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Abstract

Naturally, to analyze an image accurately, all the similar objects within it should be sepa-
rated to pay attention to the most important object for reaching more details and hence
achieving better accuracy. Therefore, multilevel thresholding is an indispensable image
processing technique in the field of image segmentation and is employed widely to sepa-
rate those similar objects. However, with increasing thresholds, the existing image seg-
mentation techniques might suffer from exponentially-grown computational cost and low
accuracy due to local optima shortage. Therefore, in this paper, a new image segmentation
algorithm based on the improved marine predators algorithm (MPA) is proposed. MPA
is improved using a strategy to find a number of the worst solutions within the popula-
tion then tries to search for other better ones for those solutions by moving them gradually
towards the best solutions to avoid accelerating to local optima and randomly within the
search space based on a certain probability. In addition, this number of the worst solu-
tions is increased with the iteration. This strategy is known as the linearly increased worst
solutions improvement strategy (LIS). Also, we suggested that apply the ranking strategy
based on a novel updating scheme, namely ranking-based updating strategy (RUS), on the
solutions that could find better solutions in the last number iterations, perlter, in the hope
of finding better solutions near it. RUS updates the particles/solutions which could not find
better solutions than the best-local one in a number of consecutive iterations, with those
that are generated based on a novel updating strategy. LIS is integrated with MPA to pro-
duce a new segmentation meta-heuristic algorithm abbreviated as MPALS. Also, MPALS
and RUS are combined to tackle ISP in a strong variant abbreviated as HMPA for over-
coming the image segmentation problem. The two proposed algorithms are validated on
14 test images and compared with seven state-of-the-arts meta-heuristic algorithms. The
experimental results show the effectiveness of HMPA with increasing the threshold levels
compared to the seven state-of-the-arts algorithms when segmenting an image, while their
performance is roughly the same for the image with a small threshold level.
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1 Introduction

Reaching better accuracy when analyzing an image is considered an indispensable objec-
tive, but the image may be crowded with objects that are not beneficial for this analysis, and
subsequently, the accuracy will reduce significantly due to paying attention to some unim-
portant regions within the analyzing process. As a result, separating the similar regions
within the image is a common problem known as image segmentation problem (ISP) that
the researchers’ pit for overcoming to extract the desired regions that improve the analysis
accuracy of the image in several fields such as historical newspapers (Naoum et al. 2019;
Barman et al. 2020), satellite image processing (Karydas 2020), object recognition (Wang
et al. 2020), and medical diagnosis (Mittal et al. 2020; Zhang et al. 2020; Sultana et al.
2020; Hassanzadeh et al. 2020).

To overcome ISP, several segmentation techniques under region-based (Aksac et al.
2017), feature selection-based clustering (Narayanan et al. 2019), edge-based (Prathusha
and Jyothi 2018), and threshold-based (Han et al. 2017) have been suggested. From among
those techniques, threshold-based segmentation is the simplest, fastest, and accurate. As a
result, threshold-based segmentation is significantly utilized to tackle ISP (Kuruvilla et al.
2016; Oliva et al. 2014; Arora et al. 2008). Threshold-based segmentation has two catego-
ries: bi-level threshold, and multi-level threshold. In the bi-level, the image is divided into
two parts: background and foreground (object). When having more than two similar regions
within the image, the bi-level is skipped, and comes the role of the multi-level threshold
that appeared to separate the several similar regions within the image. But although the
high benefits that multi-level threshold could come true to overcome ISP for an image with
several regions, it needs time increased exponentially with the required threshold number.

Some of the threshold techniques are based on a parametric approach that needs to
compute some parameters under the probability density function for each region to extract
the optimal threshold values. While the other techniques use a non-parametric approach
that seeks to maximize some functions such as Kapur’s entropy (Kapur et al. 1985), fuzzy
entropy (Li et al. 2021) and Otsu function (Otsu 1979) without going to computing some
parameters.

Since the multi-level threshold needs time increased exponentially with the threshold
levels, the traditional techniques are inadequate for overcoming those levels especially for
an image with an extremely significant level. Consequently, the researchers think in the
meta-heuristic algorithms as another methodology to overcome the drawbacks of the tradi-
tional techniques due to the great success that could achieve in many fields (Abdel-Basset
et al. 2018; Sayed et al. 2019; Abouhawwash and Alessio 2021; Ma et al. 2021, 2020)
within less possible time. Several meta-heuristic algorithms for tackling ISP has recently
been proposed, some of which will be reviewed within the next section.

Recently, a new metaheuristic algorithm known as the marine predators algorithm
(MPA), which mimics the behaviors of the predators when attacking their prey, has been
proposed for tackling the global optimization problem and could fulfill superior perfor-
mance (Faramarzi et al. 2020). As a result, it has been applied for tackling several real opti-
mization problems. In Soliman et al. (2020), MPA was adapted for finding the unknown
parameters of triple-diode photovoltaic models and could fulfill superior outcomes com-
pared to four other metaheuristics algorithms. It has been also applied for finding the
optimal thresholds of an image by maximizing the fuzzy entropy type II as an objective
function (Mahajan et al. 2021). Moreover, the MPA integrated with dominance strategy-
based exploration and exploitation was applied for tackling the multiobjective optimization
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problems and could outperform several well-known multiobjective optimization algo-
rithms (Abdel-Basset et al. 2021). Both MPA and political optimizers (PO) were applied
for finding the unknown parameters of fuel cells and the experimental findings show that
MPA is better than PO and some of the compared metaheuristic algorithms (Diab et al.
2020). Compared to some of the evolutionary algorithms like genetic algorithm and dif-
ferential evolution, in addition to the particle swarm optimization algorithm as one of the
well-known swarm-based optimization algorithms, MPA could fulfill terrible success for
tackling several optimization problems due to having some strong characteristics which
have aided avoiding stuck into local minima by exploring several regions within the search
space in less number of function evaluations to increase the convergence speed (Faramarzi
et al. 2020). Moreover, MPA has additional merit, increasing the exploration capability,
known as fish aggregating devices (FADs) that have employed various updating manners
to reposition each solution to other regions in the search space for preserving the solution
diversity within various optimization phases.

Furthermore, MPA was integrated with Success History based Adaptive Differential
Evolution (SHADE) algorithm to utilize the features of each one for producing a new
strong variant called hybrid Marine Predators—Success History based Adaptive Differ-
ential Evolution (MP-SHADE) algorithm for estimating the unknown parameters of the
single and double diode photovoltaic models. A combination of both MPA and teaching
and learning-based optimization could produce a new strong one having higher explora-
tion capability to avoid stuck into local minima as an attempt to find better outcomes. This
variant was abbreviated as TLMPA and applied for tackling IEEE CEC-2017 benchmark
functions and four engineering design problems. Many other variants of MPA have been
recently published for tackling other real optimization problems: parameter identification
of single and double diode models (Ridha 2020), a new configuration of an autonomous
CHP system based on improved MPA (Wang et al. 2021), Multi-Regional Optimal Power
Flow (Swief et al. 2021), and several else (Kapur et al. 1985; Yu et al. 2021; Panagant et al.
2021; Shaheen et al. 2021, 2020; Durmus 2021; Liu and Yang 2021; Elsayed et al. 2021;
Ramezani et al. 2021; Riad et al. 2021; Ghoneimy et al. 2021).

Within our work, we try to support another technique that tries to exploit the individuals
of the population significantly within the optimization process. This technique is based on
selecting a number of the individuals with the worst fitness values, this number increases
linearly with the iteration, then each individual within those individuals will be updated
either with a small step size, which increases gradually with increasing the current itera-
tion, toward the best-so-far one to explore a huge number of solutions between this worst
and the best-so-far one, in addition to avoiding stuck into local minima at the start of the
optimization process, or randomly within the search space to avoid stuck into local min-
ima, the trade-off between those two different updates: toward the best-so-far and randomly
within the search space is based on a certain probability illustrated within the experiments
section in the parameter tuning. . After that, due to the significant success achieved by
MPA in several fields as mentioned before, in addition to its need for more improvements
to balance between the exploration and exploitation operators, it has been used to be inte-
grated with this technique to propose a new variant, MPALS, having a strong exploita-
tion operator for tackling ISP with threshold levels up to 40. However, this variant still
suffers from falling into local minim because of the low exploration operator, therefore,
another strategy known as ranking-based updating strategy (RUS) has been proposed with
a novel updating scheme to replace the unbeneficial solutions which could not come true
better solution within a consecutive number perlter of the iterations with those which
improve both exploration and exploitation operators of the optimization algorithms. then,
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MPALS is combined with RUS to develop a new variant called HMPA. Both HMPA and
MPALS were compared with a number of recently proposed well-established optimiza-
tion algorithms. From involving those algorithms, the hybrid marine predators algorithm
with ranking-based diversity strategy that is recently proposed for tackling ISP for covid19
images. After completing the comparison, it was notified that HMPA is superior on signifi-
cant threshold levels and converged with the small threshold levels. The main contributions
introduced within this paper are:

1. Proposing two strategies known as linearly increased the worst solutions improvement
strategy and ranking-based updating strategy (RUS) to utilize each individual within
the optimization process as possible for reaching better outcomes.

