j = rw
j
⋅ cos(�w

j
) , �j =

rw
j
⋅ sin(�w

j
) , rw

j
=
√

(�j)
2 + (�j)

2 , and dw
j
= (� − 2 ⋅ �w

j
)
/
� for �w

j
∈ [0,�∕2] . The inde-

terminacy grade associated with each PF importance weight wj is derived as �w
j
=√

1 − (�j)
2 − (�j)

2 . The two-dimensional representation of wj is denoted as w�
j
= (�j,�j) 

for notational convenience.

5.2 � New likelihood measure within PF environments

This subsection exploits the notion of scalar functions to bring forward a functional PF likeli-
hood measure aimed at ascertaining the possibility of an outranking relation towards Pythag-
orean membership grades in a PF setting effectively. For concrete cases, an alternative ai 
outranks ak in connection with cj (denoted as pij≻pkj ) if and only if one can find substantial 
evidence that ai is superior to ak or at least that ai is as favorable as ak in regards to cj. To iden-
tify a preference intensity between pij and pkj, one can utilize the scalar functions of the upper 

(25)pij = (�ij, �ij;rij, dij)

(26)Pi =
{⟨

cj, pij
⟩|||cj ∈ C

}
=
{⟨

cj,
(
�ij, �ij;rij, dij

)⟩|||cj ∈ C
}
.

(27)

c1 c2 ⋯ cn

P =
�
pij
�
m×n

=

a1
a2
⋮

am

⎡
⎢⎢⎢⎣

(�11, �11;r11, d11) (�12, �12;r12, d12) ⋯ (�1n, �1n;r1n, d1n)

(�21, �21;r21, d21) (�22, �22;r22, d22) ⋯ (�2n, �2n;r2n, d2n)

⋮ ⋮ ⋱ ⋮

(�m1, �m1;rm1, dm1) (�m2, �m2;rm2, dm2) ⋯ (�mn, �mn;rmn, dmn)

⎤
⎥⎥⎥⎦
.

(28)wj = (�j,�j;r
w
j
, dw

j
)
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and lower estimations corresponding to pij and pkj, and develop a PF likelihood measure to 
exploit the outranking relation.

Let αij and βij denote the allocation parameters compared to each PF evaluative rating pij, 
where �ij, �ij ∈ [0, 1] . The designation of αij and βij depends on the decision maker’s require-
ments. For example, it is reasonable and acceptable to designate the values of αij and βij in the 
following four ways: (1) �ij = �ij and �ij = �ij ; (2) �ij = (�ij)

2 and �ij = (�ij)
2 , where 

(�ij)
2 + (�ij)

2 ≤ 1 ; (3) �ij = �ij

/
(�ij + �ij) and �ij = �ij

/
(�ij + �ij) , where �ij + �ij = 1 ; and (4) 

�ij = (�ij)
2
/
((�ij)

2 + (�ij)
2) and �ij = (�ij)

2
/
((�ij)

2 + (�ij)
2) , where (�ij)2 + (�ij)

2 = 1 . Alter-
nately, the most convenient way of setting fixed values of αij and βij is illustrated as follows: let 
�ij = � and �ij = � for each ai ∈ A and cj ∈ C . It is suggested that the assignment mechanism 
can take either designation �ij = �ij or �ij + �ij = 1 for practical applications. By the agency of 
the PF point operators M�ij

 and N�ij
 , which are denoted as Mα and Nβ, respectively, for brevity, 

the upper estimation M�ij
(pij) and the lower estimation N�ij

(pij) with reference to Definitions 7 
and 8, respectively, are represented as follows:

for �M
ij
, �N

ij
∈ [0,�∕2] , in which:

The scalar functions V(pij) , V(M�ij
(pij)) , and V(N�ij

(pij)) are computed in this way:

These scalar functions possess several advantageous properties, as discussed in the upcom-
ing theorem.

(29)

M�ij
(pij) =

(
�M
ij
, �M

ij
;rM
ij
, dM

ij

)
=

(√
(�ij)

2 + �ij(�ij)
2, �ij;

√
(�ij)

2 + (�ij)
2 + �ij(�ij)

2,
� − 2 ⋅ �M

ij

�

)
,

(30)

N�ij
(pij) =

(
�N
ij
, �N

ij
;rN
ij
, dN

ij

)
=

(
�ij,

√
(�ij)

2 + �ij(�ij)
2;

√
(�ij)

2 + (�ij)
2 + �ij(�ij)

2,
� − 2 ⋅ �N

ij

�

)

(31)�M
ij
= arccos

⎛⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠
= arcsin

⎛⎜⎜⎜⎝

�ij�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠
,

(32)�N
ij
= arccos

⎛⎜⎜⎜⎝

�ij�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠
= arcsin

⎛⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠

(33)V(pij) =
1

2
+ rij ⋅

(
dij −

1

2

)
=

1

2
+ rij ⋅

(
1

2
−

2 ⋅ �ij

�

)
,

(34)V(M�ij
(pij)) =

1

2
+ rM

ij
⋅

(
dM
ij
−

1

2

)
=

1

2
+ rM

ij
⋅

(
1

2
−

2 ⋅ �M
ij

�

)
,

(35)V(N�ij
(pij)) =

1

2
+ rN

ij
⋅

(
dN
ij
−

1

2

)
=

1

2
+ rN

ij
⋅

(
1

2
−

2 ⋅ �N
ij

�

)
.
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Theorem 4  Consider the upper estimation M�ij
(pij)= (�M

ij
, �M

ij
;rM
ij
, dM

ij
) and the lower esti-

mation N�ij
(pij)= (�N

ij
, �N

ij
;rN
ij
, dN

ij
) of pij = (�ij, �ij;rij, dij) for all ai ∈ A and cj ∈ C . Their cor-

responding scalar functions ( V(M�ij
(pij)) and V(N�ij

(pij)) ) exhibit the subsequent features:

 0 ≤ V(N�ij
(pij)) ≤ V(pij) ≤ V(M�ij

(pij)) ≤ 1;
 V(M�ij

(pij)) is monotonically nondecreasing with the allocation parameter αij;
 V(N�ij

(pij)) is monotonically nonincreasing with the allocation parameter βij.

Proof  See “Appendix A.3”.

Making allowances for the usefulness of V(M�ij
(pij)) and V(N�ij

(pij)) , this paper devel-
ops a PF likelihood measure in Definition 11 to produce the possibility of outranking 
relations differentiating between two PF evaluative ratings in an MCDA problem. To 
clarify the distinction between pij and pkj, this study presents a fresh definition of the PF 
likelihood measure in Definition 11. Specifically, for two PF evaluative ratings pij and 
pkj, the advanced PF likelihood measure aims to yield the possibility of an outranking 
relation “ pij≻pkj ,” which indicates that pij is not inferior to pkj from a scalar function-
centered perspective in conjunction with the associated upper and lower estimations 
(i.e., through the medium of V(M�ij

(pij)) and V(N�ij
(pij)) relevant to pij as well as 

V(M�ij
(pkj)) and V(N�ij

(pkj)) relevant to pkj. It is noted that this study assumes that 
V(M�ij

(pij)) = V(N�ij
(pij)) and V(M�kj

(pkj)) =V(N�kj
(pkj)) do not exist concurrently to avoid 

a meaningless denominator in Definition 11.

Definition 11  Let pij and pkj manifest two PF evaluative ratings of ai and ak, respectively, 
on the subject of cj. On the grounds of the PF point operators Mα and Nβ, the PF likelihood 
measure Lik(pij≻pkj) of an outranking relation “ pij≻pkj ” is determined as follows:

in which without loss of generality, the differences between V(M�ij
(pij)) and V(N�ij

(pij)) 
and between V(M�kj

(pkj)) and V(N�kj
(pkj)) cannot be equal to zero simultaneously.

Using the PF likelihood measure can assist in determining the intensity of the 
outranking relationships for PF information and render the criterion-wise rankings 
among candidate alternatives. More importantly, the proposed PF likelihood measure 
Lik(pij≻pkj) by virtue of the PF point operators Mα and Nβ has certain relevant advanta-
geous properties, as investigated in Theorems 5−7. More precisely, Theorem 5 demon-
strates some essential features possessed by Lik(pij≻pkj) . Next, Theorem 6 focuses on the 
necessity and sufficiency with respect to an implicational relationship Lik(pij≻pkj) ≥ 0.5 . 
Finally, Theorem 7 corroborates the truth of the property of weak transitivity.

Theorem 5  The PF likelihood measure Lik(pij≻pkj) based on the PF point operators Mα 
and Nβ possesses the subsequent features:

(36)

Lik(pij≻pkj) = max

⎧⎪⎨⎪⎩
1 −max

⎧⎪⎨⎪⎩

V(M𝛼kj
(pkj)) − V(N𝛽ij

(pij))�
V(M𝛼ij

(pij)) − V(N𝛽ij
(pij))

�
+
�
V(M𝛼kj

(pkj)) − V(N𝛽kj
(pkj))

� , 0
⎫⎪⎬⎪⎭
, 0

⎫⎪⎬⎪⎭
,
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	(T5.1)	 0 ≤ Lik(pij≻pkj) ≤ 1;
	(T5.2)	 Lik(pij≻pkj) = 0 if and only if V(M�ij

(pij)) ≤ V(N�kj
(pkj));

	(T5.3)	 Lik(pij≻pkj) = 1 if and only if V(N�ij
(pij)) ≥ V(M�kj

(pkj));
	(T5.4)	 Lik(pij≻pkj) + Lik(pkj≻pij) = 1;
	(T5.5)	 Lik(pij≻pkj) = Lik(pkj≻pij) = 0.5 if Lik(pij≻pkj) = Lik(pkj≻pij);
	(T5.6)	 Lik(pij≻pij) = 0.5;
	(T5.7)	 

∑m

i=1

∑m

k=1
Lik(pij≻pkj) = m2

�
2.

Proof  See “Appendix A.4”.

Theorem 6  We consider pij and pkj as the alternatives ai and ak, respectively, on the sub-
ject of criterion cj. Through the utility of the PF point operators Mα and Nβ, the PF likeli-
hood measure Lik(pij≻pkj) ≥ 0.5 if and only if V(M�ij

(pij)) + V(N�ij
(pij))

≥ V(M�kj
(pkj)) + V(N�kj

(pkj)).

Proof  For necessity, if Lik(pij≻pkj) = max{1 −max{Λ(pij, pkj), 0}, 0} ≥ 0.5 , 
1 −max{Λ(pij, pkj), 0}≥ 0.5 and max{Λ(pij, pkj), 0} ≤ 0.5 are obtained. Thus, it follows that 
Λ(pij, pkj) ≤ 0.5 , namely 2(V(M�kj

(pkj)) − V(N�ij
(pij))) ≤ (V(M�ij

(pij))−

V(N�ij
(pij))) + (V(M�kj

(pkj))−V(N�kj
(pkj))) . Thus, V(M�kj

(pkj)) − V(N�ij
(pij)) ≤

V(M�ij
(pij)) − V(N�kj

(pkj)) , which indicates that V(M�ij
(pij))+V(N�ij

(pij)) ≥

V(M�kj
(pkj)) + V(N�kj

(pkj)) . For sufficiency, it suffices that assumption V(M�ij
(pij))+

V(N�ij
(pij)) ≥ V(M�kj

(pkj)) + V(N�kj
(pkj)) leads to the outcome V(M�ij

(pij)) − V(N�kj
(pkj))+

(V(M�kj
(pkj)) − V(N�ij

(pij))) ≥ 2(V(M�kj
(pkj)) − V(N�ij

(pij))) , which brings about 
Λ(pij, pkj) ≤ 0.5 . It is concluded that Lik(pij≻pkj) = max{1−max{Λ(pij, pkj), 0}, 0} ≥ 0.5 , 
which completes the proof.

Theorem 7  For pij, pkj, and plj of ai, ak, and al, respectively, on the subject of cj, the PF 
likelihood measures supported by the PF point operators Mα and Nβ satisfy the property of 
weak transitivity; thus, Lik(pij≻pkj) ≥ 0.5 if Lik(pij≻plj) ≥ 0.5 and Lik(plj≻pkj)≥ 0.5.

Proof  See “Appendix A.5”.

5.3 � Proposed PF likelihood‑based consensus ranking model

This subsection establishes several useful concepts, such as priority weights, penalty 
weights, and comprehensive disagreement indicators/indices, and formulates an advanta-
geous PF likelihood-based consensus ranking model to manage ambiguity and impreci-
sion, and conduct a multiple criteria evaluation task with high uncertainty and Pythagorean 
fuzziness.

This paper proposes a helpful concept of penalty weights as solid bases to measure the 
degree of comprehensive disagreement and form a comprehensive disagreement matrix. 
Firstly, all values of the PF likelihood measure Lik(pij≻pkj) (for i, k=1, 2,⋯ ,m ) in con-
nection with a specific criterion cj are precisely shown in a matrix configuration. Let 
LIKj = [Lik(pij≻pkj)]m×m denote the PF likelihood matrix with relevance to criterion cj, in 
which Lik(pij≻pij) = 0.5 from (T5.6), as follows:



4899Decision support modeling for multiple criteria assessments…

1 3

It is known that 0 ≤ Lik(pij≻pkj) ≤ 1 and Lik(pij≻pkj) + Lik(pkj≻pij) = 1 based on (T5.1) 
and (T5.4), respectively, which implies that the PF likelihood matrix LIKj is a fuzzy com-
plementary judgment matrix for all cj ∈ C . For each entry in LIKj, a linear transforma-
tion can be made with the assistance of a pair of 

∑m

l=1
Lik(pij≻plj) and 

∑m

l=1
Lik(pkj≻plj) 

( i, k = 1, 2,⋯ ,m ), as follows:

The transformed matrix [Ξ(pij≻pkj)]m×m is fuzzy complementary and consistent as a con-
sequence of the properties of fuzziness, complementarity, and additive transitivity (Li 2011). 
Thus, a priority weight Pri(pij) is derived by using the normalized outcome of 

∑m

l=1
Ξ(pij≻plj) 

as follows:

Because of the property in (T5.7), we know that 
∑m

i=1

∑m

k=1
Lik(pij≻pkj) = m2

�
2 . It fol-

lows that:

Next, regarding the strength of the dual concept of the priority weight Pri(pij), this paper 
exploits the penalty weight Pen(pij) in Definition 12 and explores its desirable properties in 
Theorem 8. On the grounds of these beneficial features, the penalty weights defined by PF 
likelihood measures contribute a realistic approach to establishing a PF likelihood-based 
consensus ranking method via an easy-to-use linear assignment model.

Definition 12  Let a PF set Pi = {⟨cj, pij⟩�cj ∈ C} portray the PF characteristic of ai. 
Based on the PF likelihood matrix LIKj, the penalty weight Pen(pij) for each pij ∈ Pi is 
defined by:

(37)

a1 a2 ⋯ am

LIKj =

a1
a2
⋮

am

⎡
⎢⎢⎢⎣

0.5 Lik(p1j≻p2j) ⋯ Lik(p1j≻pmj)

Lik(p2j≻p1j) 0.5 ⋯ Lik(p2j≻pmj)

⋮ ⋮ ⋱ ⋮

Lik(pmj≻p1j) Lik(pmj≻p2j) ⋯ 0.5

⎤
⎥⎥⎥⎦
.

(38)Ξ(pij≻pkj) =

∑m

l=1
Lik(pij≻plj) −

∑m

l=1
Lik(pkj≻plj)

2(m − 1)
+

1

2
.

(39)Pr i(pij) =

m∑
l=1

Ξ(pij≻plj)

/
m∑

i�=1

m∑
l=1

Ξ(pi�j≻plj).

Pr i(pij) =

m�
k=1

�∑m

l=1
Lik(pij≻plj) −

∑m

l=1
Lik(pkj≻plj)

2(m − 1)
+

1

2

��
m�

i�=1

m�
k=1

�∑m

i=1
Lik(pi� j≻plj) −

∑m

l=1
Lik(pkj≻plj)

2(m − 1)
+

1

2

�

=

∑m

k=1

�∑m
l=1

Lik(pij≻plj )−
∑m
l=1

Lik(pkj≻plj )

2(m−1)
+

1

2

�

∑m

i�=1,

1≤i�<k≤m

⎛⎜⎜⎜⎜⎝

∑m

l=1
Lik(pi� j≻plj) −

∑m

l=1
Lik(pkj≻plj)

2(m − 1)
+

1

2

+

∑m

l=1
Lik(pkj≻plj) −

∑m

l=1
Lik(pi� j≻plj)

2(m − 1)
+

1

2

⎞⎟⎟⎟⎟⎠
+

m

2

=

∑m

k=1

�∑m
l=1

Lik(pij≻plj )−
∑m
l=1

Lik(pkj≻plj )

2(m−1)
+

1

2

�

m(m−1)

2
+

m

2

=
m ⋅

∑m

l=1
Lik(pij≻plj) −

∑m

k=1

∑m

l=1
Lik(pkj≻plj) + m(m − 1)+

m2(m − 1)
=

∑m

k=1
Lik(pij≻pkj) +

m

2
− 1

m(m − 1)
.

(40)Pen(pij) =
1

m(m − 1)

(
m∑
k=1

Lik(pkj≻pij) +
m

2
− 1

)
.



4900	 T.-Y. Chen 

1 3

Theorem 8  The penalty weight Pen(pij) for each pij ∈ Pi meets the following features:

	(T8.1)	 1∕2m ≤ Pen(pij) ≤ 3∕2m;
	(T8.2)	 Pen(pij) + Pri(pij) = 2∕m;
	(T8.3)	 

∑m

i=1
Pen(pij) = 1 for each cj ∈ C;

	(T8.4)	 
∑n

j=1

∑m

i=1
Pen(pij) = n.

Proof  See “Appendix A.6”.

