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Abstract

Structural engineering is focused on the safe and efficient design of infrastructure. Pro-
jects can range in size and complexity, many requiring massive amounts of materials and
expensive construction and operational costs. Therefore, one of the primary objectives for
structural engineers is a cost-effective design. Incorporating optimality criteria into the
design procedure introduces additional complexities that result in problems that are non-
linear, nonconvex, and have a discontinuous solution space. Population-based optimization
algorithms (known as metaheuristics) have been found to be very efficient approaches to
these problems. Many researchers have developed and applied state-of-art metaheuristics
to automate and optimize the design of real-world civil engineering problems. While there
is a large body of published papers in this area, there are few comprehensive reviews that
list, summarize, and categorize metaheuristic optimization in structural engineering. This
paper provides an extensive survey of a wide range of metaheuristic techniques to struc-
tural engineering optimization problems. Also, information is provided on available struc-
tural engineering benchmark problems, the formulation of different objective functions,
and the handling of various types of constraints. The performance of different optimization
techniques is compared for many benchmark problems.

Keywords Engineering optimization - Civil engineering - Population-based optimization -
Global optimization - Metaheuristic algorithms - Structural optimization

1 Introduction

Population-based approaches as a subcategory of artificial intelligence (Al)-based methods
have proved to be as efficient alternatives to the conventional solvers for highly complex
real-world problems. The most significant advantage of these intelligent techniques is that
they do not require prior knowledge of the tackled problem. Population-based techniques
can be utilized for different tasks, such as prediction and optimization.
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The most well-known population-based algorithm for prediction is genetic program-
ming (GP). This algorithm was used in many challenging problems due to its effectiveness.
For example Gandomi and Alavai (2012a, b, 2013) utilized a multi-gene GP (MGGP)
for material, structural, geotechnical and earthquake engineering problems (Gandomi et al.
2014b, 2017¢c) employed gene expression programming (GEP) to predict shear strength if
slender RC beams with and without shear reinforcement, Gandomi et al. (2010) applied
linear GP to develop formulation for compressive strength of carbon fiber reinforced plas-
tic (CFRP) confined concrete cylinders, Gandomi et al. (2011a) predicted shear strength
of steel fiber-reinforced concrete beams using linear GP, Mousavi et al. (2010) developed
a hybrid approach based on GP and simulated annealing algorithm to predict compressive
strength of CFRP-confined concrete cylinders, Gandomi et al. (2014a) utilized a linear GP
for predicting shear strength of RC beams without stirrups, Gandomi et al. (2011b) intro-
duced a model for predicting the load capacity of castellated steel beams using GEP, Gan-
domi et al. (2009) employed linear GP for behavior assessment of steel semi-rigid joints,
Gandomi and Roke (2014) concentrated on the prediction seismic response of braced
frames using GP, Gandomi et al. (2013b) proposed GP-based model for predicting moment
capacity of ferrocement members, and Gandomi et al. (2016) applied GP to acquire a for-
mulation for concrete creep.

Population-based metaheuristic algorithms perform a meaningful search within the
solution space using a set of components that represent potential solutions for the tack-
led function. These algorithms mimic the intelligence behind natural phenomena to
direct the search process. The fundamental assumption in all the metaheuristic tech-
niques is getting close to the optimal solution as much as possible rather than finding the
exact final solution. This attitude gives a phenomenal ability to this class of algorithms
for handling nonconvex, non-smooth, and discontinuous functions. On the contrary,
there is no guarantee that the final obtained solution by the algorithm is the best pos-
sible choice. This fact has motivated many researchers in recent years to develop new
algorithms (Abdel-Basset et al. 2018; Dokeroglu et al. 2019; Yang 2010b; Abualigah
et al. 2021; Yang et al. 2021) or improve the existing method as much as possible (Gan-
domi and Deb 2020; Gandomi and Kashani 2016, 2018b; Kashani et al. (2020c); Gan-
domi and Yang 2012; Gao et al. 2017; Gupta et al. 2020; Ngo et al. 2017; Sadollah et al.
2018; Tubishat et al. 2020). Metaheuristic techniques can be broadly classified into non-
metaphor-based and metaphor-based algorithms, as shown in Fig. 1. Metaphor-based
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Fig. 1 Classification of metaheuristic algorithms

