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Abstract
We present a comprehensive review of the evolutionary design of neural network architec-
tures. This work is motivated by the fact that the success of an Artificial Neural Network 
(ANN) highly depends on its architecture and among many approaches Evolutionary Com-
putation, which is a set of global-search methods inspired by biological evolution has been 
proved to be an efficient approach for optimizing neural network structures. Initial attempts 
for automating architecture design by applying evolutionary approaches start in the late 
1980s and have attracted significant interest until today. In this context, we examined the 
historical progress and analyzed all relevant scientific papers with a special emphasis on 
how evolutionary computation techniques were adopted and various encoding strategies 
proposed. We summarized key aspects of methodology, discussed common challenges, and 
investigated the works in chronological order by dividing the entire timeframe into three 
periods. The first period covers early works focusing on the optimization of simple ANN 
architectures with a variety of solutions proposed on chromosome representation. In the 
second period, the rise of more powerful methods and hybrid approaches were surveyed. In 
parallel with the recent advances, the last period covers the Deep Learning Era, in which 
research direction is shifted towards configuring advanced models of deep neural networks. 
Finally, we propose open problems for future research in the field of neural architecture 
search and provide insights for fully automated machine learning. Our aim is to provide 
a complete reference of works in this subject and guide researchers towards promising 
directions.
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1 Introduction

Artificial Neural Network (ANN) is a computational machine learning model loosely 
inspired by the human brain. It is typically composed of several processing units (neu-
rons) interconnected in a layered structure (Haykin 1993). This model can demonstrate 
human-like skills such as image recognition and natural language processing. The learning 
is established through training of the network with the help of structured data and the utili-
zation of learning algorithms.

Since the invention of Mark I Perceptron, the first ANN model by Frank Rosenblatt in 
1958 (Rosenblatt  1958), Artificial Neural Networks have been transformed from single-
layer models into complex structures consisting of hundreds or even thousands of layers 
in various architectures. Thus, they have been called Deep Neural Networks. The process 
of training these deep networks is called Deep Learning. Thanks to the recent availability 
of the massive amount of data (Big Data) and advancements in the technology of Graphic 
Processing Units (GPU), modern deep learning architectures surpass human performance 
by achieving state-of-the-art results on image classification tasks which helped develop 
revolutionary technologies such as self-driving cars and cancer diagnosis from x-ray 
images (Abdel-Zaher and Eldeib 2016; Levine et  al. 2019; Rashed and El Seoud 2019; 
Spielberg et al. 2019).

Extensive experimental data reveal that the success of a neural network for solving a 
particular problem essentially depends on its architecture (Weiß 1994a). From a simple 
ANN model to today’s highly complex deep structures, designing artificial neural networks 
is rather a difficult and troublesome task. Even today, network architectures are usually 
determined manually by domain experts through trial and error. Furthermore, the relation-
ship between network architecture and its performance cannot be formulated. Considering 
the vast computational resources and amount of time required to search for possible neural 
architectures, manual methods are undoubtedly infeasible to obtain optimal solutions. This 
motivated researchers to employ advanced algorithms such as metaheuristics to automate 
this process and improve network performance with better architectures.

It would be quite demanding to conduct a review that examines the optimization of Arti-
ficial Neural Network design from a broad spectrum, covering all types of solution methods 
including metaheuristics and other advanced algorithms. Among many approaches, Evolu-
tionary Computation, a set of global-search techniques inspired by the evolution theory 
became the most popular, offering promising and competitive solutions on a wide range of 
real-world tasks. For this reason, this review will narrow down the research and our focus 
will only be on the works that concentrated on combining artificial neural networks and 
evolutionary algorithms, which are two powerful paradigms of Artificial Intelligence (AI).

The first studies aiming to design network architectures with evolutionary methods 
start in the late 1980s. Over the past 30 years, considerable progress has been achieved. 
To this end, we made a thorough research and surveyed all relevant papers in this period. 
By examining the historical progress, we analyzed studies in chronological order and 
divided the whole timeframe into three periods based on significant achievements and sci-
entific trends. The first period covers initial attempts to evolve simple ANN architectures 
in a competitive nature to invent efficient strategies for chromosome representation. The 
second period starts with the introduction of the Neuroevolution of Augmenting Topolo-
gies (NEAT) proposed by Stanley and Miikkulainen (2001). NEAT was considered to be 
a major breakthrough and a key milestone in this field. The second period involves many 
attempts to improve or outperform NEAT from various aspects. The third period covers the 
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Deep Learning Era when researchers explored methods to automate the design and con-
figuration of deep neural networks. Figure 1 shows the number of papers published on the 
evolutionary design of neural network architectures throughout the investigated period and 
how the focus has been shifted from simple ANN models to Deep Neural Network (DNN) 
architectures. The works include, but are not limited to journal articles, conference papers, 
and dissertations. We aimed to include all relevant papers without any selection criteria, 
such as the number of citations, the Journal’s impact factor, etc., and exhaustively searched 
through all databases available by double-checking with interim review papers in the his-
torical context.

The primary purpose of this study is to present all innovative works by examining 
novel evolutionary approaches adopted in the design of artificial neural network archi-
tectures and to analyze solution strategies comparatively with a special emphasis on 
various evolutionary computation techniques adopted and the encoding strategies pro-
posed. As such, it has a complementary nature to previous studies. Due to the surge of 
interest in the subject, many review papers have been published in various intervals until 
today. The first review paper was published in 1992 by Schaeffer (1992), who exam-
ined the early steps and surveyed approaches for encoding strategies. Later on, quite 
extensive reviews were carried out by Yao in the first decade (1993; 1998; 1999). Fur-
ther reviews have been published covering up-to-date surveys and comparative analysis 
(Azzini and Tettamanzi 2011; Balakrishnan and Honavar 1995; Branke 1995; Cantú-Paz 
and Kamath 2005; Castellani 2013; Castillo et al. 2003; Castillo et al. 2007; de Cam-
pos et al. 2015; De Campos et al. 2011; Drchal and Šnorek 2008; Floreano et al. 2008; 
Vonk et  al. 1995b; Weiß 1993; Weiß 1994a; Weiß 1994b; Whitley 1995). The most 
recent surveys are by Ojha et al. (2017), Chiroma et al. (2017) Stanley et al. (2019), and 
Baldominos et  al. (2020). Due to a shift of interest from conventional neural models 
to deep architectures, some of the latest surveys concentrate mostly on Neural Archi-
tecture Search (NAS) methods recently being developed (Elsken et al. 2018b; Wistuba 
et al. 2019). Although these works provide comprehensive analysis, only a few of these 
reviews cover the whole spectrum of historical progress. Furthermore, there are still 
papers that are ignored, not sufficiently examined, or not compared in terms of encoding 
strategies and various techniques adopted. Despite being recently published, the review 
paper by Baldominos et al. (2020) doesn’t sufficiently cover the latest advances in the 
evolutionary design of deep neural networks such as AmoebaNet-A by Real et al. (2019). 

Fig. 1  Number of Papers Published on Evolutionary Design of Neural Network Architectures (1989–2020)
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The rapid increase of interest in this subject requires more frequent updates since signif-
icant achievements with state-of-the-art results have been reported in the last two years, 
by utilizing evolutionary approaches. Published review papers are depicted on a time-
line in Fig. 2.

To summarize, this paper presents an extensive survey on the evolutionary design of 
neural network architectures with the following contributions:

• We provide a detailed and systematic review of evolutionary approaches for searching 
optimal neural network architectures, covering the complete spectrum of historical pro-
gress.

• We examine the use of various evolutionary computation techniques such as Genetic 
Algorithms or Evolutionary Programming and analyze genetic operations, population 
initialization methods, and evaluation techniques with a variety of fitness functions.

• We put a special emphasis on chromosome encoding strategies with a comparative 
analysis of direct and indirect representation approaches, since they have a significant 
effect on the performance of the optimization process.

• We surveyed not only simple ANN architecture optimization approaches but also recent 
advances on the evolutionary design of deep neural architectures such as Convolutional 
Neural Networks (CNN).

• We raise open questions for future research on reducing the computational cost of archi-
tecture search and providing systems to fully automate machine learning tasks without 
expert knowledge.

The rest of this review paper is organized as follows: In Sec. 2, we introduce Artifi-
cial Neural Networks with biological backgrounds and historical developments. In Sec. 
3 we investigate optimization methodology and summarize Evolutionary Computation 
techniques together with genetic operators applied. In Sec. 4, we made a categorical 
classification of representation methods and surveyed various encoding strategies with 
common challenges such as Competing Conventions Problem. In Sec. 5, we investigated 
the historical progress in three periods of development, namely early works, the rise, 
and the deep learning era. Finally, we conclude the survey in Sec.6.

Fig. 2  Review Papers Published on Evolutionary Design of Neural Networks Between 1989 and 2020
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2  Artificial neural networks

Artificial Neural Network is an advanced machine learning model inspired by the human 
brain (Haykin 1993). Designed as a simulation of biological nerve cells, it consists of sev-
eral neurons interconnected in a layered structure and connections. ANN basically serves 
as a function for input–output mapping of a particular problem. A basic skeleton of an 
ANN has an input layer which acts as the collection point of sensors from the external 
world and an output layer that produces an output value as a function of received inputs. 
Between the input layer and the output layer, there are hidden layers with arbitrary depth 
and width, accommodating a determined number of processing elements (neurons) and 
connections. This part is usually considered as a “Black Box” since no one can explain the 
effect of its structure for a given problem. A typical Artificial Neural Network with two 
hidden layers and a single output is depicted in Fig. 3.

An artificial neuron can be defined as the weighted sum of incoming signals trans-
formed by an activation function (Floreano et al. 2008) (Eq. 2). The connection between 
two neurons acts as a variable multiplier, commonly referred to as synaptic weights. The 
training is carried out to determine the best values for these weights. This mathematical 
model can generalize with the help of the sample data fed to it, thereby realizing learn-
ing-related skills such as classification and regression. The artificial neural network model 
with only one hidden layer can theoretically approximate any non-linear continuous func-
tion. With this feature, it is defined as a Universal Function Approximator (Cybenko 1989; 
Funahashi 1989; Hecht-Nielsen 1987; Hornik 1991; Kolmogorov 1957).

2.1  Biological Motivation

The human brain accommodates a huge network of biological nerve cells, called neurons. 
When this highly complex structure is examined closely, it can be seen that neurons are 
connected to other neurons through dendrites, synapses, and the axon. The signals obtained 
from the input unit called dendrites are processed inside the cell and transferred to other 
neurons with the help of axons and synapses (Fig. 4). The nerve cell to which the signal is 
transferred likewise transfers the signal transmitted to it to the next neuron. Neurons that 
act as a kind of “activation” sometimes strengthen the signals they receive by transferring 
them to the next neuron (excite) and sometimes stop it by inhibiting (all-or-none).

Fig. 3  A typical Artificial Neural 
Network with two hidden layers 
and a single output



1728 H. T. Ünal, F. Başçiftçi 

1 3

In 1943, McCulloch and Pitts (1943) laid the foundations of Artificial Neural Net-
works by creating a model of the biological nerve cell (Fig. 5). In 1958, Frank Rosenb-
latt invented the machine called Mark I Perceptron (Rosenblatt 1958). In the Perceptron 
project funded by the American Navy, Rosenblatt aimed to recognize and classify sim-
ple geometric shapes by mechanically creating artificial neurons. Despite the simplicity 
of perceptron, the project has been described by the New York Times as the “embryo of 
an electronic computer that will be able to see, speak, write, walk, multiply and be con-
scious of its existence ’’ in the near future (Baldominos et al. 2020).

The artificial neurons in Perceptron can be defined as a binary device with a thresh-
old. It receives inputs from excitatory or inhibitory synapses. The neuron becomes 
active if the sum of weighted inputs exceeds its threshold. It can also be expressed as a 
function that maps its input x to an output value f(x):

where w is a vector of weights and w ⋅ x is the dot product of 
m
∑

i=1

wixi, where m is the 

number of inputs, and b is the bias (Fig. 6).
Networks, where activation is started from the inputs and flowed through hidden lay-

ers and towards output, is called a feedforward neural network. Likewise, the output of 

(1)f (x) =

{

1 if w ⋅ x + b > 0,

0 otherwise

Fig. 4  Biological Nerve Cell

Fig. 5  McCulloch-Pitts Neuron
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a neuron in a feed-forward neural network can be determined as the sum of its weighted 
inputs squashed with an activation function:

where x1, x2, ...xn are input signals, w1,w2, ...wn are connection weights, b is the bias, and f  
is the activation function (e.g., sigmoid, tanh, etc.).

Some networks may have a feedback loop, where output is redirected to its input for 
discovering or responding to temporal dependencies (Fig. 7). These types of networks are 
commonly used for natural language processing and are called Recurrent Neural Networks 
(RNN) (Stanley 2004).

2.2  Multi‑layer perceptron (MLP)

Although Rosenblatt’s perceptron became popular and created excitement, it was only able 
to provide solutions to linear functions. In 1969, Minsky and Papert published an article 
called Perceptrons that proved the inadequacy of this model by revealing in all aspects that 
Perceptron could not approximate non-linear functions such as XOR (Minsky and Papert 
1969). With this paper, the AI Winter, a period of great decrease of research and invest-
ments in artificial intelligence which would last until the mid-1980s, has started.

The development that made artificial neural networks popular again was the discov-
ery of a gradient-based training method called Backpropagation (Rumelhart et al. 1986). 

(2)y = f

(

n
∑

i=1

wixi + b

)

Fig. 6  Rosenblatt’s Perceptron, 
1958 (with step activation)

Fig. 7  A Recurrent Neural Network with a feedback connection. The diagram shows an RNN influencing 
its hidden state h with x as input and o as output for a sequence of time steps. It is typically used for natural 
language processing such as speech recognition or machine translation
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Backpropagation updates the synaptic weights by taking the derivation of the network out-
put error in multiple layers of artificial neural networks (also called Multi-Layer Perceptron 
(MLP)) based on the delta rule (Werbos 1974). It facilitates the training of Artificial Neu-
ral Networks in a very short time. This method is still the most commonly used network 
training method. Thus, multi-layered and fully feedforward neural networks became popu-
lar again as an effective machine learning model and started to produce solutions to many 
real-world problems, including non-linear functions. By the end of the 1980s many models 
have been developed, some of which are still in use today. Hopfield networks (Hopfield 
1982), Vector Quantization Models (LVQ) (Kohonen 1995), Adaptive Resonance Theory 
(ART) (Carpenter and Grossberg 1986) Self-organizing models (SOM) (Kohonen 1989), 
Elman Network (Elman 1990), Support Vector Machines (Cortes and Vapnik 1995) and 
Radial Based Networks (Park and Sandberg 1991) have been introduced to the literature as 
different variants of Artificial Neural Networks.

2.3  Towards deep architectures

In 1980, Fukushima (1980) laid the foundations of Convolutional Neural Networks 
(CNN), with the Neocognitron inspired by Hubel and Wiesel’s studies on neuroscience 
(1959, 1962). This model consisted of two layers, similar to the visual cortex in the brains 
of mammals. In the first layer, rough features of images such as corners and edges were 
detected, and in the second layer, more detailed processing and classification were car-
ried out. Then, LeCun (1989, 1990a) introduced the first handwriting character recogni-
tion software in the late 1980s by using the MNIST dataset to train his model (Fig. 8). In 
addition, developments in the field of natural language processing (NLP) led to the devel-
opment of advanced methods for processing Recurrent Neural Networks (RNN), bringing 
techniques such as LSTM in the late 90 s (Hochreiter and Schmidhuber 1997).

Fig. 8  Samples from the MNIST 
Dataset used for handwriting 
recognition. Sample digits for 
training were taken from Ameri-
can Census Bureau employees 
and for testing were taken from 
American high school students
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Training of Artificial Neural Networks was a difficult and time-consuming process 
even in the 2000s when processor technology was making progress. As the number of 
layers in the network increases, so does the number of parameters to calculate, which 
required more processing power and higher memory in multi-layer structures called 
deep neural networks. The second AI Winter lasted until 2006, when Geoffrey Hinton, 
one of the pioneers of the field, published his groundbreaking work, showing that train-
ing of deep networks can be carried out in a more reasonable time with the structure 
called Deep Belief Nets (DBN). This development helped speed up the research on Arti-
ficial Neural Networks again and led to the blossom of the AI boom (Hinton et al. 2006; 
Hinton and Salakhutdinov 2006).

Overcoming obstacles in front of the Deep Neural Networks increased interest in this 
area and led to new research directions. Prof Fei Fe Li from Stanford University argued 
that the algorithms had reached maturity even many years ago, but the available datasets 
were still very poor. Fei Fei Li and his colleagues created a dataset consisting of thousands 
of categories and millions of images from the internet with the work they started in 2007, 
called ImageNet (Deng et al. 2009). This dataset was the largest dataset ever created in the 
world. The biggest feature that distinguishes ImageNet from other data sets was that the 
categories were hierarchically subdivided according to the WordNet system (Fig. 9).

As of 2009, a competition started to be organized for image recognition using the 
ImageNet dataset (ImageNet Large Scale Visual Recognition Challenge -  ILSVRC). The 
researchers started to compete with the deep neural network models they developed to 
obtain the highest accuracy to recognize images in ImageNet, and this race led to one of 
the most important developments in the field of Deep Learning in 2012. Alex Krizhevsky 
and his colleagues have made the biggest leap in artificial intelligence by halving the error 
rate achieved on ImageNet with the deep neural network model they named AlexNet (Kriz-
hevsky et al. 2012). No such improvement was expected because the researchers estimated 
that the average error rate of around 25% could improve by 1% each year. With the model 
they developed, AlexNet made a great leap of advance which could take approximately 
12 years. The model they created implemented many recent innovations such as ReLU acti-
vation, GPU usage, and dropout. Furthermore, they proved that deep networks with mil-
lions of parameters and connections do better, as opposed to shallow ones. This success 
brought interest in the competition and deep learning research to the highest level, allowing 
a new spring of artificial intelligence to begin. In the ImageNet contest, successive records 

Fig. 9  ImageNet Dataset organized in WordNet hierarchy. WordNet links words into semantic relations to 
be used in computational linguistics and natural language processing
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were achieved in the proceeding years. Key milestones in the development of Artificial 
Neural Networks are depicted in Fig. 10.

3  ANN optimization

The optimization of Artificial Neural Networks has been studied from various aspects. 
These are mainly architectural design, connection weights, learning algorithm, node trans-
fer functions, determination of initial weights, optimization of the input layer, and optimi-
zation of learning parameters e.g., learning rate, or momentum. To summarize, every vari-
able in the artificial neural network model can be optimized in several ways. However, it is 
possible to combine these optimization areas into two main sub-categories. The first one is 
network design and the second one is network training.

3.1  Optimization of ANN architectures

Architecture optimization in Artificial Neural Networks is mainly concerned with the opti-
mization of structural parameters such as the number of layers, number of neurons in each 
layer, and connections scheme. The selection of node activation functions, which is studied 

Fig. 10  Key milestones in the development of Artificial Neural Networks

Fig.11  General Flow of ANN Optimization
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separately in some works, is actually an area of architecture design. On the other hand, the 
process of reducing input parameters, defined as input layer optimization, is an area that 
falls into the field of data science, and cannot be defined as architecture optimization. The 
general flow of an ANN optimization is depicted in Fig. 11.

3.2  Optimization of synaptic weights

The backpropagation method is the most common and most effective method of finding 
optimal weights. It is a gradient-descent-based algorithm which aims to minimize the 
total mean square error between actual output and desired output. In every iteration, this 
error is used to guide the algorithm to find optimal weight values for the desired output. 
Although being very effective, the BP has a tendency to be trapped at local minima and 
quite often causes the vanishing or exploding gradients problem. Furthermore, in some 
real-world problems, it could be inefficient due to the structure of the error surface. For 
best results, the user is required to select the best hyper parameters, such as learning 
rate, momentum, and batch size, which further necessitates another heuristics.

Therefore, other methods have also been proposed to train Artificial Neural Net-
works. Initial attempts were aimed to increase the performance of BP by introducing 
gradient-based variations using sophisticated algorithms such as Conjugate Gradient 
(Charalambous 1992; Fletcher and Reeves 1964; Hestenes and Stiefel 1952) and Quasi-
Newton methods (Dennis and Moré 1977; Huang 1970; Nocedal and Wright 2006). In 
order to improve convergence, adaptive learning rates were applied to some applications 
(Barzilai and Borwein 1988). Later, nature-inspired metaheuristics were thoroughly 
investigated and experimented with as competitive alternatives to Backpropagation. 
These approaches include but not limited to Evolutionary Computation techniques such 
as Genetic Algorithms (Gonzalez-Seco 1992; Gupta and Sexton 1999; Montana and 
Davis 1989; Sexton and Gupta 2000), Evolutionary Strategies (Greenwood 1997), and 
Differential Evolution (Ilonen et al. 2003), popular optimization methods such as Simu-
lated Annealing (Sexton et  al. 1999), Artificial Bee Colony Algorithm (Karaboga and 
Akay 2007), Particle Swarm Optimization (Roy et al. 2013). Due to the surge of interest 
in the field of Artificial Intelligence, many other techniques were also applied, includ-
ing Fuzzy Sets (Juang et al. 1999), APPM (Artificial Photosynthesis and Phototropism 
Mechanisms) (Cui et al. 2012) as an alternative solution to BP.

3.3  Simultaneous optimization of architecture and weights

The general goal of an ANN optimization process is to achieve the best generalization. 
During optimization, every candidate solution is evaluated by simply training the net-
work by using BP or other methods, thus obtaining the error rate on test data. It would 
require vast computational resources and time to achieve optimal architectures, by iter-
ating through possible solutions. Addressing this phenomenon, many researchers aimed 
to optimize both architectures and weights at the same time to save computation costs.

3.4  Invasive and non‑invasive approaches

The typical strategy of ANN architecture optimization is to search for better models and 
evaluate the algorithm by training the candidate solutions using gradient-based methods 
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such as backpropagation. Many researchers did not follow this computationally inten-
sive path and aimed to optimize both architecture and weights simultaneously. Thus, 
these two different approaches formed the classification of approaches as invasive and 
non-invasive. Non-invasive refers to the former approaches where architecture is opti-
mized and weights are obtained by BP-like algorithms, while invasive refers to the latter 
approaches (Palmes et al. 2005).

3.5  Methodology

In Artificial Neural Networks, it is possible to consider network architecture design as a 
search problem in the architectural space. The average error obtained for each architecture 
creates a surface in this search space. Proposed methods aim to find the lowest (or highest) 
point on this surface (Liu and Yao 1996a). According to Miller et al. (1989), this surface is:

• infinitely large: because there is no limit on the number of neurons and connections that 
can be used.

• nondifferentiable: because decision variables are discrete.
• complex and deceptive: because there is no direct relationship between network perfor-

mance and network size, and similar architectures may yield different performance.
• multimodal: because networks with different topologies can give the same result.

For this reason, finding the ideal architecture in artificial neural networks is too difficult 
or impossible even for small networks to be solved by conventional methods. As Miller 
et al. (1989) express, “the network design stage remains something of a black art”.

3.5.1  Generalization and architecture

A considerable amount of reports in the literature state that the speed and generalization 
ability of a neural network usually depends on its complexity (Weiß 1994a). For example, 
a deep ANN having a large number of hidden layers and nodes will provide more accu-
rate output for the training data but may demonstrate poor generalization for unknown test 
data, which is a phenomenon called overfitting (Yen and Lu 2000; Zhang and Muhlen-
bein 1993). In this case, the network simply memorizes training samples and noise in the 
training data, destroying the capability of the network to generalize (Fiszelew et al. 2007). 
On the other hand, a smaller network with only a few hidden layers and neurons usually 
has poor learning ability and may not be able to approximate the function. Some research-
ers followed the principle of Occam’s Razor, which states that simpler models should be 
preferred to unnecessarily complex ones (Thorburn 1918; Zhang and Muhlenbein 1993; 
Zhang and Mühlenbein 1993). There are several approaches to identify an optimal and effi-
cient neural network. These are SIC (Schwarz Information Criterion), AIC (Akaike Infor-
mation Criterion), and PMDL (Predictive Minimum Description Length). Although used 
by many researchers all the above methods have significant drawbacks and weaknesses.

3.5.2  Conventional methods

Conventional techniques such as brute force, enumerative, or random search only provide 
low-quality solutions over very limited options. Constructive and destructive methods are 
among the classical approaches introduced in the early years. Constructive methods, as 
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the name suggests, aims to obtain the ideal topology by gradually expanding the model 
starting from a minimal architecture. For example, the cascade-correlation approach is an 
example of constructive methods (Fahlman and Lebiere 1990). On the other hand, destruc-
tive methods start from a large architecture first and then are followed by removing neurons 
or pruning the connections on this architecture. Therefore, they are often referred to as 
pruning methods. A popular example of destructive methods is LeCun’s Optimal Brain 
Damage (OBD) (1990b). Although these methods address the problem of structuring ANN 
models, they investigate restricted topological subsets rather than the entire surface of pos-
sible ANN architectures (Fischer and Leung 1998). The inefficiency of conventional meth-
ods has led researchers to exploit global search algorithms. Mostly inspired by natural phe-
nomena, Metaheuristics are usually applied in such circumstances where the search space 
is infinitely large. A general characteristic of Metaheuristics is that they can obtain an opti-
mum solution to very difficult problems in a reasonable time.

