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Abstract

Pythagorean fuzzy set (PFS) is a more flexible and effective way than intuitionistic fuzzy
set (IFS) to seize indeterminacy. In this context, the main aim is to develop a number of
new diverse types of PFS similarity measures which not only satisfy the well-known
axioms, but also conquer the division-by-zero problem successfully. Moreover, the
developed measures are based on two concepts of t-norm and s-norm together with the
distance measure between PFSs. In order for further clarifying the role of proposed PFS
similarity measures, we assess here two aspects of comparison: the microscopy aspect and
the macroscopy aspect. The latter aspect allows us to know how the results are actually
obtained on the basis of structural form of similarity measures, and the former aspect
enables us to judge about the results of similarity measures without considering how they
have been concluded. We then investigate a number of desirable properties of proposed
PFS similarity measures, and show their effectiveness compared to the existing ones by
encountering both of existing and newly constructed measures in some case studies con-
cerning pattern recognition and medical diagnosis.

Keywords Pythagorean fuzzy set - Similarity measure - Pattern recognition - Medical
diagnosis

1 Introduction

Intuitionistic fuzzy set (IFS) as the generalization of Zadeh’s fuzzy set (Zadeh 1965) was
first initiated by Atanassov (Atanassov 1999) in which the sum of its membership and non-
membership degrees, denoted respectively by u and v, satisfy the inequality u + v < 1. This
concept was intentionally proposed for being more flexible and practical in dealing with
fuzziness and uncertainty than traditional fuzzy sets.

Later on, Yager (Yager 2013) indicated that the theory of IFS is not well suitable to deal
with vagueness and hesitancy. For instance, if the preference towards an object is to be
expressed by 0.3 for the membership degree ¢ and 0.8 for the non-membership degree v
then we find that u + vl while ,u2 +1v2< 1 To handle such a case, Yager (Yager 2013)
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introduced the concept of Pythagorean fuzzy set (PFS) which expands the feasible region
from the area under the curve u + v <1 to that under the curve ,u2 +12<1 Yager (Yager
2013) and others (Nguyen et al. 2019; Peng 2018; Peng and Garg 2019; Peng et al. 2017)
have pointed out that this concept is more general than the concept of IFS.

In recent years, a lot of scholars have conducted research on PFS similarity measures
(Farhadinia and Herrera-Viedma 2018; Farhadinia 2017, 2016). Wei and Wei (Wei and
Wei 2018) proposed a class of 10 cosine-based PFS similarity measures based on the
degrees of membership, non-membership and hesitation of PFSs to enhance the ability of
dealing with the two optimization problems associated with the pattern recognition and
medical diagnosis processes. Zhang (Zhang 2016) firstly defined a type of similarity
measure for Pythagorean fuzzy numbers (PFNs) and then investigated its desirable prop-
erties. In the sequel, Zhang proposed a multiple criteria group decision making method on
the basis of PFS similarity measure to solve the selection problem of photovoltaic cells.
Zeng et al. (Zeng et al. 2018) presented two kinds of PFS similarity measures, one type is
initiated based on distance measure which takes into account the five parameters, namely
membership degree, non-membership degree, hesitation degree, strength of commitment,
and direction of commitment. The other type is constructed with respect to the two aspects
of similarity and dissimilarity measures of PFNs. The proposed similarity measure was
then used to analyse the experts’ evaluation in a multiple criteria Pythagorean fuzzy group
decision-making method. Peng et al. (Peng et al. 2017) constructed the axiomatic defini-
tions of PFS information measures including similarity measure together with giving the
transformation rule of those information measures. Then, in order to support the findings
and moreover to demonstrate the effectiveness of similarity measures, Peng et al. applied
them to pattern recognition, clustering analysis, and medical diagnosis. Nguyen et al.
(Nguyen et al. 2019) presented a set of PFS similarity measures in whose construction the
exponential functions of membership and non-membership degrees play the main role.
Then, they studied the desirable combinations and the features of PFS similarity measures
in an extended context. To investigate the efficiency of PFS similarity measures, Nguyen
et al. presented a number of counter-intuitive examples. Those examples were served to
show that Nguyen et al.’s measures do not fail under some certain cases. Peng and Garg
(Peng and Garg 2019) presented a number of PFS similarity measures by considering three
parameters including the L, norm, the levels of uncertainties and also the slope of relations.
Furthermore, they discussed in detail the effect of the three aforementioned parameters on
the ordering and classification of patterns. Eventually, Peng and Garg investigated thor-
oughly a number of applications of existing similarity measures to particular scenarios,
including case studies of ore identification, bacterial detection, medical diagnosis, and
jewellery identification. Peng (Peng 2018) proposed a PFS similarity measure by relying
on the parameters L, norm and levels of vagueness whose relation to the PFS similarity
measure was discussed in detail.

However, by reviewing the existing literature on PFS similarity measures, it will be
clear that they have some drawbacks that encourage us to develop a more efficient class of
PFS similarity measures. The drawbacks of the existing similarity measures are (1) some of
them are not able to avoid the meaningless case (i.e., dividing by zero) (Peng et al. 2017;
Wei and Wei 2018; Ye 2011), (2) a number of them cannot prevent counter-intuitive
examples (Boran and Akay 2014; Chen 1997; Chen and Chang 2015; Hung and Yang
2004; Hong and Kim 1999; Li and Cheng 2002; Li and Xu 2001a; Li et al. 2007; Liang and
Shi 2003; Mitchell 2003; Peng et al. 2017; Wei and Wei 2018; Ye 2011; Zhang 2016), and
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(3) they may lead to illogical results (Nguyen et al. 2019; Peng 2018; Peng and Garg 2019;
Peng et al. 2017).

To eliminate the drawbacks of the above-mentioned PFS similarity measures, we
describe here a class of fruitful PFS similarity measures whose most important terms are
distance measure between PFSs together with two concepts of t-norm and s-norm. More
specifically, the PFS distance measure is described by using of distance degree between the
end and middle points of two PFS membership intervals. Then, we will carry out the
comparison process between the proposed PFS similarity measures and the existing ones
into two stages: the microscopy process and the macroscopy process. The latter process
allows us to know how the results are actually obtained on the basis of structural form of
similarity measures, and the former process enables us to judge about the results of sim-
ilarity measures without considering how they have been concluded.

By the way, the present paper is organized as the followings: We review berifly the
concepts of fuzzy set, IFS and PFS in Sect. 2. Then, we state all the required preliminaries
which are required in constructing the novel class of PFS similarity measures. In Sect. 3,
we will develop the class of PFS similarity measures whose structures are defined by a
distance measure between PFSs and two concepts of t-norm and s-norm. Section 4 is
devoted to the investigation of proposed and existing PFS similarity measures from
microscopic and macroscopic processes. In Sect. 5, the applications of proposed PFS
similarity measures in pattern recognition and medical diagnosis procedures are illustrated.

2 Preliminaries

The theory of fuzzy sets presented by Zadeh (Zadeh 1965) serves as an effective tool for
understanding realistically the behaviour of humanistic systems in which emotions, per-
ceptions, and human judgement play an important role.

Definition 2.1 (See (Zadeh 1965)) Any fuzzy set on the universal set X = {x1,x,...,X, } is
in the form of ar = {(x, u,, (x)) : x € X} in which p, : X — [0,1] for all x € X. More-
over, the value pi, (x) is named as the degree of membership of x in op.

With the more and more vague and imprecise information in the real-world problems,
different extensions of fuzzy set have been developed by some researchers, among which,
we present IFS and PFS as the followings:

Definition 2.2 (See (Atanassov 1999)) Any intuitionistic fuzzy set on the universal set
X = {x1,x2, ..., %} is in the form of a; = {(x, ,, (x),v4,(x)) : x € X} in which p,, : X —
[0,1] and vy, : X — [0,1] are such that 0 < p, (x) + vy, (x) <1 for all x € X. Moreover, the
values y, (x) and v,,(x) are named as the degree of membership and non-membership of x
in oy, respectively.