@ Springer



Population-based optimization in structural engineering:... 347

algorithms are including bio-inspired [e.g., genetic algorithm (Holland 1992) and par-
ticle swarm optimization (Kennedy and Eberhart 1995)], art-inspired [e.g., harmony
search (Geem et al. 2001) and interior search algorithm (Gandomi 2014)], science-
inspired [e.g., simulated annealing (van Laarhoven and Aarts 1987) and gravitational
search algorithm (Rashedi et al. 2009)], social inspired [e.g., teaching—learning-based
optimization (Rao et al. 2011) and school-based optimization (Farshchin et al. 2018)].

Optimization algorithms undertake the engineering problems based on two main
standpoints: (1) analysis, (2) design. The main effort in the former is finding the
boundary condition where an equilibrium state of a given system is provided. The lat-
ter, though, deals with searching for the most optimal configuration of a system that
satisfies all the functional requirements. Generally, engineering problems are compli-
cated because of dealing with many design variables and limitations in the form of con-
straints. On the other hand, due to the stochastic nature of metaheuristics, their per-
formances on different problems are usually variants. Thus, regardless of the problem
type, handling them can be considerably challenging for the algorithms. Consequently,
the strengths and weaknesses of various algorithms have been reflected in dealing with
these challenging problems. Those problems have prone to attract much attention in
engineering society and were subject to many sophisticated studies (Bozorg-Haddad
et al. 2017; Cuevas et al. 2019; Elshaer and Awad 2020; Elsheikh and Abd Elaziz 2019;
Ganesan et al. 2016; Iliopoulou et al. 2019; Kumar and Davim 2019; Pattanaik et al.
2017; Ramos-Figueroa et al. 2020; Shaheen et al. 2018; Singh et al. 2020; Wang et al.
2019).

Civil engineering problems, because of dealing with a large number of decision vari-
ables and regulations, are highly complex within their solution space. Optimization algo-
rithms proposed very effective alternatives to this sort of problem, either indirectly or
directly. Indirect applications of metaheuristics have been their coupling with some other
Al-based techniques such as artificial neural networks (Akhani et al. 2019; Khari et al.
2019; Gandomi et al. 2021), genetic programming (Aminian et al. 2011; Gandomi et al.
2008, 2013a; Yong et al. 2020), fuzzy logic (Zabihi-Samani and Ghanooni-Bagha 2019),
support vector machine (Hoang and Pham 2016), random forest (Zhang et al. 2020), etc.
However, optimization algorithms have been found to be very proficient to directly han-
dle difficult civil engineering problems (Bekdas et al. 2019; Ali Kaveh 2017; Yang et al.
2016). In this way, the optimal design of a wide range of structures using metaheuristics
was modeled mathematically in several efforts (Gandomi and Yang 2011; Gandomi et al.
2013c); Gandomi et al. 2011c, 2013f, 2013g; Sahab et al. 2013; Wang et al. 2018; Kashani
et al. 2021a). Geotechnical engineering has also been the subject of many investigations
(Yang et al. 2012). For instance, slope stability analysis was examined through different
optimization algorithms for many years (Gandomi et al. 2017a, 2015a, b; Kashani et al.
2016; Sanaeirad and Kashani 2016); optimum design retaining structures was handled by
many researchers to now (Camp and Akin 2012; Gandomi et al. 2015¢, 2017b, d; Gandomi
and Kashani 2018a; Kashani et al. 2019b; Khajehzadeh and Eslami 2012; Khajehzadeh
et al. 2013, 2010); shallow foundation optimization was also another important benchmark
problem in this field (Assadollahi 2016, 2017; Assadollahi and Camp 2014; Camp and
Assadollahi 2013, 2015; Gandomi and Kashani 2017; Kashani et al. 2019a; Khajehzadeh
et al. 2011). Many other researchers attempted to explore the efficiency of metaheuristics
in handling some other sub-fields of civil engineering such as transportation engineer-
ing (Balakrishnan 2016; Bayram 2016; Caunhye et al. 2012), water resource management
(Jahandideh-Tehrani et al. 2020; Oxley and Mays 2016; Shishegar et al. 2018; Moeini et al.
2021), hydraulic engineering (Quaranta and Revelli 2020; Zhang and Liu 2018; Azizi et al.
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2017), and construction management (Eid et al. 2018; Sahib and Hussein 2019; Tavakolan
and Nikoukar 2019; Togan and Eirgash 2019).