The penalty weight Pen(pij) can describe the extent to which pij performs worse than all 
PF evaluative ratings pertaining to the same criterion; thus, the use of Pen(pij) can facilitate 
the identification of an overall predominate ranking of an alternative, ai, over all m alterna-
tives in conjunction with criterion cj. The rules of identifying a predominating relationship 
between PF evaluative ratings are illustrated in Definition 13. More concretely, the condi-
tion Pen(pij) < Pen(pkj) represents that pij is better than pkj or that ai is preferred to ak with 
reference to cj, and in contrast, Pen(pij) > Pen(pkj) demonstrates that pij is less favorable 
than pkj or that ai is less preferred to ak with regard to cj. The equation Pen(pij) = Pen(pkj) 
indicates no difference between pij and pkj or ai and ak with relevance to cj. The smaller 
the penalty weight Pen(pij) is, the lower the aggregated possibility that pij is not inferior to 
the ratings p1j, p2j,⋯ , pmj , and thus the higher the predominance is for pij . Following the 
rationale in Definition 13, the criterion-wise predominate ranks of all m alternatives are 
efficiently developed by judging the increasing order of the penalty weight Pen(pij) in the 
PF context.

Definition 13  For two PF evaluative ratings pij and pkj, three predominating relationships 
between ai and ak are stated in conformity with their penalty weights:

	(D13.1)	  ai is better than ak on the subject of cj if Pen(pij) < Pen(pkj);
	(D13.2)	  ai is as good as ak on the subject of cj if Pen(pij) = Pen(pkj);
	(D13.3)	  ai is worse than ak on the subject of cj if Pen(pij) > Pen(pkj).

This paper integrates the concepts of penalty weights and PF importance weights to exploit 
a new measure of comprehensive disagreement indicators that provides a solid basis of the 
subsequent PF likelihood-based consensus ranking technique. By extending the practicality 
towards the distance between the ranking orders, the disagreement indicator for an alterna-
tive ai to turn into the ϕth overall rank is derived by the total sum of distances between the 
criterion-wise predominate rank and the ϕth rank. Specifically using Definition 13, all alterna-
tives in set A can be effectively ranked by judging the rising order of the Pen(pij) values for 
each cj ∈ C . Place Φij to signify the criterion-wise predominate ranking of ai in connection 
with cj. Notably, an average rank ought to be designated to the matched alternatives under the 
circumstance that a tie occurs in the criterion-wise predominate ranking. For example, when 
two alternatives are equally rank third, a precedence rank of 3.5 [i.e., (3 + 4)/2] must be desig-
nated. When the decision maker designates equivalent importance towards the n criteria, the 
disagreement indicator Δ̂𝜙

i
 is defined as the total distance for ai to be ranked ϕth:
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However, this definition would not be valid when the assumption that each criterion has 
equal importance is not satisfied. Additionally, information accommodated in the PF evalua-
tion matrix P cannot be fully expressed because the PF evaluative ratings are not incorporated 
into the determination of Δ̂𝜙

i
 . To contain influential decision information in the PF evaluation 

matrix, this paper proposes a more comprehensive model for thoroughly exploiting decision 
information covered by PF importance weights and PF evaluative ratings.

To be precise, this paper suggests using Pen(pij) to replace pij because the concept of pen-
alty weights can sufficiently capture the criterion-wise aggregated outranking outcomes of 
candidate alternatives and can identify the precedence relationship among all alternatives. 
This result implies that the penalty weights can lead to the determination of a new disagree-
ment indicator in a more appropriate and effective way. For these reasons, in contrast to the 
previous index Δ̂𝜙

i
 , this study amalgamates the PF importance weights and the penalty weights 

into the measurement of degrees of disagreement. With the subsequent definition, this paper 
constructs an advantageous concept of a comprehensive disagreement indicator in Definition 
14, which embodies more persuasive and convincing information than the classical disagree-
ment indicator. Furthermore, the property of Δ�

i
 is explored in Theorem 9.

Definition 14  For ai ∈ A and cj ∈ C , we consider a PF importance weight wj and a PF 
evaluative rating pij. Supported by an ascending order of the penalty weight Pen(pij), let 
Φij denote the criterion-wise predominate ranking of an alternative ai for criterion cj, in 
which a mean rank is designated in the event of the occurrence of ties. The comprehensive 
disagreement indicator Δ�

i
 for ai to turn into the ϕth consensus rank is determined like this:

Theorem 9  Let Pen(pij) and wj = (�j,�j;r
w
j
, dw

j
) be the penalty weight and the PF impor-

tance weight, respectively. The two-dimensional representation Δ��

i
= (�

�

Δi
, �

�

Δi
) pertaining 

to the comprehensive disagreement indicator Δ�

i
 is determined as follows:

Proof  See “Appendix A.7”.

Within the above theorem, it is also worthy of mention that the strength of commit-
ment relative to comprehensive disagreement indicator Δ�

i
 is derived as follows: r�

Δi
=√

1 − Πn
j=1

(1 − (�j)
2)Pen(pij)⋅|Φij−�| + Πn

j=1
(�j)

2⋅Pen(pij)⋅|Φij−�| . It follows that the radians 
�
�

Δi
= arc cos(�

�

Δi
∕r

�

Δi
) (or equivalently, ��

Δi
= arcsin(�

�

Δi
∕r

�

Δi
) ). Moreover, the direction of 

commitment d�
Δi

= (� − 2 ⋅ �
�

Δi
)∕�.

The proposed PF likelihood-based consensus ranking method aims to receive a con-
sensus ranking of candidate alternatives, i.e., the so-called median ranking, for the sake 
of creating a rank with as little differentiation from whole criterion-wise predominating 
ranks as possible. This can be effectively accomplished by constructing an assignment 
model. In general, the MCDA problem focuses on the collection of complete (or total) 

(41)Δ̂
𝜙

i
=

n∑
j=1

|||Φij − 𝜙
|||.

(42)Δ
𝜙

i
= (𝜇

𝜙

Δi
, 𝜈

𝜙

Δi
;r
𝜙

Δi
, d

𝜙

Δi
) =

n

⊕
j=1

[(
Pen(pij) ⋅

|||Φij − 𝜙
|||
)
⊙ wj

]
.

(43)

Δ
��

i
= (�

�

Δi
, �

�

Δi
) =

⎛⎜⎜⎝

����1 −

n�
j=1

�
1 −

�
�j

�2�Pen(pij)⋅
���Φij−�

���
,

n�
j=1

�
�j

�Pen(pij)⋅���Φij−�
���
⎞⎟⎟⎠

for i,� = 1, 2,… ,m.
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rankings of candidate alternatives that is precisely stated by any one of a number of lin-
ear programming formulations. Notably, if the decision maker restricts consideration to 
a complete ranking, an MCDA of this nature can be addressed much more effectively by 
representing it as an assignment problem. Let Ψ represent a permutation matrix whose 
entry ��

i
 is a zero–one binary variable, where ��

i
 = 1 if ai is designated as the consensus 

rank ϕ, and ��

i
 = 0 otherwise. Notably, 

∑m

�=1
�

�

i
= 1 (i.e., ai is obliged to be allocated to 

only one rank). Similarly, 
∑m

i=1
�

�

i
= 1 (i.e., a consensus rank ϕ must merely retain an 

alternative). The matrix Ψ is described in this manner:

To determine an optimal consensus ranking towards feasible alternatives that possess 
the least disagreement with all criterion-wise predominate rankings, the proposed con-
cept of the comprehensive disagreement indicator Δ�

i
 can be used to define the objective 

function in the assignment model. To solve for the optimal consensus ranking that gen-
erates the lowest ⊕m

i=1
[⊕m

𝜙=1
(𝜓

𝜙

i
⊙ Δ

𝜙

i
)] , the subsequent formulation of an MCDA task 

under the uncertain PF environment can be used:

The comprehensive disagreement indicator Δ�

i
= (�

�

Δi
, �

�

Δi
;r
�

Δi
, d

�

Δi
) is a Pythagorean 

membership grade, which highlights the critical issue of a difficult determination when 
resolving the model [M1]. Using comparable scalar functions, this study identifies the 
comprehensive disagreement index in Definition 15 to overcome the difficulty in resolv-
ing the model [M1] in a fairly straightforward way. Certain favorable properties of the 
comprehensive disagreement index are investigated in Theorem 10.

Definition 15  Let Δ�

i
= (�

�

Δi
, �

�

Δi
;r
�

Δi
, d

�

Δi
) delineate a comprehensive disagreement indi-

cator of alternative ai to be allocated to a consensus rank ϕ, ai ∈ A and � = 1, 2,⋯ ,m . The 
comprehensive disagreement index V(Δ�

i
) of Δ�

i
 is computed like this:

Theorem 10  The comprehensive disagreement index V(Δ�

i
) associated with each compre-

hensive disagreement indicator Δ�

i
 for all i,� ∈ {1, 2,⋯ ,m} fulfills the following features:

	(T10.1)	 0 ≤ V(Δ
�

i
) ≤ 1;

	(T10.2)	 V(Δ�

i
) = 0 if and only if Δ�

i
= (0, 1;1, 0);

	(T10.3)	 V(Δ�

i
) = 1 if and only if Δ�

i
= (1, 0;1, 1);

(44)

1st 2nd ⋯ mth

Ψ =
�
�

�

i

�
m×m

=

a1
a2
⋮

am

⎡
⎢⎢⎢⎣

�1
1
�2
1
⋯ �m

1

�1
2
�2
2
⋯ �m

2

⋮ ⋮ ⋱ ⋮

�1
m
�2
m
⋯ �m

m

⎤
⎥⎥⎥⎦
.

(45)

min

{
m

⊕
i=1

[
m

⊕
𝜙=1

(
𝜓

𝜙

i
⊙ Δ

𝜙

i

)]}

subject to

m∑
𝜙=1

𝜓
𝜙

i
= 1(i = 1, 2,… ,m),

m∑
i=1

𝜓
𝜙

i
= 1(𝜙 = 1, 2,… ,m), 𝜓

𝜙

i
= 0 or 1 for all i and 𝜙.

(46)V(Δ
�

i
) =

1

2
+ r

�

Δi
⋅

(
d
�

Δi
−

1

2

)
=

1

2
+ r

�

Δi
⋅

(
1

2
−

2 ⋅ �
�

Δi

�

)
.
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	(T10.4)	 V(Δ�

i
) = 0.5 if Δ�

i
= (0, 0;0, 0.5);

	(T10.5)	 V(Δ�

i
) = d

�

Δi
 if ��

Δi
= 0 (or equivalently, r�

Δi
= 1).

Proof  See “Appendix A.8”.

The concept of the comprehensive disagreement index can be used to constitute a PF 
likelihood-based consensus ranking model. Concerning an alternative ai in connection 
with each consensus rank ϕ, V(Δ�

i
) can estimate the extent of the overall disagreement 

towards the criterion-wise predominate rankings. Let V(Δ) denote the comprehensive 
disagreement matrix whose entries V(Δ�

i
) for all i,� = 1, 2,⋯ ,m are given by Definition 

15, in this fashion:

The lower the degree of disagreement exhibited by V(Δ�

i
) is, the higher the conform-

ity is from designating the alternative ai to the ϕth consensus rank. Thus, the decision 
maker intends to arrange m elements in the comprehensive disagreement matrix V(Δ) 
to designate a well-suited consensus rank for each alternative. Specifically, one must 
choose m elements in different rows and columns whose sum is the minimum. This exe-
cutable procedure can be efficiently achieved by constituting the following PF likeli-
hood-based consensus ranking model:

With the assistance of the Hungarian method, one can easily solve model [M2] to 
acquire the optimal consensus ranking that generates the lowest 

∑m

i=1

∑m

�=1
(�

�

i
⋅ V(Δ

�

i
)) . 

Finally, this paper exploits the optimal permutation matrix Ψ̂ = [𝜓̂
𝜙

i
]m×m in an effort 

to render the optimal consensus ranks concerning all alternatives using the following 
method:

(47)

1st 2nd ⋯ mth

V(Δ) =
�
V(Δ

�

i
)
�
m×m

=

a1
a2
⋮

am

⎡
⎢⎢⎢⎣

V(Δ1
1
) V(Δ2

1
) ⋯ V(Δm

1
)

V(Δ1
2
) V(Δ2

2
) ⋯ V(Δm

2
)

⋮ ⋮ ⋱ ⋮

V(Δ1
m
) V(Δ2

m
) ⋯ V(Δm

m
)

⎤
⎥⎥⎥⎦
.

(48)

min

{
m∑
i=1

m∑
�=1

(
�

�

i
⋅ V(Δ

�

i
)
)}

subject to

m∑
�=1

�
�

i
= 1 (i = 1, 2,… ,m),

m∑
i=1

�
�

i
= 1 (� = 1, 2,… ,m), �

�

i
= 0 or 1 for all i and �.

(49)A ⋅ Ψ̂ =
�
a1, a2,… , am

�
⋅

⎡
⎢⎢⎢⎣

𝜓̂1
1
𝜓̂2
1
⋯ 𝜓̂m

1

𝜓̂1
2
𝜓̂2
2
⋯ 𝜓̂m

2

⋮ ⋮ ⋱ ⋮

𝜓̂1
m
𝜓̂2
m
⋯ 𝜓̂m

m

⎤
⎥⎥⎥⎦
.
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5.4 � Proposed algorithmic procedure

The proposed PF likelihood-based consensus ranking method to manage MCDA issues 
comprising PF uncertain information (i.e., PF importance weights and evaluative ratings) 
consists of five phases: problem formulation (see Steps 1 and 2), ascertaining PF likeli-
hood measures (see Steps 3–5), criterion-wise predominate rankings (see Steps 6 and 7), 
measurement of comprehensive disagreement (see Steps 8 and 9), and a linear assignment 
model supported by likelihood measures (see Steps 10 and 11). The five phases can be 
described using the algorithmic procedure below:

Steps 1 and 2: Representing an MCDA problem in PF contexts
Step 1: Define an MCDA task through the agency of the set of candidate alternatives 

A = {a1, a2,… , am} and the set of evaluative criteria C = {c1, c2,⋯ , cn}.
Step 2: Investigate a PF importance weight wj = (�j,�j;r

w
j
, dw

j
) of each cj ∈ C and a 

PF evaluative rating pij = (�ij, �ij;rij, dij) of ai ∈ A towards cj. Construct the PF evaluation 
matrix P = [pij]m×n in (27).

Steps 3–5: Ascertaining upper/lower estimations and PF likelihood measures
Step 3: Designate the settings of two allocation parameters αij and βij within the PF point 

operators Mα and Nβ, respectively, for each pij, where �ij, �ij ∈ [0, 1].
Step 4: Use (29) and (30) to compute the upper estimation M�ij

(pij) and the lower esti-
mation N�ij

(pij) , respectively, associated with each pij in the PF evaluation matrix P.
Step 5: Use (36) to identify the PF likelihood measure Lik(pij≻pkj) of an outrank-

ing relation “ pij≻pkj ” for ai, ak ∈ A and cj ∈ C . Form a PF likelihood matrix LIKj =

[Lik(pij≻pkj)]m×m in (37).
Steps 6 and 7: Identifying criterion-wise predominating ranks via penalty weights
Step 6: Use (40) to calculate the penalty weight Pen(pij) for each pij belonging to the PF 

characteristic Pi = {⟨cj, pij⟩�cj ∈ C} in (26).
Step 7: Identify the criterion-wise predominate rank Φij of all ai following an ascending 

order of the Pen(pij) values in terms of each cj, where an average rank is distributed in the 
event of the occurrence of ties.

Steps 8 and 9: Determining comprehensive disagreement indicators and indices
Step 8: Apply (42) and (43) to calculate the comprehensive disagreement indicator Δ�

i

= (�
�

Δi
, �

�

Δi
;r
�

Δi
, d

�

Δi
) for ai to become the consensus rank ϕ.

Step 9: Compute the comprehensive disagreement index V(Δ�

i
) of each Δ�

i
 using (46) 

and construct the comprehensive disagreement matrix V(Δ) = [V(Δ
�

i
)]m×m in (47).

Steps 10 and 11: Solving a likelihood-based linear assignment model
Step 10: Construct a permutation matrix Ψ = [�

�

i
]m×m in (44), in which the entry ��

i
 is 

a binary variable for each i,� ∈ {1, 2,… ,m} , and establish a PF likelihood-based consen-
sus ranking model using [M2].

Step 11: Determine the optimal permutation matrix Ψ̂ = [𝜓̂
𝜙

i
]m×m . Use (49) to acquire 

the optimal consensus rank (in conformity with 𝜓̂𝜙

i
 = 1) for each alternative.

6 � Model application and comparative studies

This section presents a realistic application relating to a financing problem about working 
capital policies and performs sensitivity analyses and comparative discussions. As an illus-
trative demonstration of the developed approach, this section aims to describe beneficial 
theoretical insights contained in the proposed methodology and verify its appropriateness 
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and usefulness to solve real problems. Certain comparative studies and explorations are 
also investigated to validate the strong points of the advanced PF likelihood-based consen-
sus ranking method.

6.1 � Practical application

This subsection uses a pragmatic MCDA issue about financing policies to demonstrate 
the computational algorithm of the PF likelihood-based consensus ranking method. The 
investigated financing decision-making problem, originally formulated by Wang and Chen 
(2018), focuses on a multiple criteria evaluation task to choose a fitting financing policy to 
assist with efficacious working capital management in the field of medicine.