3.5.3  Metaheuristics

Metaheuristics are stochastic/non-deterministic global optimization methods that are gen-
erally inspired by nature, the swarm of animals, or daily life. Although they are classified 
in different ways, they generally appear in three different types: single solution-based, pop-
ulation-based, or hybrid (Fig. 12) (Blum and Roli 2003; Dréo et al. 2006; Ojha et al. 2017). 
While some of them have memory features, some others are memoryless approaches.

3.5.3.1 Single solution based metaheuristics As it can be understood from its name, these 
methods proceed with only one solution during the search. Examples of single solution-
based metaheuristics are Simulated Annealing (SA) (Kirkpatrick et al. 1983), which simu-
lates the warming and cooling processes of substances in the metallurgical industry, and 
Tabu Search (TS) (Glover 1989, 1990) inspired by the phenomenon of taboo in human 
behavior. Furthermore, local search algorithms such as Variable Neighborhood Search 
(VNS) (Mladenović and Hansen 1997) and Greedy Randomized Adaptive Search (GRASP) 
(Feo et al. 1994) also fall into this class.

Fig. 12  Classification of Metaheuristics
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3.5.3.2 Population‑based metaheuristics Population-based algorithms are global optimi-
zation methods that are mostly inspired by nature and based on the principle of perform-
ing the search with more than one candidate solution on every iteration. Unlike single-
solution-based approaches, they have global search capability. Evolutionary computational 
approaches are among the most popular population-based methods. It is based on the 
survival of the fittest principle of evolution theory. Another example of population-based 
approaches is Swarm Intelligence. The most common methods in this approach are Particle 
Swarm Optimization (PSO) (Eberhart and Kennedy 1995), Ant Colony Optimization (ACO) 
(Dorigo et al. 1996), and Artificial Bee Colony Algorithm (ABC) (Karaboga 2005) which 
are inspired by self-organized behaviors of animals such as fish, birds, bees and ants (Ojha 
et al. 2017). In this method, a random swarm is created initially, and the behavioral patterns 
of the swarm help the search move to directions of possible solutions. For example, flocks of 
birds in PSO form a weight vector and search the entire search space for food and direct the 
flock towards the food source (good solutions). Similarly, ACO is inspired by the ant swarm 
looking for food and leaving pheromone in the direction of the food source. As the level 
of pheromone increases, the search is steered to better solutions. Many other algorithms, 
inspired by nature, have been developed. These are including, but are not limited to Gray 
Wolf Optimization (Mirjalili et al. 2014), Cuckoo Search (Yang and Deb 2009), and Firefly 
algorithms (Yang 2009).

3.5.3.3 Hybrid metaheuristics Another important paradigm in metaheuristics is hybrid 
approaches. In the hybrid approach, called a memetic algorithm, the strategy is to combine 
more than one global or local search algorithm to obtain a stronger algorithm. Conventional 
or local search algorithms reach the results fairly quickly, while the risks of trapping into 
local minimum are higher. On the other hand, population-based global search methods are 
slower but have the ability to reach the global minimum. It is aimed to obtain more effective 
results with the synergy of these two approaches.

3.6  Evolutionary computation

Evolutionary computation is a set of global optimization techniques that have been widely 
used for training and automatically designing neural networks (García-Pedrajas et  al. 
2003). It is undoubtedly the most popular and successful population-based metaheuristic 
optimization paradigm inspired by biological evolution (Sun et  al. 2019c). Throughout 
its historical development, several evolutionary approaches have been proposed including 
Genetic Algorithms (GA), Evolutionary Programming (EP), Genetic Programming (GP), 
Evolutionary Strategies (ES), etc., among which GAs became the most popular due to their 
biological grounds and superior performance in solving various optimization problems in a 
reasonable time. A general classification of Evolutionary Computation methods is depicted 
in Fig. 13.

Evolutionary approaches mimic natural selection, adaptation to the environment, and 
survival of the fittest principles of biological evolution. Similar to the evolution of living 
organisms in nature, they aim to reach a global solution by improving the candidates called 
individuals within each population in each generation. Thus, without having any a priori 
information, it can simultaneously search many points in the architecture space in paral-
lel and reach the optimum solution in a short time without trapping into the local mini-
mum. This makes it one of the most successful methods for architectural design in artificial 
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neural networks. Therefore, the newly formed discipline of evolutionary computation-
based methods used for network design or network training in artificial neural networks is 
called Neuroevolution (Stanley et al. 2019).

In evolutionary computation, all features of an individual in the population are encoded 
on the chromosome as in DNA encoding. This encoding can be binary, real number, or 
categorical. The encoded chromosome is called the genotype, while decoded features are 
called the phenotype. Each value encoded in the chromosome is called alleles. Evolu-
tionary Computation is divided into various sub-disciplines: evolutionary programming, 
genetic algorithms, genetic programming, evolution strategies, and differential evolution. 
Although they all mimic the natural processes of biological evolution and having many fea-
tures in common, there are some methodological differences. For example, only selection 
and mutation operators are used in evolutionary programming, while genetic algorithms 
use all genetic operators such as selection, crossover, and mutation. In addition, in the sub-
discipline of genetic programming, reproduction is tree encoding instead of binary or real-
coded (Bäck et al. 1997; Baldominos et al. 2020; Spears et al. 1993).

3.6.1  Evolutionary programming (EP)

Evolutionary Programming focuses on the evolution of various parameters of fixed com-
puter programs. It was proposed by Fogel et al. (1964; 1962; 1966). The basic approach in 
the optimization of these parameters is the selection and random mutation in generations. 
In this method, the crossover operator is not applied. With this feature, it is less affected by 
encoding restrictions. For many authors, EP is the most suited paradigm of evolutionary 
computation for evolving ANNs (Angeline et al. 1994; García-Pedrajas et al. 2003).

Fig. 13  Classification of Evolu-
tionary Computation Methods
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3.6.2  Genetic algorithms (GAs)

Genetic algorithms are an evolutionary global optimization technique introduced by John 
Holland in 1975 (De Jong 1975; Goldberg and Holland 1988; Holland 1975; Mitchell 
1998). It has been applied to a wide variety of problems and demonstrated superior per-
formance. Unlike the other evolutionary approaches, GA incorporates a ‘crossover’ opera-
tor to imitate the effect of sexual reproduction (Jones 1993). However, in artificial neural 
network design, some researchers avoided the crossover operator. This is due to a permuta-
tion problem or a phenomenon called competing conventions. In this problem which will 
be detailed in the next section, it is observed that chromosomes with different encoding 
produce the same mathematical output. This creates an undesirable situation in terms of 
optimization.

3.6.3  Evolutionary strategies (ES)

In this approach, a vector consisting of real numbers is subject to evolution by using selec-
tion and mutation operators. This paradigm was introduced in the 1970s by Rechenberg 
(1973) and Schwefel (1977). It uses representations independent of the natural problem 
and uses only selection and mutation as operators. Later on, Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) has been developed which can take the results of each 
generation, and adaptively increase or decrease the search space for the next generation 
(Hansen and Ostermeier 1996, 1997).

3.6.4  Differential evolution (DE)

Differential Evolution was developed by Storn and Price (1997) to overcome various defi-
ciencies in evolutionary approaches. The method they proposed is non-differentiable, non-
linear, and has parallelization capability which can handle multi-model cost functions eas-
ily. It has fewer control parameters and good convergence features. The vector generation 
scheme of DE leads to a rapid increase in population vector distances if the target function 
surface is flat. This “divergence feature” prevents the DE from progressing very slowly 
in shallow areas of the objective function surface and ensures rapid progression after the 
population passes through a narrow valley.

3.6.5  Genetic programming (GP)

Genetic Programming is an extension of Genetic Algorithms, invented by Cramer (1985) 
and further developed by Koza (Koza 1992, 1995). Genetic Programming enables 
machines to automatically build computer programs (Gruau 1994). Koza used LISP, which 
is a tree-based programming language to evolve compute programs to solve several tasks. 
A LISP program can be defined as a rooted and labeled tree called the S expression. LISP 
functions are represented as labels and leaves are labeled with constants or inputs. Com-
puted S expression values form the output. Crossover of two parent trees is accomplished 
by cutting a sub tree from one parent and pasting to another as a replacement. As the key 
researcher on this paradigm, John Koza applied this paradigm for generating neural net-
works and optimizing both architectures and weights (Koza and Rice 1991).
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3.6.5.1 Gene expression programming (GEP) Gene Expression Programming was invented 
by Ferreira (2001; 2006), as a variation to Genetic Algorithms. Unlike GAs, in which indi-
viduals of a population are linear strings of fixed length, and unlike GP, in which individu-
als are nonlinear entities of different sizes and shapes (parse trees), GEP incorporates both, 
encoding individuals first as a linear string of fixed length, then representing them as expres-
sion trees (ET). Expression trees are encoded into a linear form by using Karva language 
and the encoded tree is then called a K-expression. GEP allows the creation of multiple 
genes, each coding for a program in a small size or sub-expression tree. Ferreira also used 
GEP to evolve ANNs, claiming his algorithm is very well suited, producing valid structures 
all the time.

3.6.5.2 Grammatical evolution (GE) Grammatical Evolution is an evolutionary search 
framework, typically used to generate computer programs defined through context-free 
grammar, which describes the syntax of expressions (Noorian et al. 2016). It is introduced 
by Ryan, Collins, and O’Neil (1998) in 1998. GE is designed to evolve programs in any 
language by using a variable-length linear genome and adopts BNF (Backus Naur Form) 
to express the grammar in the form of production rules. When compared to GP, it is more 
flexible since the user is able to constrain the way in which the program symbols are assem-
bled together (Drchal and Šnorek 2008). Later it was improved by Lourenço et al. (2016) as 
structured grammatical evolution (SGE) to address the redundancy and locality issues in GE 
and consisted of a list of genes, one for each non-terminal symbol (Assunçao et al. 2017).

3.7  Genetic operators

Evolutionary Algorithms typically apply genetic operators namely: Initialization, Selec-
tion, Reproduction (crossover), and Mutation. More recently elitism is introduced to 
improve performance on some real-world tasks. Inspired by biology, these operators are 
essential tools to obtain global optimum for a given problem, and the performance of the 
algorithms mainly depends on how these operators are exploited.

3.7.1  Generating the initial population

In evolutionary approaches, first of all, a population of determined size is generated. Each 
individual in the population represents a solution to the problem. The population size is 
one of the important parameters affecting the solution. The large selection of the popula-
tion size increases the diversity while bringing extra calculation costs. Selecting rather a 
small population size causes the search area to narrow. The generation of the initial popula-
tion is usually carried out randomly. This allows starting from different points in the solu-
tion space.

3.7.2  Fitness function and evaluation

The convergence of the individuals in a population is evaluated by the fitness function. For 
this reason, the fitness value of the genotype is calculated. In Genetic Algorithms, the fit-
ness function is unique to the problem. The fitness represents how suitable the individuals 
are for the solution. The performance expected from genetic algorithms is related to the 
precise determination of the fitness function.
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3.7.3  Selection

The selection process eliminates individuals with low quality and transfers better individu-
als to the next step, reproduction. Based on the Darwinian principle of survival of the fit-
test, individuals with higher fitness are more likely to win during selection, although the 
process involves randomness in nature. There are many methods in the literature for selec-
tion. Among them, the roulette wheel, tournament selection, and rank method are the most 
frequently used.

3.7.4  Reproduction (Crossover)

The reproduction process is executed by crossover which simulates the sexual generation 
of a child, or offspring from two parents (Koehn 1994). Individuals selected for reproduc-
tion produce offspring who share the common characteristics of their parents. It is algorith-
mically accomplished by taking and combining some parts of two parents and forming the 
child (Fig. 14). How the crossover is carried out may vary depending on the structure of 
the encoding and the nature of the problem. The most commonly used crossover methods 
are single-point, two-point, arithmetic, and uniform crossover. This step, which seems to be 
not making sense at first glance, determines new solution candidates that bring us closer to 
the optimal solution. In genetic algorithms, generally, the entire population is not subject to 
crossover operation. Only, a determined part of the whole is taken to the crossover.

3.7.5  Mutation

Mutation in nature is the change or degradation of a DNA molecule that is found in the 
nucleus of the living cell and enables the emergence of hereditary properties. Some pos-
sible causes of mutation are radiation, X-ray, ultraviolet, sudden temperature changes, and 

Fig. 14  Crossover operation on a 
binary string

Fig. 15  Mutation on a binary 
string
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degradation as a result of chemistry. The mutation is very rare and takes place in a very 
small part of the chromosomes. In genetic algorithms, the mutation is a small, structural 
change in chromosomes similar to the natural phenomenon (Fig. 15). As in selection and 
crossover strategies, the ultimate goal in solving the problem is to reach an optimal solu-
tion without getting caught in local optima. There is always a possibility that the genetic 
algorithm solution will get trapped in a local solution. A way to eliminate this possibility 
is to mutate some chromosomes. This increases the chances of obtaining the ultimate opti-
mum solution.

3.7.6  Elitism

Although the selection strategy seeks to find good candidates, some powerful individuals 
among the population can also be eliminated, as the process will proceed randomly. Elitism 
is applied in order to prevent losing good solutions and ensure that the strongest candidates 
can be transmitted to the next generation in absolute terms. Although criticized for its ten-
dency to converge prematurely, the elitist strategy was used in many studies and produced 
encouraging results. What is important here is to determine the number of population 
members to be separated by elitism. Care should be taken to select the most suitable ratio 
considering that the high amount can reduce the diversity, resulting in a local minimum.

3.8  Multi‑objective evolutionary algorithms

The only goal in architectural optimization in Artificial Neural Networks is not high accu-
racy or good generalization. An algorithm with good generalization capability but high 
computational cost is not suitable for many real-world problems with time and hardware 
constraints. Therefore, in addition to network performance, algorithms require to meet 
more than one criterion such as model size and computational complexity. Multi-Objective 
Evolutionary Algorithms, which were put forward for such problems, were also preferred 
in the architectural optimization of artificial neural networks.

A cost function with two contradictory objectives usually comes with an objective 
causing the other objective to get dominated. Thus, a nondominated solution is called a 

Fig. 16  Pareto-front for two 
objectives
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Pareto-optimal solution. All Pareto-optimal solutions are also called Pareto-front. A plot of 
Pareto-front with two objectives is depicted in Fig. 16.

Multi-objective evolutionary algorithms are generally examined in two categories. 
These are non-Pareto-based or Pareto-based multi-objective approaches. Non-Pareto-
based approaches work on the principle of aggregating the cost of criteria that make up the 
objective function. Here the user adds a multiplier that determines the weight of the crite-
rion she/he wants. Then, net fitness is calculated with a weighted sum. On the other hand, 
in Pareto-based approaches, the criteria are handled as a whole and the solutions that make 
up the Pareto-front are presented to the user.

Multi-Objective Evolutionary Algorithms emerge with the introduction of the Vector 
Evaluated Genetic Algorithm (VEGA) by Schaffer (1985; 1986). Later, MOGA (Fonseca 
and Fleming 1993) and NSGA (Srinivas and Deb 1994) were developed. These algorithms 
were based on population diversity based on the individual selection, non-dominated sort-
ing, and fitness sharing mechanism. Later, fast non-dominated sorting and elitism-based 
external archive strategies were adopted. NSGA-II has been one of the most successful 
studies in the literature working on this principle (Deb et al. 2002). In addition, SPEA (Zit-
zler and Thiele 1999), SPEA2 (Zitzler et al. 2001), and PAES (Knowles and Corne 1999) 
have been successfully implemented on various problems. For further research on these 
works, the reader can refer to (Zhou et al. 2011) and (Zhang and Xing 2017) for detailed 
surveys.

3.9  Coevolutionary approaches

Although they are powerful, evolutionary algorithms may perform poorly in problem types 
where search space is very large. This is more prohibitive, especially when the fitness func-
tion cannot be fully expressed. Researchers employ coevolutionary methods in such situa-
tions. The co-evolutionary algorithm is a type of evolutionary algorithm, where the fitness 
function depends on the relationship between individuals in the population. Relationships 
between individuals are evaluated and fitness is determined. In other words, there is relative 
fitness instead of directly calculated fitness. This shows that the coevolutionary algorithm 
is significantly different from the classical evolutionary algorithm (Azzini and Tettamanzi 
2006; Potter and De Jong 1994; Potter and De Jong 1995; Wiegand 2003). Coevolutionary 
algorithms are basically divided into two sub-categories as Cooperative and Competitive.

3.9.1  Cooperative coevolution

In Cooperative Coevolution, every individual in the population contributes in cooperation 
with other individuals to solve the big problem. In order to obtain a general solution, all 
individual solutions must be brought together.

3.9.2  Competitive coevolution

In competitive coevolution, individuals evolve in competition with each other. In this com-
petition, individuals with high fitness survive according to Darwin’s survival of the fit-
test principle, while those with low fitness disappear. These types of algorithms can be 
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explained as follows: Let’s consider two models that have a predator–prey relationship with 
each other. Considering that one of these models is a network that performs sorting or 
pattern recognition, and the other model is a mechanism that generates input for this net-
work, the first model will try to recognize better in the process of evolution, and the other 
network will produce more difficult inputs for the first network. In this way, they will help 
each other to reach a global solution (Hillis 1990).

4  Representation

The most important aspect of an evolutionary design is undoubtedly genetic representa-
tion. Representation is the method that describes how the genetic chromosome, in other 
words, the genotype is encoded and how to transform an encoded genotype into the explicit 
form of a feature string, called the phenotype. Genetic encoding directly affects the speed 
and efficiency of the solution process. For this reason, an effective encoding mechanism 
will be one of the most important factors that determine network performance. Although 
named differently by different authors, there are basically two representation methods (Flo-
reano et al. 2008; Gruau 1994; Yao 1993). These are direct encoding and indirect encoding 
(Fig. 17).

4.1  Direct encoding

Direct encoding, also called strong representation (Miller et al. 1989) or high-level encod-
ing (Schiffmann et al. 1993), is a method in which structural parameters of ANN architec-
ture are directly encoded in the chromosome. The connections between each node forming 
the network and the connections between these nodes are often expressed as binary with 
the help of a connection matrix. For instance, an NxN matrix can represent an ANN archi-
tecture with N nodes, where cij indicates the existence or non-existence of a connection 
from node i to node j. We can use cij = 1 to indicate an existing connection and cij = 0 to 
indicate no connection. The final chromosome will be formed by concatenating the matrix 
rows (Fig. 18).

The main advantage of direct representation is that each parameter can be expressed 
explicitly. In addition, since it does not require any special encoding, its conversion from 

Fig. 17  Classification of Encoding Strategies
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genotype to phenotype or phenotype to genotype is very fast. On the other hand, since the 
chromosome that will form as the network model grows will expand exponentially, it is 
preferred only in small-size networks. If there is enough prior domain knowledge about 
the network, for example, if the network is known to be fully connected feedforward, only 
a smaller chromosome can be obtained by encoding the number of layers and the number 
of nodes in each layer to the chromosome. In cases where direct representation is preferred, 
extra care is required when using evolutionary operators because model integrity may be 
impaired in operations such as crossover, leading to the creation of infeasible child net-
works (Stanley 2004).

4.2  Indirect encoding

The representation approach in which the Artificial Neural Network model is expressed in 
various production rules and systems is called low level, weak, recipe, or indirect encoding 
(Branke 1995; Schiffmann et al. 1993). The structural features that make up the network 
are encoded (or generated) using various parameters or developmental rewriting rules. 
Also, not all features of the network model need to be specified. The chromosome structure 
can be reduced by encoding only important parameters.

The emergence of indirect encoding is motivated by biological phenomena. While 
human DNA is home to only 30.000 chromosomes, there are billions of neurons and tril-
lions of connections between the neurons in the human brain (Mjolsness et al. 1989). This 
is the basic indication that DNA somehow encodes the human brain indirectly. In order 
for a compact encoding to be possible in this way, the structures formed must be highly 
regular.

Throughout history, indirect encoding has been implemented in various ways and used 
for the evolutionary design of Artificial Neural Network architecture. Yao (Yao 1993) clas-
sifies indirect encoding into three categories. These are:

• Parametric (Blueprint) encoding, which encodes parameters for constructing connec-
tivity.

Fig. 18  Direct Representation of a neural network. An NxN matrix representing the connectivity scheme of 
ANN is expressed as binary. In this matrix, 1 indicates the existence of connection, and 0 indicates no con-
nection
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• Developmental Rules, rewriting grammars and nature-inspired systems.
• Fractals from biology.

According to Stanley (2004), the effectiveness of indirect encoding originates from gene 
reuse. By using multiple times of a single gene at different developmental stages, an effec-
tive representation as in DNA can be obtained. Stanley examined indirect encoding in two 
categories. In the first category, he argued that phenotypic structures were created with 
repeating patterns and that the same pattern was repeated with a structural theme, while 
in the second category, the same was used to create different developmental pathways. He 
added that in the second category, different structures can be expressed in different loca-
tions. He stated that numerous left/right symmetries in vertebrates and numerous receptive 
fields in the visual cortex are biological examples of this type of encoding.

4.2.1  Parametric representation

Parametric representation, which is also known as Blueprint encoding, is one of the earliest 
forms of indirect encoding, in which the properties of Artificial Neural Network architec-
ture are encoded with several parameters. These parameters define the number of layers, 
the number of neurons in each layer, and how neurons connect with each other. The most 
important advantage is that large models can be expressed with relatively small chromo-
somes. On the other hand, it is restricted to a range of architectures and may not achieve 
modular architectures (Gruau 1994). The pioneering example of this type of encoding is 
the work of Harp et al. (1989). Later on, Hancock (1993), Dodd (1990), and Mandischer 
(1993) used similar encoding techniques.

4.2.2  Developmental approaches

In the developmental representation, which is also defined as a grammatical encoding 
(Kitano 1990) in the early studies, the artificial neural network architecture is expressed 
by previously determined production or growth rules. The most important feature of the 
method is that it is scalable, abstract, and modular. Thus, even very large networks can be 
represented hierarchically with compact chromosomes. This representation form is a bio-
logically plausible encoding method. According to Boers and Kuiper (1992), this encod-
ing approach is expressed in recipes instead of Blueprints. Living organisms have a very 
modular structure and this modularity creates tissues and organs of cells of the same type 
by repeating each other by following certain growth rules (Dawkins 1986). The cooking 
process of this recipe can be defined as the ontogenesis of an organism, in which the rules 
of splitting or specialization of cells are encoded in the genome (Grönroos 1998). Estab-
lishing developmental rules in the creation of artificial neural network architecture is usu-
ally carried out with recursive equations or graph generation rules. The first examples of 
this type of encoding are Mjolsness’s (1989) and Kitano’s (1990) work. In the following 
years, Gruau’s Cellular Encoding (1994) and Luke and Spector’s Edge Encoding (1996).



1746 H. T. Ünal, F. Başçiftçi 

1 3

4.2.3  Fractals

Fractals are endless development patterns inspired by biological organisms. Popularized by 
Benoit Mandelbrot (1982), Fractals are created by repeating a simple process in an infinite 
loop. They often start with a simple geometrical object and a rule for modifying the object 
leading to a complex structure. One of the earliest and most popular descriptions of a frac-
tal is Koch-snowflake (shown in Fig.  19), which begins with an equilateral triangle and 
then replaces the middle third of every line segment with a pair of line segments that form 
an equilateral bump (Koch 1906).

A fractal representation of ANN connectivity has been proposed by Merrill and Port 
(1991), arguing that they are biologically more plausible than growth rules. They also 
claimed that strong evidence exists about parts of the human body (such as lungs) having 
fractal structures.

Fig. 19  The first six iterations 
of the Koch-Snowflake (redrawn 
from Mandelbrot (1982))

Fig. 20  The Sierpinski triangle drawn using an L-system. It is a fractal with the overall shape of an equilat-
eral triangle, subdivided recursively into smaller equilateral triangles
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4.3  Lindenmayer systems (L‑Systems)

L-systems are a special class of fractals that mathematically models biological growth 
in multicellular organisms, especially plants. L-systems are introduced and developed 
by Aristid Lindenmayer (1971), a Hungarian theoretical biologist and botanist at the 
University of Utrecht. L-system grammars create production rules and morphological 
description strings applied on the starting axiom that consists of symbols with associ-
ated numerical values (Lee et  al. 2005). The process of applying these rules is called 
string re-writing, so highly complex morphologies can be built with relatively sim-
ple rules. L-systems are especially suitable for describing fractal structures such as 
cell divisions in biological organisms and modeling the growth of plants in computer 
graphics (Lee et  al. 2005). A popular example of an L-systems is Sierpinski Triangle 
(Fig. 20). Many researchers developed artificial neural network architectures optimized 
with evolutionary algorithms and inspired by L-systems for representation (Boers and 
Kuiper 1992; Gruau 1994; Kitano 1990).

4.4  Artificial embryogeny (AE)

Stanley and Miikkulainen (2003) introduced the term Artificial Embryogeny by combin-
ing artificial evolutionary systems that utilize the developmental process of embryos in 
nature. In their taxonomic study, they collected all the developmental processes including 
Artificial Ontogeny (Bongard and Pfeifer 2001), Computational Embryogeny (Bentley and 
Kumar 1999), Cellular Encoding (Gruau 1994), and Morphogenesis (Jakobi 1995) under 
one term. Thus, they created a framework for future studies and emphasized that indirect 
coding will have an important place in the evolution of artificial neural networks.

