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Abstract
Categorical data is an important class of data in machine learning. Information system 
based on categorical data is called a categorical information system (CIS), a CIS with 
missing values is known as an incomplete categorical information system (ICIS) and an 
ICIS with decision attributes is said to be an incomplete categorical decision information 
system (ICDIS). Attribute selection is an important subject in rough set theory. This paper 
investigates attribute reduction in an ICDIS based on fuzzy rough sets. To depict the simi-
larity for incomplete categorical data, fuzzy symmetry relations in an ICDIS are first intro-
duced. Then, some attribute-evaluation functions, such fuzzy positive regions, dependency 
function and attribute importance functions are given. Next, the fuzzy-rough iterative com-
putation model for an ICDIS is presented, and an attribute reduction algorithm in an ICDIS 
based on fuzzy rough sets is given. Finally, experiments are carried out as so to evaluate 
the performance of the proposed algorithm, and Friedman test and Bonferroni-Dunn test in 
statistics are conducted. The experimental results indicate that the proposed algorithm is 
more effective than some existing algorithms.

Keywords  Attribute reduction · ICDIS · Fuzzy rough set

1  Introduction

1.1 � Research background

Rough set theory (RST), initiated by Pawlak (1982, 1991), is a significant method to 
deal with imprecision, fuzziness and uncertainty. Its biggest advantage is that it doesn’t 
require any prior information other than the data set to process the problem (Catta-
neo et al. 2016; Chen et al. 2017; Huang et al. 2017; Li et al. 2016; Lang et al. 2017; 
Tran et al. 2018; Tan et al. 2018; Yao and Zhang 2017). RST is based on classification 
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mechanism, which regards classification as equivalence relation in a specific space, 
and equivalence relation constitutes space partition. The main idea of this method is to 
use the knowledge in the known knowledge base to describe the imprecise or uncertain 
knowledge. It is widely known that it can effectively deal with the uncertainty of an 
information system (IS). In recent years, RST has attracted many researchers’ atten-
tion, and its application is mostly related to an IS (Li et al. 2020, 2020, 2019; Xie et al. 
2019; Yu et al. 2019; Zhang et al. 2017, 2018).

Fuzzy rough set theory is a mathematical theory proposed by Dubois and Prade 
(1990). Chen et  al. (2005) systematically studied fuzzy rough set theory and its 
related applications. Moresi and Yankout (1998) gave axiomatic definition for fuzzy 
rough sets. Radzikowska and Kerre (2002) investigated a comparative study of fuzzy 
rough sets. Wang et  al. (2016) proposed a fitting model for attribute reduction with 
fuzzy rough sets. Chen et  al. (2012) a novel attribute reduction algorithm based on 
fuzzy rough sets. Hu et  al. (2011) developed kernelized fuzzy rough sets and their 
applications.

1.2 � The related works

Categorical data is one of the most common types of data in people’s life, and it is an 
important class of data in machine learning. In order to overcome the deficiency of 
classical rough sets processing classification data, several improved models are pro-
posed. Ziarko (1993) introduced a variable precision rough set model (VPRSM). Yao 
(2008) proposed probabilistic rough set approximations. Duntsch and Gediga (1998) 
studied uncertainty measures of VPRSM. Liang et al. (2014) presented a group incre-
mental approach to attribute reduction applying VPRSM. Liang et al. (2013) came up 
with an accelerator for attribute reduction based on perspective of objects and attrib-
utes in VPRSM. Slezak (2002) brought up approximate entropy reducts of VPRSM.

Attribute reduction aims to remove redundant attributes in the calculation pro-
cess, solve the complexity of high-dimensional data calculation and boost its accu-
racy. There is no doubt that attribute reduction is one of the focuses and hotspots of 
rough set theory from beginning to end. Up to now, there have been many outstanding 
results. Dai et al. (2013) presented attribute attribute based on conditional entropies for 
incomplete decision systems. Meng and Shi (2009) proposed a fast approach to attrib-
ute reduction in incomplete decision systems with tolerance relation-based rough sets. 
Yao and Zhang (2017) brought up class-specific attribute reduction in RST. Zhao and 
Qin (2014) put forward mixed attribute reduction in incomplete decision table. Teng 
et al. (2010) came up with attribute reduction algorithm based on conditional entropy 
under incomplete information system. Cornelis et  al. (2010) obtained a generalized 
model of attribute reduction based on fuzzy tolerance relation within the context of 
fuzzy rough set theory; Wang et al. (2019) constructed fuzzy rough set-based attribute 
reduction using distance measures; Giang et al. (2020) gave an incremental method for 
attribute reduction of dynamic decision tables by using fuzzy partition distance and 
hybrid filter-wrapper, which obtains better classification ability than other methods; 
Chen et  al. (2019) introduced a fuzzy kernel-attribute reduction method for hetero-
geneous data; Dai et al. (2018) applied maximal-discernibility-pair-based approach to 
attribute reduction in fuzzy rough sets; Liu et al. (2020) defined the notions of accurate 
reduction and reduced invariant matrix, which are used to attribute reduction in an IS.
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1.3 � Motivation and inspiration

In the real world, there are mostly missing data sets. Wang et  al. (2020) studied attribute 
reduction for categorical data and did not consider the case of incomplete categorical data. In 
order to solve practical problems more effectively, fuzzy symmetry relations in characterizing 
incomplete categorical data are generalized in this paper. First, fuzzy tolerance relations appli-
cable to both complete and incomplete data are defined. Then a fuzzy rough iterative comput-
ing model with stronger generalization ability is established. Finally, this model are applied in 
some real data sets to test the performance effect of the model. Therefore, it is meaningful to 
study attribute reduction in an ICDIS based on fuzzy rough sets.