2. Integrating these strategies with MPA to propose two variants: the first is based on inte-
grating MPA with LIS (MPALS), and the second improves MPALS by RUS (HMPA)
for tackling ISP with threshold levels reaching 40.

3. Those two variants were extensively validated on 14 test images taken from Berkeley
Segmentation Dataset, and compared with a number of recently proposed optimization
algorithms to show the superiority of the proposed.

4. After validation and comparison, we see that HMPA could be converged with the small
threshold levels and significantly outperform with the high threshold levels.

Within the following sections in this paper: some of the previous works done on ISP are
reviewed in Sect. 2, the Kapur’s entropy is described in Sects. 3, 4 overviews the marine
predators algorithm. Section 5 designs the paces of developing MPA with a linear popula-
tion improvement strategy for tackling ISP. Section 6 validates and compares the proposed
algorithm on some test images, and Sect. 7 shows the conclusions about our proposition
and future works.

2 Literature review

There are several meta-heuristic algorithms proposed for tackling ISP such as, ant colony
optimization algorithm (Kaveh and Talatahari 2010), whale optimization algorithm (WOA)
(Abd El Aziz et al. 2017), multi-verse optimizer (Kandhway and Bhandari 2019), particle
swarm optimization (PSO) (Guo and Li 2007; Xiong et al. 2020; Di Martino and Sessa
2020), cuckoo search (CS) (Agrawal et al. 2013), locust search algorithm (LSA) (Cuevas
et al. 2020), honey bee mating optimization (HBM) (Horng 2010), symbiotic organisms
search (SOS) (Chakraborty et al. 2019), harris hawk optimization algorithm (HHA) (Bao
et al. 2019), and moth-flame optimization (MFA) (Abd El Aziz et al. 2017), flower pol-
lination algorithm (FPA) (Wang et al. 2015), crow search algorithm (Oliva et al. 2017), an
improved grey wolf optimizer IGWO) (Yao et al. 2019), genetic algorithm (GA) (Elsayed
et al. 2014), bee colony algorithm (BCA) (Huo et al. 2020), marine predators algorithm
(MPA) and improved MPA (IMPA) (Abdel-Basset et al. 2020a), equilibrium optimizer
(EO) (Abdel-Basset et al. 2020c), bacterial Foraging Algorithm (BFA) (Sanyal et al. 2011),
and firefly optimization algorithm (FFA) (Erdmann et al. 2015). Through this section,
some of this algorithm will be surveyed briefly.

Abd El Aziz et al. (2017) developed both WOA and MFA for overcoming ISP by max-
imizing the Otsu’s method on small threshold levels reaching 6, but its performance on
significant threshold levels is not known even now as its main limitations. In addition,

@ Springer



Hybrid marine predators algorithm for image segmentation:... 3319

Agrawal et al. (2013) proposed CS for overcoming ISP by using the tsallis entropy as a
fitness function. The CS was verified a standard benchmark of test images, and compared
with 4 optimization algorithms: artificial bee colony (ABC) algorithm, particle swarm
optimization (PSO) , bacteria foraging optimization (BFO) and genetic algorithm (GA).
According to the discussion of the authors, the CS was competitive with those algorithms
in terms of only the CPU time and the objective function. This algorithm has been inves-
tigated for only 5-threshold levels, higher than that, its performance is not known as its
main shortage. Chakraborty et al. (2019) proposed SOS enhanced by the opposition-based
learning to increase the convergcne speed toward the optimal solution and avoid the local
minima that may deteriorite the perforamcne of SOS for tackling ISP of color images. The
performance of the improved SOS was validated using a set of the color images taken from
Berkeley Segmentation Dataset (BSDS) and another set gathered for the COCO dataset.
The experimental results of the improved SOS in comparison to a number of the existing
algorithms: Bat algorithm (BA), CS, PSO, and ABC show the superiority of the improved
SOS in terms of the objective values. Also, the performance of this algorithm is not known
with increasing threshold levels and subsequently not preferred for tackling any image with
a significant number of threshold levels.

Furthermore, Bhandari et al. (2015) proposed the modified ABC to find the optimal
threshold values for the satellite image segmentation using different objective functions:
Kapur’s, Otsu and Tsallis. In the modified ABC (MABC), the chaotic maps and opposi-
tion-based learning was employed during generating the initial population to improve the
convergence speed. This modified version was compared with the standard ABC, PSO and
GA under various objective functions, but this algorithm was limited in terms of CPU runt-
ime and algorithm complexity compared to those compared algorithms. In Erdmann et al.
(2015), FFA was proposed to tackle ISP, but its performance was weak, so the improved
one (IFFA) (Chen et al. 2016), that was improved using the Cauchy mutation and neigh-
borhood strategy to overcome the local minima and improve its exploration capability, has
been developed.

Maitra and Chatterjee (2008) improved PSO with cooperative and comprehensive learn-
ing for overcoming the dimensionality curse and increasing the early convergence, respec-
tively. Also, PSO (Liu et al. 2015) modified using adaptive inertia, and the population has
been proposed for tackling ISP. BFA (Sanyal et al. 2011) has been proposed for tackling
ISP of grey images by using fuzzy entropy to alter the bacterium between intensification
and diversification operators. Furthermore, BFA (Tang et al. 2017) is integrated with PSO
to support the global search capability in addition to the weak bacterium, which selects a
random strong one to reach a location near it. In Yao et al. (2019), an improved grey wolf
optimizer (IGWO) has been proposed for tackling ISP. IGWO was improved using a good
point set method to initialize the population, this algorithm has a high ability to get rid of
local optima and finding better solutions. This algorithm has not discussed the CPU runt-
ime in addition to using a small number of threshold levels up to 5 and consequently, it is
not a good alternative to the existing image segmentation techniques.

An improved Bat algorithm (IBA) (Mokhtari and Kimour 2019) was proposed for tack-
ling ISP. IBA accelerated the convergence and increased the diversity between the mem-
bers of the population until disposing of stuck into local minima using both the crossover
operator and chaotic search, respectively. In Xu et al. (2019), A dragonfly algorithm (DA)
and differential evolution (DE) have been proposed for tackling the color image segmenta-
tion problem. DA has a high ability on getting out of local minima so it can reach a better
solution, in addition to integrating DE as a local search strategy to improve the precision
of the solution. A modified spherical search optimizer (MSSO) (Naji Alwerfali et al. 2020)

@ Springer



3320 M. Abdel-Basset et al.

has been proposed and modified by the sine-cosine algorithm (SCA) to increase the exploi-
tation capability of this algorithm.

In Abdel-Basset et al. (2020c), equilibrium optimizer (EO) was adapted for tackling
the ISP by maximizing the Kapur’s entropy. EO was verified using a collection of the test
images extracted from Berkeley Segmentation Dataset. In addition, EO was compared with
a number of the popular optimization algorithms, such as WOA, BA, SCA, salp swarm
algorithm, Harris hawks algorithm, crow search algorithm, and PSO to see its efficacy
under a set of performance metrics. EO still suffers from falling into local minima and
low convergence speed which stand as an immune obstacle front reaching the optimal
threshold levels. Furthermore, in Abdel-Basset et al. (2020a) the standard MPA in addition
to an improved one by ranking based diversity reduction strategy has been suggested for
segmenting the x-ray images infected by covid19 under the Kapur’s entropy. The standard
MPA was improved using this novel method to accelerate the convergence speed toward
the best-so-far solution as an attempt to find better outcomes. This improved MPA was
compared with a number of the recent algorithms to see its efficacy. The experimental
results proved its efficacy over the standard one and the compared ones. Also, as discussed
in the experiments later that this improved MPA had two shortcomings: local minima and
low convergence speed.

Chouksey et al. (2020) has investigated the performance of the antlion optimization
(ALO) and multiverse optimization (MVO) algorithms for tackling the multilevel image
segmentation problem based on two objective functions: kapur’s entropy and Otsu method.
Those two algorithms were compared with evolutionary algorithms under the objective
value, the stability, feature similarity index (FSIM), peak signal to noise ratio(PSNR), and
structural similarity index (SSIM), and CPU time. The experiments show that those algo-
rithms could come true better outcomes over the compared algorithm, in general. Espe-
cially, the MVO could be more converged than ALO. However, those algorithms have not
experimented with thresholds greater than 5 as their main limitation. Shahabi et al. (2019)
proposed the crow search algorithm (CSA) for estimating the optimal threshold values
using the Otsu function. This algorithm was compared the improved PSO, FFA, the fuzzy
version of FFA to see its efficacy. The experimental outcomes proved the efficacy of the
CSA over those algorithms for time and uniformity.

