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Abstract
The idea of optimization can be regarded as an important basis of many disciplines and 
hence is extremely useful for a large number of research fields, particularly for artificial-
intelligence-based advanced control design. Due to the difficulty of solving optimal control 
problems for general nonlinear systems, it is necessary to establish a kind of novel learn-
ing strategies with intelligent components. Besides, the rapid development of computer 
and networked techniques promotes the research on optimal control within discrete-time 
domain. In this paper, the bases, the derivation, and recent progresses of critic intelligence 
for discrete-time advanced optimal control design are presented with an emphasis on the 
iterative framework. Among them, the so-called critic intelligence methodology is high-
lighted, which integrates learning approximators and the reinforcement formulation.
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1 Introduction

Intelligent techniques are being achieved tremendous attentions nowadays, because of the 
spectacular promotions that artificial intelligence brings to all walks of life (Silver et  al. 
2016). Within the plentiful applications related to artificial intelligence, an obvious feature 
is the possession of intelligent optimization. As an important foundation of several disci-
plines, such as cybernetics, computer science, and applied mathematics, the optimization 
methods are commonly used in many research fields and engineering practice. Note that 
optimization problems may be proposed with respect to minimum fuel, minimum energy, 
minimum penalty, maximum reward, and so on. Actually, most organisms in the nature 
desire to act in optimal fashions for conserving limited resources and meanwhile achieving 
their goals. Without exception, the idea of optimization also plays a key role in artificial-
intelligence-based advanced control design and constructing intelligent systems. However, 
with the wide popularity of networked techniques and the extension of computer control 
scales, more and more dynamical systems are encountered with increasing communica-
tion burdens, the difficulty of building accurately mathematical models, and the existence 
of various uncertain factors. As a result, it is always not an easy task to achieve optimiza-
tion design for these systems and the related control efficiencies are often low. Hence, it is 
extremely necessary to establish novel, advanced, and effective optimal control strategies, 
especially for, complex discrete-time nonlinear systems.

Unlike solving the Riccati equation for linear systems, the optimal control design of 
nonlinear dynamics often contains the difficulty of addressing the Hamilton-Jacobi-Bell-
man (HJB) equation. Though dynamic programming provides an effective pathway to 
deal with the problems, it is often computationally untenable to run this method to obtain 
optimal solutions due to curse of dimensionality (Bellman 1957). Moreover, the backward 
searching direction obviously precludes the use of dynamic programming in real-time 
control. Therefore, considering the usualness of encountering with nonlinear optimal con-
trol problems, some numerical methods have been proposed to overcome the difficulty of 
solving HJB equations, particularly under the dynamic programming formulation. Among 
them, the adaptive-critic-related framework is an important avenue and artificial neural 
networks are often taken as a kind of supplementary approximation tools (Werbos 1974, 
1977, 1992, 2008). Although other computational intelligence methods, such as fuzzy 
logic and evolutionary computation, also can be adopted, neural networks are employed 
more frequently to serve as the function approximator. In fact, there are several synonyms 
are included within the framework, including adaptive dynamic programming, approxi-
mate dynamic programming, neural dynamic programming, and neuro-dynamic program-
ming (Bertsekas 2017; Bertsekas and Tsitsiklis 1996; He et al. 2012; He and Zhong 2018; 
Liu et al. 2012; Prokhorov and Wunsch 1997; Si et al. 2004; Si and Wang 2001). These 
methods have been used to solve optimal control problems for both continuous-time and 
discrete-time systems. Remarkably, the well-known reinforcement learning is also closely 
related to such methods, which provides the important property of reinforcement.

Actually, classical dynamic programming is deemed to have limited utilities in the field 
of reinforcement learning due to the common assumption of exact models and the vast 
computational expense, but it is still significant to boost the development of reinforce-
ment learning in the sense of theory (Sutton and Barto 2018). Most of the strategies of 
reinforcement learning can be regarded as active attempts to accomplish much the same 
performances as dynamic programming, without directly relying on perfect models of the 
environment and making use of superabundant computational resources. At the same time, 
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an essential and pivotal foundation can be provided by traditional dynamic programming 
to better understand various reinforcement learning techniques. In other words, they are 
highly related with each other and both of them are useful to address optimization prob-
lems by employing the principle of optimality.

In this paper, we name the effective integration of learning approximators and the rein-
forcement formulation as critic intelligence. Within this new component, dynamic pro-
gramming is taken to provide the theoretical foundation of optimization, reinforcement 
learning is regarded as the key learning mechanism, and neural networks are adopted to 
serve as an implementation tool. Then, considering complex nonlinearities and unknown 
dynamics, the so-called critic intelligence methodology is deeply discussed and compre-
hensively applied to optimal control design within discrete-time domain. Hence, by involv-
ing critic intelligence, a learning-based intelligent critic control framework is constructed 
for complex nonlinear systems under unknown environment. Specifically, combining with 
artificial intelligence techniques, such as neural networks and reinforcement learning, the 
novel intelligent critic control theory as well as a series of advanced optimal regulation 
and trajectory tracking strategies are established for discrete-time nonlinear systems (Dong 
et al. 2017; Ha et al. 2020a, 2021b, c, 2022; Li et al. 2021; Liang et al. 2020a, b; Lincoln 
and Rantzer 2006; Liu et al. 2015; Luo et al. 2021; Liu et al. 2012, 2018; Luo et al. 2020; 
Mu et al. 2018; Na et al. 2021; Song et al. 2021; Wang et al. 2022, 2020, 2021a, 2020, 
2012, 2021c, d, 2011; Wei et  al. 2015, 2020, 2021; Zhang et  al. 2014; Yan et  al. 2017; 
Zhao et al. 2015; Zhong et al. 2018, 2016; Zhu and Zhao 2021; Zhu et al. 2019), followed 
by application verifications to complex wastewater treatment processes (Wang et al. 2021a, 
2020, 2021c). That is, the advanced optimal regulation and trajectory tracking of discrete-
time affine nonlinear systems and general nonaffine plants are addressed with applications, 
respectively.