In this paper, a fuzzy rough iterative calculation model is derived theoretically. Then a 
reduction algorithm FR-IC is designed by using the model. The advantage of this algorithm is 
that an iterative formula is defined to reduce the attributes of incomplete information systems. 
By iterating the fuzzy relation matrix continuously, the maximum dependency of attributes is 
found, and the reduction set is obtained. With the increase of iteration times, the calculation 
formula of dependency is dynamically adjusted to ensure the convergence of the algorithm. 
The algorithm is fast and does not occupy too much memory. Through a large number of 
numerical experiments and comparison with other algorithms, it is found that the proposed 
algorithm is obviously better than some existing algorithms. The results are shown in the 
tables and images drawn in this paper.

1.4 � Organization

This paper is organized as follows. In Sect.  2, some basic concepts of fuzzy relations and 
ICDISs are reviewed, and in order to depict the similarity for incomplete categorical data, 
fuzzy symmetry relations in an ICDIS are introduced. In Sect. 3, some attribute-evaluation 
functions including fuzzy positive regions, dependency functions and attribute importance 
functions are given. In Sect. 4, the fuzzy-rough iterative computation model for an ICDIS is 
presented. In Sect. 5, attribute reduction in an ICDIS based on fuzzy rough sets is studied and 
the corresponding algorithm is proposed. In Sect.  6, an attribute reduction algorithm in an 
ICDIS based on fuzzy rough sets is proposed and its complexity is analyzed. In Sect. 7, some 
experiments are carried out and the performance of the proposed algorithm is evaluated. In 
Sect. 7, this paper is concluded.

The framework of this paper is revealed in Fig. 1.

2 � Preliminaries

In this section, some notions of fuzzy relations and ICDISs are reviewed, and fuzzy symmetry 
relations in an ICDIS are defined.

Throughout this paper, U and A signify two finite sets.
Put

U = {u1, u2,… , un}, A = {a1, a2,… , am}.
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2.1 � Fuzzy relations

Fuzzy sets are extensions of ordinary sets (Zadeh 1965). A fuzzy set P in U is defined as a 
function assigning to each element u of U a value P(u) ∈ I and P(u) is called the membership 
degree of u to the fuzzy set P.

Throughout this paper, I expresses [0, 1], IU indicates the family of all fuzzy sets in U.
If R is a fuzzy set in U × U , then R is called a fuzzy relation on U. In this paper, IU×U 

denotes the set of all fuzzy relations on U.
Let R ∈ IU×U . Then R may be represented by

where rij = R(ui, uj) ∈ I means the similarity between two objects ui and uj.

M(R) =

⎛⎜⎜⎜⎝

r11 r12 ... r1n
r21 r22 ... r2n
... ... ... ...

rn1 rn2 ... rnn

⎞⎟⎟⎟⎠
,

Fig. 1   Framework of this paper
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2.2 � Incomplete categorical decision information systems

Definition 2.1  (Pawlak 1991) Suppose that U is a finite object set and A is a finite attrib-
ute set. Then the ordered pair (U, A) is referred to as an information system (IS), if for any 
a ∈ C , a is able to decide a information function  a ∶ U → Va , where Va = {a(u) ∶ u ∈ U}.

If A = C ∪ D , where C is a set of conditional attributes and D is a set of decision attrib-
utes, then (U, A) is called a decision information system (DIS).

Let (U, A) be an IS. If there is a ∈ A such that ∗∈ Va , here ∗ means a null or unknown 
value, then (U, A) is called an incomplete information system (IIS).

Suppose that (U, A) is an IIS. Given P ⊆ A . Then a binary relation TP on U can be 
defined as

Clearly, TP is a tolerance relation on U.
For each u ∈ U , denote

Then, TP(u) is called the tolerance class of x under the tolerance relation TP.
For convenience, T{a} and T{a}(u) are denoted by Ta and Ta(u) , respectively.
Obviously,

Let (U,C ∪ {d}) be an DIS. If there exist a ∈ C such that ∗∈ Va , but ∗∉ Vd , then 
(U,C ∪ {d}) is called an incomplete decision information system (IDIS).

Let (U,C ∪ {d}) be an IDIS. Then

Obviously,

Definition 2.2  Let (U,C ∪ {d}) be an IDIS. Then the pair (U, A) is called an incomplete 
categorical decision information system (ICDIS), if each attribute is categorical.

If P ⊆ C , then (U,P ∪ {d}) is known as the subsystem of (U,C ∪ {d}).

2.3 � Fuzzy symmetry relations in an ICDIS

In TP , “ ∀ a ∈ P, a(u) = a(v) or a(u) =∗ or a(v) =∗ " is fed back to the object set of an 
IIS. Naturally, we may consider that “ ∀ a ∈ P, a(u) = a(v) or a(u) =∗ or a(v) =∗ " is fed 
back to the attribute set of an IIS. For this purpose, inspired by the paper Wang et al. 
(2020), we introduce the following definition.

TP or sim(P) = {(u, v) ∈ U × U ∶ ∀ a ∈ P, a(u) = a(v) or a(u) =∗ or a(v) =∗}.

TP(u) = {v ∈ U ∶ (u, v) ∈ TP}.

TP =
⋂
a∈P

Ta, TP(u) =
⋂
a∈P

Ta(u).

Td is an equivalence relation onU.

∀ u ∈ U, Td(u) = {v ∈ U ∶ d(u) = d(v)}.
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Definition 2.3  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C and � ∈ [|P|, |C|] . Then the 
fuzzy relation on U can be defined as

where ∗ is a missing value.
Moreover,

Clearly,
R�
P
 is a fuzzy symmetry relation on U, and Td is an equivalence relation on U. If � = |P| , 

then R�
P
 is a fuzzy tolerance relation on U.

In this paper, denote

For convenience, denote

Then

Proposition 2.4  Let (U,C ∪ {d}) be an ICDIS. If P1 ⊆ P2 ⊆ C , then for � ∈ [|P2|, |C|] , 
R𝜆
P1

⊆ R𝜆
P2

.

Proof  By Definition 2.3,

Since P1 ⊆ P2 , we have ∀ u, v ∈ U , (P1)uv ⊆ (P2)uv.

