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Abstract
With the modernization of industry and introduction of IoT, maintenance practices have 
been moving from reactive to proactive and predictive approaches. The identification of 
faults often relies on the analysis of real-time data provided by streams and unstructured 
sources. Ontologies have been applied to the maintenance field in order to add a seman-
tic layer to the data and facilitate interoperability, and combined with other approaches 
for explainability and fault diagnosis, among others. In such a time-sensitive domain, it 
is important that ontologies go beyond static representations of the domain and allow not 
only for the incorporation of time related knowledge, but must also be able to adapt to new 
knowledge and evolve. This systematic review presents four research questions to provide 
a general understanding of the state of the art of the representation of time and ontology 
evolution in the predictive maintenance field. The results have shown that there are sev-
eral ways of representing the evolution of knowledge that are fairly established and several 
specific evolutionary actions are discriminated and analyzed. Similarly, there is a diverse 
group of metrics that can be exploited to measure change and to establish evolutionary 
trends and even predict future stages of the ontology. Studies on the representation of time 
show us that it can be done either quantitative or qualitatively, with some approaches com-
bining the two. Applications of these to the problem of ontology evolution are still in the 
open. Finally, results show that while applications of ontologies to the field of predictive 
maintenance are plenty, there are not many studies focusing on their evolution or in the 
effective application of their ability to reason with time constraints. The results obtained in 
this systematic review are particularly relevant for devising solutions that make use of the 
ontology’s potential for time representation and evolution in the predictive maintenance 
field.
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1 Introduction

The modernization and introduction of Internet of Things (IoT) technologies in industry 
is a big promotor of the adoption of predictive and proactive approaches to equipment 
maintenance in place of mainly reactive or scheduled interventions (Ansari et al. 2019; 
Saeed et  al. 2019). The goal of predictive maintenance is to intervene in equipment 
before faults effectively take place, which relies on the continuous monitorization of 
equipment condition and identification of anomaly statues or future faulty states (Ansari 
et  al. 2019). For this to happen, it is important that data regarding equipment condi-
tion is obtained and processed in useful time (Ansari et al. 2019), as well as be prop-
erly understood by all intervening parties in all parts of the process—from its acquisi-
tion to its processing, analysis and delivery to the end users. Ontologies have found 
applications in industry and in the predictive maintenance field as a tool to semantically 
describe data and to provide reasoning and inference processes over it. Some architec-
tures propose using ontologies to describe data captured through sensors (Klusch et al. 
2015; Steinegger et  al. 2017), processes (Saeed et  al. 2019; Dibowski et  al. 2016) or 
for the delivery of results; Smoker et  al. 2017). Reasoning with ontologies has found 
applications for providing diagnostics, recognition of qualitative fault states and distin-
guishing between different types of failure (Delgoshaei et al. 2017; Klusch et al. 2015; 
Steinegger et al. 2017; Ferrari et al. 2017), and can be combined with other mechanisms 
for predictive maintenance purposes.

Predictive maintenance activities require time-sensitive and time-aware processes. A 
lot of information arrives in real-time and through streams, which may then be ana-
lyzed through machine learning and data mining algorithms and is bound to change its 
meaning over time in a form of concept drift, as the characteristics that define normal 
or abnormal behavior slowly transform over time. While there is a considerable amount 
of work regarding the applications of ontology to the predictive maintenance field, they 
often fail to understand and model these requirements. Most of the available ontolo-
gies focus on the description of a static domain and do not make much use of tem-
poral representation or temporal constraints. For ontologies to change over time and 
adapt to the dynamic domains they aim to describe, they must be able to evolve in some 
way. Ontology evolution is described in Stojanovic (2004) as the process through which 
an ontology adapts to the changes in a domain in a timely fashion, while consistently 
propagating the changes to other artifacts that depend on it. This process often relies 
on the identification of which changes occurred in the domain that made the ontology 
outdated, the materialization of those changes into specific evolutionary actions and the 
execution of those—followed by consistency checks to ensure that the new ontology 
version is logically sound. Predictive maintenance approaches often have to model the 
gradual change in equipment behavior as its components wear down with use. As such, 
there is a variation on what are the characteristics of normal/abnormal behavior over 
time, and similarly of what constitutes a failure. Ontology evolution, therefore, becomes 
a necessity and can be employed to identify and model these changes, ensuring that 
the domain description is up-to-date and remains accurate. Many existing approaches 
to ontology evolution, however, fail to provide formalisms for temporal abstract notions 
(Shaban-Nejad and Haarslev 2015).

The purpose of this work is to understand the different ways ontologies can be used 
to represent time-sensitive domains and to explore how these domains evolve over time 
in the face of new knowledge. To do so, four research questions are presented, and 



3185A systematic review on time‑constrained ontology evolution…

1 3

existing studies that may answer to them are analyzed and discussed in order to reach an 
overview of the current state of the art in the topics of time representation, identifica-
tion of change, evolution of the domain and the applications of these in the predictive 
maintenance field.

The remainder of this document is structured as follows: Sect. 2, in which the proce-
dure taken in this systematic review is presented in detail and all steps of the process are 
accounted for. In this section, we go from the definition of the research questions to the 
selection of the works to be included in this review, while explicating the inclusion and 
exclusion criteria and the data sources considered. In Sect. 3, we show which answers to 
the different research questions are proposed by the analyzed studies to the best of our 
knowledge. In Sect. 4, we take a deeper look at these studies and identify potential chal-
lenges and future directions for research. Finally, Sect.  5 outlines the Conclusions and 
Future Work.

2  Method

The literature review will focus on the analysis of existing Ontology Evolution method-
ologies, in order to assess how they answer these very questions and how they handle the 
field’s inherent challenges. Analysing the challenges involved will allow us to establish 
how the new methodology can improve on the existing ones and a better understanding of 
the existing problems and challenges in this field of study. Furthermore, the applicational 
context of this work lies in the field of ontologies for Predictive Maintenance and industrial 
processes, and therefore existing works in this area will also be explored.

The goal of a systematic review of the literature is to extract, analyse and interpret a 
corpus of work pertaining to a specific field of study. Systematic reviews are meant to be 
through and to follow a sequential, detailed, specific and repeatable workflow that allows 
other researchers to achieve similar results. The methodology described by Kitchenham 
(2004) proposes that systematic reviews should follow a number of steps, from the develop-
ment of the review protocol; entailing the rationale and research questions, the processing, 
analysis, and demonstration of the research’s results. As such, this review starts by present-
ing the Research Questions and the motivating problem. Then, the data sources selected 
for this review will be presented, along with the process of selecting and using the most 
adequate combination of search terms that generated a query that could be equally used in 
the different data sources. Inclusion and Exclusion criteria, along with quality assessment 
criteria are described. Finally, a detailed account of the data extraction process is given, 
showing how the articles found in those data sources were continuously filtered until the 
final number of articles to review is reached.

2.1  Research questions

For the purposes of this systematic review, we define the main research question as: “What 
are the current applications of time-based reasoning in ontology evolution in the field of 
predictive maintenance?”. In order to properly answer this question, we can divide the 
main question into four subdomain questions, which can be found in Table  1. The first 
question is mainly concerned with the representation of changes made to an ontology: what 
methods are used to describe and implement specific evolutionary actions and the condi-
tions in which they take place, and how previous versions of the ontology are maintained. 
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The second question, on the other hand, focuses in a related but distinct task, that is: the 
identification and measurement of change, i.e., the application of metrics for ontology 
evolution. Here, it is relevant to assess which metrics exist, which are the most popular 
approaches and what characteristics of the ontology or other sources of knowledge they 
should be applied to. The third question enters in the domain of time representation, allow-
ing us to explore the different ways through which time is frequently represented in ontolo-
gies and how the temporal validity of concepts and relationships can be represented and 
utilized. This question also opens the possibility of these representations being used for 
ontology evolution. Finally, question four will attempt to find specific applications of all 
these topics in the field of predictive maintenance.