Further, the water wave optimization (WWO) algorithm modified by opposition based
learning strategy and ranking-based mutation strategy to improve both the diversity of
the individuals within the population and the selection probability, respectively, has been
proposed by Yan et al. (2020) to select the optimal threshold values for the underwater
ISP. The modified WWO (MWWO) was compared with the other algorithms based on the
PSNR, the SSIM, the CPU time, the objective values, and the Wilcoxon rank sum test.
The experimental outcomes show the superiority of the MWWO over the other algorithms.
However, its performance for threshold levels higher than 6 has not been investigated, and
hence when increasing the threshold levels, this algorithm is not preferred for tackling this
problem.

3 Kapur’s entropy
Within this section, we will describe the Kapur’s entropy used to extract the optimal

threshold values by maximizing the entropy of the segmented regions [14]. Let’s see the
mathematical model of this method, supposing that the threshold values that segment
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an image with k similar regions are 1,1, 1,, ....,and f;, then the Kapur’s entropy seek for
maximizing the following formula until reaching the optimal threshold values:

T(tgstystyyeesty) =Tg+ T+ Ty + -+ T, )
to—1 t—1
. X N,
To=—) —xln—,X,= —, W, = ) X, 2
0 lz(; WO WO i W 0 ; i ( )
T 5 X it x, =Ny tlz_‘jx
= — —_ % n—’ =, = .
1 & ‘/V1 Wl i w 1 & i (3)
=t =t
T 5 X it x, =Ny tzz_‘:x
= — —_ % —, 4 = —, = i
2 2y, iy, W= 2 “)
i=t =t
L-1 -1
X; X; N;
T,=—-)Y —sxh—,X.=—W,= ) X,
k 2w, wo = g e ; i 4)
=t i=t;
Ty, T,,T,, ..., and T} expresses the entropies of similar regions, and N, refers to the count

of pixels with a value equal to i. W,, W, W,, ..., and W, is a phrase about the probabilities
of the different regions in proportion to the whole pixel W within an image. Finally, Eq. 1
is used in our proposition as a fitness function to find the optimal threshold values until
overcoming ISP.

4 Marine predators algorithm (MPA)

Recently, Faramarzi et al. (2020) proposed a novel meta-heuristic algorithm, namely
marine predators algorithm (MPA), that mimics the behavior of the predators when
attacking their prey. Specifically, the predators tradeoff between the lévy's flight and
Brownian strategy according to the velocity from the prey to predators when searching
for their prey. Mathematically, MPA is formulated as follows:

Like most meta-heuristic algorithms, at the outset of the optimization process, the
prey of size N will be distributed within the search space using the following equation:

prey = Xmin +r o (Xmax - Xmin) (6)

Where r is a vector to contain numerical values generated randomly at the interval of 0 and
I,and X,,;,, and X, are two vectors contain the maximum and minimum boundaries of
the search space for the problem.

After that, the fitness function is calculated and the prey with the highest fitness is
selected as the Top predator within the optimization process to construct the Elite (E)

I 4l i
Al,l AL2 Al,d
Al Al Al
matrix. This matrix is constructed as follows: E =|" 2! " 22 2d
I al i
AN.I AN,Z AN,d
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Alis the top predator and repeated N times to build up the elite matrix. N indicates
the individual numbers in the population, and d is dimension number in each individual.
Then, within the optimization process, the predators are moved towards a prey matrix
formulated as and initialized randomly within the search space:

Ay A, Ay
Ay A A
prey = | 21 A22 2.d
Ayt Ay - Ang
Within the optimization process, the updating of each prey will be divided into three
stages according to the velocity ratio from the prey to the predators.

1. High-velocity ratio The velocity ratio from the prey to predators is high in this phase,
where the prey is moved quickly searching for their food and the predators monitor their
movements. Therefore, the predators in this phase don’t need to move at all, because the
prey will reach them itself. This phase occurs at the start of the optimization process,
where the algorithm searches for better solution in all regions within the search space
of the problem. This phase is mathematically formulated as follows:

while ¢ < % L .

S; =R; ® (E; - R; ® Prey)) (7)

Prey, =Prey,+ PR® S, (8)

where Ry is a vector assigned randomly using the normal distribution to represent the
Brownian strategy, ® is the entry-wise multiplication, P is a fixed value and assigned
0.5 as recommended in the original paper, R is a vector generated randomly within O
and 1, t indicates the current iteration, and #,,,, expresses the maximum iteration.

2. Unit velocity ratio.

This stage occurs at the intermediate stage of the optimization process where the
exploration is converted into the exploitation phase. So this stage is neither exploration
nor exploration but it is a mix of them. Based on that, MPA within this phase divides
the population into two halves: the first half will move using exploration steps while
the other has exploitation steps. Finally, this stage will be mathematically formulated
as follows:

while 2 5 £, <1< 2 % 1,

e For the first half of the population
S;=R, ® (E;, - R, ® Prey)) )

Prey, =Prey, + PR®S; (10)
e For the second half of the population

S, =R; @ R; QE; —Prey)) (11)

Prey,=E,+ P+ CFQ®S; (12)
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where R; is a vector generated randomly based on the /évy distribution, and CF is an
adaptive parameter designed to manage the step size and created using the following
equation:

1
CF=(1- - (13)
max
3. Low velocity-ratio:
This stage occurs at the end of the optimization process where the exploration operator
is completely converted into the exploitation operator and mathematically modeled as:
while t > 2 x ¢

max

S, =R, ® (R, ® E, — Prey,) (14)

Prey,=E,+ P+ CFQ®S, (15)

Some other factors such as eddy formulation and fish aggregating devices (FADs)
affect significantly the behaviors of the predators. Based on some studies, as a result
of FADs, the predators spend 20% of their search time exploring another environment
around the search space with abundant prey, while the other time they search for bet-
ter solution within the surrounding environment. FADs could be mathematically com-
puted according to the following formula:

prey, = { prey; + CF[X,, + 12X, — X)) ® U if r < FADs 16

prey; + [FADs(1 —r) + r](prey,; — prey,,) if r > FADs

r is a number generated randomly within O and 1. Where, r, indicates the index of a
prey selected randomly from the population. U is a binary vector including 0 and 1.
FADs=0.2 indicates the probability of impacting FADs on the optimization process. r;
indicates the index of a prey selected randomly from the population.

After each updating process, MPA compares the fitness of the updated solutions with
the fitness for the previous solution to see if this update improves in the positions or not.
If the updated position of each solution is better than the old one, the updated will be
stored to be compared with the next generation, and if the old is better than the updated
one then the old solution will be used within the next generation instead of the updated
one. This process is known as memory saving. The pseudo-code of MPA is exposed in
Algorithm 1, and the same steps are also shown in Fig. 1. In this pseudo-code and figure,
t + + is the same as t = ¢ + 1 and is responsible for moving the algorithm to the next
generation for satisfying the termination condition related to a maximum generation.
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[
Return E,
No
o
M Initialization <tmax
Yes

Update E, prey, and CF l
No Yes
‘ Update current prey using Eq. (8)
No Yes
Update current prey using Eq. (15)
No Yes

| Updat cument prey using o 12) | | | S SREERA0] |

l |
!

Evaluate the updated predator.

Update the best predator if the updated one is better

Modifying memory saving if the current is better
\Z

Execute the FADS according to Eq. (16)

\/

Evaluate the updated predator.

Update the best predator if the updated one is better

Modifying memory saving if the current is better

2

|L1

Fig. 1 Depiction of the MPA steps
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Algorithm 1 The Marine predator algorithm (MPA)

1: Initialize prey;(i = 1,2,3,...,N), P=0.5.
2: while (¢ < tmaz)
: compute the fitness for each prey;.

3

4 best predator=the fittest solution.

5:  Besty;;= the fitness value of bestpredator-

6: Implement the memory saving.

7:  Build E matrix at the first iteration and update it later if there is better
8 compute CF according to Eq. 13.