So ∀ u, v ∈ U , R�
P1

(u, v) ≤ R�
P2

(u, v).
Thus, R𝜆

P1

⊆ R𝜆
P2

 . 	�  ◻

3 � Attribute‑evaluation functions

In this section, some attribute-evaluation functions, such as fuzzy positive regions, depend-
ency functions and attribute importance functions are presented.

Definition 3.1  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C and � ∈ [|P|, |C|] . Suppose 
that R�

P
 is the fuzzy tolerance relation induced by the subsystem (U,P ∪ {d}) . Based on the 

fuzzy approximation space (U,R�
P
) , a pair of operations R�

P
 , R�

P
 : 2U ⟶ IU are defined as 

follows:

(2.1)R�
P
(u, v) =

1

�
|{a ∈ P ∶ a(u) = a(v) or a(u) =∗ or a(v) =∗}|,

Td = {(u, v) ∈ U × U ∶ d(u) = d(v)}.

U∕d = {Td(u) ∶ u ∈ U} = {D1,D2,… ,Dr}.

Puv = {a ∈ P ∶ a(u) = a(v) or a(u) =∗ or a(v) =∗}.

R�
P
(u, v) =

1

�
|Puv|.

R�
P1

(u, v) =
1

�
|(P1)uv|, R�

P2

(u, v) =
1

�
|(P2)uv|.
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Then R�
P
(X) and R�

P
(X) are called the lower and upper fuzzy approximations of X, 

respectively.

Proposition 3.2  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C and � ∈ [|P|, |C|] . Then 
the following properties hold.

(1) R𝜆
P
(�) = R𝜆

P
(�) = 0̄ , R𝜆

P
(U) = R𝜆

P
(U) = 1̄.

(2) R𝜆
P
(X) ⊆ X ⊆ R𝜆

P
(X) , where

(3) X ⊆ Y ⇒ R𝜆
P
(X) ⊆ R𝜆

P
(Y), R𝜆

P
(X) ⊆ R𝜆

P
(Y).

(4) R�
P
(X ∩ Y) = R�

P
(X) ∩ R�

P
(Y) , R�

P
(X ∩ Y) = R�

P
(X) ∪ R�

P
(Y).

(5) R𝜆
P
(U − X) = 1̄ − R𝜆

P
(X),

R𝜆
P
(U − X) = 1̄ − R𝜆

P
(X).

Proof  We only prove (2) and (5).
(2) (i) By Definition 2.3, ∀ u, v ∈ U, 0 ≤ R�

P
(u, v) ≤ 1.

Then

It can be obtained that ∀ u ∈ U,

So ∀ u ∈ X,

Note that ∀ u ∉ X , R�
P
(X)(u) = 1 − R�

P
(u, u) = 0 . Then ∀ u ∉ X,

This implies that ∀ u ∈ U,

Thus

(3.1)R�
P
(X)(u) =

⋀
v∉X

[1 − R�
P
(u, v)], ∀ u ∈ U;

(3.2)R�
P
(X)(u) =

⋁
v∈X

R�
P
(u, v), ∀ u ∈ U.

X(u) =

{
1, u ∈ X;

0, u ∉ X.

0 ≤
⋀
v∉X

[1 − R�
P
(u, v)] ≤ 1.

0 ≤ R�
P
(X)(u) ≤ 1.

R�
P
(X)(u) ≤ 1 = X(u).

R�
P
(X)(u) = 0 ≤ 0 = X(u).

R�
P
(X)(u) ≤ X(u).

R𝜆
P
(X) ⊆ X.
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(ii) Obviously,

Then ∀ u ∉ X,

Note that ∀ u ∈ X , R�
P
(X)(u) = R(u, u) = 1 . Then ∀ u ∈ U,

Thus

From the above,

(5) (i) By Definition 3.1, we have ∀ u ∈ U,

Thus

(ii) By Definition 3.1, we have ∀ u ∈ U,

Thus

∀ u ∈ U, 0 ≤ R�
P
(X)(u) ≤ 1.

X(u) = 0 ≤ R�
P
(X)(u).

X(u) = 1 ≤ 1 = R�
P
(X)(u).

X ⊆ R𝜆
P
(X).

R𝜆
P
(X) ⊆ X ⊆ R𝜆

P
(X).

R�
P
(U − X)(u) =

⋀
v∉U−X

[1 − R�
P
(u, v)]

= 1 −
⋁

v∉U−X

R�
P
(u, v)

= 1 −
⋁
v∈X

R�
P
(u, v)

= 1 − R�
P
(X)(u).

R𝜆
P
(U − X) = 1̄ − R𝜆

P
(X).

R�
P
(U − X)(u) =

⋁
v∈U−X

R�
P
(u, v)

= 1 − [1 −
⋁

v∈U−X

R�
P
(u, v)]

= 1 − [1 −
⋁
v∉X

R�
P
(u, v)]

= 1 −
⋀
v∉X

[1 − R�
P
(u, v)]

= 1 − R�
P
(X)(u).
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Proposition 3.3  Let (U,C ∪ {d}) be an ICDIS. If P1 ⊆ P2 ⊆ C , then for � ∈ [|P2|, |C|] 
and X ∈ 2U,

Proof  (1) Since P1 ⊆ P2 ⊆ C , by Proposition 2.4, we have R𝜆
P1

⊆ R𝜆
P2

.
Then ∀ u ∈ U, v ∉ X,

This implies that ∀ u ∈ U,

Thus ∀ u ∈ U,

Therefore,

(2) Since P1 ⊆ P2 ⊆ C , by Proposition 2.4, we have R𝜆
P1

⊆ R𝜆
P2

.
Then ∀ u ∈ U, v ∈ X,

This implies that ∀ u ∈ U,

Thus ∀ u ∈ U,

Therefore, R𝜆
P1

(X) ⊆ R𝜆
P2

(X) . 	�  ◻

Suppose D ∈ U∕d . Then

R�
P
(D)(u) denotes the membership degree of u certainly being included in the equivalence 

class D . If u ∉ D , the value of R�
P
(D)(u) is the smallest. Otherwise, it is equal to the small-

est value of dissimilar degrees between u and the samples not falling into class D.