2.2  Data sources

Identification of the data sources to use in the systematic review is the first step of the pro-
cess. According to Paré et al. (2015), in order to maintain clarity and rigor, it is advisable 
to maintain a small number of comprehensible data sources. Furthermore, the data sources 
selected make use of the same operators in the same fields, and thus it is possible to use 
the same query string in all of them with little to no modification. Table 2 identifies the 
electronic databases chosen for this study. There is some overlap within these data sources, 
which is accounted for in a following step.

2.3  Search terms

Considering the field of application of this work, along with the research questions to keep 
in mind, a number of domains were selected to assess not only how many studies have been 
made for each of the considered subdomains, but also how the combination of these affects 
the number of results. As such, consider the following domains and subdomains selection 
and the respective keywords used to define each one, as seen in Table Table 3:

Search terms were applied to Title, Abstract and Keywords. Different combinations 
of these domains were attempted and evaluated over the number of results they provided 

Table 1  Research questions

Research question

RQ1 What methods have been used to represent the evolution of knowledge over time?
RQ2 What mechanisms can be employed to identify and measure change in knowledge?
RQ3 How can temporal validity be applied to knowledge evolution?
RQ4 What methods of knowledge acquisition and time representation are commonly 

applied in the predictive maintenance field?

Table 2  Electronic databases Identifier Database URL

DS1 Web of Science https:// www. webof knowl edge. com/
DS2 ACM Digital Library https:// dl. acm. org/
DS3 IEEE Explore https:// ieeex plore. ieee. org/

https://www.webofknowledge.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/
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before the final search query was reached. The results of these attempts can be seen in 
Table 4. Because “Ontology” is a fundamental domain that must be present in all works, it 
always appears as an intersection in the queries.

Unfortunately, the intersection of all the original domains does not yield any results. 
Similarly, the intersection between Knowledge Evolution and Temporal Information 
returns a very low number of works. As such, the union between these two fields (intersec-
tion with ontology for the reasons stated above) was attempted, which returned a bigger 
number of hits that include the few ones returned by the intersection. While this makes for 
less focused results, studies that address at least one of the issues may provide nonetheless 
interesting insights. Additionally, we can see there are very few works currently dealing 
with ontologies in the field of predictive maintenance, suggesting that another union was 
likely to be necessary. Because the intersection between Ontology, Stream Learning and 
Knowledge Evolution is particularly interesting to this research, it will be included as the 
union with the previously mentioned one. The final query string can be found in Table 5.

2.4  Quality assessment: inclusion and exclusion criteria

In order to assess whether a specific article should be included in this review or not, a set of 
rules were devised. These will evaluate a number of parameters that are not related to the 
contents of the article, such as if it is peer-reviewed, or if it is in book format; while others 
will be pertaining to the quality of the article’s content and the relevance of its contribu-
tions. Proposals are to be considered in terms of their novelty and the theoretical funda-
ments they aim to support; otherwise, preference to fully developed and tested systems 
will be given. Table 6 reflects the criteria to considered for inclusion of a given work, and 
Table 7 those for exclusion:

2.5  Data extraction

Figure 1 illustrates the decision-making process used in this systematic review. This pro-
cess begins with the data extraction from the different digital libraries by applying the 
aforementioned search terms, and by selecting the last 5 years of studies (the time interval 
was set to 2015–2019). The last five years were selected as the time period for this review, 
considering it is a trade-off between gathering data on the most recent research while also 

Table 3  Domains and keywords used to select search terms

Domain Keywords

Ontology “Ontology”
Knowledge evolution (“Knowledge evolution” OR “knowledge acquisition” OR “schema 

induction” OR “ontology learning” OR “domain expansion” OR 
“ontology evolution”)

Temporal information (“Time representation” OR “representation of time” OR “temporal 
information” OR “time-based reasoning” OR “temporal reasoning” 
OR “reasoning with time” OR “temporal representation”

Predictive maintenance (“Fault prediction” OR “predictive maintenance” OR “fault detection”)
Stream learning (“Machine learning” AND (“event” or “stream”))
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Table 5  Query string (((((“Knowledge evolution” OR “knowledge acquisition” OR “schema 
induction” OR “ontology learning” OR “domain expansion” OR 
“ontology evolution”) OR (“time representation” OR “representa-
tion of time” OR “temporal information” OR “time-based reasoning” 
OR “temporal reasoning” OR “reasoning with time” OR “temporal 
representation”)) AND “ontology”)) OR ((“ontology”) AND (“fault 
prediction” OR “predictive maintenance” OR “fault detection”)))

OR
(“Ontology” AND “machine learning” AND ((“event” OR “stream” 

OR “time representation” OR “representation of time” OR “tempo-
ral information” OR “time-based reasoning” OR “temporal reason-
ing” OR “reasoning with time” OR “temporal representation”) OR 
(“knowledge evolution” OR “knowledge acquisition” OR “domain 
expansion” OR “ontology evolution”))

Table 6  Inclusion criteria

Inclusion criterion

IC1 The source belongs to the field of knowledge engineering/representation in computer science
IC2 Source is peer-reviewed
IC3 The source describes a significant contribution to the fields of study
IC4 The source describes a methodology or a tool for ontology evolution or evaluation, including new 

evaluation tools and systems
IC5 The source describes how the concept of Time is (or can be) handled, i.e. how it is represented and 

how reasoning is affected
IC6 The source must describe a tool, an application scenario, or otherwise have a strong theoretical 

proposal
IC7 Scenarios of application of ontologies that represent and reason with time

Table 7  Exclusion criteria

Exclusion criterion

EC1 The source is over 5 years old
EC2 The source is either a book chapter, dissertation, systematic review or thesis
EC3 The source is not written in English
EC4 The source focuses on information extraction for a very specific domain, lacking adaptability to dif-

ferent domains
EC5 Contribution to the field of ontologies is unclear or not the focus of the source
EC6 The source does not clarify the methods through which ontological concepts or relations are extracted
EC7 The source overly focuses on the applications of the ontology and not on its semantics, learning or 

evolution
EC8 The source is focused on describing and applying NLP techniques for information extraction pur-

poses, and not on the application of their results to an ontology
EC9 Sources that describe the semantic technologies employed but not how these are effectively used in 

their use-cases are not to be considered
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trying to pinpoint older, more foundational works. This search resulted in a total of 721 
records to review.

The first phase in the process was the removal of duplicates, which was done in two 
steps: a first one, aided by JabRef’s1 identity function, identifying 34 duplicate entries, and 
a second, manual one which identified an additional 151 duplicates. Whenever two articles 
were published by the same author in the same field and pertaining to continuation of the 

Id
en

fic
a

Records iden fied through online database searching

WoSWOS: 451 ACMACM: 165 IEEEIEEE: 105

TotalTOTAL: 721

Single EntriesSingle Entries: 536 Duplicate EntriesDuplicate Entries: 

185

Sc
re

en
in

g

Duplicate Iden on

Abstract Screening

RelevantRelevant: 92

Possibly RelevantPossibly Relevant: 183

IrrelevantIrrelevant: 258

Relevance Re-Assessment

Approved for Full-Text readingApproved for full-text reading: 

140

Reclassified as RelevantReclassified as Relevant: 81Total RelevantTotal Relevant: 173
Reclassified as irrelevantReclassified as

Irrelevant: 102

Total IrrelevantTotal Irrelevant: 360

Full-text Screening Ineligible on basis of purviewIneligible on basis 

of purview: 33

El
ig

ib
ili

ty

Quality Criteria Assessment

Studies to be included in the reviewStudies to be included in the

review: 53

Ineligible on basis of quality criteriaIneligible on basis of quality

criteria: 87

Fig. 1  Flow diagram showing the eligibility process

1 https:// www. jabref. org/.

https://www.jabref.org/
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same study, only the most recent one was considered (Kitchenham 2004). Similarly, in this 
phase it was possibly to identify references that were not to articles and were therefore 
excluded, as well as any inaccessible articles and those not written in English. While most 
of these cases were detected in this phase, a few were still discovered in later stages. Ulti-
mately, the identification phase resulted in the removal of 185 entries.