For notational convenience, Xu (Li and Xu 2001a) called oy = (,, (x), v, (x)) an
intuitionistic fuzzy value, and denoted it briefly by oy = (u,,, vs,).

Definition 2.3 (See (Yager 2013)) Any Pythagorean fuzzy set (PFS) on the universal set
X = {x1,x2, ..., xa} is in the form of up = {(x, 1, (x), Vs, (x)) : x € X} in which p,, : X —
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[0,1] and v,, : X — [0,1] are such that 0 <y (x) + v (x) <1 for all x € X. Moreover,
the values ,,(x) and v,,(x) are named as the degree of membership and non-membership
of x in ap, respectively.

As well as to the contraction of Xu (Li and Xu 2001a) above, Yager (Yager 2014) called
op = (lhy, (X), vep (x)) a Pythagorean fuzzy value (PFV), and denoted it briefly by
op = <:uo<pv Vo(,,>.

Furthermore, we denote the degree of indeterminacy of op = (u,,,vs) by

Top = /1 — 12, — V2.
Hereafter and for notational convenience, we simply denote op = (u,,,Vv.,) by
o = (fly, Var)-

Definition 2.4 (See (Yager 2014, 2013)) If o = (u,, v,) and ff = (ug, vs) are two PFVs,
then some of operations on PFVs are defined as the followings:

%= (g, va) = (Va, Ha);

o C Bif and only if p, < pgandv, > vg;

o = Bif and only ifu, = pgandv, = vg;
L= (i, v1) = (1,0);0 = (g, vo) = (0, 1);
anNf= (min{uw,uﬁ},max{vm v/;});
aUf = (max{,uw ,u/;}, min{va7 v,;}).

Before dealing with the main issue of this contribution which is nothing else than the
introduction of similarity measure for PFSs, it is appropriate to present some preliminaries
as follows.

The fundamental role in the definition of new PES similarity measure is played by a
strictly monotone decreasing function F : [0, 1]—[0, 1] which can be chosen as:

Fi(n) =1-n;
Fy(n) =1-1n%
1
Fi(n) = ——:
l—n
Fy(n) = —;
(1) T
Fs(n) =e";
Fe(n) =1—ne"".

Keeping the above concepts in mind, we define the following mappings of both mem-
bership and non-membership degrees of two PFVs o = (,,v,) and B = (ug, vp):

Fuu(o,B) = Fi(n =

ui—uﬁDzl—

ui—u?;‘; (1)
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Fau(o, B) := Fz('? = |1 —uf;D =1 (| —uﬁ‘)z; (2)
1
Fa, (o, B) = F3(’1: uifu}";‘) = 7 (3)
U= = 1
Fuy(a, B) = F4(n= ui—#ﬁD = — (4)
2,2
Fslu(o(7 ﬁ) = F; (;7 = "ui —M%}D = e M H/i’; (5)
22|
ol B) 1= Fo(n = [ =) =1 = i sl ©)
and moreover,
Fiy(a, f) ::Fl(zq: vifv%i‘):lf vifv?,‘; (7)
Fo (o, ) = Fz(n = vi — V%D =1—( vi — vé‘)z; (8)
1
Fa(oB) i=Fa(n = |3 = vj|) = ——s )
1+ Vi = Vg
1 - vﬁ —v%
Fa(o,B) = Fa(n == vj|) =———; (10)
1+ Vi = Vg
Fsy(a, ) :=Fs (11 =2 - V%D = e7|"37"?f‘; (11)
22|
Fou(, B) = Fi (1 = vi—véD —1- vi—v%‘e 2l (12)

Here, it needs to be examined the properties of mappings F;, and F;, fori =1,2,...,6.
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Theorem 2.5 Suppose that o = (u,,vy), B = (ug,vp), and y = (u,,v,) are three PFVs.
Then, the mappings Fy, and F;, (fori = 1,2,...,6) given respectively by formulas (1)—(6)
and (7)—(12) satisfy the following properties:

(S0) 0<Fy (o, B), Fiu(or, p) <1

(S1) Fiu(ao, B) = Fiu(P, o) and F, (o, f) = Fir (B, )

(S2) Fiu(a, f) = Fis(o, f) = 1 if and only if o = f8

(S3) If « C f C v then

Ft,u(a V)S ( ﬁ)andFi#( )S (ﬁ?y)
Fiv( aV)SF( ﬁ)anan( )S ( V)

Proof Taking any PFVs o = (u,,v,) = (1, vp) and y = (u,,v,) into account, we then
conclude that:

Proof of (S0): As follows from definition of strictly monotone decreasing mappings

Fiy :[0,1]—[0,1] and F, : [0, 1]—[0, 1], we immediately conclude that the property (S0) is

satisfied.

Proof of (S1): With respect to the formulas (1)—(6) and (7)—(12), we easily find that F;,
and F;, are symmetric.

Proof of (S2): From the formulas (1)—(6) and (7)—(12), it can be obviously seen that

Fiu(o, ) = Fay(o, f) = 1 if and only if ’ug - ué‘ =

o=p.
Proof of (S3): In the case where (u,,vs) C (tg,vp) C (1, v;), we get
0<p, < ug<p, < 1 together with 1>v, >vg>v, > 0. Therefore, it is deduced that

V2 — vf;‘ =0 if and only if

; (13)

— 15| > |1y — ppland | — 12 > | — 1

vi — vf| > |v§ — v§|and\v§ — v

2—v§‘. (14)

Since the mappings F;, and F;, are strictly monotone decreasing with respect to their
arguments, thus, from the latter Eqs. (13) and (14), we conclude that

Fi;l(a7 V) SFi/L(fxvﬁ) andFiu(avy) SFiu(ﬁ» y)v
Fiv(fxv 7) SFiv(O‘» ﬁ) andFiv(“v V) SFiv(ﬂv V)

Let us now expand the set of properties beyond those mentioned in Theorem 2.5 by
considering the following axiom:

Lemma 2.6 If a PFV a = {(u,,v,) is to be a crisp value, that is, « = 1= (1,0) or
o =0=/0,1), then the following results for (i =1,2,4,6) can be observed:

Fl-/,(oc,&) = 0,
F,",(OC,&) = O,
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where the complement PFV @ is defined by @ = (uz, vz) = (Va, fty)-

Proof The proof is more straightforward and direct by using formulas (1)-(6) and (7)—
(12).

The above lemma allows the set of properties of mappings Fj, and F; (for
i=1,2,...,6) to be enlarged more than that in Theorem 2.5 by encountering the following
axiom:

(S4) Fiy(ot, @) = Fiy(a,@) = 0 (for i = 1,2,4,6) if and only if o is a crisp set.

As will be seen in the next section, the new proposed PFS similarity measures are con-
structed by the help of t-norms and s-norms, too. Therefore, in the following, we review the
well-known definition of t-norms and s-norms (see e.g., (Farhadinia 2015)): the continuous
t-norm 7 : [0, 1]x[0, 1]—[0, 1] fulfils.

(t1) Boundary condition: 7(x, 1) = x;

(12) Monotonicity: If y <z then t(x,y) < t(x,z);

(t3) Commutativity: t(x,y) = t(y,x);

(t4) Associativity: 1(x,t(y,z)) = t(z(x,y),z) and the continuous s-norm o :
[0, 1]X[0, 1]—[0, 1] satisfies;

(o1) Boundary condition: ¢(x,0) = x;

(62) Monotonicity: If y <z then a(x,y) < a(x,z);

(03) Commutativity: a(x,y) = a(y,x);

(04) Associativity: a(x,0(y,z)) = a(a(x,y),2).

