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Abstract
Naturally, to analyze an image accurately, all the similar objects within it should be sepa-
rated to pay attention to the most important object for reaching more details and hence 
achieving better accuracy. Therefore, multilevel thresholding is an indispensable image 
processing technique in the field of image segmentation and is employed widely to sepa-
rate those similar objects. However, with increasing thresholds, the existing image seg-
mentation techniques might suffer from exponentially-grown computational cost and low 
accuracy due to local optima shortage. Therefore, in this paper, a new image segmentation 
algorithm based on the improved marine predators algorithm (MPA) is proposed. MPA 
is improved using a strategy to find a number of the worst solutions within the popula-
tion then tries to search for other better ones for those solutions by moving them gradually 
towards the best solutions to avoid accelerating to local optima and randomly within the 
search space based on a certain probability. In addition, this number of the worst solu-
tions is increased with the iteration. This strategy is known as the linearly increased worst 
solutions improvement strategy (LIS). Also, we suggested that apply the ranking strategy 
based on a novel updating scheme, namely ranking-based updating strategy (RUS), on the 
solutions that could find better solutions in the last number iterations, perIter, in the hope 
of finding better solutions near it. RUS updates the particles/solutions which could not find 
better solutions than the best-local one in a number of consecutive iterations, with those 
that are generated based on a novel updating strategy. LIS is integrated with MPA to pro-
duce a new segmentation meta-heuristic algorithm abbreviated as MPALS. Also, MPALS 
and RUS are combined to tackle ISP in a strong variant abbreviated as HMPA for over-
coming the image segmentation problem. The two proposed algorithms are validated on 
14 test images and compared with seven state-of-the-arts meta-heuristic algorithms. The 
experimental results show the effectiveness of HMPA with increasing the threshold levels 
compared to the seven state-of-the-arts algorithms when segmenting an image, while their 
performance is roughly the same for the image with a small threshold level.
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1 Introduction

Reaching better accuracy when analyzing an image is considered an indispensable objec-
tive, but the image may be crowded with objects that are not beneficial for this analysis, and 
subsequently, the accuracy will reduce significantly due to paying attention to some unim-
portant regions within the analyzing process. As a result, separating the similar regions 
within the image is a common problem known as image segmentation problem (ISP) that 
the researchers’ pit for overcoming to extract the desired regions that improve the analysis 
accuracy of the image in several fields such as historical newspapers (Naoum et al. 2019; 
Barman et al. 2020), satellite image processing (Karydas 2020), object recognition (Wang 
et  al. 2020), and medical diagnosis (Mittal et  al. 2020; Zhang et  al. 2020; Sultana et  al. 
2020; Hassanzadeh et al. 2020).

To overcome ISP, several segmentation techniques under region-based (Aksac et  al. 
2017), feature selection-based clustering (Narayanan et  al. 2019), edge-based (Prathusha 
and Jyothi 2018), and threshold-based (Han et al. 2017) have been suggested. From among 
those techniques, threshold-based segmentation is the simplest, fastest, and accurate. As a 
result, threshold-based segmentation is significantly utilized to tackle ISP (Kuruvilla et al. 
2016; Oliva et al. 2014; Arora et al. 2008). Threshold-based segmentation has two catego-
ries: bi-level threshold, and multi-level threshold. In the bi-level, the image is divided into 
two parts: background and foreground (object). When having more than two similar regions 
within the image, the bi-level is skipped, and comes the role of the multi-level threshold 
that appeared to separate the several similar regions within the image. But although the 
high benefits that multi-level threshold could come true to overcome ISP for an image with 
several regions, it needs time increased exponentially with the required threshold number.

Some of the threshold techniques are based on a parametric approach that needs to 
compute some parameters under the probability density function for each region to extract 
the optimal threshold values. While the other techniques use a non-parametric approach 
that seeks to maximize some functions such as Kapur’s entropy (Kapur et al. 1985), fuzzy 
entropy (Li et al. 2021) and Otsu function (Otsu 1979) without going to computing some 
parameters.

Since the multi-level threshold needs time increased exponentially with the threshold 
levels, the traditional techniques are inadequate for overcoming those levels especially for 
an image with an extremely significant level. Consequently, the researchers think in the 
meta-heuristic algorithms as another methodology to overcome the drawbacks of the tradi-
tional techniques due to the great success that could achieve in many fields (Abdel-Basset 
et  al. 2018; Sayed et  al. 2019; Abouhawwash and Alessio 2021; Ma et  al. 2021, 2020) 
within less possible time. Several meta-heuristic algorithms for tackling ISP has recently 
been proposed, some of which will be reviewed within the next section.

Recently, a new metaheuristic algorithm known as the marine predators algorithm 
(MPA), which mimics the behaviors of the predators when attacking their prey, has been 
proposed for tackling the global optimization problem and could fulfill superior perfor-
mance (Faramarzi et al. 2020). As a result, it has been applied for tackling several real opti-
mization problems. In Soliman et al. (2020), MPA was adapted for finding the unknown 
parameters of triple-diode photovoltaic models and could fulfill superior outcomes com-
pared to four other metaheuristics algorithms. It has been also applied for finding the 
optimal thresholds of an image by maximizing the fuzzy entropy type II as an objective 
function (Mahajan et al. 2021). Moreover, the MPA integrated with dominance strategy-
based exploration and exploitation was applied for tackling the multiobjective optimization 
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problems and could outperform several well-known multiobjective optimization algo-
rithms (Abdel-Basset et al. 2021). Both MPA and political optimizers (PO) were applied 
for finding the unknown parameters of fuel cells and the experimental findings show that 
MPA is better than PO and some of the compared metaheuristic algorithms (Diab et  al. 
2020). Compared to some of the evolutionary algorithms like genetic algorithm and dif-
ferential evolution, in addition to the particle swarm optimization algorithm as one of the 
well-known swarm-based optimization algorithms, MPA could fulfill terrible success for 
tackling several optimization problems due to having some strong characteristics which 
have aided avoiding stuck into local minima by exploring several regions within the search 
space in less number of function evaluations to increase the convergence speed (Faramarzi 
et  al. 2020). Moreover, MPA has additional merit, increasing the exploration capability, 
known as fish aggregating devices (FADs) that have employed various updating manners 
to reposition each solution to other regions in the search space for preserving the solution 
diversity within various optimization phases.