The management of working capital plays a key role for an enterprise (an organization 
or other entity) to conduct effective financial management and business activities. Working 
capital, i.e., the subtraction of current liabilities from current assets, is a financial metric 
that stands for the operating liquidity behaved by an enterprise. The main goal of working 
capital management is to provide sufficient liquidity for the survival and operation of the 
enterprise and fulfill its financial obligations. Efficacious working capital management is 
important for companies of all sizes because it gives the enterprise financial flexibility and 
reduces reliance on external funding sources. Working capital management can protect the 
enterprise from potential financial problems, and is vital to the growth and development 
of the enterprise. In general, working capital financing policies can be compartmental-
ized into three basic policies: conservative, aggressive, and moderate policies, as shown in 
Fig. 4. The conservative financing policy can maintain relatively high current assets, hold 
large amounts of cash, securities, inventory, etc., and will also give customers more relaxed 
credit conditions. The aggressive financing policy is to maintain the minimum level of cur-
rent assets, stricter credit conditions for customers, shorten the payback period of accounts 
receivable, and use funds for other high-return investments. The moderate financing policy 
is somewhere in between, maintaining an appropriate level of current assets, and match-
ing the maturity dates of current liabilities to improve the efficiency in working capital 
utilization.

Chang Gung Memorial Hospital (CGMH) was founded in 1976, and has successively 
established large hospitals in Linkou, Keelung, Taipei, Taoyuan, Chiayi, Yunlin, Kaohsi-
ung, etc., which treats more than 31,500 patients per day and has 9000 beds in Taiwan. 
Among them, Linkou CGMH is one of the general hospitals with the largest scale, the most 
complete equipment and the best operating performance in the Far East. In order to furnish 
highly professional and favorable medical services to young children, Linkou CGMH con-
structed a large-scale children’s medical center in 1993. With the aim of making an effica-
cious usage of medical resources, Linkou CGMH established a nursing home and Taoyuan 

Fig. 4   Schematic diagram of 
three basic types of financing 
policies
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branch in 2001 and 2003, respectively, predicated on acute and chronic medical treatments. 
Linkou CGMH is committed to developing subacute, chronic medical, and long-term care 
services. Moreover, it is vertically integrated into a complete medical system to provide 
the people with complete medical care. Furthermore, Linkou CGMH is the hospital with 
the largest number of foreign patients in Taiwan. Every year, more than tens of thousands 
of foreign patients from all over the world come here for medical treatments. For such a 
large-scale healthcare institution, the authority is faced with many complex issues when 
making financial decisions. Over and above that, there are many factors that lead to an 
increase in the cost of health care, such as the aging of the population, the application of 
high-tech care services, the cost of prescription drugs, chronic diseases, legal considera-
tions, etc. Therefore, Linkou CGMH must have sufficient working capital to cover various 
expense items.

According to Taiwan’s medical payment system, after billing patients or third-party pay-
ers, it often takes more than two months to receive the relevant payments. Healthcare pro-
viders usually depend on third-party payers for paying patient bills. The authority must 
evaluate the Linkou CGMH’s financial status and conditions, and choose appropriate work-
ing capital strategies to ensure that they have sufficient working capital, while maximizing 
liquidity and profitability. This is a very difficult and complex task for Linkou CGMH. 
Based on the problem description in Wang and Chen (2018), the contour of a financing 
affair compared to working capital policies is shown in Fig. 5. This problem focuses on an 
MCDA task to determine a suitable financing policy to assist with working capital manage-
ment for Linkou CGMH. The propounded methodology would be used subsequently to 
address this financing decision issue.

According to the problem representation proposed by Wang and Chen (2018), 
the authority of Linkou CGMH used six factors to appraise five candidate alterna-
tives compared to working capital financing policies in a cautious manner. The data of 

Fig. 5   Connotation of a financing issue relating to working capital policies
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PF importance weights and evaluation values in this financing decision-making problem 
was established by Wang and Chen (2018). On the basis of the uncertain PF information 
presented in Wang and Chen (2018), the developed algorithmic procedure of the PF like-
lihood-based consensus ranking model was used to find out a proper choice for Linkou 
CGMH. In Step 1, the sets of candidate alternatives and evaluative criteria are stated as 
follows: A = {a1, a2,… , a5} and C = {c1, c2,… , c6} , respectively.

In Step 2, aligned with the managers’ expertise and past experiences at Linkou CGMH, 
the PF importance weights of the evaluative criteria were developed by: w1 = (0.35, 0.65; 
0.74, 0.31), w2 = (0.55, 0.45; 0.71, 0.56), w3 = (0.65, 0.35; 0.74, 0.69), w4 = (0.25, 0.75; 
0.79, 0.20), w5 = (0.75, 0.25; 0.79, 0.80), and w6 = (0.85, 0.15; 0.86, 0.89). The PF evalua-
tion matrix P = [pij]5×6 can be formed of all pij = (�ij, �ij;rij, dij) for ai ∈ A and cj ∈ C . Due 
to the PF evaluation values originating from Wang and Chen (2018), the matrix P was 
constructed as follows:

In Step 3, via illustration, we take a case in which the settings of the allocation param-
eters can be arranged as �ij = (�ij)

2
/
((�ij)

2 + (�ij)
2) and �ij = (�ij)

2
/
((�ij)

2 + (�ij)
2) in con-

nection with each pij, which directly leads to (�ij)2 + (�ij)
2 = 1 . Considering p53 = (0.61, 

0.42; 0.74, 0.62) as an example, one obtains �53 = 0.612∕(0.612 + 0.422) = 0.6874 and 
�53 = 0.422∕(0.612 + 0.422) = 0.3216 . The relevant settings of αij and βij for all ai ∈ A and 
cj ∈ C are exhibited in Tables 1 and 2, respectively, as stated in Appendix B.

In Step 4, the upper estimation M�ij
(pij) and the lower estimation N�ij

(pij) were derived 
through the medium of αij and βij, respectively. Taking M�53

(p53) as an example, it is 
known that τ53 = 0.6719 and θ53 = 0.6030 with reference to p53. By virtue of (29) and 
Definition 7, the following results can be acquired: �M

53
=
√
(�53)

2 + �53(�53)
2 = √

0.612 + 0.6784 × 0.67192 = 0.8236, �M
53

= �52 = 0.4200, and rM
53

=√
(�53)

2 + (�53)
2 + �53(�53)

2=
√
0.612 + 0.422+0.6784 × 0.67192 = 0.9246. According to 

(31), it is easy to see that �M
53

= arc cos(0.8236∕0.9246) = 0.4716, which follows that 
dM
53

= (� − 2 × �M
53
)∕� = (3.1416 − 2 × 0.4716)∕3.1416 = 0.6998. Hence, M�53

(p53) =

(�M
53
, �M

53
;rM
53
,dM
53
) =(0.8236, 0.4200; 0.9246, 0.6998). Analogously, N�53

(p53) =(0.6100, 
0.5671; 0.8329, 0.5232) by means of (30) and (32). The obtained results appertaining to 
M�ij

(pij) and N�ij
(pij) are indicated in Tables 1 and 2, respectively.

In Step 5, to determine the possibility of an outranking relation towards PF evalua-
tive ratings, this study used (34) and (35) to generate the scalar functions of M�ij

(pij) and 
N�ij

(pij) , respectively. The computation results of V(M�ij
(pij)) and V(N�ij

(pij)) are mani-

c1 c2 c3

P =

a1
a2
a3
a4
a5

⎡⎢⎢⎢⎢⎣

(0.21, 0.83;0.86, 0.16) (0.33, 0.78;0.85, 0.25) (0.49, 0.54;0.73, 0.47)

(0.36, 0.74;0.82, 0.29) (0.55, 0.48;0.73, 0.54) (0.61, 0.45;0.76, 0.60)

(0.63, 0.52;0.82, 0.56) (0.77, 0.25;0.81, 0.80) (0.88, 0.21;0.90, 0.85)

(0.82, 0.21;0.85, 0.84) (0.83, 0.15;0.84, 0.89) (0.78, 0.27;0.83, 0.79)

(0.94, 0.14;0.95, 0.91) (0.90, 0.10;0.91, 0.93) (0.61, 0.42;0.74, 0.62)

c4 c5 c6

a1
a2
a3
a4
a5

(0.29, 0.70;0.76, 0.25) (0.91, 0.13;0.92, 0.91) (0.49, 0.40;0.63, 0.56)

(0.41, 0.63;0.75, 0.37) (0.80, 0.17;0.82, 0.87) (0.73, 0.31;0.79, 0.74)

(0.61, 0.47;0.77, 0.58) (0.71, 0.31;0.77, 0.74) (0.92, 0.11;0.93, 0.92)

(0.74, 0.31;0.80, 0.75) (0.32, 0.79;0.85, 0.25) (0.84, 0.18;0.86, 0.87)

(0.82, 0.26;0.86, 0.80) (0.11, 0.88;0.89, 0.08) (0.51, 0.59;0.78, 0.45)

⎤⎥⎥⎥⎥⎦
.
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fested in the rightmost columns of Tables 1 and 2, respectively. On the grounds of the 
obtained scalar functions, this study used (36) to ascertain the PF likelihood measure 
Lik(pij≻pkj) for ai, ak ∈ A and cj ∈ C . Consider Lik(p14≻p24) as an illustration. It is 
known that V(M�14

(p14)) = 0.3552 and V(M�24
(p24)) = 0.4619 from Table  1. Moreover, 

one has V(N�14
(p14)) = 0.2033 and V(N�24

(p24)) = 0.3037 from Table 2. By virtue of (36), 
the measure Lik(p14≻p24) was determined in the following manner:

Lik(p14≻p24) = max
{
1 −max

{
0.4619−0.2033

(0.3552−0.2033)+(0.4619−0.3037)
, 0
}
, 0
}
= 0.1661.

The PF likelihood matrix LIKj = [Lik(pij≻pkj)]5×5 can be constructed by collecting the 
obtained PF likelihood measures in connection with cj. Specifically, the PF likelihood 
matrices with relevance to the six criteria were determined as follows:

In Step 6, this study calculated the penalty weight Pen(pij) of each pij belonging to 
the PF characteristic Pi. Consider p32 ∈ P3 ( = {⟨c1, p31⟩, ⟨c2, p32⟩,⋯ , ⟨c6, p36⟩} ) as 
an example. By applying (40), one obtains Pen(p32) = (Lik(p12≻p32) + Lik(p22≻p32) + 
Lik(p32≻p32) + Lik(p42≻p32) + Lik(p52≻p32) + (5/2) − 1)/(5 × 4) = (0.0000 + 0.0000 + 0.50
00 + 0.9022 + 1.0000 + 2.5 − 1)/20 = 0.1951. The results of the penalty weight Pen(pij) 
are revealed in the top bottom of Table 3 in Appendix B. In Step 7, the criterion-wise 
predominate ranks with respect to the alternatives were obtained in light of an increas-
ing order of the Pen(pij) values related to a specific cj, as displayed in the bottom part of 
Table 3.

In Step 8, the product of Pen(pij) and |Φij − �| was first calculated for each i,� = 1, 2,⋯ , 5 
and j = 1, 2,⋯ , 6 . Next, the comprehensive disagreement indicator Δ�

i
 was determined 

using (42) and (43). The computed outcomes of Pen(pij) ⋅ |Φij − �| and Δ�

i
 are shown 

in Table  4 of Appendix B. Regarding a3 to be designated the fourth consensus rank for 
instance, the following results were acquired: Pen(p31) ⋅ |Φ31 − 4| = 0.2000 ⋅ |3 − 4| = 
0.2000, Pen(p32) ⋅ |Φ32 − 4| = 0.1951 ⋅ |3 − 4| = 0.1951, Pen(p33)⋅ |Φ33 − 4| = 0.1035⋅ 
|1 − 4| = 0.3106, Pen(p34) ⋅ |Φ34 − 4| = 0.2000 ⋅ |3 − 4| = 0.2000, Pen(p35) ⋅ |Φ35 − 4| = 
0.1993 ⋅ |3 − 4| = 0.1993, and Pen(p36) ⋅ |Φ36 − 4| = 0.1000 ⋅ |1 − 4| = 0.3000. Next, con-
sider the two-dimensional representation w�

j
= (�j,�j) pertaining to the PF importance weight 

LIK1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.0000 0.0000 0.0000 0.0000

1.0000 0.5000 0.0000 0.0000 0.0000

1.0000 1.0000 0.5000 0.0000 0.0000

1.0000 1.0000 1.0000 0.5000 0.0000

1.0000 1.0000 1.0000 1.0000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

, LIK2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.0000 0.0000 0.0000 0.0000

1.0000 0.5000 0.0000 0.0000 0.0000

1.0000 1.0000 0.5000 0.0978 0.0000

1.0000 1.0000 0.9022 0.5000 0.1314

1.0000 1.0000 1.0000 0.8686 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

,

LIK3 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.1593 0.0000 0.0000 0.1188

0.8407 0.5000 0.0000 0.0000 0.4453

1.0000 1.0000 0.5000 0.9296 1.0000

1.0000 1.0000 0.0704 0.5000 1.0000

0.8812 0.5547 0.0000 0.0000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

, LIK4 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.1661 0.0000 0.0000 0.0000

0.8339 0.5000 0.0000 0.0000 0.0000

1.0000 1.0000 0.5000 0.0000 0.0000

1.0000 1.0000 1.0000 0.5000 0.2151

1.0000 1.0000 1.0000 0.7849 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

,

LIK5 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.8861 1.0000 1.0000 1.0000

0.1139 0.5000 0.9867 1.0000 1.0000

0.0000 0.0133 0.5000 1.0000 1.0000

0.0000 0.0000 0.0000 0.5000 1.0000

0.0000 0.0000 0.0000 0.0000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

, LIK6 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.0451 0.0000 0.0000 0.7526

0.9549 0.5000 0.0000 0.0000 1.0000

1.0000 1.0000 0.5000 1.0000 1.0000

1.0000 1.0000 0.0000 0.5000 1.0000

0.2474 0.0000 0.0000 0.0000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎦

.
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wj. This study would like to combine the obtained Pen(p3j) ⋅ |Φ3j − 4| with the PF importance 
weights to determine the comprehensive disagreement indicator Δ4

3
 . On the grounds of the 

PF importance weights, it is known that w�
1
= (�1,�1) =(0.35, 0.65), w�

2
= (�2,�2) =(0.55, 

0.45), w�
3
= (�3,�3) =(0.65, 0.35), w�

4
= (�4,�4) =(0.25, 0.75), w�

5
= (�5,�5) =(0.75, 

0.25), and w�
6
= (�6,�6) =(0.85, 0.15). With use of (43), the two-dimensional representation 

Δ�4
3
= (�4

Δ3
, �4

Δ3
) relating to the indicator Δ4

3
 was ascertained as follows:

Accordingly, it can be acquired that Δ4
3
= (�4

Δ3
, �4

Δ3
;r4
Δ3
, d4

Δ3
) =(0.7507, 0.2297; 0.7851, 

0.8110). The computed results pertaining to the comprehensive disagreement indicator Δ�

i
 

for each i,� = 1, 2,… , 5 are demonstrated in Table 4.
In Step 9, this study used (46) to compute the comprehensive disagreement index 

V(Δ
�

i
) . Taking Δ4

3
 for example, it is acquired that V(Δ4

3
) = 0.5 + r4

Δ3
× (d4

Δ3
− 0.5) = 0.5 + 0

.7851 × (0.8110 − 0.5) = 0.7441. On the grounds of the obtained V(Δ�

i
) , the comprehensive 

disagreement matrix V(Δ) was developed as follows:

In Step 10, a permutation matrix Ψ involving 25 (= 5 × 5) binary variables was repre-
sented as Ψ = [�

�

i
]5×5 . According to model [M2], this study constructed the following PF 

likelihood-based consensus ranking model for solving the financing problem:

Regarding Step 11, by resolving the preceding model, we determined that the optimal 
objective value 3.0498, 𝜓̂4

1
=𝜓̂3

2
= 𝜓̂1

3
= 𝜓̂2

4
= 𝜓̂5

5
= 1 , and the remaining 𝜓̂𝜙

i
= 0 . Using 

(49), this study multiplied A by Ψ̂ to produce the optimal consensus ranking, that is:

Δ�4
3
=

⎛
⎜⎜⎝

����
1 −

6�
j=1

�
1 −

�
�
j

�2�Pen(p
3j
)⋅�Φ3j

−4�
,

6�
j=1

�
�

j

�Pen(p
3j
)⋅�Φ3j

−4�⎞⎟⎟⎠
=
��

1 −
�
1 − 0.35

2
�0.2000

×
�
1 − 0.55

2
�0.1951

×
�
1 − 0.65

2
�0.3106

×
�
1 − 0.25

2
�0.2000

×
�
1 − 0.75

2
�0.1993

×
�
1 − 0.85

2
�0.3000�0.5

, 0.65
0.2000 × 0.45

0.1951 × 0.35
0.3106

×0.750.2000 × 0.25
0.1993 × 0.15

0.3000
�
= (0.7507, 0.2297).

1st 2nd 3rd 4th 5th

V(Δ) =
�
V(Δ

�

i
)
�
5×5

=

a1
a2
a3
a4
a5

⎡⎢⎢⎢⎢⎣

0.9670 0.9321 0.8524 0.6666 0.6669

0.9014 0.7584 0.5593 0.5773 0.8320

0.6529 0.5858 0.5025 0.7441 0.8671

0.7878 0.5369 0.6325 0.7072 0.8649

0.9748 0.9427 0.8659 0.7789 0.6341

⎤⎥⎥⎥⎥⎦
.

min

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.9670 ⋅ �1
1
+ 0.9321 ⋅ �2

1
+0.8524 ⋅ �3

1
+0.6666 ⋅ �4

1
+0.6669 ⋅ �5

1

+0.9014 ⋅ �1
2
+ 0.7584 ⋅ �2

2
+0.5593 ⋅ �3

2
+0.5773 ⋅ �4

2
+0.8320 ⋅ �5

2

+0.6529 ⋅ �1
3
+ 0.5858 ⋅ �2

3
+0.5025 ⋅ �3

3
+0.7441 ⋅ �4

3
+0.8671 ⋅ �5

3

+0.7878 ⋅ �1
4
+ 0.5369 ⋅ �2

4
+0.6325 ⋅ �3

4
+0.7072 ⋅ �4

4
+0.8649 ⋅ �5

4

+0.9748 ⋅ �1
5
+ 0.9427 ⋅ �2

5
+0.8659 ⋅ �3

5
+0.7789 ⋅ �4

5
+0.6341 ⋅ �5

5

⎫⎪⎪⎪⎬⎪⎪⎪⎭

subject to

5∑
�=1

�
�

i
= 1 (i = 1, 2,… , 5),

5∑
i=1

�
�

i
= 1 (� = 1, 2,… , 5), �

�

i
= 0 or 1 for all i and �.
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A ⋅ Ψ̂ =
�
a1, a2, a3, a4, a5

�
⋅

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
=
�
a3, a4, a2, a1, a5

�
.