It’s worth mentioning that, in this paper, we put emphasis on discrete-time nonlinear 
optimal control. Here, we incidentally point out that the adaptive-critic-based optimal con-
trol design for continuous-time dynamics has also achieved great progresses, in terms of 
normal regulation, trajectory tracking, disturbance attenuation, and other aspects (Abu-
Khalaf and Lewis 2005; Beard et al. 1997; Bian and Jiang 2016; Fan et al. 2021; Fan and 
Yang 2016; Gao and Jiang 2016, 2019; Han et al. 2021; Jiang and Jiang 2015; Luo et al. 
2020; Modares and Lewis 2014a, b; Mu and Wang 2017; Murray et  al. 2002; Pang and 
Jiang 2021; Song et  al. 2016; Vamvoudakis 2017; Vamvoudakis and Lewis 2010; Wang 
et  al. 2017; Wang and Qiao 2019; Wang et  al. 2021b; Wang and Liu 2018; Wang et  al. 
2016; Xue et al. 2022, 2021; Yang et al. 2022; Yang and He 2021; Yang et al. 2021a, b, c; 
Zhang et al. 2018, 2017; Zhao and Liu 2020; Zhao et al. 2018, 2016; Zhu and Zhao 2018). 
There always exist some monographs and survey papers discussing most of these topics 
(Lewis and Liu 2013; Lewis et al. 2012; Liu et al. 2013, 2017; Kiumarsi et al. 2018; Liu 
et al. 2021; Vrabie et al. 2013; Wang et al. 2009; Zhang et al. 2013, 2013). The similar idea 
and design architectures are contained in these two cases. Actually, they are considered 
together as an integrated framework of critic intelligence. However, the adaptive critic con-
trol for discrete-time systems is different from the continuous-time case. These differences, 
principally, come from the dynamic programming foundation, the learning mechanism, 
and the implementation structure. Needless to say, stability and convergence analysis of the 
two cases are also not the same.

As the end of this section, we present a simple structure of critic-intelligence-based dis-
crete-time advanced nonlinear optimal control design in Fig. 1, which also displays the fun-
damental idea of this paper. Remarkably, the whole component highlighted in the dotted box 
of Fig. 1 clearly reflects critic intelligence, which is a combination of dynamic programming, 
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reinforcement learning, and neural networks. The arrows in Fig. 1 indicate that by using the 
critic intelligence framework with three different components, the control problem of discrete-
time dynamical systems can be addressed under nonlinear and unknown environment. What 
we can construct through this paper is a kind of discrete-time advanced nonlinear optimal con-
trol systems with critic intelligence.

2  Discrete‑time optimal regulation design

Optimal regulation is an indispensable component of modern control theory and is also use-
ful for feedback control design in engineering practice (Abu-Khalaf and Lewis 2005; Ha et al. 
2021b; Lincoln and Rantzer 2006; Liu et al. 2012; Wang et al. 2020, 2012; Wei et al. 2015). 
Dynamic programming is a basic and important tool to solve such kind of design problems. 
Consider the general formulation of nonlinear discrete-time systems described by

where the time step k = 0, 1, 2,… , x(k) ∈ ℝ
n is the state vector, and u(k) ∈ ℝ

m is the con-
trol input . In general, we assume that the function F ∶ ℝ

n ×ℝ
m
→ ℝ

n is continuous, and 
without loss of generality, that the origin x = 0 is a unique equilibrium point of system (1) 
under u = 0 , i.e., F(0, 0) = 0 . Besides, we assume that the system (1) is stabilizable on a 
prescribed compact set Ω ∈ ℝ

n.

Definition 1 (cf. Al-Tamimi et  al. 2008) A nonlinear dynamical system is defined to be 
stabilizable on a compact set Ω ⊂ ℝ

n if there exists a control input u ∈ ℝ
m such that, for all 

initial conditions x(0) ∈ Ω , the state x(k) → 0 as k → ∞.

(1)x(k + 1) = F(x(k), u(k)),

Fig. 1  Structure of critic-intelligence-based advanced optimal control design
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For the infinite horizon optimal control problem, it is desired to find the control law u(x) 
which can minimize the cost function given by

where U(⋅, ⋅) is called the utility function, U(0, 0) = 0 , and U(x, u) ≥ 0 for all x and u. Note 
that the cost function J(x(k), u(k)) can be written as J(x(k)) for short. Particularly, the cost 
function starting from k = 0 , i.e., J(x(0)), is often paid more attention.

When considering the discount factor � , where 0 < 𝛾 ≤ 1 , the infinite horizon cost func-
tion is described by

Note that with the discount factor, we can modulate the convergence speed of regulation 
design and reduce the value of the optimal cost function. In this paper, we mainly discuss 
the undiscounted optimal control problem.

Generally, the designed feedback control must not only stabilize the system on Ω but 
also guarantee that (2) is finite, i.e., the control law must be admissible.

Definition 2 (cf. Al-Tamimi et al. 2008; Wang et al. 2012; Zhang et al. 2009) A control 
law u(x) is defined to be admissible with respect to (2) on Ω , if u(x) is continuous on a 
compact set Ωu ⊂ ℝ

m , u(0) = 0 , u(x) stabilizes (1) on Ω , and ∀x(0) ∈ Ω , J(x(0)) is finite.