The resulting 536 records moved on the next phase, Screening. This process was sepa-
rated in three different subtasks: (1) Abstract Screening, (2) Relevance Re-Assessment and 
(3) Full-text Screening.

Abstract Screening consists of reading the abstracts of all the articles and classify them 
according to three different categories: Relevant, Possibly Relevant and Irrelevant. These 
are meant to assess whether the topics of the articles are relevant to the research questions 
or not. Whenever it is not possible to assess this immediately, the articles are classified as 
Possibly Relevant, to be screened later. This process allows for a quick elimination of arti-
cles focused on different topics, those do not describe new methodologies or tools, or any 
others which are not written in English or are in the appropriate formats but still ended up 
in the results. After this task was undertaken, 92 papers were classified as Relevant, 183 as 
Possibly Relevant, and 258 were considered Irrelevant for the purposes of this review and 
therefore discarded.

The Relevance Reassessment task pertains to evaluate those articles which were classi-
fied as Possibly Relevant. Unlike the Full-text screening that is done in a later stage, this is 
merely a diagonal read of the work to quickly obtain information that was not clear through 
the abstract. After this process, 102 articles were reclassified as Irrelevant and discarded, 
while 81 were added to the Relevant pile and moved to the next stage, resulting in a total of 
140 articles approved for Full-Text Reading and completing the Screening phase.

The Eligibility stage pertains to how each individual article describes a work that is 
directly related to the potential answers of the Research Questions. To do so, a full, deep 
reading and understanding of each article is in order. Each study is analyzed according to 
the established quality criteria and only those describing clear contributions to the field or 
relevant application scenarios are approved. This Eligibility stage also includes sorting the 
articles according to their contents for easier description and categorization of their con-
tents. As a result, 87 articles were deemed ineligible on basis of the quality criteria assess-
ment, while 53 are to be included in this review.

3  Results

This section describes the results obtained through this systematic review, focusing on how 
the works retrieved through this process help answering the research questions.

3.1  RQ1: what methods have been used to represent the evolution of knowledge 
over time?

Of the 53 retrieved search results, 15 focus on the subjects related to representing 
and managing changes in domain knowledge. While ontology evolution is consid-
ered the process through which an ontology is modified over time, ontology version-
ing is a stronger version of this process by annotating which modifications occurred 
and when are properly described and stored, with the possibility of accessing previous 
states. According to Bayoudhi et al. (2019), there are two main approaches to ontology 
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versioning: naïve strategies, which store all ontology versions independently—which 
may lead to overheads in storage; and change-based approaches, which store a reference 
accepted version of an ontology as the base point, storing the incremental modifications 
that must be applied to the reference ontology on runtime—which may lead to over-
heads in processing time. In an alternate version of this, Timestamp-based approaches 
opt by tagging each axiom with a time interval stating their validity. In the case of 
change-based approaches, change must be defined and described in such a way that 
allows for the dynamic reconstruction of an ontology version.

Of the retrieved results, four describe change-based approaches (Kondylakis and 
Papadakis 2018; Tsalapati et  al. 2017; Shaban-Nejad and Haarslev 2015; Peixoto et  al. 
2016), while one (Grandi 2016) describes a naïve approach. Bayoudhi et al. (2017) tries to 
bridge the gap between the approaches by materializing both the reference and latest ver-
sions. The other works do not specify in which approach could be used, focusing instead on 
other subjects.

When it comes to describing and materializing change, two studies systematize all 
possible evolutionary actions through means of an ontology (Kondylakis and Papadakis 
2018; Peixoto et  al. 2016), while one study stores this information in a relational data-
base (Tsalapati et al. 2017), and another (Grandi 2016) in XML. Four approaches describe 
the modifications through means of axioms and rules (Bayoudhi et al. 2017; Zheleznyakov 
et al. 2019; Wang et al. 2015; Mahfoudh et al. 2015). Two studies, Wang et al. (2015) and 
Zheleznyakov et al. (2019), focus specifically on issues and limitations of ontology evolu-
tion when using DL-Lite.

Six works describe and apply graph transformations to enact the evolutionary process 
(Tsalapati et al. 2017; Shaban-Nejad and Haarslev 2015; Grandi 2016; Zheleznyakov et al. 
2019; Mahfoudh et al. 2015) and six others provide insights in how to deal with consist-
ency issues that may arise when evolutionary action is taken (Peixoto et al. 2016; Bayoudhi 
et  al. 2017; Wang et  al. 2015; Touhami et  al. 2015; Gaye et  al. 2015; Sad-Houari et  al. 
2019). Of these, one (Mahfoudh et al. 2015) focuses on checking consistency before apply-
ing the changes.

Three works focus on the identification of candidate evolutionary actions (Kondylakis 
and Papadakis 2018; Grandi 2016; Osborne and Motta 2018; Benomrane et al. 2016). Of 
these, one (Osborne and Motta 2018) aims to ease this step by allowing the user to specify 
requirements for new candidates and another (Benomrane et al. 2016) allows an ontologist 
to select actions they want to see executed.

Three works (Kondylakis and Papadakis 2018; Grandi 2016; Mahfoudh et  al. 2015) 
focus on the traceability of changes and provenance queries, with (Tsalapati et al. 2017) 
being solely concerned with query rewriting after the ontology has changed.

Finally, twelve works offer insights about in which ways an ontology can be changed 
(Kondylakis and Papadakis 2018; Shaban-Nejad and Haarslev 2015; Peixoto et al. 2016; 
Grandi 2016; Bayoudhi et al. 2017; Wang et al. 2015; Mahfoudh et al. 2015; Touhami et al. 
2015; Gaye et  al. 2015; Sad-Houari et  al. 2019; Benomrane et  al. 2016). These studies 
assess and categorize the possible evolutionary actions that can be performed, materializ-
ing them into simpler, executable operations. As such, the difference between two ontology 
versions can be described as the set of operations that must be executed to transformed into 
the other. A summary of these operations is represented in Table 8:

For ease of reading, the entries presented in Table 8 have been grouped into categories 
of similar actions, even if in some studies they may be named differently. It should be noted 
that in some cases, such as Bayoudhi et al. (2019), specify only that axioms can be either 
added or removed, but not do not specify types of axioms. As such, it is assumed that the 
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Table 8  Ontology evolution operations

Study Operation

Kondylakis and Papadakis (2018), Shaban-Nejad and Haarslev 
(2015), Peixoto et al. (2016), Grandi (2016), Bayoudhi et al. (2017), 
Mahfoudh et al. (2015), Touhami et al. (2015), Gaye et al. (2015), 
Sad-Houari et al. (2019), Benomrane et al. (2016) 

Add Class

Kondylakis and Papadakis (2018), Shaban-Nejad and Haarslev 
(2015), Peixoto et al. (2016), Grandi (2016), Bayoudhi et al. (2017), 
Mahfoudh et al. (2015), Touhami et al. (2015), Sad-Houari et al. 
(2019)

Add SuperClass

Kondylakis and Papadakis (2018), Shaban-Nejad and Haarslev 
(2015), Peixoto et al. (2016), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015), Touhami et al. (2015), Gaye et al. (2015), Sad-Houari 
et al. (2019)

Add Property

Kondylakis and Papadakis (2018), Shaban-Nejad and Haarslev 
(2015), Peixoto et al. (2016), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015), Touhami et al. (2015), Gaye et al. (2015), Sad-Houari 
et al. (2019)

Delete Property

Kondylakis and Papadakis (2018); Shaban-Nejad and Haarslev 
(2015), Peixoto et al. (2016), Grandi (2016), Bayoudhi et al. (2017), 
Touhami et al. (2015), Sad-Houari et al. (2019)

Delete SuperClass

Shaban-Nejad and Haarslev (2015), Grandi (2016), Bayoudhi et al. 
(2017), Touhami et al. (2015), Gaye et al. (2015), Sad-Houari et al. 
(2019), Benomrane et al. (2016)

Delete Class

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015), Touhami et al. (2015)

Change Domain

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015), Touhami et al. (2015)

Generalize Domain

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Peixoto 
et al. (2016), Mahfoudh et al. (2015)

Add Super Property

Kondylakis and Papadakis (2018), Peixoto et al. (2016), Bayoudhi 
et al. (2017), Mahfoudh et al. (2015)

Rename Property

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Peixoto 
et al. (2016)

Delete Super Property

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015)

Generalize Range

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015)

Change Range

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015)

Specialize Domain

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017), Mahfoudh 
et al. (2015)

Specialize Range

Bayoudhi et al. (2017), Mahfoudh et al. (2015), Touhami et al. (2015) Add Cardinality Restriction
Bayoudhi et al. (2017), Mahfoudh et al. (2015), Touhami et al. (2015) Remove Cardinality Restriction
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Change Datatype
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Add Comment
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Delete Comment
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Group Properties
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Ungroup Properties
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Pull Down Class
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Pull Up Class
Peixoto et al. (2016), Mahfoudh et al. (2015) Rename Class
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approach is agnostic enough to support any type of axiom. Furthermore, not all works sup-
ply extensive lists of the operations they consider.