4.5  Other Nature‑Inspired Approaches

Neural networks are viewed by many authors in a broader biological context of artificial 
life. Inspired by the features of neural development in animals, Nolfi and Parisi (1997; 
1994) developed an innovative method encoding neural network architectures into genetic 
strings. In this model, the neurons are represented with coordinates in a two-dimensional 
space. The connections are defined by allowing axon tress to grow in the forward direction 
from neurons. These trees were basically L-system fractals generated from the grammar. 
This work was further developed by Cangelosi et  al. (1994) by adding cell division and 
migration rules to grow neuron population rather than the direct encoding of each neu-
ron to chromosome. Later Cangelosi and Elman (1995) simulated a model of regulatory 
ontogenetic development of artificial neural networks. In their simulation, network growth 
is controlled by genes that produce elements regulating the activation, inhibition, and delay 
of neurogenetic events. In another nature-inspired study, Dellaert and Beer (1994; 1996) 
described a model based on Boolean networks to evolve autonomous agents with develop-
mental processes. The reader may refer to (Cangelosi et al. 2003) for an extensive survey of 
studies on biologically inspired neural development.
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4.6  Competing conventions problem

Competing Conventions problem, also called Permutation problem (Radcliffe 1993) or 
Structural–Functional Mapping Problem (Whitley et al. 1990), is one of the key problems 
that arise in the optimization of Artificial Neural Networks using evolutionary methods. 
During the genetic process, some individual solutions in the population, which are com-
pletely different with their genotype and phenotype but functionally equivalent produce the 
same output. This phenomenon makes the evolutionary optimization process unnecessarily 
slow and causes child networks obtained with crossover to have infeasible or lower fitness. 
In two separate network models shown in Fig. 21, the permutation of the nodes of the hid-
den layer does not change the function of the network.

4.7  Noisy fitness evaluation problem

Due to the stochastic nature of random weight initialization, the fitness evaluation of 
ANN architectures is noisy unless weights are optimized simultaneously (Yao and Liu 
1995). The transformation of genotype to phenotype together with the network train-
ing returns a fitness which would undoubtedly be different for initial weights generated 

Fig. 21  Competing Conventions 
Problem. The permutation of 
nodes in the hidden layer does 
not change the network function
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randomly. This gets worse when an indirect encoding is adopted for representation 
because developmental rules are not deterministic. Some authors opted to evolve both 
architecture and weights at the same time to alleviate this problem. Another approach is 
to train each architecture several times with different initial weights, and then take the 
best result to calculate fitness. However, this will lead to a massive increase in computa-
tion time (Fiszelew et al. 2007).

4.8  Ensembles

The primary objective of Artificial Neural Networks is to provide generalization. A net-
work that achieves high accuracy on the training set may perform poorly on test data, 
which has not been previously introduced. On the other hand, the aim of evolutionary 
methods is optimization. The fitness function of artificial neural networks optimized by 
evolutionary methods aims for high accuracy with training data. However, the global mini-
mum obtained for the highest accuracy does not necessarily mean the best generalization 
has been achieved. In the population, there may be other individuals with lower fitness but 
higher generalization ability. In such cases, ensemble methods are used to obtain the best 
generalization.

5  Historical progress

We investigated the historical progress in three periods. In the first period, we investigated 
the early works by explaining the roots of diverse ideas for chromosome representation. In 
the second period, the emergence and rise of more advanced methods were surveyed. In 
the last period, recent advances in the deep learning era were reviewed.

Fig. 22  Network Blueprint Representation (redrawn from Harp et al. (1990))
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5.1  Early work

Research on the evolutionary design of ANN architectures begins with Harp et al.’s Neu-
roGENESYS (Guha et al. 1988; Harp et al. 1989, 1990), based on the parametric indirect 
coding. Introducing a high-level scheme called Blueprints, the authors defined a variable-
length binary chromosome string consisting of several parameters such as the number of 
layers, layer size, and connections. In this scheme, each segment called area refers to a set 
of nodes in the network. Each area includes relevant parameters and projections to several 
other areas. The start and end of those segments have markers, which help to align of geno-
type during the crossover (Fig. 22). This enabled the representation of larger networks with 
smaller chromosomes. A disadvantage of this encoding is that it can only search for archi-
tecture within a limited subset.

On the contrary, Miller et al. (1989) proposed a direct-encoding-based approach, which 
they define as a strong representation. This model, called Innervator, represents the artifi-
cial neural network with a simple connection matrix. In this matrix, the connection from 
each node to another node is defined with 1 if a connection exists and with 0 if a con-
nection does not exist. Then the GA chromosome is built by concatenating the rows in 
this matrix. The most important advantage of this direct encoding approach suggested by 
Miller et al. is that it can search all possible network architectures (feasible and infeasible) 
in the search space without any restrictions. However, it has a big disadvantage that the 
chromosome length will increase as the network model grows. Thus, it can only be applied 
to small networks (Fig. 23). 

Fig. 23  Connectivity Constraint Matrix (redrawn from Miller et al. (1989)). The first N columns of matrix 
C specify the constraints on the connections between the N units, while the final (N + 1) column contains 
the constraints for the threshold biases of each unit. Here 1 indicates connection, 0 indicates no connection 
and L indicates learnable connection

Fig. 24  Graph generation rules used for generation of the 2–2-1 XOR network (redrawn from Kitano, 1990)
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One of the earliest studies implementing a nature-inspired indirect encoding is the 
graph generation grammar introduced by Kitano (1990). In his approach, Kitano defined 
a context-free production grammar to create the connection matrix of the artificial neural 
network using a modified L-system and created the network structure with 2 × 2 recursive 
iterations starting from an axiom matrix of 1 × 1. Thus, by creating a simple model of neu-
rogenesis in nature, he demonstrated that large networks can also be expressed with the 
help of very small chromosomes (Fig. 24). Although employing conventional search meth-
ods, Mjolsness (1989) described a similar compact encoding scheme where the connection 
matrix of a network is specified by recursive application of developmental patterns.

The beginning of the 1990s has witnessed many other studies in which architectures are 
generated automatically by evolutionary approaches. Wilson (1989) conducted experiments 
on perceptrons and analyzed the performance of models obtained using GA. Schifmann 
et al. (1990) investigated the relations between network structure and classification ability 
of BP. They utilized the so-called BP-Generator based on a mutation-only evolutionary 
strategy to create ANN architectures and compared their performance with standard BP-
nets. Later, they extended their approach with a crossover operator (Schiffmann et al. 1992; 
1993). Hintz and Spofford (1990) proposed a combination of ANN and GA that optimizes 
the network by evolving the number of neurons, weights, and connections. Another study 
that optimizes artificial neural network architecture using GA is Dodd’s (1990) Structured 
Neural Network model. He proposed an approach that simultaneously optimizes generali-
zation ability and network compactness for a pattern recognition problem classifying dol-
phin sounds, with a parametric indirect encoding.

In another pioneering work, an invasive approach was taken by Whitley et  al. (1990) 
optimizing both the weight and architecture of ANN. Contrary to augmenting topologies, 
they started from a fully connected and already trained network and utilized a modified 
GA, which they call the GENITOR algorithm to find connections to be pruned. A sig-
nificant amount of training time was saved by initializing the pruned network using the 
weights in the starting network (Branke 1995). Similarly, Höffgen et al. (1990) used GA to 
minimize networks for better generalization. In the same year, Hancock and Smith (1990) 
developed GANNET to specify the structure of BP-network and implemented their method 
on real-world problems. Later Hancock (1992b) proposed a GA-based approach to prun-
ing the connections of BP-trained neural networks, similar to Whitley et  al. (1990), and 

Fig. 25  A graphical depiction of a LISP S-Expression as a rooted tree, representing a neural network for 
XOR problem (redrawn from Koza & Rice (1991)). Here the root is a linear threshold processing function 
P. W is the weight function with D0 and D1 as inputs
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explored solutions to the permutation problem (Hancock 1992a; Hancock 1993). These 
early works were thoroughly investigated and compared by various authors (Balakrishnan 
and Honavar 1995; Branke 1995; Radcliffe 1990; Rudnick 1990; Schaffer et al. 1992; Weiß 
1994a; Whitley 1995).

As the key researcher of the famous Genetic Programming approach, Koza (1989) had 
shown that computer programs can be evolved to perform a particular task by extend-
ing genetic algorithms applied to tree-based programming languages like LISP. In 1991, 
Koza and Rice (1991) used this Genetic Programming paradigm to obtain both weights 
and architecture of a neural network and applied it to the problem of the one-bit adder 
(Fig.  25). This differs from the previous approaches in that the network architecture, as 
well as the weights, are encoded in the chromosome and they are trained simultaneously. 
Later, Vonk et  al. (1995c) proposed GPNN (Genetically Programmed Neural Network) 
which implemented the same method on toy problems and extended it within another work 
reviewing recent works of the time (Vonk et al. 1995b).

Optimizing both weight and architecture was also an objective by Marshall (1991). 
However, instead of optimizing both at the same time, he adopted a different approach by 
first evolving the network parameters with GA and using BP to calculate fitness. Once an 
optimum structure is achieved, he optimized weights with GA. Dasgupta and McGregor 
(1992) described a Structured Genetic Algorithm (sGA) to optimize both architecture and 
weights with a hierarchical two-level direct representation, where high-level genes activate 
or de-activate sets of lower-level genes. In this approach, the high-level part of the chro-
mosome encodes the connectivity scheme while the low-level encodes weights and biases 
with binary strings. Robbins et al. (1993) used GANNET which adopts a direct encoding 
approach where each gene directly represents the presence or absence of a connection in 
the network. Although producing long strings, which are not suitable for large networks, 
their prototype was capable of designing, implementing, and evaluating a variety of multi-
layer perceptrons while outperforming conventional methods such as random search, hill-
climbing, and parallel hill climbing.

Early works had many innovative approaches for chromosome representation. Fullmer 
& Miikkulainen (1992) proposed a marker-based encoding scheme which is inspired by 
the biological structure of DNA. In this approach, markers are used to separate individual 
node definitions, containing all information about a node such as its identification, initial 
activation value, and a list of values which specifies its input sources and weights. This 
enabled the use of recurrent nodes and nodes without an input, acting as bias nodes which 
are normally used in BP learning. Later this approach was extended by Moriarty & Miik-
kulainen (1993; 1995a; 1995b), who developed new game-playing strategies based on the 
evolution of ANNs. They described the marker-based chromosome as a continuous circular 
entity and improved the predecessor work by defining only hidden nodes, which enabled 
more compact encoding when the output layer is large. The flexibility of location-inde-
pendent alleles gave the genetic algorithm more freedom to explore useful schemata. Their 
solution was able to discover new strategies in Othello, a popular strategy board game 
in Japan, similar to Go. In a preliminary study, Gruau (1992; 1993) introduced Cellular 
Encoding designed with a cell rewriting developmental process to improve Kitano’s (1990) 
graph generation grammar. This sophisticated indirect encoding approach was claimed by 
the author to be biologically more plausible, compact, modular, and abstract. It evolves 
both architecture and weights represented in binary form with target functions as boolean 
functions. Later, in his doctoral dissertation (1994), he presented Cellular Encoding as a 
machine language for neural networks and published many other works implementing and 
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comparing his approach with other encoding strategies (Gruau and Quatramaran 1997; 
Gruau et al. 1996; Whitley et al. 1995).

After Kitano and Gruau, many successful studies were followed inspired by biologi-
cal developmental patterns. Since the brain is considered to be a highly modular structure, 
a significant amount of work has been devoted to understanding the cooperative interac-
tion between these modules in the visual system of a mammalian brain. Happel and Murre 
(1992) explored such modular constraints on neural networks and used CALM (Categori-
zation and Learning Modules), a GA-based algorithm to search for suitable modular archi-
tectures. In an extension to their initial work (Happel and Murre 1994), they proposed a 
modular neural network framework to model the brain’s global and local structural regular-
ities. Instead of beginning with a fully connected network, they build a modular structure 
with sparse connections. In a case study of recognizing handwritten digits, a significant 
improvement has been observed in the generalization performance (Fig. 26). Also inspired 
by the brain, Elias (1992) described a connection pattern, modeled after morphologically 
complex biological neurons which are evolved with GA and implemented over analog elec-
tronic hardware constructed from artificial dendritic trees which exhibit a spatiotemporal 
processing capability. In another biologically motivated work by Bornholdt and Graudenz 
(1992), arbitrary connections, including asymmetric, backward directed, and feedback 
loops among the neurons of a generally diluted model-brain was allowed. They divided the 
neurons of the model into three groups: input neurons, cortex neurons, and output neurons. 
The architecture of the cortex, which is not grouped into layers, is designed to be arbitrary. 
Similarly, Jacob and Rehder (1993) proposed a hierarchically structured connectionist 
model, inspired by the intuition of a network designer who builds architectures in mainly 
two stages. In the first stage, a course connectivity structure is evolved. In the second stage 
network, architecture is fine-tuned through learning and adaptation by the specialized task. 
They used context-free grammar to represent net connectivity and optimized both weights 

Fig. 26  The modular structure 
of the winning network after 
GA search of CALM (redrawn 
from Happel and Murre (1992)). 
Dashed arrows indicate learning 
input connections while solid 
arrows indirect unidirectional 
learning connections between 
modules



1754 H. T. Ünal, F. Başçiftçi 

1 3

and architecture of neural networks. Inspired by Kitano’s work and aiming to develop a 
universal network generator, Voigt et al. (1993) described a model called Building Blocks 
in Cascades Learning (BBC-Algorithms) and its extension with an evolutionary frame-
work called BBC-EVO algorithm based on L-systems. Their evolutionary framework was 
based on the classical Evolution Strategy with self-adaptation of strategy parameters. Later 
they extended their work with BBC-EA (Born and Santibánez-Koref 1995; Born et  al. 
1994), discussing the structuring task as an example of the pseudo-boolean optimization 
problem.

Measuring the effects of representation was an interest by several authors including 
Marti (1992). He used GAs to obtain parameters to generate neural networks and analyzed 
their behaviors with various genome representations. Karunanithi et al. (1992) adopted a 
constructive approach named Genetic Cascade Learning as an intuitive solution to com-
peting convention problems. Their proposed method combined GA and the properties of 
the Cascade-Correlation learning algorithm (Fahlman and Lebiere 1990) by adding one 
hidden unit at a time. Alba et al. (1993a; 1993b) built a three-level genetic ANN design, 
where the top-level defines structure, the middle layer defines connectivity and the lowest 
level sets the weights. They developed a tool called GRIAL (Genetic Research in Artifi-
cial Learning) to apply various GA techniques and used PARLOG, a Concurrent Logic 
Language to implement GA and ANN behavior in GRIAL, which attains intra-level dis-
tributed search and parallelism. Following the principle of natural evolution and growth, 
Boers et al. (1992) described a reverse engineering model of the mammalian brain using 
L-systems combined with GA to design ANN architectures, trained with BP. With the help 
of an indirect representation scheme based on production rules, they were able to reduce 
the computation cost with modular and scalable architectures. Following a different path, 
Braun and Weisbrod (1993) utilized a direct representation scheme for a constrained archi-
tecture space. Aiming to overcome competing conventions problem, they proposed ENZO, 
a genetic algorithm-driven neural network generator which evolves both the architecture 
and weights for specific problems. Mandischer (1993) developed a representation scheme 
to construct backpropagation networks using GA. It is based on layers, which structures the 
network as a list of network parameters and layer blocks. Another attempt to optimize both 
the architecture and weights of a neural network was reported by White & Ligomenides 
(1993) using a node-based encoding. In their proposed algorithm, which they call GAN-
Net, they used a distributed GA with multiple populations to discover and protect the best 
individuals among subpopulations. Another survey was carried out by Koehn (1994) in his 
master thesis, investigating various encoding strategies which influence GAs and ANNs.

Although GA has dominated the area of research as a powerful optimization method, 
other evolutionary computation techniques were also on the focus of some researchers. 
McDonnell and Waagen (1993) evolved connectivity and weights of ANN simultaneously, 
by using evolutionary programming (EP) as a stochastic search method, considering the 
task as a combinatorial optimization problem. One of the most cited works taking a non-
GA approach is by Angeline et al. (1994). They implemented GNARL (GeNeralized Acqui-
sition of Recurrent Links) which adopts a modified EP by using only selection and muta-
tion operator to optimize both architecture and weights of recurrent networks. They argued 
that GAs are not well suited for the evolution of networks due to the deceptive nature of the 
crossover operator. In a relatively unusual approach, Oliker et al. (1993) proposed distrib-
uted genetic algorithm, which operates separately on each of the hidden and output layer 
nodes and adopts a fitness function which considers the overall network error and estima-
tion of the network’s convergence capability. It creates multiple populations of GA which 
work together to build an optimum network structure while allowing parallel processing 
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and reducing the search space. Another modification of GA was proposed by Zhang and 
Mühlenbein (1993; 1993), called Breeder Genetic Programming (BGA) to optimize both 
architecture and weights at the same time. The authors define BGA as a recombination 
of ES and GAs, having a search process mainly driven by recombination and using varia-
ble-size chromosomes, which is a typical characteristic of GP. It employs Occam’s Razor 
(Thorburn 1918) in the fitness function, which states simpler models should be preferred to 
unnecessarily complex ones. Thus, their proposed method establishes an optimal trade-off 
between the performance and size of the network by allowing partial and direct connec-
tions between distinct layers, encouraging smaller architectures.

The success of evolutionary approaches had intensified research on this topic by the 
mid-1990s. Maniezzo (1994) proposed ANNA ELEONORA (Evolutionary Learning Of 
Neural Optimal Running Abilities) based on a parallel genetic algorithm to evolve the 
architecture and weights of a neural network. He used an extended direct encoding scheme, 
similar to Miller et al. (1989), where each connection is represented directly but also fol-
lowed by relevant weights in binary form. The variable-length chromosome structure fea-
tures granularity encoding which is a control parameter designating the number of bits in 
the first byte of the string (Fig. 27).

Another innovative approach inspired by biology is the model of morphogenesis by 
Michel and Biondi (1995). They defined both structure and weights of a neural network 
by morphogenesis, starting with a single cell, and establish connections allowing modular 
recurrent networks by mimicking protein synthesis regulation in biology. Wong and Goh 
(1994) used GENETICA-A, which is a GA-based neural network optimization module 
to search for the best possible network architecture. They applied overlapped tree struc-
tures as chromosome representation and described the fitness function based on the gen-
eralization performance. This helped overcome overfitting and enabled finding the best 
networks in the selection. In his doctoral dissertation, Sałustowicz (1995) introduced the 
Semantic Changing Genetic Algorithm (SCGA) and Unit-Cluster Model for automatically 
constructing feedforward neural networks. Aiming to find problem-dependent modular 
topologies and speed up the optimization, he extended simple GA and described a second-
level genetic coding with bit strings. The main idea of his indirect encoding strategy is to 
translate the bit strings into meaningful symbol strings using a self-adapting symbol table. 

Fig. 27  Granularity encoding scheme of ANNA ELEONORA (redrawn from Maniezzo (1994)). Connec-
tivity is represented with presence/absence bits. The first byte of the string indicates the number of bits (the 
granularity) for corresponding weight
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Then, the symbol strings can be decoded to phenotype. Modularity is ensured via Unit-
Cluster Model with backbone connections between clusters. He used BP for the training 
of the networks and calculate fitness. Tang et al. (1995) proposed a structural genetic algo-
rithm called Structural Genetic Trained Neural Network (SGTNN) to optimize the archi-
tecture and weight of a neural network with a hierarchical chromosome model partition-
ing the genes into control genes and connection genes. They described higher-level control 
genes represented in binary strings to govern the architecture and connection genes with 
real values to represent weights and biases.

Along with the proliferation of the studies in this field, hybrid innovations started to 
appear which combined the advantages of various approaches. Vonk et  al. (1995a) took 
Kitano’s grammar encoding (1990) to design a neural network architecture and adopted 
Dasgupta and McGregor’s Structured Genetic Algorithm (sGA) to evolve weights (Das-
gupta and McGregor 1992). They described the chromosome with a two-level hierar-
chy, where the top-level represents the structural part as matrix rewriting rules and the 
bottom level represents the parametric part with real-valued strings. Cho and Shimohara 
(1996) proposed another modular approach which adopted the ideas and methodologies 
of Artificial Life based on the neuropsychological evidence proving the modular structure 
of human information processing system. By using a tree-structured genetic encoding to 
express connections between modules, they applied GA to make ANNs evolve their own 
structure autonomously. Rudolph (1996) defined the general paradigms and theoretical 
foundations of ANN architecture design, reaching the conclusion that GAs are the most 
convenient approach to achieve the best generalization performance. Using a direct repre-
sentation, he described a specifically designed GA and a modified fitness function based on 
the theory of dimensionally homogenous functions (Rudolph 1995), to achieve optimally 
generalizing neural networks. In another study, Stepniewski and Keane (1996) stressed the 

Fig. 28  Network architecture and its encoding used by GA (redrawn from Stepniewski and Keane (1996)). 
All hidden units have sigmoid activation and output has a linear (f(x) = x) activation function. The authors 
used a direct representation scheme where a direct connection is possible from each hidden and input node 
to the output
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challenges when using GA to build ANN architectures and proposed solutions to optimize 
the process. Arguing the importance of penalizing model complexity and simplification of 
the structure, they developed relevant procedures to increase the efficiency of GA. Addi-
tionally, they formulated a novel objective function to measure the generalization ability 
(Fig. 28).

Evolutionary programming approaches were also popular due to their flexibility in 
using mutation as the sole genetic operator while not requiring the variables to be encoded. 
It also doesn’t utilize crossover, which is argued by some authors to have a deteriorating 
effect on optimizing ANN structures. Fang and Xi (1997) optimized the architecture and 
weights of neural networks by using EP. They further extended their work to design recur-
rent neural networks with a new type of connection, what they called delayed links. Yao 
and Liu (1995) used EP to evolve neural networks for medical applications. Both authors 
published two additional papers in 1996. In the first paper, they used EP with new muta-
tion operators to evolve the structure and weights of general neural networks with differ-
ent nodes (Liu and Yao 1996a). In their second paper, they proposed an EP-based algo-
rithm, named as Population-Based Learning Algorithm (PBLA) to find both architecture 
and weights of a neural network. Unlike the other previous approaches, they introduced 
partial training when evaluating the population, which resulted in substantial savings in 
computational cost (Liu and Yao 1996). The same authors further developed EPNet (Yao 
and Liu 1997), which evolves both architecture and weight simultaneously, alleviating the 
noisy fitness evaluation problem (Fig. 29). They put special emphasis on network behavior 
rather than its circuitry and encouraged parsimonious structures by architectural mutations.

An innovative encoding strategy was proposed by Luke and Spector (1996) in 1996, 
namely Edge Encoding. They addressed the weaknesses of Cellular Encoding (CE) by 
Gruau (1992, 1993, 1994) and described a new alternative approach for ANN represen-
tation. Similar to CE, Edge Encoding used S-expression-based GP techniques to evolve 

Fig. 29  An example of an optimum network evolved by EPNet for the eight-parity problem (redrawn from 
Yao and Liu (1997))



1758 H. T. Ünal, F. Başçiftçi 

1 3

arbitrary graph structures. However, it differs from CE, in growing graphs by modifying 
the edges, while CE modifies nodes. Furthermore, it favors graphs with fewer intercon-
nections in contrast to the highly connected structure of CE. In the same year, another 
breakthrough was achieved by Moriarty and Miikkulainen (1996) with a new enhanced 
learning method called Symbiotic Adaptive Neuro-Evolution (SANE). Unlike conventional 
evolutionary approaches, SANE evolved a population of neurons instead of networks. Each 
individual neuron in the population represents only a partial solution and establishes a 
connection with the other nodes to construct a complete network. This symbiotic evolu-
tion approach helps genetic algorithms search diverse areas of the solution space concur-
rently. The authors evaluated SANE using the inverted pendulum problem and obtained 
superior performance when compared to the two-layer Adaptive Heuristic Critic of 
Anderson (1989), the Q-learning method of Watkins and Dayan (1992), and the GENI-
TOR of Whitley et al. (1990). Further, they carried out empirical studies to demonstrate 
the effectiveness of their proposed method and improved SANE with Hierarchical SANE, 
which integrates two levels of evolution in a single framework (Richards et al. 1998). The 
works followed stressed the advantages of cooperative coevolutionary approaches, mostly 
inspired by implicit fitness sharing (Horn et al. 1994; Smith et al. 1993) which promotes 
diversity through performing parallel searches in decompositions of the architecture space 
(Moriarty and Miikkulainen 1997). Later in 1998, Richards et  al. (1998) used SANE to 
explore the evolution of networks capable to play the game of GO on small boards with 
no pre-programmed knowledge and achieved promising results for full-scale GO. Later, 
Gomez and Miikkulainen (1999) proposed another neuroevolution method called Enforced 
Sub-populations (ESP) as an enhancement to SANE. Similar to SANE, ESP also evolved 
neurons instead of full networks. However, it differs from SANE in that a subset of neu-
rons, rather than individual neurons, form the complete architecture (Fig. 30). It also allows 
the evolution of recurrent networks.

It is remarkable that only eight years after the first attempt to combine ANN and GAs, 
there were a significant number of researchers working on this topic and proposing inno-
vative solutions in terms of representation and algorithms. De Carvalho (1997) described 
a simple GA approach to automate the design of neural networks by representing the 
structure with key parameters. Bebis et al. (1995; 1997) proposed the coupling of GA and 
weight elimination to prune larger size networks while preserving generalization ability. 
They expressed the network size and complexity in terms of the number of connections 
and used a special fitness function which takes into account both network size and the 
generalization performance. With a similar goal, Zhang and Ohm (1997) proposed a new 
representation scheme called neural trees to create parsimonious neural networks. They 
used a hybrid evolutionary approach in which the architectures are evolved by Genetic Pro-
gramming and other parameters by a local search based on the breeder genetic algorithm 
(BGA). Similarly, Opitz and Shavlik (1997) presented REGENT (REfining, with Genetic 

Fig. 30  A comparison of SANE and ESP (SANE is depicted on the left, and ESP is depicted on the right). 
The ESP suggests the segregation of neurons into sub-populations to form a complete network (redrawn 
from Gomez and Miikkulainen (1999))
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Evolution, Network Topologies) focusing on better generalization while concentrating on 
connectionist theory-refinement systems to make effective use of problem-specific knowl-
edge and better exploit available computing power. The method they described mainly dif-
fers from the other approaches in that it adopts Lamarckian Evolution, a theory based on 
the inheritance of characteristics acquired during a lifetime (Whitley et  al. 1994). They 
implemented this theory to pass trained network weights to the offspring.