By taking the above-mentioned axioms into account, we are now able to present a
number of frequently used t-norms and s-norms (Farhadinia 2015):
Algebraic t-norm and s-norm:

Tl(xay):xy7 (15)
o1(x,y) =x+y —xy; (16)
Einstein t-norm and s-norm:
Xy
= 17
TZ(xyy) 1+(1—X)(1—y)7 ( )
xX—+y
az(x,y):ny; (18)
Hamacher t-norm and s-norm:
X
w3(x,y) = z (19)

1) +y —xy)
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x+y—xy—(1=)xy
= : 2
()’3()(,)7) 1— (1*)){)’ ) c > 07 ( O)
Frank t-norm and s-norm:

e —-1¢e’ -1

=t (1+ €€ D) o
e -1

1—x _1 1—y _1

o4(x,y) =1 —loge (1 + (€ c El )),E > 1 (22)

3 Similarity measure for PFSs

Now, with the preliminaries given in Sect. 2 and the next definition of distance measure,
we are going to establish a class of similarity measures between PFVs.

In the sequel, we will demonstrate that the concept of similarity measure for PFVs can
be easily extended to that for PFSs.

In this part of the section, we describe how a a distance measure between two PFVs
%= (1, v,) and = (ug,vp) can be constructed by using the end and middle points of

intervals [p2,1—v2] and {uf;,l — vﬂ Before doing so, we would regard the end and

middle points of intervals [,ui, 11— vi] and [,ufj, 1— vﬂ as

L) = L)) = (15 )i + 5.1 ) 23)
Le(B) = Li((ugvp)) = (1 - g) 2 g (1 - v,z,),k —0,1,2. (24)

In view of these observations, we may construct the distance measure

2
u(o ) - = (Gt 2), G ) = || 3 D [1al) — L
k=0

- \/ﬂuz -+ 3] (- 8) - (2 - )P+ 2 - )

Lemma 3.1 The mapping d;, defined in the form of (25) is a meter, that is, for any PFVs
o= (ly, va), B = (g, vp) and y = (p,,v,), it holds that.

(DO) 0<dp (o, f) <1

(25)

(D1) dp(a, p) = di.(B, )
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(D2) di (o, f) = 0 if and only if o0 = f8
(D3) dp(o, ) <dp(o, B) +dr(B,7)

Proof The proof of axioms (D0), (D1) and (D3) are clear.
We only prove the axiom (D2). For this case and from definition of mapping d;, given
by (25), we conclude that
dL({xv B) = 07
if and onlyif [Li(2) — Le(B)] = 0,k = 0,1,2,

iandonty f [~ G = 0.[ (18~ ) = (v )F =0, 3 =0,

which all of these equalities imply that w2 = ,u%j and 2 = v%, and consequently,

o= <:uomvot> - <:u/37vﬁ> = ﬁ
Coping with all the above requirements, we are now in a position to introduce a new and
novel class of similarity measures for PFVs which is described below.

Theorem 3.2 Suppose that o = (u,,vy), f = (g, vp) and y = (u,,v,) are to be PFVs.
Considering the definition of F,, F;, (fori=1,2,...,6) and d given respectively by (1)-
(6), (71)—(12) and (25), we define.

Sr(avﬁ) = % [1 - dL(av ﬁ) + T<Fi/4(a’ ﬁ)vFiV(“a ﬁ))]a (26)

Sa(av ﬁ) = [l - dL(“’ [))) + O-(Fiu(av ﬁ)vFiV(“aﬁ))]a (27)

N —

which satisfy

(8.0) 0<Su(o, ) < 1

(S:1) Si(, B) = S (B, a);

(8+2) Si(, f) = L if and only if o = f3;

(8:3) If o C B C y thenS,(a, ) < Su(a, B) and S.(or,7) < S.(B, 7);
(S«4) For any i = 1,2,4,6 we get S, (o, &) = 0 if almuis a crisp set.

Here, the notation **’ indicates the index t or o.

Proof Proof of (S,0): From definition of t-norm t : [0, 1]x[0, 1]—[0, 1] and s-norm o :
[0, 1]x]0, 1]—0, 1] together with the property (DO) in Lemma 3.1 which may be re-stated
by 1>1—dp(a, ) >0 we find that 0 < S, (o, §) <1 for x = 7 or a.

Proof of (S,1): The implication of axiom (S, 1) under the symmetrical property of Fj,,
F;, and d; will easily follow.

Proof of (S,2): Assume that S, (o, ) = 1 holds true for the index t or g. Then, by
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employing the Eqgs. (26) and (27), we find that
Sr(“v ﬁ) = % [1 - dL(OC, ﬂ) + T(Fiu(av .B)vFiv(av ﬁ))] =1
Sa(av ﬁ) = % [1 - dL(aa ﬁ) + G(Fi;t(av ﬁ)vFiv({xv ﬁ))] = 17

if and only if

11— dL(avﬁ) = l7andT(Fiu(“7ﬁ)7Fiv(a7 ﬁ))
11— dL(aa ﬂ) = laanda(Fiu(“aﬁ)vFiv(a7 ﬁ))

)

1
1.

Now, from definition of d;, , o, F, and F,, we can conclude that the latter relations
hold true if and only if o = f.

Proof of (8.3): If & C B C y, that is, (u,,v,) C (ug,vp) € (i, v;), then it holds that
0<p, < up<p, < 1 together with 1> v, >vg>v, >0. Thus, we conclude that

1 — 1| > 1 — iyl and i, — (2] > |uj — 12

)

2

Y

2

v, — vz,\ > 2 — v%|and|v§ — v%| > |v;} —v

Since Fj, and F;, are strictly monotone decreasing mappings, hence, the latter equations
result in
Fi(o,y) <Fy(a, B) and Fy (o, ) <F,
Fiv(fxv 7) S Fiv(av ﬁ) andFiv(“v V) S Fiv(ﬁv V)

Using the monotonicity property of both t-norm t and s-norm ¢ along with the latter
relations, we get

t(Fiu(0,9) < Fin(,)) < t(Fiu(or, B) < Fiy(o, B)), (28)
t(Fiu(,9) < Fin(,9)) <t(Fiu(B,7) < Fi(B7)): (29)
o(Fiu(et,7) < Fi(,7)) < o (Fy(e, B) < Fin(, B)), (30)
o (Fiu(2,9) < Fiu(,7)) < 0 (Fiu(B,7) < Fun(B,7)). (31)

On the other hand, 0 <, < g <, < 1 and 1>v, >vg>v, >0 give rise to

dL(OC’ 'Y) > dL(av ﬁ) anddL(% y) > dL(ﬁ’ 7)
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which imply that
1— dL(OLa 'Y) <l- dL(“7 ﬁ) and 1 — dL(av ’V) <1- dL(ﬁa 7) (32)

Putting together the relations (28)—(32), we easily conclude that

Se (o, y) < So(, B) and S (2, 7) < S:(B,7);
So(0,7) < Sq(at, B) and Se (o, 7) < Se (B, 7)-

Proof of (S.4): For any i = 1,2,4,6, we suppose that o = (u,, v,) is a crisp set, that is,
o= (1,0) or & = (0, 1). Then, dr(a,%) = 1. On the other hand, from Lemma 2.6, we result
in

which imply that 7(0,0) = 0 and ¢(0,0) = 0. Hence, we conclude that S; (o, %) = 0 and
So (o, @) = 0.