3.2  RQ2: what mechanisms can be employed to measure change in knowledge?

Of the 53 retrieved search results, 9 deal with subjects related to identifying and meas-
uring changes in knowledge over time. The works presented in Benomrane et al. (2016), 
Zhang et al. (2016), Cardoso et al. (2018), Duque-Ramos et al. (2016), Cano-Basave et al. 
(2016), Stavropoulos et al. (2019), Li et al. (2015), Algosaibi and Melton (2016), Ziem-
binski (2016) identify metrics that can be employed to measure changes between ontology 
versions.

The retrieved results show there are two main comparison methods employed: compar-
ing the ontology’s elements to (new or existing) corpora in order to identify potential new 
terms, or terms that may be becoming irrelevant (Benomrane et al. 2016; Cardoso et al. 
2018; Cano-Basave et al. 2016; Ziembinski 2016); and comparing different versions of the 
same ontology by analyzing the changes in its internal structure (Zhang et al. 2016; Duque-
Ramos et al. 2016; Stavropoulos et al. 2019; Li et al. 2015; Algosaibi and Melton 2016). 
Table 9 displays a set of intrinsic metrics that can be obtained by analysing the ontolo-
gy’s internal structure, while Table 10 shows metrics related to extrinsic properties (i.e., 
obtained through the analysis of data sources to which the ontology can be applied, and not 
to the ontology itself).

The identified metrics can be combined in different ways in order to calculate the stabil-
ity of concepts between different versions of the ontology (Cardoso et al. 2018; Algosaibi 
and Melton 2016).

When it comes to the methods using to identify new candidates and to analyze evo-
lutionary trends, Natural Language Processing and Machine Learning algorithms have 
been popularly used to prospect text and identify potential changes for the ontology. Of the 
retrieved studies, they are explicitly employed in Benomrane et al. (2016), Cardoso et al. 

Table 8  (continued)

Study Operation

Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Change to DataType Property
Kondylakis and Papadakis (2018), Bayoudhi et al. (2017) Change to Object Property
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Add Equivalent Class
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Add Disjoint Class
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Remove Equivalent Class
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Remove Disjoint Class
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Add Equivalent Object Property
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Remove Equivalent Object Property
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Add Disjoint Object Property
Bayoudhi et al. (2017), Mahfoudh et al. (2015) Remove Disjoint Object Property
Peixoto et al. (2016), Touhami et al. (2015) Change (preferred) Label
Mahfoudh et al. (2015) Add Individual
Mahfoudh et al. (2015) Remove Individual
Mahfoudh et al. (2015) Rename Individual
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(2018), Cano-Basave et al. (2016), Stavropoulos et al. (2019), Ziembinski (2016). A sum-
mary of the applied algorithms can be found in Table 11.

Furthermore, of the retrieved works, two (Benomrane et  al. 2016; Zhang et  al. 2016) 
employ Multi-Agent Systems to describe the ontology and potential changes.

Two works condense their metrics into matrixes in order to measure the distance 
between two versions of the same ontology (Duque-Ramos et al. 2016; Algosaibi and Mel-
ton 2016). Two other works do this by relying on the ontology’s graph structure (Zhang 
et al. 2016; Li et al. 2015).

Table 9  Metrics applied in ontology evolution (ontology structure)

Metric

Duque-Ramos et al. (2016), Stavropoulos et al. (2019), Li et al. (2015) Number of direct Superclasses
Duque-Ramos et al. (2016), Li et al. (2015) All Superclasses (distance to thing)
Cardoso et al. (2018), Duque-Ramos et al. (2016) Number of direct Subclasses
Cardoso et al. (2018), Duque-Ramos et al. (2016), Li et al. (2015) All Subclasses (0 if isLeaf)
Cardoso et al. (2018) Siblings of Class
Duque-Ramos et al. (2016), Stavropoulos et al. (2019), Li et al. 

(2015), Algosaibi and Melton (2016)
ObjectProperties per Class

Duque-Ramos et al. (2016), Stavropoulos et al. (2019), Li et al. 
(2015), Algosaibi and Melton (2016)

DataTypeProperties per Class

Cardoso et al. (2018) Region stability
Cardoso et al. (2018) Last evolution
Cardoso et al. (2018) Max similarity of Superclass
Cardoso et al. (2018) Max similarity of Sibling
Cardoso et al. (2018) Max similarity of Subclass
Duque-Ramos et al. (2016) Number of restrictions
Cardoso et al. (2018), Duque-Ramos et al. (2016), Stavropoulos et al. 

(2019)
Individuals per Class

Cardoso et al. (2018), Duque-Ramos et al. (2016), Li et al. (2015), 
Algosaibi and Melton (2016)

Number of Classes

Li et al. (2015) Tree impurity

Table 10  Metrics applied in ontology evolution (vocabulary)

Metric

Benomrane et al. (2016) Ontologist’s feedback
Cardoso et al. (2018) Citations in corpora (concept history)
Cardoso et al. (2018) Attribute length
Benomrane et al. (2016) Relevance of lexical relations
Cardoso et al. (2018) Similarity (cosine)
Cardoso et al. (2018), Ziembinski (2016) Similarity (avg)
Cardoso et al. (2018), Stavropoulos et al. (2019), Ziembinski (2016) Label similarity
Cano-Basave et al. (2016) Lexical innovation
Cano-Basave et al. (2016) Lexical adoption
Cano-Basave et al. (2016) Linguistic progressiveness
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3.3  RQ3: how can temporal validity be applied to knowledge evolution?

The results show that there are two main approaches when it comes to representing time-
constrained relationships in ontologies, namely: (1) reification, which usually assumes the 
form of 4D-fluents (Harbelot et al. 2015; Krieger et al. 2016; Ghorbel et al. 2019; Burek 
et al. 2019; Chen et al. 2018; Kessler et al. 2015; Gimenez-Garcia et al. 2017; Meditskos 
et al. 2016) and (2) n-quads (Calbimonte et al. 2016; Tommasini et al. 2017). In simple 
terms, reification describes a temporal relationship through means of a class; 4D-fluents 
improve on this approach by removing the cardinality constraint and allowing for any 
object to have any number of attributes, at any given time; n-quads, on a different approach, 
allows for the introduction of any number of dimensions to a triple, including time.

As for relationships that represent time but are not in themselves time-constrained, there 
are two main approaches: by describing qualitative (e.g. through Allen’s temporal alge-
bra) (Chen et al. 2018; Harbelot et al. 2015; Piovesan et al. 2015; Zhou et al. 2016; Zhang 
and Xu 2018; Batsakis et al. 2015) or quantitative (representing time points, intervals and 
durations) (Meditskos et al. 2016; Burek et al. 2019; Ghorbel et al. 2019; Gimenez-Garcia 
et al. 2017; Krieger et al. 2016; Kessler et al. 2015; Piovesan et al. 2015; Calbimonte et al. 
2016; Tommasini et al. 2017; Chen et al. 2018; Batsakis et al. 2015; Li et al. 2019; Baader 
et al. 2018, 2015), or through partial classification by means of fuzzy ontologies (Gimenez-
Garcia et al. 2017).