9:  for each i prey do

10: if (t <1/3*tmaz)

11: move the current prey; to another position based on Eq. 8.
12: elselF (1/3 * tmax < t < 2/3 * tmaz) then

13: if (i <1/2%N)

14: move the current prey; to another position based on Eq. 10.
15: else

16: move the current prey; to another position based on Eq. 12.
17: end if

18: move the current prey; to another position based on Eq. 15.
19: end if

20: end for

21:  Compute the fitness for each prey;.
22:  Update E, if there is a newly updated solution better than the current bestpredator-

23:  implement the memory saving
24:  Execute the FADs according to Eq. 16
25: t++

26: end while
27: Return Besty;;

5 Proposed work

In this section, the marine predators algorithm improved using an improvement strategy
that selects a number, increasing gradually with the iteration, of the worst solutions and
updates them toward the best-so-far solution and randomly within the search space is
illustrated in this section. Our strategy is differentiated of the evolutionary population
dynamics (EPD) (Saremi et al. 2015) by that, in EPD, the worst N/2 solutions are omit-
ted from the population and repositioned randomly them again around the best solution.
On the contrary, in our strategy, a number of the worst solutions, increasing linearly
with the iteration, will be selected each iteration to trade-oftf between moving: most the
dimensions within each one toward the best-so-far solutions, and the others are ran-
domly reinitialized within the search space of the problem.

Our strategy works gradually on increasing the convergence of each worst one toward
the best so-far solutions until accelerating the convergence speed and finding better
solutions. Generally speaking, when moving each worst solution toward the best-so-far,
the convergence toward the best solution increases significantly, but what if the best-so-
far solution is local optima, if that, then the diversity of population are already reduced.
Since the diversity of the population fade away and at the same time the best-so-far
solution is local minima, no better solutions could be obtained after that. Therefore, our
strategy manipulates in some of the dimensions of the worst repositioned solutions, to
help in disposing of the local optima, and at the same time to keep the diversity of the
population.
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Our strategy methodology is contradicted with EPD because EPD repositions the worst
half of solutions around the best-so-far solutions using a random number to specify the dis-
tance that will add to the best-so-far solution, thus the obtained distance is based on the ran-
dom number generated and the probability of reaching better solutions is relied on this gener-
ated number. On the contrary, our proposed moves the worst solutions toward the best-so-far
solutions, and the distance between the best and the worst reduces gradually each update until
exploiting the best-so-far solutions deeply in addition to disposing of the local minima by rein-
itializing randomly within the search space some of the dimensions within the worst solutions
to get rid of local minima. Within this section, Initialization, evaluation, and improvement will
be illustrated in detail and mathematically.

5.1 Initialization

Before starting the optimization process, a group of N prey (population size) will be defined,
where each one in the group will have a number of dimensions according to the threshold level
acquired. Those dimensions will be distributed within the search space according to Eq. 17. In
this phase, a number N of prey with a number of the threshold is predefined.

prey; = min +r - (max — min) a7)

where r is a vector including values generated randomly between 0 and 1, min,and max are
the vectors including the upper and lower bound of the grey level for an image within its
histogram, respectively? For example, assuming that the upper bound grey level is equal to
255, the lower bound is 0, and the threshold level of 8 is required, then each solution within
the population will be represented as shown in Fig. 1 (truncated the digits after the decimal
point to become integer numbers), in addition to adding the first and the last cell with the
lower and the upper grey level for the image. Each cell within Fig. 2 indicates the threshold
value used to find the optimal threshold values for threshold level 8.

5.2 Evaluation

After each generation, the fitness value for each solution will be calculated using Eq. 1 and the
solutions under the new positions with higher fitness value will stay inside the population for
the next generation; otherwise, the old positions will be used again within the next generation.
So, the evaluation steps significantly affect the performance of MPA, because the fittest solu-
tion (the best-so-far solution/predator) and the solutions used within the next generation are
specified according to this step.

5.3 Linearly increased the worst solutions improvement strategy(LIS)
Recently, a new strategy (Abdel-Basset et al. 2020b) known as a linear reduction diver-

sity technique has been proposed to update a number, increasing with each iteration, of the
worst solution toward the best-so far solution to increase the convergence speed toward the

prev, [0110740]80[120[ 180200230240 255]

Fig. 2 Initial representation of the solution for tackling ISP
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best-f-so-far solution, in addition to improving the quality of the obtained solution. But, updat-
ing toward the best-so-far may accelerate the convergence toward the local minima, therefore
in this paper, we tried to get rid of this problem based on another position update scheme.
After calculating the fitness for each solution, a number of the worst solutions will be updated
using two ways: the first one is based on updating those solutions toward the best solution
with a controlling factor to determine the step size taken in the direction of this best solu-
tion to avoid stuck into local minima if the best is so. This factor, namely C, will take small
steps increased gradually with increasing the current iteration even avoiding stuck into local
minima at the start of the optimization process because the best-so-far might be local minima.
Additionally, the second way is based on updating the current solution in the direction of the
best-so-far solution using a random number generated within 0 and 1 based on the uniform
distribution but will be added to this solution another step size generated based on the upper
and lower bound of the problem. The number of the worst solutions is related to the iteration,
where, at the start of the iteration, a small number of solutions will be selected, and with the
iteration, this number will be gradually increased until maximizing at the end of the iteration.
Generally, Eq. 18 represents the mathematical formula for calculating this number symbolized
np:

np =N * -t (18)

t

max

Where N is the population size, and np indicates the number of the worst solutions
increased linearly with increasing the current iteration t. After calculating np, those worst
solutions will be updated according to Eq. 19.

‘e _ min + r.(max — min)  if r; < ER
prey,,; = E,;+r=(E,; —prey,;) otherwise (19)
C =1 _ e—t*r (20)

prey,, ; indicates the jth dimension of the wth worst particle. r; is a random number between
0 and 1. min refers to the lower bound of the jth dimension, while max is the upper bound
of the same dimension. r is a number generated randomly between 0 and 1. E, ; indicate
the jth dimension of the row w in the elite matrix (E). ER expresses the exploration rate
used to get the solution out of the local minima problem, its value will be discussed in
the parameter settings. This strategy is known as the linearly increased the worst solutions
improvement strategy (LIS). Finally, the pseudo-code of the hybrid MPA-LIS is shown in
Algorithm 2.
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Algorithm 2 Hybrid MPA-LIS (HMPALS)

1: Initialize prey, P=0.5.

2: Compute the fitness for each solution using Eq. 1.

3: Implement the memory saving.

4: Build E matrix.

5: while (t < tmaz)

6:  Compute CF according to Eq. 13.

7:  for each i prey do

8: if (t<1/3%tmaa)

9: move the current prey; to another position based on Eq. 8.

10: elselF (1/3 % tmae <t < 2/3 * tmaz) then:

11: if (i <1/2%N)

12: move the current prey; to another position based on Eq. 10.
13: else

14: move the current prey; to another position based on Eq. 12.
15: end if

16: move the current prey; to another position based on Eq. 15.
17: end if

18:  end for

19:  Compute the fitness for each prey; using Eq. 1.

20:  Update E, if there is better.

21:  Implement the memory saving.

22: // Applying FADs

23:  Execute the FADs according to Eq. 16.

24:  Compute the fitness for each prey; using Eq. 1.

25:  Update E, if there is better.

26:  Implement the memory saving.

27:  //Applying LIS strategy to update the worst solutions
28:  Compute np.

29:  Update the worst np solutions using Eq. 19.

30:  Compute the fitness for those updated worst solutions using Eq. 1.
31:  Update E, if there is better

32:  Implement the memory saving.

33: t++

34: end while

5.4 Ranking-based updating strategy

Recently, in Abdel-Basset et al. (2020a), we proposed a method called ranking-based updating
strategy which is based on replacing those solutions that could not fulfill better solutions in the
last perlter iterations with other ones to improve the outcomes produced by the optimization
algorithms; in our experiments, perlter is set to 3 as recommended in the original work. But,
our previous proposition was based on updating those solutions which passed the unallowed
rank by steering them to the right direction of the best-so-far solution in the hope of finding
better solutions there. However, moving in the direction of the best-so-far solution might take
the algorithm to local minima and hence no better solution will be achieved within the remain-
ing iterations. Therefore, herein, a new updating scheme has been proposed for updating those
solutions based twofold: the first one is based on searching for a better solution around one
selected randomly from the population as an attempt to increase the exploration capability
for reaching other regions might involve better solutions; the second one is based on turning
around the best-so-far solution in a shrinking circle with the iteration to strengthen the exploi-
tation capability. The exchange between those twofold is achieved based on a probability Pr
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ranging between 0 and 1 and picked by the researchers according to their experiments. the
optimal value to this parameter within our experiments as discussed later. Generally, the math-
ematical model of this updating scheme is as follows:

N prey,;+ D * (prebe —preyw-) +rx (preya‘,— —preydxl-) if r; <Pr 21
Predw E;j+r x A x (prey,; — prey.;) otherwise 21
_ t
a=1- ; (22)
max
A=2%xa*xry,—a (23)
D =¢™4* % cos2xr (24)

where a, b, ¢, and d are indices of four solutions selected randomly from the population.
r, r;, and r5 are three random numbers ranging between 0 and 1. Algorithm 3 described the
steps of the ranking-based updating strategy (RUS) for replacing the solutions which pass
three consecutive iterations without any better solution than the best-local one with those
created using Eq. 21. Finally, this strategy is integrated with the MPALS variant as listed in
algorithm 4 to propose a new strong one, namely HMPA, having a high ability to balance
between the exploration and exploitation capability for reaching better solutions in less
number of function evaluations. The RUS give the choice to the algorithms for determining
if the exploration operator will be applied more than the exploitation operator and this will
make applicable for several metaheuristic algorithms because some algorithms might have
low exploitation operator while the others might suffer from weakening the exploration
capability, so this method could help the two sets based on the required need.