We now indicate how we are going to extend the class of proposed similarity measures
for PFVs to those by taking the above-mentioned t-norms and s-norms into account:

e Algebraic norm-based similarity measures:

S0 B) = 5 [1 =, B) + 71 (Fun, ), Fa(, )]
:% [1 _dL(av .B) +Fiu([x:ﬁ)Fiv(fx’ﬁ)]; (33)
S0, (2, ) = 5 [1 — (o ) + 1 (Fu(, ) Fi )] "
= % [1 - dL(a7 ﬁ) + Fiﬂ(a>ﬁ) + FiV(av ﬁ) - F,-,,(oc, B)Fiv(“y ﬁ)]7

¢ FEinstein norm-based similarity measures:

Sey(a, ) = % [1 —di (o, ) + 2 (Fiu(o, ), Fin (ot /3))} = %{1 —dy(o, B) + o Fiu(o, B)Fiv (2, B) } :

- Fi,u(aaﬁ))(l - F,‘“(Ol,ﬁ))
(35)

So, (o, B) :% {1 —di (o, B) + o2 (Fiu(o, B), Fin(ax, ﬁ))} = %{1 —dy(a, B) + Fip(o, p) + Fiv(a, ) }

(36)

e Hamacher norm-based similarity measures:
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S, (0, B) = % [1 = dy( B) + 3 (Fuu(o B). Fin( )]
_ 1 _ Fi,u(av .B)Fi\’(av .B) .
N 2 : dL(a? ﬁ) * Jr(]*)(F,‘H(OC, ﬂ) + F,“,(O(,ﬂ) - Fiu(% ﬁ)Fiv(O‘a ﬂ)) 7
(37)
S ) =5
1 —di(o, f) + 03 (F,-H(oc, B), Fiy(o, [3))} = %[1 —dp (o, B)+ (38)

,€ >0;

Fi(2, B) + Fin (o, B) — Fiu(et, B)Fis (o0, B) — (1) Fi (o1, B)Fis (o1, B)
1 — (1-)Fiu(o, B)Fis(2, B)

e Frank norm-based similarity measures:

ST4(O{7 ﬁ) = % [1 - dL(“? ﬁ) + 7 (Fiﬂ(a’ ﬂ)vFiV((xv ﬁ))]
w(B) _ 1) (Fa() — (39)
:% |:l—dL(<x,ﬁ)+log(l+(F 12(: 1>>}
Sai (067 ﬁ) = % [1 - dL(aa ﬁ) + O-f (Fi,u(aa ﬁ)7Fiv(a7ﬂ))]
1- iu(“-ﬁ) — 1- iv(“sﬁ) —
_%[l—dL(fx,ﬂ)—Fl—loge(l—l—(e - 61)—(f ' 1)>:|,€ >0

(40)

The above formulas will be more specific, if we replace F;, and Fj, with those given by
(1-6) and (7-12). For instance, by taking d; (o, ) as given by (25) and Algebraic norm-
based similarity measures, we are able to construct the following similarity measures for
PFVs:

a0 ) = 3 [1 = ) + Fino, s )
=l (=) (- )
S0.(1.8) = 3 [1 = du(, ) + Fuu(o ) + () = Fuu(o B)Fun( )
“3[iaten - (=l l) < (=2 l) - (| -l) (- =)

We are now in a position to extend the proposed similarity measures for PFVs to those
for PFSs as follows:
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5.0 B) = 137 5. (0. ). (41)
i=1

where * may be by t or o.

4 Investigating PFS similarity measures from microscopic
and macroscopic viewpoints

In this section, we compare thoroughly the performance of proposed similarity measures
for PFSs with that of existing similarity measures from the microscopy and macroscopy
viewpoints. Here, we employ the common data sets which were already considered in
Nguyen et al. (2019); Peng 2018; Peng and Garg 2019; Peng et al. 2017).

Before that and in order to provide the information required for conducting the com-
parison, we describe here those similarity measures studied priorly (see (Nguyen et al.
2019; Peng 2018; Peng and Garg 2019; Peng et al. 2017)).

Given two PFSs o = (u,,vs) = (i, vs) on X = {x1,x2,...,x,} the considered PFS
similarity measures might be briefly described as:

e Liet al.’s measure (Li et al. 2007)

S (S0 + $2x))

SL(“» ﬂ) =1- n ; (42)
where S, (x;) = u,(xi) — pp(xi) and S, (x;) = vy (x:) — vp(x;).
e Chen’s measure (Chen 1997)
SC(O{,B) -1— Ei:] |Si(‘x1) - Sﬁ(xl)| (43)

2n ’
where S, (x;) = p,(x;) — vy (x;) and Sp(x;) = uﬁ(x;) — vp(x;)

e Chen and Chang’s measure (Chen and Chang 2015)

S0l ) = g )| + (1

du)} % (na(xi);ﬂ/f(xi))

o, (1) — g1 (1)

Scc(w, ) =1~ . )
(44)
where
1, fu=p,(x)=1-vy(x:);
o )= 3 e ) - @)
0, Otherwise;
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e Hung and Yang’s measures (Hung and Yang 2004)
SHYl (OC, ﬁ) =1- dH(OCa ﬁ)7

e—dH(ot,/}) _ 6_1

Suy2(2, f) = ol

3

where dy (o, f) = %E ax{‘,ui xi) = pp ()| |va(xi) — Vﬁ(xi)’}'

¢ Hong and Kim’s measure (Hong and Kim 1999)

S (i () = s (0) [ [va () — vp(x)]) '

SHK(O(,ﬁ) =1- m

e Li and Cheng’s measure (Li and Cheng 2002)

n N N
Secla f) = 1 — {22! \l//x(x,n) o)l

where ¥, (x;) = 7“’(x’)+;_”'“(x’> and Yp(x;) = 7’lﬂ(’(")+;v”<x‘).
e Liand Xu’s measure (Li and Xu 2001a)

Six(e, f) =1 -

(49)

S (o () = vala)) = () — vp(ea) ) 1] (e (i) — pp () |+ (vaxi) — vp(xi)) |) 4

4n

e Liang and Shi’s measures (Liang and Shi 2003)

Sisi(o, f)=1-— {/Z?I (¢u(x) + ()bv(xi))’

n

where ¢, (x )_|”« gl b, (x) = wand1§p<oo

\/Z, (o xz)+</>sz(xz))

SLsz(OC ﬁ =1-

where
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i (xi) — mp (x;)|

@5 (xi) = B )
paln) = 12~ mel]
My (xi) _ (:uzx(xi) —gma(xi)) 7
 (up) + mp(xi))
mg (x;) = > ,
() = (1— va(xi)z—b— my(x;)) 7
mga(x;) = (1 —~ vﬂ(x,-)z—l—m,;(x,)) )
ma(xz) _ (1 - Va(xi;+ ,uoc(xl)) ,
L (= vp) + (i)
m,;(xl) = ) )
1<p<oo
o2 () + ma (@) + ms(0)”
Ses3(o, B) =1 n ) (53)
where
(1) = du(xi) + by (xi),
or 1y (i) = @5 (x;) + P (xi),
(i) = ‘lﬁ“(x, lﬁ[;(x,)‘
n3(i) = max{1,(i), 1g(i) } — min{L,(i), lp(i) }
where

(1 = va(xi) — (1))

L) = 5 ,
I- i
(i) = ( vp(xi) — .U/;( )) 7
2
1<p<x
e Mitchell’s measure (Mitchell 2003)
1
Su(o, ) = 5<pu<a7 B) + pu( ), (54)
where and
pv(a7ﬁ) =1- , M 1§p<00
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e Ye’s measure (Ye 2011)

lz o (Xi ,u/; (xi) + va(xi)vp(xi) . (55)
R V2 () + v2 () / 1 () + vp(x)
o Wei and Wei’s measure (Wei and Wei 2018)
1< 1 () g (i) 4 v2 () v (i)
Sww (o, f) == b f (56)

Vg () v () () + ()

Zhang’s measure (Zhang 2016)

Sz(2, B) = %i(lui(%) = Vi) + V3 (x0) = v+ () — () )/ (115 ()

—l;f;(Xf)l + Vi) = i)+ | (x0) — (o) + [ () = v ()|
+ () = va (o)l + |5 (xi) = mh(xi)]).-
(57)

Peng et al.’s measures (Peng et al. 2017)

S ) = 13| (1800 — 200 — (i) — @), (59)

i=1

1 ( (x; /\,uﬁ(x,))Jr(Vi(Xi)/\Vf;(xi))

Sl ) =13 , (59)
P (1200) v i) + (32 v ()
1 (126 A ) ) + (1= 200) A 1= v3)
Sa(o f) =~ IR (60)
P (,ua(xl)\/,uﬁ(x,)) n (1 () V1 —vﬁ(x,-))
where A and V indicate the operators min and max, respectively.
e Boran and Akay’s measure (Boran and Akay 2014)
Spa(2; B)
1— i/z;‘:](‘k(:uy(xi) = () — (vaxi) = vp () P (o (30) — pp(0xi)) — ke (va i) — vp()) I
2n(k+ 17 i
1<p<c0.
(61)
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e Nguyen et al.’s measures (Nguyen et al. 2019)

n

SN()(O(, ﬂ) = Z e

i=1

i 5 o[- (62)