With this definition, the designed feedback control law u(x) ∈ Ωu , where Ωu is called the 
admissible control set. Note that admissible control is a basic and important concept of the 
optimal control field. However, it is often difficult to determine whether a specified control 
law is admissible or not. Thus, it is meaningful to find advanced methods that do not rely 
on the requirement of admissible control laws.

The cost function (2) can be written as

Denote the control signal as u(∞) when the time step approaches to ∞ , i.e., k → ∞ . 
According to Bellman’s optimality principle, the optimal cost function defined as

can be rewritten as

(2)J(x(k), u(k)) =

∞∑
p=k

U(x(p), u(p)),

(3)J̄(x(k)) =

∞∑
p=k

𝛾p−kU(x(p), u(p)).

(4)
J(x(k)) = U(x(k), u(k)) +

∞∑
p=k+1

U(x(p), u(p))

= U(x(k), u(k)) + J(x(k + 1)).

(5)J∗(x(k)) = min
u(k),u(k+1),…,u(∞)

∞∑
p=k

U(x(p), u(p))

(6)J∗(x(k)) = min
u(k)

{
U(x(k), u(k)) + min

u(k+1),u(k+2),…,u(∞)

∞∑
p=k+1

U(x(p), u(p))

}
.
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In other words, J∗(x(k)) satisfies the discrete-time HJB equation

The above expression (7) is called the optimality equation of dynamic programming and is 
also taken as the basis to implement the dynamic programming technique. The correspond-
ing optimal control law u∗ can be derived by

Using the optimal control formulation, the discrete-time HJB equation becomes

which, observing the system dynamics, is specifically

As a special case, we consider a class of discrete-time nonlinear systems with input-affine 
form

where f (⋅) and g(⋅) are differentiable in their argument with f (0) = 0 . Similarly, we assume 
that f + gu is Lipschitz continuous on a set Ω in ℝn containing the origin, and that the sys-
tem (11) is controllable in the sense that there exists a continuous control on Ω that asymp-
totically stabilizes the system.

For this affine nonlinear system, if the utility function is specified as

where Q and R are positive definite matrices with suitable dimensions, then the optimal 
control law is calculated by

With this special formulation, the discrete-time HJB equation for the affine nonlinear plant 
(11) is written as

This is also a special expression of (10), when considering the affine dynamics and the 
quadratic utility.

When studying the classical linear quadratic regulator problem, the discrete-time 
HJB equation reduces to the Riccati equation that can be solved efficiently. However, 
for the general nonlinear problem, it is not the case. Furthermore, we observe from (13) 
that the optimal control u∗(x(k)) is related to x(k + 1) and J∗(x(k + 1)) , which cannot be 
determined at the present time step k. Hence, it is necessary to employ approximate 

(7)J∗(x(k)) = min
u(k)

{
U(x(k), u(k)) + J∗(x(k + 1))

}
.

(8)u∗(x(k)) = arg min
u(k)

{
U(x(k), u(k)) + J∗(x(k + 1))

}
.

(9)J∗(x(k)) = U(x(k), u∗(x(k))) + J∗(x(k + 1)),

(10)J∗(x(k)) = U(x(k), u∗(x(k))) + J∗(F(x(k), u∗(x(k)))).

(11)x(k + 1) = f (x(k)) + g(x(k))u(k),

(12)U(x(p), u(p)) = x�(p)Qx(p) + u�(p)Ru(p),

(13)u∗(x(k)) = −
1

2
R−1g�(x(k))

�J∗(x(k + 1))

�x(k + 1)
.

(14)
J∗(x(k)) = x�(k)Qx(k) +

1

4

(
�J∗(x(k + 1))

�x(k + 1)

)�

× g(x(k))R−1g�(x(k))
�J∗(x(k + 1))

�x(k + 1)
+ J∗(x(k + 1)).
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strategies to address this kind of discrete-time HJB equations and the adaptive critic 
method is a good choice. In other words, it is helpful to adopt the adaptive critic frame-
work to deal with optimal control design under nonlinear dynamics environment.

As the end of this section, we recall the optimal control basis of continuous-time nonlin-
ear systems (Vamvoudakis and Lewis 2010; Wang et al. 2017, 2016; Zhu and Zhao 2018). 
Consider a class of affine nonlinear plants given by

where x(t) is the state vector and u(t) is the control vector. Similarly, we introduce the 
quadratic utility function formed as (12) and define the cost function as

Note that in the continuous-time case, the definition of admissible control laws can be 
found in Abu-Khalaf and Lewis (2005). For an admissible control law u(x), if the related 
cost function (16) is continuously differentiable, the infinitesimal version is the nonlinear 
Lyapunov equation

with J(0) = 0 . Define the Hamiltonian of system (15) as

Using Bellman’s optimality principle, the optimal cost function defined as

satisfies the continuous-time HJB equation

The optimal feedback control law is computed by

Using the optimal control expression (21), the continuous-time HJB equation for the affine 
nonlinear plant (15) turns to be the form

with J∗(0) = 0.
Although the general nonaffine dynamics is not discussed, it is clear to observe the differ-

ences of continuous-time and discrete-time optimal control formulations from the above affine 
case. The optimal control laws (13) and (21) are not identical while the HJB equations (14) 
and (22) are also different. In particular, the optimal control expression of the continuous-time 
case depends on the state vector and optimal cost function of the same time instant. Hence, if 

(15)ẋ(t) = f (x(t)) + g(x(t))u(t),

(16)J(x(t)) = ∫
∞

t

U(x(�), u(�))d�.

(17)0 = U(x, u(x)) + (∇J(x))�[f (x) + g(x)u(x)]

(18)H(x, u(x),∇J(x)) = U(x, u(x)) + (∇J(x))�[f (x) + g(x)u(x)].