Furthermore, MPA was integrated with Success History based Adaptive Differential 
Evolution (SHADE) algorithm to utilize the features of each one for producing a new 
strong variant called hybrid Marine Predators—Success History based Adaptive Differ-
ential Evolution (MP-SHADE) algorithm for estimating the unknown parameters of the 
single and double diode photovoltaic models. A combination of both MPA and teaching 
and learning-based optimization could produce a new strong one having higher explora-
tion capability to avoid stuck into local minima as an attempt to find better outcomes. This 
variant was abbreviated as TLMPA and applied for tackling IEEE CEC-2017 benchmark 
functions and four engineering design problems. Many other variants of MPA have been 
recently published for tackling other real optimization problems: parameter identification 
of single and double diode models (Ridha 2020), a new configuration of an autonomous 
CHP system based on improved MPA (Wang et al. 2021), Multi-Regional Optimal Power 
Flow (Swief et al. 2021), and several else (Kapur et al. 1985; Yu et al. 2021; Panagant et al. 
2021; Shaheen et al. 2021, 2020; Durmus 2021; Liu and Yang 2021; Elsayed et al. 2021; 
Ramezani et al. 2021; Riad et al. 2021; Ghoneimy et al. 2021).

Within our work, we try to support another technique that tries to exploit the individuals 
of the population significantly within the optimization process. This technique is based on 
selecting a number of the individuals with the worst fitness values, this number increases 
linearly with the iteration, then each individual within those individuals will be updated 
either with a small step size, which increases gradually with increasing the current itera-
tion, toward the best-so-far one to explore a huge number of solutions between this worst 
and the best-so-far one, in addition to avoiding stuck into local minima at the start of the 
optimization process, or randomly within the search space to avoid stuck into local min-
ima, the trade-off between those two different updates: toward the best-so-far and randomly 
within the search space is based on a certain probability illustrated within the experiments 
section in the parameter tuning. . After that, due to the significant success achieved by 
MPA in several fields as mentioned before, in addition to its need for more improvements 
to balance between the exploration and exploitation operators, it has been used to be inte-
grated with this technique to propose a new variant, MPALS, having a strong exploita-
tion operator for tackling ISP with threshold levels up to 40. However, this variant still 
suffers from falling into local minim because of the low exploration operator, therefore, 
another strategy known as ranking-based updating strategy (RUS) has been proposed with 
a novel updating scheme to replace the unbeneficial solutions which could not come true 
better solution within a consecutive number perIter of the iterations with those which 
improve both exploration and exploitation operators of the optimization algorithms. then, 
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MPALS is combined with RUS to develop a new variant called HMPA. Both HMPA and 
MPALS were compared with a number of recently proposed well-established optimiza-
tion algorithms. From involving those algorithms, the hybrid marine predators algorithm 
with ranking-based diversity strategy that is recently proposed for tackling ISP for covid19 
images. After completing the comparison, it was notified that HMPA is superior on signifi-
cant threshold levels and converged with the small threshold levels. The main contributions 
introduced within this paper are: 

1. Proposing two strategies known as linearly increased the worst solutions improvement 
strategy and ranking-based updating strategy (RUS) to utilize each individual within 
the optimization process as possible for reaching better outcomes.

2. Integrating these strategies with MPA to propose two variants: the first is based on inte-
grating MPA with LIS (MPALS), and the second improves MPALS by RUS (HMPA) 
for tackling ISP with threshold levels reaching 40.

3. Those two variants were extensively validated on 14 test images taken from Berkeley 
Segmentation Dataset, and compared with a number of recently proposed optimization 
algorithms to show the superiority of the proposed.

4. After validation and comparison, we see that HMPA could be converged with the small 
threshold levels and significantly outperform with the high threshold levels.

Within the following sections in this paper: some of the previous works done on ISP are 
reviewed in Sect. 2, the Kapur’s entropy is described in Sects. 3, 4 overviews the marine 
predators algorithm. Section 5 designs the paces of developing MPA with a linear popula-
tion improvement strategy for tackling ISP. Section 6 validates and compares the proposed 
algorithm on some test images, and Sect. 7 shows the conclusions about our proposition 
and future works.

2  Literature review

There are several meta-heuristic algorithms proposed for tackling ISP such as, ant colony 
optimization algorithm (Kaveh and Talatahari 2010), whale optimization algorithm (WOA) 
(Abd El Aziz et al. 2017), multi-verse optimizer (Kandhway and Bhandari 2019), particle 
swarm optimization (PSO) (Guo and Li 2007; Xiong et  al. 2020; Di Martino and Sessa 
2020), cuckoo search (CS) (Agrawal et al. 2013), locust search algorithm (LSA) (Cuevas 
et  al. 2020), honey bee mating optimization (HBM) (Horng 2010), symbiotic organisms 
search (SOS) (Chakraborty et al. 2019), harris hawk optimization algorithm (HHA) (Bao 
et al. 2019), and moth-flame optimization (MFA) (Abd El Aziz et al. 2017), flower pol-
lination algorithm (FPA) (Wang et al. 2015), crow search algorithm (Oliva et al. 2017), an 
improved grey wolf optimizer (IGWO) (Yao et al. 2019), genetic algorithm (GA) (Elsayed 
et al. 2014), bee colony algorithm (BCA) (Huo et al. 2020), marine predators algorithm 
(MPA) and improved MPA (IMPA) (Abdel-Basset et  al. 2020a), equilibrium optimizer 
(EO) (Abdel-Basset et al. 2020c), bacterial Foraging Algorithm (BFA) (Sanyal et al. 2011), 
and firefly optimization algorithm (FFA) (Erdmann et  al. 2015). Through this section, 
some of this algorithm will be surveyed briefly.