R I N SR 1]

Swi (e, B) = Z > : (63)

e Peng and Garg’s measures (Peng and Garg 2019)

IR Y 2 4
St (o) =1 = {7 310 = 1) (1500) = s ) = (1360 = ) o

1 — 1) (3200) = 3 0)) — K (12w) — i) )

Spa(o,f) =1 { ﬁimaxﬂ(ik = D)(1B0) — ) = (43w) — ) )P

s — k) (vg(xi) - v%(x,)) - k(ug(xi) - ,u%(xi)) PV, >k +1,k>0,1<p<oo
(65)

e Peng et al.’s measure (Peng et al. 2017)

Spyy(2, B) = 1 ——Z(

2(6) = 1) [ (x) = V() H ) — i) )

(66)

e Peng’s measures (Peng 2018)

Sp(a,B) =1~ \/ﬁz [+ 1= a) (12w) = 1 x)) = a(430) = ) )P
10+ 1= 8) (2(x) = Vi) (67)

—b(k2w) — 1) )P |

0{a,b,a+b<i+1,2)0,1<p<occ.

In the next portion, we are going to present evaluations on the proposed PFS similarity
measures compared to the above-mentioned similarity measures from two stages: the
microscopy process and the macroscopy process. The latter process allows us to know
how the results are actually obtained on the basis of structural form of similarity
measures, and the former process enables us to judge about the results of similarity
measures without considering how they have been concluded.
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4.1 Microscopic process of comparison

In order for having a more precise comparison, we re-consider in Table 1 the six sets of
PFVs which are evaluated using the similarity measures S;, (Chen 1997; Chen and Chang
2015; Hung and Yang 2004; Hung and Yang 2004; Hung and Yang 2004; Hong and Kim
1999; Li and Cheng 2002; Li and Xu 2001a; Li et al. 2007; Liang and Shi 2003; Liang and
Shi 2003; Liang and Shi 2003; Mitchell 2003; Peng et al. 2017; Peng et al. 2017; Peng
et al. 2017; Wei and Wei 2018; Ye 2011; Zhang 2016), and Szs4 (Boran and Akay 2014).

By referring to the axioms given in Theorem 3.2, we observe that the above-mentioned
similarity measures still have some problems:

e A violation of axiom (S.2) can be derived from Set 1 in which S¢ (o, ) = Src(a, ) =
Sy(a, ) = Sww(a, ) = Sp, (2, f) =1 meanwhile, o= {(x,0.3,0.3)} and f=
{(x,0.4,0.4)} are not the same.

e It is seen from Set 2 that Sz(«, f) = 0 and from Set 3 that Sgy; (o, ) = Suya2(a, ) =
Shys(a, f) = Sp,(a, ) = 0 while faThese results indicate a violation of axiom (S.4)

¢ An inspection of the values listed in Table 1 indicates that the bold data show difficulty
in differentiating the differences between PFVs. For instance, the value of 0.9 which
corresponds to Szin Sets 1, 2 and 5; the value of 1 that corresponds to Scin Sets 1, 4 and
5; and so on.

In Table 1 and subsequent tables, we will assume that p = 1 in Sy Srs1 Spso Sis3 and
A =2 in Sga. The bold data indicates unreasonable results, and the notation N /A indicates
that the corresponding similarity measure suffers from the problem of division by zero.

In view of the discussions presented in Subsection 4.1, we still observe that most of
existing similarity measures have some drawbacks in Tables 2 and 3 (highlighted by the
bold font).

1
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Fig. 1 The graphs of existing similarity measures S;, to Sg4 given in Table 1 together with their aggregated
measure in circle-dotted line
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Fig. 2 The graphs of proposed similarity measures S, to S;, given in Table 1 together with their aggregated
measure (in magenta circle-dotted line) and the aggregated measure of existing similarity measures Sy, to Sga
(in black circle-dotted line)
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Fig. 3 The graphs of existing similarity measures S, to Sg4 given in Table 2 together with their aggregated
measure in circle-dotted line

4.2 Macroscopic process of comparison

In order to compare the behaviour of existing and proposed similarity measures, we depict
the graphs of existing similarity measures Sz, to Sps given in the first block of Table 1
together with their aggregated measure in circle-dotted line in Fig. 1. Furthermore, we plot
the graphs of proposed similarity measures S;, to S, given in the third block of Table 1
together with their aggregated measure (in magenta circle-dotted line) and the aggregated
measure of existing similarity measures Sy to Sp4 (in black circle-dotted line) in Figs. 2, 3,
4, 5, 6 It needs to be mentioned that the aggregated measures of all six sets of PFVs in
Figs. 1 and 2 are respectively the arithmetic mean of existing similarity measures Sy to Sga
and proposed similarity measures S;, to S,.
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Fig. 4 The graphs of proposed similarity measures S, to S;, given in Table 2 together with their aggregated
measure (in magenta circle-dotted line) and the aggregated measure of existing similarity measures Sy, to Sga
(in black circle-dotted line)
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Fig. 5 The graphs of existing similarity measures S;, to Sgs. given in Table 3 together with their aggregated
measure in circle-dotted line

From Fig. 2, we observe that the aggregated measures of existing similarity measures Sy,
to Spa and proposed similarity measures S, to S, according to the given six sets of PFVs
have more or less similar behaviour from macroscopic viewpoint. This is while, the graphs
of existing similarity measures S; to Sg4 (given in Table 1) depicted in Fig. 1 are much
more scattered than that of proposed similarity measures S;, to S;, (given in Table 1).

In order to have a complete picture of behaviour of existing similarity measures Sy, to
Spa and proposed similarity measures S;, to S, in other cases, such a way of plotting have
been provided for the next cases in the subsequent figures.

Figure 7 shows the graphs of proposed similarity measures Sy, to Sy for F4 given in the
fourth block of Table 1 together with their aggregated measure (in magenta circle-dotted
line) and the aggregated measure of Syo to Sp given in the second block of Table 1 (in
black circle-dotted line).
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Fig. 6 The graphs of proposed similarity measures S;, to S;, given in Table 3 together with the aggregated
measure (in magenta circle-dotted line) and the aggregated measure of existing similarity measures Sy, to Sga
(in black circle-dotted line)
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Fig. 7 The graphs of proposed similarity measures S, to S;, for F,4 given in Table 1 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Sy to Sp (in black circle-
dotted line)

Furthermore, Fig. 8 shows the graphs of proposed similarity measures Sy, to S for F
given in the fifth block of Table 1 together with their aggregated measure (in magenta
circle-dotted line) and the aggregated measure of Syo to Sp given in the second block of
Table 1 (in black circle-dotted line).

The same process of comparison is also followed by the use of data from Tables 2, 3 in
Figs. 9, 10, 11 and 12.

What seems to be worthwhile from all figures is that the graph of aggregated measure of
existing similarity measures behaves similarly as the graph of aggregated measure of
proposed similarity measures.
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Fig. 8 The graphs of proposed similarity measures S, to S;, for F¢ given in Table 1 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Sy to Sp (in black circle-

dotted line)

0.4

1

15

Fig. 9 The graphs of proposed similarity measures S;, to S, for F,4 given in Table 2 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Sy to Sp (in black circle-

dotted line)

5 Decision making under Pythagorean fuzzy environment

In the following section, we are interested in studying the behaviour of the proposed PFS
similarity measures, when they are applied to pattern recognition and medical diagnosis.