Algorithm 3 Ranking-based updating strategy.

CR: a vector of size N initialized with Os value.

i=0

: perlter = 3

: while (i < N)

if (fit(prey:) > fit(preyoud,))
CRfT.

else
CR; =0

end if

10: i+

11: end while

12: for each i particle do

13:  if (CR; > perlter)

©XRTP TR

14: Update prey toward the best one using Eq. 21.
15:  end if
16: end for
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Algorithm 4 hybrid MPALS and RUS (HMPA)

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

I R

: Initialize prey, P=0.5.

: Compute the fitness for each solution using Eq. 1.
Implement the memory saving.

Build E matrix.

: while (t < tmaz)

Compute CF according to Eq. 13.
for each i prey do
if (¢t <1/3*tmaz)
move the current prey; to another position based on Eq. 8.
elselF (1/3 % tmae <t < 2/3 * tmax)
if (i <1/2% N)
move the current prey; to another position based on Eq. 10.
else
move the current prey; to another position based on Eq. 12.
end if
move the current prey; to another position based on Eq. 15.
end if
end for
Compute the fitness for each prey; using Eq. 1.
Update E, if there is better
Implement the memory saving.
// Applying FADs
Execute the FADs according to Eq. 16.
Compute the fitness for each prey; using Eq. 1.
Update E, if there is better.
Implement the memory saving.
//Applying LIS and RUS strategy to update the worst solutions
Applying algorithm 3.
compute np
Update the worst np solutions using Eq. 19.
Compute the fitness for those updated worst solutions using Eq. 1.
Update E, if there is better
Implement the memory saving.
t++

35: end while

Some of the advantages of the proposed algorithms are that both the proposed strategy

integrated work on increasing the convergence speed and at the same time avoiding fall-
ing into local optima and subsequently the probability of finding better solutions is signifi-
cant. Although the significant success achieved by both HMPA and MPALS on the various
threshold-levels, it consumes more a bit computational cost compared to some of the com-
peting algorithms as their main limitation tackled in future work.

6 Results and discussion

6.1 Testimages description and experimental settings

To validate our proposed algorithms, 14 test images taken from Berkeley Segmentation
Dataset (BSDS500) [75] are used to observe their effectiveness. These images are named
as “12003”, “61060”, “38092”, “232038”, “108082”, “148089”, “189003”,“108070”,
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“2270927, “277036”, “Barbara”, “Airplane”, “Mand”, “lena”. Besides, the original images
and the histogram of each one is shown in Figs. 3 and 4.

A number of algorithms, such as HHA (Bao et al. 2019), WOA (Mirjalili and Lewis
2016), slime mould optimizer (SMA) (Li et al. 2020), improved tunicate swarm algo-
rithm (ITSA) (Houssein et al. 2021), flower pollination algorithm (FPA) (Yang 2012), EO
(Abdel-Basset et al. 2020c), and IMPA (Abdel-Basset et al. 2020a), are employed to check
the effectiveness of our proposed algorithms, whose parameters are as recommended in
the cited papers, except the population size N set to 30, and the maximum iterations ¢,,,,
equal 300 for a fair comparison. Those algorithms were employed because they have been
recently applied for tackling several optimization problems: image segmentation, param-
eter estimation of photovoltaic models, DNA fragment assembly problem, global optimiza-
tion, and several else, and could come true superior outcomes. Table 1 lists the parameter
settings of those compared algorithms.

Regarding the parameters of the proposed algorithm, ER of the MPALS algorithm is
tuned on 12003 under the threshold level 40 and displayed in Fig. 5, which shows the supe-
riority of ER = (.9 against the other values. For the parameter Pr of HMPA, it is checked
on some values such as 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, and 1.0 and the outcomes are illustrated on Fig. 6. This figure shows that
Pr =0.05is the best. Some values for the parameter f§ are observed to see the best value for
it, after observing and exposing the output on Fig. 7, f# = 0.01 is the best.

Finally, a device equipped with Windows 10 and having 32GB of RAM, AND Corei7
Intel CPU with 2.40GH as speed is used to conduct those experiments.

6.2 Performance metrics

In this section, the performance metrics used to observe the performance of the algorithm
will be discussed in brief. Those metrics are standard deviation (SD), Peak Signal to noise

Grey level

(b) Original image,61060 and its Histogram.

No.of pixels
8

80
800
40
20

0 50

015
Greylevel

100 150
Grey level

(c¢) Original image,38092 and its Histogram. (d) Original image,232038 and its Histogram.

Fig. 3 Illustration the original image and its histogram used in our experiment
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No.of pixels
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50
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100 150
Grey level Geylevel

(e) Original image,227092 and its Histogram. (f) Original image,277036 and its

Histogram.
-
IE
130 20 0 50 100 150 200 250
Grey level p° Grey level
(g) Original image,Barbara and its Histogram. (h) Original image,Airplane and its
Histogram.

of pixels.

No.

100 150
Grey level

) 50 200 250

100 150
Grey level

(i) Original image,Mand and its Histogram. (j) Original image,Lena and its Histogram.

Fig.4 Illustration the original image and its histogram used in our experiment
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Table 1 Parameter settings of competing algorithm

Algorithm Parameter Value
FPA (Yang 2012) Probability switch p 0.8
WOA (Mirjalili and Lewis 2016) Constant (a) Is linearly
decreased
from 2 to O
HHA (Bao et al. 2019) Energy of a rabbit (E) E €10,2]
SMA (Li et al. 2020) Constant (z) 0.03
Constant a, 1
EO (Abdel-Basset et al. 2020c) Constant a, 2
Constant (P) 0.5
IMPA (Abdel-Basset et al. 2020a) Constant(FADs) 0.2
Constant (perlter) 3
ITSA (Houssein et al. 2021) P, 1
Pmax 4
pr 0.3
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Fig.5 Tuning the parameter ER of MPALS under 40 threshold level for 12003

ratio (PSNR), Structured similarity index metric (SSIM), universal quality index (UQI), fit-
ness value under Kapur’s entropy, and CPU time.

1. Standard deviation (SD): SD is used to measure the stability of the outputs obtained by

each algorithm within several runs and mathematically calculated using the following
equation:
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Fig.6 Tuning the parameter Pr of HMPA under the threshold level 40 on 12003

(25)

n indicates the number of independent runs, f; is the fitness value under Kapur’s
entropy of the i’ run, and £ is the average of the fitness value within the independent
runs. The algorithm with the smallest SD is considered the best.

Peak signal to noise ratio (PSNR): PSNR (Hore et al. 2010) is a quality indicator used

to check the quality of the segmented image compared with the original image. This
indicator calculates the mean square error (MSE) between the original and segmented
images using Eq. 27, then take a log with base 10 for the square of 255 divided by MSE.
The mathematical model of PSNR is as follows:

2552
PSNR = 101 2
8 Ologyy <MSE> (26)
M N .. ..
M SN G ) = S
_— Yo T L AGH = S6.) | o

M« N
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Fig. 7 Adjusting the parameter § of HMPA under the threshold level 40 on 12003

A(, j), S, j) are the grey value of both segmented and source

images within i row

and j” the column in matrices A, and B that have the size of rows and columns equal

to M, and N, respectively.
3.