Recently, an extensive number of metaheuristic algorithms have been developed to
address the deficiencies of previously introduced ones as much as possible. Thereupon,
numerous investigations have been carried out in which the applications of those algo-
rithms to real-world and benchmark engineering problems are explored. Among all of
them, structural engineering related problems have been found to be challenging due to
their complex nature. Therefore, they have attracted much attention in engineering optimi-
zation research society. However, there is a lack of comparative survey that highlighted the
key features of available studies in this area. This research aims to provide a comprehensive
review of the different applications of metaheuristics to structural engineering problems. It
is worth noting that this review outlined the objective function, applied constraints, design
variables, utilized optimization algorithms, and applied modifications just in case. There-
fore, the main effort in this review paper can be characterized accordingly: (1) providing a
complete list of references on the basis of structural engineering optimization; (2) taking a
look at the most updated concerns in structural optimization and their evolution within the
time; (3) giving a perspective on the way that new structural problems were defined and
addressed using optimization algorithms.

2 Search method procedure

The searching method of finding the relevant papers for doing the current survey is dis-
cussed in detail in this section.

2.1 Search method

The underlying platform for finding the relevant works of literature was Google Scholar in
this study. To do that, we used a software entitled Harzing’s Publish or Perish that provides
some options for the utilized database to search through. In this review paper, the struc-
tural optimization research area was explored based on three main sub-categories: (1) truss
structures, (2) frame structures, and (3) miscellaneous. Three keywords were utilized to
address these categories for our search within the database as “truss optimization,” “frame
optimization,” and “structural optimization.” The output of this software could be saved as
a.csv file. The process of searching with those mentioned keywords resulted in a massive
number of publications as this software saves every paper recognized with this keyword
regardless of its category and field. Therefore, we filtered out all the irrelevant papers to
civil engineering. Moreover, we ignored the article published in journals without indexing
by Scopus and ISI. Additionally, the published review papers, book chapters, conference
papers, and case studies have been excluded during the review.

2.2 Otherreviews

A search through Google Scholar revealed that there are very limited organized review
papers in which all aspects of relevant research papers are discussed. Moreover, none of
those review papers addressed the structural optimization in specific. Zavala et al. (2014)
provided a review on the application of multi-objective optimization algorithms to struc-
tural optimization. The concepts of multi-objective optimization and Pareto front were
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explained in this paper. An example of a four-element planar truss considering bi-objective
optimization as minimum weight and nodal displacement was examined to clarify multi-
objective and Pareto front concepts. Besides, a description of the definitions and classifi-
cations of metaheuristics, as well as the issues when solving multi-objective optimization
problems, were presented. Along with that, four major attitudes in structural optimization
were highlighted as area optimization, size optimization, shape optimization, and topologi-
cal optimization of cross-sections.

Hajihassani et al. (2018) explored the application of the PSO algorithm to geotechnical
engineering problems. In this review, both direct applications of PSO to geotechnical engi-
neering problems and its application to enhance the performance of other Al-based meth-
ods were covered. Before going through the literature review on the geotechnical appli-
cations of PSO, different variations of PSO and strong recommendations for parameter
settings were discussed. Slope stability analysis, pile and foundation design, rock mechan-
ics, soil mechanics, and tunneling and underground space technology were the main cat-
egories of PSO application to geotechnical engineering problems. Furthermore, some geo-
technical applications of PSO other than the mentioned major classes were also provided.