3.4  RQ4: what methods of knowledge acquisition and time representation are 
commonly applied in the predictive maintenance field?

In regards to knowledge acquisition, data about failures and equipment status is often pro-
vided through documental sources (e.g. maintenance reports or manuals) (Sad-Houari et al. 
2019; Wang et al. 2019; Cho et al. 2019; Smoker et al. 2017; Delgoshaei et al. 2017), exist-
ing systems (e.g. Enterprise Resource Planning and Manufacturing Execution Systems) 
(Dibowski et al. 2016; Bayar et al. 2016; Cho et al. 2019; Delgoshaei et al. 2017), sensors 
(Dibowski et al. 2016; Saeed et al. 2019; Cho et al. 2019; Klusch et al. 2015; Steinegger 
et al. 2017; Ferrari et al. 2017), or combinations of these. In these cases, the representation 
of time is done exclusively through time points (Cho et al. 2019; Delgoshaei et al. 2017; 
Saeed et  al. 2019; Klusch et  al. 2015; Ferrari et  al. 2017), and no approaches explicitly 
using time-constrained relationships have been found.

Table 11  Algorithms applied in 
ontology evolution

Algorithm

Cardoso et al. (2018) Boosted trees
Benomrane et al. (2016) Lexico-syntatic patterns
Cardoso et al. (2018) Random forest
Cardoso et al. (2018) Decision trees
Cardoso et al. (2018) Logistic
Cardoso et al. (2018) Support vector machine
Cano-Basave et al. (2016) Linear discriminant analysis
Ziembinski (2016) Clustering
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Finally, half of all retrieved studies propose or show potential combination of ontolo-
gies with other methods in order to achieve better results in the identification of events 
and potential failures, such as machine learning algorithms (Cho et al. 2019; Smoker et al. 
2017; Steinegger et  al. 2017), multi-agent systems (Steinegger et  al. 2017), rules (Sad-
Houari et al. 2019; Dibowski et al. 2016; Bayar et al. 2016), case-based reasoning (Ansari 
et al. 2019) and probabilistic models (Klusch et al. 2015; Ferrari et al. 2017).

4  Discussion

This section will take a deeper look at the answers to the research questions, provide a 
general discussion of the different works retrieved and attempt to identify possible new 
directions for the fields of study of ontology evolution and time representation in predictive 
maintenance.

Below, Fig.  2 shows the number of publications that answer each of the research 
questions:

When it comes to the evolution of knowledge, for the past 5 years, we can say that meth-
ods of representation (RQ1) and the representation of time using ontologies (RQ3) are 
the most popular research points (both with 32% of the retrieved studies focusing in some 
way on those topics). Applications of ontology that employ temporal reasoning (RQ4) are 
slightly less popular (23%). Finally, when it comes to proposing and establishing metrics 
to identify changes in knowledge over time (RQ2), we can say that this topic has gotten 
the least attention (17%). To get a better look at how the popularity of the different topics 
evolved over time, we can split the number of publications that answer each RQ per year.

For RQ1, we can see in Fig. 3 that there has been a decrease in relative popularity over 
the years, with the number of publications reaching the lowest point in 2018. However, this 
trend appears to be changing in 2019, in which the number of published studies is greater 
than in the 3 previous years, indicating a potential renewed interest in the topic.

As was seen in Fig. 2, RQ2 got the least attention in the last five years, which makes the 
sample harder to evaluate. Figure 2 shows us that interest in the topic peaked in 2016, with 
no studies being published in the following year. However, for the past two years, the num-
ber has risen back to its 2015 values, showing a resurfacing in interest. As the second most 
popular topic, we can see that the topics in RQ3 have maintained their popularity relatively 
steady for the last five years, but with a slightly downwards tendency. The worst year was, 
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however, 2017, with one more publication per year in 2018 and remaining steady since. 
Finally, as for the trends regarding RQ4, for the first three years considered in this study, 
there was a significant increase in interest in ontologies for predictive maintenance with a 
temporal component. This trend took a great shift in 2018, in which no new studies were 
found. However, this is largely compensated by the drastic increase in studies in 2019, the 
year in which most studies on the topic have been published.

4.1  RQ1: what methods have been used to represent the evolution of knowledge 
over time?

A third of the works retrieved explore topics related to the representation of the evolu-
tion of knowledge over time. In regards to approaches to ontology evolution, approxi-
mately 22% of the publications advise for change-based approaches, and 5% for the naïve 
approach. The remainder of the studies do not specify which of the two they could be 
applied to, although works that propose representing specific evolutionary actions (55%) 
suggest applications in change-based scenarios.

On the topic of ontology versioning, the authors in Bayoudhi et  al. (2019) propose a 
strategy for efficient retrieval of knowledge from past versions of an ontology, while keep-
ing consistency in the evolution events. While many previous works have focused on the 
idea of consistency checking a posteriori, here it is assessed a priori with the aim of reduc-
ing both processing time and storage space.

In Grandi (2016), the author proposes representing and storing the different versions of 
an ontology in a relational database in order to make the versioning easily manipulatable 
through SQL queries. How the evolution itself occurs or how it is identified is not in the 
scope of this study: the focus is exclusively on the description of change and versioning. 
The process starts with the identification of the different types of changes, i.e., primitive 
operations that can be applied when evolving an ontology. Each ontology version is identi-
fied with a unique timestamp and any version of it can be reconstructed at any given time 
using SQL queries. Retroactive application of a given operation is also possible through 
manipulation of its timestamp. The work presented in Shaban-Nejad and Haarslev (2015) 
follows a similar premise, with a particular focus in retaining decidability and keeping con-
sistency in interactions with other existing ontologies. To do so, they generate sub-graphs 
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for the ontologies and assess the impact of a set of changes upon them; as such, it possi-
ble to inform the other ontologies of which changes they must undergo in order to remain 
consistent with changes in their neighbourhood. On the other hand, Bayoudhi et al. (2017) 
attempts to bridge the gap between change-based and timestamp-based approaches by pro-
posing a hybrid approach that also takes benefit from relational database technologies, in 
which only the reference version and the most recent version of the ontology are effectively 
materialized.

EvoRDF (Kondylakis and Papadakis 2018) is a tool devised to explore the evolution 
of ontologies over time, showing what changed between any two versions. To do so, they 
present an ontology based on the Open Provenance Model to describe the types of changes 
that can take place that allow for description of how and when the change occurred. 
Answering why certain changes have happened is also explored in this work, by provid-
ing the user with the evolutionary path of a given concept or property, i.e., which change 
operations have been made to the concept. In the same vein, Kozierkiewicz and Pietranik 
(2019) propose a formal framework for ontology evolution which is able to answer queries 
such as which changes occurred and when. Ontology versions are considered a timeseries, 
and for any pair of them, the framework can identify which changes were applied in terms 
of classes, relationships, properties and instances.

In Osborne and Motta (2018), the authors discuss the possibility of introduction of 
parameterizable requirements for the new ontology version to meet. The solution is pre-
sented not as a means to identify what changes should occur, but as a guiding hand for the 
user in selecting which changes from a possible change set would have the least impact 
in the performance of the applications that use the ontology. The parameterization of this 
algorithm is particularly rich, allowing for requirements as vast as the number of concepts 
of the ontology (or on a specific branch of the ontology) or favouring newer over older con-
cepts (and vice-versa). The representation of time becomes an important factor to consider 
in this last part, as it influences how relevant a particular class may be. In Benomrane et al. 
(2016), the authors describe a multi-agent system that executes evolutionary actions in 
response to an ontologist’s needs, and use the ontologist’s feedback to improve the system’s 
performance. While this study briefly touches the subject of identification of candidates, its 
main focus is on implementing change and incorporating the ontologist’s feedback.