Based on the above consequences, it straightly came to a conclusion of 
a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 , which yields the optimal consensus ranking of the available 
financing policies. Herein, such a consensus ranking enjoys the least disagreement 
regarding the outcomes of all criterion-wise predominating rankings. Additionally, the 
balanced policy (a3) is the most proper financing policy for Linkou CGMH. Notably, 
outcome yield was concordant with the ranking result obtained by Wang and Chen 
(2018).

6.2 � Exploration via comparative analyses

This subsection performs a sensitivity examination and implements a comparative inves-
tigation to verify the application consequences and manifest the helpfulness and strong 
points of the advanced PF likelihood-based consensus ranking methodology. Figure  6 
offers a quick recap of the focal points in connection with an effectiveness analysis, two 
sensitivity analyses, and a comparative analysis. Firstly, in the effectiveness analysis, this 
subsection investigates the application results via degrees of appropriateness. Secondly, 
this subsection executes two sensitivity studies and conducts comparative analyses to scru-
tinize the effects of allocation parameters. Finally, this subsection makes comprehensive 
comparisons with the PF technique for order preference by similarity to ideal solution 
(TOPSIS) for justifying the efficacity and merits about the evolved methodology.

Firstly, this paper performs an effectiveness analysis to explore the results obtained in 
the financing problem. Thus, this paper introduces the degree of appropriateness Vc(Δ

�

i
) 

concerning an alternative ai ∈ A to be designated to a consensus rank ϕ, in which:

(50)Vc(Δ
�

i
) = 1 − V(Δ

�

i
),

Fig. 6   Focal points of the effectiveness, sensitivity, and comparative analyses
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where i,� ∈ {1, 2,… , 5} . The appropriateness degree Vc(Δ
�

i
) is a complementary concept 

of the comprehensive disagreement index V(Δ�

i
) . Considering (T10.1), it is easy to see that 

0 ≤ Vc(Δ
�

i
) ≤ 1.

Based on the obtained Vc(Δ
�

i
) values, this paper presents a 100% stacked bar chart in 

Fig. 7 to show part-to-whole changes from first place (i.e., ϕ = 1) to fifth place (i.e., ϕ = 5) 
over the five alternatives. This chart was sketched to demonstrate the relative percentage of 
multiple obtained outcomes of Vc(Δ

�

i
) in stacked bars, in which the total of each stacked 

bar (i.e., cumulative percentage) is always equal to 100%. Accordingly, this chart can 
represent a central tendency measure of relative fittingness that conforms to an accepted 
standard via the smallest value of comprehensive disagreement indices over all consen-
sus ranks. In addition to the part-to-whole relationships, Fig. 7 shows how the proportions 
change over five priority places (for � = 1, 2,… , 5 ) in various consensus ranks occupied 
by the five financing policies.

As stated previously, the degree of appropriateness Vc(Δ
�

i
) is the counter version of the 

comprehensive disagreement index V(Δ�

i
) . In this regard, the larger the Vc(Δ

�

i
) is, the bet-

ter the concordance would be from designating the alternative ai to the ϕth consensus rank. 
Figure 7 depicts the part-to-whole relationships of the degrees of appropriateness among 
the five financing policies. As shown in this chart, for example, the conservative-leaning 
policy (a4) holds the highest relative proportion in the second priority place (i.e., ϕ = 2). 
That being the case, the alternative a4 is the second ranked with respect to the optimal 
consensus ranking a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 . Nonetheless, it is worthwhile to mention that 
the balanced policy (a3) enjoys the highest relative proportions in the first place (i.e., ϕ = 1) 
and the third place (i.e., ϕ = 3). One may wonder why it is the best choice instead of the 
third one in the light of the obtained results. The main reason is that the alternative a3 
occupies the largest relative proportion in the best ranked position. To be specific, it is 
easily known that Vc(Δ3

3
) > Vc(Δ1

3
) because Vc(Δ1

3
) = 1 − V(Δ1

3
) = 0.3471 and Vc(Δ3

3
) = 

1 − V(Δ3
3
) = 0.4975. Moreover, the other degrees of appropriateness were derived as 

follows: Vc(Δ2
3
) = 0.4142, Vc(Δ4

3
) = 0.2559, and Vc(Δ5

3
) = 0.1329. This indicates that 

max5
�=1

Vc(Δ
�

3
) =Vc(Δ3

3
) . Based on the comparison of the degrees of appropriateness, it 

seems to reasonably figure out the third priority rank of a3. From this perspective, why is it 
ranked the first place in the optimal consensus ranking? The 100 stacked bar chart in Fig. 7 
can make this precise. This chart shows stacked bars normalized to 100%; thus, the relative 

5 th

4 th

3 r d

2 n d

1 s t

0.3331 

0.3334 

0.1476 

0.0679 

0.0330 

0.1680 

0.4227 

0.4407 

0.2416 

0.0986 

0.1329 

0.2559 

0.4975 

0.4142 

0.3471 

0.1351 

0.2928 

0.3675 

0.4631 

0.2122 

0.3659 

0.2211 

0.1341 

0.0573 

0.0252 

a1 a2 a3 a4 a5

Fig. 7   Part-to-entire relationships about the degree of appropriateness Vc(Δ
�

i
)
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dominance can be clearly differentiated through the agency of the relative proportions in 
the part-to-whole relationships of the Vc(Δ

�

i
) values. In first place, alternative a3 occupies 

the significantly largest proportion compared to the other four financing policies; thus, it is 
plausible and convincing to conclude the best rank of a3 is the optimal consensus ranking.

Next, this paper implements two sensitivity analyses and yields certain comparisons and 
discussions to explore the influences of distinct settings concerning the allocation param-
eters αij and βij on the results. As demonstrated in Theorems 1–4, the allocation param-
eters αij and βij have an impact on the adaptational consequences by the agency of the PF 
point operators Mα and Nβ, respectively. On account of this, two arrangement schemes were 
devised for attaining some particular settings of αij and βij into effect, consisting of αij = βij 
and αij + βij = 1.

The first sensitivity analysis was applied to the subject of the arrangement scheme of 
αij = βij. Identical values from 0.1 to 1.0 were assigned to the allocation parameters αij and 
βij. The pair of allocation parameters (αij, βij) = (0.1, 0.1),(0.2, 0.2),⋯ ,(1.0, 1.0) (i.e., ten 
instances) was examined. For each pij, the upper estimation M�ij

(pij) and the lower estima-
tion N�ij

(pij) were determined via the PF point operators Mα and Nβ, respectively, under a 
specific setting of (αij, βij). On the strength of the obtained M�ij

(pij) and N�ij
(pij) , this paper 

derived the PF likelihood measure Lik(pij≻pkj) in each PF likelihood matrix LIKj 
( = [Lik(pij≻pkj)]5×5 ), wherein i, k = 1, 2,⋯ , 5 and j = 1, 2,⋯ , 6 . By employing Definition 
12, this paper ascertained the penalty weight Pen(pij) in various (αij, βij) settings from 
(0.1,0.1) to (1.0,1.0) in conjunction with each criterion cj ∈ C . A comparison of the conse-
quences through the sensitivity analysis involving the penalty weights is shown in Fig. 8, 
with the results compared to criteria c1–c6 are presented in Fig. 8a–f. Based on the increas-
ing order of Pen(pij) values, the criterion-wise predominate rank Φij can be identified in 
connection with each cj. As shown in Fig. 8a, b, d, consistent criterion-wise predominate 
ranking results were obtained in regard to criteria c1, c2, and c4. The criterion-wise pre-
dominate ranks were as follows: Φ1j = 5, Φ2j = 4, Φ3j = 3, Φ4j = 2, and Φ5j = 1 for j = 1, 2, 
and 4 based on the ten settings of the (αij, βij) pair. Considering Fig. 8c, it is known that 
Φ13 = 5, Φ23 = 4, Φ33 = 1, Φ43 = 2, and Φ53 = 3 are because of criterion c3, which shows a 
difference between the criterion-wise predominate ranks Φ3j and Φ5j. In Fig. 8e, f, the fol-
lowing results were generated under the ten settings of the (αij, βij) pair: Φ15 = 1, Φ25 = 2, 
Φ35 = 3, Φ45 = 4, and Φ55 = 5 with respect to c5; Φ16 = 4, Φ26 = 3, Φ36 = 1, Φ46 = 2, and 
Φ56 = 5 with respect to c6. Notably, identical criterion-wise predominate ranks were ren-
dered for all (αij, βij) pairs with respect to a specific criterion, which indicates that the con-
trasting results of the Pen(pij) values are consistent and stable. The developed approach can 
yield believable and conceivable criterion-wise comparison results and facilitate the deter-
mination of reliable comprehensive disagreement indicators.

Furthermore, this paper implemented a sensitivity analysis of the comprehensive disa-
greement index V(Δ�

i
) with various (αij, βij) settings from (0.1, 0.1) to (1.0, 1.0). Com-

parisons with respect to distinct priority ranks are shown in Fig.  9. By solving the PF 
likelihood-based consensus ranking model in each (αij, βij) setting, a consistent optimal 
consensus ranking a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 toward the five financing policies was deter-
mined, which indicates the optimal consensus ranks with trustworthy qualities. Consider-
ing that the balanced policy a3 has the highest rank for all (αij, βij) pairs, this paper uses a 
line graph to draw the outline of the obtained V(Δ�

3
) values to highlight the comprehensive 

disagreement index V(Δ�

3
) of a3, while the other results of V(Δ�

1
) , V(Δ�

2
) , V(Δ�

4
) , and V(Δ�

5
) 

were sketched as bar charts. The smaller the V(Δ�

i
) is, the less discordance is generated 

from assigning the alternative ai to the ϕ-th consensus rank. Figure 9a exhibits the contrast 
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outcomes of the comprehensive disagreement indices of the five financing policies in con-
nection with first place (i.e., ϕ = 1). Notably, the V(Δ1

3
) obtained is significantly lower than 

the other indices V(Δ1
1
) , V(Δ1

2
) , V(Δ1

4
) , and V(Δ1

5
) , which implies the least discordance of 

a3 with first place. As shown in Fig. 9e, alternative a5 has the lowest comprehensive disa-
greement index because the obtained V(Δ5

5
) is the smallest among all the V(Δ5

i
) values in 

fifth place (i.e., ϕ = 5). It is no wonder that a3 is the top-ranked alternative, while a5 is 
ranked last. Comparisons of the V(Δ�

i
) values from the first priority ranking to the fifth 

priority ranking are shown in Fig. 9a–e. The alternatives having the least disagreement in 
each priority ranking were identified as follows: a3 in first place, a4 in second place, a3 in 
third place, a2 in fourth place, and a5 in fifth place in all (αij, βij) settings from (0.1, 0.1) to 
(1.0, 1.0). The alternatives having the highest disagreement in each priority ranking were 
arranged as follows: a5 in first place, a5 in second place, a5 in third place, a5 in fourth 

(a) Contrast results with respect to c1. (b) Contrast results with respect to c2.
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(c) Contrast results with respect to c3. (d) Contrast results with respect to c4.

(e) Contrast results with respect to c5. (f) Contrast results with respect to c6.
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Fig. 8   Sensitivity analysis of the penalty weight Pen(pij) in various (αij, βij) settings from (0.1, 0.1) to (1.0, 
1.0)
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place, and a3 in fifth place for all (αij, βij) pairs. Due to these consequences, the comprehen-
sive disagreement indices produced by the proposed methodology are consistent with the 
optimal consensus ranking results. The first sensitivity analysis demonstrated the stability 
and solidness of the results obtained under various (αij, βij) settings.

The second sensitivity analysis focused on the prerequisite of a fixed sum of the two 
allocation parameters αij and βij. Specifically, this paper examined the influences of vari-
ous settings concerning the arrangement scheme αij + βij = 1 on the solution outcomes. 
This sensitivity analysis explored the solution results under the assigned values of αij 
and βij from 0.0 to 1.0 and from 1.0 to 0.0, respectively, when determining the upper 
estimation M�ij

(pij) and the lower estimation N�ij
(pij) using the PF point operators Mα and 

Nβ, respectively. That is, this study investigated eleven instances containing the pairs 
(αij, βij) = (0.0, 1.0),(0.1, 0.9),⋯ , (1.0, 0.0) with the condition αij + βij = 1. Using the pro-
posed methodology to tackle the financing problem with respect to working capital poli-
cies, the comparison of the results of the penalty weight Pen(pij) in various (αij, βij) set-
tings from (0.0, 1.0) to (1.0, 0.0) with reference to each criterion cj ∈ C is shown in 
Fig. 10. In particular, the results connected with criteria c1–c6 are shown in Fig. 10a–f, 
respectively. Following the increasing order of Pen(pij) values, this paper determined 
the criterion-wise predominate rank Φij in terms of six criteria. Overall, the 

(a) Results in first place (i.e., φ=1). (b) Results in second place (i.e., φ=2).

(c) Results in third place (i.e., φ=3). (d) Results in fourth place (i.e., φ=4).

(e) Results in fifth place (i.e., φ=5).
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Fig. 9   Sensitivity analysis of the comprehensive disagreement index V(Δ�

i
) in various (αij, βij) settings from 

(0.1, 0.1) to (1.0, 1.0)
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consequences are similar to those of the first sensitivity analysis. A consistent conse-
quence of the criterion-wise predominate rankings was rendered as shown in Fig. 10a, 
b, d (i.e., Φ1j = 5, Φ2j = 4, Φ3j = 3, Φ4j = 2, and Φ5j = 1 for cj ∈{c1, c2, c4} under the eleven 
settings of the (αij, βij) pair). Based on Fig. 10c, e, f, the following results were obtained: 
Φ13 = 5, Φ23 = 4, Φ33 = 1, Φ43 = 2, and Φ53 = 3 for criterion c3, Φ15 = 1, Φ25 = 2, Φ35 = 3, 
Φ45 = 4, and Φ55 = 5 for c5; Φ16 = 4, Φ26 = 3, Φ36 = 1, Φ46 = 2, and Φ56 = 5 for c6. The 
same criterion-wise predominate rankings were generated for all (αij, βij) pairs with 
regard to a specific criterion. Thus, the results of the Pen(pij) values are consistent and 
stable under the eleven settings of (αij, βij) from (0.0, 1.0) to (1.0, 0.0).

With regard to the sensitivity analysis of the comprehensive disagreement index 
V(Δ

�

i
) in the eleven instances of the (αij, βij) pair, Fig.  11 summarizes comparisons 

of the connections among the five priority rankings. An identical optimal consensus 

(a) Contrast results with respect to c1. (b) Contrast results with respect to c2.

(c) Contrast results with respect to c3. (d) Contrast results with respect to c4.

(e) Contrast results with respect to c5. (f) Contrast results with respect to c6.
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Fig. 10   Sensitivity analysis of the penalty weight Pen(pij) in various (αij, βij) settings from (0.0, 1.0) to (1.0, 
0.0)
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ranking a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 toward the five alternatives was rendered by solving the 
PF likelihood-based consensus ranking model in each (αij, βij) setting, which is analo-
gous to that of the first sensitivity analysis. In a similar vein, the results of the compre-
hensive disagreement index V(Δ�

3
) for optimal a3 (i.e., a balanced policy) are highlighted 

with a line graph, while the other results of V(Δ�

1
) , V(Δ�

2
) , V(Δ�

4
) , and V(Δ�

5
) are shown 

as bar charts. Figure 11a–e shows comparisons of the comprehensive disagreement indi-
ces V(Δ�

1
),V(Δ

�

2
),⋯ , V(Δ�

5
) . Concerning first place in Fig. 11a, the V(Δ1

3
) values are the 

smallest comprehensive disagreement indices for each instance of the (αij, βij) pair, which 
justifies assigning the first consensus rank to a3. In contrast, alternative a5, which ranked 
last in the consensus results, has the largest V(Δ1

5
) value. The smallest and largest com-

prehensive disagreement indices were V(Δ2
4
) and, in second place; V(Δ3

3
) and V(Δ3

5
) , in 

third place; V(Δ4
2
) and V(Δ4

5
) in fourth place; and V(Δ5

5
) and V(Δ5

3
) in fifth place for all (αij, 

βij) pairs. These findings can support the rationality of the consequences produced by the 
proposed model and techniques. The top-ranked alternative a3 exhibited the smallest V(Δ1

3
) 

and the largest V(Δ5
3
) ; in contrast, the last-ranked alternative a5 had the smallest V(Δ5

5
) 

and the largest V(Δ1
5
) . The second sensitivity analysis also confirmed the applicability and 

robustness of the resolution results generated by the proposed methodology.

(a) Results in first place (i.e., φ=1). (b) Results in second place (i.e., φ=2).

(c) Results in third place (i.e., φ=3). (d) Results in fourth place (i.e., φ=4).