Eggenberger (1997) proposed a biologically inspired model based on an artificial 
genetic regulatory system (AGRS) to develop the architecture of ANNs. As an abstraction 
of the natural process, the AGRS controlled epigenetic development such as cell division, 
cell death, and cell differentiation. As a result, the architecture of an ANN was constructed 
by the dynamics of ARGS. Further, he investigated the mechanisms of axonal behavior in 
the brain and drew an analogy with artificial networks while modeling the chemical reac-
tions when building connections (Eggenberger 2000). Fischer and Leung (1998) brought 
together the strengths of GA and BP to propose an evolutionary approach called GENNET 
(GENetic evolution of computational neural NETworks). By implementing a direct repre-
sentation, they used GA to design the topology and utilized Computational Neural Network 
Simulator for backpropagation learning. In his master’s thesis, Grönroos (1998) evolved 
neural network architectures by adopting and comparing various encoding methods pro-
posed by Miller et al. (1989), Kitano (1990), Nolfi, and Parisi (1991), and Cangelosi et al 
(1994). Pujol and Poli (1998) optimized both architecture and weights of a neural network 
using Parallel Distributed Genetic Programming (PDGP) which represented programs as 
graphs based on a two-dimensional grid, arguing the potential of the excessive growing 
size of the chromosome in standard GP. They proposed a dual (linear and 2D) representa-
tion which they claim to avoid this problem by constraining all chromosomes having the 
same number of nodes. Their graph encoding allowed different kinds of crossover enabling 
the swap of subgraphs, while preserving the structure of functional components.

By the end of the 1990s, many researchers published a comparative analysis of various 
approaches and encoding schemes. Siddiqi and Lucas (1998) compared Kitano’s (1990) 
matrix rewriting with simple direct encoding and found out that, contrary to the claimed 
superiority of indirect encoding, direct encoding did not get worse with the increase of 
network size and performed at least as well as the matrix rewriting graph generation sys-
tem. In another comparative study, Aho et  al. (1999) proposed a biologically motivated 
approach combining GA and L-systems to build neural network structures. On a 2-dimen-
sional cell–matrix, they produced L rules automatically by using Genetic algorithms and 
they defined, what they call as “age” which controls the number of firing times to apply 
each rule. Although computationally intensive, they were able to find efficient structures. 
Another indirect encoding was proposed by Lock and Giraud-Carrier (1999) utilizing 
real-valued alleles to evolve both architecture and training parameters of BP-trained, fully 
connected feed-forward neural network using GAs. Their work differs from other invasive 
approaches by not evolving the weights explicitly. Instead, they evolved a single weight 
spread parameter for weight initialization. Then, they used BP to update weights.

The natural advantage of population-based evolutionary approaches is to keep the 
whole set of solutions in each generation. This helps the utilization of ensemble methods 
for obtaining the optimum generalization for the problem. Yao and Liu (1996) took this 
approach by combining all individuals in the last generation and formed an ensemble to 
achieve the final result. According to experiments they conducted; this approach produced 
better results than any isolated networks. Another remarkable study utilizing ensembles 
is Opitz and Shavlik’s (1996; 1999) ADDEMUP (Accurate anD Diverse Ensemble-Maker 



1760 H. T. Ünal, F. Başçiftçi 

1 3

giving United Predictions). They used Genetic Algorithms to generate a population of neu-
ral networks which were combined to form an ensemble to ensure the best accuracy.

With the beginning of the new millennium, many other innovative approaches followed. 
Yen and Lu (2000, 2002) sought to address deficiencies regarding the design of multi-layer 
feed-forward neural networks and proposed a hierarchical encoding strategy composed of 
high-level and low-level gene segments. Their HGA-NN (Hierarchical Genetic Algorithm-
based Neural Network) method is designed in a way that high-level segments have control 
genes determining the states (activated or deactivated) of genes in low-level segments. The 
evolution comes to play to add or delete hidden layers and neurons with a switch-on/off 
scheme. They also evolved weights and biases simultaneously. In another study, Arifovic 
and Gençay (2001) proposed a model selection methodology using Genetic Algorithms. 
Their work was among the first to utilize elitist strategies to improve performance. Their 
direct encoding approach designed the chromosome with several parameters including the 
structure and BP. Motivated from biology, Boozarjomehry and Svrcek (2001) developed 
GADONN (Genetic Auto-Design of Neural Networks) to automatically design neural net-
works based on Genetic Algorithms and L-systems. Their proposed method used a context-
free L-system to encode the developmental rules in the genotype. This indirect approach 
grew the axiom in one direction rather than two dimensions, allowing it to scale better.

Many researchers referred to living organisms in the context of multi-tasking and multi-
learning ability and believed that this can only be accomplished by the modular structure 
of the brain. Ferdinando et al. (2001) were amongst them to construct an evolutionary neu-
ral network structure and aimed to address the problem of interference when networks are 
given more than one task. They compared invasive and non-invasive approaches by con-
ducting simulations and found out that a non-invasive strategy performs better on modular 
architectures. In another innovative study, Moon and Kong (2001) proposed a block-based 
neural network (BBNN) to optimize the structure and the weights at the same time by 
using Genetic Algorithms. In their model, networks were composed of individual blocks in 
a two-dimensional array with four variable input/output nodes and connection weights. The 
blocks could have four different configurations. In order to facilitate the use of digital hard-
ware such as field programmable logic arrays (FPGA), they restricted the weights to inte-
gers and represented structure and weights in bit strings with a 2D direct encoding. Mizuta 
et al. (2001) also used GA to optimize both structure and weights of a neural network by 
proposing a multi-objective approach on fitness function to encourage simple models. A 
summary of early approaches was listed in Table 1. Distribution Graph for Evolutionary 
Computation Techniques Adopted is given in Fig. 31 and Distribution Graph for Represen-
tation Methods is given in Fig. 32.

5.2  The rise

The early works in the field of Neuroevolution are often concerned about encoding strate-
gies and evolutionary approaches proposing innovative genetic operators, fitness functions, 
and connection schemes. Most of the studies with indirect encoding were inspired by biol-
ogy and tried to mimic a natural way of designing neural networks with better generaliza-
tion capabilities. Although indirect representation methods provided encouraging results, 
one of the most prominent works in this field came with a direct encoding approach, 
namely NEAT, which stands for NeuroEvolution of Augmenting Topologies by Stanley 
and Miikkulainen (2001; 2002). As the name suggests, NEAT starts from a very simple 
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Table 1  Early approaches to evolutionary design of neural networks (until NEAT is proposed in 2001)

Authors Year Target* Method** Encoding Refer-
ence

Harp et al
NeuroGENESYS

1989 A GA Indirect (1989)

Miller et al
Innervator

1989 A GA Direct (1989)

Wilson
Perceptron-GA

1989 A GA Direct (1989)

Kitano
Graph L-System

1990 A GA Indirect (1990)

Schifmann et al
BP-Generator

1990 A ES Indirect (1990)

Hintz & Spofford
GA/NN

1990 AW GA Direct (1990)

Dodd
Crossover

1990 A GA Indirect (1990)

Whitley et al
GENITOR

1990 AW GA Direct (1990)

Höffgen et al 1990 A GA Direct (1990)
Hancock & Smith
GANNET

1990 A GA Direct (1990)

Koza & Rice
Genetic Program-

ming

1991 AW GP Tree Based (1991)

Marshall
GA

1991 AW GA Direct (1991)

Dasgupta & 
McGregor

sGA

1992 AW GA Direct (1992)

Fullmer 1992 AW GA Direct (1992)
Gruau
Cellular Encoding

1992 AW GA Indirect (1992)

Schiffman et al
BP-Generator

1992 A GA Indirect (1992)

Happel & Murre
CALM

1992
1994

AW GA Direct (1992; 
1994)

Elias
ADT

1992 AW GA Direct (1992)

Bornholdt & 
Graudenz

GARFIELD

1992 A GA Direct (1992)

Marti 1992 A GA Direct & 
Indirect

(1992)

Karunanithi et al
GCL

1992 AW GA + Cascade Cor-
relation

Direct (1992)

Robbins et al
GANNET

1993 A GA Direct (1993)

Alba et al
GRIAL

1993 AW GA Direct (1993a; 
1993b)
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Table 1  (continued)

Authors Year Target* Method** Encoding Refer-
ence

Boers et al 1993 A GA Indirect (1992; 
1993)

Braun & Weisbrod
ENZO

1993 AW GA Direct (1993)

Jacob & Rehder 1993 AW GA Indirect (1993)
Mandischer 1993 A GA Direct (1993)
McDonnell & 

Waagen
1993 AW EP Direct (1992)

Oliker et al 1993 AW Distributed GA Direct (1993)
Voigt et al
BBC-EVO

1993 A ES Indirect (1993)

Zhang & Mühlen-
bein

BGP

1993a, 1993b AW ES + GA + GP Indirect (1993a; 
1993b)

White and Ligome-
nides

GANNet

1993 AW Distributed GA Direct (1993)

Moriarty & Miik-
kulainen

1993 A GA Indirect (1993)

Maniezzo
ANNA ELEONORA

1994 AW Parallel GA Direct (1994)

Wong & Goh
GENETICA-A

1994 A GA Direct (1994)

Angeline et al
GNARL

1994 AW EP Direct (1994)

Born et al
BBC-EA

1994 A ES Indirect (1994)

Michel & Biondi 1995 AW GA Indirect (1995)
Sałustowicz
SCGA 

1995 A GA Indirect (1995)

Tang et al
SGTNN

1995 AW sGA Direct (1995)

Vonk et al 1995 AW sGA Indirect (1995a)
Vonk et al
GPNN

1995 AW GP Tree-based (1995c)

Born & Santibánez-
Koref

BBC-EA

1995 A ES Indirect (1995)

Yao & Liu
EP-Net

1995 AW EP Direct (1995)

Cho & Shimohara 1996 A GP Tree-based (1996)
Rudolph 1996 A GA Direct (1996)
Stepniewski & 

Keane
1996 A GA Direct (1996)

Liu & Yao 1996 AW EP Direct (1996a)
Liu & Yao
PBLA

1996 AW EP Direct (1996)
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Table 1  (continued)

Authors Year Target* Method** Encoding Refer-
ence

Luke & Spector
Edge Encoding

1996 A GP Tree-based (1996)

Moriarty & Miik-
kulainen

SANE

1996 A GA Indirect (1996)

Moriarty & Miik-
kulainen

Hierarchical SANE

1996 A GA Indirect (1996)

Yao & Liu
EPNet with Ensem-

bles

1996 AW EP Direct (1996)

Fang & Xi 1997 AW EP Direct (1997)
De Carvalho
NeurEvol

1997 A GA Direct (1997)

Bebis et al
GA_BP_WE

1995, 1997 AW GA Direct (1995; 
1997)

Zhang et al
GP-BGA

1997 A GP-BGA Indirect (1997)

Opitz & Shavlik
REGENT

1997 A GA Direct (1997)

Yao & Liu
EPNet

1997 AW EP Direct (1997)

Fischer & Leung
GENNET

1998 AW GA + BP Direct (1998)

Pujol & Poli
PDGP

1998 AW Parallel Distributed 
GP

Indirect (1998)

Gomez & Miikku-
lainen

ESP

1999 AW GA Indirect (1999)

Aho et al 1999 A GA Indirect (1999)
Lock & Giraud-

Carrier
1999 A + Initial 

Weights
GA Indirect (1999)

Opitz & Shavlik
ADDEMUP

1999 A GA Direct (1996; 
1999)

Yen & Lu
HGA-NN

2000 AW GA Direct (2000; 
2002)

Boozarjomehry & 
Svrcek

GADONN

2000 A GA Indirect (2001)

Moon & Kong
BBNN

2001 AW GA Direct (2001)

Mizuta et al 2001 AW GA Direct (2001)

*A: Architecture Optimization, AW: Architecture and Weights Optimization, **GA: Genetic Algorithms, 
EP: Evolutionary Programming, GP: Genetic Programming, ES: Evolutionary Strategies
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Fig. 31  Distribution Graph for 
Evolutionary Computation Tech-
niques Adopted (1989–2001)

Fig. 32  Distribution Graph 
for Representation Methods 
(1989–2001)

Fig. 33  An example of Genotype to Phenotype mapping of NEAT. The genetic representation of the net-
work architecture is composed of genes which have innovation numbers marking their inception. Redrawn 
from Stanley and Miikkulainen (2001)
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architecture and grows the neural network as necessary to meet the desired performance. 
The authors aimed to address competing convention problems by introducing an innovative 
crossover strategy through historical markings. In this way, the marking tells the crossover 
operator which parts of the networks have common features, thus can be swapped. They 
also figured out a way to prevent the early elimination of recent modifications to network 
architecture through a mechanism what they call speciation. An example of the Genotype 
to Phenotype mapping of NEAT is depicted in Fig. 33.

NEAT was a major breakthrough and had a significant impact in the field of Neuro-
evolution. Since its publication, it is applied to many real-world tasks and is still being 
experimented by many researchers, even today. The strongest argument made by the 
authors is that evolving structure along with the connection weights can significantly 
enhance network performance. They named such invasive approaches as TWEANNs 
(Topology and Weight Evolving Neural Networks) and proposed networks starting from 
the minimal structure and gradually increasing complexity. Unlike some previous studies, 
NEAT ensures network parsimony by gradually augmenting models instead of penalizing 
network complexity. Furthermore, innovation is protected through speciation which allows 
the organism to compete primarily within their own niches. The main challenge in aug-
menting topologies is that modification to the network results in lower fitness and causes 
new architectures to die easily among the population. The authors of NEAT were able to 
overcome this by providing the opportunity to new individuals to optimize their structure 
within the niche. Another innovative technique used in NEAT is explicit fitness sharing 
through historical markings, which helps track and measure the similarity of genes during 
genetic operations. Contrary to the general assumption, tracking the historical origins of 
genes didn’t require much computation in NEAT. This solution helped efficiently overcome 
competing convention problem.

With the expedition of research on hybrid approaches, augmenting topologies, and 
modular structures, many other works have been followed. Wang et al. (2002; 2003) took 
a somewhat interesting approach by combining constructive methods with Genetic Algo-
rithms. In their model, a dynamic constructive method is initially adopted to train the 
neural network, and then GA is used to prune the trained network. In this approach, con-
structing and pruning the network were accomplished by adding or removing nodes and 
connections. By employing a binary direct encoding, they aimed to ensure simplicity and 
generality, while facilitating the use of genetic operators such as crossover and mutation. 
Barrios et  al. (2002) described ADANNET (Automatic Design of Artificial Neural Net-
works by Evolutionary Techniques) synthesizing the structure and accomplishing training. 
With this work, they introduced a new indirect encoding technique called basic-architec-
tures codification and new crossover operators named Hamming Crossover and mathemati-
cal morphology crossover. The same authors further developed GANN (Genetic Algorithm 
Neural Networks) which used two twin GAs working in parallel to evolve the structure and 
weights of a neural network (Barrios et al. 2003). Similar to previous work, they employed 
an indirect encoding scheme based on binary codification on an algebraic structure. The 
main advantage of their proposed approach is generating regular patterns while protecting 
the meaningful sub-networks discovered to improve the networks among the population.

A number of researchers have also explored Coevolutionary approaches for finding bet-
ter architectures (Moriarty and Miikkulainen 1997; Moriarty and Mikkulainen 1996; Opitz 
and Shavlik 1996; Potter and De Jong 1995). García-Pedrajas et al. (2003) proposed COV-
NET, a cooperative coevolutionary model for evolving ANNs. As previously explained 
in Sect. 3. this paradigm is based on the idea of creating several subpopulations of sub-
networks evolving in cooperation to solve a problem. The model they developed evolves 
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subnetworks rather than complete networks, thus combining them to form groups to build 
the final network. Later, the authors proposed a new crossover operator to address the per-
mutations problem, which is already known as a competing conventions problem (García-
Pedrajas et al. 2006). A similar cooperative coevolutionary strategy was adopted by Reis-
inger et al. (2004) improving the previously proposed NEAT algorithm as Modular NEAT. 
It is described by the authors as a coevolutionary neuroevolution method which allows 
reusing fundamental neural substructures for modularity. A population of blueprints speci-
fied combinations of modules. As modules were discovered, the evolution and modulariza-
tion were carried out concurrently. In modular NEAT, instead of duplicating, the genes 
were reused in different spatial locations in the network. Based on the experimental results, 
Modular NEAT was able to outperform standard NEAT by obtaining better solution net-
works as well as finding optimum networks faster. The modularity of networks was a hot 
topic of research which was also studied by Jung and Reggia (2004; 2006). They intro-
duced a problem-independent approach based on descriptive encoding using a high-level 
language. Unlike conventional evolutionary techniques where all aspects of a network are 
determined automatically, their model allowed the user to incorporate domain knowledge 
and restrictions to define search space for better performance and lower computational 
cost. Similar to the abstraction process in computer programming, they let users specify a 
problem by writing a simple text file using a high-level language (Fig. 34).

Another enhancement over conventional evolutionary methods was proposed by Leung 
et al. (2003) with an improved GA model. They described a three-layer neural network with 
switches introduced to its connections. By using the improved GA, they tuned the struc-
ture and parameters. The model they proposed allowed the final architecture to be partially 
connected after the application of optimization. This helped reduce the computational cost 

Fig. 34  Descriptive Encoding approach by Jung and Reggia (2004). A human-written specification of neu-
ral networks to be evolved using high-level language is fed to the model. A human-readable output descrip-
tion file is obtained after the evolution process
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significantly. Chen (2004) et al. proposed an innovative hybrid approach which adopted a 
variant of Genetic Programming called modified probabilistic incremental program evolu-
tion algorithm (MPIPE). It eliminates genotype to phenotype, or reverse mapping by using 
a neural tree representation and determines an optimal structure and parameters of neu-
ral trees. In this representation a neural tree can be directly calculated as a flexible neural 
network, thus helping reduce computational costs to calculate fitness function. In order to 
overcome the problem of enlarging search space, they restricted architecture of neural trees 
(Fig. 35).

In order to reduce the computational cost of training every individual network struc-
ture during evolution, invasive approaches became more popular among researchers. Tan 
(2004) proposed a hybrid evolutionary algorithm called GAEPNet to evolve both weights 
and architecture of ANNs simultaneously. What made GAEPNet different from the other 
approaches was the way it combined the strengths of GA and EP on a real-valued multi-
matrix representation. Considering the challenges of utilizing the crossover operator to 
evolve ANN architectures, the model he described introduced a linear combination crosso-
ver and efficient mutation of EP. The encoding scheme was an innovative approach encom-
passing four matrices, similar to Miller et al.’s (1989) connectivity matrix. In these matri-
ces, instead of binary values, real values of weights were used. If a connection did not exist 
between two nodes, the weight was expressed as zero.

With the introduction of NEAT in 2001 by Stanley and Miikkulainen (2001), intensi-
fied research on augmenting topologies have been observed. Kassahun and Sommer (2005) 
proposed EANT (Evolutionary Acquisition of Neural Topologies) to evolve the structure 
and weights of neural networks. Similar to NEAT, it starts with a minimal architecture and 
complexifies the model along the evolutionary process. The exploration of new structures 
was initiated in the event that it was impossible to further exploit the existing structures. 
EANT used CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) and introduced 
relatively compact genetic encoding onto a linear genome. This representation strategy 
allowed evaluating the network performance without the decoding process. The linear 

Fig. 35  A Neural Tree representation. In this example, a neural tree is depicted with three instruction sets 
and three input variables x0, x1, and x2. Redrawn from Chen et al. (2004)
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genome in EANT had a mechanism similar to a tree-based program encoded by linear pro-
grams where terminals were interpreted as network inputs as well as jumper connections 
and functions as neurons. Later this approach was improved by Siebel and Sommer (2007) 
as EANT2. Similar to its first version, it used an indirect encoding and evolved neural 
structures by starting from a minimal model and gradually developing to achieve optimum 
ANN architectures. The authors stated the main difference of EANT2 as a clear separation 
of structural exploration and exploitation. They also used CMA-ES in parameter optimiza-
tion and employed less user-defined parameters. Unlike speciation in NEAT, EANT 2 had 
an explicit way of preserving diversity.

In another sophisticated approach, Palmes et  al. (2005) proposed MGNN (Mutation-
based Genetic Neural Network) to address the problem of computer-intensive operations 
required to train individuals among the population using the gradient-descent-based back-
propagation method. MGNN replaced BP by using the mutation strategy of local adap-
tation inherent in Evolutionary Programming (EP). As an invasive approach, the authors 
adopted an EP-based direct encoding scheme to facilitate flexible and less constraining fit-
ness function which is easier to calculate. The encoding scheme they proposed helped to 
overcome the challenge of possible occurrences of deceptive mapping, including compet-
ing convention problems. Another innovative characteristic of MGNN is the monitoring of 
overfitting through what the authors called sliding windows which applies a stopping cri-
terion to the algorithm (Fig. 36). The results of the simulations they carried out suggested 
that overfitting does not necessarily occur only in complex structures. Castellani (2006) 
proposed ANNE (Artificial Neural Network Evolver) as another invasive approach, which 
also embedded the evolution of input features concurrent with architecture and weights. He 
opted to use direct encoding due to the complexity of implementation on his Lamarckian 
model and aimed to simplify the optimization process to improve performance. Based on 
his experiments, he claimed that evolutionary feature selection allowed more accurate and 
consisting learning results compared to widely used PCA (Principal Component Analysis).

Fig. 36  Sliding Window technique used in Palmes et al. (2005). The boxes show the locations of the valida-
tion performance of optimum networks. The stopping criterion compares the trend of these boxes to detect 
overfitting while marking the network as the fittest (redrawn from Palmes et al. (2005))
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Although a multitude of papers investigated the possibility of better optimizing ANNs 
with evolutionary approaches, few had success to efficiently evaluate the real capability of 
such combinations. Benardo and Vosniakos (2007) aimed to develop novel criteria which 
quantify an ANN’s performance on both aspects (training and generalization) in addition 
to its complexity. They proposed a methodology to determine the best architecture by using 
GAs and defined the best-performing networks based on a set of predetermined criteria. A 
noninvasive approach by Fiszelew et al. (2007) combined GA and BP to optimize a neu-
ral network and utilized direct encoding for chromosome representation. They used GA to 
define the architecture and BP to train and evaluate the performance. In order to improve 
results, they applied techniques such as repetition of training, early stopping, and com-
plex regulation. In a comparative study by Rocha et  al. (2007) two hybrid combinations 
of ANNs and evolutionary computation approaches were investigated. In the first method, 
only the architecture is evolved, while in the second one both architecture and weights are 
simultaneously optimized by evolutionary computation. Their experiments on various real-
world data sets suggested the efficiency of the latter.

The natural way of developing structures has always inspired practitioners and led to 
more research on defining better encodings and algorithms. Lee  et al. (2005) proposed 
a nature-inspired mechanism for the autonomous design of ANN architectures. They 
used a developmental model grown from a set of production rules of the L-system rep-
resented by the DNA coding. As previously been explained in Sec.4, the L-system they 
adopted was based on a parallel rewriting mechanism motivated by the growth models 
of plants. Another motivation from biology is the connectivity patterns in biological 
brains exhibiting regular repeating motifs. In 2007, Gauci and Stanley (2007; Stanley 
et  al. 2009) aimed to discover such geometric regularities and proposed HyperNEAT 
(Hypercube-based Neuroevolution of Augmenting Topologies), as a major improvement 
to NEAT, complex connectivity schemes with evolving ANNs while introducing a gen-
erative indirect encoding method called CPPN (Compositional Pattern Producing Net-
works). Based on the hypothesis that ANN structure should implement a means for evo-
lution to exploit task geometry, this encoding strategy adopts the principle of locality in 
nature. As being effectively employed by biological brains, relevant operations are per-
formed through local connectivity, since long-distance requires more resources, greater 
accuracy, and better organization. CPPN was designed to efficiently represent natural 
regularities and symmetries. As can be seen in Fig.  37, Stanley showed that CPPNs 
can produce spatial patterns with important geometric motifs such as symmetry, imper-
fect symmetry, and repetition with variation. The CPPN can encode a high-dimensional 

Fig. 37  Examples of spatial patterns with important motifs produced by CPPNs (redrawn from Gauci and 
Stanley (2007)). a Bilateral Symmetry, b Imperfect Symmetry, c Repetition with variation
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output space with fewer parameters (Fernando et  al. 2016). On a project called Pic-
breeder (Secretan et  al. 2008, 2011), internet users evolve images by selecting which 
CPPNs to breed. Examples of spatial patterns with important motifs produced by 
CPPNs are given in Fig.  37. The natural equivalent of these motifs is left–right sym-
metries in vertebrates, right-handedness, and cortical columns. HyperNEAT proved to 
be superior to the direct encoding approach by NEAT and was able to generalize signifi-
cantly better while scaling to a network of over eight million connections.