(19)J∗(x) = min
u∈A(Ω)∫

∞

t

U(x(�), u(�))d�

(20)min
u∈A(Ω)

H(x, u(x),∇J∗(x)) = 0.

(21)
u∗(x) = arg min

u
H(x, u(x),∇J∗(x))

= −
1

2
R−1g�(x)∇J∗(x).

(22)0 = x�Qx + (∇J∗(x))�f (x) −
1

4
(∇J∗(x))�g(x)R−1g�(x)∇J∗(x)
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the optimal cost is approximated by function approximators like neural networks, the optimal 
controller can be calculated directly, which is quite distinctive with the discrete-time case.

3  Discrete‑time trajectory tracking design

The tracking control problem is common in many areas, where a dynamical system is forced 
to track a desired trajectory (Li et al. 2021; Modares and Lewis 2014b; Wang et al. 2021c, d). 
For the discrete-time system (1), we define the reference trajectory r(k) as

The tracking error is defined as

In many situations, it is supposed that there exists a steady control ud(k) which satisfies the 
following equation

The feedforward or steady-state part of the control input is used to assure perfect tracking. 
If x(k) = r(k) , i.e., e(k) = 0 , the steady-state control ud(k) corresponding to the reference 
trajectory can be directly used to make x(k + 1) reach the desired point r(k + 1) . If there 
does not exist a solution of (25), the system state x(k + 1) can not track the desired point 
r(k + 1).

Here, we assume that the function of ud(k) about r(k) is not implicit and ud(k) is unique. 
Then, we define the steady control function as

By denoting

and using (1), (23), and (24), we derive the following augmented system:

Based on (23), (24), (26), and (27), we can write (28) as

By defining

and X(k) = [e�(k), r�(k)]� , the new augmented system (29) can be written as

(23)r(k + 1) = � (r(k)).

(24)e(k) = x(k) − r(k).

(25)r(k + 1) = F(r(k), ud(k)).

(26)ud(k) = �(r(k)).

(27)�(k) = u(k) − ud(k)

(28)
{

e(k + 1) = F(x(k), u(k)) − r(k + 1),

r(k + 1) = � (r(k)).

(29)
{

e(k + 1) = F(e(k) + r(k),�(k) + �(r(k))) − � (r(k)),

r(k + 1) = � (r(k)).

(30)F̄(e(k), r(k),𝜇(k)) =

[
F(e(k) + r(k),𝜇(k) + 𝜉(r(k))) − 𝜁 (r(k))

𝜁 (r(k))

]

(31)X(k + 1) = F̄(X(k),𝜇(k)),
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which also takes the nonaffine form. With such a system transformation and a proper defi-
nition of the cost function, the trajectory tracking problem can always be formulated as the 
regulation design of the augmented plant.

Similarly, in the following, we discuss the optimal tracking design of affine nonlinear sys-
tems formed as (11), with respect to the reference trajectory (23).

Here, we discuss the case with x(k) = r(k) . For x(k + 1) = r(k + 1) , we need to find the 
steady control input ud(k) of the desired trajectory to satisfy

If the system dynamics and the desired trajectory are known, ud(k) can be solved by

where g+(r(k)) is called the Moore-Penrose pseudoinverse matrix of g(r(k)).
According to (11), (23), (24), (27) and (33), the augmented system dynamics is given as 

follows:

By denoting

then, the augmented plant (34) can be rewritten as

In this case, through observing X(k) = [e�(k), r�(k)]� , the affine augmented system is 
established by

where the system matrices are 

For the augmented system (37), we define the cost function as

(32)r(k + 1) = f (r(k)) + g(r(k))ud(k).

(33)ud(k) = g+(r(k))[� (r(k)) − f (r(k))],

(34)

⎧⎪⎨⎪⎩

e(k + 1) = f (e(k) + r(k)) + g(e(k) + r(k))g+(r(k))

× [� (r(k)) − f (r(k))] − � (r(k)) + g(e(k) + r(k))�(k),

r(k + 1) = � (r(k)).

(35)
F(e(k), r(k)) = f (e(k) + r(k)) + g(e(k) + r(k))g+(r(k))

× [� (r(k)) − f (r(k))] − � (r(k)),

G(e(k), r(k)) = g(e(k) + r(k)),

(36)
[
e(k + 1)

r(k + 1)

]
=

[
F(e(k), r(k))

� (r(k))

]
+

[
G(e(k), r(k))

0

]
�(k).

(37)X(k + 1) = �(X(k)) +�(X(k))�(k),

(38a)�(X(k)) =

[
F(X(k))

� (r(k))

]
=

[
F(e(k), r(k))

� (r(k))

]
,

(38b)�(X(k)) =

[
G(X(k))

0

]
=

[
G(e(k), r(k))

0

]
.

(39)J(X(k),�(k)) =

∞∑
p=k

U(X(p),�(p)),
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where U(X(p),�(p)) ≥ 0 is the utility function. Here, considering the quadratic utility 
formed as (12), it is found that

Then, we can write the cost function as the following form:

Note that the controlled plant related to (41) can be regarded as the tracking error dynamics 
of the augmented system (37) without involving the part of the desired trajectory. For clar-
ity, we express it as follows:

where G(e(k), r(k)) = g(e(k) + r(k)) . Since r(k) is not relevant to e(k), the tracking error 
dynamics (42) can be simply rewritten as

In this sense, we should study the optimal regulation of error dynamics (43) with respect to 
the cost function (41). It means that, the trajectory tracking problem has been transformed 
into the nonlinear regulation design.