Abd El Aziz et al. (2017) developed both WOA and MFA for overcoming ISP by max-
imizing the Otsu’s method on small threshold levels reaching 6, but its performance on 
significant threshold levels is not known even now as its main limitations. In addition, 
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Agrawal et  al. (2013) proposed CS for overcoming ISP by using the tsallis entropy as a 
fitness function. The CS was verified a standard benchmark of test images, and compared 
with 4 optimization algorithms: artificial bee colony (ABC) algorithm, particle swarm 
optimization (PSO) , bacteria foraging optimization (BFO) and genetic algorithm (GA). 
According to the discussion of the authors, the CS was competitive with those algorithms 
in terms of only the CPU time and the objective function. This algorithm has been inves-
tigated for only 5-threshold levels, higher than that, its performance is not known as its 
main shortage. Chakraborty et al. (2019) proposed SOS enhanced by the opposition-based 
learning to increase the convergcne speed toward the optimal solution and avoid the local 
minima that may deteriorite the perforamcne of SOS for tackling ISP of color images. The 
performance of the improved SOS was validated using a set of the color images taken from 
Berkeley Segmentation Dataset (BSDS) and another set gathered for the COCO dataset. 
The experimental results of the improved SOS in comparison to a number of the existing 
algorithms: Bat algorithm (BA), CS, PSO, and ABC show the superiority of the improved 
SOS in terms of the objective values. Also, the performance of this algorithm is not known 
with increasing threshold levels and subsequently not preferred for tackling any image with 
a significant number of threshold levels.

Furthermore, Bhandari et  al. (2015) proposed the modified ABC to find the optimal 
threshold values for the satellite image segmentation using different objective functions: 
Kapur’s, Otsu and Tsallis. In the modified ABC (MABC), the chaotic maps and opposi-
tion-based learning was employed during generating the initial population to improve the 
convergence speed. This modified version was compared with the standard ABC, PSO and 
GA under various objective functions, but this algorithm was limited in terms of CPU runt-
ime and algorithm complexity compared to those compared algorithms. In Erdmann et al. 
(2015), FFA was proposed to tackle ISP, but its performance was weak, so the improved 
one (IFFA) (Chen et al. 2016), that was improved using the Cauchy mutation and neigh-
borhood strategy to overcome the local minima and improve its exploration capability, has 
been developed.

Maitra and Chatterjee (2008) improved PSO with cooperative and comprehensive learn-
ing for overcoming the dimensionality curse and increasing the early convergence, respec-
tively. Also, PSO (Liu et al. 2015) modified using adaptive inertia, and the population has 
been proposed for tackling ISP. BFA (Sanyal et al. 2011) has been proposed for tackling 
ISP of grey images by using fuzzy entropy to alter the bacterium between intensification 
and diversification operators. Furthermore, BFA (Tang et al. 2017) is integrated with PSO 
to support the global search capability in addition to the weak bacterium, which selects a 
random strong one to reach a location near it. In Yao et al. (2019), an improved grey wolf 
optimizer (IGWO) has been proposed for tackling ISP. IGWO was improved using a good 
point set method to initialize the population, this algorithm has a high ability to get rid of 
local optima and finding better solutions. This algorithm has not discussed the CPU runt-
ime in addition to using a small number of threshold levels up to 5 and consequently, it is 
not a good alternative to the existing image segmentation techniques.

An improved Bat algorithm (IBA) (Mokhtari and Kimour 2019) was proposed for tack-
ling ISP. IBA accelerated the convergence and increased the diversity between the mem-
bers of the population until disposing of stuck into local minima using both the crossover 
operator and chaotic search, respectively. In Xu et al. (2019), A dragonfly algorithm (DA) 
and differential evolution (DE) have been proposed for tackling the color image segmenta-
tion problem. DA has a high ability on getting out of local minima so it can reach a better 
solution, in addition to integrating DE as a local search strategy to improve the precision 
of the solution. A modified spherical search optimizer (MSSO) (Naji Alwerfali et al. 2020) 
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has been proposed and modified by the sine-cosine algorithm (SCA) to increase the exploi-
tation capability of this algorithm.

In Abdel-Basset et  al. (2020c), equilibrium optimizer (EO) was adapted for tackling 
the ISP by maximizing the Kapur’s entropy. EO was verified using a collection of the test 
images extracted from Berkeley Segmentation Dataset. In addition, EO was compared with 
a number of the popular optimization algorithms, such as WOA, BA, SCA, salp swarm 
algorithm, Harris hawks algorithm, crow search algorithm, and PSO to see its efficacy 
under a set of performance metrics. EO still suffers from falling into local minima and 
low convergence speed which stand as an immune obstacle front reaching the optimal 
threshold levels. Furthermore, in Abdel-Basset et al. (2020a) the standard MPA in addition 
to an improved one by ranking based diversity reduction strategy has been suggested for 
segmenting the x-ray images infected by covid19 under the Kapur’s entropy. The standard 
MPA was improved using this novel method to accelerate the convergence speed toward 
the best-so-far solution as an attempt to find better outcomes. This improved MPA was 
compared with a number of the recent algorithms to see its efficacy. The experimental 
results proved its efficacy over the standard one and the compared ones. Also, as discussed 
in the experiments later that this improved MPA had two shortcomings: local minima and 
low convergence speed.

Chouksey et  al. (2020) has investigated the performance of the antlion optimization 
(ALO) and multiverse optimization (MVO) algorithms for tackling the multilevel image 
segmentation problem based on two objective functions: kapur’s entropy and Otsu method. 
Those two algorithms were compared with evolutionary algorithms under the objective 
value, the stability, feature similarity index (FSIM), peak signal to noise ratio(PSNR), and 
structural similarity index (SSIM), and CPU time. The experiments show that those algo-
rithms could come true better outcomes over the compared algorithm, in general. Espe-
cially, the MVO could be more converged than ALO. However, those algorithms have not 
experimented with thresholds greater than 5 as their main limitation. Shahabi et al. (2019) 
proposed the crow search algorithm (CSA) for estimating the optimal threshold values 
using the Otsu function. This algorithm was compared the improved PSO, FFA, the fuzzy 
version of FFA to see its efficacy. The experimental outcomes proved the efficacy of the 
CSA over those algorithms for time and uniformity.

Further, the water wave optimization (WWO) algorithm modified by opposition based 
learning strategy and ranking-based mutation strategy to improve both the diversity of 
the individuals within the population and the selection probability, respectively, has been 
proposed by Yan et  al. (2020) to select the optimal threshold values for the underwater 
ISP. The modified WWO (MWWO) was compared with the other algorithms based on the 
PSNR, the SSIM, the CPU time, the objective values, and the Wilcoxon rank sum test. 
The experimental outcomes show the superiority of the MWWO over the other algorithms. 
However, its performance for threshold levels higher than 6 has not been investigated, and 
hence when increasing the threshold levels, this algorithm is not preferred for tackling this 
problem.