Kashani et al. (2020b) provided a comprehensive review and a comparative study on
the application of PSO variants to geotechnical engineering problems. In this survey, the
fundamental of the PSO algorithm and different tries for modifying and improving its
efficiency were argued. In addition, seven main variations of PSO were applied to the
benchmark geotechnical optimization problems accordingly: (1) comprehensive learning
PSO, (2) heterogeneous comprehensive learning PSO, (3) extraordinary PSO, (4) frac-
tional-order Darwinian PSO, (5) improved random drift PSO, (6) improved PSO based
on dynamic parameter setting, (7) autonomous particles groups for PSO. A survey on the
available studies on slope stability analysis, retaining wall, reinforced soil, shallow founda-
tion, pile foundations, tunnels, and miscellaneous applications was provided. A compara-
tive study was also conducted on the application of the abovementioned PSO variants to
the slope stability, retaining wall, and shallow foundation. Kashani et al. (2020d) provided
a comprehensive review of civil engineering optimization using metaheuristic algorithms
in another effort. The general classification of metaheuristic algorithms was expressed in
this study. After that, a review was accomplished on many available papers in the field of
civil engineering, including structural, geotechnical, transportation, hydraulic and hydrol-
ogy, and construction management engineering.

3 Metaheuristic optimization algorithms

Metaheuristics, as an integral part of modern optimization, are Al-based techniques
proposed by Glover (1986). Despite heuristics, a very important and useful aspect of
metaheuristic algorithms is their independence from the characteristics of the tackled prob-
lems. Metaheuristics search the solution space stochastically to get close to the optimal
solution as much as possible using two main characteristics: (1) exploration, (2) exploita-
tion. In fact, exploration is part of the algorithm that is responsible for global search. This
strategy broadens the search area for the algorithm that makes it capable of evading local
minima. On this basis, metaheuristics would be applicable to discontinuous and non-dif-
ferentiable functions easily. On the other hand, exploitation provides a strong local search
by shrinking the search space to the area around the most promising up to time region.
This phase would be helpful to prevent converging to premature solutions. An appropriate
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trade-off between those two features—exploration and exploitation—is necessary to reach
an efficient performance of the algorithms. Many researchers tried to address this key fac-
tor by developing new algorithms mimicking natural phenomena such as sociology, phys-
ics, mathematics, art, politics, etc. To now, a wide range of categorizations has been pro-
posed based on their common characteristics. For example, Osman (2003) proposed three
clusters for these algorithms as local search, construction-based, and population-based.
Gendreau and Potvin (2005) classified metaheuristic techniques into trajectory-based and
population-based algorithms. Fister et al. (2013) considered two main categories as fol-
lows: (1) non-nature inspired, (2) nature-inspired. The following short descriptions are pro-
vided for the most well-known metaheuristics.

A genetic algorithm (GA) is the basic evolutionary algorithm modeled the Darwinian
theory of natural selection mathematically Holland (1992). The utilized strategy by GA to
search the solution space has been a standpoint for developing modern evolutionary-based
algorithms. Every potential solution made by design variables is represented by a chro-
mosome of genes. In this way, GA generates a population of chromosomes randomly and
adjust those chromosomes’ genes through evolutionary operators (i.e., crossover, recombi-
nation, mutation, and selection) to improve their fitness. This adjustment would be resulted
in producing new generations. This process is repeated until satisfying the termination
criteria.

Particle swarm optimization (PSO) is one of the most well-known population-based
algorithms that search the solution space by a swarm of particles (Kennedy and Eberhart
1995). The social behavior of birds flocking for finding foods was the core strategy of the
PSO algorithm for finding the optimal solutions. For that reason, every trial solution was
equalized as a particle described by two qualities as follows: (1) position, (2) velocity. PSO
generates a population of random particles and moves them in the search space using the
velocity in every iteration. This velocity term is related to the best-found solution and the
best experience of every single particle. By repeating this procedure, more particles would
gather around the promising search area to find better solutions. Some other particles,
though, will search different sections of solution space to provide exploration.

Geem et al. (2001) developed a harmony search (HS) as a music-inspired algorithm.
HS mimics the process of producing aesthetic harmony by the improvisation of musicians
through variation. Three major strategies can be employed to achieve this improvisation:
(1) play any famous piece of music (using a memorized pitches); (2) play something simi-
lar to a known piece (adjusting the pitch slightly); or (3) compose a new note. HS provides
both exploration and exploitation by imitating those three patterns for generating new solu-
tions and solving the tackled problem.