Based on Bellman’s optimality principle, the optimal cost function J∗(e(k)) satisfies 
the HJB equation

Then, the corresponding optimal control is obtained by

Observing (42), �∗(e(k)) is solved by

If the optimal control law �∗(e(k)) is derived via adaptive critic, the feedback control u∗(k) 
that applies to the original system (11) can be computed by

By using such a system transformation and the adaptive critic framework, the trajectory 
tracking problem of general nonlinear plants can be addressed. Overall, the idea of critic 

(40)
U(X(p),�(p)) =

[
e�(p), r�(p)

] [Q 0

0 0

] [
e(p)

r(p)

]
+ ��(p)R�(p)

= e�(p)Qe(k) + ��(p)R�(p)

= U(e(p),�(p)).

(41)J(e(k)) =

∞∑
p=k

U(e(p),�(p)).

(42)e(k + 1) = F(e(k), r(k)) + G(e(k), r(k))�(k),

(43)e(k + 1) = F(e(k)) + G(e(k))�(k).

(44)J
∗(e(k)) = min

�(k)
{e�(k)Qe(k) + ��(k)R�(k) + J

∗(e(k + 1))}.

(45)�∗(e(k)) = arg min
�(k)

{e�(k)Qe(k) + ��(k)R�(k) + J
∗(e(k + 1))}.

(46)
�∗(e(k)) = −

1

2
R−1

(
�e(k + 1)

��(e(k))

)�
�J∗(e(k + 1))

�e(k + 1)

= −
1

2
R−1g�(e(k) + r(k))

�J∗(e(k + 1))

�e(k + 1)
.

(47)u∗(k) = �∗(e(k)) + ud(k).
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intelligence is helpful to cope with both optimal regulation and trajectory tracking prob-
lems, where the former is the basis and the latter one is an extension.

4  The construction of critic intelligence

For constructing the critic intelligence framework, it is necessary to provide the bases of 
reinforcement learning and neural networks. They are introduced to solve nonlinear opti-
mal control problems under the dynamic programming formulation.

4.1  Basis of Reinforcement Learning

The learning ability is an important property and one of the bases of intelligence. In a rein-
forcement learning system, several typical elements are generally included: the agent, the 
environment, the policy, the reward signal, the value function, and optionally, the model 
of the environment (Sutton and Barto 2018; Li et al. 2018). In simple terms, the reinforce-
ment learning problem is meant to learn through interaction to achieve a goal. The interact-
ing process between an agent and the environment consists of the agent selecting actions 
and the environment responding to those actions as well as presenting new situations to 
the agent. Besides, the environment gives rise to rewards or penalties, which are special 
numerical values that the involved agent tries to maximize or minimize over time. Hence, 
such a process is closely related to the dynamic optimization.

Different from general supervised learning and unsupervised learning, reinforcement 
learning is inspired by natural learning mechanisms and is considered as a relatively new 
machine learning paradigm. It is actually a behavioral learning formulation and belongs 
to the learning category without a teacher. As the core idea of reinforcement learning, 
the agent-environment interaction is characterized by the agent judges the adopted action 
through a corresponding numerical reward signal generated by the environment. It is worth 
mentioning that actions may affect not only the current reward but also the next time step 
situation and even all subsequent rewards. Within the filed of reinforcement learning, the 
real-time evaluative information is required to explore the optimal policy. As mentioned 
in Sutton and Barto (2018), the challenge of reinforcement learning lies in how to reach a 
compromise between exploration and exploitation, so as to maximize the reward signal. In 
the learning process, the agent needs to determine which actions yield the largest reward. 
Therefore, the agent is able to sense and control the states of the environment or the system.

As stated in Haykin (2009); Sutton and Barto (2018), dynamic programming provides 
the mathematical basis of reinforcement learning and hence lies at the core of reinforce-
ment learning. In many practical situations, the explicit system models are always una-
vailable, which diminishes the application range of dynamic programming. Reinforcement 
learning can be considered as an approximate form of dynamic programming and is greatly 
related to the framework of ADP. One of their common focuses is how to solve the opti-
mality equation effectively. There exist some resultful ways to compute the optimal solu-
tion, where policy iteration and value iteration are two basic ones.

When the state and action spaces are small enough, the value functions can be repre-
sented as tables to exactly find the optimal value function and the optimal policy, such 
as for Gridworld and FrozenLake problems. In this case, the policy iteration, value itera-
tion, Monte Carlo, and temporal-difference methods have been developed to address these 
problems (Sutton and Barto 2018). However, it is difficult to find accurate solutions for 
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other problems with arbitrarily large state spaces. Needless to say, some new techniques 
are required to effectively solve such complex problems. Therefore, a series of representa-
tive approaches have been adopted, including policy gradient and Q-learning (Sutton and 
Barto 2018). In addition, reinforcement learning with function approximation has been 
widely applied to various aspects of decision and control system design (Bertsekas 2019). 
The adaptive critic also belongs to these approximate strategies and serves as the basis of 
advanced optimal control design in this paper. In particular, for various systems contain-
ing large state spaces, the approximate optimal policy can be iteratively obtained by using 
value iteration and policy iteration with function approximation.

4.2  The Neural Network Approximator

As an obbligato branch of computational intelligence, neural networks are rooted in many 
disciplines, such as neurosciences, mathematics, statistics, physics, computer science, and 
engineering (Haykin 2009). Traditionally, the term neural network is used to refer to a net-
work or a circuit of biological neurons. The modern usage of the term often represents arti-
ficial neural networks, which are composed of artificial neurons or nodes. Artificial neural 
networks are composed of interconnecting artificial neurons, or namely, programming con-
structs that can mimic the properties of biological neurons. They are used either to gain 
an understanding of biological neural networks, or to solve artificial intelligence problems 
without necessarily creating authentic models of biological systems.