R𝜆
P
(U − X) = 1̄ − R𝜆

P
(X).

R𝜆
P1

(X) ⊆ R𝜆
P2

(X), R𝜆
P2

(X) ⊆ R𝜆
P1

(X).

R�
P1

(u, v) ≤ R�
P2

(u, v).

⋀
v∉X

[1 − R�
P2

(u, v)] ≤
⋀
v∉X

[1 − R�
P1

(u, v)].

R�
P2

(X)(u) ≤ R�
P1

(X)(u).

R𝜆
P2

(X) ⊆ R𝜆
P1

(X).

R�
P1

(u, v) ≤ R�
P2

(u, v).

⋁
v∈X

R�
P1

(u, v) ≤
⋁
v∈X

R�
P2

(u, v).

R�
P1

(X)(u) ≤ R�
P2

(X)(u).

R�
P
(D),R�

P
(D) ∈ IU .
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R�
P
(D)(u) represents the membership degree of sample u possibly belonging to equivalence 

class D. If u ∉ D , the value of R�
P
(D)(u) is the largest. If not, it is equal to the max-value of the 

fuzzy similarities between u and all the samples in class D.

Definition 3.4  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C and � ∈ [|P|, |C|] . Then �
-fuzzy positive region of decision d relative to P can be defined as

Proposition 3.5  Let (U,C ∪ {d}) be an ICDIS. Suppose P1 ⊆ P2 ⊆ C . Given 
� ∈ [|P2|, |C|] . Then POS𝜆

P2

(d) ⊆ POS𝜆
P1

(d).

Proof  It follows from Proposition 3.2. 	�  ◻

Definition 3.6  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C and � ∈ [|P|, |C|] . Then �
-dependency function of d relative to P can be defined as

Proposition 3.7  Let (U,C ∪ {d}) be an ICDIS. Suppose P1 ⊆ P2 ⊆ C . Given 
� ∈ [|P2|, |C|] . Then Γ�

P2

(d) ≤ Γ�
P1

(d).

Proof  It follows from Proposition 3.5. 	�  ◻

Definition 3.8  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C and a ∈ C − P . Given 
� ∈ [|P|, |C|] . Then �-importance of a relative to P about d can be defined as

4 � Fuzzy rough computation models

Fuzzy relations introduced above are crucial for defining a fuzzy rough computation model. 
Noticed that there is a constant parameter � . For a dataset with a large number of attributes, 
the membership degrees of samples to a relation can get very small when a few of the attrib-
utes are included in rough computation. That is to say, the lower the number of the included 
attributes in rough computation, the smaller the discrimination of memberships. To overcome 
this problem, a fuzzy rough iterative computation model for incomplete categorical data is 
proposed in this section.

Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Suppose |P| ≤ 𝜆1 < 𝜆2 < ⋯ ≤ |C| . Denote

(3.3)POS�
P
(d) =

⋃
D∈U∕d

R�
P
(X).

(3.4)Γ�
P
(d) =

|POS�
P
(d)|

n
.

(3.5)sig�(a,P, d) = Γ�
P
(d) − Γ�

P∪{a}
(d).

(4.1)R
(i)

P
(u, v) =R

�i
P
(u, v);

(4.2)R
(i)

P
(D)(u) =

⋀
v∉D

[1 − R
(i)

P
(u, v)] (D ∈ U∕d, u ∈ U);
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Obviously,

Theorem 4.1  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then ∀D ∈ U∕d, ∀ u ∈ U, ∀ i
,

Proof 
Similarly,

Then

Thus

(4.3)R
(i)

P
(D)(u) =

⋁
v∈D

R
(i)

P
(u, v) (D ∈ U∕d, u ∈ U);

(4.4)POS
(i)

P
(d) =

⋃
D∈U∕d

R
(i)

P
(D);

(4.5)Γ
(i)

P
(d) =

|POS(i)
P
(d)|

n
;

(4.6)sig(i)(a,P, d) = Γ
(i)

P
(d) − Γ

(i)

P∪{a}
(d) (P ⊆ C, a ∈ C − P).

POS
(i)

P
(d) = POS

𝜆i
P
(d);

Γ
(i)

P
(d) = Γ

𝜆i
P
(d);

sig(i)(a,P, d) = sig𝜆i (a,P, d) (P ⊆ C, a ∈ C − P).

(4.7)R
(i+1)

P
(D)(u) =

�i+1 − �i

�i+1
+

�i

�i+1
R
(i)

P
(D)(u).

R
(i)

P
(D)(u) =

⋀
v∉D

(1 −
1

�i
|Puv|)

= 1 −
⋁
v∉D

1

�i
|Puv|

= 1 −
1

�i

⋁
v∉D

|Puv|.

R
(i+1)

P
(D)(u) = 1 −

1

�i+1

⋁
v∉D

|Puv|.

�i+1 − �i

�i+1
+

�i

�i+1
R
(i)

P
(D)(u) =

�i+1 − �i

�i+1
+

�i

�i+1

(
1 −

1

�i

⋁
v∉D

|Puv|
)

= 1 −
1

�i+1

⋁
v∉D

|Puv|.
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Corollary 4.2  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C and � ∈ [|P|, |A|] . Then 
∀D ∈ U∕d, ∀ u ∈ U, ∀ i ∈ [|P|, |C| − 1],

Theorem  4.3  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C and � ∈ [|P|, |A|] and 
D ∈ U∕d . Then ∀ i,

Proof  Obviously. 	� ◻

Corollary 4.4  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C and D ∈ U∕d . Then 
∀ i ∈ [|P|, |C| − 1],

Theorem 4.5  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then ∀ u ∈ U, ∀ i,

Proof  By Theorem 4.1, we can obtain that ∀ u ∈ U, ∀ i,

Thus

	�  ◻

R
(i+1)

P
(D)(u) =

�i+1 − �i

�i+1
+

�i

�i+1
R
(i)

P
(D)(u).