3  Kapur’s entropy

Within this section, we will describe the Kapur’s entropy used to extract the optimal 
threshold values by maximizing the entropy of the segmented regions [14]. Let’s see the 
mathematical model of this method, supposing that the threshold values that segment 
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an image with k similar regions are t0, t1, t2,…,and tk , then the Kapur’s entropy seek for 
maximizing the following formula until reaching the optimal threshold values:

T0, T1, T2,… , and Tk expresses the entropies of similar regions, and Ni refers to the count 
of pixels with a value equal to i. W0,W1,W2,… , and Wk is a phrase about the probabilities 
of the different regions in proportion to the whole pixel W within an image. Finally, Eq. 1 
is used in our proposition as a fitness function to find the optimal threshold values until 
overcoming ISP.

4  Marine predators algorithm (MPA)

Recently, Faramarzi et  al. (2020) proposed a novel meta-heuristic algorithm, namely 
marine predators algorithm (MPA), that mimics the behavior of the predators when 
attacking their prey. Specifically, the predators tradeoff between the lévy′s flight and 
Brownian strategy according to the velocity from the prey to predators when searching 
for their prey. Mathematically, MPA is formulated as follows:

Like most meta-heuristic algorithms, at the outset of the optimization process, the 
prey of size N will be distributed within the search space using the following equation:

Where � is a vector to contain numerical values generated randomly at the interval of 0 and 
1, and �min , and �max are two vectors contain the maximum and minimum boundaries of 
the search space for the problem.

After that, the fitness function is calculated and the prey with the highest fitness is 
selected as the Top predator within the optimization process to construct the Elite (E) 

matrix. This matrix is constructed as follows: E =

⎡
⎢⎢⎢⎢⎣

AI
1,1

AI
1,2

… AI
1,d

AI
2,1

AI
2,2

… AI
2,d

… … … …

AI
N,1

AI
N,2

… AI
N,d

⎤⎥⎥⎥⎥⎦

(1)T(t0, t1, t2,… , tn) = T0 + T1 + T2 +⋯ + Tn

(2)T0 = −

t0−1∑
i=0

Xi

W0

∗ ln
Xi

W0

,Xi =
Ni

W
,W0 =

t1−1∑
i=0

Xi

(3)T1 = −

t1−1∑
i=t0

Xi

W1

∗ ln
Xi

W1

,Xi =
Ni

W
,W1 =

t1−1∑
i=t0

Xi

(4)T2 = −

t2−1∑
i=t1

Xi

W2

∗ ln
Xi

W2

,Xi =
Ni

W
,W2 =

t2−1∑
i=t1

Xi

(5)Tk = −

L−1∑
i=tk

Xi

Wk

∗ ln
Xi

Wk

,Xi =
Ni

W
,Wk =

L−1∑
i=tk

Xi

(6)���� = �min + � ∗ (�max − �min)
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�I is the top predator and repeated N times to build up the elite matrix. N indicates 
the individual numbers in the population, and d is dimension number in each individual. 
Then, within the optimization process, the predators are moved towards a prey matrix 
formulated as and initialized randomly within the search space: 

Within the optimization process, the updating of each prey will be divided into three 
stages according to the velocity ratio from the prey to the predators. 

1. High-velocity ratio The velocity ratio from the prey to predators is high in this phase, 
where the prey is moved quickly searching for their food and the predators monitor their 
movements. Therefore, the predators in this phase don’t need to move at all, because the 
prey will reach them itself. This phase occurs at the start of the optimization process, 
where the algorithm searches for better solution in all regions within the search space 
of the problem. This phase is mathematically formulated as follows:

  while t < 1

3
∗ t

max

 where �B is a vector assigned randomly using the normal distribution to represent the 
Brownian strategy, ⊗ is the entry-wise multiplication, P is a fixed value and assigned 
0.5 as recommended in the original paper, � is a vector generated randomly within 0 
and 1, t indicates the current iteration, and tmax expresses the maximum iteration.

2. Unit velocity ratio.
  This stage occurs at the intermediate stage of the optimization process where the 

exploration is converted into the exploitation phase. So this stage is neither exploration 
nor exploration but it is a mix of them. Based on that, MPA within this phase divides 
the population into two halves: the first half will move using exploration steps while 
the other has exploitation steps. Finally, this stage will be mathematically formulated 
as follows:

  while 1
3
∗ t

max
< t <

2

3
∗ t

max

• For the first half of the population 

• For the second half of the population 

prey =

⎡
⎢⎢⎢⎣

A1,1 A1,2 … A1,d

A2,1 A2,2 … A2,d

… … … …

AN,1 AN,2 … AN,d

⎤
⎥⎥⎥⎦

(7)�i = �B ⊗ (�i − �B ⊗ ����i)

(8)����i = ����i + P.�⊗ �i

(9)�i = �L ⊗ (�i − �L ⊗ ����i)

(10)����i = ����i + P.�⊗ �i

(11)�i = �B ⊗ (�B ⊗ �i − ����i)

(12)����i = �i + P ∗ CF ⊗ �i
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 where �L is a vector generated randomly based on the lévy distribution, and CF is an 
adaptive parameter designed to manage the step size and created using the following 
equation: 

3. Low velocity-ratio:
 This stage occurs at the end of the optimization process where the exploration operator 

is completely converted into the exploitation operator and mathematically modeled as:
 while t > 2

3
∗ t

max

 Some other factors such as eddy formulation and fish aggregating devices (FADs) 
affect significantly the behaviors of the predators. Based on some studies, as a result 
of FADs, the predators spend 20% of their search time exploring another environment 
around the search space with abundant prey, while the other time they search for bet-
ter solution within the surrounding environment. FADs could be mathematically com-
puted according to the following formula: 

r is a number generated randomly within 0 and 1. Where, �2 indicates the index of a 
prey selected randomly from the population. � is a binary vector including 0 and 1. 
FADs=0.2 indicates the probability of impacting FADs on the optimization process. r1 
indicates the index of a prey selected randomly from the population.