5.1 Pattern recognition problem under Pythagorean fuzzy environment

In this part of the contribution, we are going to testify the pattern recognition problems
which were considered in Peng et al. (2017) priorly.
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Fig. 10 The graphs of proposed similarity measures S;, to S;, for Fg given in Table 2 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Sy to Sp (in black circle-
dotted line)
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Fig. 11 The graphs of proposed similarity measures S;, to S;, for F4 given in Table 3 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Syo to Sp (in black circle-
dotted line)

Example 5.1 Suppose that there exist three known patterns m(k =1,2,3) with the
characteristics in terms of PFSs over the feature space X = {x1,x2,x3} as:

m = {(x1,0.3,0.3), (x,0.4,0.4), (x3,0.4,0.4), (x4,0.4,0.4)},
m = {(x1,0.5,0.5), (x,0.1,0.1), (x3,0.5,0.5), (x4,0.1,0.1)},
3 = {(x1,0.5,0.4), (x,0.4,0.5), (x3,0.3,0.3), (x4,0.2,0.2)}.
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Fig. 12 The graphs of proposed similarity measures S;, to S;, for Fg given in Table 3 together with their
aggregated measure (in magenta circle-dotted line) and the aggregated measure of Sy to Sp (in black circle-
dotted line)

We consider the unknown pattern

IT = {(x,0.4,0.4), (x2,0.5,0.5), (x3,0.2,0.2), (x4,0.3,0.3) }

which should be recognized.

The goal here is to classify the pattern IT in one of classes 7y for k = 1,2,3. If we
employ the existing and proposed similarity measures for computing the similarity degree
of Il from m; for k = 1,2,3 then the results can be obtained as those in Table 4. From
Table 4, it is clear the largest degree of similarities is that between I and 73, and therefore,
the pattern II is recognized by m3 which is actually in accordance with the principle of
maximum degree of PFS similarity measures.

From the data presented in Table 4 we find that the proposed similarity measures and
the existing similarity measures, except S¢, Syc, Sy and Sps, are able to recognize the
pattern II by 73.

Example 5.2  Let the three known patterns m ( k = 1,2,3) with the characteristics in terms
of PFSs over the feature space X = {x1,x2,x3} be as follows:

m = {{x1,0.1,0.1), (x2,0.5,0.1), (x3,0.1,0.9)},
m = {(x1,0.5,0.5), (x2,0.7,0.3), (x3,0.0,0.8)},
3 = {(x1,0.7,0.2), (x2,0.1,0.8), (x3,0.4,0.4) }.

Moreover, the unknown pattern is considered as
IT = {(x1,0.4,0.4), (x2,0.6,0.2), {x3,0.0,0.8) }.
Here, we are going to classify the pattern I1 in one of classes m; for k = 1,2, 3. In the

case that we employ the existing and proposed similarity measures for computing the
similarity degree of Il from m; for k = 1,2, 3, then the results are achieved as those in
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Table 4 Similarity measures between the unknown pattern IT and the known patterns 7; (k = 1,2,3) in
Example 5.1

S(my, D) S(my, D) S(m3, ) Classification result
Sy (Li et al. 2007) 0.8677 0.7261 0.9134 3
Sc (Chen 1997) 1 1 0.9750 Cannot be recognized
Scc (Chen and Chang 2015) 0.8679 0.7425 0.8923 3
Suyr (Hung and Yang 2004) 0.8750 0.75 0.9 3
Suy2 (Hung and Yang 2004) 0.8141 0.6501 0.8495 3
Suy3 (Hung and Yang 2004) 0.7778 0.6 0.8182 3
Sux (Hong and Kim 1999) 0.8750 0.75 0.9250 3
Src (Li and Cheng 2002) 1 1 0.9750 Cannot be recognized
Srx (Li and Xu 2001a) 0.9375 0.8750 0.95 3
Srs1 (Liang and Shi 2003) 0.8750 0.75 0.9250 3
Srs2 (Liang and Shi 2003) 0.9375 0.8750 0.95 3
Srs3 (Liang and Shi 2003) 0.9167 0.8333 0.9417 3
Sy (Mitchell 2003) 0.8750 0.75 0.9250 3
Sy (Ye 2011) 1 1 0.9969 Cannot be recognized
Spa (Boran and Akay 2014) 0.9583 0.9167 0.9583 Cannot be recognized
Spyy (Peng et al. 2017) 0.8250 0.69 0.9050 3
S, based on 7 (Fyy, F1y) 0.9145 0.8523 0.9515 3
Sq, based on oy (Fi,, F1y) 0.9939 0.9782 0.9978 3
S., based on 15(F1,, F1y) 0.9113 0.8435 0.9510 3
S5, based on o (Fy,, F1y) 0.9958 0.9838 0.9981 3
Sz based on t§(Fiy, Fi,)e= %] 0.9162 0.8569 0.9518 3
Sz based on ©§(F1y, F1v) 0.9303 0.8971 0.9561 3
Sz, based on 4 (Fiy, F1y)le = 2] 0.9135 0.8493 0.9514 3
Sy, based on 4 (F1y, F1y) 0.9950 0.9812 0.9980 3

The bold values indicate unreasonable results

Table 5. As follows from Table 5, the largest degree of similarities is that between I1 and
7y, and thus, the pattern II is recognized by ;.

From data presented in Table 5, we deduce that the proposed similarity measures and
the existing similarity measures, except Sc¢ and Sic, are able to recognize the pattern IT by
).

Example 5.3 Consider the three known patterns w. ( k = 1,2,3) with the characteristics
in terms of PFSs over the feature space X = {x1,x2,x3} as:

m = {(x1,0.3,0.3), (x,0.6,0.1), (x3,0.2,0.6), (x4,0.7,0.3)},
m = {{x1,0.5,0.3), (x2,0.8,0.1), (x3,0.2,0.6), (xs,0.7,0.3)},
13 = {{x1,0.5,0.3), (x2,0.6,0.1), (x3,0.2,0.6), (x4,0.7,0.3)}.
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Table 5 Similarity measures between the unknown pattern IT and the known patterns 7; (k = 1,2,3) in
Example 5.2

S(my, I0) S(mp, IT) S(m3, IT) Classification result
Sp (Li et al. 2007) 0.8085 0.9184 0.5797 T
Sc (Chen 1997) 1 1 0.6 Cannot be recognized
Scc (Chen and Chang 2015) 0.8846 0.9333 0.6383 T
Suy1 (Hung and Yang 2004) 0.8333 0.9333 0.5667 T
Suy2 (Hung and Yang 2004) 0.7571 0.8980 0.4437 T
Suys (Hung and Yang 2004) 0.7143 0.8750 0.3953 T
Sux (Hong and Kim 1999) 0.8333 0.9333 0.6 i)
Src (Li and Cheng 2002) 1 1 0.6 Cannot be recognized
Six (Li and Xu 2001a) 0.9167 0.9667 0.6 T
Srs1 (Liang and Shi 2003) 0.8333 0.9333 0.62 )
Sis2 (Liang and Shi 2003) 0.9167 0.9667 0.6 P2 )
Sis3 (Liang and Shi 2003) 0.8889 0.9556 0.7222 T
Sy (Mitchell 2003) 0.8333 0.9333 0.6 i)
Sy (Ye 2011) 0.9954 0.9988 0.6709 )
Spa (Boran and Akay 2014) 0.9444 0.9778 0.6000 )
Spyy (Peng et al. 2017) 0.9954 0.9988 0.6709 )
S, based on T1; (Flelv) 0.8977 0.9402 0.6614 )
S;, based on o (Fyy, F1y) 0.9919 0.9953 0.8926 P
S, based on 73 (Fy,, Fiy) 0.8943 0.9382 0.6450 P
S5, based on o, (Flan) 0.9938 0.9965 0.9062 %3
S, based on 13 (Flu Fh)[ } 0.8994 0.9412 0.6714 F123
S., based on 13 (Flu Fh) 0.9186 0.9508 0.8006 123
S, based on 74 (Fl,,,Fh)[e 2] 0.8966 0.9396 0.6551 T
S, based on 74 (Fl,,7 Fh,) 0.9930 0.9960 0.8990 )

The bold values indicate unreasonable results

Moreover, the unknown pattern is considered as

IT = {(x,0.4,0.3), (x,0.7,0.1), (x3,0.3,0.6), (x4,0.7,0.3) }.