In a different approach to ontology evolution, the authors in Peixoto et al. (2016) con-
sider using an ontology-described classification model which is applied to a stream of 
unstructured textual data in a Big Data context. Considering that concept drift is bound 
to happen in such streams, with older concepts being slowly replaced with new ones, the 
classification model must be able to identify and adapt to such change. An ontology is pro-
posed to describe the adaptative process by describing the possibilities of feature evolution, 
concept evolution and concept drift and how these can identify change and propose pos-
sible modifications to another ontology, which is based upon existing literature on ontol-
ogy evolution. Upon change identification, a request for change is made, the consistency of 
the ontology upon the change is checked, and the modification is applied. When inconsist-
encies arise, the algorithm attempts to resolve them through additional changes, although 
these must ultimately be addressed by a human specialist.

The collaborative aspect of ontology evolution is explored in Mihindukulasooriya et al. 
(2017). The authors focus mainly on structural change within the ontology, i.e., the addi-
tion, deletion, splitting or merging of concepts, properties, restrictions and axioms. The 
study focuses mainly on analysing existing and popular collaborative ontologies and their 
evolution over time in order to assess trends or possible guidelines for such types of ontolo-
gies. Furthermore, it suggests that the scope and complexity of such ontologies effectively 
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makes them harder to use, and more prone to ambiguity over time; to counteract such ten-
dency, the authors propose the usage of annotations for editors, but do not identify how to 
employ them or how they could be used.

There are several approaches to maintaining consistency between ontology versions, 
i.e., to make sure that a specific change to an ontology will not result in contradictory axi-
oms. In this vein, the work presented in Mahfoudh et al. (2015) takes advantage of an alge-
braic approach called Simple PushOut, in which possible modifications to the ontology 
are described through rules. The application of those rules should then result in either the 
addition or rejection of the new axioms, meaning that the consistency check is effectively 
done before any changes to the ontology are performed. The work presented in Wang et al. 
(2015) presents the consistency problem from a different point of view: when new asser-
tions are added to the ABox that contradict the TBox, the TBox must drop axioms in order 
to maintain consistency. This solution is particularly suited for automatic evolution pro-
cesses and relies on a new TBox contraction operator that allows modification of existing 
axioms whenever possible, instead of their outright removal.

Another work dedicated to inconsistency analysis under ontology evolution is presented 
in Gaye et  al. (2015). To do this, the authors propose decomposing an ontology in sub-
graphs (here described as “communities”) and exploring the ripple effects of change within 
a community and between adjacent communities. To measure inconsistency, the authors 
propose calculating the probability of dependence between entities and assertions and 
describing simple basic operations that can be executed on the ontology. For each opera-
tion, pre-conditions, invariants and post-conditions are settled with their respective incon-
sistency measuring formula. Similarly, coherence constrains, operations and pre and post-
conditions are also explored in Touhami et al. (2015). A set of evolutionary strategies for 
inconsistency scenarios are also presented.

The impact of ontology evolution in existing rules is approached in Sad-Houari et al. 
(2019). A change in an ontology may render deployed rules in engines or Business Rules 
Management Systems unusable, or even make these produce unexpected outcomes when 
triggered. To guarantee that any step of the evolution process does not lead to unintended 
consequences, each change is executed, and affected rules are tested for consistency, 
namely contradiction, rules that become inapplicable or invalid, domain violations and 
redundancy. If any of these inconsistencies arise, they must be solved before committing 
the change through a negotiation process that takes place between all experts and using 
Contract Net Protocol, which may result in either the rejection of the change or in updating 
all affected rules.

The evolution of knowledge is also a factor when it comes to the querying mecha-
nisms. In Tsalapati et  al. (2017), the authors present a method to effectively rewrite 
queries when the ontology evolves; in this scenario, the queries are deemed static, while 
the ontologies are dynamic. Unlike previously existing algorithms, the method pre-
sented does not compute new queries from scratch upon the introduction of new axi-
oms; instead, it will attempt to expand existing queries by discovering how these are 
affected by the change, whether through new inferences or renaming of variables, while 
also removing redundant clauses. When the ontology is contracted, the algorithm iden-
tifies the minimal subset of clauses that are necessary to answer a given query under 
change, removing those considered unnecessary while attempting to maintain as much 
of the previous computation as possible. The authors warn, however, that different rea-
soning engines tend to produce different results and, while the algorithm they present 
is adaptable to such variability, it can also end up with distinct results or computational 
times. Different optimization methods are thus presented for expansion and contraction 
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scenarios. On the same topic, the work presented in Zheleznyakov et  al. (2019) dis-
cusses the expansion and contraction of DL-Lite knowledge bases and proposes a novel 
formula-based approach that maintains the DL-lite constraints while also not being 
computationally overintensive.

When it comes to the specific evolutionary actions proposed by the 15 studies chosen 
to answer RQ1, some patterns are noticeable. Figure 4, below, presents us the most com-
monly described ontology evolution actions in these studies. N.b.: for clarity reasons, only 
actions that are described in more than two studies have been considered.

Adding classes, hierarchical relations and properties seem to be the main concern when 
it comes to describing evolutionary actions. This makes sense from the perspective that, 
in many cases, light-weight ontologies can effectively function as taxonomies, which 
can explain the focus on hierarchical relationships. This is not the case of heavy-weight 
ontologies, which are more complex and make a more extensive use of the Description 
Logics capabilities, and may find these tools lacking in the description of their evolution 
processes; particularly in regards to dealing with possible inconsistencies. Graph-based 
approaches seem, for the most part, to ignore this potential hindrance and may find lit-
tle applicability in such scenarios. It is worth noting that disjoint relationships (either for 
classes or properties) are only considered in two of the fifteen studies. This is also true 
for moving classes up or down the ontology tree or the many possibilities that exist when 
editing properties. The consistency check implications of different types of relationships 
portrayed in heavy-weight ontologies may, however, be much more computationally inten-
sive. Nonetheless, since they can be represented in OWL, they too may be subject to evo-
lutionary processes and therefore need addressing. With some works already representing 
change through means of complex ontologies (Kondylakis and Papadakis 2018; Peixoto 
et  al. 2016), it seems that these possibilities may be more commonly addressed in the 
future. Furthermore, using ontologies for the semantic description of change could come 
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with the capability of using time-constrained relationships, i.e., to have changes be applica-
ble through particular periods of time.

4.2  RQ2: what mechanisms can be employed to measure change in knowledge?

Approximately a sixth of the works focus on measuring changes in knowledge. Of these, 
44% are focused in working from a single ontology version and an incoming source of new 
terms (such as streams or new documents), and 66% focus instead of identifying and ana-
lyzing changes between two existing ontology versions.

In Benomrane et al. (2016), the authors propose a multi-agent system to represent both 
the process of ontology evolution and the ontologist’s feedback. Incoming documents 
introduce new candidate terms that may or may not be included in a new ontology version, 
with each candidate term being associated with an agent with its own relevance value, and 
only the most relevant candidates are presented to the ontology. This process pertains to 
make the evolution process easy for the ontologist by allowing agents to cooperate in find-
ing the appropriate locations for the candidate terms they represent in the ontology. The 
ontologist’s feedback on the candidates—whether they are approved or not, if they need to 
be revised, among others—allows the agents to adapt their behaviour for future proposals. 
In a similar approach also based in multi-agent systems, the authors in Zhang et al. (2016) 
treat the ontology as an autonomous entity responsible for its own evolution, supplying the 
tools to describe states between operational changes. Each change is then described as a 
number of that must take place and be agreed upon for the change to become effective and 
their corresponding logical operations.

In Cardoso et  al. (2018), the authors propose a stochastic model that implements 
machine learning techniques in order to identify which sections of the ontology may require 
updating. While the work is mainly focused on the machine learning models applied and 
the selected features, it proposes interesting metrics to evaluate the likelihood of a given 
concept to evolve, and how the change can be represented and accounted for. Each con-
cepts is described according to three dimensions: (1) its structural characteristics, i.e. the 
number of attributes, siblings, super and sub concepts; (2) temporal characteristics, i.e. the 
history of the concept’s evolution and (3) the relational characteristics, i.e., additional rela-
tions identified for the concept via external sources such as the Web. Furthermore, four 
types of evolution actions are identified: Extension, Removal, Description Change and 
Move. The study of the stability of concepts and their likelihood to change in the future is 
done by analysing the evolution of these variables over time with machine learning models 
and the revision most likely to be required.