(e) Results in fifth place (i.e., φ=5).
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Fig. 11   Sensitivity analysis of the comprehensive disagreement index V(Δ�

i
) in various (αij, βij) settings 

from (0.0, 1.0) to (1.0, 0.0)
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Finally, this paper performs comparative research with PF TOPSIS to justify the pro-
ductiveness and correctness of the proposed methodology. The TOPSIS method, which 
is commonly utilized in a field of multiple criteria evaluation and decision analysis, is 
established on the rationale that the selected alternative ought to possess the shortest and 
longest distances towards the approach anchor point (i.e., positive-ideal choice) and the 
avoidance anchor point (i.e., negative-ideal choice), respectively. Using the agency of the 
kernel structure of TOPSIS, this study would like to advance a PF version of the TOPSIS 
approach for providing the facilitations of comparative analyses and demonstrating the jus-
tifiability of the current PF likelihood-based consensus ranking method through the agency 
of the likelihood-based linear assignment model. In order to adapt to the uncertainty with 
Pythagorean fuzziness, this paper presents a directly-extended PF TOPSIS procedure with 
the aim of tackling appropriately MCDA affairs in PF circumstances. Notice that the classi-
cal TOPSIS considers the proximity to the approach anchor point and the remoteness from 
the avoidance anchor point to define the closeness coefficient. The Hamming distances 
between PF information would be employed to determine the separation of differentiating 
an alternative from the ideal solutions. Following such a rationale behind the discussion 
above, the closeness coefficient can be acquired based on the obtained separation measures 
with the purpose of acquiring priority rankings among competing alternatives.

Place the positive-ideal choice a∗ and the negative-ideal choice a# . Let two PF sets P∗ 
and P# signify the PF characteristics of a∗ and a# , respectively, over all n criteria; these are 
in such manner:

In the PF TOPSIS method, one must determine the weighted PF evaluative rating 
pw
ij
= (�w

ij
, �w

ij
;rw
ij
, dw

ij
) of ai ∈ A with regard to cj ∈ C . The two-dimensional representation 

p�w
ij

= (�w
ij
, �w

ij
) associated with each pw

ij
 is calculated as follows:

The indeterminacy grade pertaining to pw
ij
 is derived as �w

ij
=
√

1 − (�w
ij
)2 − (�w

ij
)2 . Let 

pw
∗j
=(�w

∗j
, �w

∗j
;rw
∗j
, dw

∗j
) and pw

#j
= (�w

#j
, �w

#j
;rw
#j
, dw

#j
) represent the weighted PF evaluative ratings 

of a∗ and a# , respectively, pertaining to cj. The two-dimensional representations 
p�w
∗j

= (�w
∗j
, �w

∗j
) and p�w

#j
= (�w

#j
, �w

#j
) are separately acquired as p�w

∗j
= w�

j
⊗ p�

∗j

= (𝜔j,𝜛j)⊗ (1, 0) = (𝜔j,𝜛j) and p�w
#j

=w�
j
⊗ p�

#j
= (𝜔j,𝜛j)⊗ (0, 1) = (0, 1) . The indeter-

minacy grades pertaining to pw
∗j

 and pw
#j

 are separately identified using �w
∗j
=√

1 − (�w
∗j
)2 − (�w

∗j
)2 and �w

#j
=
√

1 − (�w
#j
)2 − (�w

#j
)2.

A variety of distance measurement functions have been presented in the PF context; 
however, the Hamming distance model is an easy and effectual method that can calculate 
the distance for PF information. Let Dw(Pi,P∗) and Dw(Pi,P#) denote the separation meas-
ures towards the PF characteristics Pi and P∗ and towards Pi and P# , respectively. By use of 
the weighted Hamming distance model, they are generated on this wise:

(51)
P∗ =

{⟨
cj, p∗j

⟩|||cj ∈ C
}
=
{⟨

cj,
(
�∗j, �∗j;r∗j, d∗j

)⟩|||cj ∈ C
}
=
{⟨

cj, (1, 0;1, 1)
⟩|||cj ∈ C

}
,

(52)
P# =

{⟨
cj, p#j

⟩|||cj ∈ C
}
=
{⟨

cj,
(
�#j, �#j;r#j, d#j

)⟩|||cj ∈ C
}
=
{⟨

cj, (0, 1;1, 0)
⟩|||cj ∈ C

}
.

(53)

p�w
ij

= w�
j
⊗ p�

ij
= (𝜔j,𝜛j)⊗ (𝜇ij, 𝜈ij) =

(
𝜔j ⋅ 𝜇ij,

√
(𝜛j)

2 + (𝜈ij)
2 − (𝜛j)

2 ⋅ (𝜈ij)
2

)
.
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The closeness coefficient CC(ai) ( 0 ≤ CC(ai) ≤ 1 ) of each alternative ai is calculated as 
follows:

where CC(ai) = 0 when Pi = P# , and CC(ai) = 1 when Pi = P∗ . In the PF TOPSIS pro-
cedure, the priority ranking among all alternatives is acquired on the basis of the close-
ness coefficients in descending order. The alternative with the maximum CC(ai) is the most 
proper choice.

We now consider the same financing problem. Figure 12a shows the application results, 
which consist of the outcomes of Dw(Pi,P∗) , Dw(Pi,P#) , and CC(ai), that are produced by 
the PF TOPSIS method. As shown in the descending order of CC(ai), the priority rank-
ing order is a3 ≻ a4 ≻ a2 ≻ a5 ≻ a1 , which shows that the most appropriate choice is the 
balanced policy a3. The preference orders based on the separation measures Dw(Pi,P∗) 
in ascending order and based on Dw(Pi,P#) in descending order are the same as those 
obtained based on CC(ai). Figure 12b highlights the contrast of the ranking orders using PF 
TOPSIS and the developed PF likelihood-based consensus ranking method.

The priority ranking outcomes determined using the PF TOPSIS method are somewhat 
different from the optimal consensus ranking a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 produced by the pro-
posed method. The differentiation focuses on the dominance relationship between a1 and 
a5. Due to the PF importance weights of six criteria offered by the authority of Linkou 
CGMH, the two most important criteria are financing costs [PF weight w6 = (0.85, 0.15; 
0.86, 0.89)] and return on assets [PF weight w5 = (0.75, 0.25; 0.79, 0.80)], which indicates 
that the authority attaches great importance to the criteria relevant to profitability. Consid-
ering that the target of this model is the largest medical center in Taiwan, a good financial 
condition is a necessity for Linkou CGMH. Compared to conservative financing policies 
(e.g., the conservative dominant and conservative-leaning policies), aggressive financing 
policies (e.g., the aggressive dominant and aggressive-leaning policies) is the most befitting 

(54)

Dw(Pi,P∗) =
1

n

n∑
j=1

D(pw
ij
, pw

∗j
) =

1

2n

n∑
j=1

(|||(�
w
ij
)2 − (�w

∗j
)2
||| +

|||(�
w
ij
)2 − (�w

∗j
)2
|||+

|||(�
w
ij
)2 − (�w

∗j
)2
|||
)
,

(55)

Dw(Pi,P#) =
1

n

n∑
j=1

D(pw
ij
, pw

#j
) =

1

2n

n∑
j=1

(|||(�
w
ij
)2 − (�w

#j
)2
||| +

|||(�
w
ij
)2 − (�w

#j
)2
||| +

|||(�
w
ij
)2 − (�w

#j
)2
|||
)
.

(56)CC(ai) =
Dw(Pi,P#)

Dw(Pi,P∗) + Dw(Pi,P#)
,

(a) Solution outcomes rendered by the PF TOPSIS. (b) Priority orders compared to the proposed 
model.
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Fig. 12   Comparisons with PF TOPSIS in the financing problem
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for Linkou CGMH. As expected, the dominance relationship of a1 ≻ a5 is acceptable. The 
proposed PF likelihood-based consensus ranking method rendered desirable results (i.e., 
a1 ≻ a5 ) according to the optimal consensus ranking a3 ≻ a4 ≻ a2 ≻ a1 ≻ a5 . However, 
the PF TOPSIS method generated conflicting dominance relationships (i.e., a5 ≻ a1 ) based 
on the preference ranking a3 ≻ a4 ≻ a2 ≻a5 ≻ a1 . Based on the foregoing discussions, the 
comparative analysis furnishes a supportable consequence for confirming the appositeness 
and reasonability of the optimal consensus ranking. Comparisons provide clear evidence of 
the helpfulness and superiority of the proposed model and relevant techniques compared to 
the PF TOPSIS method.

The effectuality and superiority of the current PF likelihood-based consensus ranking 
method have been justified and corroborated through illustrated applications and com-
prehensive comparative studies that consist of effectiveness, sensitivity, and comparative 
analyses. Based on the illustrative consequences, the usefulness and reasonableness of the 
advanced techniques have been verified and supported by the real-world demonstrations of 
a working capital financing problem. A comparison of the consequences and explorations 
has highlighted the justifiability and appositeness of the advanced methodology. Also, 
the solidness and steadiness of the obtained consequences yielded by the initiated meth-
odology have been examined via the utility of two sensitivity studies. Also, the proposed 
comprehensive disagreement indicators and indices, as well as the likelihood-based linear 
assignment model, have generated believable and convincing results for ranking dominance 
relationships among alternatives within the decision environment under PF uncertainty.

7 � Conclusion and future studies

This paper proposed a functional likelihood-based consensus ranking methodology to 
solve uncertain MCDA issues involving PF importance weights of criteria and PF evalu-
ative ratings for externalizing alternative performances. This paper proposed two useful 
point operators via the medium of flexible allocation parameters to transform Pythagorean 
membership grades to establish rational upper and lower estimations with uncertain infor-
mation. The concept of scalar functions along with the point operator-oriented adaptational 
outcomes of PF evaluative ratings provides a foundation for an effectual likelihood meas-
ure. Thus, this paper has taken advantage of the scalar functions of upper and lower esti-
mations to develop a beneficial PF likelihood measure to exploit outranking relations with 
uncertain information. Certain functional concepts of priority weights and penalty weights 
have been proposed to provide a solid basis to determine the degree of each disagreement 
for alternatives in connection with specific consensus ranks. Considering the developed 
concepts, a likelihood-based assignment technique was constructed to ascertain a consen-
sus ranking of competing alternatives and manage MCDA problems in PF uncertain cir-
cumstances. Specifically, considering the strengths of the PF likelihood measures and the 
penalty weights, this paper proposed a practical conception of comprehensive disagree-
ment indicators and then established a comprehensive disagreement matrix whose entries 
measure the degree of disagreement through which an alternative is designated by a spe-
cific rank based on the resulting criterion-wise predominate relations of the alternatives. A 
pragmatic likelihood-based consensus ranking method elicited from a zero–one integer lin-
ear programming model has been constructed to assist decision makers in treating complex 
PF uncertain information and acquire believable and desirable MCDA outcomes. Finally, 
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the justifiability and efficiency of the presented methodology have been critically validated 
and supported via real-world applications and comparative analyses.

This paper has made certain contributions to the research of MCDA methodology in PF 
uncertain circumstances. Specifically, the merits and achievements of this study are high-
lighted in the four aspects. For the first merit, this paper has put forward two PF point 
operators to estimate the adapted outcomes with respect to Pythagorean membership 
grades and identify rational upper and lower estimations relating to PF information. For 
the second merit, this paper has exploited the propounded PF point operators to launch a 
powerful and efficacious likelihood measurement that is helpful to produce a desired result 
concerning outranking relations for PF evaluation ratings. For the third merit, this paper 
has brought forward the idea of penalty weights that can delineate the extent to which a 
PF evaluative rating performs worse than all others with respect to each evaluative crite-
rion. The employment of penalty weights can characterize dominated relations among PF 
characteristics and render criterion-wise predomination rankings for candidate alternatives. 
For the fourth merit, this paper has revealed comprehensive disagreement indicators and 
indices to formulate a workable likelihood-based consensus ranking model. Moreover, this 
study has proposed an algorithmic procedure that can be implemented quickly and effec-
tively to acquire the optimal consensus ranking and tackle MCDA problems consisting of 
PF uncertain information.

However, one must recognize a realistic limitation exists on the proposed PF likelihood-
based consensus ranking model. Based on Definition 11, it was recognized that the denom-
inator of the PF likelihood measure Lik(pij≻pkj) cannot have the value zero. On this basis, 
this study assumed that the differences between V(M�ij

(pij)) and V(N�ij
(pij)) and between 

V(M�kj
(pkj)) and V(N�kj

(pkj)) should not be equal to zero at the same time. Such an assump-
tion is often valid in real-world decision circumstances. Nevertheless, once an extreme sit-
uation occurs, that is, when V(M�ij

(pij)) = V(N�ij
(pij)) and V(M�kj

(pkj)) =V(N�kj
(pkj)) occurs 

concurrently, the formula in Definition 11 will be meaningless. Fortunately, this extreme 
situation almost never happens. Within the limitation in Definition 11, the decision maker 
and analysts are still free to determine the PF likelihood measure of an outranking relation 
as they need.

Our recommendations for future research directions are fourfold: (1) exploring the 
appropriateness of distinct point operator-oriented adapted outcomes for identifying upper 
and lower estimations with PF information; (2) extending the applicability range of the 
proposed PF likelihood measures to characterizing the dominate relations and predominate 
rankings; (3) extending the proposed point operators and the PF point operator-oriented 
likelihood measure to interval‐valued PF, q-rung orthopair fuzzy, single valued spherical 
fuzzy, and T-spherical fuzzy environments; and (4) aligning other relevant outranking-
based methodologies through the utility of new measurements of comprehensive disagree-
ment by ascertaining outranking relationships.

In particular, the developed approach can be generalized to decision contexts supported 
by the spherical fuzzy framework (Mahmood et al. 2019) that are subject to certain modifi-
cations. Give consideration to a single valued spherical fuzzy set (Kutlu Gündoğdu and 
Kahraman 2019), S, as an illustration. Let �S(x), �S(x), �S(x) ∶ X → [0, 1] behave the mem-
bership, indeterminacy, and nonmembership grades, respectively, of x ∈ X to S, where 
S = {⟨x, (�S(x), �S(x), �S(x))⟩�x ∈ X} with the axiom 0 ≤ (�S(x))

2 + (�S(x))
2 + (�S(x))

2≤ 1 . 
Additionally, the refusal grade of x to S is derived as 
rS(x) =

√
1 − (�S(x))

2 − (�S(x))
2 − (�S(x))

2 . Based on the definition in Ju et al. (2021), the 
score function of a spherical fuzzy value s is given by 
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Sc(s) = [1 + (�S(x))
2 − (�S(x))

2 − (�S(x))
2]∕2 , where Sc(s) ∈ [0, 1] . Using the PF point 

operators Mα, the membership and nonmembership grades embedded in the upper estima-
tion M�(s) can be separately ascertained in this way: �M� (S)

(x) =
√
(�S(x))

2 + �(�S(x))
2 and 

�M� (S)
(x) = �S(x) . With a constant refusal degree, �M� (S)

(x)2 =
√
(1 − �)(�S(x))

2 is obtained. 
Using the PF point operator Nβ, it is recognized that �N� (S)

(x)= �S(x) , �N� (S)
(x) =√

(�S(x))
2 + �(�S(x))

2 , and �N� (S)
(x) =

√
(1 − �)(�S(x))

2 . Being able to adapt to the  
method to spherical fuzzy environments, this paper suggests using score functions instead 
of scalar functions to determine the likelihood measure in spherical fuzzy settings.  
For example, let sij and skj represent two evaluative ratings on the basis of the single  
valued spherical fuzzy model. Using the score function proposed by Ju et al. (2021), the 
likelihood measure in spherical fuzzy circumstances is determined as follows: 
Lik(sij≻skj) = max{1 −max{[Sc(M𝛼kj

(skj)) − Sc(N𝛽ij
(sij))]∕[(Sc(M𝛼ij

(sij))− Sc(N�ij
(sij)))

+(Sc(M�kj
(skj)) − Sc(N�kj

(skj)))], 0}, 0} . Then, the notions of penalty weights and compre-
hensive disagreement indicators/indices can be derived to establish a likelihood-based con-
sensus ranking model in spherical fuzzy contexts. As stated above, this method provides 
decision makers with an appropriate flexible adjustment, while the proposed approach can 
be used to generate more potential applicable scenarios in distinct fuzzy environments.

Appendix A: Detailed proofs

A.1 Proof of Theorem 1

(T1.1) In line with Definition 7, one obtains 
(�M� (P)

(x))2 + (�M� (P)
(x))2 = (�P(x))

2 + �(�P(x))
2+(�P(x))

2 . Because 
(�P(x))

2 + (�P(x))
2 + (�P(x))

2 = 1 , it can be recognized that 0 ≤ (�M� (P)
(x))2+

(�M� (P)
(x))2 ≤ 1 . The inequality 0 ≤ (�N� (P)

(x))2 + (�N� (P)
(x))2 ≤ 1 is satisfied because 

(�N� (P)
(x))2+(�N� (P)

(x))2 = (�P(x))
2 + (�P(x))

2 + �(�P(x))
2 through Definition 8. Thus, 

(T1.1) is correct.
(T1.2) It is obvious that �P(x) ≤

√
(�P(x))

2 + �(�P(x))
2 from 0 ≤ �, �P(x) ≤ 1 ; thus, 

�N� (P)
(x)= �P(x) ≤ �M� (P)

(x) . Analogously, �M� (P)
(x) = �P(x) ≤ �N� (P)

(x) is satisfied 
because �P(x) ≤

√
(�P(x))

2 + �(�P(x))
2 . Thus, the correctness of (T1.2) is confirmed.