Numerous metaheuristic optimization algorithms have been developed during the past
few years. The following list can be made based on the date order to mention some of
the well-known algorithms: artificial bee colony (Karaboga 2010), bees algorithm (Pham
et al. 2006), glowworm swarm optimization (Krishnanand and Ghose 2005); shuffled frog
leaping algorithm (Eusuff et al. 2006), cat swarm optimization (Chu et al. 2006); imperi-
alistic competitive algorithm (Atashpaz-Gargari and Lucas 2007), river formation dynam-
ics (Rabanal et al. 2009), intelligent water drops algorithm (Hosseini 2009); gravitational
search algorithm (Rashedi et al. 2009), cuckoo search (Yang and Suash Deb 2009); bat
algorithm (Yang 2010a); spiral optimization (Tamura and Yasuda 2016); flower pollina-
tion algorithm (Yang 2012), krill herd algorithm (Gandomi and Alavi 2012c; Kashani
et al. 2021c, d); cuttlefish optimization algorithm (Eesa et al. 2014), heterogeneous dis-
tributed bees algorithm (Tkach et al. 2013); cooperative group optimization (Xie et al.
2014), artificial swarm intelligence (Rosenberg 2016), colliding bodies optimization
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(Kaveh and Mahdavi 2014a); the ant lion optimizer (Mirjalili 2015b), moth-flame opti-
mization algorithm (Mirjalili 2015a); duelist algorithm (Biyanto et al. 2016), killer whale
algorithm(Biyanto et al. 2017; Kashani et al. 2020a, 2021b); rain water algorithm (Biyanto
et al. 2016), hydrological cycle algorithm (Wedyan et al. 2017), salp swarm algorithm
(Mirjalili et al. 2017); mass and energy balances algorithm (Biyanto et al. 2016); Harris
hawks optimization (Heidari et al. 2019), emperor penguins colony (Harifi et al. 2019);
shuffled shepherd optimization algorithm (Kaveh and Zaerreza 2020), a marine predators
algorithm (Faramarzi et al. 2020).

4 Overview on the number of publications on structural engineering
optimization

In the following, we tried to organize available publications on different structural engi-
neering optimization problems. To this end, we used Harzing’s Publish or Perish software
to do the search within Google Scholar and extract the literature on the targeted field. In
the first step, we found a total of 1,961 publications by searching using a keyword as “civil
engineering metaheuristic optimization,” “structural optimization,” and ‘“‘geotechnical opti-
mization.” The software considered all the publications with those keywords. Hence, irrel-
evant references were filtered by considering only civil-engineering related keywords (i.e.,
structural, earthquake, geotechnical, transportation, water resource management, hydraulic,
and construction management engineering) in their titles. We also excluded dissertations,
books, review papers, reliability, and probabilistic optimizations. This strategy resulted in
a total of 902 cases from 1997 to 2020, as shown in Fig. 2. The observations based on the
number of publications in every sub-field is demonstrated in Fig. 3. The maximum number
of papers in structural and earthquake, geotechnical, transportation, water resource man-
agement and hydraulic, and construction management were 77 in 2017, 25 in 2011, 5 in
2016 to 2018, 11 in 2019, and 7 in 2014 and 2019, respectively.

The total numbers of publications in each filed were as follows: 507 in structures and
earthquake engineering, 273 in geotechnical engineering, 31 in transportation engineer-
ing, 39 in water resource management and hydraulic engineering, and 52 in construction
management engineering. In order to do the detailed review, we considered only structural
engineering optimization papers. In this way, we only considered journals indexed by ISI
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and Scopus, and we excluded all the conference papers, review papers, books, book chap-
ters, dissertations, technical reports, etc. Therefore, from a total of 507 papers in structural
and earthquake engineering, we reviewed 245 papers in three categories as follows: (1)
truss optimization, (2) frame optimization, (3) dam optimization, and (4) miscellaneous.
Figure 4 depicted the number of publications in each category in different years.
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From the reviewed publication, we obtained the statistics of publication per journal, and
results show the journals of Computer and Structure (35), Structural and Multidisciplinary
Optimization (24), and Applied soft computing (22) has published more, among others.
Figure 5 provides the data about the most active journals.