(4.8)R
(i+1)

P
(D)(u) =

1

i + 1
+

i

i + 1
R
(i)

P
(D)(u).

(4.9)R
(i+1)

P
(D) =

�i

�i+1
R
(i)

P
(D).

(4.10)R
(i+1)

P
(D) =

i

i + 1
R
(i)

P
(D).

(4.11)POS
(i+1)

P
(d)(u) =

�i+1 − �i

�i+1
+

�i

�i+1
POS

(i)

P
(d)(u).

POS
(i+1)

P
(d)(u) =

⋁
D∈U∕d

RP
(i+1)(D)(u)

=
⋁

D∈U∕d

(
�i+1 − �i

�i+1
+

�i

�i+1
RP

(i)(D)(u)

)

=
�i+1 − �i

�i+1
+

⋁
D∈U∕d

�i

�i+1
RP

(i)(D)(u)

=
�i+1 − �i

�i+1
+

�i

�i+1

⋁
D∈U∕d

RP
(i)(D)(u).

POS
(i+1)

P
(d)(u) =

�i+1 − �i

�i+1
+

�i

�i+1
POS

(i)

P
(d)(u).
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Corollary 4.6  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then ∀ u ∈ U, ∀ i ∈ [|P|, |C| − 1],

,

Theorem 4.7  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then ∀ i,

Proof  By Theorem 4.5,

Then

Thus

	�  ◻

Corollary 4.8  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then ∀ i ∈ [|P|, |C| − 1],

Theorem 4.9  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C , a ∈ C − P . Then ∀ i, 

(4.12)POS
(i+1)

P
(d)(u) =

1

i + 1
+

i

i + 1
POS

(i)

P
(d)(u).

(4.13)Γ
(i+1)

P
(d) =

�i+1 − �i

�i+1
+

�i

�i+1
Γ
(i)

P
(d).

|POS(i+1)
P

(d)| =
n∑
i=1

POS
(i+1)

P
(d)(ui)

=

n∑
i=1

(
�i+1 − �i

�i+1
+

�i

�i+1
POS

(i)

P
(d)(ui)

)

=
�i+1 − �i

�i+1
n +

�i

�i+1

n∑
i=1

POS
(i)

P
(d)(ui)

=
�i+1 − �i

�i+1
n +

�i

�i+1
|POS(i)

P
(ui)|.

|POS(i+1)
P

(d)|
n

=
�i+1 − �i

�i+1
+

�i

�i+1

|POS(i)
P
(d)|

n
.

Γ
(i+1)

P
(d) =

�i+1 − �i

�i+1
+

�i

�i+1
Γ
(i)

P
(d).

(4.14)Γ
(i+1)

P
(d) =

1

i + 1
+

i

i + 1
Γ
(i)

P
(d).

(4.15)sig(i+1)(a,P, d) =
�i

�i+1
sig(i)(a,P, d).
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Proof  By Theorem 4.7,

Thus

	�  ◻

Corollary 4.10  Let (U,C ∪ {d}) be an ICDIS. Suppose P ⊆ C , a ∈ C − P . Then 
∀ i ∈ [|P|, |C| − 1],

5 � Attribute reduction in an ICDIS

In this section, attribute reduction in an ICDIS based on fuzzy rough sets is studied and the 
corresponding algorithm is proposed.

Definition 5.1  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then P is called a coordina-
tion subset of C relative to d, if POS�

P
(d) = POS�

C
(d) where � = |P|.

Definition 5.2  Suppose that (U,C ∪ {d}) is an ICDIS. Given a ∈ P ⊆ C . Then a is called 
independent in P, if POS�

P
(d) ≠ POS�

P−{a}
(d) where � = |P|.

Definition 5.3  Assume that (U,C ∪ {d}) is an ICDIS. Given P ⊆ C . Then P is called 
independent, if for any a ∈ P , a is independent in P.

Definition 5.4  Let (U,C ∪ {d}) be an ICDIS. Given P ⊆ C . Then P is called a reduct of 
C to d, if P is both coordination and independent.

In this paper, the family of all coordination subsets (resp., all reducts) of C to d is 
denoted by co(C) (resp., red(C)).

Obviously,

sig(i+1)(a,P, d) = Γ
(i+1)

P
(d) − Γ

(i+1)

P∪{a}
(d)

=
�i+1 − �i

�i+1
+

�i

�i+1
Γ
(i)

P
(d) − (

�i+1 − �i

�i+1
+

�i

�i+1
Γ
(i)

P∪{a}
(d))

=
�i

�i+1
Γ
(i)

P
(d) −

�i

�i+1
Γ
(i)

P∪{a}
(d)

=
�i

�i+1
(Γ

(i)

P
(d) − Γ

(i)

P∪{a}
(d)).

sig(i+1)(a,P, d) =
�i

�i+1
sig(i)(a,P, d).

(4.16)sig(i+1)(a,P, d) =
i

i + 1
sig(i)(a,P, d).

P ∈ red(C) ⟺ P ∈ co(C) and ∀P� ⊂ P,P� ∉ co(C).
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Theorem 5.5  Suppose that (U,C ∪ {d}) is an ICDIS. Given P ⊆ C . Then

Based on the discussion above, the following attribute reduction algorithm in an 
ICDIS based on fuzzy rough sets is proposed. 

By using Algorithm 1, the time complexity of attribute reduction in an ICDIS is pol-
ynomial. First, Steps 2 to 8 take O(n2) time complexity and Steps 9 to 20 is O(mn2) . 
The time complexity of Step 23 to 29 is O(mn2) , and that of Step 30 is O(m). The time 
complexity of Steps 32 to 37 is O(n2) , so the overall complexity from Step 21 to Step 38 

P ∈ co(C) ⟺ Γ�
P
(d) = Γ�

C
(d), where � = |P|.
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is O(m(m + 1)n2∕2 + m2 + mn2) = O(m2n2) . Thus the time complexity of Algorithm 1 is 
O(n2 + mn2 + m2n2) = O(m2n2) . Furthermore, its space complexity is O(mn2).