Neural networks possess the massively parallel distributed structure and the ability to 
learn and generalize. The generalization denotes the reasonable output production of neu-
ral networks, with regard to inputs not encountered during the learning process. Since the 
real biological nervous systems are highly complex, artificial neural network algorithms 
attempt to abstract the complexity and focus on what may hypothetically matter most from 
an information processing point of view. Good performance, including good predictive 
ability and low generalization error, can be regarded as one source of evidence towards 
supporting the hypothesis that the abstraction really captures something important from the 
perspective of brain information processing. Another incentive for these abstractions is to 
reduce the computation amount when simulating artificial neural networks, so as to allow 
one to experiment with larger networks and train them on larger data sets (Haykin 2009).

There exist many kinds of neural networks in literature, such as the single-layer neural 
networks, multilayer neural networks, radial-basis function networks, and recurrent neu-
ral networks. Multilayer perceptrons represent a frequently used neural network structure, 
where a nonlinear differentiable activation function is included in each neuron model and 
one or more layers hidden from both the input and output modes are contained. Besides, a 
high degree of connectivity is possessed and the connection extent is determined by synap-
tic weights of the network. A computationally effective method for training the multilayer 
perceptrons is the backpropagation algorithm, which is regarded as a landmark during the 
development of neural networks (Haykin 2009). In recent years, some new structures of 
neural networks are proposed, where convolutional neural networks provide an efficient 
method to constrain the complexity of feedforward neural networks by weight sharing 
and restriction to local connections. Convolutional neural networks are the truly success-
ful deep learning approach where many layers of a hierarchy are successfully trained in a 
robust manner (LeCun et al. 2015).

Till now, neural networks are still a hot topic, especially under the background of artifi-
cial intelligence. Due to the remarkable properties of nonlinearity, adaptivity, self-learning, 
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fault tolerance, and universal approximation of input-output mapping, neural networks can 
be extensively applied to various research areas of different disciplines, such as dynamic 
modeling, time series analysis, pattern recognition, signal processing, and system control. 
In this paper, neural networks are most importantly taken as an implementation tool or a 
function approximator.

4.3  The Critic Intelligence Framework

The combination of dynamic programming, reinforcement learning, and neural networks is 
the so-called critic intelligence framework. The advanced optimal control design based on 
critic intelligence is named as intelligent critic control. It is almost a same concept as the 
existing adaptive critic method, only note that the intelligence property is highlighted. The 
basic idea of intelligent critic design is depicted in Fig. 2, where three main components 
are included, i.e., critic, action, and environment. In line with the general reinforcement 
learning formulation, the components of critic and action are integrated into an individual 
agent. When implementing this technique in the sense of feedback control design, three 
kinds of neural networks are built to approximate the cost function, the control, and the 
system. They are called the critic network, the action network, and the model network, per-
forming the function of evaluation, decision, and prediction, respectively.

Before implementing the adaptive critic technique, it is necessary to determine which 
structure should be adopted. Different advantages are contained in different implementa-
tion structures. Heuristic dynamic programming (HDP) (Dong et al. 2017) and dual heu-
ristic dynamic programming (DHP) (Zhang et  al. 2009) are two basic, but commonly 
used structures for adaptive critic design. The globalized dual heuristic dynamic pro-
gramming (globalized DHP or GDHP) (Liu et al. 2012; Wang et al. 2012) is an advanced 
structure with an integration of HDP and DHP. Besides, the action-dependent versions of 
these structures are also used sometimes. It should be pointed out that, neural dynamic 

Fig. 2  Basic idea of intelligent critic design
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programming (NDP) also has been adopted in (Si and Wang 2001), with an emphasis on 
the new idea for training the action network.

Considering the classical structures with critic, action, and model networks, the pri-
mary difference is reflected by the outputs of their critic networks. After the state vari-
able is input to the critic network, only the cost function is approximated as the critic 
output in HDP while the derivative of the cost function is approximated in DHP. How-
ever, for GDHP, both the cost function and its derivative are approximated as the critic 
output. Therefore, the structure of GDHP is somewhat more complicated than HDP and 
DHP. Since the derivative of the cost function can be directly used to obtain the control 
law, the computational efficiency of DHP and GDHP is obviously higher than HDP. How-
ever, because of the inclusion of the cost function itself, the convergence process of HDP 
and GDHP is more intuitive than DHP. Overall, when pursuing simple architecture and 
low computational amount, the DHP strategy is a good choice. In addition, the HDP and 
GDHP strategies can be selected to intuitively observe the evolution tendency of the cost 
function, but HDP is more simple than GDHP in architecture. For clarity, the comparisons 
of three main structures of adaptive critic are given in Table 1.

As a summary, the major characteristics of the critic intelligent framework are high-
lighted as follows.

– The theoretical foundation of optimization is considered under the formulation of 
dynamic programming with system, cost function, and control being included.

– A behavioral interaction between the environment and an agent (critic and action) along 
with reinforcement learning is embedded as the key learning mechanism.

– Neural networks are constructed to serve as an implementation tool of main compo-
nents, i.e., environment (system), critic (cost function), and action (control).

5  The iterative adaptive critic formulation

As two basic iterative frameworks in the field of reinforcement learning, value iteration 
and policy iteration provide great inspirations to adaptive critic control design. Although 
the adaptive critic approach has been applied to deal with optimal control problems, the 
initially stabilizing control policies are often required in the policy iteration process for 
instance. It is often difficult to obtain such control policies, particulary for complex non-
linear systems. In addition, since much attentions are paid on system stability, the conver-
gence proofs of adaptive critic schemes are quite limited. Hence, it is necessary to develop 
an effectively iterative framework with respect to adaptive critic. The main focuses include 
how to construct the iterative process to solve the HJB equation (9) and then prove its con-
vergence (Al-Tamimi et al. 2008; Dierks et al. 2009; Heydari 2014; Jiang and Zhang 2018; 
Liu et al. 2012; Wang et al. 2012; Zhang et al. 2009).