Metrics, both for the identification of change and to measure the degree of change 
between ontology versions, are particularly important for ontology evolution analysis. The 
OQuaRe Framework (Duque-Ramos et al. 2016) presents a set of qualitative metrics for 
ontology evolution processes. A quality model assigns value to the different ontology’s 
characteristics—a wide set, which includes, among others, quality requirements such as 
reliability and maintainability. The variation of these metrics between ontology versions 
allows the authors to make further judgements about the quality of the change, the quality 
of the resulting ontology, and to describe evolutionary trends.

In Cano-Basave et  al. (2016), the authors forward a new concept related the identifi-
cation of incoming changes to an ontology, which they call Ontology Forecasting. The 
authors propose using algorithms established in the Natural Language Processing field 
to identify additional concepts in new corpora that may be used for evolving existing 
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ontologies as the domain complexity goes over time. They do this by balancing two met-
rics: lexical innovation and lexical adoption, which identify the emergence of new topics in 
a new dataset, and the continuity in terms between datasets, respectively. A third metric is 
proposed, that of linguistic progressiveness of a domain, a ratio between the two previous 
metrics. This metric is employed in a new model, the Semantic Innovation Forecast Model, 
which aims to identify which concepts are more likely to be introduced to the ontology by 
analysing changes in the domain.

In Stavropoulos et al. (2019), the issue of semantic drift is tackled and how to identify 
and implement that change in an existing ontology. Semantic drift is here presented as the 
evolution of the meaning of a given concept to the community over time and which must be 
crystallized into the ontology in some form. The authors identify two approaches for meas-
uring change between two versions of the same ontology based on the ability to assess the 
identity of a given concept: identity-based approach, in which there is a clear, one-to-one 
match between all concepts in both ontologies, and a morphing-based approach, in which 
each concept evolves into new, sometimes similar concepts, but whose identity cannot be 
ascertained between different versions. The then authors propose a third, hybrid approach 
which first assumes all changes to be morphing and then looking for the most similar con-
cept in the most recent version of the ontology, assuming that one as their identity. For any 
concept, three aspects are considered when calculating the change: the labels of the con-
cept, i.e. their textual description, the intensional aspect, i.e. its usage in the domain and 
relationships to other concepts, and the extensional aspect, i.e. the instances.

Metrics proposed for identifying change in Stavropoulos et al. (2019) are the string sim-
ilarity between labels, and Jaccard similarity between relationships for both the intensional 
and extensional aspects, with the final metric being an average of the three. By using their 
proposed hybrid-approach, the authors then suggest using this metric over several change 
iterations of the ontology in order to analyse the stability of concepts over time, identifying 
and measuring change. Further metrics designed for properties specifically are described 
in Li et al. (2015). These rely on the graph-like structure of ontologies and can be used to 
measure different versions of the same ontology in regard to the stability of its properties 
and concepts over time.

Ontology complexity tends to increase as the ontology evolves, making the identifica-
tion and application of changes more difficult over time. In Algosaibi and Melton (2016), 
the authors propose that each concept can be considered a point in space, with the coor-
dinates referring to the three identified metrics: the number of properties, the number of 
subclasses and the number of superclasses. By calculating the distance between two points, 
they authors estimate the complexity of the change and how costly its application would 
be.

When it comes to analysing data from streams, there’s a strong assumption that this data 
is either structured (e.g. RDF) or, if unstructured, at least textual in nature; so much that 
NLP algorithms can be applied to it. A lot of applications of streams and machine learn-
ing algorithms use sensor data (e.g. Dibowski et al. 2016; Klusch et al. 2015; Steinegger 
et al. 2017; Ferrari et al. 2017; Cho et al. 2019), which is a largely unexplored field when it 
comes to potential triggering of ontology evolution, to the best of our knowledge.

4.3  RQ3: how can temporal validity be applied to knowledge evolution?

33% of the studies explores ways to represent time using ontologies. Of these, 47% 
propose reified-based approaches for relationships constrained in time, and 11% 
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propose adding a new dimension to the data through n-quads. Furthermore, 35% detail 
usage of qualitative temporal relationships between concepts, and 82% detail usage 
of quantitative relationships. 17% of the studies propose a combination of the two 
approaches, particularly for usage in query answering. Additionally, 5% of the works 
consider using fuzzy ontologies in combination with the previous approaches.

In Meditskos et al. (2016), temporal events are discrete and described as Situations, 
with specific start and end time points. The work described in Harbelot et al. (2015) 
represents the evolution of entities over time through the implementation of Time 
Slices. Time Slices are comprised by four dimensions, namely Identity, Semantic, Spa-
tial and Temporal. Any concepts in the ontology should therefore be described through 
time slices, meaning that definitions and relationships hold true for specific intervals 
(and for specific locations). The temporal dimension itself is represented through either 
Temporal Points (discrete moments in time) or Intervals (sets of Temporal Points). In 
a similar approach, Burek et al. (2019) discusses different methods of modelling time, 
such as: indexing time points, implementation of 4D-fluents both vertically and hori-
zontally. Ultimately the authors decide for a combination of both horizontal 4D-flu-
ents and discrete time points representation, which is similarly used in Batsakis et al. 
(2015), which also proposes combining Allen’s temporal algebra and fixed time points 
using interval duration calculus relations. In Gimenez-Garcia et al. (2017), in order to 
reason with precise and imprecise temporal information, crisp and fuzzy time repre-
sentations are employed to extend both the representative capabilities of the 4D-fluents 
and the inferences possible through the application of Allen’s temporal algebra. Zhang 
and Xu (2018) uses Allen’s temporal algebra to define SPARQL operators what can be 
used to discover hidden temporal relationships in datasets that are described through 
time points. Without applying Allen’s algebra, the work in Meditskos et al. (2016) pre-
sents properties for the representation of specific time points contained within actions 
or intervals and (Li et al. 2019; Baader et al. 2015, 2018) approach the representation 
of time and timed-relations for query answering purposes.

Other approaches based on reification can be found in Krieger et al. (2016), Kessler 
et al. (2015), Piovesan et al. (2015), which use Time Ontology to describe time points 
and intervals, and in Chen et al. (2018). In this last study, the authors apply the Time 
Event Ontology, which describes time points, intervals, durations and timed relation-
ships, among others. The timed relationships, in particular, are described using Allen’s 
temporal algebra. Furthermore, durations can be described not just through the dif-
ference between two time points, but also by specifying its length in terms of hours, 
minutes and seconds. For temporal uncertainty, temporal relations can use an approxi-
mation parameter.

Calbimonte et al. (2016) uses a n-quad based approach in which each RDF triple is 
assigned a timestamp that can be used to establish sliding windows in RDF streams. 
Also in the field of stream processing, the work presented in Tommasini et al. (2017) 
introduces time-aware operators for point-based time semantics that can be employed 
to establish temporal dependencies, filter and merge events.

While the reification approach to time and timed-constrained relationships is by 
far the most popular, to the best of our knowledge they find no intersection with the 
approaches described in RQ1. When it comes to representing time in this scenario, the 
approaches that are explicit about their approach fall under quantitative representations 
based on time points.



3205A systematic review on time‑constrained ontology evolution…

1 3

4.4  RQ4: what methods of knowledge acquisition and time representation are 
commonly applied in the predictive maintenance field?

Of the 12 retrieved studies in the field of predictive maintenance, only one (8%) addresses 
the topic of ontology evolution. In the other 92% of the studies, ontologies are used for 
fault detection and diagnosis (50%), fault propagation (16%) and otherwise for data repre-
sentation and categorization. 50% of the studies apply ontologies to the description of data 
acquired from sensors via streams.