Structured similarity index metric (SSIM): SSIM (Hore et al. 2010) is different about

PSNR because it takes in its consideration the structure of the segmented image com-
pared with the original image. Generally, it measures the brightness, structure similarity,
and contrast distortion between the source and predicted images. Mathematically, SSIM

is formulated as following:

QCu,p, +a)20,,+ b)

SSIM(0, S) =
©.5 (42 + u? + a)(o? + 62+ b)

(28)

where u,, 4, express the mean intensities of both original and predicted image; o,

and o, indicate SD of the same two images respectively; a,and

b is fixed values and

assigned to 0.001 and 0.003 respectively. This metric is maximized until reaching bet-

ter accuracy.
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6.3 Stability and CPU time

Starting with stability, to measure the convergence between the outcomes produced by
each algorithm, the average of SD was calculated on all datasets within 30 independent
runs for each one and displayed in Fig. 8. Figure 8 shows that HMPA could produce more
converged outcomes in comparison with the other algorithm. As a result, the performance
of our proposed algorithm, HMPA, is more stable within 30 independent runs. Ending with
CPU time, the improvements on MPA may significantly affect running time, so we calcu-
late the running time result of each algorithm and then show those outcomes within Fig. 9.
Inspecting Fig. 9 told us that the improvements done on MPA don’t affect significantly the
speedup of MPA and hence it is a strong alternative to the existing image segmentation
techniques because it could fulfill better outcomes within almost converged CPU time.

6.4 Graphically performance analysis

The effectiveness of the proposed algorithms compared with the other algorithms under
different performance metrics will be observed within this section. Generally, this section
is organized under graphical depictions as follows:

Comparison of fitness values.

Comparison under PSNR values.

Comparison under SSIM values.

Comparison under various threshold levels: small and large levels.
Depiction of the fitness values using the interval plot.

Nk » D=

0.2

0.18 0.1785

0.16

0.1561 / \
0.14 0.1325 / / \
0.129 / \
0.12 01 _n'l
/ * \
0.1 /

¥.0941

SD

0.08

0.0504 Y 50857 ¥ 0.0732
0.06

HMPA MPALS EO HHA WOA FPA SMA ITSA IMPA

Algorithms

Fig.8 Comparison the average of SD values obtained by each algorithm
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Fig. 9 Comparison of the CPU Time values obtained by each algorithm

(1) Comparison under Fitness value.

Figure 10 shows the average of the fitness values obtained by each algorithm within 30
independent runs under all threshold levels on all the test images. Observing Fig. 10 shows
that HMPA could reach the first rank with a value of 35.17, MPALS reach the second
rank with 34.81, while FPA came as the last one with a value of 33.91. This superiority is

:

&
8

34.85

34.8 - 34.76

F-values

34.6 -

HMPA MPALS EO

HHA WOA

Algorithms

FPA SMA

ITSA IMPA

Fig. 10 Depiction of the average fitness values under all threshold levels for all test images
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caused by both LIS and RUS that could accelerate the convergence toward the best solution
and at the same time take the solutions out of the local optima problem.

(2) Comparison under PSNR values.

In this section, the quality of the predicted image using the proposed algorithms and the
others will be compared under the PSNR metric. After calculating the average PSNR val-
ues within 30 runs for each level on each image, and calculating the averages under all
levels on all images, they are shown in Fig. 11. After observing Fig. 11, it is concluded
that the proposed algorithm, HMPA, could achieve the best value compared with the oth-
ers and occupies the first rank with a value of 23.45, and both WOA and MPALS could
come in the second rank with a value of 25.03, while FPA came in the last rank with 24.06.
Ultimately, it is concluded that HMPA could reach the threshold values which accurately
separate the objects in an image compared to the other compared algorithm, and subse-
quently, HMPA considers a strong alternative to the existing techniques for tackling the
image segmentation problem.

(3) Comparison under SSIM values.

In this part, the mean of the SSIM values obtained by each algorithm within 30 independ-
ent runs on all threshold levels under all the images will be discussed to see any algorithm
could reach better accuracy. According to Fig. 12, HMAP could be the best with a value
of 0.9320 and EO, WOA, and SMA as the second-best ones with 0.9318, while FPA is the
worst with 0.9300. Unfortunately, MPALS could only overcome ITSA and FPA over this
metric as the main limitation to this variant solved using the RUS, which could explore
more intractable regions for fulfilling better outcomes for all employed performance met-
rics: F-value, PSNR, SSIM, SD, and CPU time.

25.40
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25.03 | ! 25,03
| 24.96

25.00 T} 24,92
v 24,87
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24.80 — ‘ —

PSNR values

2460 |— ! ! ‘ -

24.40 |— | S N .1 TS -

24.20 — ! ! | -
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HMPA MPALS EO HHA WOA FPA SMA ITSA IMPA
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Fig. 11 Depiction of the average PSNR values under all threshold levels for all test images
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Fig. 12 Depiction of the average SSIM values under all threshold levels for all test images

(4) Comparison under various threshold levels: small and large levels.

In this section, the various algorithms have been compared based on the threshold level to
see their performance with small and high threshold levels. After computing the average
of SSIM, PSNR, and F-value on the threshold levels ranging between 2 and 7 as the small
levels and presenting the outcomes in Fig. 13, it is notified that all algorithms except FPA
are almost converged under those three performance metrics and subsequently any of them
could be used to segment any image with small threshold levels ranging between 2 and 7.
However, with the high threshold levels ranging between 10 and 40, HMPA could be supe-
rior for the three employed performance metrics: SSIM, PSNR, and F-value as depicted in
Fig. 14. In general, HMPA considers a strong alternative for tackling the image segmenta-
tion problem for images with small or high threshold levels contradicted most of the com-
pared algorithms which have good performance for only the small levels.

(5) Comparison under interval plot.

Within this section, the Boxplot is used to check the performance of the algorithms under
Fitness values on each image with a threshold level (T) equal to 40. Specifically speaking,
each algorithm is run 30 times on some test images under T=40 and the fitness values
within those 30 runs are drawn in Figs. 15, 16 for this algorithm. Figs. 15, 16 prove the
superiority of HMPA under T=40 on all the test images, where HMPA could come in the
first rank superior to all the other algorithms, while MPALS occupies the second rank on
all the test images and the third rank is occupied by WOA. These experiments show the
superiority of HMPA on the images with high threshold levels, so it is considered as an
outstanding alternative to solve the multilevel thresholding image segmentation, especially
with high threshold levels.
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Fig. 13 Comparison based on various performance metrics: F-value. PSNR, and SSIM on small threshold
levels ranging between 2 and 7
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(c) Fitness values on 38092 image under T=40. (d) Fitness values on 232038 image under T=40.

Fig. 15 Fitness values on all images under T = 40

6.5 Descriptive performance analysis

In this section, the various performance metrics will be measured according to each
algorithm within 30 independent runs ad introduced within the following tables.
Broadly speaking, Tables 2 and 3 introduces the F-values obtained by each algorithm
on each test image. Inspecting Tables 2 and 3 shows that HMPA could be competitive
and superior in 110 cases out of 154, while MPALS could achieve the best and equal
with some other algorithms in 84 out of 154 in terms of the F-values. Both MPALS and
HMPA as our proposed variants could be competitive to the others, which reach the
same outcomes, in 52 cases, while could be superior in 83 others, and hence those pro-
posed variants are strong alternatives to solve the image segmentation problems, espe-
cially HMPA which could outperform the other variants for most test cases.

In Tables 4 and 5, the PSNR values obtained based on the segmented images
achieved based on the fitness values assigned in Tables 2 and 3 are exposed on each
threshold level for each image. Inspecting this table show that HMPA could be the best
and equal with the other algorithms in 70 test cases, while MPALS could be superior
and competitive in 37 cases. Based on that, HMPA considers the best-proposed variant,
and the best compared to the other compared algorithms since the nearest compared
algorithm in terms of the PSNR is EO which could be superior and competitive in only
42 cases.
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Fig. 16 Fitness values on all images under T = 40

In Tables 6 and 7, the SSIM values are exposed on each threshold level for each image.
From this table, it is concluded that HMPA could be the best and equal with the other
algorithms in 90 test cases, while MPALS could be superior and competitive in 57 cases.
Meanwhile, the two-proposed variants could reach better and competitive outcomes com-
pared to the other algorithms in 102 cases. Based on that, HMPA considers the best.

6.6 Comparison under Wilcoxon rank-sum test

In this section, the Wilcoxon rank-sum test (Lam and Longnecker 1983) is used to com-
pare the outcomes of HMPA with those obtained by the competing algorithms on some
test images used in our experiments and presenting the outcomes in Table 8. This test
returns the p-value of the two-sided Wilcoxon rank-sum test, and if this p-value is less
than a significant level recommended 5% then there is a difference between paired data;
otherwise, the null hypothesis will be accepted, which no difference between paired data.
In our experiments which compare the data obtained by HMPA with each competing algo-
rithm and their outcomes are presented in Table 8, it is obvious that the p-value for most
test cases on threshold levels higher than 7 is less than 5%, and hence there is a difference
between the outcomes of the HMPA and the other competitors. However, for threshold
levels lower than 7, the outcomes of HMPA were significantly different from those of some
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of the competing algorithms and similar to the others. Note that, NaN value in this table
indicates that the outcomes of each pair of algorithms are the same.