Table 1  Comparisons of three main structures of adaptive critic

Structure Critic input Critic output (approximated value) Main advantages

HDP State variable Only the cost function Simplicity and intuitiveness
DHP State variable Derivative of the cost function Simplicity and high efficiency
GDHP State variable The cost function and its derivative High efficiency and intuitiveness
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In fact, the derivation of iterative adaptive critic formulation is inspired by the numerical 
analysis method. Consider an algebraic equation

which is difficult to solve analytically. By denoting i as the iteration index, where 
i = 0, 1, 2,… , we can solve it iteratively from an initial value z(0) . Then, we conduct an 
iterative process with respect to z(i) until the iteration index reaches to infinity. Using math-
ematical expressions, the iterative process is written as follows:

From the above formulation, the convergence result can be obtained.
Employing the similar idea as the above approach, we construct two sequences to itera-

tively solve the optimal regulation problem in terms of the cost function and the control law. 
They are called the iterative cost function sequence {J(i)(x(k))} and the iterative control law 
sequence {u(i)(x(k))} , respectively. When using the HDP structure, the successive iteration 
mode is described as follows:

Note that this is the common value iteration process which begins from a cost function, 
rather than the policy iteration.

Specifically, for the nonaffine system (1) and the HJB equation (9), the iterative adaptive 
critic algorithm is performed as follows. First, we start with the initial cost function J(0)(⋅) = 0 
and solve

Then, we update the cost function by

Next, for i = 1, 2,… , the algorithm iterates between

and

How to guarantee convergence of the iterative algorithm is an important topic of the adap-
tive critic field. The convergence proof of the iterative process (51)–(54) has been pre-
sented in Abu-Khalaf and Lewis (2005); Wang et  al. (2012), where the cost function 
J(i)(x(k)) → J∗(x(k)) and the control law u(i)(x(k)) → u∗(x(k)) as i → ∞.

(48)z = �(z),

(49)z(i+1) = �
(
z(i)

)
⟹ z(∞) = �

(
z(∞)

)
.

(50)J(0)(x(k)) → u(0)(x(k)) → J(1)(x(k)) → ⋯ → u(i)(x(k)) → J(i+1)(x(k)) → ⋯

(51)
u(0)(x(k)) = arg min

u(k)

{
U(x(k), u(k)) + J(0)(x(k + 1))

}

= arg min
u(k)

{
U(x(k), u(k)) + J(0)(F(x(k), u(k)))

}
.

(52)
J(1)(x(k)) = min

u(k)

{
U(x(k), u(k)) + J(0)(x(k + 1))

}

= U(x(k), u(0)(x(k))) + J(0)(F(x(k), u(0)(x(k)))).

(53)
u(i)(x(k)) = arg min

u(k)

{
U(x(k), u(k)) + J(i)(x(k + 1))

}

= arg min
u(k)

{
U(x(k), u(k)) + J(i)(F(x(k), u(k)))

}

(54)
J(i+1)(x(k)) = min

u(k)

{
U(x(k), u(k)) + J(i)(x(k + 1))

}

= U(x(k), u(i)(x(k))) + J(i)(F(x(k), u(i)(x(k)))).
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When implementing the DHP scheme, we often introduce a new costate function 
sequence to denote the derivative of the cost function (Wang et  al. 2020; Zhang et  al. 
2009). By letting

the derivative of the iterative cost function (54), i.e.,

can be concisely written as

Using the costate function, the iterative control law can be obtained more directly, since the 
partial derivative computation of J(i)(x(k + 1)) with respect to x(k + 1) is eliminated. Note 
that (57) is an important expression during implementing the iterative DHP algorithm as 
the following mode:

After establishing the iterative adaptive critic framework, three kinds of neural networks 
are built to approximate the iterative cost function, the iterative control law, and the control 
system. Here, the output of the critic network is denoted as Ĉ(i+1)(x(k)) , which is a uni-
form expression including the cases of HDP, DHP, and GDHP. It can be specified to rep-
resent the approximate cost function Ĵ(i+1)(x(k)) in HDP, the approximate costate function 
�̂�(i+1)(x(k)) in DHP, or both of them in GDHP. Clearly, the dimension of the critic output 
in the iterative GDHP algorithm is n + 1 . Besides, the output of the action network is the 
approximate iterative control law û(i)(x(k)) . The controlled plant is approximated by using 
the model network so that its output is x̂(k + 1) . For clarity, the critic outputs of main itera-
tive adaptive critic algorithms are given in Table 2.

As the end of this section, the general structure of discrete-time optimal control via iter-
ative adaptive critic is depicted in Fig. 3. There are two critic networks included in Fig. 3, 
which outputs cost functions at different iteration steps and time steps. The two critic net-
works possess same architecture and are connected by the weight transmission. The model 
network is often trained before carrying out the main iterative process and the final con-
verged weight matrices should be recorded. The critic network and action network are 
trained according to their error functions, namely the critic error function and the action 
error function. These error functions can be defined as different formulas in accordance 
with the design purpose.

Overall, there exist several main features for the above iterative structure, which are 
listed as follows.

– The iteration index is always embedded in the expressions of the cost function and the 
control law function.

– Different neural network structures can be employed, where the multilayer perceptrons 
are most commonly used with gradient descent.

(55)�(i+1)(x(k)) =
�J(i+1)(x(k))

�x(k)
, �(i)(x(k + 1)) =

�J(i)(x(k + 1))

�x(k + 1)
,

(56)
�J(i+1)(x(k))

�x(k)
=

�U
(
x(k), u(i)(x(k))

)
�x(k)

+

[
�x(k + 1)

�x(k)

]�
�J(i)(x(k + 1))

�x(k + 1)
,

(57)�(i+1)(x(k)) =
�U

(
x(k), u(i)(x(k))

)
�x(k)

+

[
�x(k + 1)

�x(k)

]�
�(i)(x(k + 1)).