6 � Experimental analysis

In this section, the performance of the proposed attribute reduction algorithm and existing 
algorithms is evaluated. The frame work chart of experiments is displayed in Fig. 2.

6.1 � Datasets

Eight data sets are used in the experimental analysis, which are selected from UCI (Frank 
and Asuncion 2010) Machine Learning Repository. These data sets containing missing val-
ues are described in Table 1.

6.2 � Data preprocessing

Data preprocessing composed of three main steps: Label Transfer and Data Transfer, 
Missing value processing, Remove duplication, and Data normalization. In label transfer 
and data transfer, all the symbolic data are transferred to numeric values. It is important 
to process missing value in the training set to calculate the distance between individu-
als. For categorical data, we usually use frequency values to deal with missing values. 
It is important to remove duplicate records in the training set to avoid the classifiers to 
be biased to most frequent records and prevent it from learning infrequent records. Nor-
malizing the data is an important step to eliminate the biased with the features of larger 

Fig. 2   The frame work chart of experiments
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values from the data set. Data normalization is the process of transforming or scaling 
the data values of each feature into a proportional range. The used dataset was normal-
ized into the range [0, 1] according to Eq.(6.1).

In this paper, because fuzzy relations are constructed directly and attribute reduction is per-
formed based on fuzzy relations, there is no need to deal with missing values and normal-
ize the data before attribute reduction.

6.3 � Classifier training and testing

To evaluate these attribute reduction approaches, three learning mechanisms which can 
create classifiers are employed. They are frequently-used classifiers which the one is 
k-nearest nearest rule (KNN,K=3), the others are decision tree induction algorithms 
(ID3 and C4.5). We use confusion matrix to calculate the accuracy. As shown in Fig. 3.

The proposed algorithm is compared with the other six algorithms. These are rep-
resentative forward attribute reduction algorithms based on intuitionistic fuzzy rough 
(FMIFRFS) Pankhuri et al. (2020), fuzzy similarity-based rough set (FSRS) Singh et al. 
(2020), dependency (SFFSNTCE) Zhao and Qin (2014), positive regions (PR) Meng 
and Shi (2009), conditional entropies (IE) Teng et  al. (2010) and the heuristic search 
algorithm of SetCover approach (SetCover) Dai et al. (2013).

The parameter � of FR-IC method is introduced to control the variable precision. The 
� is increased from 0.05 to 0.25 with a step of 0.01. Because different values of � pro-
duce different reductes, the experimental results with the highest classification accura-
cies are compared. In order to make the calculation more accurate, we did 10 experi-
ments for each result. In each experiment, 20% was randomly selected as the test set and 
80% as the training set, and then the classification accuracy calculated was averaged.

(6.1)Xnormalized =
X − Xmin

Xmax − Xmin

.

(6.2)accuracy =

∑n

i=1
cii∑n

i=1

∑n

j=1
cij
.

Table 1   The data sets excerpted from the UCI machine learning repository

No Data sets Abbreviation Sample size Attributes Classes

1 Lung Cancer LC 32 56 3
2 Large Soybean LS 307 35 19
3 Dermatology Der 358 34 6
4 Vote Vot 435 16 2
5 Breast Cancer BC 683 9 4
6 Mushroom Mus 8124 22 2
7 Mammographic Man 961 5 2
8 Audiology.standardiz Aud 200 69 25
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The experiments are carried out on a personal computer. All attribute reduction algo-
rithms are run in Matlab 2018b and hardware environment with an Intel(R)Core(TM)
i7-9700CPU@3.0GHZ and 8GB RAM.

6.4 � Classification results

Table  2 provides the average sizes of attribute reduction with these algorithms. Among 
these seven algorithms, only algorithm FMIFRFS deals with complete data. For this rea-
son, the frequency mode method is used. The missing values in each column are replaced 
by the most frequent attribute values in this column. In algorithm FMIFRFS, the �(x) func-
tion value is obtained by normalizing the data, and then the �(x) function value is equal to 
1-�(x)-rand/c, where rand is a random number between (0,1) and c is a constant.

Fig. 3   Confusion matrix of classifier

Table 2   Numbers of attribute reduction

Data sets Raw data FMIFRFS FSRS SFFSNTCE PR IE SETCOVER FR-IC

Lung Cancer 56 31 5 3 7 4 4 4
Large Soybean 35 12 11 9 9 10 10 10
Dermatology 34 15 7 4 5 5 5 2
Vote 16 12 16 10 8 11 8 8
Breast Cancer 9 4 4 3 3 4 4 3
Mushroom 22 8 5 5 5 5 6 4
Mammographic 5 4 5 4 4 4 3 4
Audiology.standardiz 69 2 34 12 12 17 7 13
Average 30.75 11 10.88 6.25 6.63 7.5 5.88 6



5331Attribute reduction in an incomplete categorical decision…

1 3

It is easily seen that these attributes of data sets can be reduced effectively. From 
Table 2, it is easy to find out that the less average number of selected attributes are FR-IC 
and SETCOVER, which both are approximately equal to 6. The most number of selected 
attributes was carried out by FMIFRFS method, because its ending condition: The positive 
field of attribute reduction must be equal to 1, or the two values before and after are equal. 
Most data sets are difficult to achieve this condition for FMIFRFS, resulting in a large 
number of reduction. FSRS algorithm also requires that the positive field of the reduction 
attribute be equal to 1. Therefore, the positive field of all attributes in two datasets (Vote, 
Mammographic) cannot reach 1. So the reduction sets generated by FSRS algorithms are 
the original data for the two datasets.

The optimal attribute subsets with the highest classification accuracy of the seven algo-
rithms are shown in Table 3. It is obvious to see that most of the attributes selected by 
these methods are not the same, because they may have more than one reduct. In Table 3, 
the “-" represents a gradual increase from one number to another.