HyperNEAT showed that a pattern of weights across the connectivity of ANNs can 
be generated as a function of its geometry. However, it was the user’s discretion to place 
hidden nodes in an infinitely dense geometry. Later Risi et  al. (2010) developed an 
extension to HyperNEAT, namely ES-HyperNEAT (evolvable-substrate) which deter-
mines the placement and density of the hidden nodes. The authors’ main insight was 
that there exists, what they call implicit clues how to carry this task out to extract use-
ful information in the connectivity scheme. The pursuit of creating the brain-like struc-
ture of ANNs continued with Gauci & Stanley’s work in 2010 (2010), which argued the 
effectiveness of creating topographic regularities through HyperNEAT. Their experi-
ments on checkers-playing ANNs revealed that representing evolved ANNs as indirect 
functions of their geometry which can efficiently exploit geometric regularities cre-
ates brain-like structures with better generalization capacity. Another promising study 
inspired by the natural process of growing nervous system by evolutions is De Cam-
pos et al.’s work (2011) which used L-systems as a recipe to develop neurons and GA 
to evolve the architecture. Similar to augmenting topologies their proposed approach 
begins the search process with simpler and smaller structures and gradually grows into 
complex ones. Later De Campos et  al. (2015) improved this model with ADEANNs 
(Artificial Development and Evolution of ANNs) implementing a constructive approach 
using memory.

A comparative analysis by Drchal and Šnorek (2008) examined tree-based indirect 
developmental encodings: Gruau’s Cellular Encoding (1994) and Luke and Spector’s 
Edge Encoding (1996). Then, the authors compared their successors: Gene Expression 
Programming (GEP) and Grammatical Evolution (GE) to optimize trees. They found 
that GE is superior to GEP in fewer generations needed to optimize the development 
tree, while GEP is more likely to produce smaller solutions. They also showed that 

Fig. 38  Identification of peaks in various regions using fitness sharing for speciation (redrawn from Kim 
and Cho (2008))
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Edge Encoding found solutions faster although producing a very large development tree. 
The authors argued the necessity of a mechanism to prevent such uncontrolled growth 
on developmental indirect encodings. Tsoulos et  al. (2008) proposed a GE approach 
using GAs while encoding the network architecture and its parameters with a context-
free grammar (CFG). Later this work was altered by Soltanian et  al. (2013) to evolve 
only architecture, while weights are optimized by using BP. Another improvement to 
Tsoulos’ original approach was proposed by Ahmadizar et al. (2015) which combined 
GE and GA to evolve both architecture and weight simultaneously. This work used an 
adaptive penalty approach to simplify ANNs generated through the evolution process. 
In 2017, Assunção et  al. (2017) proposed DSGE (Dynamic Structured Grammatical 
Evolution), as a new genotypic representation for structured generic evolution (SGE), 
to address the shortcomings of grammar-based neuroevolution approaches and evolve 
networks with more than one hidden layer and multiple outputs. DSGE differs from the 
previous GE and SGE approaches by growing the genotype as needed (instead of encod-
ing the largest allowed sequence) and removing the necessity of grammar pre-process-
ing to calculate the maximum tree size of each non-terminal symbols. Furthermore, it 
allows creation of dynamic rules which specify the connection possibility of each neu-
ron. Kim and Cho (2008) adopted a different strategy benefiting from ensembles of 
GA population. Stating the importance of diversity, they created their speciation-based 
evolutionary model through fitness sharing (similar to NEAT) and then combined the 
networks by the behavior knowledge space method. They used average output, Pearson 
correlation and modified Kullback–Leibler entropy to calculate distance between indi-
viduals and aimed to identify peaks in various regions of the search space (Fig. 38).

The main idea in several papers is to remove connection constraints and build a flexible 
ANN scheme to discover uninhabited structures, such as direct connections from input to 
output, or parsimonious links with nearby nodes. Rivero et al. (2009) proposed a GP-based 
approach to automate developing simple ANNs with an independent connectivity scheme. 
The authors aimed to provide assistance to AI experts to design their models without any 
prior domain knowledge or requirement to set any parameters. They also set an objective 
to obtain networks with similar generalization capability with the minimum number of 
network elements (nodes, connections, etc.). The most recent work, evolving conventional 
backpropagation neural network was reported by Chen (Yuh Wen) and Shiu (2019)by using 
a simple GA approach called GABPNN. The authors aimed to compare the performance of 
their model with state-of-the-art, hand-crafted CNN architectures on the MNIST handwrit-
ing recognition dataset. Although performed poorly, the authors showed the significant dif-
ference in computational resources and time required to obtain a real-world classifier, since 
their model was very fast to train and achieved acceptable accuracy.

While most studies are focused on single-objective evolutionary algorithms, more 
recent work explored the effectiveness of Multi-Objective approaches. Typically, research-
ers aim to achieve better accuracy while keeping the architecture as simple as possible. 
Oong and Isa (2011) proposed a multi-objective approach called HEANN (Hybrid Evo-
lutionary Artificial Neural Network) to evolve architecture and weights simultaneously. 
Their model is based on scalarized multi-objective learning which combines objective into 
a scalar cost function. It differs from the other evolutionary approaches by providing a bal-
ance of global and local search through adaptation of mutation probability and step size of 
weight perturbation. To be more specific, HEANN reduces the mutation probability over 
time by using generalization loss (fitness) of individuals among the population, thus cre-
ating a gradual shift from global search to local search. In order to alleviate noisy fitness 
evaluation, they encoded parameters about the architecture and weights in each individual 



1772 H. T. Ünal, F. Başçiftçi 

1 3

Table 2  Published papers for evolutionary design of neural networks (Since 2001)

Authors Year Target* Method** Encoding Reference

Stanley & Miikkulainen
NEAT

2001 AW GA Direct (2001)

Wang et al 2002
2003

A GA Direct (2002; 2003)

Barrios et al
ADANNET

2002 AW GA Indirect (2002)

Barrios et al
GANN

2003 AW GA Indirect (2003)

García-Pedrajas et al
COVNET

2003
2006

AW Cooperative Coevolution Direct (2003)

Leung et al 2003 AW GA Direct (2003)
Reisinger et al
Modular NEAT

2004 AW GA Direct (2004)

Jung & Reggia 2004
2006
2008

A GP Tree-based (2004; 2006; 2008)

Chen et al
MPIPE

2004 A GP Tree-based (2004)

Tan
GAEPNet

2004 AW GA + EP Direct (2004)

Kassahun & Sommer
EANT

2005 AW CMA-ES Direct (2005)

Palmes et al
MGNN

2005 AW EP Direct (2005)

Lee et al. 2005 A GA Indirect (2005)
García-Pedrajas et al
COVNET

2006 AW EP Direct (2006)

Castellani
ANNE

2006 AW GA Direct (2006)

Benardos & Vosniakos 2007 AW GA Indirect (2007)
Fiszelew et al 2007 A GA Direct (2007)
Siebel & Sommer
EANT2

2007 AW CMA-ES Indirect (2007)

Gauci & Stanley
HyperNEAT

2007 AW GA Indirect (2007)

Tsoulos et al 2008 AW GE Indirect (2008)
Kim&Cho 2008 A GA Direct (2008)
Rivero et al 2009 A GP Direct (2009)
De Campos et al 2011 A GA Indirect (2011)
OOng & Isa
HEANN

2011 AW Multi-Objective (Scalar) Direct (2011)

Loghmanian et al 2012 A Multi-Objective (NSGA-II) Direct (2012)
Soltanian et al 2013 A GE Indirect (2013)
Ahmadizar et al
GEGA

2015 AW GE-GA Indirect (2015)

De Campos et al
ADEANNs

2015 AW GA Indirect (2015)

Assunção et al
DSGE

2017 AW GE Indirect (2017)

Chen (Yuh Wen) & Shiu
GABPNN

2019 A GA Direct (2019)
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with a direct-encoding approach. Loghmanian et al. (2012) aimed to achieve better accu-
racy while building a minimum structure with the utilization of multi-objective evolution-
ary algorithms. They applied NSGA-II, the improved version of the elitist non-dominated 
sorting genetic algorithm proposed by Deb et al. (2000; 2002), and defined the objective 
functions as minimizing architecture complexity and mean square error of the test set. 

Table 2  (continued)
*A: Architecture Optimization, AW: Architecture and Weights Optimization, **GA: Genetic Algorithms, 
EP: Evolutionary Programming, GP: Genetic Programming, ES: Evolutionary Strategies

Fig. 39  Distribution Graph for 
Evolutionary Computation Tech-
niques Adopted (after NEAT)

Fig. 40  Distribution Graph for 
Representation Methods (after 
NEAT)

Fig.41  A typical structure of a CNN for an image recognition task
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Mason et  al. (2017) adopted another enhancement to genetic algorithms and proposed 
Neuro Differential Evolution (NDE) to optimize both the architecture and weights of a neu-
ral network. In their model, architecture is evolved through GA, and weights are evolved 
by using differential evolution. Similar to NEAT, NDE starts building a network with one 
neuron and gradually grows it until a feasible solution is found. A list of published papers 
after NEAT was introduced can be found in Table 2. Distribution Graph for Evolutionary 
Computation Techniques Adopted in this period is given in Fig. 39 and Distribution Graph 
for Representation Methods is given in Fig. 40.

5.3  Deep learning era

Inspired by the works on the human visual cortex (Hubel and Wiesel 1962), theoretical 
concepts of deep neural networks start with Fukushima’s Neocognitron which takes advan-
tage of the local receptive fields as an input layer and utilize feature detectors (Fukushima 
1980). The experiments of Hubel and Wiesel showed that some individual neuronal cells in 
the brain responded when exposed to vertical edges of a certain orientation (Bhandare and 
Kaur 2018; Hubel and Wiesel 1968). This idea was developed and improved by LeCun, 
which will further be named as Convolutional Neural Networks (CNNs, or ConvNets) 
forming the key architecture of modern deep neural networks (DNNs) (LeCun et al. 1999). 
The hierarchical structure of multiple layers in CNN provided multiple levels of represen-
tation, in which each layer learns a new feature from its preceding layer (Tirumala et al. 
2016) (Fig. 41).

Throughout the 1990s and 2000s, further research has been carried out on CNNs by 
many researchers, and models were successfully applied to real-world tasks such as object 
recognition, detection, and segmentation. Although innovative and superior in perfor-
mance, LeCun’s model was trained with backpropagation, thus computationally very 
expensive. Furthermore, due to the excessive number of parameters, the problem of van-
ishing gradients, where derivatives of gradients in multiple layers get closer to zero, or 
exploding gradients where derivatives skyrocket to non-computable values have prevented 
effective use of the method in large-scale problems. The first breakthrough in the training 
of deep architectures was achieved in 2006 by Hinton with his prominent work proposing 
an efficient training procedure (Hinton et al. 2006; Hinton and Salakhutdinov 2006). This 
development attracted the focus of research back into Deep Neural Networks and led to 
the creation of a very large-scale image dataset called ImageNet. Pioneered by Prof.Fei 
Fei Li, the dataset contained around 14 million images in more than 20,000 categories, a 
hierarchically built-in WordNet system. Between 2010 and 2017 the ImageNet project run 
an annual contest called ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
where researchers compete to correctly classify images and recognize objects using Deep 
Learning architectures that they developed. The average classification error rate, in the 
beginning, was around 25%. Then, another breakthrough came in 2012, with contest win-
ner Krizhevsky et al.’s revolutionary architecture called AlexNet (Krizhevsky et al. 2012) 
which halved the error rate on classification, achieving around a 12-year leap in deep learn-
ing research. Thanks to the advancements in the technology of graphic processing units 
(GPU) and the availability of big data, such deep architectures were able to be trained in a 
more reasonable time. After AlexNet, many other deep architectures have followed, achiev-
ing state-of-the-art classification accuracy, thus surpassing human performance (He et al. 
2016; Hu et al. 2018; Huang et al. 2017; Simonyan and Zisserman 2014; Szegedy et al. 
2015; Zeiler and Fergus 2014).
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5.3.1  Optimization of deep neural networks

Despite their superior performance, designing modern CNNs is a very difficult and tedi-
ous task, which requires expert domain knowledge. Therefore, automating this manual pro-
cess attracted the attention of researchers by shifting the focus from optimizing classical 
ANNs to designing complex CNN architectures. Unlike previous approaches, this new task 
requires a vast number of parameters to be optimized such as the number of convolutional 
layers, number of kernels, activation functions of each layer, regularization options, and 
general hyperparameters like batch size and learning rate. Studies show that a complex 
relationship exists between hyperparameters and the performance of different networks. 
For example, a fine-tuned network’s hyperparameters do not have the same effect on 
another network. Similarly, a good architecture of an image classifier does not necessarily 
be successful on a different dataset. Due to the necessity of vast computational resources 
for training, trial and error of designing architectures and selecting hyperparameters for 
deep CNNs turn out to be inefficient. Thus, domain experts generally use common archi-
tectures and default hyperparameters to create their models (Breuel 2015; Young et  al. 
2015).

With the surge of interest in this field, various optimization methods have been imple-
mented. Based on the papers published so far, these methods divide into two major cat-
egories. The first approach applies evolutionary computation such as Genetic Algorithms, 
Genetic Programming, Evolutionary Strategies, or Hybrid algorithms. The second refers 
to algorithms based on Reinforcement Learning (RL) utilizing the reward-penalty prin-
ciple (Irwin-Harris et  al. 2019; Sun et  al. 2019b). The latter approaches such as Neural 
Architecture Search (NAS) (Zoph and Le 2016), Efficient Architecture Search (EAS) (Cai 
et al. 2017), Meta-modelling (Meta-QNN) (Baker et al. 2016), and Block Design Method 
(Block-QNN-S) (Zhong et al. 2017) have demonstrated competitive performance by auto-
matically creating CNN architectures.

5.3.2  Hyperparameter optimization

Designing modern deep architectures are often considered a model selection or hyper-
parameter optimization problem (Suganuma et  al. 2017). Several hyperparameter tuning 
methods became commonplace such as Grid Search, Random Search (Bergstra and Ben-
gio 2012), Gradient Search (Bengio 2000), or Bayesian Optimization (Snoek et al. 2012). 
Recently, evolutionary computation is replacing the above methods by providing global 
search capability and successfully avoiding local minima. Since we have concentrated our 
focus on evolutionary approaches, a survey of the state-of-the art is presented in this paper.

5.3.3  Preliminary studies

One of the pioneer’s works combining evolutionary algorithms and deep neural networks 
is Verbancsics and Harguess’ (2013; 2015) Generative and Developmental System (GDS) 
approach which utilizes HyperNEAT in deep architectures, training feature extractors for 
backpropagation learning. They showed that, although HyperNEAT alone has difficulties 
when classifying images, it is effective at training a feature extractor. The application of 
HyperNEAT to deep architectures was also investigated by Fernando et  al. (2016) who 
proposed a differentiable version of Compositional Pattern Producing Network, which they 
called DPPN. The main difference of their model was that the architecture of the network 
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is evolved through microbial GA but weights are learned. They utilized a Lamarckian algo-
rithm (inheritance of acquired characteristics) which combined evolution and learning, 
producing DPPNs to reconstruct an image. In another pioneer work, Young et al. (2015) 
proposed Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL) for 
automating model selection in deep architectures through hyperparameter optimiza-
tion using GAs. Although it cannot be considered as an architecture builder, their model 
evolved some of the properties of the architecture, such as kernel size and number of fil-
ters for each convolutional layer. Similarly, Loshchilov and Hutter (2016) used CMA-ES to 
optimize hyperparameters of deep neural networks. Their model supported the evaluation 
of models in multiple GPUs running in parallel and they compared the proposed approach 
with state-of-the-art Bayesian optimization algorithms to tune hyperparameters of a CNN 
on MNIST dataset.

An intensified research on automating the architecture design of CNNs brought better 
models to the surface. In a prominent work, Xie and Yuille (2017) used GAs to design 
CNN architectures and called their approach as Genetic CNN. They proposed an encod-
ing method to represent network structure in a fixed-length binary string and described 
the genetic framework to obtain an optimal solution. The encoding scheme allowed to rep-
resent various state-of-the-art architectures including chain-shaped networks like AlexNet 
and VGGNet, multiple-path networks like GoogLeNet, and highway networks like ResNet. 
They adopted a strategy to run the candidate individual solutions on CIFAR10, which is a 
small-scale dataset. Then, they conducted large-scale experiments by transferring the archi-
tectures they obtained via using GA. In the same year, Mikkulainen et al. (2017) proposed 
DeepNEAT and CoDeepNEAT (Coevolution DeepNEAT), which follow the same funda-
mental processes in NEAT, for optimizing deep learning architectures through evolution. It 
was inspired by Hierarchical SANE (Moriarty and Miikkulainen 1996) and influenced by 
coevolutionary approaches of ESP (Gomez and Miikkulainen 1999) and CoSyNE (Gomez 
et  al. 2006). Similar to NEAT, their proposed models start with minimal complexity of 
CNNs and gradually grow through mutation. The main difference of both models from 
NEAT is that each node in the chromosome represents a CNN layer, instead of a neuron 
in classical ANNs. The edges in the chromosome indicate how the layers are connected to 
each other. The authors also included global hyperparameters of the network in the chro-
mosome. In order to evolve repetitive modular structures like GoogLeNet and ResNet, they 
designed CoDeepNEAT with two populations of modules and blueprints, thus being able 
to explore diverse and deeper architectures. Another adaptation of NEAT to deep archi-
tectures was proposed by Desell (2017b), namely Evolutionary eXploration of Augment-
ing Convolutional Topologies (EXACT). His method featured large-scale distributed com-
puting and the evolution of convolutional filters. EXACT was run over 4,500 distributed 
volunteered computers on the Citizen Science Grid trained over 120,000 CNNs, achiev-
ing 98.32% test accuracy on MNIST dataset. The author was surprised to observe interest-
ing structures obtained by evolution, which bear some similarities to biological neurons. 
Although not being able to evolve pooling layers and supporting only 2D inputs and fil-
ters, his method provided promising results for the automatic design of CNN architectures. 
Later he improved his algorithm by introducing a new mutation operator and developing 
an extension with a simplex hyperparameter optimization (SHO), allowing co-evolution 
of hyperparameters (Desell 2017a). The improved version of EXACT achieved a 99.43% 
prediction rate on the MNIST dataset with significantly less CNNs evolved.

There have also been several approaches using other forms of evolutionary computa-
tion, instead of standard GAs. Suganuma et al. (2017) developed a sophisticated method 
which utilizes Cartesian Genetic Programming (CGP) to design CNN architectures. This 
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model represents the CNN structure and connectivity with a direct encoding, allowing var-
iable-length networks and skip connections. Similar to previous approaches, it evaluates 
some candidate solutions in parallel at each generation to reduce computational resources. 
Still, being very intensive in terms of computation time, their method provided competitive 
results compared to the state-of-the-art. Kim et al. (2017) proposed Neuro-Evolution with 
Multiobjective Optimization (NEMO), an automatic machine learning approach (AutoML) 
to optimize CNNs for best accuracy and inference speed at the same time by applying 
multi-objective evolutionary algorithms (MOEAs). The authors implemented the NSGA-II 
framework, a non-dominated sorting method to rank solutions, and used 60 GPUs to evalu-
ate performance on MNIST and CIFAR-10 image classification datasets. Mitschke et  al. 
(2018) proposed a metaheuristic approach to the automatic generation of CNNs based on 
gradient evolution. They aimed to maximize accuracy while reducing the resources needed.

In a comprehensive work, Baldominos et al. (2017) aimed to evolve all aspects of net-
work design, including architecture, activation functions, and learning hyperparameters 
through an innovative encoding scheme. They provided a thorough review of the evolu-
tion of CNNs and successfully organized the parameters to be evolved. Their proposal of 
the organization included three categories, which are convolutional architecture, dense 
architecture, and general hyperparameters. They designed their framework to be flexible 
by allowing it to fit any evolutionary computation technique, but they evaluated GA and 
GE in particular. Due to the necessity of vast computational resources to train each indi-
vidual, they had to limit possible values for each parameter, as they claimed that small dif-
ferences do not have a significant impact on network performance. Instead of fully training 
each individual solution on each generation, they opted to make estimations by training 
only a reduced sample of data with a smaller number of training epochs. Despite its draw-
backs, they were able to reduce the computation time significantly. Al-Hyari and Areibi 
(2017) proposed a simple yet efficient approach to automate the design of CNNs using 
GAs. They developed a design exploration framework and achieved promising accuracy on 
the MNIST dataset.

Many researchers considered the architecture design of deep neural networks as hyper-
parameter optimization and set a goal to automate the whole process by creating complete 
frameworks. Bochinsky et  al. (2017) proposed an efficient hyperparameter optimization 
strategy and used evolutionary algorithms by evolving only structure-related parameters, 
such as layer and kernel sizes. They used committees of multiple CNNs to improve the 
classification accuracy, where the committee is a set of trained CNNs, and the classifica-
tion is carried out by fusing CNN scores. They made a comparison on the optimization of 
independent CNNs and joint optimization for a committee of multiple CNNs. Based on 
their experiments, they were able to achieve state-of-the-art results on the MNIST dataset. 
In another competitive study, Kramer (2018) utilized Rechenberg’s mutation rate control 
and a niching mechanism to optimize multiple stacked convolutional layers, called con-
volutional highways (Srivastava et al. 2015), for feature preprocessing. Rechenberg’s rule 
is used to adapt mutation rates based on the fitness of the evolutionary algorithm. On the 
other hand, niching is used to evade trapping into local optima by placing and evaluat-
ing offspring in their own niches. In his proposed study, named as (1 + 1)-EA, Kramer 
obtained significantly different structures from conventional, hand-crafted CNNs and 
achieved promising results. Later, Prellberg and Kramer (2018) proposed the inheritance of 
weights over generations through Lamarckian evolution and applied (1 + 1)-EA to CIFAR-
10 and CIFAR-100 datasets. They showed that weight inheritance increases data effi-
ciency by 75%. Loussaief and Abdelkerim (2018) proposed Enhanced Elite CNN Model 
Propagation (Enhanced E-CNN-MP) for designing the optimal structure of CNN through 
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hyperparameter optimization. They achieved around 90% test accuracy on the stop sign 
image classification task by using a CNN with a complex architecture obtained by GAs. A 
similar study was conducted by Bhandare and Kaur (2018), which used GAs to optimize 
hyperparameters of a CNN benchmarked with handwriting recognition MNIST dataset.

5.3.4  Towards state‑of‑the‑art

The ILSVRC challenge has undoubtedly motivated the deep learning community to 
develop better architectures. Researchers competed with each other to place their mod-
els on state-of-the-art podium and those models helped develop revolutionary technolo-
gies such as self-driving cars. As of 2017, automated evolutionary designs started to 
outperform hand-crafted architectures for image classification tasks. Dufourq and Bas-
sett (2017a) developed an exceptional algorithm called Automated Problem Identifica-
tion (API) aimed to be the foundation of fully automated machine learning. API utilizes 
evolutionary deep learning to recognize if a dataset represents a classification or regres-
sion problem, achieving an average of 96.3% accuracy. Furthermore, it recommends an 
architecture and other strategies like loss function to be used. Later, the same authors 
proposed Evolutionary DEep Networks (EDEN) which achieved state-of-the-art results 
in three cases among seven image and sentiment classification datasets (Dufourq and 
Bassett 2017b). EDEN was also the first attempt to apply neuroevolution to building 
one-dimension CNN for sentiment analysis. The researchers had an eventual goal of 
evolving deep architectures for a broad range of problems and accomplishing the task 
on a single GPU, instead of large clusters. To keep their algorithm simple, they inter-
faced EDEN to Tensorflow (Abadi et al. 2016) (Fig. 42).

Newborn architectures of modern deep learning are surprisingly complex, and it is 
not an easy task to foresee an effective combination of structures without trial and error. 
An interesting model was obtained by Assunção et  al. (2018) using the combination 
of Genetic Algorithms and Grammatical Evolution. They proposed Deep Evolutionary 
Network StructurEd Representation (DENSER) which is an extension of their previ-
ous work (DSGE) for searching architectures of conventional ANNs. They encoded 
a sequence of layers of a CNN in a GA chromosome and used DSGE to evolve the 
parameters of each layer. By outperforming several previously introduced neuroevo-
lution methods like CoDeepNEAT, the authors were amazed to observe that the best 

Fig. 42  An example of a CNN architecture generated by API. The number of units and activation functions 
of the last layer are determined by the algorithm. API also recommended using categorical cross-entropy 
for loss function (redrawn from Dufourq and Bassett (2017a))
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network found by evolution had many dense layers in the end, which would never be 
thought of by a human designer. They later improved this method and proposed Fast-
DENSER+ + (Assunção et  al. 2019a, 2019b), which enabled the training time of can-
didate solutions to grow gradually as necessary. In this model, initial generations train 
candidate solutions with fewer epochs, and as generation proceed more training time 
is allowed to increase accuracy. Such et al. (2018) from Uber AI Labs explored alter-
native approaches to gradient-based algorithms for training deep neural networks and 
proposed a GA-based evolutionary method to solve deep RL problems including Atari 
and humanoid locomotion. The authors were surprised to see that a simple GA-based 
method proving to be competitive when compared to contemporary gradient-based 
algorithms like Q-learning, A3C, and ES.

Evolutionary computation methods for designing deep neural network architectures 
were not limited to standard Genetic Algorithms. Researchers also explored other evo-
lutionary approaches with various encoding schemes and hyperparameter optimization 
techniques. Wang et  al. (2018) implemented a hybrid differential evolution (DE) by 
introducing a new crossover operator to evolve CNN architectures. In their proposed 
approach called DECNN, they used an innovative encoding strategy inspired by com-
puter networks, called IP-Based Encoding Strategy (IPES), with an improvement to 
remove the constraint on the maximum depth of the network, enabling variable-length 
CNN architectures. In another alternative approach, Zhu (Yiheng) et al. (2018) proposed 
GP-CNAS, a Genetic Programming framework for Convolutional Neural Architecture 
Search. Their model is designed to encode CNNs as GP trees where leaf nodes represent 
residual blocks and non-leaf nodes specify the block assembling procedure.