  After each updating process, MPA compares the fitness of the updated solutions with 
the fitness for the previous solution to see if this update improves in the positions or not. 
If the updated position of each solution is better than the old one, the updated will be 
stored to be compared with the next generation, and if the old is better than the updated 
one then the old solution will be used within the next generation instead of the updated 
one. This process is known as memory saving. The pseudo-code of MPA is exposed in 
Algorithm 1, and the same steps are also shown in Fig. 1. In this pseudo-code and figure, 
t + + is the same as t = t + 1 and is responsible for moving the algorithm to the next 
generation for satisfying the termination condition related to a maximum generation.

(13)CF = (1 −
t

t
max

)
2

t

tmax

(14)�i = �L ⊗ (�L ⊗ �i − ����i)

(15)����i = �i + P ∗ CF ⊗ �i

(16)����i =

{
����i + CF[�min + �2(�max − �min)]⊗ � if r < FADs

����i + [FADs(1 − r) + r](����r1 − ����r2) if r ⩾ FADs
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Fig. 1  Depiction of the MPA steps
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5  Proposed work

In this section, the marine predators algorithm improved using an improvement strategy 
that selects a number, increasing gradually with the iteration, of the worst solutions and 
updates them toward the best-so-far solution and randomly within the search space is 
illustrated in this section. Our strategy is differentiated of the evolutionary population 
dynamics (EPD) (Saremi et al. 2015) by that, in EPD, the worst N/2 solutions are omit-
ted from the population and repositioned randomly them again around the best solution. 
On the contrary, in our strategy, a number of the worst solutions, increasing linearly 
with the iteration, will be selected each iteration to trade-off between moving: most the 
dimensions within each one toward the best-so-far solutions, and the others are ran-
domly reinitialized within the search space of the problem.

Our strategy works gradually on increasing the convergence of each worst one toward 
the best so-far solutions until accelerating the convergence speed and finding better 
solutions. Generally speaking, when moving each worst solution toward the best-so-far, 
the convergence toward the best solution increases significantly, but what if the best-so-
far solution is local optima, if that, then the diversity of population are already reduced. 
Since the diversity of the population fade away and at the same time the best-so-far 
solution is local minima, no better solutions could be obtained after that. Therefore, our 
strategy manipulates in some of the dimensions of the worst repositioned solutions, to 
help in disposing of the local optima, and at the same time to keep the diversity of the 
population.
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Our strategy methodology is contradicted with EPD because EPD repositions the worst 
half of solutions around the best-so-far solutions using a random number to specify the dis-
tance that will add to the best-so-far solution, thus the obtained distance is based on the ran-
dom number generated and the probability of reaching better solutions is relied on this gener-
ated number. On the contrary, our proposed moves the worst solutions toward the best-so-far 
solutions, and the distance between the best and the worst reduces gradually each update until 
exploiting the best-so-far solutions deeply in addition to disposing of the local minima by rein-
itializing randomly within the search space some of the dimensions within the worst solutions 
to get rid of local minima. Within this section, Initialization, evaluation, and improvement will 
be illustrated in detail and mathematically.

5.1  Initialization

Before starting the optimization process, a group of N prey (population size) will be defined, 
where each one in the group will have a number of dimensions according to the threshold level 
acquired. Those dimensions will be distributed within the search space according to Eq. 17. In 
this phase, a number N of prey with a number of the threshold is predefined.

where � is a vector including values generated randomly between 0 and 1, ���,and ��� are 
the vectors including the upper and lower bound of the grey level for an image within its 
histogram, respectively? For example, assuming that the upper bound grey level is equal to 
255, the lower bound is 0, and the threshold level of 8 is required, then each solution within 
the population will be represented as shown in Fig. 1 (truncated the digits after the decimal 
point to become integer numbers), in addition to adding the first and the last cell with the 
lower and the upper grey level for the image. Each cell within Fig. 2 indicates the threshold 
value used to find the optimal threshold values for threshold level 8.

5.2  Evaluation

After each generation, the fitness value for each solution will be calculated using Eq. 1 and the 
solutions under the new positions with higher fitness value will stay inside the population for 
the next generation; otherwise, the old positions will be used again within the next generation. 
So, the evaluation steps significantly affect the performance of MPA, because the fittest solu-
tion (the best-so-far solution/predator) and the solutions used within the next generation are 
specified according to this step.

5.3  Linearly increased the worst solutions improvement strategy(LIS)

Recently, a new strategy (Abdel-Basset et  al. 2020b) known as a linear reduction diver-
sity technique has been proposed to update a number, increasing with each iteration, of the 
worst solution toward the best-so far solution to increase the convergence speed toward the 

(17)����i = ��� + � ⋅ (��� −���)

Fig. 2  Initial representation of the solution for tackling ISP
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best-f-so-far solution, in addition to improving the quality of the obtained solution. But, updat-
ing toward the best-so-far may accelerate the convergence toward the local minima, therefore 
in this paper, we tried to get rid of this problem based on another position update scheme. 
After calculating the fitness for each solution, a number of the worst solutions will be updated 
using two ways: the first one is based on updating those solutions toward the best solution 
with a controlling factor to determine the step size taken in the direction of this best solu-
tion to avoid stuck into local minima if the best is so. This factor, namely C, will take small 
steps increased gradually with increasing the current iteration even avoiding stuck into local 
minima at the start of the optimization process because the best-so-far might be local minima. 
Additionally, the second way is based on updating the current solution in the direction of the 
best-so-far solution using a random number generated within 0 and 1 based on the uniform 
distribution but will be added to this solution another step size generated based on the upper 
and lower bound of the problem. The number of the worst solutions is related to the iteration, 
where, at the start of the iteration, a small number of solutions will be selected, and with the 
iteration, this number will be gradually increased until maximizing at the end of the iteration. 
Generally, Eq. 18 represents the mathematical formula for calculating this number symbolized 
np:

Where N is the population size, and np indicates the number of the worst solutions 
increased linearly with increasing the current iteration t. After calculating np, those worst 
solutions will be updated according to Eq. 19.

preyw,j indicates the jth dimension of the wth worst particle. r3 is a random number between 
0 and 1. min refers to the lower bound of the jth dimension, while max is the upper bound 
of the same dimension. r is a number generated randomly between 0 and 1. Ew,j indicate 
the jth dimension of the row w in the elite matrix (E). ER expresses the exploration rate 
used to get the solution out of the local minima problem, its value will be discussed in 
the parameter settings. This strategy is known as the linearly increased the worst solutions 
improvement strategy (LIS). Finally, the pseudo-code of the hybrid MPA-LIS is shown in 
Algorithm 2.