Tables 4, 5 and 6 present the classification results with KNN (k=3), ID3 and C4.5. The 
underlined symbol denotes the highest classification accuracy among these attribute reduc-
tion algorithms. In Table  4, for Dermatology, FMIFRFS performs better than FR-IC in 
classifier KNN. The classification accuracy of FR-IC is a little worse than that of FSRS 
for Mushroom and Mammographic. FSRs algorithm does not complete attribute reduction 
in Vote and Mammographic, in other words, no attribute has been deleted, so the accuracy 
used is the original dataset. For the classifier KNN, the classification accuracy of three data 
is higher than that of the proposed algorithm in this paper.

As can be clearly seen from Table 5, for Dermatology, FR-IC is not good enough for 
FMIFRFS in classifier ID3. For Large Soybean and Mushroom, the classification accu-
racy of FSRS do better than other algorithms in ID3. From Table 6, for Mushroom, PR 
and SETCOVER execute better than FR-IC in classifier C4.5. The FMIFRFS algorithm 
performs better than other algorithms in Dermatology dataset. On the whole, classification 
accuracy based on the FR-IC method is higher than the other six methods in most case. We 
have done 168 numerical experiments, and 13 of them show that other algorithms are bet-
ter than FR-IC algorithm. That is to say the excellent rate of FR-IC is 92.3% and it reaches 
a good effect. Therefore, our algorithm is superior to other six algorithms. In a word, the 
FR-IC method is more effective for attribute reduction in an ICDIS.

By discussing the influence of parameter � on FR-IC algorithm, it is found that a reduct 
is related to � , and the relationship between � and classification accuracy is closely related. 
So it is easy to find the � value of the optimal reduct. Figures 4, 5, 6, 7, 8, 9 and 10 show 
that the classification accuracy curve has no obvious change with the number of selected 
attributes decreasing. This shows that the proposed algorithm is effective. These figures 
show that the proposed algorithm has achieved good results. Figures 4, 5, 6, 7, 8, 9 and 10 
show the relationship between the size of the reduct and the threshold � , and the relation-
ship between the classification accuracy of different classifiers and � . The x-axis expresses 
the threshold � , that value increases from 0.05 to 0.25 in 0.01 step. The left pink Y-axis 
indicates number of attributes of the reduct P, and the right blue Y-axis represents clas-
sification accuracy. The pink curve represents the relationship between � and the size of 
the reduct P, and the function value of each point on the curve corresponds to the left pink 
y-axis. The other three curves with different colors reflect the classification accuracy of � 
and three different classifiers, and the function value corresponds to the right blue y-axis. It 
is obvious that most of data sets can get higher classification accuracy in this experiment. 
Although classification accuracy curves of KNN and ID3 are gentle, the classification 
accuracy curve of C4.5 fluctuate obviously. The classification accuracy of C4.5 is lower 
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than KNN and ID3 in most data sets, such as Large Soybean, Dermatology, Breast Cancer, 
Mammographic and Audiology.standardiz. This may be due to the insufficient number of 
samples. Because the small number of samples and the large number of total categories in 
Audiology.standardiz, the classification accuracy of Audiology.standardiz is low. Figure 5 
shows that the classification accuracy curves of KNN, ID3 and C4.5 are very close for the 
Vote dataset.

Figure 11 shows the optimal attribute set size of eight data reduced by seven algo-
rithms. Figures  12, 13 and 14 show the trend of the best classification accuracy of 
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Fig. 4   Effective of � in attribute reduction (Lung Cancer)
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eight data sets under seven algorithms. The x-axis represents eight data sets, and the 
y-axis expresses the classification accuracy of the classifier. The pink curve, the FR-IC 
algorithm proposed in this paper, is obviously slightly higher than other curves. This 
means that the performance of FR-IC algorithm is better than other algorithms in most 
cases.
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6.5 � Sensitivity analysis

Next, we discuss sensitivity analysis. The original record may not be the most true 
because there will be deviation when observing attribute values. Two information sys-
tems Dermatology and Large Soybean are selected to generate random small distur-
bances on their attribute values respectively. Firstly, 0%, 2%, 5%, 8%, 15%, 20%, 25% 
and 30% attribute values in the information system are selected to generate random 
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interference respectively. The purpose is to observe whether the proposed algorithm can 
still get a consistent reduction set under different disturbance ratios. Then the proposed 
algorithm is used to complete multiple attribute reduction. The difference between the 
reduced sets obtained under different proportions of data disturbance will be calculated. 
Therefore, we use Jaccard similarity coefficient to measure the similarity between the 
two sets:
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Fig. 11   The size of attribute reduction for seven algorithms
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Fig. 12   Variation of classification accuracies with KNN for seven algorithms

Fig. 13   Variation of classification accuracies with ID3 for seven algorithms
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Fig. 14   Variation of classification accuracies with C4.5 for seven algorithms
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where |||Pi ∩ Pj
||| represents the same number of statistical sets Pi and Pj , 

|||Pi ∪ Pj
||| represents 

the total number of different elements in two sets. Rate indicates the similarity of two sets.
Figures  15 and 16 show that FR-IC algorithm obtains five different reduction sets 

when taking different parameters . The horizontal axis represents the disturbance rate, 
which is 0%, 5%, 8%, 15%, 20%, 25% and 30% respectively. When the disturbance rate 
is 0%, it indicates the original data set. The vertical axis represents the similarity rate. 
When there is no disturbance, the similarity rate is 1, and all curves start from point 
(0,1).

As can be seen from Figures 15 and 16, when the disturbance rate is 2%, the similarity 
of the reduced set is very high, reaching about 90%. When the disturbance rate increases 
gradually, the similarity becomes lower and lower, and finally reaches a stable state.

Through sensitivity analysis, we can know that when the disturbance rate is no more 
than 2%, the similarity of reduced sets is high and the algorithm model is stable.