(T1.3) As stated in Definition 5, the quasi-ordering M𝛼(p)≻Q
p≻

Q
N𝛽(p) holds because 

�M� (P)
(x) ≥ �P(x) ≥ �N� (P)

(x) and �M� (P)
(x) ≤ �P(x) ≤ �N� (P)

(x).
(T1.4) Applying Definitions 3, 7, and 8, the following is true:

Accordingly, this equation indicates that max{�M� (P)
(x), �N� (P)

(x)} ≤ �P(x) . Based on Defi-
nition 3, it is known that rP(x) =

√
1 − (�P(x))

2 , rM� (P)
(x) =

√
1 − (�M� (P)

(x))2 , and 
rN� (P)

(x) =
√

1 − (�N� (P)
(x))2 . It indicates that min{rM� (P)

(x), rN� (P)
(x)} ≥ rP(x) ; thus, the 

property of (T1.4) holds.

�M� (P)
(x) =

√
1 − (�P(x))

2 − �(�P(x))
2 − (�P(x))

2 ≤

√
1 − (�P(x))

2 − (�P(x))
2 = �P(x),

�N� (P)
(x) =

√
1 − (�P(x))

2 − (�P(x))
2 − �(�P(x))

2 ≤

√
1 − (�P(x))

2 − (�P(x))
2 = �P(x).
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(T1.5) As demonstrated in Chen (2018b), the closer the directions of a commitment (i.e., 
dP(x) , dM� (P)

(x) , and dN� (P)
(x) ) are to 1 (or 0), the closer the radians (i.e., �P(x) , �M� (P)

(x) , 
and �N� (P)

(x) ) are to 0 (or �∕2 ) and the greater the strength of commitment (i.e., rP(x) , 
rM� (P)

(x) , and rN� (P)
(x) ) is to the supporting (or disapproving) belongingness of x in P. 

Therefore, the results shown in (T1.2) indicate that dN� (P)
(x) ≤ dP(x) ≤ dM� (P)

(x) and 
�M� (P)

(x) ≤ �P(x) ≤ �N� (P)
(x) hold. The correctness of (T1.5) is confirmed.

(T1.6) Based on Definition 3, it is recognized that 
pc = (�Pc (x), �Pc (x);rPc (x), dPc (x)) = (�P(x),�P(x);rP(x), 1 − dP(x)) , which also indicates 
that �Pc (x) = �P(x) from rPc (x) = rP(x) . Applying Definition 7, the upper estimation M�(p

c) 
of the complement of p is given by: M�(p

c) =(�M� (P
c)(x), �M� (P

c)(x);rM� (P
c)(x), dM� (P

c)(x)) . 
The membership grade and the nonmembership grade in M�(p

c) are separately derived 
as follows: �M� (P

c)(x) =
√
(�Pc (x))2 + �(�Pc (x))2 =

√
(�P(x))

2 + �(�P(x))
2 = �N� (P)

(x) and 
�M� (P

c)(x) = �Pc (x) = �P(x) = �N� (P)
(x) . For the complement (M�(p

c))c of the upper estima-
tion M�(p

c) , �(M� (P
c))c (x) = �M� (P

c)(x) = �N� (P)
(x) and �(M� (P

c))c (x) = �M� (P
c)(x) = �N� (P)

(x) . 
One can verify that (M�(p

c))c = N�(p).
(T1.7) Based on Definition 8, the lower estimation N�(p

c) of the complement of p 
is obtained by N�(p

c) = (�N� (P
c)(x), �N� (P

c)(x);rN� (P
c)(x), dN� (P

c)(x)) . The member-
ship and nonmembership grades in N�(p

c) are separately calculated as follows: 
�N� (P

c)(x) = �Pc (x) = �P(x) = �M� (P)
(x) and �N� (P

c)(x) =
√
(�Pc (x))2 + �(�Pc (x))2 =√

(�P(x))
2 + �(�P(x))

2 = �M� (P)
(x) . For the complement (N�(p

c))c of the lower 
estimation N�(p

c) , it is apparent that �(N� (P
c))c (x) = �N� (P

c)(x) = �M� (P)
(x) and 

�(N� (P
c))c (x) = �N� (P

c)(x) = �M� (P)
(x) , which yields (N�(p

c))c = M�(p) , i.e., (T1.7) is valid. 
Notably, (T1.6) and (T1.7) demonstrate that the two PF point operators Mα and Nβ are dual-
ities. This confirms the truth of Theorem 1.

A.2 Proof of Theorem 2

In the first place, (T2.2) is trivial. (T2.1) and (T2.3) are demonstrated by virtue of mathemati-
cal induction on η. Using the agency of the PF point operator Mα on the recurrent upper esti-
mation M�−1

� (p) , it is generated that:

for � = 0, 1, 2,… , in which �M0
�
(P)(x) = �P(x) , �M0

�
(P)(x) = �P(x) , and �M0

�
(P)(x) = �P(x) . Let 

η = 1. Based on Definition 7 and the condition that (�P(x))2 = 1 − (�P(x))
2 − (�P(x))

2 , one 
can render:

�M
�
� (P)

(x) =
√

(�
M

�−1
� (P)(x))

2 + �(�
M

�−1
� (P)(x))

2,

�M�
� (P)

(x) = �
M

�−1
� (P)(x) = �P(x),

rM�
� (P)

(x) =
√

(�M
�
� (P)

(x))2 + (�M�
� (P)

(x))2 =
√

(�
M

�−1
� (P)(x))

2 + �(�
M

�−1
� (P)(x))

2 + (�P(x))
2.

�M1
�
(P)(x) =

√
(�P(x))

2 + �(�P(x))
2 =

√
(�P(x))

2 + �
(
1 − (�P(x))

2
)
− �(�P(x))

2,
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The above results are concordant with the outcome of η = 1 in (T2.1) and (T2.3); 
that is, the two properties hold for η = 1. Next, let η = 2. It is evident to deduce that 
�M2

�
(P)(x) = �M1

�
(P)(x) = �P(x) . By applying Definitions 7 and 9, it is straightly gained that:

r
M2

�
(P)(x) =

{
(�

P
(x))2 + �

(
1 − (�

P
(x))2

)
− �(�

P
(x))2 + �

[
1 − (�

P
(x))2 − (�

P
(x))2−

�
(
1 − (�

P
(x))2

)
+�(�

P
(x))2

]
+ (�

P
(x))2

}0.5
=

√
(�

P
(x))2 + (�

P
(x))2 +

(
1 − (�

P
(x))2

)(
2� − �2

)
− �(�

P
(x))2(2 − �). The 

results are consistent with the outcome of η = 2 in (T2.1) and (T2.3); thus, the determination 
equations are valid in the case of η = 2. Next, assume that (T2.1) and (T2.3) hold for � = � . 
Then,

and �M�
�
(P)(x) = �P(x) . When � = � + 1 , one has �M�+1

�
(P)(x) = �P(x) ; moreover, by way of 

Definitions 7 and 9, it is yielded that:

r
M1

�
(P)(x) =

√
(�

P
(x))2 + �

(
1 − (�

P
(x))2 − (�

P
(x))2

)
+ (�

P
(x))2

=

√
(�

P
(x))2 + (�

P
(x))2 + �

(
1 − (�

P
(x))2

)
− �(�

P
(x))2.

�
M2

�
(P)(x) =

{
(�

P
(x))2 + �

(
1 − (�

P
(x))2

)
− �(�

P
(x))2 + �

[
1 − (�

P
(x))2 − (�

P
(x))2 − �

(
1 − (�

P
(x))2

)

+ �(�
P
(x))2

]}0.5

=

√
(�

P
(x))2 +

(
1 − (�

P
(x))2

)(
2� − �2

)
− �(�

P
(x))2(2 − �),

�M�
�
(P)(x) =

√√√√(�P(x))
2 +

(
1 − (�P(x))

2
)(
1 − (1 − �)�

)
− �(�P(x))

2

(
�−1∑
k=0

(1 − �)k

)
,

rM�
�
(P)(x) =

√√√√(�P(x))
2 + (�P(x))

2 +
(
1 − (�P(x))

2
)(
1 − (1 − �)�

)
− �(�P(x))

2

(
�−1∑
k=0

(1 − �)k

)
,

�
M�+1

�
(P)(x) =

√
(�

M�
�
(P)(x))

2 + �(�
M�

�
(P)(x))

2 =

√
(�

M�
�
(P)(x))

2 + �

(
1 − (r

M�
�
(P)(x))

2

)

=

{
(�

P
(x))2 +

(
1 − (�

P
(x))2

)(
1 − (1 − �)�

)
− �(�

P
(x))2

(
�−1∑
k=0

(1 − �)k

)

+�
(
1 − (�

P
(x))2

)
− �(�

P
(x))2 − �

(
1 − (�

P
(x))2

)(
1 − (1 − �)�

)
+ �2(�

P
(x))2

(
�−1∑
k=0

(1 − �)k

)}0.5

=
{
(�

P
(x))2 +

(
1 − (�

P
(x))2

)[
1 − (1 − �)� + � − �

(
1 − (1 − �)�

)]

+�(�
P
(x))2

(
−

�−1∑
k=0

(1 − �)k − 1 + �

)}0.5

=

√√√√(�
P
(x))2 +

(
1 − (�

P
(x))2

)(
1 − (1 − �)(1 − �)�

)
− �(�

P
(x))2

(
(1 − �) +

�−1∑
k=0

(1 − �)k

)

=

√√√√(�
P
(x))2 +

(
1 − (�

P
(x))2

)(
1 − (1 − �)�+1

)
− �(�

P
(x))2

(
�∑

k=0

(1 − �)k

)
,

rM�+1
�

(P)(x) =

√√√√(�P(x))
2 + (�P(x))

2 +
(
1 − (�P(x))

2
)(
1 − (1 − �)�+1

)
− �(�P(x))

2

(
�∑

k=0

(1 − �)k

)
.
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On this basis, (T2.1) and (T2.3) hold for � = � + 1 . Accordingly, the properties of (T2.1) 
and (T2.3) are fulfilled corresponding to all η values.

(T2.4) Based on (T2.1), the discrepancy between squared membership grades in the recur-
rent upper estimations M�

�(p) and M�−1
� (p) for all � ∈ [0, 1] is calculated in this way:

It becomes clear that � ≥ 0 , (1 − �)�−1 ≥ 0 , and 1 − (�P(x))
2 − �(�P(x))

2 ≥ 0 
from � ∈ [0, 1] and 0 ≤ (�P(x))

2 + (�P(x))
2 ≤ 1 . This evidences that 

(�M
�
� (P)

(x))2 − (�
M

�−1
� (P)(x))

2 ≥ 0 , which reveals that �M
�
� (P)

(x) ≥ �
M

�−1
� (P)(x) . On the 

other side, based on (T2.2), the difference between the non-membership grades in 
the recurrent upper estimations M�

�(p) and M�−1
� (p) is always equal to zero because 

�M�
� (P)

(x) = �
M

�−1
� (P)(x) = �P(x) for each � ∈ [0, 1] , which straightly infers that the ine-

quality �M�
� (P)

(x) ≤ �
M

�−1
� (P)(x) is satisfied. From Definition 5, the natural quasi-ordering 

M
𝜂
𝛼(p)≻Q

M
𝜂−1
𝛼 (p) holds because �M

�
� (P)

(x) ≥ �
M

�−1
� (P)(x) and �M�

� (P)
(x) ≤ �

M
�−1
� (P)(x) . As a 

result, (T2.4) is correct.
(T2.5) By using (T2.1), it is yielded that 

lim�→∞ �M
�
� (P)

(x) = lim�→∞[(�P(x))
2 + (1 − (�P(x))

2)⋅

(1 − (1 − �)�) − �(�P(x))
2(
∑�−1

k=0
(1 − �)k)]0.5 =

√
1 − (�P(x))

2 . From (T2.2), it is revealed 
that lim�→∞ �M�

� (P)
(x) = lim�→∞ �P(x) = �P(x) . By applying Definition 2, it indicates that 

lim�→∞ M
�
�(p) =(

√
1 − (�P(x))

2, �P(x);1, (� − 2 ⋅ sin−1(�P(x)))∕�)) . Thus, (T2.5) is con-
firmed, which demonstrates the truth of Theorem 2.

A.3 Proof of Theorem 4

(T4.1) The values of scalar functions range from 0 to 1 on the basis of Definition 4; thus, 
0 ≤ V(pij),V(M�ij

(pij)),V(N�ij
(pij)) ≤ 1 . In accordance with the property in (T1.5), 

dN
ij
≤ dij ≤ dM

ij
 and �M

ij
≤ �ij ≤ �N

ij
 . Moreover, rM

ij
≥ rij and rN

ij
≥ rij because  

min{rM
ij
, rN

ij
} ≥ rij in (T1.4). It can be deduced that the two inequalities  

V(pij) ≤ V(M�ij
(pij)) and V(N�ij

(pij)) ≤ V(pij) are satisfied because 
rij(dij − 0.5) ≤ rM

ij
(dM

ij
− 0.5) and rN

ij
(0.5 − 2 ⋅ �N

ij

/
�) ≤ rij(0.5 − 2 ⋅ �ij

/
�) , respectively. 

Thus, 0 ≤ V(N�ij
(pij)) ≤ V(pij) ≤ V(M�ij

(pij)) ≤ 1.
(T4.2) From (29) and (31), it is known that rM

ij
=
√

(�ij)
2 + (�ij)

2 + �ij(�ij)
2 and �M

ij
=

arc cos
(√

(�ij)
2 + �ij(�ij)

2

/√
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

)
 , respectively. From (34), the fol-

lowing consequence can be determined:

(�
M

�
� (P)

(x))2 − (�
M

�−1
� (P)(x))

2 = (�
P
(x))2 +

(
1 − (�

P
(x))2

)
(1 − (1 − �)�) − �(�

P
(x))2

(
�−1∑
k=0

(1 − �)k

)
− (�

P
(x))2

−
(
1 − (�

P
(x))2

)(
1 − (1 − �)�−1

)
+ �(�

P
(x))2

(
�−2∑
k=0

(1 − �)k

)

=
(
1 − (�

P
(x))2

)(
(1 − �)�−1 − (1 − �)�

)
− �(�

P
(x))2

(
�−1∑
k=0

(1 − �)k −

�−2∑
k=0

(1 − �)k

)

=
(
1 − (�

P
(x))2

)(
(1 − �)�−1 − (1 − �)(1 − �)�−1

)
− �(�

P
(x))2

(
�−2∑
k=0

(1 − �)k + (1 − �)�−1 −

�−2∑
k=0

(1 − �)k

)

= �(1 − �)�−1
(
1 − (�

P
(x))2 − �(�

P
(x))2

)
.
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The partial derivative of V(M�ij
(pij)) in regard to αij is computed in this fashion:

Thus, �V(M�ij
(pij))

/
��ij ≥ 0 because arc cos

(√
(�ij)

2
+ �ij(�ij)

2

/√
(�ij)

2
+ (�ij)

2
+ �ij(�ij)

2

)
≤

(�∕4) and (2∕�)

/√
1 −

(
(�ij)

2 + �ij(�ij)
2
)/(

(�ij)
2 + (�ij)

2 + �ij(�ij)
2
)
≥ 0 . Thus, 

V(M�ij
(pij)) is monotonically nondecreasing with the allocation parameter αij, thereby confirm-

ing the truth of (T4.2).
(T4.3) In accordance with (30) and (32), rN

ij
=
√

(�ij)
2 + (�ij)

2 + �ij(�ij)
2 and �N

ij
=

arcsin
(√

(�ij)
2 + �ij(�ij)

2

/√
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

)
 , respectively. Applying (35), the fol-

lowing is true:

V(M�
ij
(p

ij
)) =

1

2
+ r

M

ij
⋅

�
1

2
−

2 ⋅ �M
ij

�

�
=

1

2
+
�

(�
ij
)2 + (�

ij
)2 + �

ij
(�

ij
)2⋅

⎡⎢⎢⎢⎣
1

2
−
�
2

�

�
arc cos

⎛⎜⎜⎜⎝

�
(�

ij
)2 + �

ij
(�

ij
)2

�
(�

ij
)2 + (�

ij
)2 + �

ij
(�

ij
)2

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
.

�V(M�ij
(pij))

��ij
=

�

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

��ij
⋅

⎡
⎢⎢⎢⎣
1

2
−
�
2

�

�
arc cos

⎛
⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

+
�

(�ij)
2 + (�ij)

2 + �ij(�ij)
2 ⋅

�

�
1

2
−
�

2

�

�
arc cos

� √
(�ij)

2+�ij(�ij)
2√

(�ij)
2+(�ij)

2+�ij(�ij)
2

��

��ij

=
(�ij)

2

2
�

(�ij)
2 + (�ij)

2 + �ij(�ij)
2

⋅

⎡⎢⎢⎢⎣
1

2
−
�
2

�

�
arc cos

⎛⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

+
�

(�ij)
2 + (�ij)

2 + �ij(�ij)
2 ⋅

⎧⎪⎪⎨⎪⎪⎩

−
�
2

�

�
⎡⎢⎢⎢⎢⎢⎣

−1

�
��������1 −

⎛⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

=
(�ij)

2

2
�

(�ij)
2 + (�ij)

2 + �ij(�ij)
2

⋅

⎡⎢⎢⎢⎣
1

2
−
�
2

�

�
arc cos

⎛⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

+
�

(�ij)
2 + (�ij)

2 + �ij(�ij)
2 ⋅

⎡⎢⎢⎣

�
2

�

���
1 −

(�ij)
2 + �ij(�ij)

2

(�ij)
2 + (�ij)

2 + �ij(�ij)
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The partial derivative of V(N�ij
(pij)) compared to βij is calculated in this manner:

Because arcsin
(√

(�ij)
2 + �ij(�ij)

2

/√
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

)
≥ (�∕4) and −(2∕�)∕√

1 −
(
(�ij)

2 + �ij(�ij)
2
)/(

(�ij)
2 + (�ij)

2 + �ij(�ij)
2
)
≤ 0 , it is deduced that 

�V(N�ij
(pij))

/
��ij ≤ 0 . Thus, V(N�ij

(pij)) is monotonically nonincreasing with the allocation 
parameter βij. Thus, the correctness of (T4.3) is confirmed, which gives substance to the 
truth of Theorem 4.