5.3.5  Latest approaches

By the end of the 2010s, Neuroevolution became one of the most popular topics among 
the Deep Learning community. Researchers from tech giants and AI Research Groups such 
as Google Brain Team, OpenAI, Uber Labs, Sentinent Labs, and DeepMind published 
promising and competitive works attempting to obtain the best deep neural network archi-
tectures achieving state-of-the-art or near-state-of-the art results. Real et  al. (2017) from 
Google Brain Team proposed Large-Scale Evolution of Image Classifiers (LEIC), which 
achieved near-state-of-the-art results on CIFAR-10 and CIFAR-100 image classification 
datasets. Although computationally intensive, it was one of the first large-scale attempts to 
apply evolutionary algorithms to optimize the structure of million-parameter-CNNs, using 
250 computers. The authors aimed to develop fully trained models and minimize human 
intervention when designing deep neural networks for generic real-world problems. They 
invented intuitive mutation operators which were able to navigate large search spaces and 
slightly modified known EAs while keeping the process as simple as possible. Liu et al. 
(2018a) from DeepMind developed a hierarchical genetic representation scheme similar 
to hand-crafted modular design patterns and utilized a simple evolutionary algorithm to 
discover new architectures. The authors expressed the key idea of this representation as 
possessing several motifs at different levels of hierarchy, where low-level motifs are used as 
building blocks during the construction of high-level motifs. They established evolutionary 
search mechanism by treating the representations as genotypes and the models found by 
evolutionary algorithm achieved state-of-the art results on CIFAR-10 and near-state-of-the-
art results on ImageNet dataset.
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Due to the necessity of vast computational resources, recent studies aimed to optimize 
both network performance and computation resources simultaneously. Thus, multi-objec-
tive evolutionary approaches have been adopted more often for Neuroevolution. Elsken 
et al. from DeepAI (2018a; 2019) argued the necessity of vast computational resources for 
searching CNN architectures and initially aimed to address this issue by proposing Neural 
Architecture Search by Hill Climbing (NASH) in 2018. They further proposed Lamarckian 
Evolutionary Algorithm for Multi-Objective Neural Architecture Design (LEMONADE) 
to optimize multiple objectives including prediction accuracy, inference time, or the num-
ber of parameters used. Unlike other multi-objective evolutionary approaches, LEMON-
ADE adopted an interesting approach classifying the objectives as cheap and expensive. 
For example, they described evaluating the architecture’s number of parameters as cheap, 
while evaluating the prediction performance on validation data as expensive. By prior-
itizing the cheap objectives on a selected subset of architectures, the authors were able to 
form the Pareto front with the less computational resource by training the network after 
probabilities are assigned to architectures found by using the previous step. In a promi-
nent study, Lu et  al. (2019a; 2019b) proposed NSGA-Net, a competitive multi-objective 
evolutionary approach for automatically designing CNN architectures. The authors, includ-
ing Kalyanmoy Deb, the key researcher and leading scientist of NSGA, aimed to com-
bine multiple objectives of error minimization and reducing computational complexity by 
measuring FLOPs (Floating-point operations). They utilized NSGA-II (Deb et al. 2000), a 
non-dominated sorting genetic algorithm which has been effectively applied to many real-
world tasks. The proposed study differs from recent evolutionary approaches by applying 
a crossover operator and employing the Bayesian Optimization Algorithm (BOA) to col-
lect promising solutions in the search history archive (Fig. 43). Based on the experiments, 
NSGA-Net achieved an error rate on par with other state-of-the-art NAS methods on the 
CIFAR-10 dataset, while using orders of magnitude less computational resources. The 
authors further improved this model with NSGANetV2 which adopts a bi-level surrogate 
model on upper level with architectures and lower level for weights(Lu et al. 2020). Yang 
et al. (2020) developed CARS, a continuous evolution strategy which initializes a super-
net with sufficient cells to accommodate the best architectures found by a non-dominated 
sorting algorithm (NSGA-III). These cells are continuously updated through the evolution 
process. Furthermore, they improvised a protection mechanism to avoid the small model 
trap problem, since small models tend to eliminate large models during the optimization 
process. They achieved state-of-the-art results on CIFAR-10 and ImageNet.

Contemporary hand-crafted architectures inspired researchers to steer automated evo-
lutionary methods to design models which support similar capabilities. Chen (Zefeng) 
et  al. (2019b) proposed EANN which utilizes the basic building blocks of ResNet for 

Fig. 43  Proposed stages of NSGA-Net. It represents networks as bit strings and trains with gradient 
descent. Then, ranking and selection are carried out by NSGA-II. Successful architectures are explored 
through the exploitation step by utilizing BOA. Finally, a set of networks on the trade-off front are obtained 
meeting dual objectives of error rate and network complexity. (Redrawn from Lu et al. (2019a)
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establishing the basic skeleton and initialization of the evolutionary process. Unlike NEAT, 
this structure doesn’t start with minimal architectures, since block which is not needed 
can be skipped using the shortcut links. The authors aimed to evolve only the architecture, 
while weights are trained by using the conventional backpropagation method. In another 
study, Irwin-Harris et al. (2019) proposed an encoding strategy based on a directed acy-
clic graph (DAG) representation aiming to apply fewer constraints on the search space 
and developed an evolutionary method for random generation of CNN architectures. The 
authors claim to enable arbitrary connection structure and unbounded depth. They adopted 
the idea of partially training the candidate solutions first and then fully training the best 
three models obtained by the evolution process. Another inspirational work came from Liu 
(Peng) et  al. (2019; 2018c) who aimed to accelerate the evolution of CNN architectures 
by using an experience-based greedy exploration strategy and transfer learning. For this 
goal, they developed an evolutionary framework called EvoNet to construct a deep neural 
network-based medical image denoiser. Similar to previous studies, their model allowed 
the modular structure of modern hand-crafted architectures, such as ResNet. Achiev-
ing state-of-the-art results on image classification tasks, Sun et al. (2019a) evolved CNN 
architectures by using GA. The proposed algorithm called AE-CNN is based on ResNet 
and DenseNet blocks, which are key elements of ingenious hand-crafted architectures, sur-
passing human performance on the ILSVRC challenge. The authors designed an encoding 
strategy with a variable-length chromosome which can adaptively determine the optimal 
depth of various CNNs. They also developed a new crossover and a new mutation opera-
tor to accomplish the image classification task. The result of the experiments revealed that 
their proposed method achieved state-of-the-art CIFAR-10 and CIFAR-100 datasets out-
performing prominent manual and automatically obtained architectures. The same authors 
further proposed (2019c) proposed a completely automatic evolutionary approach by using 
Genetic Algorithms, which they call CNN-GA for designing CNN architectures to handle 
image classification tasks. They designed an innovative encoding scheme to enable arbi-
trary depths while incorporating skip connections to allow deeper models. By address-
ing the incompatibility issue of crossover for variable-length chromosomes, the authors 
designed a new crossover operator to adapt the individuals for the evolutionary process. 
They also developed an asynchronous computational component to manage computational 
resources and a cache component for the acceleration of evaluation for fitness. Later with 
another paper, they proposed a similar method called EvoCNN which demonstrates signifi-
cant performance on image classification tasks (Sun et al. 2019b).

By achieving superior performance with reduced error rates, more recent studies aimed 
to reduce computational costs. Saltori et al. (2019) developed a Regularized Evolutionary 
Algorithm, which they called EvoA/B, and introduced custom genetic operators to regu-
larize the evolutionary process with the aim of reducing memory footprint and computa-
tional resources for a dynamic image classifier. As a modification to Real et al.’s (2019) 
prominent work, their model brought evolving cell topology with the variable number of 
hidden nodes, custom crossover, and mutation operators as well as a stagnation avoidance 
mechanism to offset early convergence. In another successful work, Zhu (Hui) et al. (2019) 
aimed to reduce computational cost on architecture search and proposed Efficient Evolu-
tion of Neural Architecture (EENA) which is inspired by Net2Net by Chen et al. (2015) 
from Google, accelerating the experimentation process by transferring knowledge from 
a smaller network to larger models. Based on their experiments, EENA used only 0.65 
GPU days to design a network that achieves 2.56% test error on the CIFAR-10 dataset. 
They were able to transfer the optimum architecture to the CIFAR-100 dataset success-
fully. Unlike hardware-rich AI labs of tech giants, Lan et al. (2019) implemented NEAT to 
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evolve efficient deep neural networks which can be run on Low-Performance Computing 
Hardware (LPCH) like Raspberry 3 and aimed to achieve at least 95% accuracy on real-
time object recognition tasks. NEAT turned out to be useful by reducing the number of 
parameters from millions to thousands and with the help of an innovative fitness function, 
the authors were able to achieve their goals. Although most studies preferred to focus on 
the image classification task, there have also been studies to optimize other deep neural 
networks for various real-world tasks. Akut and Kulkarni (2019) explored the utilization 
of CNNs on time series prediction and proposed a GA-based architecture design method 
in order to challenge state-of-the-art RNN models for this task. Similar to other neuroevo-
lutionary approaches, the authors aimed to optimize hyperparameters and key elements of 
the CNN structure, such as the number of convolutional layers, the number of fully con-
nected layers, etc. Although not being able to outperform RNN models, they achieved near-
optimal results with less computation time. Working on a similar task, Wu et  al. (2019) 
proposed a hybrid ResNet with a GA-based architecture design to optimize and obtain 
noise-free Time Series Classification (TSC). Their model called GA-ResNet adopted GA 
to optimize ResNet structure by removing connections between neurons.

Competition between gradient-based and evolution-based approaches paved the way 
to hybrid approaches with significant success. By combining the advantages to RL and 
EA, Chen (Yukang) et al. (2019a) proposed Reinforced Evolutionary Neural Architecture 
Search (RENAS) which utilized a reinforced mutation for learning the effects of small 
modifications (Fig.  44). The authors applied RENASNet to CIFAR-10 and transferred 
the obtained architecture to ImageNet which achieved state-of-the-art with 75.7% top-1 
accuracy. The innovative solution was further applied to other benchmarks such as seman-
tic segmentation with DeepLabv3 on the PASCAL VOC, and their model outperformed 
prominent architectures like MobileNet and NASNet. In another hybrid approach, Kob-
ayashi and Nagao (2020) aimed to combine advantages of gradient-based and evolution-
ary architecture search and achieved competitive performance with state-of-the-art models. 
Habi and Rafalovich (2019) developed GeneticNAS, a GA-based neural architecture search 
technique which utilized the search space representing convolutional cells as directed acy-
clic graphs (DAG). The DAG structure is described by using a fixed-length list of integers. 
The authors also employed weight sharing as successfully implemented in RL-based NAS 
methods like ENAS (Pham et al. 2018) and DARTS (Liu et al. 2018b), to reduce computa-
tion cost.

Liang et  al. (2019) developed Learning Evolutionary AI Framework (LEAF), an 
AutoML framework for automating architecture design and optimizing hyperparameters. It 
was designed as an extension to Miikkulainen et al.’s CoDeepNEAT, evolving both hyper-
parameters and network architecture. LEAF had mainly three components, which are 1) 
the algorithm layer (using CoDeepNEAT), 2) the system layer and 3) the problem-domain 
layer (Fig. 45). The advantage of the system layer is the facilitation of training on cloud 

Fig.44  General flowchart for RENAS and the reinforced mutation controller (redrawn from Chen et  al. 
(2019a))
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services such as Amazon AWS, Microsoft Azure, or Google Cloud. This helps the eval-
uation of candidate networks in an efficient way. The problem-domain layer carries out 
three tasks including DNN Complexity Minimization which can extend CoDeepNEAT to 
multiple objectives. Thus, CoDeepNEAT can maximize performance while minimizing the 
complexity of networks evolved.

Perhaps the most successful work on our review paper came in 2019 by Real et  al. 
(2019) from Google Brain Team. In their world-famous study titled “Regularized Evolu-
tion for Image Classifier Architecture Search”, they developed AmoebaNet-A, which sur-
passed hand-crafted network architectures for the first time and set a new state-of-the-art 
for ImageNet accuracy. The authors defined the key factor of this success as regularized 
evolution, the introduction of age property to favor younger genotypes in tournament selec-
tion evolutionary algorithm. By outperforming the best RL-based NAS methods, they 
proved the effectiveness and speed of evolutionary approaches for discovering optimal 
CNN architectures automatically. Summary of Evolutionary Approaches for Designing 
Deep Neural Networks is listed in Table 3.

6  Conclusion and summary

Even after three decades of significant progress, designing an optimal ANN architec-
ture still remains an open problem. With the ultimate goal of achieving fully automated 
machine learning, this challenging task gained a lot of attention and a wide variety of 

Fig. 45  The three components of LEAF (redrawn from Liang et al.(2019))
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optimization approaches have been proposed, among which Evolutionary Computa-
tion became very popular by demonstrating promising performance. In this review, we 
narrowed down our focus to evolutionary methods for designing neural network archi-
tectures and presented a comprehensive and up-to-date survey covering three decades 
of research, with a special emphasis on evolutionary computation techniques adopted 
and various encoding strategies utilized. We investigated the historical progress in three 
periods based on significant achievements and scientific trends.

The early attempts were mostly concentrated on defining an efficient encoding strat-
egy due to a great influence of representation on the performance of methods adopted. 
While some researchers like Miller et  al. (1989) simply used direct approaches with 
basic connectivity matrices or concatenation of parameter strings, others believed that 
biology dictates indirect encoding with specific developmental patterns observed in 
nature. New insights in neuroscience have led to the introduction of successful indirect 
representation methods which mimic the biological neural structure of living organisms. 
Considering the fact that the human genome accommodates only around 30 thousand 
active genes, this represents a clear indication of a somewhat indirect relationship com-
pared to the existence of about 100 trillion neural connections in the brain. Pioneers 
such as Mjolsness, Kitano, and Gruau have all proposed indirect representation methods 
inspired by biological structures.

Although following the same principles of evolution theory, various evolutionary 
computation techniques have different approaches for solving the task of architecture 
optimization. For example, Genetic Algorithms were not preferred by many researchers 
due to their crossover operator, which normally plays a key role in global optimiza-
tion problems. Instead, Evolutionary Programming was mostly preferred with its diverse 
selection and mutation procedures. It was believed that the crossover operator in GAs 
has the potential to deteriorate child solutions and produce invalid or redundant struc-
tures, leading to a known phenomenon called Competing Conventions Problem. This 
drawback usually causes longer computation times and low-quality networks.

With the introduction of NEAT, Neuroevolution gained remarkable success and 
proved the efficiency of evolutionary approaches for designing neural network architec-
tures. Although using a direct encoding approach in their proposed algorithm, authors 
of NEAT believed that future studies were destined to focus on indirect encoding and 
suggested researchers explore the mechanism of how the human brain makes it possible. 
Later, they proposed HyperNEAT with the rationale that the evolution of indirect geno-
types demonstrates natural phenomena with geometric regularities. Interesting images 
can be obtained on Picbreeder, an art application based on HyperNEAT’s indirect evo-
lutionary approach (Secretan et al. 2008, 2011).

It was inevitable that the research direction of Neuroevolution would be shifted to 
deep neural models with the recent advances in Deep Learning, high-end GPUs, and 
innovative network structures. Although hand-crafted architectures like ResNet and 
DenseNet achieved groundbreaking performance on image classification tasks, research-
ers kept searching for an efficient method to automate the discovery of better models. 
Most recently, Reinforcement Learning and Evolutionary Computation approach gained 
remarkable success. The biggest obstacle in front of both approaches was the lack of 
computation power required to train evolving architectures on each generation. There-
fore, initial attempts were far below satisfactory levels in terms of performance and 
accuracy. With the increased interest in providing AutoML solutions by tech giants, 
researchers were able to experiment with their ideas on the massive amount of GPUs 
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and utilize high-end processing power on the cloud, thus bringing state-of-the-art results 
on CIFAR and ImageNet classification tasks.

Finally, some may ask if it is worth adopting evolutionary algorithms to search for 
better network architectures by questioning the use of the massive computation power 
required. The answer lies within the literature, showing how various techniques resulted 
in promising models, while some approaches yielded far below expectations. Future 
research will concentrate on fully automated machine learning, with the increased avail-
ability of artificial intelligence tools which do not require expert knowledge. Further-
more, smarter algorithms are expected to replace conventional manual and automatic 
methods which will enable the construction of Artificial Neural Networks architectures 
in the most efficient way. Together with more data collected during experiments, such as 
Autonomous Driving, Deep Learning approaches will undoubtedly evolve to faster utili-
ties which sufficiently respond to the needs of the industry. It is not yet known if evo-
lutionary algorithms will pave the way for Artificial General Intelligence (AGI), but we 
already witnessed how evolution is the key to the continuous improvement of biological 
organisms. Many believe that the future of Artificial Neural Networks will be shaped by 
the evolution of architectures.

Acknowledgements We would like to express gratitude to our families for their patience and continuous 
support. We appreciate and express profound thanks to the Library of Selçuk University and publishers 
worldwide for providing access to the whole database of scientific research on Neuroevolution.

References

Abadi M et al. (2016) Tensorflow: A system for large-scale machine learning. In: 12th USENIX symposium 
on operating systems design and implementation (OSDI), pp 265–283

Abdel-Zaher AM, Eldeib AM (2016) Breast cancer classification using deep belief networks. Expert Syst 
Appl 46:139–144

Ahmadizar F, Soltanian K, AkhlaghianTab F, Tsoulos I (2015) Artificial neural network development by 
means of a novel combination of grammatical evolution and genetic algorithm. Eng Appl Artif Intell 
39:1–13

Aho I, Kemppainen H, Koskimies K, Makinen E, Niemi T (1999) Searching Neural Network Structures 
with L Systems and Genetic Algorithms. Int J Comp Mat 73:55–75

Akut R, Kulkarni S (2019) Neuroevolution: using genetic algorithm for optimal design of deep learning 
models. In: IEEE international conference on electrical, computer and communication technologies 
(ICECCT), IEEE, pp 1–6

Alba E, Aldana J, Troya J (1993a) Genetic algorithms as heuristics for optimizing ANN design. Artificial 
Neural Nets and Genetic Algorithms. Springer, pp 683–690

Alba E, Aldana J, Troya JM (1993b) Full automatic ANN design: A genetic approach. International Work-
shop on Artificial Neural Networks. Springer, pp 399–404

Al-Hyari A, Areibi S (2017) Design space exploration of convolutional neural networks based on Evolution-
ary Algorithms. J ComputVision Imag Syst 3(1)

Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 
46:175–185

Anderson CW (1989) Learning to control an inverted pendulum using neural networks. IEEE Control Syst 
Mag 9:31–37

Angeline PJ, Saunders GM, Pollack JB (1994) An evolutionary algorithm that constructs recurrent neural 
networks. IEEE Transact Neural Netw 5:54–65

Arifovic J, Gencay R (2001) Using Genetic Algorithms to Select Architecture of a Feedforward Artificial 
Neural Network Physica a: Statist Mech Appl 289:574–594

Assunçao F, Lourenço N, Machado P, Ribeiro B  (2017) Towards the evolution of multi-layered neural net-
works: a dynamic structured grammatical evolution approach. In: Proceedings of the genetic and evo-
lutionary computation conference, pp 393–400



1790 H. T. Ünal, F. Başçiftçi 

1 3

Assunção F, Lourenço N, Machado P, Ribeiro B (2018) Evolving the topology of large scale deep neural 
networks. European Conference on Genetic Programming. Springer, pp 19–34

Assunção F, Correia J, Conceição R, Pimenta M, Tomé B, Lourenço N, Machado P (2019a) Automatic 
design of artificial neural networks for Gamma-Ray detection. IEEE Access. https:// doi. org/ 10. 1109/ 
ACCESS. 2019. 29339 47

Assunção F, Lourenço N, Machado P, Ribeiro B (2019b) Fast-DENSER++: Evolving Fully-Trained Deep 
Artificial Neural Networks arXiv preprint arXiv:190502969

Azzini A, Tettamanzi A (2006) A new genetic approach for neural network design and optimization PhD. 
University of Milan, Milan

Azzini A, Tettamanzi AG (2011) Evolutionary ANNs: a State of the Art Survey. Intelligenza Artificiale 
5:19–35

Bäck T, Hammel U, Schwefel H-P (1997) Evolutionary computation: comments on the history and current 
state. IEEE Transact Evol Comput 1:3–17

Baker B, Gupta O, Naik N, Raskar R (2016) Designing neural network architectures using reinforcement 
learning. arXiv preprint, arXiv: 16110 2167

Balakrishnan K, Honavar V (1995) Evolutionary design of neural architectures. A preliminary taxonomy 
and guide to literature: Tech. Report CS TR95-01 Dep. of Computer Science, Iowa State University, 
Ames

Baldominos A, Saez Y, Isasi P (2017) Evolutionary convolutional neural networks: An application to hand-
writing recognition. Neurocomputing 283:38–52

Baldominos A, Saez Y, Isasi P (2020) On the automated, evolutionary design of neural networks: past, pre-
sent, and future. Neural Comput Appl 1–27

Barrios D, Carrascal A, Manrique D, Rios J (2002) ADANNET: automatic design of artificial neural net-
works by evolutionary techniques. In: Research and development in intelligent systems XVIII. 
Springer, London, pp. 67–80

Barrios D, Carrascal A, Manrique D, Rios J (2003) Cooperative binary-real coded genetic algorithms for 
generating and adapting artificial neural networks. Neural Comput Appl 12:49–60

Barzilai J, Borwein JM (1988) Two-point step size gradient methods. IMA J Num Anal 8:141–148
Bebis G, Georgiopoulos M, Kasparis T (1997) Coupling weight elimination with genetic algorithms to 

reduce network size and preserve generalization. Neurocomputing 17:167–194
Bebis G, Georgiopoulos M (1995) Improving generalization by using genetic algorithms to determine 

the neural network size. In: Proceedings of South con’95, IEEE, pp 392–397
Benardos P, Vosniakos G-C (2007) Optimizing feedforward artificial neural network architecture. Eng 

Appl Artif Intell 20:365–382
Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput 12:1889–1900
Bentley PJ, Kumar S (1999) Three ways to grow designs: A comparison of embryogenies for an evolu-

tionary design problem. In: GECCO, pp 35–43
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 

13:281–305
Bhandare A, Kaur D (2018) Designing convolutional neural network architecture using genetic algo-

rithms. In: Proceedings on the international conference on artificial intelligence (ICAI), The steer-
ing committee of the world congress in computer science, pp 150–156

Blum C, Roli A (2003) Metaheuristics in Combinatorial Optimization: Overview and Conceptual Com-
parison ACM Computing Surveys (CSUR) 35:268–308

Bochinski E, Senst T, Sikora T (2017) Hyper-parameter optimization for convolutional neural network 
committees based on evolutionary algorithms. In: IEEE international conference on image pro-
cessing (ICIP), pp 3924–3928

Boers EJ, Kuiper H (1992) Biological metaphors and the design of modular artificial neural networks. 
In: Master Thesis. Dept. of computer science and experimental and theoretical psychology at Lei-
den University

Bongard JC, Pfeifer R (2001) Repeated structure and dissociation of genotypic and phenotypic complex-
ity in artificial ontogeny. In: Proceedings of the genetic and evolutionary computation conference, 
p 829836

Boozarjomehry R, Svrcek W (2001) Automatic design of neural network structures. Comput Chem Eng 
25:1075–1088

Born J, Santibánez-Koref I, Voigt H-M (1994) Designing neural networks by adaptively building blocks 
in cascades. International Conference on Parallel Problem Solving from Nature. Springer, pp 
472–481

Born J, Santibánez-Koref I (1995) Evolutionary structuring of neural networks by solving a binary prob-
lem. In: Operations research proceedings 1994. Springer, pp 394–399

https://doi.org/10.1109/ACCESS.2019.2933947
https://doi.org/10.1109/ACCESS.2019.2933947
http://arxiv.org/abs/161102167


1791Evolutionary design of neural network architectures: a review…

1 3

Bornholdt S, Graudenz D (1992) General Asymmetric Neural Networks and Structure Design by Genetic 
Algorithms. Neural Networks 5:327–334

Branke J (1995) Evolutionary algorithms for neural network design and training. In Proceedings of the 
1st nordic workshop on genetic algorithms and its applictions

Braun H, Weisbrod J (1993) Evolving neural feedforward networks. Artificial Neural Nets and Genetic 
Algorithms. Springer, pp 25–32

Breuel TM (2015) The effects of hyperparameters on SGD training of neural networks. arXiv preprint, 
arXiv: 15080 2788

Cai H, Chen T, Zhang W, Yu Y, Wang J (2017) Efficient architecture search by network transformation. 
arXiv preprint arXiv: 17070 4873

Campos De LML, Roisenberg M, de Oliveira RCL (2011) Automatic design of neural networks with 
L-systems and genetic algorithms-A biologically inspired methodology. In: The 2011 international 
joint conference on neural networks. IEEE, pp 1199–1206

Campos de LML, de Oliveira RCL, Roisenberg M (2015) Evolving artificial neural networks through 
l-system and evolutionary computation. In: 2015 International Joint Conference on Neural Net-
works (IJCNN), 2015. IEEE, pp 1–9

Cangelosi A, Elman JL (1995) Gene regulation and biological development in neural networks: an 
exploratory model. Technical Report CRL-UCSD