In Sad-Houari et al. (2019) the authors present an ontology and a set of maintenance 
rules that are triggered according to the risk of failure or equipment damage. While this 
study is focused in keeping the ontology and existing rules consistent, it is an interesting 
insight into the direction future studies in the evolution of ontologies for predictive mainte-
nance may take. Predictive maintenance, as the name suggests, has a strong temporal com-
ponent to it. The use of ontologies in maintenance has been increasing over the years, with 
applications for representing the domain, semantically annotating data (Wang et al. 2019; 
Smoker et  al. 2017) and possible applications for explainability of different scenarios. 
When the temporal dimension is considered in these ontologies, it is only in a quantitative 
fashion, through means of time points (Cho et al. 2019; Delgoshaei et al. 2017; Saeed et al. 
2019; Klusch et  al. 2015; Ferrari et  al. 2017), with no time-constrained relationships—
which makes for a very static way of representing a domain that is so inherently dynamic 
and time-dependant. Qualitative time relations such as those provided by Allen’s temporal 
algebra have also not been applied to the predictive maintenance field to the best of our 
knowledge. While there is potential for the application of temporal reasoning to the predic-
tive maintenance field, the time representation capabilities in the ontologies presented are 
underdeveloped and underutilized for this particular purpose. In all but one study (Saeed 
et al. 2019), this is compensated by incorporating the ontology in a framework that makes 
use of other approaches and tools (Ansari et al. 2019; Klusch et al. 2015; Steinegger et al. 
2017; Dibowski et al. 2016; Smoker et al. 2017; Ferrari et al. 2017; Sad-Houari et al. 2019; 
Cho et  al. 2019; Bayar et  al. 2016). Of these, rule-based systems and machine learning 
approaches are most popularly employed, accounting for 66% of all solutions.

Of the retrieved works, 50% are particularly related to fault detection and diagnosis 
(FDD) based on ontologies (Delgoshaei et al. 2017; Klusch et al. 2015; Steinegger et al. 
2017; Ferrari et al. 2017). Sensor streams are semantically annotated with ontologies for 
fault diagnosis in Klusch et al. (2015) and Steinegger et al. (2017). In Klusch et al. (2015), 
a domain ontology describes sensors, components, symptoms and faults and is applied 
both offline, to historical data, and online, to real-time data, using C-SPARQL and Bayes-
ian Networks. The semantics of the ontology further help with diagnosis tasks by establish-
ing connections between faulty components. Steinegger et al. (2017) employs autonomous 
agents to the same end. In Ferrari et al. (2017), the authors propose a generic ontology for 
FDD, coupled with other contextual ontologies such as the Time Ontology and the Space 
Ontology, and possibly domain-dependent ontologies. This approach makes for a domain-
independent framework for FDD. Detection is performed through the comparison of real 
versus expected values and diagnosis is inferred by analysing evidence data. Another FDD 
framework is proposed in Steinegger et al. (2017), which integrates a number of modular 
ontologies with a higher-level reference ontology. In this scenario, ontologies are applied 
for root cause analysis and alarm management. In Ferrari et  al. (2017), the ontology is 
complemented with probabilistic models and uncertainty propagation algorithms. An 
ontology for fault diagnosis from sensor data is presented in Saeed et al. (2019). It makes 
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use of time points and intervals to describe observations and failure symptoms to assess the 
effective time of failure. In Ansari et al. (2019), both ontologies and case-based reasoning 
approaches are applied to identify when and how faults in equipment will occur.

The work presented in Dibowski et al. (2016) uses ontologies to describe interconnec-
tions between locations, equipment and others for fault propagation simulation purposes. 
The fault propagation mechanisms themselves are described using SWRL rules, which 
are triggered when certain variables enter fault states. Fault propagation effects are further 
separated into inevitable and possible consequences. In Bayar et  al. (2016), the authors 
propose an ontology design based on immune systems to be applied to fault prediction in 
manufacturing environments. Failure statuses, or disruptions, can be identified and propa-
gation paths inferred, with their expected delays in production through SWLR rules.

In Cho et al. (2019), the ontology provides a semantic layer to real-time data captured 
through various sources, which can be used to enrich machine learning algorithms’ inputs 
and generate reports about equipment status. Results of these algorithms can be used to 
enrich the ontology with new instances and improve its performance over time. Similarly, 
the authors in Smoker et al. (2017) use ontologies to support the predictive algorithms by 
classifying maintenance data.

A lot of the studies already propose using ontologies to describe information captured 
through sensors (Saeed et al. 2019; Klusch et al. 2015; Steinegger et al. 2017; Dibowski 
et al. 2016; Ferrari et al. 2017; Cho et al. 2019), which is, in most cases, is distributed in 
real-time through streams. There is a potential here to go beyond annotation of streams 
with timestamps and into more expressive and complex temporal relationships, particularly 
for time constraints, as suggested by Calbimonte et al. (2016), Tommasini et al. (2017) and 
Klusch et al. (2015).

5  Conclusions and future work

This work presents a systematic review in the topic of time representation and ontology 
evolution in the predictive maintenance field. Of the 702 studies retrieved from the dif-
ferent data sources, 140 were approved for full-text reading, and 53 have been included 
and reviewed in this work. These studies were distributed through four research questions 
regarding methods of representation of the evolution of knowledge, mechanisms employed 
in the identification and measure of change, representation of time and time-constrained 
relationships and, finally, how all these topics are applied to the field of predictive main-
tenance. Analysing the distribution of the results through the research questions it was 
possible to assess that both evolution of knowledge and time representation are very well 
represented, with each making up 32% of all retrieved studies, while the representation of 
time-constrained relationships was the least popular topic in the last five years, effectively 
having no publications in one of the years considered in this work. It is important to note 
however, that while there was an initial decrease in the number of studies over time in all 
the observed fields, there was a resurfacing in interest in ontologies for predictive mainte-
nance in the last year, while the other fields have recovered some of the interest and main-
tained it for the last two years.

On the topic of representation of the evolution of knowledge, the different approaches 
to ontology evolution and versioning have been presented. How to represent specific evo-
lutionary actions and how to account for their impact in the consistency of the ontology 
and further necessary actions was also explored, with some works even going as far as to 
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represent these using ontologies. A summary of the most commonly considered evolution-
ary actions was presented and briefly discussed.

As for identifying and measuring change, we have analysed the two different ways this 
can be done, either by comparison of new data with an existing ontology, or by comparing 
two existing ontology versions and discussing the changes. Several metrics were proposed 
by the studies retrieved, and these have been discriminated according to whether they per-
tain to the internal structure of the ontology, or to new vocabulary in the generation of can-
didate evolutionary actions. A quick survey of the algorithms used to employ these metrics 
is also presented.

Regarding studies in the representation of relationships that evolve over time, these 
divide twofold: in time-restrained relationships, we find reification (i.e., declaring a new 
class that will actually represent a relationship between two other classes with a time 
dimension) to be the most popular approach that does not include designing new reasoning 
mechanisms. Furthermore, we take a look at relationships that represent time in quantita-
tive and qualitative ways, and possible ways to combine the two.

Unfortunately, the intersection of all these areas finds only one application in the field 
of predictive maintenance. While ontologies find application in the predictive maintenance 
field, they make little use of their time representation capabilities and are more often than 
not applied for interoperability purposes. Furthermore, the ontologies themselves serve 
mostly as a complement to other tools in order to generate predictions, allowing for an eas-
ier understanding of the domain and uncovering implied connections in the data that can 
be harvested by different predictive algorithms. This, however, may represent a research 
opportunity in the future, particularly given how dynamic this domain can be, with the 
introduction or removal of new elements, and how time-dependent it is. Not only must the 
conclusions be reached in useful time, but they must also consider the temporal aspect of 
the data they come from and the potential of the domain to evolve over time.

As for future work, we will use the results obtained in this systematic review to devise 
solutions that make use of ontology’s potential for time representation and evolution in the 
field of predictive maintenance.
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