A.4 Proof of Theorem 5

(T5.1) For notational convenience, we denote:

V(N�
ij
(p

ij
)) =

1

2
+ r

N

ij
⋅

�
1

2
−

2 ⋅ �N
ij

�

�
=

1

2
+
�

(�
ij
)2 + (�

ij
)2 + �

ij
(�

ij
)2⋅

⎡
⎢⎢⎢⎣
1

2
−
�
2

�

�
arcsin

⎛
⎜⎜⎜⎝

�
(�

ij
)2 + �

ij
(�

ij
)2

�
(�

ij
)2 + (�

ij
)2 + �

ij
(�

ij
)2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
.

�V(N�ij
(pij))

��ij
=

�

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

��ij
⋅

⎡
⎢⎢⎢⎣
1

2
−
�
2

�

�
arcsin

⎛
⎜⎜⎜⎝

�
(�ij)

2 + �ij(�ij)
2

�
(�ij)

2 + (�ij)
2 + �ij(�ij)

2

⎞
⎟⎟⎟⎠

⎤⎥⎥⎥⎦

+
�
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2 ⋅

�

�
1

2
−
�

2

�

�
arcsin

� √
(�ij)

2+�ij(�ij)
2√

(�ij)
2+(�ij)

2+�ij(�ij)
2

��
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=
(�ij)

2
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�

(�ij)
2 + (�ij)

2 + �ij(�ij)
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⋅
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−
�
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�

�
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⎛⎜⎜⎜⎝
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�
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from which Lik(pij≻pkj) = max{1 −max{Λ(pij, pkj), 0}, 0} . The fact that 
max{Λ(pij, pkj), 0} ≥ 0 yields the outcomes 1 −max{Λ(pij, pkj), 0} ≤ 1 and 
0 ≤ max{1 −max{Λ(pij, pkj), 0}, 0} ≤ 1 . Therefore, the boundedness property of 
0 ≤ Lik(pij≻pkj) ≤ 1 is satisfied, and (T5.1) is correct.

(T5.2) For necessity, max{1 −max{Λ(pij, pkj), 0}, 0} = 0 from the given condition 
Lik(pij≻pkj) = 0 . Thus, max{Λ(pij, pkj), 0} ≥ 1 , which leads to Λ(pij, pkj) ≥ 1 . It can be 
demonstrated that V(M�kj

(pkj)) − V(N�ij
(pij)) ≥

V(M�ij
(pij)) − V(N�ij

(pij)) + V(M�kj
(pkj)) − V(N�kj

(pkj)) , which leads to 
V(N�kj

(pkj)) ≥ V(M�ij
(pij)) . For sufficiency, based on the property in (T4.1), V(M�ij

(pij))−

V(N�ij
(pij)) ≥ 0 and V(M�kj

(pkj)) − V(N�kj
(pkj)) ≥ 0 . Thus, V(M�ij

(pij)) − V(N�ij
(pij))+

V(M�kj
(pkj)) − V(N�kj

(pkj)) ≥ 0 , from which V(M�kj
(pkj)) − V(N�ij

(pij)) − (V(N�kj
(pkj))−

V(M�ij
(pij))) ≥ 0 . By combining the condition V(N�kj

(pkj)) ≥ V(M�ij
(pij)) , V(M�kj

(pkj))−

V(N�ij
(pij)) ≥ (V(M�ij

(pij)) − V(N�ij
(pij))) + (V(M�kj

(pkj)) − V(N�kj
(pkj))) , from which 

Λ(pij, pkj)≥ 1 . In addition, max{Λ(pij, pkj), 0} = Λ(pij, pkj) ≥ 1 and 
1 −max{Λ(pij, pkj), 0} ≤ 0 . Thus, max{1 −max{Λ(pij, pkj), 0}, 0} = 0 (i.e., 
Lik(pij≻pkj) = 0 ), and (T5.2) is valid.

(T5.3) For necessity, the given assumption Lik(pij≻pkj) = 1 leads to the deduction that 
max{1 −max{Λ(pij, pkj), 0}, 0} = 1 . Logically, Λ(pij, pkj) ≤ 0 because 
max{Λ(pij, pkj), 0} = 0 . Thus, V(M�kj

(pkj)) − V(N�ij
(pij)) ≤ 0 , i.e., 

V(N�ij
(pij)) ≥ V(M�kj

(pkj)) . For sufficiency, the given assumption V(N�ij
(pij)) ≥ V(M�kj

(pkj)) 
indicates that V(M�kj

(pkj)) − V(N�ij
(pij)) ≤ 0 . It is verified that V(M�ij

(pij)) − V(N�ij
(pij)) ≥ 0 

and V(M�kj
(pkj)) − V(N�kj

(pkj)) ≥ 0 based on (T4.1). Because V(M�ij
(pij)) − V(N�ij

(pij)) = 0 
and V(M�kj

(pkj)) − V(N�kj
(pkj)) = 0 do not occur at the same time, the denominator in 

Λ(pij, pkj) is greater than zero on all occasions. Thus, Λ(pij, pkj) ≤ 0 , which yields 
max{1 −max{Λ(pij, pkj), 0}, 0} = 1, namely, Lik(pij≻pkj) = 1 ). As a result, (T5.3) is 
satisfied.

(T5.4) To show the complementarity property, this paper makes the following four 
assumptions about the scalar functions presented in Λ(pij, pkj) : (1) V(N�ij

(pij)) ≤ V(N�kj
(pkj)) 

and V(M�ij
(pij)) ≤ V(M�kj

(pkj)) ; (2) V(N�ij
(pij)) ≥ V(N�kj

(pkj)) and V(M�ij
(pij)) ≥ V(M�kj

(pkj)) ; 
(3) V(N�ij

(pij)) ≤ V(N�kj
(pkj)) and V(M�ij

(pij)) ≥ V(M�kj
(pkj)) ; and (4) 

V(N�ij
(pij)) ≥ V(N�kj

(pkj)) and V(M�ij
(pij)) ≤ V(M�kj

(pkj)) . We denote 
Λ(pkj, pij) = (V(M�ij

(pij)) − V(N�kj
(pkj)))∕

(V(M�ij
(pij)) − V(N�ij

(pij)) + V(M�kj
(pkj)) − V(N�kj

(pkj))) . It is apparent that 
Λ(pij, pkj) + Λ(pkj, pij)= 1 . In Case (i), in the light of the assumption and the property in 
(T4.1), V(N�ij

(pij)) ≤ V(M�ij
(pij))≤ V(M�kj

(pkj)) , which indicates that 
V(M�kj

(pkj)) − V(N�ij
(pij)) ≥ 0 . In the event that V(M�ij

(pij)) ≥V(N�kj
(pkj)) , it is readily cor-

roborated that V(M�kj
(pkj)) − V(N�ij

(pij)) ≤ (V(M�ij
(pij)) − V(N�ij

(pij)))

+(V(M�kj
(pkj)) − V(N�kj

(pkj))) . Thus, 0 ≤ Λ(pij, pkj) ≤ 1 and Lik(pij≻pkj) = 1 − Λ(pij, pkj) . 
Furthermore, the condition V(M�ij

(pij)) ≥ V(N�kj
(pkj)) implies that 

0 ≤ V(M�ij
(pij)) − V(N�kj

(pkj))≤ 1 . It is apparent that 0 ≤ V(M�ij
(pij)) − V(N�ij

(pij)) ≤ 1 and 

Λ(pij, pkj) =
V(M�kj

(pkj)) − V(N�ij
(pij))(

V(M�ij
(pij)) − V(N�ij

(pij))
)
+
(
V(M�kj

(pkj)) − V(N�kj
(pkj))

) ,
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0 ≤ V(M�kj
(pkj)) − V(N�kj

(pkj)) ≤ 1 , which yields Lik(pkj≻pij) = 1 − Λ(pkj, pij) . Accord-
ingly, it is found that:

Therefore, (T5.4) holds when V(M�ij
(pij)) ≥ V(N�kj

(pkj)) in Case (1). When V(M�ij
(pij)) ≤

V(N�kj
(pkj)) , V(M�kj

(pkj)) − V(N�ij
(pij)) ≥ (V(M�ij

(pij)) − V(N�ij
(pij))) + (V(M�kj

(pkj))−

V(N�kj
(pkj))) . It follows that Λ(pij, pkj) ≥ 1 and Lik(pij≻pkj) = max{1 − Λ(pij, pkj), 0} = 0 . 

Thus, V(M�ij
(pij)) − V(N�kj

(pkj)) ≤ 0 based on the condition V(M�ij
(pij)) ≤ V(N�kj

(pkj)) and 
Lik(pkj≻pij) = max{1 − 0, 0} = 1 , which indicates that Lik(pij≻pkj) + Lik(pkj≻pij) = 1 . 
Therefore, (T5.4) holds when V(M�ij

(pij)) ≤ V(N�kj
(pkj)) in Case (1). Case (2) can be cor-

roborated in an analogous way. Next, it is known that V(N�ij
(pij)) ≤ V(N�kj

(pkj)) and 
V(M�ij

(pij)) ≥ V(M�kj
(pkj)) in Case (3). Based on (T4.1), V(M�kj

(pkj)) ≥ V(N�kj
(pkj)) , which 

shows that V(M�kj
(pkj))≥ V(N�kj

(pkj)) ≥ V(N�ij
(pij)) and 

V(M�ij
(pij)) ≥ V(M�kj

(pkj)) ≥ V(N�kj
(pkj)) . Thus, V(M�kj

(pkj))−V(N�ij
(pij)) ≥ 0 and 

V(M�ij
(pij)) − V(N�kj

(pkj)) ≥ 0 are obtained. It is verified that (V(M�ij
(pij))−

V(N�ij
(pij))) + (V(M�kj

(pkj)) − V(N�kj
(pkj))) = (V(M�kj

(pkj)) − V(N�ij
(pij))) + (V(M�ij

(pij))−

V(N�kj
(pkj))) ≥ V(M�kj

(pkj)) − V(N�ij
(pij)) ≥ 0 . Thus, 0 ≤ Λ(pij, pkj) ≤ 1 , which implies that 

Lik(pij≻pkj) = max{1 −max{Λ(pij, pkj), 0}, 0} = 1 − Λ(pij, pkj) . Thereafter, the result 
Lik(pkj≻pij)= 1 − Λ(pkj, pij) can be acquired in a similar manner. Thus, 
Lik(pij≻pkj) + Lik(pkj≻pij)= (1 − Λ(pij, pkj)) + (1 − Λ(pkj, pij)) = 1 . Accordingly, (T5.4) is 
fulfilled in Case (iii), and Case (iv) is corroborated in an analogous manner. Based on these 
results, the complementarity property is possessed by the proposed PF likelihood measure, 
and (T5.4) is fulfilled.

(T5.5) When Lik(pij≻pkj) = Lik(pkj≻pij) , it is clearly understood that Lik(pij≻pkj) =
Lik(pkj≻pij) = 0.5 through the agency of (T5.4), and thus, (T5.5) is valid. (T5.6) can be 
easily inferred from (T5.5).

(T5.7) Based on (T5.4) and (T5.6), Lik(pij≻pkj) + Lik(pkj≻pij) = 1 and Lik(pij≻pij) = 0.5 , 
respectively. Accordingly, the following can be derived:

This confirms the correctness of Theorem 5.

A.5 Proof of Theorem 7

Let us denote Λ(pij, plj) = (V(M�lj
(plj)) − V(N�ij

(pij)))∕(V(M�ij
(pij)) − V(N�ij

(pij))+

V(M�lj
(plj)) − V(N�lj

(plj))) and Λ(plj, pij) = (V(M�ij
(pij)) − V(N�lj

(plj)))∕(V(M�ij
(pij))−

V(N�ij
(pij)) + V(M�lj

(plj)) − V(N�lj
(plj))) for brevity. Thus, Λ(pij, plj) + Λ(plj, pij) = 1 . Con-

sider the supposition that Lik(pij≻plj) ≥ 0.5 and Lik(plj≻pkj) ≥ 0.5 . The assumption 
Lik(pij≻plj) =max{1 −max{Λ(pij, plj), 0}, 0} ≥ 0.5 indicates that 
V(M�lj

(plj)) − V(N�ij
(pij)) ≥ 0 and 1−Λ(pij, plj) ≥ 0.5 . It is known that Λ(plj, pij) ≥ 0.5 

because Λ(pij, plj) + Λ(plj, pij) = 1 . It is clear that

Lik(pij≻pkj) + Lik(pkj≻pij) = 2 −
V(M𝛼kj

(pkj)) − V(N𝛽ij
(pij)) + V(M𝛼ij

(pij)) − V(N𝛽kj
(pkj))(

V(M𝛼ij
(pij)) − V(N𝛽ij

(pij))
)
+
(
V(M𝛼kj

(pkj)) − V(N𝛽kj
(pkj))

) = 1.

m∑
i=1

m∑
k=1

Lik(pij≻pkj) =

m∑
i=1

Lik(pij≻pij) +

m∑
i=1,i<k

(
Lik(pij≻pkj) + Lik(pkj≻pij)

)
=

m

2
+

m(m − 1)

2
=

m2

2
.
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Thus, 0 ≤ V(M�lj
(plj)) − V(N�ij

(pij)) ≤ V(M�ij
(pij)) − V(N�lj

(plj)) . The assumption  
0.5Lik(plj≻pkj) ≥ (i.e., max{1 −max{Λ(plj, pkj), 0}, 0} ≥ 0.5 ) shows that 
V(M�kj

(pkj)) − V(N�lj
(plj)) ≥ 0 and 1 − Λ(plj, pkj) ≥ 0.5 . From Λ(plj, pkj) + Λ(pkj, plj) = 1 , 

one obtains Λ(pkj, plj) ≥ 0.5 . To be specific,

It can be determined that 0 ≤ V(M�kj
(pkj)) − V(N�lj

(plj)) ≤ V(M�lj
(plj)) − V(N�kj

(pkj)) . 
By adding the obtained inequalities 
0 ≤ V(M�lj

(plj)) − V(N�ij
(pij)) ≤ V(M�ij

(pij)) − V(N�lj
(plj)) and 0 ≤

V(M�kj
(pkj)) − V(N�lj

(plj)) ≤ V(M�lj
(plj)) − V(N�kj

(pkj)) , it is verified that 0 ≤ V(M�kj
(pkj))

−V(N�ij
(pij)) ≤ V(M�ij

(pij)) − V(N�kj
(pkj)) . By adding V(M�kj

(pkj)) − V(N�ij
(pij)) to this ine-

quality, the following is obtained: 
0 ≤ V(M�kj

(pkj)) − V(N�ij
(pij))+V(M�kj

(pkj)) − V(N�ij
(pij)) ≤

V(M�ij
(pij)) − V(N�kj

(pkj))+V(M�kj
(pkj)) − V(N�ij

(pij)). This indicates that:

As a consequence, the following is obtained:

Namely, 0 ≤ Λ(pij, pkj) ≤ 0.5 . Thus, it can be demonstrated that 
0 ≤ max{Λ(pij, pkj), 0} ≤ 0.5 and 0.5 ≤ 1 −max{Λ(pij, pkj), 0} ≤ 1 . Accordingly, 
it is shown that 0.5 ≤ max{1 −max{Λ(pij, pkj), 0}, 0} ≤ 1 , which indicates that 
Lik(pij≻pkj) ≥ 0.5 . Therefore, the PF likelihood measure possesses the property of weak 
transitivity, which demonstrates the truth of Theorem 7.

A.6 Proof of Theorem 8

(T8.1) According to (T5.1) and (T5.6), it is known that 0 ≤ Lik(pkj≻pij) ≤ 1 and 
Lik(pkj≻pkj) = 0.5 , respectively. Thus, the subsequent outcomes can be determined:

Λ(plj, pij) =
V(M�ij

(pij)) − V(N�lj
(plj))(

V(M�lj
(plj)) − V(N�lj

(plj))
)
+
(
V(M�ij

(pij)) − V(N�ij
(pij))

) ≥
1

2
.

Λ(pkj, plj) =
V(M�lj

(plj)) − V(N�kj
(pkj))(

V(M�kj
(pkj)) − V(N�kj

(pkj))
)
+
(
V(M�lj

(plj)) − V(N�lj
(plj))

) ≥
1

2
.

0 ≤ 2
(
V(M�kj

(pkj)) − V(N�ij
(pij))

)
≤

(
V(M�ij

(pij)) − V(N�ij
(pij))

)
+
(
V(M�kj

(pkj)) − V(N�kj
(pkj))

)
.

0 ≤
V(M�kj

(pkj)) − V(N�ij
(pij))(

V(M�ij
(pij)) − V(N�ij

(pij))
)
+
(
V(M�kj

(pkj)) − V(N�kj
(pkj))

) ≤
1

2
.
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Therefore, it follows that 1∕2m ≤ Pen(pij) ≤ 3∕2m , and (T8.1) is correct.
(T8.2) With the help of the property Lik(pkj≻pij) + Lik(pij≻pkj) = 1 based on (T5.4), one 

can quickly obtain the following:

(T8.3) Regarding an evaluative criterion cj, it can be determined the following:

(T8.4) can be trivially proven through the medium of (T8.3), which demonstrates the 
correctness of Theorem 8.