7 Conclusion and future work

In this paper, a new multilevel thresholding image segmentation algorithm based on the
improved marine predators algorithm (MPA) is developed, this algorithm is improved with
a novel strategy called the linearly increased worst solutions improvement strategy (LIS)
to accelerate the convergence by steering gradually a number np of the worst solutions in
the right direction of the best-so-far solution, and randomly within the search space of the
problem to help in avoiding stuck into local minima. this LIS is integrated with the stand-
ard MPA to propose a new variant, namely MPALS, for the ISP. Further, another strategy
called ranking-based updating strategy (RUS) has been here proposed and employed to
strengthen the exploration and exploitation capability of MPALS for reaching other regions
which are intractable by MPALS. This improved MPALS was abbreviated as HMPA. The
two proposed variants: HMPA and MPALS have been validated on 14 test images and
compared with seven state-of-the-arts meta-heuristic algorithms. The experimental results
show the superiority of HMPA for all performance metrics: PSNR, F-value, SSIM, and SD
except CPU time as its main limitation addressed in future work. Broadly speaking, the
HMPA could occupy the first rank because it was competitive with some algorithms for
the small threshold levels and superior for the high threshold levels; meanwhile, MPALS,
WOA, IMPA, EO, SMA, HHA, ITSA, and FPA are respectively ranked from the second-
best one to the worst for the fitness values and PSNR. Unfortunately, MPALS come in the
seventh rank in term of the SSIM which were considered as its main limitation addressed
using the RUS in the second variant: HMPA. Our future work includes investigating the
performance of the marine predator algorithm when tackling DNA fragment assembly
problems, feature selection problems, and flow shop scheduling problems, in addition to
tackling the CPU time problem related to the proposed algorithms.

Funding This research has no funding source.
Declarations

Conflict of interest The authors declare that there is no conflict of interest about the research.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

References

Abd El Aziz M, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimiza-
tion for multilevel thresholding image segmentation. Expert Syst Appl 83:242-256

Abdel-Basset M, Manogaran G, El-Shahat D, Mirjalili S (2018) A hybrid whale optimization algorithm
based on local search strategy for the permutation flow shop scheduling problem. Futur Gener Comput
Syst 85:129-145

@ Springer



3364 M. Abdel-Basset et al.

Abdel-Basset M, Mohamed R, Elhoseny M, Chakrabortty RK, Ryan M (2020) A hybrid Covid-19 detection
model using an improved marine predators algorithm and a ranking-based diversity reduction strategy.
IEEE Access 8:79521-79540

Abdel-Basset M, Mohamed R, Mirjalili S, Chakrabortty RK, Ryan MJ (2020) Solar photovoltaic parameter
estimation using an improved equilibrium optimizer. Sol Energy 209:694-708

Abdel-Basset M, Chang V, Mohamed R (2020) A novel equilibrium optimization algorithm for multi-
thresholding image segmentation problems. Neural Comput Appl 1-34

Abdel-Basset M, Mohamed R, Mirjalili S, Chakrabortty RK, Ryan M (2021) An efficient marine predators
algorithm for solving multi-objective optimization problems: analysis and validations. IEEE Access
9:42817-42844

Abouhawwash M, Alessio AM (2021) Multi-objective evolutionary algorithm for pet image reconstruction:
Concept. IEEE Trans Med Imaging 40(8):2142-2151

Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding
using cuckoo search algorithm. Swarm Evol Comput 11:16-30

Aksac A, Ozyer T, Alhajj R (2017) Complex networks driven salient region detection based on superpixel
segmentation. Pattern Recognit 66:268-279

Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through
a fast statistical recursive algorithm. Pattern Recognit Lett 29(2):119-125

Bao X, Jia H, Lang C (2019) A novel hybrid Harris Hawks optimization for color image multilevel thresh-
olding segmentation. IEEE Access 7:76529-76546

Barman R, Ehrmann M, Clematide S, Oliveira SA, Kaplan F (2020) Combining visual and textual features
for semantic segmentation of historical newspapers. arXiv preprint arXiv:2002.06144

Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient
multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions.
Expert Syst Appl 42(3):1573-1601

Chakraborty F, Nandi D, Roy PK (2019) Oppositional symbiotic organisms search optimization for multi-
level thresholding of color image. Appl Soft Comput 82:105577

Chen K, Zhou Y, Zhang Z, Dai M, Chao Y, Shi J (2016) Multilevel image segmentation based on an
improved firefly algorithm. Math Probl Eng 2016

Chouksey M, Jha RK, Sharma R (2020) A fast technique for image segmentation based on two meta-heuris-
tic algorithms. Multimedia Tools Appl 1-53

Cuevas E, Fausto F, Gonzélez A (2020) Locust search algorithm applied to multi-threshold segmentation.
In: New advancements in swarm algorithms: operators and applications. Springer, pp 211-240

Di Martino F, Sessa S (2020) PSO image thresholding on images compressed via fuzzy transforms. Inf Sci
506:308-324

Diab AAZ, Tolba MA, El-Magd AGA, Zaky MM, El-Rifaie AM (2020) Fuel cell parameters estimation via
marine predators and political optimizers. IEEE Access 8:166998-167018

Durmus A (2021) The concentric elliptical antenna array patterns synthesis using marine predators algo-
rithm. Arab J Sci Eng 1-11

Elsayed SM, Sarker RA, Essam DL (2014) A new genetic algorithm for solving optimization problems. Eng
Appl Artif Intell 27:57-69

Elsayed AM, Shaheen AM, Alharthi MM, Ghoneim SS, El-Sehiemy RA (2021) Adequate operation of
hybrid AC/MT-HVDC power systems using an improved multi-objective marine predators optimizer.
IEEE Access 9:51065-51087

Erdmann H, Wachs-Lopes G, Gallao C, Ribeiro M, Rodrigues P (2015) A study of a firefly meta-heuristics
for multithreshold image segmentation. In: Developments in medical image processing and computa-
tional vision. Springer, pp 279-295

Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-
inspired metaheuristic. Expert Syst Appl 152:113377

Ghoneimy M, Hassan HA, Nabil E (2021) A new hybrid clustering method of binary differential evolution
and marine predators algorithm for multi-omics datasets

Guo C, Li H (2007) Multilevel thresholding method for image segmentation based on an adaptive particle
swarm optimization algorithm. In: Australasian joint conference on artificial intelligence. Springer, pp
654-658

Han J, Yang C, Zhou X, Gui W (2017) A new multi-threshold image segmentation approach using state
transition algorithm. Appl Math Model 44:588-601

Hassanzadeh T, Essam D, Sarker R (2020) An evolutionary denseres deep convolutional neural network for
medical image segmentation. IEEE Access, vol. 8, pp 212 298-212 314

Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: 20th international conference on pattern
recognition. IEEE 2010:2366-2369

@ Springer



Hybrid marine predators algorithm for image segmentation:... 3365

Horng M-H (2010) Multilevel minimum cross entropy threshold selection based on the honey bee mating
optimization. Expert Syst Appl 37(6):4580-4592

Houssein EH, Helmy BE-D, Elngar AA, Abdelminaam DS, Shaban H (2021) An improved tunicate swarm
algorithm for global optimization and image segmentation. IEEE Access 9:56066-56092

Huo F, Sun X, Ren W (2020) Multilevel image threshold segmentation using an improved bloch quantum
artificial bee colony algorithm. Multimedia Tools Appl 79(3):2447-2471

Kandhway P, Bhandari AK (2019) Spatial context cross entropy function based multilevel image segmenta-
tion using multi-verse optimizer. Multimedia Tools Appl 78(16):22613-22641

Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy
of the histogram. Comput Vis Graph Image Process 29(3):273-285

Karydas CG (2020) Optimization of multi-scale segmentation of satellite imagery using fractal geometry.
Int J Remote Sens 41(8):2905-2933

Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design
problems. Eng Comput

Kuruvilla J, Sukumaran D, Sankar A, Joy SP (2016) A review on image processing and image segmen-
tation. In: International conference on data mining and advanced computing (SAPIENCE). IEEE
2016:198-203

Lam F, Longnecker M (1983) A modified wilcoxon rank sum test for paired data. Biometrika 70(2):510-513

Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic
optimization. Futur Gener Comput Syst 111:300-323

Li W, Lin Q, Wang K, Cai K (2021) Improving medical image fusion method using fuzzy entropy and non-
subsampling contourlet transform. Int J Imaging Syst Technol 31(1):204-214

Liu X, Yang D (2021) Color constancy computation for dyed fabrics via improved marine predators algo-
rithm optimized random vector functional-link network. Color Res Appl