(18)np = N ∗
t

tmax

(19)����w,j =

{
min + r.(max − min) if r3 < ER

Ew,j + r ∗ (Ew,j − preyw,j) otherwise

(20)C =1 − e−t∗r
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5.4  Ranking‑based updating strategy

Recently, in Abdel-Basset et al. (2020a), we proposed a method called ranking-based updating 
strategy which is based on replacing those solutions that could not fulfill better solutions in the 
last perIter iterations with other ones to improve the outcomes produced by the optimization 
algorithms; in our experiments, perIter is set to 3 as recommended in the original work. But, 
our previous proposition was based on updating those solutions which passed the unallowed 
rank by steering them to the right direction of the best-so-far solution in the hope of finding 
better solutions there. However, moving in the direction of the best-so-far solution might take 
the algorithm to local minima and hence no better solution will be achieved within the remain-
ing iterations. Therefore, herein, a new updating scheme has been proposed for updating those 
solutions based twofold: the first one is based on searching for a better solution around one 
selected randomly from the population as an attempt to increase the exploration capability 
for reaching other regions might involve better solutions; the second one is based on turning 
around the best-so-far solution in a shrinking circle with the iteration to strengthen the exploi-
tation capability. The exchange between those twofold is achieved based on a probability Pr 
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ranging between 0 and 1 and picked by the researchers according to their experiments. the 
optimal value to this parameter within our experiments as discussed later. Generally, the math-
ematical model of this updating scheme is as follows:

where a, b, c, and d are indices of four solutions selected randomly from the population. 
r, r1 , and r3 are three random numbers ranging between 0 and 1. Algorithm 3 described the 
steps of the ranking-based updating strategy (RUS) for replacing the solutions which pass 
three consecutive iterations without any better solution than the best-local one with those 
created using Eq. 21. Finally, this strategy is integrated with the MPALS variant as listed in 
algorithm 4 to propose a new strong one, namely HMPA, having a high ability to balance 
between the exploration and exploitation capability for reaching better solutions in less 
number of function evaluations. The RUS give the choice to the algorithms for determining 
if the exploration operator will be applied more than the exploitation operator and this will 
make applicable for several metaheuristic algorithms because some algorithms might have 
low exploitation operator while the others might suffer from weakening the exploration 
capability, so this method could help the two sets based on the required need.

(21)preyw,j =

{
preya,j + D ∗ (preyb,j − preyc,j) + r ∗ (preya,j − preyd,j) if r3 < Pr

Ei,j + r1 ∗ A ∗ (preyb,j − preyc,j) otherwise

(22)a = 1 −
t

tmax

(23)A = 2 ∗ a ∗ r2 − a

(24)D = e−A∗t ∗ cos 2�r
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Some of the advantages of the proposed algorithms are that both the proposed strategy 
integrated work on increasing the convergence speed and at the same time avoiding fall-
ing into local optima and subsequently the probability of finding better solutions is signifi-
cant. Although the significant success achieved by both HMPA and MPALS on the various 
threshold-levels, it consumes more a bit computational cost compared to some of the com-
peting algorithms as their main limitation tackled in future work.

6  Results and discussion

6.1  Test images description and experimental settings

To validate our proposed algorithms, 14 test images taken from Berkeley Segmentation 
Dataset (BSDS500) [75] are used to observe their effectiveness. These images are named 
as “12003”, “61060”, “38092”, “232038”, “108082”, “148089”, “189003”,“108070”, 
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“227092”, “277036”, “Barbara”, “Airplane”, “Mand”, “lena”. Besides, the original images 
and the histogram of each one is shown in Figs. 3 and  4.

A number of algorithms, such as HHA (Bao et  al. 2019), WOA (Mirjalili and Lewis 
2016), slime mould optimizer (SMA) (Li et  al. 2020), improved tunicate swarm algo-
rithm (ITSA) (Houssein et al. 2021), flower pollination algorithm (FPA) (Yang 2012), EO 
(Abdel-Basset et al. 2020c), and IMPA (Abdel-Basset et al. 2020a), are employed to check 
the effectiveness of our proposed algorithms, whose parameters are as recommended in 
the cited papers, except the population size N set to 30, and the maximum iterations tmax 
equal 300 for a fair comparison. Those algorithms were employed because they have been 
recently applied for tackling several optimization problems: image segmentation, param-
eter estimation of photovoltaic models, DNA fragment assembly problem, global optimiza-
tion, and several else, and could come true superior outcomes. Table 1 lists the parameter 
settings of those compared algorithms.

Regarding the parameters of the proposed algorithm, ER of the MPALS algorithm is 
tuned on 12003 under the threshold level 40 and displayed in Fig. 5, which shows the supe-
riority of ER = 0.9 against the other values. For the parameter Pr of HMPA, it is checked 
on some values such as 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, and 1.0 and the outcomes are illustrated on Fig. 6. This figure shows that 
Pr = 0.05 is the best. Some values for the parameter � are observed to see the best value for 
it, after observing and exposing the output on Fig. 7, � = 0.01 is the best.

Finally, a device equipped with Windows 10 and having 32GB of RAM, AND Corei7 
Intel CPU with 2.40GH as speed is used to conduct those experiments.

6.2  Performance metrics

In this section, the performance metrics used to observe the performance of the algorithm 
will be discussed in brief. Those metrics are standard deviation (SD), Peak Signal to noise 

Fig. 3  Illustration the original image and its histogram used in our experiment
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Fig. 4  Illustration the original image and its histogram used in our experiment
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ratio (PSNR), Structured similarity index metric (SSIM), universal quality index (UQI), fit-
ness value under Kapur’s entropy, and CPU time. 