A.7 Proof of Theorem 9

Theorem  9 will be demonstrated under the aegis of mathematical induction on n. On 
the occasion that n = 2, it can be received that Δ𝜙

i
=
[(
Pen(pi1) ⋅

||Φi1 − 𝜙||
)
⊙ w1

]
⊕[(

Pen(pi2) ⋅
||Φi2 − 𝜙||

)
⊙ w2

]
 . Applying the arithmetic operations in Definition 6, the two-

dimensional representation Δ��

i
 ( = (�

�

Δi
, �

�

Δi
) ) is calculated as follows:

Pen(pij) =
1

m(m − 1)

(
Lik(pkj≻pkj) +

m∑
i=1,i≠k

Lik(pkj≻pij) +
m

2
− 1

)

=
1

m(m − 1)

(
1

2
+

m∑
i=1,i≠k

Lik(pkj≻pij) +
m

2
− 1

)

≥
1

m(m − 1)

(
1

2
+ 0 +

m

2
− 1

)
=

1

2m
,

Pen(pij) ≤
1

m(m − 1)

(
1

2
+

m∑
i=1,i≠k

1 +
m

2
− 1

)
=

1

m(m − 1)

(
1

2
+ (m − 1) +

m

2
− 1

)
=

3

2m
.

Pen(pij) + Pr i(pij) =
1

m(m − 1)

(
m∑
k=1

Lik(pkj≻pij) +
m

2
− 1

)
+

1

m(m − 1)

(
m∑
k=1

Lik(pij≻pkj) +
m

2
− 1

)

=
1

m(m − 1)

(
m∑
k=1

(
Lik(pkj≻pij) + Lik(pij≻pkj)

)
+ m − 2

)

=
1

m(m − 1)
(m + m − 2) =

2

m
.

m∑
i=1

Pen(pij) =

m∑
i=1

1

m(m − 1)

(
m∑
k=1

Lik(pkj≻pij) +
m

2
− 1

)

=
1

m(m − 1)

(
m∑
i=1

m∑
k=1

Lik(pkj≻pij) +

m∑
i=1

(
m

2
− 1

))

=
1

m(m − 1)

(
m2

2
+

m(m − 2)

2

)
=

1

m(m − 1)

(
2m(m − 1)

2

)
= 1.
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It can be observed that (43) is fulfilled for n = 2. Suppose that (43) holds for n = � , namely,

When n = � + 1 , based on Definition 14, it can be acquired that:

By use of the arithmetic operations with respect to the two-dimensional representation for 
Pythagorean membership grades, one obtains:
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i
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It reveals that (43) is satisfied for n = � + 1 . As a result, (43) is valid in connection with 
all n, which confirms the truth of Theorem 9.

A.8 Proof of Theorem 10

(T10.1) Based on Definition 15 and 0 ≤ r
�

Δi
, d

�

Δi
≤ 1 , it is readily corroborated that V(Δ�

i
) 

would be in the range of 0 − 1 (i.e., 0 ≤ V(Δ
�

i
) ≤ 1).

(T10.2) Concerning necessity, the precondition V(Δ�

i
) = 0 indicates that 0.5 + r

�

Δi
⋅ (d

�

Δi

−0.5) = 0 (or equivalently, 0.5 + r
�

Δi
⋅ (0.5 − (2∕�) ⋅ �

�

Δi
) = 0 ). It is directly vali-

dated that r�
Δi

= 1 and d�
Δi

= 0 hold due to the conditions r�
Δi
⋅ (d

�

Δi
− 0.5) = −0.5 and 

0 ≤ r
�

Δi
, d

�

Δi
≤ 1 . Alternately, the conditions r�

Δi
⋅ (0.5 − (2∕�) ⋅ �

�

Δi
) = −0.5 , 0 ≤ r

�

Δi
≤ 1 , 

and 0 ≤ �
�

Δi
≤ �∕2 demonstrate the truth of r�

Δi
= 1 and ��

Δi
= �∕2 . In light of Defini-

tion 2, ��

Δi
= r

�

Δi
⋅ cos(�

�

Δi
) = 0 and ��

Δi
= r

�

Δi
⋅ sin(�

�

Δi
) = 1 . Thus, it can be confirmed that 

Δ
�

i
= (0, 1;1, 0) . For sufficiency, the condition Δ�

i
= (0, 1;1, 0) yields V(Δ�

i
) = 0 by use of 

Definition 15. Based on these results, (T10.2) is valid.
(T10.3) For necessity, the precondition V(Δ�

i
) = 1 indicates that r�

Δi
⋅ (d

�

Δi
− 0.5) = 0.5 

(or equivalently, r�
Δi
⋅ (0.5 − (2∕�) ⋅ �

�

Δi
) = 0.5 ). On the basis of Definitions 1 and 2, 

it is known that r�
Δi

= d
�

Δi
= 1 (or equivalently, r�

Δi
= 1 and ��

Δi
= 0 ). It is shown that 

Δ
�

i
= (1, 0;1, 1) from ��

Δi
= r

�

Δi
⋅ cos(�

�

Δi
) = 1 and ��

Δi
= r

�

Δi
⋅ sin(�

�

Δi
) = 0 . For sufficiency, it 

is revealed that V(Δ�

i
) = 1 when Δ�

i
= (1, 0;1, 1) . Therefore, (T10.3) is valid.

(T10.4) is known based on Definition 15. In (T10.5), the precondition ��
Δi

= 0 indi-
cates that r�

Δi
= 1 . Thus, V(Δ�

i
) = 0.5 + 1 ⋅ (d

�

Δi
− 0.5) = d

�

Δi
 , which completes the proof of 

Theorem 10.
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Appendix B: Detailed result tables

Table 1   Computation outcomes related to the PF point operator-oriented upper estimation

ai cj αij M�ij
(pij) = (�M

ij
, �M

ij
;rM
ij
, dM

ij
) �M

ij
�M
ij

V(M�ij
(pij))

a1 c1 0.0602 (0.2453, 0.8300; 0.8655, 0.1829) 1.2835 0.5009 0.2256
c2 0.1518 (0.3896, 0.7800; 0.8719, 0.2949) 1.1075 0.4897 0.3212
c3 0.4516 (0.6720, 0.5400; 0.8621, 0.5691) 0.6769 0.5068 0.5595
c4 0.1465 (0.3827, 0.7000; 0.7978, 0.3185) 1.0704 0.6029 0.3552
c5 0.9800 (0.9899, 0.1300; 0.9984, 0.9169) 0.1306 0.0557 0.9162
c6 0.6001 (0.7747, 0.4000; 0.8718, 0.6966) 0.4766 0.4898 0.6714

a2 c1 0.1914 (0.4375, 0.7400; 0.8596, 0.3399) 1.0369 0.5109 0.3624
c2 0.5676 (0.7534, 0.4800; 0.8933, 0.6389) 0.5672 0.4494 0.6241
c3 0.6476 (0.8047, 0.4500; 0.9220, 0.6754) 0.5099 0.3872 0.6617
c4 0.2975 (0.5455, 0.6300; 0.8333, 0.4543) 0.8572 0.5528 0.4619
c5 0.9568 (0.9782, 0.1700; 0.9928, 0.8905) 0.1721 0.1196 0.8876
c6 0.8472 (0.9204, 0.3100; 0.9712, 0.7932) 0.3249 0.2381 0.7848

a3 c1 0.5948 (0.7712, 0.5200; 0.9302, 0.6223) 0.5932 0.3672 0.6138
c2 0.9046 (0.9511, 0.2500; 0.9834, 0.8364) 0.2570 0.1813 0.8308
c3 0.9461 (0.9727, 0.2100; 0.9951, 0.8646) 0.2126 0.0989 0.8628
c4 0.6275 (0.7921, 0.4700; 0.9211, 0.6591) 0.5355 0.3894 0.6465
c5 0.8399 (0.9165, 0.3100; 0.9675, 0.7923) 0.3262 0.2530 0.7828
c6 0.9859 (0.9929, 0.1100; 0.9990, 0.9298) 0.1103 0.0447 0.9293

a4 c1 0.9385 (0.9687, 0.2100; 0.9912, 0.8641) 0.2135 0.1321 0.8609
c2 0.9684 (0.9841, 0.1500; 0.9954, 0.9037) 0.1513 0.0955 0.9019
c3 0.8930 (0.9450, 0.2700; 0.9828, 0.8228) 0.2783 0.1847 0.8173
c4 0.8507 (0.9223, 0.3100; 0.9730, 0.7936) 0.3242 0.2306 0.7857
c5 0.1409 (0.3754, 0.7900; 0.8747, 0.2824) 1.1272 0.4847 0.3097
c6 0.9561 (0.9778, 0.1800; 0.9942, 0.8841) 0.1820 0.1072 0.8819

a5 c1 0.9783 (0.9891, 0.1400; 0.9989, 0.9105) 0.1406 0.0458 0.9101
c2 0.9878 (0.9939, 0.1000; 0.9989, 0.9362) 0.1003 0.0469 0.9357
c3 0.6784 (0.8236, 0.4200; 0.9246, 0.6998) 0.4716 0.3811 0.6847
c4 0.9086 (0.9532, 0.2600; 0.9881, 0.8305) 0.2663 0.1541 0.8265
c5 0.0154 (0.1240, 0.8800; 0.8887, 0.0891) 1.4308 0.4585 0.1349
c6 0.4277 (0.6540, 0.5900; 0.8808, 0.5327) 0.7340 0.4735 0.5288
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Table 2   Computation outcomes related to the PF point operator-oriented lower estimation

ai cj βij N�ij
(pij) = (�N

ij
, �N

ij
;rN
ij
, dN

ij
) �N

ij
�N
ij

V(N�ij
(pij))

a1 c1 0.9398 (0.2100, 0.9695; 0.9919, 0.1358) 1.3575 0.1267 0.1387
c2 0.8482 (0.3300, 0.9210; 0.9783, 0.2190) 1.2267 0.2072 0.2251
c3 0.5484 (0.4900, 0.7406; 0.8880, 0.3721) 0.9863 0.4599 0.3864
c4 0.8535 (0.2900, 0.9239; 0.9683, 0.1936) 1.2666 0.2498 0.2033
c5 0.0200 (0.9100, 0.1414; 0.9209, 0.9018) 0.1542 0.3897 0.8701
c6 0.3999 (0.4900, 0.6324; 0.8000, 0.4197) 0.9116 0.6000 0.4357

a2 c1 0.8086 (0.3600, 0.8992; 0.9686, 0.2424) 1.1900 0.2485 0.2505
c2 0.4324 (0.5500, 0.6575; 0.8572, 0.4435) 0.8742 0.5149 0.4515
c3 0.3524 (0.6100, 0.5936; 0.8512, 0.5086) 0.7718 0.5249 0.5074
c4 0.7025 (0.4100, 0.8381; 0.9330, 0.2896) 1.1158 0.3598 0.3037
c5 0.0432 (0.8000, 0.2079; 0.8266, 0.8382) 0.2542 0.5628 0.7795
c6 0.1528 (0.7300, 0.3909; 0.8281, 0.6870) 0.4916 0.5606 0.6549

a3 c1 0.4052 (0.6300, 0.6366; 0.8956, 0.4967) 0.7906 0.4448 0.4970
c2 0.0954 (0.7700, 0.3088; 0.8296, 0.7572) 0.3814 0.5583 0.7134
c3 0.0539 (0.8800, 0.2321; 0.9101, 0.8358) 0.2579 0.4144 0.8056
c4 0.3725 (0.6100, 0.6103; 0.8629, 0.4998) 0.7857 0.5054 0.4998
c5 0.1601 (0.7100, 0.4001; 0.8150, 0.6733) 0.5132 0.5795 0.6412
c6 0.0141 (0.9200, 0.1187; 0.9276, 0.9183) 0.1283 0.3735 0.8880

a4 c1 0.0615 (0.8200, 0.2481; 0.8567, 0.8130) 0.2938 0.5158 0.7681
c2 0.0316 (0.8300, 0.1778; 0.8488, 0.8656) 0.2111 0.5287 0.8104
c3 0.1070 (0.7800, 0.3271; 0.8458, 0.7472) 0.3971 0.5335 0.7091
c4 0.1493 (0.7400, 0.3864; 0.8348, 0.6937) 0.4812 0.5506 0.6617
c5 0.8591 (0.3200, 0.9268; 0.9805, 0.2116) 1.2384 0.1963 0.2173
c6 0.0439 (0.8400, 0.2095; 0.8657, 0.8444) 0.2445 0.5005 0.7981

a5 c1 0.0217 (0.9400, 0.1473; 0.9515, 0.9010) 0.1554 0.3077 0.8816
c2 0.0122 (0.9000, 0.1104; 0.9067, 0.9223) 0.1221 0.4217 0.8829
c3 0.3216 (0.6100, 0.5671; 0.8329, 0.5232) 0.7490 0.5534 0.5193
c4 0.0914 (0.8200, 0.3022; 0.8739, 0.7752) 0.3531 0.4861 0.7405
c5 0.9846 (0.1100, 0.9923; 0.9984, 0.0703) 1.4604 0.0573 0.0710
c6 0.5723 (0.5100, 0.7565; 0.9124, 0.3776) 0.9776 0.4093 0.3883

Table 3   Results of the penalty 
weights and their criterion-wise 
predominating ranks

ai c1 c2 c3 c4 c5 c6

Results of the penalty weight Pen(pij)
a1 0.3000 0.3000 0.2861 0.2917 0.1057 0.2601
a2 0.2500 0.2500 0.2357 0.2583 0.1450 0.2023
a3 0.2000 0.1951 0.1035 0.2000 0.1993 0.1000
a4 0.1500 0.1483 0.1465 0.1392 0.2500 0.1500
a5 0.1000 0.1066 0.2282 0.1108 0.3000 0.2876
Results of the criterion-wise predominating rank Φij
a1 5th 5th 5th 5th 1st 4th
a2 4th 4th 4th 4th 2nd 3rd
a3 3rd 3rd 1st 3rd 3rd 1st
a4 2nd 2nd 2nd 2nd 4th 2nd
a5 1st 1st 3rd 1st 5th 5th
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Table 4   Computation results related to the comprehensive disagreement indicator

ai c1 c2 c3 c4 c5 c6 Δ
�

i

ϕ = 1 Results of Pen(p
ij
) ⋅ |Φ

ij
− 1| Results of Δ1

i

a1 1.2000 1.2000 1.1444 1.1668 0.0000 0.7804 (0.9482, 0.0112; 0.9482, 0.9925)
a2 0.7500 0.7500 0.7071 0.7749 0.1450 0.4045 (0.8742, 0.0575; 0.8761, 0.9582)
a3 0.4000 0.3902 0.0000 0.4000 0.3987 0.0000 (0.6496, 0.3161; 0.7225, 0.7117)
a4 0.1500 0.1483 0.1465 0.1392 0.7500 0.1500 (0.7891, 0.1825; 0.8099, 0.8553)
a5 0.0000 0.0000 0.4564 0.0000 1.2000 1.1505 (0.9664, 0.0132; 0.9665, 0.9913)
ϕ = 2 Results of Pen(p

ij
) ⋅ |Φ

ij
− 2| Results of Δ2

i

a1 0.9000 0.9000 0.8583 0.8751 0.1057 0.5202 (0.9064, 0.0336; 0.9071, 0.9764)
a2 0.5000 0.5000 0.4714 0.5166 0.0000 0.2023 (0.7411, 0.1936; 0.7660, 0.8373)
a3 0.2000 0.1951 0.1035 0.2000 0.1993 0.1000 (0.6068, 0.4172; 0.7364, 0.6166)
a4 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 (0.5819, 0.5000; 0.7672, 0.5481)
a5 0.1000 0.1066 0.2282 0.1108 0.9000 0.8629 (0.9323, 0.0375; 0.9331, 0.9744)
ϕ = 3 Results of Pen(p

ij
) ⋅ |Φ

ij
− 3| Results of Δ3

i

a1 0.6000 0.6000 0.5722 0.5834 0.2114 0.2601 (0.8275, 0.1010; 0.8337, 0.9227)
a2 0.2500 0.2500 0.2357 0.2583 0.1450 0.0000 (0.5675, 0.4360; 0.7156, 0.5829)
a3 0.0000 0.0000 0.2070 0.0000 0.0000 0.2000 (0.5562, 0.5506; 0.7826, 0.5032)
a4 0.1500 0.1483 0.1465 0.1392 0.2500 0.1500 (0.6554, 0.3649; 0.7502, 0.6766)
a5 0.2000 0.2131 0.0000 0.2215 0.6000 0.5753 (0.8608, 0.1061; 0.8673, 0.9219)
ϕ = 4 Results of Pen(p

ij
) ⋅ |Φ

ij
− 4| Results of Δ4

i

a1 0.3000 0.3000 0.2861 0.2917 0.3171 0.0000 (0.6656, 0.3034; 0.7315, 0.7277)
a2 0.0000 0.0000 0.0000 0.0000 0.2899 0.2023 (0.6268, 0.4558; 0.7750, 0.5997)
a3 0.2000 0.1951 0.3106 0.2000 0.1993 0.3000 (0.7507, 0.2297; 0.7851, 0.8110)
a4 0.3000 0.2966 0.2930 0.2785 0.0000 0.3000 (0.7128, 0.2664; 0.7609, 0.7723)
a5 0.3000 0.3197 0.2282 0.3323 0.3000 0.2876 (0.7750, 0.1861; 0.7970, 0.8499)
ϕ = 5 Results of Pen(p

ij
) ⋅ |Φ

ij
− 5| Results of Δ5

i

a1 0.0000 0.0000 0.0000 0.0000 0.4228 0.2601 (0.7035, 0.3397; 0.7812, 0.7136)
a2 0.2500 0.2500 0.2357 0.2583 0.4349 0.4045 (0.8261, 0.1354; 0.8371, 0.8966)
a3 0.4000 0.3902 0.4141 0.4000 0.3987 0.4000 (0.8510, 0.0958; 0.8564, 0.9286)
a4 0.4500 0.4450 0.4394 0.4177 0.2500 0.4500 (0.8482, 0.0972; 0.8537, 0.9274)
a5 0.4000 0.4263 0.4564 0.4430 0.0000 0.0000 (0.6199, 0.3265; 0.7007, 0.6914)
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