(58)�(0)(x(k)) → u(0)(x(k)) → �(1)(x(k)) → ⋯ → u(i)(x(k)) → �(i+1)(x(k)) → ⋯
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– Error functions of the critic network and action network can be determined with the 
specific choice of implementation structures, such as HDP, DHP, and GDHP.

– Three neural networks are built and integrated into a whole formulation, even 
though their training sequences are different.

– It is more readily to be implemented in an offline manner, since the final action 
weight matrices are adopted to construct the available control law.

– It is also applicable to deal with other control problems that can be transformed to 
and considered as the regulation design.

The fundamental objective of employing the iterative adaptive critic framework is to 
solve the HJB equation approximately, which for instance, takes the form of (44) with 
regard to the proposed tracking control problem. It should be pointed out that, when 
addressing the trajectory tracking problems, the tracing error e(k) can be regarded as 
the new state of Fig.  3 and the same iterative formulation can be conducted to the 
transformed optimal regulation design expediently. That is to say, both the optimal reg-
ulation and trajectory tracking problems can be effectively handled under the iterative 
adaptive critic framework.

Table 2  The critic outputs of main iterative adaptive critic algorithms

Iterative algorithm Specific value of the critic output 
Ĉ(i+1)(x(k))

Dimension

Iterative HDP(Al-Tamimi et al. 2008) Ĵ(i+1)(x(k)) 1

Iterative DHP(Zhang et al. 2009) �̂�(i+1)(x(k)) n
Iterative GDHP(Wang et al. 2012) [Ĵ(i+1)(x(k)), �̂�(i+1)�(x(k))]� n + 1

+

+

++

+

+

Fig. 3  General structure of the iterative adaptive critic method
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6  Significance and prospects

Optimization methods have been widely used in many research areas. As a fundamental 
element of artificial intelligence techniques, the idea of optimization is also being paid 
largish attentions at present. When combining with automatic control, it is necessary to 
establish a series of intelligent methods to address discrete-time optimal regulation and 
trajectory tracking problems. This is more important because of the increasing complexity 
of controlled plants, the augmenting of available data resources, and the generalization of 
unknown dynamics (Wang et  al. 2017). In fact, various advanced-control-based applica-
tions have been conducted on transportation systems, power systems, chemical processes, 
and so on. However, they also should be addressed via critic-intelligence-based methods 
due to the complexity of the practical issues. For example, the complex wastewater treat-
ment problems are needed to be considered under the intelligent environment and more 
advanced control strategies are required. It is an indispensable part during the process of 
accomplishing smart environmental protection. In this survey, the wastewater treatment 
process control is regarded as a typical application of the critic intelligence approach. 
Developing other application fields with critic intelligence is also an interesting topic of the 
future research.

In this paper, by involving the critic intelligence formulation, the advanced optimal con-
trol methods towards discrete-time nonlinear systems are developed in terms of normal reg-
ulation and trajectory tracking. The given strategies are also verified via simulation experi-
ments and wastewater treatment applications. Through providing advanced solutions for 
nonlinear optimal control problems, we guide the development of intelligent critic learning 
and control for complex systems, especially the discrete-time case. It is important to note 
that the given strategies can not only strengthen the theoretical results of adaptive critic 
control, but also provide new avenues to intelligent learning control design of complex 
discrete-time systems, so as to effectively address unknown factors, observably enhance 
control efficiencies, and really improve intelligent optimization performances. Addition-
ally, it will be beneficial for the construction of advanced automation techniques and intel-
ligent systems as well as be of great significance both in theory and application. In particu-
lar, it is practically meaningful to enhance the level of wastewater treatment techniques and 
promote the recycling of water resources, and therefore, to the sustainable development of 
our economy and society. As described in Alex et al. (2008); Han et al. (2019), the primary 
control objective of the common wastewater treatment platform, i.e., Benchmark Simula-
tion Model No. 1, is to ensure that the dissolved oxygen concentration in the fifth unit and 
the nitrate level in the second unit are maintained at their desired values. In this case, such 
desired values can be regarded as the reference trajectory. Note the control parameters are, 
respectively, the oxygen transfer coefficient of the fifth unit and the internal recycle flow 
rate of the fifth-second units. In fact, the control design of the proper dissolved oxygen con-
centration and nitrate level is actually a trajectory tracking problem. Thus, the intelligent 
critic framework can be constructed for achieving effective control of wastewater treatment 
processes. There have been some basic conclusions in Wang et al. (2021a, 2020, 2021c, 
2021d) and more results will be reported in the future.

Reinforcement learning is an important branch of machine learning and is being gained 
rapid development. It is meaningful to introduce more advanced learning approaches to the 
automatic control field. Particularly, the consideration of reinforcement learning under the 
deep neural network formulation can result in dual superiorities of perception and deci-
sion in high-dimensional state-action space. Moreover, it is also necessary to utilize big 
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data information more sufficiently and establish advanced data-driven schemes for opti-
mal regulation and trajectory tracking. Additionally, since we only consider discrete-time 
optimal control problems, it is necessary to propose advanced methods for continuous-
time nonlinear systems in the future. Using proper system transformations, the advanced 
optimal control schemes also can be extended to other fields, such as robust stabilization, 
distributed control, and multi-agent systems. Except the wastewater treatment, the critic 
intelligence approaches can be applied to more practical systems in engineering and soci-
ety. With developments in theory, methods, and applications, it is beneficial to constitute 
a unified framework for intelligent critic learning and control. In summary, more fantastic 
achievements will be generated through the involvement of critic intelligence.
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