In the case of classifying the pattern IT in one of classes m; for k = 1,2, 3, the results are
obtained as those given in Table 6. From Table 6, we conclude that the largest degree of
similarities is that between Il and 7,, and thus, the pattern of Il is recognized by 7.

From data presented in Table 6, we deduce that the proposed similarity measures and
only the existing similarity measure Sp; are able to recognize the pattern IT with ;.

Example 5.4 Suppose that there are three known patterns m(k =1,2,3) with the
characteristics in terms of PFSs over the feature space X = {x1,x2,x3} as follows:
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Table 6 Similarity measures between the unknown pattern IT and the known patterns 7; (k = 1,2,3) in

Example 5.3
S(my, I0) S(my, D) S(n3, I0) Classification result

Sp (Li et al. 2007) 0.9388 0.9388 0.9388 Cannot be recognized
Sc (Chen 1997) 0.9625 0.9625 0.9625 Cannot be recognized
Scc (Chen and Chang 2015) 0.8880 0.8902 0.8902 Cannot be recognized
Suy1 (Hung and Yang 2004) 0.9625 0.9625 0.9625 Cannot be recognized
Suy2 (Hung and Yang 2004) 0.8857 0.8857 0.8857 Cannot be recognized
Suys (Hung and Yang 2004) 0.8605 0.8605 0.8605 Cannot be recognized
Sux (Hong and Kim 1999) 0.9625 0.9625 0.9625 Cannot be recognized
Src (Li and Cheng 2002) 0.9625 0.9625 0.9625 Cannot be recognized
Six (Li and Xu 2001a) 0.9625 0.9625 0.9625 Cannot be recognized
Sis1 (Liang and Shi 2003) 0.9625 0.9625 0.9625 Cannot be recognized
Sis2 (Liang and Shi 2003) 0.9625 0.9625 0.9625 Cannot be recognized
Sis3 (Liang and Shi 2003) 0.9625 0.9625 0.9625 Cannot be recognized
Sy (Mitchell 2003) 0.9625 0.9625 0.9625 Cannot be recognized
Sy (Ye 2011) 0.9949 0.9961 0.9961 Cannot be recognized
Spa (Boran and Akay 2014) 0.9625 0.9625 0.9625 Cannot be recognized
Spyy (Peng et al. 2017) 0.9375 0.9275 0.9325 m

S, based on 1 (Fiy, F1y) 0.9669 0.9612 0.9641 )

S;, based on o (Fyy, F1y) 0.9981 0.9974 0.9979 Pl

S, based on 73 (Fy,, Fiy) 0.9669 0.9612 0.9641 Pl

S,, based on o3 (Fy,, F1y) 0.9981 0.9974 0.9979 A

S, based on 13 (Flu,Fh [6 0.9669 0.9612 0.9641 b

S, based on 13 (Flu,Fh 0.9696 0.9648 0.9672 i3]

S, based on 4 (Fiy, F1y)[€ 0.9669 0.9612 0.9641 m

S, based on 4 (Fiy, F1y) 0.9981 0.9974 0.9979 )

The bold values indicate unreasonable results

m = {(x1,0.2,0.8), (x2,0.4,0.6), (x3,0.5,0.5), (x4,0.4,0.6)},
m = {(x1,0.5,0.4), (x2,0.3,0.7), (x3,0.5,0.5), (x4,0.4,0.6)},
3 = {(x1,0.5,0.5), (x,0.4,0.6), (x3,0.4,0.6), (xs,0.4,0.6)}.

Moreover, the unknown pattern is considered as

IT = {(x,0.4,0.6), (x»,0.4,0.6), (x3,0.5,0.5), (x4,0.4,0.6) }.

Now, we are going to classify the pattern II in one of classes 7y for k = 1,2,3. If we
employ the existing and proposed similarity measures for computing the similarity degree
of Il from m; for k = 1,2, 3, then the results are gotten as those in Table 7.

@ Springer



Similarity-based multi-criteria decision making technique of...

2139

Table 7 Similarity measures between the unknown pattern IT and the known patterns 7; (k = 1,2,3) in

Example 5.4
S(my, I0) S(mp, IT) S(m3, IT) Classification result

Sp (Li et al. 2007) 0.9000 0.9065 0.9293 3

Sc (Chen 1997) 0.95 0.9375 0.95 Cannot be recognized
Scc (Chen and Chang 2015) 0.95 0.9456 0.95 Cannot be recognized
Suy1 (Hung and Yang 2004) 0.95 0.95 0.95 Cannot be recognized
Suy2 (Hung and Yang 2004) 0.9228 0.8857 0.9228 Cannot be recognized
Suys (Hung and Yang 2004) 0.9048 0.8605 0.9048 Cannot be recognized
Sux (Hong and Kim 1999) 0.95 0.9375 0.95 Cannot be recognized
Src (Li and Cheng 2002) 0.95 0.9375 0.95 Cannot be recognized
Six (Li and Xu 2001a) 0.95 0.9375 0.95 Cannot be recognized
Sis1 (Liang and Shi 2003) 0.95 0.9375 0.95 Cannot be recognized
Sis2 (Liang and Shi 2003) 0.95 0.9375 0.95 Cannot be recognized
Sis3 (Liang and Shi 2003) 0.9667 0.9542 0.9667 Cannot be recognized
Sy (Mitchell 2003) 0.95 0.9375 0.95 Cannot be recognized
Sy (Ye 2011) 0.9854 0.9841 0.9903 3

Spa (Boran and Akay 2014) 0.95 0.9375 0.95 Cannot be recognized
Spyy (Peng et al. 2017) 0.93 0.9175 0.9450 3

S, based on T1; (Fl,hFh,) 0.9508 0.9394 0.9502 )

S;, based on o (Fyy, F1y) 0.9924 0.9939 0.9953 3

S, based on 73 (Fy,, Fiy) 0.9482 0.9369 0.9481 Pl

S5, based on o, (Flan) 0.9940 0.9953 0.9964 3

S., based on 3 (Fi,, F1,) [€= 0.9522 0.9407 0.9512 m

S., based on 13 (Flu Fy, 0.9662 0.9532 0.9599 T

S, based on 74 (Fl,,,Fh [e=2] 0.9499 0.9386 0.9496 m

S, based on 74 (Fl,,7 Fh,) 0.9933 0.9947 0.9959 3

The bold values indicate unreasonable results

Table 8 Symptom characteristics for the diagnoses in Example 5.5

Temperature Headache Stomach pain Chest pain
Viral fever {(0. {(0.3,0.5)} {(0.1,0.7)} 0.4,0.3)} {(0.1,0.7)}
Malaria {(0. {(0.2,0.6)} {(0.0,0.9)} 0.7,0.0)} {(0.1,0.8)}
Typhoid {(0. {(0.6,0.1)} {(0.2,0.7)} 0.2,0.6)} {(0.1,0.9)}
Stomach problem {(0. {(0.2,0.4)} {(0.8,0.0)} 0.2,0.7)} {(0.2,0.7)}
Chest problem {(0. {(0.0,0.8)} {(0.2,0.8)} 0.2,0.8)} {(0.8,0.1)}
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Table 9 Symptom characteristics for the patients in Example 5.5

Temperature Headache Stomach pain Cough Chest pain
Al {(0.8,0.1)} {(0.6,0.1)} {(0.2,0.8)} {(0.6,0.1)} {(0.1,0.6)}
Bob {(0.0,0.8)} {(0.4,0.4)} {(0.6,0.1)} {(0.1,0.7)} {(0.1,0.8)}
Joe {(0.8,0.1)} {(0.8,0.1)} {(0.0,0.6)} {(0.2,0.7)} {(0.0,0.5)}
Ted {(0.6,0.1)} {(0.5,0.4)} {(0.3,0.4)} {(0.7,0.2)} {(0.3,0.4)}

Before discussing the findings in Table 7, let us take a brief look at the structure of
unknown pattern IT and known patterns m; (k = 1,2,3) in Example 5.4. It is interesting to
note that the only difference between the unknown pattern I1 and the known pattern 7 is
related to the feature x;. As a result, the degree of similarity between Il and m; may be
considered as the largest degree. This is while, the output of the existing similarity measure
Spyy (Peng et al. 2017) is the known pattern 73, and not m;. However, the proposed
similarity measures consider both the degree of similarity between Il and m;, and that
between Il and m3 as the largest degrees. This finding verifies that the proposed ones are
more flexible compared to the existing ones.