6.6 � Friedman test and Nemenyi test

To further assess the performance of classification of seven methods, Friedman test and 
Nemenyi test are given in this section.

Friedman test is a statistical test that uses the rank of algorithms. Friedman statistic is 
defined as

rate =

|||Pi ∩ Pj
|||

|||Pi ∪ Pj
|||
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Fig. 16   Attribute sensitivity analysis (Large Soybean)
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where k is the number of algorithms, N is the number of data sets, ri is the average rank-
ing of the i-th algorithm. When k and N are large enough, Friedman statistic follows the 
chi-square distribution with k − 1 degrees of freedom. However, such Friedman test is too 
conservation, and is usually replaced by the next statistic

The statistic FF follows a Fisher distribution with k − 1 and (k − 1)(N − 1) degrees of 
freedom. If the statistic FF is greater than the critical value of F�(k − 1, (k − 1)(N − 1)) , 
it means the null hypothesis is rejected under Friedman test. Nemenyi test can be used 
to further explore which algorithm is better in the statistical term. If the average level of 
distance exceeds the critical distance CD� , then the performance of two algorithms will be 
significantly different. The critical distance CD� is denoted as

where q� is the critical tabulated value for the test and � is the significance level of the 
Nemenyi test.

Below, these seven methods are viewed as seven algorithms and the statistical signifi-
cance is demonstrated by using Friedman test and Nemenyi test. 

(1)	 The ranking of classification accuracies of the seven methods on eight data sets is given, 
respectively (From Tables 7, 8, 9).

(2)	 Friedman test is conducted to investigate whether the classification ability of the seven 
methods are significantly different. Under the seven methods and the ranking of clas-
sification accuracies with three classifiers, FF follows the distribution with 6 and 138 
degrees of freedom. The critical value of Fisher distribution F0.05(6, 138) is 2.165, and 
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Table 7   Ranking of classification accuracies of reduced data with KNN

Data sets FMIFRFS FSRS SFFSNTCE PR IE SETCOVER FR-IC

LC 7 3 2 6 4 5 1
LS 3 2 4 7 6 5 1
Der 1 2 6 7 5 4 3
Vot 2 6 5 4 7 3 1
BC 6 5 4 7 3 2 1
Mus 6 1 3 4 5 7 2
Mam 6 1 5 4 3 7 2
Aud 7 5 3 4 2 6 1
Average 4.73 3.13 4 5.38 4.38 4.88 1.5

Table 8   Ranking of classification accuracies of reduced data with ID3

Data sets FMIFRFS FSRS SFFSNTCE PR IE SETCOVER FR-IC

LC 3 2 5 6 4 7 1
LS 3 1 4 7 6 5 2
Der 1 2 5 7 4 3 6
Vot 7 6 5 3 4 2 1
BC 3 2 7 5 6 4 1
Mus 7 1 3.5 2 6 5 3.5
Mam 7 6 3 2 4 5 1
Aud 7 4 3 5 2 6 1
Average 4.75 2.63 4.44 4.63 4.5 4.63 2.06
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the test statistic of FF = 9.143 . Obviously, the statistic value FF is bigger than that of 
F0.05(6, 138) . This means that at the significant level � = 0.05 , it is evidence to reject 
the null hypothesis, which means that the classification ability of the seven methods 
are different in the statistical significance.

(3)	 To further show the significant difference of the seven methods, Nemenyi test is intro-
d u c e d .  F o r  � = 0.05 ,  i t  i s  e a s y  t o  c a l c u l a t e  q� = 2.948  a n d 
CD� = 2.948 ×

√
7×(7+1)

6×24
= 1.838 . Figure 17 shows the Nemenyi test results with 

� = 0.05 on the seven methods, in which the two algorithms with horizontal line con-
nections have no significant differences on classification accuracy and the line segments 
in the figure carves out the scope of CD� . Figure 18 shows the significance level 
p-values of each pair of algorithms.

(4)	 From Figs. 17 and 18, the following results are obtained:

(a)	 The classification accuracy of FR-IC is statistically higher than that of FMIFRFS, 
SFFSNTCE, PR, IE and SETCOVER, respectively;

(b)	 The classification accuracy of FSRS is statistically higher than that of FMIFRFS, 
SFFSNTCE, PR, IE and SETCOVER, respectively;

(c)	 There is no significant difference between the classification accuracy of FR-IC 
and FSRS;

(d)	 There is no significant difference among the classification accuracy of FMIFRFS, 
SFFSNTCE, PR, IE and SETCOVER.

7 � Conclusion and future work

In this paper, a fuzzy rough set model for an ICDIS has been given. Some attribute-evalu-
ation functions, such as fuzzy positive regions, dependency functions and attribute impor-
tance functions have been presented. These attribute-evaluation functions represent the 
classification ability of attribute reduction. A fuzzy rough computation model for an ICDIS 
has been established by using the iterative relations of fuzzy positive regions and depend-
ency functions. Attribute reduction in an ICDIS based on fuzzy rough sets has been studied 
and the corresponding algorithm has been proposed. Experiments have been carried out 

Table 9   Ranking of classification accuracies of reduced data with C4.5

Data sets FMIFRFS FSRS SFFSNTCE PR IE SETCOVER FR-IC

LC 3 2 4 5 6 7 1
LS 7 6 2 5 3 4 1
Der 1 3 4 6 7 5 2
Vot 7 3 5 2 4 6 1
BC 2 4 3 6 7 5 1
Mus 6 3 7 1.5 4 1.5 5
Mam 7 6 4 3 5 2 1
Aud 7 5 3 4 2 6 1
Average 5 4 4 4.06 4.75 4.56 1.63
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by using 8 datasets from UCI, and statistical tests have been used to evaluate the perfor-
mance of the proposed algorithm. Experimental results show that the proposed algorithm 
can effectively reduce redundant attributes and maintain high classification accuracy. In the 
future, some applications of the fuzzy rough computation model in data mining and clas-
sification learning will be studied.
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