Cangelosi A, Parisi D, Nolfi S (1994) Cell division and migration in a ‘genotype’ for neural networks. 
Network: Computation in neural systems 5:497–515

Cangelosi A, Nolfi S, Parisi D (2003) Artificial life models of neural development. In: On growth, form 
and computers, pp 339–352

Cantú-Paz E, Kamath C (2005) An empirical comparison of combinations of evolutionary algorithms 
and neural networks for classification problems. IEEE Transact Syst Man Cybernet Part B (cyber-
netics) 35:915–927

Carpenter G, Grossberg S (1986) Adaptive resonance theory: Stable self-organization of neural recog-
nition codes in response to arbitrary lists of input patterns. In: Proceedings of the eighth annual 
conference of the cognitive science society. Erlbaum, pp 45–62

Carvalho de A (1997) Evolutionary design of MLP neural network architectures. In: Proceedings 4th 
Brazilian symposium on neural networks. IEEE, pp 58–65

Castellani M (2006) ANNE-a new algorithm for evolution of artificial neural network classifier systems. 
In: 2006 IEEE international conference on evolutionary computation. IEEE, pp 3294–3301

Castellani M (2013) Evolutionary generation of neural network classifiers—An empirical comparison. Neu-
rocomputing 99:214–229

Castillo P, Merelo J, Arenas MG, Romero G (2007) Comparing evolutionary hybrid systems for design and 
optimization of multilayer perceptron structure along training parameters. Inf Sci 177:2884–2905

Castillo P, Arenas M, Castillo-Valdivieso J, Merelo J, Prieto A, Romero G (2003) Artificial neural networks 
design using evolutionary algorithms. In: Advances in Soft Computing. Springer, pp 43–52

Charalambous C (1992) Conjugate gradient algorithm for efficient training of artificial neural networks. IEE 
Proceedings G (Circuits Devices and Systems) 139:301–310

Chen YW, Shiu JM (2019) Genetic Design of Topology for Neural Network. In: Proceedings of the 11th 
International Conference on Information Management and Engineering, pp 25–28

Chen Y, Yang B, Dong J (2004) Nonlinear system modelling via optimal design of neural trees. Int J Neural 
Syst 14:125–137

Chen T, Goodfellow I, Shlens J (2015) Net2net: Accelerating learning via knowledge transfer arXiv preprint 
arXiv: 15110 5641

Chen Y, Meng G, Zhang Q, Xiang S, Huang C, Mu L, Wang X (2019a) RENAS: Reinforced evolutionary 
neural architecture search. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 4787–4796

Chen Z, Zhou Y, Huang Z (2019b) Auto-creation of effective neural network architecture by evolutionary 
algorithm and ResNet for image classification. In: 2019 IEEE international conference on systems, 
man and cybernetics (SMC). IEEE, pp 3895–3900

Chiroma H, Abdulkareem S, Abubakar A, Herawan T (2017) Neural networks optimization through genetic 
algorithm searches: a review. Appl Math Inf Sci 11:1543–1564

Cho S-B, Shimohara K (1996) Modular neural networks evolved by genetic programming. In: Proceedings 
of IEEE international conference on evolutionary computation. IEEE, pp 681–684

Cortes C, Vapnik V (1995) Soft Margin Classifiers. Machine Learning 20:273–297
Cramer NL (1985) A representation for the adaptive generation of simple sequential programs. In: Poceed-

ings of an international conference on genetic algorithms and the applications, pp 183–187

http://arxiv.org/abs/150802788
http://arxiv.org/abs/170704873
http://arxiv.org/abs/151105641


1792 H. T. Ünal, F. Başçiftçi 

1 3

Cui Z, Yang C, Sanyal S (2012) Training Artificial Neural Networks Using APPM. Int J Wireless Mobile 
Comp 5:168–174

Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Mathematics of control, sig-
nals and systems 2:303–314

Dasgupta D, McGregor DR (1992) Designing application-specific neural networks using the structured 
genetic algorithm. In: COGANN-92 international workshop on combinations of genetic algorithms 
and neural networks. IEEE, pp 87–96

Dawkins R (1986) The Blind Watchmaker. Harlow Logman
Deb K, Agrawal S, Pratap A, Meyarivan TA (2000) Fast elitist non-dominated sorting genetic algorithm 

for multi-objective optimization: NSGA-II. International conference on parallel problem solving from 
nature. Springer, pp 849–858

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A Fast and Elitist Multiobjective Genetic Algorithm: 
NSGA-II IEEE Trans Evol Comp 6:182–197

Dellaert F, Beer RD (1994) Toward an evolvable model of development for autonomous agent synthesis. In: 
Artificial life IV, proceedings of the fourth international workshop on the synthesis and simulation of 
living systems. Citeseer, pp 246–257

Dellaert F, Beer RD (1996) A developmental model for the evolution of complete autonomous agents. In: 
Proceedings of the fourth international conference on simulation of adaptive behavior. MIT Press 
Cambridge, MA, pp 393–401

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image data-
base. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255

Dennis J, John E, Moré JJ (1977) Quasi-Newton methods, motivation and theory. SIAM Rev 19:46–89
Desell T (2017a) Developing a volunteer computing project to evolve convolutional neural networks and 

their hyperparameters. In: 2017 IEEE 13th International Conference on e-Science. IEEE, pp 19–28
Desell T (2017b) Large scale evolution of convolutional neural networks using volunteer computing. In: 

Proceedings of the genetic and evolutionary computation conference companion, pp 127–128
Dodd N (1990) Optimisation of network structure using genetic techniques. In: 1990 IJCNN international 

joint conference on neural networks. IEEE, pp 965–970
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. 

IEEE Trans Syst Man, Cybernetics Part B (cybernetics) 26:29–41
Drchal J, Šnorek M (2008) Tree-based indirect encodings for evolutionary development of neural networks. 

International Conference on Artificial Neural Networks. Springer, pp 839–848
Dréo J, Pétrowski A, Siarry P, Taillard E (2006) Metaheuristics for hard optimization: methods and case 

studies. Springer Science & Business Media,
Dufourq E, Bassett BA (2017a) Automated problem identification: Regression vs classification via evolu-

tionary deep networks. In: Proceedings of the South African institute of computer scientists and infor-
mation technologists, pp 1–9

Dufourq E, Bassett BA (2017b) Eden: Evolutionary deep networks for efficient machine learning. In: 2017 
pattern recognition association of South Africa and robotics and mechatronics (PRASA-RobMech). 
IEEE, pp 110–115

Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international con-
ference on neural networks. Citeseer, pp 1942–1948

Eggenberger P (1997) Creation of neural networks based on developmental and evolutionary principles. In: 
International conference on artificial neural networks. Springer, pp 337–342

Eggenberger P (2000) Evolving neural network structures using axonal growth mechanisms. In: Proceed-
ings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neu-
ral computing: New challenges and perspectives for the New Millennium, 2000. IEEE, pp 591–595

Elias JG (1992) Genetic generation of connection patterns for a dynamic artificial neural network. In: 
COGANN-92: International workshop on combinations of genetic algorithms and neural networks. 
IEEE, pp 38–54

Elman JL (1990) Finding Structure in Time. Cognitive Sci 14:179–211
Elsken T, Metzen JH, Hutter F (2018a) Multi-objective architecture search for cnns arXiv preprint 

arXiv:1804090812
Elsken T, Metzen JH, Hutter F (2018b) Neural architecture search: A survey arXiv preprint arXiv:180805377 
Elsken T, Metzen JH, Hutter F (2019) Efficient multi-objective neural architecture search via lamarckian 

evolution arXiv preprint arXiv:180409081
Fahlman SE, Lebiere C (1990) The cascade-correlation learning architecture. In: Advances in neural infor-

mation processing systems, pp 524–532
Fang J, Xi Y (1997) Neural Network Design Based on Evolutionary Programming. Artificial Intelligence 

Eng 11:155–161



1793Evolutionary design of neural network architectures: a review…

1 3

Feo TA, Resende MG, Smith SH (1994) A greedy randomized adaptive search procedure for maximum 
independent set. Oper Res 42:860–878

Ferdinando Di A, Calabretta R, Parisi D (2001) Evolving modular architectures for neural networks. In: 
Connectionist models of learning, development and evolution. Springer, pp 253–262

Fernando C et al (2016) Convolution by evolution: differentiable pattern producing networks. In: Proceed-
ings of the genetic and evolutionary computation conference. ACM, pp 109–116

Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence, vol 
21. Springer

Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems arXiv pre-
print cs/0102027

Fischer MM, Leung Y (1998) A genetic-algorithms based evolutionary computational neural network for 
modelling spatial interaction dataNeural network for modelling spatial interaction data. Ann Reg Sci 
32:437–458

Fiszelew A, Britos P, Ochoa A, Merlino H, Fernández E, García-Martínez R (2007) Finding optimal neu-
ral network architecture using genetic algorithms. Advances in computer science and engineering 
research. Comput Sci 27:15–24

Fletcher R, Reeves CM (1964) Function Minimization by Conjugate Gradients. Comput J 7:149–154
Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evolut Intell 

1:47–62
Fogel LJ (1962) Autonomous Automata. Indust Res 4:14–19
Fogel LJ, Owens AJ, Walsh MJ (1966) Intelligent decision making through a simulation of evolution. Behav 

Sci 11(4):253-272
Fogel L (1964) On the organization of intellect (Ph. D. thesis) University of California, Los Angeles, CA, 

USA
Fonseca CM, Fleming PJ (1993) Genetic Algorithms for Multiobjective Optimization: Formulation Discus-

sion and Generalization. In: LCGA. vol July. Citeseer, pp 416–423
Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern 

recognition unaffected by shift in position. Biol cybernetics 36:193–202
Fullmer B, Miikkulainen R (1992) Using marker-based genetic encoding of neural networks to evolve finite-

state behaviour. In: Toward a practice of autonomous systems: Proceedings of the first european con-
ference on artificial life. MIT Press, pp 255–262

Funahashi K-I (1989) On the Approximate Realization of Continuous Mappings by Neural Networks. Neu-
ral Networks 2:183–192

García-Pedrajas N, Ortiz-Boyer D, Hervás-Martínez C (2006) An alternative approach for neural net-
work evolution with a genetic algorithm: crossover by combinatorial optimization. Neural Netw 
19:514–528

García-Pedrajas N, Hervás-Martínez C, Muñoz-Pérez J (2003) COVNET: a cooperative coevolutionary 
model for evolving artificial neural networks. IEEE Trans Neural Networks 14: 575–596

Gauci J, Stanley K (2007) Generating large-scale neural networks through discovering geometric regu-
larities. In: Proceedings of the 9th annual conference on genetic and evolutionary computation. 
ACM, pp 997–1004

Gauci J, Stanley KO (2010) Autonomous evolution of topographic regularities in artificial neural net-
works. Neural Comput 22:1860–1898

Glover F (1989) Tabu search—part I. ORSA J comp 1:190–206
Glover F (1990) Tabu search—part II. ORSA J comp 2:4–32
Goldberg DE, Holland JH (1988) Genetic Algorithms and Machine Learning. Machine Learning 

3:95–99
Gomez F, Schmidhuber J, Miikkulainen R (2006) Efficient non-linear control through neuroevolution. 

European Conference on Machine Learning. Springer, pp 654–662
Gomez FJ, Miikkulainen R (1999) Solving non-Markovian control tasks with neuroevolution. In: IJCAI, 

pp 1356–1361
Gonzalez-Seco J (1992) A genetic algorithm as the learning procedure for neural networks. In: IJCNN 

international joint conference on neural networks. IEEE, pp 835–840
Greenwood GW (1997) Training Partially Recurrent Neural Networks Using Evolutionary Strategies. 

IEEE Tran Speech Audio Process 5:192–194
Grönroos MA (1998) Evolutionary design of neural networks. In: Master of science thesis in computer 

science Dept of mathematical sciences University of Turku
Gruau F (1993) Cellular encoding as a graph grammar. In: IEE colloquium on grammatical inference: 

Theory, applications and alternatives, 1993. IET, pp 17/11–1710



1794 H. T. Ünal, F. Başçiftçi 

1 3

Gruau F (1992) Genetic synthesis of boolean neural networks with a cell rewriting developmental pro-
cess. In: COGANN-92: International workshop on combinations of genetic algorithms and neural 
networks. IEEE, pp 55–74

Gruau F, Quatramaran K (1997) Cellular encoding for interactive evolutionary robotics. In: Fourth Euro-
pean conference on artificial life. MIT Press, p 368

Gruau F, Whitley D, Pyeatt L (1996) A comparison between cellular encoding and direct encoding for 
genetic neural networks. In: Proceedings of the 1st annual conference on genetic programming, 
1996. MIT Press, pp 81–89

Gruau F (1994) Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. PhD 
Thesis,

Guha A, Harp SA, Samad T (1988) Genetic synthesis of neural networks Honeywell Corporate System 
Development Division, Tech Rep CSDD-88–14852-CC-l

Gupta JN, Sexton RS (1999) Comparing backpropagation with a genetic algorithm for neural network 
training. Omega 27:679–684

Habi HV, Rafalovich G (2019) Genetic Network Architecture Search arXiv preprint arXiv:190702871 
Hancock PJ (1992a) Genetic algorithms and permutation problems: A comparison of recombination 

operators for neural net structure specification. In: COGANN-92: International workshop on com-
binations of genetic algorithms and neural networks. IEEE, pp 108–122

Hancock PJ, Smith LS (1990) GANNET: Genetic design of a neural net for face recognition. In: Interna-
tional conference on parallel problem solving from nature. Springer, pp 292–296

Hancock PJ (1992b) Pruning neural nets by genetic algorithm. In: Artificial neural networks. Elsevier, 
pp 991–994

Hancock PJ (1993) Coding strategies for genetic algorithms and neural nets. In: PhD Thesis. Centre for 
cognitive and computational neuroscience, University of Stirling, UK

Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: 
The covariance matrix adaptation. In: Proceedings of IEEE international conference on evolution-
ary computation. IEEE, pp 312–317

Hansen N, Ostermeier A (1997) Convergence properties of evolution strategies with the derandomized 
covariance matrix adaptation: The (/I,)-ES. Eufit 97: 650–654

Happel BL, Murre JM (1992) Designing modular network architectures using a genetic algorithm. In: 
Artificial Neural Networks. Elsevier, pp 1215–1218

Happel BL, Murre JM (1994) Design and Evolution of Modular Neural Network Architectures. Neural 
Networks 7(6-7):985–1004

Harp SA, Samad T, Guha A (1989) Towards the genetic synthesis of neural network. In: Proceedings of 
the third international conference on Genetic algorithms, pp 360–369

Harp SA, Samad T, Guha A (1990) Designing application-specific neural networks using the genetic algo-
rithm. In: Advances in neural information processing systems, pp 447–454

Haykin S (1993) Neural networks and Learning Machines. Prentice Hall
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the 

IEEE conference on computer vision and pattern recognition, pp 770–778
Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the 

international conference on neural networks. IEEE Press New York, pp 11–14
Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems vol 49. vol 1. NBS 

Washington, DC,
Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization procedure. Physica 

D 42:228–234
Hinton GE, Salakhutdinov RR (2006) Reducing the Dimensionality of Data with Neural Networks. Sci 

313:504–507
Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 

18:1527–1554
Hintz KJ, Spofford J (1990) Evolving a neural network. In: Proceedings 5th IEEE international symposium 

on intelligent control. IEEE, pp 479–484
Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput 9:1735–1780
Höffgen K-U, Siemon HP, Ultsch A (1990) Genetic improvements of feedforward nets for approximating 

functions. International Conference on Parallel Problem Solving from Nature. Springer, pp 302–306
Holland J (1975) Adaptation in natural and artificial systems. MIT Press
Hopfield JJ (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abili-

ties. Proceedings of the National Academy of Sciences 79:2554–2558
Horn J, Goldberg DE, Deb K (1994) Implicit niching in a learning classifier system: Nature’s way. Evol 

Comput 2:37–66



1795Evolutionary design of neural network architectures: a review…

1 3

Hornik K (1991) Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw 4:251–257
Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp 7132–7141
Huang H-Y (1970) Unified approach to quadratically convergent algorithms for function minimization. J 

Optim Theory Appl 5:405–423
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 

Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s 

visual cortex. J physiol 160:106
Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 

148:574
Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Phys-

iol 195:215–243
Ilonen J, Kamarainen J-K, Lampinen J (2003) Differential evolution training algorithm for feed-forward 

neural networks. Neural Process Lett 17:93–105
Irwin-Harris W, Sun Y, Xue B, Zhang M A Graph-Based Encoding for Evolutionary Convolutional Neural 

Network Architecture Design. In: 2019 IEEE Congress on Evolutionary Computation (CEC), 2019. 
IEEE, pp 546–553

Jacob C, Rehder J (1993) Evolution of neural net architectures by a hierarchical grammar-based genetic sys-
tem. Artificial Neural Nets and Genetic Algorithms. Springer, pp 72–79

Jakobi N (1995) Harnessing morphogenesis, cognitive science research paper 423. cogs. Tech. rep. Univer-
sity of Sussex,

Jones AJ (1993) Genetic algorithms and their applications to the design of neural networks. Neural Comput 
Appl 1:32–45

Jong De KA (1975) Analysis of the behavior of a class of genetic adaptive systems. Technical Report No. 
185, Department of Computer and Communication Sciences, University of Michigan

Juang CH, Ni S, Lu PC (1999) Training artificial neural networks with the aid of fuzzy sets. Computer-
Aided Civil and Infrastructure Engineering 14:407–415

Jung J-Y, Reggia JA (2008) The automated design of artificial neural networks using evolutionary computa-
tion. In: Success in evolutionary computation. Springer, pp 19–41

Jung J-Y, Reggia JAA (2004) Descriptive encoding language for evolving modular neural networks. Genetic 
and evolutionary computation conference. Springer, pp 519–530

Jung J-Y, Reggia JA (2006) Evolutionary design of neural network architectures using a descriptive encod-
ing language. IEEE Transact Evolut Comput 10:676–688

Karaboga D, Akay B Artificial bee colony (ABC) algorithm on training artificial neural networks. In: 2007 
IEEE 15th signal processing and communications applications. IEEE, pp 1–4

Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-TR06, 
Erciyes University, Faculty of Engineering

Karunanithi N, Das R, Whitley D Genetic cascade learning for neural networks. In: [Proceedings] 
COGANN-92: International workshop on combinations of genetic algorithms and neural networks. 
IEEE, pp 134–145

Kassahun Y, Sommer G (2005) Efficient reinforcement learning through evolutionary acquisition of neural 
topologies. In: ESANN, pp 259–266

Kim K-J, Cho S-B (2008) Evolutionary ensemble of diverse artificial neural networks using speciation. 
Neurocomputing 71:1604–1618

Kim Y-H, Reddy B, Yun S, Seo C Nemo: Neuro-evolution with multiobjective optimization of deep neural 
network for speed and accuracy. In: ICML 2017 AutoML Workshop, 2017.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Simulated Annealing Science 220:671–680
Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Com-

plex Systems 4:461–476
Knowles J, Corne D The pareto archived evolution strategy: A new baseline algorithm for pareto multi-

objective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 
(Cat. No. 99TH8406), 1999. IEEE, pp 98–105

Kobayashi M, Nagao T An evolution-based approach for efficient differentiable architecture search. In: 
Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, 2020. pp 
131–132

Koch H (1906) Une Méthode Géométrique Élémentaire Pour L’étude De Certaines Questions De La Théo-
rie Des Courbes Planes Acta Mathematica 30:145–174

Koehn P (1994) Combining genetic algorithms and neural networks: The encoding problem. MSc The-
sis. The University of Tennessee, Knoxville, TN



1796 H. T. Ünal, F. Başçiftçi 

1 3

Kohonen T (1989) Self-organizing feature maps. In: Self-organization and associative memory. Springer, pp 
119–157

Kohonen T (1995) Learning vector quantization. In: Self-organizing maps. Springer, pp 175–189
Kolmogorov AN (1957) On the representation of continuous functions of many variables by superposition 

of continuous functions of one variable and addition. In: Doklady Akademii Nauk, vol 5. Russian 
Academy of Sciences, pp 953–956

Koza JR, Rice JP Genetic generation of both the weights and architecture for a neural network. In: IJCNN-
91-seattle international joint conference on neural networks, 1991. IEEE, pp 397–404

Koza JR Hierarchical Genetic Algorithms Operating on Populations of Computer Programs. In: IJCAI, 
1989. pp 768–774

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection vol 
1. MIT press,

Koza JR Survey of genetic algorithms and genetic programming. In: Wescon conference record, 1995. 
WESTERN PERIODICALS COMPANY, pp 589–594

Kramer O (2018) Evolution of convolutional highway networks. International Conference on the Applica-
tions of Evolutionary Computation. Springer, pp 395–404

Krizhevsky A, Sutskever I, Hinton GE Imagenet classification with deep convolutional neural networks. In: 
Advances in neural information processing systems, 2012. pp 1097–1105

Lan G, De Vries L, Wang S Evolving Efficient Deep Neural Networks for Real-time Object Recognition. 
In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019. IEEE, pp 2571–2578

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation 
applied to handwritten zip code recognition. Neural Comput 1:541–551

LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD Handwritten digit 
recognition with a back-propagation network. In: Advances in neural information processing systems, 
1990a. pp 396–404

LeCun Y, Denker JS, Solla SA Optimal brain damage. In: Advances in neural information processing sys-
tems, 1990b. pp 598–605

LeCun Y, Haffner P, Bottou L, Bengio Y (1999) Object recognition with gradient-based learning. In: Shape, 
contour and grouping in computer vision. Springer, pp 319–345

Lee D-W, Kong SG, Sim K-B Evolvable neural networks based on developmental models for mobile robot 
navigation. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 
IEEE, pp 337–342

Leung FH-F, Lam H-K, Ling S-H, Tam PK-S (2003) Tuning of the structure and parameters of a neural net-
work using an improved genetic algorithm. IEEE Transact Neural Netw 14:79–88

Levine AB, Schlosser C, Grewal J, Coope R, Jones SJ, Yip S (2019) Rise of the machines: advances in deep 
learning for cancer diagnosis. Trends Cancer 5:157–169

Liang J, Meyerson E, Hodjat B, Fink D, Mutch K, Miikkulainen R (2019) Evolutionary neural automl for 
deep learning arXiv preprint arXiv: 19020 6827

Lindenmayer A (1971) Developmental systems without cellular interactions, their languages and grammars 
Journal of Theoretical Biology 30:455–484

Liu Y, Yao X (1996) A Population-Based Learning Algorithm Which Learns Both Architectures and 
Weights of Neural Networks Chinese Journal of Advanced Software Research 3:54–65

Liu P, Li Y, El, (2018c) Basha MD, Fang R Neural network evolution using expedited genetic algorithm 
for medical image denoising. International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, pp 12–20

Liu P, El Basha MD, Li Y, Xiao Y, Sanelli PC, Fang R (2019) Deep evolutionary networks with expedited 
genetic algorithms for medical image denoising. Med Image Anal 54:306–315

Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K (2018a) Hierarchical representations for effi-
cient architecture search arXiv preprint arXiv:171100436

Liu H, Simonyan K, Yang Y (2018b) Darts: Differentiable architecture search arXiv preprint 
arXiv:180609055

Liu Y, Yao X Evolutionary design of artificial neural networks with different nodes. In: Proceedings of 
IEEE international conference on evolutionary computation, 1996a. IEEE, pp 670–675

Lock D, Giraud-Carrier C (1999) Evolutionary programming of near-optimal neural networks. Artificial 
Neural Nets and Genetic Algorithms. Springer, pp 302–306

Loghmanian SMR, Jamaluddin H, Ahmad R, Yusof R, Khalid M (2012) Structure optimization of neural 
network for dynamic system modeling using multi-objective genetic algorithm. Neural Comput Appl 
21:1281–1295

Loshchilov I, Hutter F (2016) CMA-ES for hyperparameter optimization of deep neural networks arXiv 
preprint arXiv:160407269

http://arxiv.org/abs/190206827


1797Evolutionary design of neural network architectures: a review…

1 3

Lourenço N, Pereira FB, Costa E (2016) Unveiling the properties of structured grammatical evolution. 
Genet Program Evolvable Mach 17:251–289

Loussaief S, Abdelkrim A (2018) Convolutional Neural Network Hyper-Parameters Optimization Based on 
Genetic Algorithms. INT J ADV COMPUT SCI APPL 9:252–266

Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, Banzhaf W NSGA-Net: neural architecture 
search using multi-objective genetic algorithm. In: Proceedings of the Genetic and Evolutionary 
Computation Conference, 2019a. ACM, pp 419–427

Lu Z, Whalen I, Dhebar Y, Deb K, Goodman E, Banzhaf W, Boddeti VN (2019b) Multi-Criterion Evolu-
tionary Design of Deep Convolutional Neural Networks arXiv preprint arXiv:191201369

Lu Z, Deb K, Goodman E, Banzhaf W, Boddeti VN (2020) Nsganetv2: Evolutionary multi-objective surro-
gate-assisted neural architecture search arXiv preprint arXiv:200710396

Luke S, Spector L Evolving graphs and networks with edge encoding: Preliminary report. In: Late breaking 
papers at the genetic programming 1996 conference, 1996. Citeseer, pp 117–124

Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San Fransisco
Mandischer M (1993) Representation and evolution of neural networks. Artificial Neural Nets and Genetic 

Algorithms. Springer, pp 643–649
Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE 

Transact Neural Netw 5:39–53
Marshall S, Harrison R (1991) Optimization and training of feedforward neural networks by genetic algo-

rithms. In: 1991 second international conference on artificial neural networks. IET, pp 39–43
Marti L Genetically generated neural networks-I: representational effects. In: [Proceedings 1992] IJCNN 