5.2 Medical diagnosis problem under Pythagorean fuzzy environment

In order to state the advantage of explored PFS similarity measures, we illustrate their
application to the medical diagnosis progress, and compare the obtained results with those
of existing similarity measures for PFSs.

Example 5.5 Szmidt et al. 2004) Suppose that a doctor is going to make a suitable diag-
nosis {Viralfever, Malaria, Typhoid, Stomachproblem, Chestproblem} for a group of
patients  {Al,Bob,Joe,Ted} in accordance with the values of symptoms
{Temperature, Headache, cough, Stomachpain, Chestpain}. The characteristic symptoms
for the latter-mentioned diagnoses are given in Table 8, and the corresponding symptoms
for each patient are presented in Table 9. Based on PFS forms of elements of Tables 8, 9,
the target is to find a proper diagnosis for each patient.

Table 10 Similarity values between each considered patient and the set of possible diagnoses by the use of
S;, based on 7y (F1,, F1y)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8254 0.8514 0.7920 0.6176 0.5799
Bob 0.7549 0.6515 0.7888 0.9162 0.7013
Joe 0.7577 0.6974 0.7983 0.6554 0.5969
Ted 0.8260 0.8081 0.7430 0.6834 0.5960

The bold values indicate the diagnostic result
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Table 11 Similarity values between each considered patient and the set of possible diagnoses by the use of
Sy, based on o (Fy,, Fy)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.9664 0.9730 0.9508 0.8172 0.7887
Bob 0.9366 0.8374 0.9534 0.9924 0.8693
Joe 0.9390 0.9002 0.9654 0.8429 0.7919
Ted 0.9748 0.9691 0.9419 0.8914 0.8516

The bold values indicate the diagnostic result

Table 12 Similarity values between each considered patient and the set of possible diagnoses by the use of
S;, based on 15(F1,, F1y)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8203 0.8461 0.7858 0.6014 0.5631
Bob 0.7438 0.6376 0.7798 0.9155 0.6897
Joe 0.7507 0.6875 0.7959 0.6431 0.5848
Ted 0.8205 0.8019 0.7330 0.6694 0.5787

The bold values indicate the diagnostic result

Table 13 Similarity values between each considered patient and the set of possible diagnoses by the use of
S5, based on a3 (Fiy, Fiy)

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.9698 0.9769 0.9555 0.8328 0.8062
Bob 0.9455 0.8514 0.9602 0.9928 0.8807
Joe 0.9443 0.9096 0.9670 0.8548 0.8052
Ted 0.9782 0.9734 0.9493 0.9034 0.8672

The bold values indicate the diagnostic result

By computing the proposed PFS similarity measures between the symptoms characteristic
of each diagnose and that of each patient, we are able to obtain the diagnostic results which
are shown in Tables 10, 11, 12, 13 below.

From Tables 10, 11, 12, 13, we observe that Al, Bob, Joe and Ted suffer respectively
from Malaria, Stomach problem, Typhoid, and Viral fever.

To save more space, we ignore to mention the other results of S;, based on 73 (F 1w F lv)
[62 ﬂ ;S7, based on 73 (F“,, Flv) S:, based on 14 (Fl,“ Fh,) [e=2] and S, based on
T4 (Fluy Flv)

However, in order for having a deeply analysis, we recall here the results of previous
works (De et al. 2001; Own 2009; Peng and Liu 2019; Szmidt et al. 2004, 2001; Vlachos
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and Sergiadis 2007) and (Wei et al. 2011). Table 14 shows the results of the current study
and latter-mentioned works.

What is apparent from Table 14 is that different similarity measures do not generally
correspond to the same result. We observe from the two first block of Table 14 that Al
suffers from Viral fever in 14 out of the 28 existing similarity measures, while Al does
from Malaria in 15 out of the 28 existing measures. Bob suffers from a Stomach problem
because all the existing similarity measures provide the same result. Joe suffers from
Typhoid in 26 out of the 28 existing similarity measures, while, the other existing measures
indicate that Joe suffers from Malaria and Stomach problem. Eventually, Ted suffers from
Viral fever in 22 out of the 28 existing similarity measures, while, the other existing
measures indicate that Ted suffers from Malaria in 6 out of the 28 existing measures.

Peng et al. (Peng et al. 2017) and Peng and Liu (Peng and Liu 2019) confessed that they
knew nothing of which patient suffers from which diagnoses in some cases. For instance,
they are hesitant to make their decisions whether Al suffers from Viral fever or from
Malaria because these two symptoms are involved with each other.

In this study, we implement an attractive technique to deal with such an aforementioned
limitation. This technique is known as majority criterion and it is applied to situation in
where a single candidate is preferred to others by a majority of voters. Indeed, the majority
criterion is a single-winner voting system which expresses that “if one candidate is ranked
first by a majority of voters, then that candidate must win” (Boland 1989).

To provide the preliminary information needed for using majority criterion technique,
we now suppose that the vector (i, i, i3, ia, is) (for iy € {0, 1}) returns the numerical value
of five-tuple (Viralfever,Malaria, Typhoid, Stomachproblem, Chestproblem) correspond-
ing to each patient with respect to each similarity measure.

Under this setting, each array of Table 14 can be correspondingly re-stated by the use of
a vector with binary entries being given in Table 15. For instance, the first array of
Table 14 can be interpreted by the vector (1,0,0,0,0) in Table 15 which means that the
patient AL returns the diagnose “Viral fever” corresponding to the use of similarity
measure of S;.

Applying this technique to the arrays of two top blacks of Table 14 gives rise to the
vectors of two top blacks of Table 15 below.

If we simply add up the entries of each column of Table 15, then the summation row of
Table 15 will be achieved.

Keeping the issue of majority criterion technique into consideration, which says that the
candidate wins if s/he is ranked first by a majority of voters, we are able to conclude from
each summation array that which one is the corresponding output array.

From the output row of Table 15, we easily find that:

(0,1(15),0,0,0) discloses of the diagnosis Malaria to the patient Al;

(0,0,0,1(28),0) discloses of the diagnosis Stomach problem to the patient Bob;

(0,0, 1(27),0,0) discloses of the diagnosis Typhoid to the patient Joe;

(1(22),0,0,0,0) discloses of the diagnosis Viral fever to the patient Ted.

Interestingly, the aforementioned outcomes are almost identical with those of proposed
similarity measures (except for S, based on 13 (F 1w F U) for Ted) which are given in the
last eight rows of Table 14.

Such results indicate that the proposed PFS similarity measures are more effective than
the existing similarity measures in making an appropriate decision.
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6 Conclusions and future works

The basic contributions in this study may be highlighted and summarized as the
followings:

e We developed a novel class of PFS similarity measures which are characterized by
using the concepts of t-norm and s-norm together with an interesting PFS distance
measure.

e In this study, two comparison aspects were taken into account: (1) the microscopy
aspect which allows us to know how the results are actually obtained on the basis of
structural form of similarity measures and (2) the macroscopy aspect which enables us
to judge about the results of similarity measures without considering how they have
been concluded.

e The effectiveness of proposed PFS similarity measures were shown in some case
studies concerning pattern recognition and medical diagnosis.

The next step of such a contribution can be devoted to the study of similarity measures
into other aspects, such as group decision making, data mining and information retrieval.
Furthermore, since this work presents just an applicative study concerning the PFS simi-
larity measures, we should try to consider the development of some software to better
implement the introduced similarity measures in the real-life setting.
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