1. Standard deviation (SD): SD is used to measure the stability of the outputs obtained by 
each algorithm within several runs and mathematically calculated using the following 
equation: 

Table 1  Parameter settings of competing algorithm

 Algorithm  Parameter  Value

 FPA (Yang 2012)  Probability switch p  0.8
 WOA (Mirjalili and Lewis 2016)  Constant (a)  Is linearly 

decreased 
from 2 to 0

 HHA (Bao et al. 2019)  Energy of a rabbit (E)  E ∈ [0, 2]

 SMA (Li et al. 2020)  Constant (z)  0.03
 Constant a1 1

 EO (Abdel-Basset et al. 2020c) Constant a2 2
Constant (P) 0.5

 IMPA (Abdel-Basset et al. 2020a) Constant(FADs) 0.2
Constant (perIter) 3

 ITSA (Houssein et al. 2021) P
min

1
P
max

4
pr 0.3

Fig. 5  Tuning the parameter ER of MPALS under 40 threshold level for 12003
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 n indicates the number of independent runs, fi is the fitness value under Kapur’s 
entropy of the ith run, and f̄  is the average of the fitness value within the independent 
runs. The algorithm with the smallest SD is considered the best.

2. Peak signal to noise ratio (PSNR): PSNR (Hore et al. 2010) is a quality indicator used 
to check the quality of the segmented image compared with the original image. This 
indicator calculates the mean square error (MSE) between the original and segmented 
images using Eq. 27, then take a log with base 10 for the square of 255 divided by MSE. 
The mathematical model of PSNR is as follows: 

(25)SD =

√√√√ 1

n − 1

n∑
i=1

(fi − f̄ )2

(26)PSNR = 10 log10

(
2552

MSE

)

(27)MSE =

∑M

i=1

∑N

j=1
∣ A(i, j) − S(i, j) ∣

M ∗ N

Fig. 6  Tuning the parameter Pr of HMPA under the threshold level 40 on 12003
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A(i,  j), S(i,  j) are the grey value of both segmented and source images within ith row 
and jth the column in matrices A, and B that have the size of rows and columns equal 
to M, and N, respectively.

3. Structured similarity index metric (SSIM): SSIM (Hore et al. 2010) is different about 
PSNR because it takes in its consideration the structure of the segmented image com-
pared with the original image. Generally, it measures the brightness, structure similarity, 
and contrast distortion between the source and predicted images. Mathematically, SSIM 
is formulated as following: 

 where �0,�s express the mean intensities of both original and predicted image; �0 
and �s indicate SD of the same two images respectively; a,and b is fixed values and 
assigned to 0.001 and 0.003 respectively. This metric is maximized until reaching bet-
ter accuracy.

(28)SSIM(O, S) =
(2�o�s + a)(2�os + b)

(�2
o
+ �2

s
+ a)(�2

o
+ �2

s
+ b)

Fig. 7  Adjusting the parameter � of HMPA under the threshold level 40 on 12003
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6.3  Stability and CPU time

Starting with stability, to measure the convergence between the outcomes produced by 
each algorithm, the average of SD was calculated on all datasets within 30 independent 
runs for each one and displayed in Fig. 8. Figure 8 shows that HMPA could produce more 
converged outcomes in comparison with the other algorithm. As a result, the performance 
of our proposed algorithm, HMPA, is more stable within 30 independent runs. Ending with 
CPU time, the improvements on MPA may significantly affect running time, so we calcu-
late the running time result of each algorithm and then show those outcomes within Fig. 9. 
Inspecting Fig. 9 told us that the improvements done on MPA don’t affect significantly the 
speedup of MPA and hence it is a strong alternative to the existing image segmentation 
techniques because it could fulfill better outcomes within almost converged CPU time.

6.4  Graphically performance analysis

The effectiveness of the proposed algorithms compared with the other algorithms under 
different performance metrics will be observed within this section. Generally, this section 
is organized under graphical depictions as follows: 

1. Comparison of fitness values.
2. Comparison under PSNR values.
3. Comparison under SSIM values.
4. Comparison under various threshold levels: small and large levels.
5. Depiction of the fitness values using the interval plot.

Fig. 8  Comparison the average of SD values obtained by each algorithm
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(1) Comparison under Fitness value.

Figure 10 shows the average of the fitness values obtained by each algorithm within 30 
independent runs under all threshold levels on all the test images. Observing Fig. 10 shows 
that HMPA could reach the first rank with a value of 35.17, MPALS reach the second 
rank with 34.81, while FPA came as the last one with a value of 33.91. This superiority is 

Fig. 9  Comparison of the CPU Time values obtained by each algorithm

Fig. 10  Depiction of the average fitness values under all threshold levels for all test images
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caused by both LIS and RUS that could accelerate the convergence toward the best solution 
and at the same time take the solutions out of the local optima problem.

(2) Comparison under PSNR values.

In this section, the quality of the predicted image using the proposed algorithms and the 
others will be compared under the PSNR metric. After calculating the average PSNR val-
ues within 30 runs for each level on each image, and calculating the averages under all 
levels on all images, they are shown in Fig. 11. After observing Fig. 11, it is concluded 
that the proposed algorithm, HMPA, could achieve the best value compared with the oth-
ers and occupies the first rank with a value of 23.45, and both WOA and MPALS could 
come in the second rank with a value of 25.03, while FPA came in the last rank with 24.06. 
Ultimately, it is concluded that HMPA could reach the threshold values which accurately 
separate the objects in an image compared to the other compared algorithm, and subse-
quently, HMPA considers a strong alternative to the existing techniques for tackling the 
image segmentation problem.

(3) Comparison under SSIM values.

In this part, the mean of the SSIM values obtained by each algorithm within 30 independ-
ent runs on all threshold levels under all the images will be discussed to see any algorithm 
could reach better accuracy. According to Fig. 12, HMAP could be the best with a value 
of 0.9320 and EO, WOA, and SMA as the second-best ones with 0.9318, while FPA is the 
worst with 0.9300. Unfortunately, MPALS could only overcome ITSA and FPA over this 
metric as the main limitation to this variant solved using the RUS, which could explore 
more intractable regions for fulfilling better outcomes for all employed performance met-
rics: F-value, PSNR, SSIM, SD, and CPU time.

Fig. 11  Depiction of the average PSNR values under all threshold levels for all test images
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(4) Comparison under various threshold levels: small and large levels.