Liu Y, Mu C, Kou W, Liu J (2015) Modified particle swarm optimization-based multilevel thresholding for
image segmentation. Soft Comput 19(5):1311-1327

Ma L, Cheng S, Shi Y (2020) Enhancing learning efficiency of brain storm optimization via orthogonal
learning design. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2020.2963943

Ma L, Huang M, Yang S, Wang R, Wang X (2021) An adaptive localized decision variable analysis
approach to large-scale multiobjective and many-objective optimization. IEEE Trans Cybern. https://
doi.org/10.1109/TCYB.2020.3041212

Mahajan S, Mittal N, Pandit AK (2021) Image segmentation using multilevel thresholding based on type ii
fuzzy entropy and marine predators algorithm. Multimedia Tools Appl 80(13):19335-19359

Maitra M, Chatterjee A (2008) A hybrid cooperative-comprehensive learning based PSO algorithm for
image segmentation using multilevel thresholding. Expert Syst Appl 34(2):1341-1350

Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51-67

Mittal M, Arora M, Pandey T, Goyal LM (2020) Image segmentation using deep learning techniques in
medical images. In: Advancement of machine intelligence in interactive medical image analysis.
Springer, pp 41-63

Mokhtari SY, Kimour MT (2019) A novel improved bat algorithm based image multi-thresholding. Int J
Electr Eng Inf 11(2)
Naji Alwerfali HS, Al-qaness MA, Abd Elaziz M, Ewees AA, Oliva D, Lu S (2020) Multi-level image
thresholding based on modified spherical search optimizer and fuzzy entropy. Entropy 22(3):328
Naoum A, Nothman J, Curran J (2019) Article segmentation in digitised newspapers with a 2d markov
model. In: 2019 international conference on document analysis and recognition (ICDAR). IEEE, pp
1007-1014

Narayanan BN, Hardie RC, Kebede TM, Sprague MJ (2019) Optimized feature selection-based cluster-
ing approach for computer-aided detection of lung nodules in different modalities. Pattern Anal Appl
22(2):559-571

Oliva D, Cuevas E, Pajares G, Zaldivar D, Osuna V (2014) A multilevel thresholding algorithm using elec-
tromagnetism optimization. Neurocomputing 139:357-381

Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Galvez J (2017) Cross entropy based thresholding for
magnetic resonance brain images using crow search algorithm. Expert Syst Appl 79:164-180

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern
9(1):62-66

Panagant N, Yildiz M, Pholdee N, Yildiz AR, Bureerat S, Sait SM (2021) A novel hybrid marine preda-
tors-Nelder-Mead optimization algorithm for the optimal design of engineering problems. Mater Test
63(5):453-457

Prathusha P, Jyothi S (2018) A novel edge detection algorithm for fast and efficient image segmentation. In:
Data engineering and intelligent computing. Springer, pp 283-291

@ Springer


https://doi.org/10.1109/TSMC.2020.2963943
https://doi.org/10.1109/TCYB.2020.3041212
https://doi.org/10.1109/TCYB.2020.3041212

3366 M. Abdel-Basset et al.

Ramezani M, Bahmanyar D, Razmjooy N (2021) A new improved model of marine predator algorithm for
optimization problems. Arab J Sci Eng 1-24

Riad N, Anis W, Elkassas A, Hassan AE-W (2021) Three-phase multilevel inverter using selective harmonic
elimination with marine predator algorithm. Electronics 10(4):374

Ridha HM (2020) Parameters extraction of single and double diodes photovoltaic models using marine
predators algorithm and lambert W function. Sol Energy 209:674—-693

Sanyal N, Chatterjee A, Munshi S (2011) An adaptive bacterial foraging algorithm for fuzzy entropy based
image segmentation. Expert Syst Appl 38(12):15489-15498

Saremi S, Mirjalili SZ, Mirjalili SM (2015) Evolutionary population dynamics and grey wolf optimizer.
Neural Comput Appl 26(5):1257-1263

Sayed GI, Hassanien AE, Azar AT (2019) Feature selection via a novel chaotic crow search algorithm. Neu-
ral Comput Appl 31(1):171-188

Shahabi F, Pourahangarian F, Beheshti H (2019) A multilevel image thresholding approach based on crow
search algorithm and Otsu method

Shaheen MA, Yousri D, Fathy A, Hasanien HM, Alkuhayli A, Muyeen S (2020) A novel application of
improved marine predators algorithm and particle swarm optimization for solving the ORPD problem.
Energies 13(21):5679

Shaheen AM, Elsayed AM, El-Sehiemy RA, Kamel S, Ghoneim SS (2021) A modified marine predators
optimization algorithm for simultaneous network reconfiguration and distributed generator allocation
in distribution systems under different loading conditions. Eng Optim 1-22

Soliman MA, Hasanien HM, Alkuhayli A (2020) Marine predators algorithm for parameters identification
of triple-diode photovoltaic models. IEEE Access 8:155832-155842

Sultana F, Sufian A, Dutta P (2020) Evolution of image segmentation using deep convolutional neural net-
work: a survey. Knowl-Based Syst 201:106062

Swief RA, Hassan NM, Hasanien HM, Abdelaziz AY, Kamh MZ (2021) Multi-regional optimal power flow
using marine predators algorithm considering load and generation variability. IEEE Access

Tang K, Xiao X, Wu J, Yang J, Luo L (2017) An improved multilevel thresholding approach based modified
bacterial foraging optimization. Appl Intell 46(1):214-226

University of California. www2.eecs.berkeley.edu/research/projects/cs/vision/grouping/resources.html

Wang R, Zhou Y, Zhao C, Wu H (2015) A hybrid flower pollination algorithm based modified randomized
location for multi-threshold medical image segmentation. Bio-Med Mater Eng 26(s1):S1345-S1351

Wang X, Wang X, Wilkes DM (2020) An efficient image segmentation algorithm for object recognition
using spectral clustering. In: Machine learning-based natural scene recognition for mobile robot locali-
zation in an unknown environment. Springer, pp 215-234

Wang Z, Wang Q, Zhang Z, Razmjooy N (2021) A new configuration of autonomous CHP system based
on improved version of marine predators algorithm: a case study. Int Trans Electr Energy Syst
31(4):e12806

Xiong L, Tang G, Chen Y-C, Hu Y-X, Chen R-S (2020) Color disease spot image segmentation algorithm
based on chaotic particle swarm optimization and FCM. J Supercomput 1-15

Xu L, Jia H, Lang C, Peng X, Sun K (2019) A novel method for multilevel color image segmentation based
on dragonfly algorithm and differential evolution. IEEE Access 7:19502-19538

Yan Z, Zhang J, Tang J (2020) Modified water wave optimization algorithm for underwater multilevel
thresholding image segmentation. Multimedia Tools Appl 1-34

Yao X, LiZ, Liu L, Cheng X (2019) Multi-threshold image segmentation based on improved grey wolf opti-
mization algorithm. In: IOP conference series: earth and environmental science, vol. 252, no. 4. IOP
Publishing, p 042105

Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on
unconventional computing and natural computation. Springer, pp 240-249

Yu G, Meng Z, Ma H, Liu L (2021) An adaptive marine predators algorithm for optimizing a hybrid PV/
DG/battery system for a remote area in China. Energy Rep 7:398-412

Zhang Z, Wu C, Coleman S, Kerr D (2020) Dense-inception u-net for medical image segmentation. Comput
Methods Programs Biomed 192:105395

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://www2.eecs.berkeley.edu/research/projects/cs/vision/grouping/resources.html

Hybrid marine predators algorithm for image segmentation:... 3367

Authors and Affiliations

Mohamed Abdel-Basset' - Reda Mohamed' - Mohamed Abouhawwash?3

Mohamed Abdel-Basset
mohamedbasset@ieee.org

Reda Mohamed

redamoh@zu.edu.eg

Zagazig Univesitry, Shaibet an Nakareyah, Zagazig 2, Ash Sharqia Governorate 44519, Egypt
Department of Mathematics Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State
University, East Lansing, MI 48824, USA

@ Springer


http://orcid.org/0000-0003-2846-4707

	Hybrid marine predators algorithm for image segmentation: analysis and validations
	Abstract
	1 Introduction
	2 Literature review
	3 Kapur’s entropy
	4 Marine predators algorithm (MPA)
	5 Proposed work
	5.1 Initialization
	5.2 Evaluation
	5.3 Linearly increased the worst solutions improvement strategy(LIS)
	5.4 Ranking-based updating strategy

	6 Results and discussion
	6.1 Test images description and experimental settings
	6.2 Performance metrics
	6.3 Stability and CPU time
	6.4 Graphically performance analysis
	6.5 Descriptive performance analysis
	6.6 Comparison under Wilcoxon rank-sum test

	7 Conclusion and future work
	References