International Joint Conference on Neural Networks, 1992. IEEE, pp 537–542
Mason K, Duggan J, Howley E Neural network topology and weight optimization through neuro differen-

tial evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 
2017. pp 213–214

McCulloch WS, Pitts W (1943) A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin 
Math Biophysics 5:115–133

McDonnell JR, Waagen DE Evolving neural network architecture. In: Neural and Stochastic Methods in 
Image and Signal Processing, 1993. International Society for Optics and Photonics, pp 690–701

Merrill JW, Port RF (1991) Fractally Configured Neural Networks. Neural Networks 4:53–60
Michel O, Biondi J (1995) From the chromosome to the neural network. Artificial Neural Nets and Genetic 

Algorithms. Springer, pp 80–83
Miikkulainen Risto et al. (2017) Evolving Deep Neural Networks ArXiv preprint arXiv:170300548v2 
Miikkulainen R et  al. (2019) Evolving deep neural networks. In: Artificial Intelligence in the Age of 

Neural Networks and Brain Computing. Elsevier, pp 293–312
Miller GF, Todd PM, Hegde SU Designing Neural Networks using Genetic Algorithms. In: ICGA, 1989. 

pp 379–384
Minsky M, Papert S (1969) Perceptrons: An Introduction to Computational Geometry. MIT Press, Cam-

bridge, MA, USA
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Software 69:46–61
Mitchell M (1998) An introduction to genetic algorithms. MIT press,
Mitschke N, Heizmann M, Noffz K-H, Wittmann R Gradient based evolution to optimize the structure of 

convolutional neural networks. In: 2018 25th IEEE International Conference on Image Processing 
(ICIP), 2018. IEEE, pp 3438–3442

Mizuta S, Sato T, Lao D, Ikeda M, Shimizu T (2001) Structure design of neural networks using genetic 
algorithms. Complex Systems 13:161–176

Mjolsness E, Sharp DH, Alpert BK (1989) Scaling, machine learning, and genetic neural nets. Adv appl 
math 10:137–163

Mladenović N, Hansen P (1997) Variable Neighborhood Search. Comp Operations Res 24:1097–1100
Montana DJ, Davis L Training Feedforward Neural Networks Using Genetic Algorithms. In: IJCAI, 

1989. pp 762–767
Moon S-W, Kong S-G (2001) Block-based neural networks. IEEE Trans Neural Networks 12:307–317
Moriarty DE, Miikkulainen R (1993) Evolving complex Othello strategies using marker-based genetic 

encoding of neural networks. Technical Report AI93-206, Department of Computer Sciences, The 
University of Texas at Austin

Moriarty DE, Miikkulainen R Hierarchical evolution of neural networks. In: IEEE International Confer-
ence on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intel-
ligence (Cat. No. 98TH8360), 1996. IEEE, pp 428–433

Moriarty DE, Miikkulainen R (1995a) Discovering complex Othello strategies through evolutionary 
neural networks. Connect Sci 7:195–210



1798 H. T. Ünal, F. Başçiftçi 

1 3

Moriarty DE, Miikkulainen R (1995b) Game Playing Othello Neuro-EVOLUTION Marker-BASED 
Encoding. Connect Sci 7:195–210

Moriarty DE, Miikkulainen R (1997) Forming neural networks through efficient and adaptive coevolu-
tion. Evol Comput 5:373–399

Moriarty DE, Mikkulainen R (1996) Efficient Reinforcement Learning through Symbiotic Evolution. 
Mach Learn 22:11–32

Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media,
Nolfi S, Parisi D (1997) Neural networks in an artificial life perspective. International Conference on 

Artificial Neural Networks. Springer, pp 733–737
Nolfi S, Parisi D, Elman JL (1994) Learning and evolution in neural networks. Adapt Behav 3:5–28
Nolfi S, Parisi D (1991) Growing neural networks. The Handbook of Brain Theory and Neural Networks
Noorian F, de Silva AM, Leong PH (2016) Grammatical Evolution: A Tutorial using gramEvol. Mas-

sachusetts Institute of Technology
Ojha VK, Abraham A, Snášel V (2017) Metaheuristic design of feedforward neural networks: A review 

of two decades of research. Eng Appl Artif Intell 60:97–116
Oliker S, Furst M, Maimon O Design architectures and training of neural networks with a distrib-

uted genetic algorithm. In: IEEE International Conference on Neural Networks, 1993. IEEE, pp 
199–202

Oong TH, Isa NAM (2011) Adaptive evolutionary artificial neural networks for pattern classification. 
IEEE Trans Neural Networks 22:1823–1836

Opitz DW, Shavlik JW (1999) A genetic algorithm approach for creating neural network ensembles. In: 
Combining artificial neural nets. Springer, pp 79–99

Opitz DW, Shavlik JW (1996) Actively searching for an effective neural network ensemble. Connect Sci 
8:337–354

Opitz DW, Shavlik JW (1997) Connectionist theory refinement: Genetically searching the space of net-
work topologies. J Artificial Intelligence Res 6:177–209

Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic neural network. IEEE Trans Neural Net-
works 16:587–600

Park J, Sandberg IW (1991) Universal Approximation Using Radial-Basis-Function Networks. Neural 
Comput 3:246–257

Petroski Such F, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2018) Deep neuroevolution: 
Genetic algorithms are a competitive alternative for training deep neural networks for reinforce-
ment learning arXiv preprint arXiv:171206567

Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient neural architecture search via parameter shar-
ing arXiv preprint arXiv:180203268 

Potter MA, De, (1994) Jong KA A cooperative coevolutionary approach to function optimization. Interna-
tional Conference on Parallel Problem Solving from Nature. Springer, pp 249–257

Potter MA, De, (1995) Jong KA Evolving neural networks with collaborative species. Summer Computer 
Simulation Conference. SOCIETY FOR COMPUTER SIMULATION, ETC, pp 340–345

Prellberg J, Kramer O (2018) Lamarckian evolution of convolutional neural networks. International Confer-
ence on Parallel Problem Solving from Nature. Springer, pp 424–435

Pujol JCF, Poli R (1998) Evolving the topology and the weights of neural networks using a dual representa-
tion. Appl Intell 8:73–84

Radcliffe NJ (1993) Genetic set recombination and its application to neural network topology optimisation. 
Neural Comput Appl 1:67–90

Radcliffe NJ (1990) Genetic neural networks on MIMD computers. KB thesis scanning project 2015
Rashed E, El Seoud M Deep learning approach for breast cancer diagnosis. In: Proceedings of the 2019 8th 

International Conference on Software and Information Engineering, 2019. ACM, pp 243–247
Real E, Aggarwal A, Huang Y, Le QV Regularized evolution for image classifier architecture search. In: 

Proceedings of the aaai conference on artificial intelligence, 2019. pp 4780–4789
Real E et al. (2017) Large-scale evolution of image classifiers arXiv preprint arXiv:170301041
Rechenberg I (1973) Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. From-

mann-Holzboog Verlag, Stuttgart
Reisinger J, Stanley KO, Miikkulainen R (2004) Evolving reusable neural modules. Genetic and Evolution-

ary Computation Conference. Springer, pp 69–81
Richards N, Moriarty DE, Miikkulainen R (1998) Evolving neural networks to play Go. Appl Intell 8:85–96
Risi S, Lehman J, Stanley KO Evolving the placement and density of neurons in the hyperneat substrate. 

In: Proceedings of the 12th annual conference on Genetic and evolutionary computation, 2010. pp 
563–570



1799Evolutionary design of neural network architectures: a review…

1 3

Rivero D, Dorado J, Fernández-Blanco E, Pazos AA (2009) genetic algorithm for ANN design, training and 
simplification. International Work-Conference on Artificial Neural Networks. Springer, pp 391–398

Robbins G, Plumbley MD, Hughes JC, Fallside F, Prager R (1993) Generation and adaptation of neural net-
works by evolutionary techniques (GANNET). Neural Comput Appl 1:23–31

Rocha M, Cortez P, Neves J (2007) Evolution of neural networks for classification and regression. Neuro-
computing 70:2809–2816

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the 
brain. Psychol Rev 65:386

Roy A, Dutta D, Choudhury K (2013) Training artificial neural network using particle swarm optimization 
algorithm. Int J Adv Res Comput Science Softw Eng 3(3)

Rudnick M (1990) A bibliography of the intersection of genetic search and artificial neural networks. (Tech. 
Rep. No. CS/E 90-001). Beaverton: Oregon Graduate Center, Department of Computer Science and 
Engineering

Rudolph S (1995) Eine Methodik zur systematischen Bewertung von Konstruktionen. PhD thesis, Univer-
sität Stuttgart

Rudolph S On a genetic algorithm for the selection of optimally generalizing neural network topologies. In: 
Proceedings of the 2nd International Conference on Adaptive Computing in Engineering Design and 
Control, 1996. Citeseer, pp 79–86

Rumelhart D, Hinton G, Williams R (1986) Learning internal representation by error backpropagation, par-
allel distributed processing: explorations microstructure of cognition. MIT Press, Cambridge

Ryan C, Collins JJ, Neill MO (1998) Grammatical evolution: Evolving programs for an arbitrary language. 
European Conference on Genetic Programming. Springer, pp 83–96

Saltori C, Roy S, Sebe N, Iacca G (2019) Regularized Evolutionary Algorithm for Dynamic Neural Topol-
ogy Search. International Conference on Image Analysis and Processing. Springer, pp 219–230

Sałustowicz R (1995) A genetic algorithm for the topological optimization of neural networks. PhD Thesis, 
Technische Universitat Berlin

Schaffer JD, Whitley D, Eshelman LJ Combinations of genetic algorithms and neural networks: A sur-
vey of the state of the art. In: Combinations of Genetic Algorithms and Neural Networks, 1992., 
COGANN-92. International Workshop on, 1992. IEEE, pp 1–37

Schaffer JD Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 
first international conference on genetic algorithms and their applications, 1985, Lawrence Erlbaum 
Associates. Inc.

Schaffer JD (1986) Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. 
PhD Thesis, Vanderbilt University

Schiffmann W, Joost M, Werner R (1990) Performance evaluation of evolutionarily created neural network 
topologies. International Conference on Parallel Problem Solving from Nature. Springer, pp 274–283

Schiffmann W, Joost M, Werner R (1993) Application of genetic algorithms to the construction of topolo-
gies for multilayer perceptrons. Artificial Neural Nets and Genetic Algorithms. Springer, pp 675–682

Schiffmann W, Joost M, Werner R (1992) Synthesis and performance analysis of multilayer neural network 
architectures Technical Report, University of Koblenz 16

Schwefel H-P (1977) Evolutionsstrategien für die numerische optimierung. In: Numerische Optimierung 
von Computer-Modellen mittels der Evolutionsstrategie. Springer, pp 123–176

Secretan J, Beato N, D Ambrosio DB, Rodriguez A, Campbell A, Stanley KO Picbreeder: evolving pictures 
collaboratively online. In: Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, 2008. pp 1759–1768

Secretan J, Beato N, D’Ambrosio DB, Rodriguez A, Campbell A, Folsom-Kovarik JT, Stanley KO (2011) 
Picbreeder: A case study in collaborative evolutionary exploration of design space Evolutionary com-
putation 19:373–403

Sexton RS, Gupta JN (2000) Comparative Evaluation of Genetic Algorithm and Backpropagation for Train-
ing. Neural Networks Information Sciences 129:45–59

Sexton RS, Dorsey RE, Johnson JD (1999) Beyond Backpropagation: Using Simulated Annealing for Train-
ing Neural Networks. J Organizational End User Comput (JOEUC) 11:3–10

Siddiqi AA, Lucas SM A comparison of matrix rewriting versus direct encoding for evolving neural net-
works. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE 
World Congress on Computational Intelligence (Cat. No. 98TH8360), 1998. IEEE, pp 392–397

Siebel NT, Sommer G (2007) Evolutionary reinforcement learning of artificial neural networks. Interna-
tional Journal of Hybrid Intelligent Systems 4:171–183

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition 
arXiv preprint arXiv:14091556 



1800 H. T. Ünal, F. Başçiftçi 

1 3

Smith RE, Forrest S, Perelson AS (1993) Searching for diverse, cooperative populations with genetic algo-
rithms. Evolutionary computation 1:127–149

Snoek J, Larochelle H, Adams RP Practical bayesian optimization of machine learning algorithms. In: 
Advances in neural information processing systems, 2012. pp 2951–2959

Soltanian K, Tab FA, Zar FA, Tsoulos I Artificial neural networks generation using grammatical evolution. 
In: 21st Iranian Conference on Electrical Engineering (ICEE), 2013. IEEE, pp 1–5

Spears WM, De, (1993) Jong KA, Bäck T, Fogel DB, De Garis H An overview of evolutionary computa-
tion. European Conference on Machine Learning. Springer, pp 442–459

Spielberg S, Tulsyan A, Lawrence NP, Loewen PD, Bhushan Gopaluni R (2019) Toward self‐driving pro-
cesses: A deep reinforcement learning approach to control AIChE Journal 65: e16689

Sprinkhuizen-kuyper IG, Boers EJ, Happel BL, Sprinhuizen-Kuyper IG, Kuiper H Designing modular 
artificial neural networks. In: Proceedings of computing Science in the Netherlands CSN’93, 1993. 
Citeseer,

Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. 
Evol Comput 2:221–248

Srivastava RK, Greff K, Schmidhuber J (2015) Highway networks arXiv preprint arXiv:150500387
Stanley KO, Miikkulainen R (2001) Evolving neural networks through augmenting topologies. Evol Com-

put 10:99–127
Stanley KO, Miikkulainen R (2003) A Taxonomy for Artificial Embryogeny. Artificial Life 9:93–130
Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural 

networks. Artif Life 15:185–212
Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing neural networks through neuroevolution 

Nature. Machine Intelligence 1:24–35
Stanley KO, Miikkulainen R Efficient evolution of neural network topologies. In: Proceedings of the 2002 

Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), 2002. IEEE, pp 1757–1762
Stanley KO (2004) Efficient evolution of neural networks through complexification.
Stepniewski SW, Keane AJ (1996) Topology design of feedforward neural networks by genetic algorithms. 

International Conference on Parallel Problem Solving from Nature. Springer, pp 771–780
Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over 

continuous spaces Journal of global optimization 11:341–359
Suganuma M, Shirakawa S, Nagao T A genetic programming approach to designing convolutional neu-

ral network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, 
2017. ACM, pp 497–504

Sun Y, Xue B, Zhang M, Yen GG (2019a) Automatically evolving cnn architectures based on blocks arXiv 
preprint arXiv:181011875

Sun Y, Xue B, Zhang M, Yen GG (2019b) Evolving deep convolutional neural networks for image classifi-
cation IEEE Transactions on Evolutionary Computation

Sun Y, Xue B, Zhang M, Yen GG, Lv J (2019c) Automatically Designing CNN Architectures Using the 
Genetic Algorithm for Image Classification IEEE Transactions on Cybernetics

Szegedy C et  al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2015. pp 1–9

Tan Z-H (2004) Hybrid evolutionary approach for designing neural networks for classification. Electron Lett 
40:955–957

Tang K, Chan C, Man K, Kwong S Genetic structure for NN topology and weights optimization. In: First 
International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applica-
tions, 1995. IET, pp 250–255

Thorburn WM (1918) The Myth of Occam’s Razor Mind 27:345–353
Tirumala SS, Ali S, Ramesh CP Evolving deep neural networks: A new prospect. In: 2016 12th International 

Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2016. 
IEEE, pp 69–74

Tsoulos I, Gavrilis D, Glavas E (2008) Neural network construction and training using grammatical evolu-
tion. Neurocomputing 72:269–277

Verbancsics P, Harguess J (2013) Generative neuroevolution for deep learning arXiv preprint 
arXiv:13125355

Verbancsics P, Harguess J Image classification using generative neuro evolution for deep learning. In: 2015 
IEEE winter conference on applications of computer vision, 2015. IEEE, pp 488–493

Voigt H-M, Born J, Santibánez-Koref I Evolutionary structuring of artificial neural networks. In: University 
Berlin, Bionics, 1993. Citeseer,



1801Evolutionary design of neural network architectures: a review…

1 3

Vonk E, Jain L, Johnson R Using genetic algorithms with grammar encoding to generate neural net-
works. In: Proceedings of ICNN’95-International Conference on Neural Networks, 1995a. IEEE, pp 
1928–1931

Vonk E, Jain LC, Veelenturf L, Hibbs R Integrating evolutionary computation with neural networks. In: 
Proceedings Electronic Technology Directions to the Year 2000, 1995b. IEEE, pp 137–143

Vonk E, Jain LC, Veelenturf L, Johnson R Automatic generation of a neural network architecture using evo-
lutionary computation. In: Proceedings Electronic Technology Directions to the Year 2000, 1995c. 
IEEE, pp 144–149

Wang B, Sun Y, Xue B, Zhang MA (2018) hybrid differential evolution approach to designing deep convo-
lutional neural networks for image classification. Australasian Joint Conference on Artificial Intel-
ligence. Springer, pp 237–250

Wang W, Lu W, Leung AY, Lo S-M, Xu Z, Wang X Optimal feed-forward neural networks based on the 
combination of constructing and pruning by genetic algorithms. In: Proceedings of the 2002 Inter-
national Joint Conference on Neural Networks. IJCNN’02 (Cat. No. 02CH37290), 2002. IEEE, pp 
636–641

Wang W, Lu W, Wang X, Leung AY Developing optimal feed-forward neural networks using a constructive 
dynamic training method and pruning with a genetic algorithm. In: 7th International Conference on 
the Application of Artificial Intelligence to Civil and Structural Engineering, AICivil-Comp 2003, 
2003. Civil-Comp Press

Watkins CJ, Dayan P (1992) Q-Learning. Machine Learning 8:279–292
Weiß G (1994a) Neural networks and evolutionary computation. part I. Hybrid approaches in artificial intel-

ligence. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE world con-
gress on computational intelligence. IEEE, pp 268–272

Weiß G (1994b) Neural networks and evolutionary computation. part II: Hybrid approaches in the neu-
rosciences. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE world 
congress on computational intelligence. IEEE, pp 273–277

Weiß G (1993) Towards the synthesis of neural and evolutionary learning. In: Progress in neural networks, 
vol 5. Ablex Publishing Corporation, pp 145–176

Werbos PJ (1974) Beyond Regression: New tools for prediction and Analysis in the Behavioral Sciences. 
Harvard University

White D, Ligomenides P (1993) GANNet: A genetic algorithm for optimizing topology and weights in neu-
ral network design. International Workshop on Artificial Neural Networks. Springer, pp 322–327

Whitley D (1995) Genetic Algorithms and Neural Networks Genetic Algorithms. Eng Comput Sci 
3:203–216

Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: Optimizing connec-
tions and connectivity Parallel computing 14:347-361

Whitley D, Gordon VS, Mathias K (1994) Lamarckian evolution, the Baldwin effect and function optimiza-
tion. International Conference on Parallel Problem Solving from Nature. Springer, pp 5–15

Whitley LD, Gruau F, Pyeatt LD Cellular Encoding Applied to Neurocontrol. In: ICGA, 1995. Citeseer, pp 
460–467

Wiegand RP (2003) An analysis of cooperative coevolutionary algorithms. George Mason University
Wilson SW (1989) Perception redux: Emergence of structure Physica D. Nonlinear Phenomena 42:249–256
Wistuba M, Rawat A, Pedapati T (2019) A survey on neural architecture search arXiv preprint 

arXiv:190501392
Wong F, Goh G (1994) Genetically optimized neural networks. Report, NIBS Pte Ltd
Wu J, Zhang Z, Ji Y, Li S, Lin L A ResNet with GA-based Structure Optimization for Robust Time Series 

Classification. In: 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logis-
tics Engineering (SMILE), 2019. IEEE, pp 69–74

Xie L, Yuille A Genetic cnn. In: Proceedings of the IEEE International Conference on Computer Vision, 
2017. pp 1379–1388

Yang X-S (2009) Firefly algorithms for multimodal optimization. International symposium on stochastic 
algorithms. Springer, pp 169–178

Yang X-S, Deb S Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired 
computing (NaBIC), 2009. IEEE, pp 210–214

Yang Z et  al. Cars: Continuous evolution for efficient neural architecture search. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. pp 1829–1838

Yao X (1993) Evolutionary artificial neural networks. Int J Neural Syst 4:203–222
Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447
Yao X, Liu Y (1997) A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Trans 

Neural Networks 8:694–713



1802 H. T. Ünal, F. Başçiftçi 

1 3

Yao X, Liu Y (1998) Towards designing artificial neural networks by evolution. Appl Math Comput 
91:83–90

Yao X, Liu Y Evolving artificial neural networks for medical applications. In: Proceedings of the First 
Korea-Australia Joint Workshop on Evolutionary Computation, 1995. Citeseer, pp 1–16

Yao X, Liu Y Ensemble structure of evolutionary artificial neural networks. In: Proceedings of IEEE inter-
national conference on evolutionary computation, 1996. IEEE, pp 659–664

Yen GG, Lu H Hierarchical genetic algorithm based neural network design. In: 2000 IEEE Symposium 
on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE 
Symposium on Combinations of Evolutionary Computation and Neural Networks, 2000. IEEE, pp 
168–175

Yen G, Lu H (2002) Hierarchical genetic algorithm for near-optimal feedforward neural network design. Int 
J Neural Syst 12:31–43

Young SR, Rose DC, Karnowski TP, Lim S-H, Patton RM Optimizing deep learning hyper-parameters 
through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, 2015. ACM, p 4

Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. European conference 
on computer vision. Springer, pp 818–833

Zhang B-T, Muhlenbein H (1993) Evolving optimal neural networks using genetic algorithms with Occam’s 
razor. Complex Systems 7:199–220

Zhang B-T, Ohm P, Mühlenbein H (1997) Evolutionary induction of sparse neural trees. Evol Comput 
5:213–236

Zhang B-T, Mühlenbein H Genetic programming of minimal neural nets using Occam’s razor. In: Proceed-
ings of the 5th international conference on genetic algorithms ICGA’93, 1993. Citeseer

Zhang J, Xing L A survey of multiobjective evolutionary algorithms. In: 2017 IEEE International Con-
ference on Computational Science and Engineering (CSE) and IEEE International Conference on 
Embedded and Ubiquitous Computing (EUC), 2017. IEEE, pp 93–100

Zhong Z, Yan J, Liu C-L (2017) Practical network blocks design with q-learning arXiv preprint 
arXiv:170805552 1:5

Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: 
A survey of the state of the art. Swarm Evol Comput 1:32–49

Zhu Y, Yao Y, Wu Z, Chen Y, Li G, Hu H, Xu Y (2018) GP-CNAS: Convolutional Neural Network Archi-
tecture Search with Genetic Programming arXiv preprint arXiv:181207611

Zhu H, An Z, Yang C, Xu K, Zhao E, Xu Y EENA: Efficient Evolution of Neural Architecture. In: Proceed-
ings of the IEEE International Conference on Computer Vision Workshops, 2019

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. 
TIK-report 103

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength 
Pareto approach. IEEE trans Evol Comput 3:257–271

Zoph B, Le QV (2016) Neural architecture search with reinforcement learning arXiv preprint 
arXiv:161101578

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Evolutionary design of neural network architectures: a review of three decades of research
	Abstract
	1 Introduction
	2 Artificial neural networks
	2.1 Biological Motivation
	2.2 Multi-layer perceptron (MLP)
	2.3 Towards deep architectures

	3 ANN optimization
	3.1 Optimization of ANN architectures
	3.2 Optimization of synaptic weights
	3.3 Simultaneous optimization of architecture and weights
	3.4 Invasive and non-invasive approaches
	3.5 Methodology
	3.5.1 Generalization and architecture
	3.5.2 Conventional methods
	3.5.3 Metaheuristics
	3.5.3.1 Single solution based metaheuristics 
	3.5.3.2 Population-based metaheuristics 
	3.5.3.3 Hybrid metaheuristics 


	3.6 Evolutionary computation
	3.6.1 Evolutionary programming (EP)
	3.6.2 Genetic algorithms (GAs)
	3.6.3 Evolutionary strategies (ES)
	3.6.4 Differential evolution (DE)
	3.6.5 Genetic programming (GP)
	3.6.5.1 Gene expression programming (GEP) 
	3.6.5.2 Grammatical evolution (GE) 


	3.7 Genetic operators
	3.7.1 Generating the initial population
	3.7.2 Fitness function and evaluation
	3.7.3 Selection
	3.7.4 Reproduction (Crossover)
	3.7.5 Mutation
	3.7.6 Elitism

	3.8 Multi-objective evolutionary algorithms
	3.9 Coevolutionary approaches
	3.9.1 Cooperative coevolution
	3.9.2 Competitive coevolution


	4 Representation
	4.1 Direct encoding
	4.2 Indirect encoding
	4.2.1 Parametric representation
	4.2.2 Developmental approaches
	4.2.3 Fractals

	4.3 Lindenmayer systems (L-Systems)
	4.4 Artificial embryogeny (AE)
	4.5 Other Nature-Inspired Approaches
	4.6 Competing conventions problem
	4.7 Noisy fitness evaluation problem
	4.8 Ensembles

	5 Historical progress
	5.1 Early work
	5.2 The rise
	5.3 Deep learning era
	5.3.1 Optimization of deep neural networks
	5.3.2 Hyperparameter optimization
	5.3.3 Preliminary studies
	5.3.4 Towards state-of-the-art
	5.3.5 Latest approaches


	6 Conclusion and summary
	Acknowledgements 
	References