In this section, the various algorithms have been compared based on the threshold level to 
see their performance with small and high threshold levels. After computing the average 
of SSIM, PSNR, and F-value on the threshold levels ranging between 2 and 7 as the small 
levels and presenting the outcomes in Fig. 13, it is notified that all algorithms except FPA 
are almost converged under those three performance metrics and subsequently any of them 
could be used to segment any image with small threshold levels ranging between 2 and 7. 
However, with the high threshold levels ranging between 10 and 40, HMPA could be supe-
rior for the three employed performance metrics: SSIM, PSNR, and F-value as depicted in 
Fig. 14. In general, HMPA considers a strong alternative for tackling the image segmenta-
tion problem for images with small or high threshold levels contradicted most of the com-
pared algorithms which have good performance for only the small levels.

(5) Comparison under interval plot.

Within this section, the Boxplot is used to check the performance of the algorithms under 
Fitness values on each image with a threshold level (T) equal to 40. Specifically speaking, 
each algorithm is run 30 times on some test images under T=40 and the fitness values 
within those 30 runs are drawn in Figs. 15, 16 for this algorithm. Figs. 15, 16 prove the 
superiority of HMPA under T=40 on all the test images, where HMPA could come in the 
first rank superior to all the other algorithms, while MPALS occupies the second rank on 
all the test images and the third rank is occupied by WOA. These experiments show the 
superiority of HMPA on the images with high threshold levels, so it is considered as an 
outstanding alternative to solve the multilevel thresholding image segmentation, especially 
with high threshold levels.

Fig. 12  Depiction of the average SSIM values under all threshold levels for all test images
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Fig. 13  Comparison based on various performance metrics: F-value. PSNR, and SSIM on small threshold 
levels ranging between 2 and 7

Fig. 14  Comparison based on various performance metrics: F-value. PSNR, and SSIM on large threshold 
levels ranging between 10 and 40
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6.5  Descriptive performance analysis

In this section, the various performance metrics will be measured according to each 
algorithm within 30 independent runs ad introduced within the following tables. 
Broadly speaking, Tables 2 and 3 introduces the F-values obtained by each algorithm 
on each test image. Inspecting Tables 2 and 3 shows that HMPA could be competitive 
and superior in 110 cases out of 154, while MPALS could achieve the best and equal 
with some other algorithms in 84 out of 154 in terms of the F-values. Both MPALS and 
HMPA as our proposed variants could be competitive to the others, which reach the 
same outcomes, in 52 cases, while could be superior in 83 others, and hence those pro-
posed variants are strong alternatives to solve the image segmentation problems, espe-
cially HMPA which could outperform the other variants for most test cases.

In Tables  4 and  5, the PSNR values obtained based on the segmented images 
achieved based on the fitness values assigned in Tables  2 and 3 are exposed on each 
threshold level for each image. Inspecting this table show that HMPA could be the best 
and equal with the other algorithms in 70 test cases, while MPALS could be superior 
and competitive in 37 cases. Based on that, HMPA considers the best-proposed variant, 
and the best compared to the other compared algorithms since the nearest compared 
algorithm in terms of the PSNR is EO which could be superior and competitive in only 
42 cases.

Fig. 15  Fitness values on all images under T = 40
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In Tables 6 and 7, the SSIM values are exposed on each threshold level for each image. 
From this table, it is concluded that HMPA could be the best and equal with the other 
algorithms in 90 test cases, while MPALS could be superior and competitive in 57 cases. 
Meanwhile, the two-proposed variants could reach better and competitive outcomes com-
pared to the other algorithms in 102 cases. Based on that, HMPA considers the best.

6.6  Comparison under Wilcoxon rank‑sum test

In this section, the Wilcoxon rank-sum test (Lam and Longnecker 1983) is used to com-
pare the outcomes of HMPA with those obtained by the competing algorithms on some 
test images used in our experiments and presenting the outcomes in Table  8. This test 
returns the p-value of the two-sided Wilcoxon rank-sum test, and if this p-value is less 
than a significant level recommended 5% then there is a difference between paired data; 
otherwise, the null hypothesis will be accepted, which no difference between paired data. 
In our experiments which compare the data obtained by HMPA with each competing algo-
rithm and their outcomes are presented in Table 8, it is obvious that the p-value for most 
test cases on threshold levels higher than 7 is less than 5%, and hence there is a difference 
between the outcomes of the HMPA and the other competitors. However, for threshold 
levels lower than 7, the outcomes of HMPA were significantly different from those of some 

Fig. 16  Fitness values on all images under T = 40
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of the competing algorithms and similar to the others. Note that, NaN value in this table 
indicates that the outcomes of each pair of algorithms are the same.

7  Conclusion and future work

In this paper, a new multilevel thresholding image segmentation algorithm based on the 
improved marine predators algorithm (MPA) is developed, this algorithm is improved with 
a novel strategy called the linearly increased worst solutions improvement strategy (LIS) 
to accelerate the convergence by steering gradually a number np of the worst solutions in 
the right direction of the best-so-far solution, and randomly within the search space of the 
problem to help in avoiding stuck into local minima. this LIS is integrated with the stand-
ard MPA to propose a new variant, namely MPALS, for the ISP. Further, another strategy 
called ranking-based updating strategy (RUS) has been here proposed and employed to 
strengthen the exploration and exploitation capability of MPALS for reaching other regions 
which are intractable by MPALS. This improved MPALS was abbreviated as HMPA. The 
two proposed variants: HMPA and MPALS have been validated on 14 test images and 
compared with seven state-of-the-arts meta-heuristic algorithms. The experimental results 
show the superiority of HMPA for all performance metrics: PSNR, F-value, SSIM, and SD 
except CPU time as its main limitation addressed in future work. Broadly speaking, the 
HMPA could occupy the first rank because it was competitive with some algorithms for 
the small threshold levels and superior for the high threshold levels; meanwhile, MPALS, 
WOA, IMPA, EO, SMA, HHA, ITSA, and FPA are respectively ranked from the second-
best one to the worst for the fitness values and PSNR. Unfortunately, MPALS come in the 
seventh rank in term of the SSIM which were considered as its main limitation addressed 
using the RUS in the second variant: HMPA. Our future work includes investigating the 
performance of the marine predator algorithm when tackling DNA fragment assembly 
problems, feature selection problems, and flow shop scheduling problems, in addition to 
tackling the CPU time problem related to the proposed algorithms.
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