Figure 6 depicts network visualization co-occurrence analysis, and Fig. 7 shows the
keyword trend in recent years. Each node in the network displays a keyword and the link
between the nodes illustrates the co-occurrence of the keywords. From Fig. 6, structural
optimization, optimization, truss structures, particle swarm optimization, genetic algo-
rithm, frequency constraints, discrete optimization, size optimization, and steel frames
among the top useful keywords.

Figure 8 shows the networks of total of 610 authors and connections among collab-
orating researchers. Each node in the network displays an author/co-author, and the link
between the nodes illustrates the co-occurrence of knowledge channels. The networks
highlight the scientific communities engaged in research on the entire body of research
which was reviewed in the current study (Fig. 9).

4.1 Truss optimization

In the following review, the detailed explanation is devoted to truss optimization specifi-
cally by differentiating between size, shape, and topology for classification. Therefore,
we excluded the publications which targeted different engineering problems and solved
only one simple truss problem. A general overview of the highlighted key points of the

Number of publications

0 5 10 15 20 25 30 35 40

Computers and Structure

Structural and Multidisciplinary Optimizatio
Applied Soft Computing Journa

Advances in Engineering Softwar|
Engineering Structure

Applied Soft Computing

Engineering Optimization

Journal of Constructional Steel Resea
Engineering with Computer:

Neural Computing and Application
Structural Design of Talland Special Buildin
AIAA Journal

Expert Systems with Application

Journal of Structural Engineerin

Structural Engineering and Mechani

The Structural Design of Tall and Special Buildin,
KSCE Journal of Civil Engineerin

Engineering Computation

Fig. 5 Number of publications per journal

@ Springer



354 A.R.Kashani et al.

reinforcediconcrete

metaheuristic search technigues qjscrete .mization
stee‘mes

artificial bee colony
semi-rigid gonnections

structural design

global optimization

algagithm . metaheuristic
]
metah.el.ul* algorithm \ : 97 skzing-offpehization
. (f. ™
‘ Stl"U r 3 lza lon metaheuristie techniques
. )

> w

evolutionary algorithms

shape oplimization

truss stfucture o ‘c;ptiml*!esigh

‘ retaining wall
particle swatjoptimizafion trus tures
topolo timization
pology &b optimalidesign
layout opfimization ¢ meta*xy ristic
£ - . differential evolution
) frame structures® meta-heurisfi¢ algorithms
U(% VOSviewer
Fig.6 Network visualization
reinforced concrete
metaheuristic search techniques discrete aptimization
Y
artificial bee colony St désign
semi-rigid€onnections
global optimization
algorithm harmoniysearch metaheuristic

e

metaheuristic algorithm oz ho
% sizing optimization

o

.4 b @ - . a metaheuristics
genetiGalgorithm structu r%lzatlon N S
size optimization g

shape optimization &
gravitational search algorithm

evolutionany algorithms
truss structure v £ .
optimum design

& retaining wall

particle swarm optimization truss ‘Strg,gtu res

topology @ptimization

optimalidesign
layout optimization ¢! S¢S meta-heuristic Y
differential evolution
frame ucures meta-heuristic algorithms

6% VOSviewer

2000 2005 2010 2015 2020

Fig.7 Network visualization trend

reviewed papers is collected in Table 1. In the following truss optimization related stud-
ies are divided into three subcategories based on the tackled objectives: size optimiza-
tion, size and shape optimization, and size, shape and topology optimization.
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4.1.1 Size optimization

The first paper that considered the optimality of truss structures was published in 1976
(Dobbs and Nelson 1976). Different criteria and optimization rules were proposed by
researchers such as the minimum volume of steel (Khan et al. 1979), minimum mass with
constraints on fundamental natural frequency (Bellagamba and Yang 1981; Grandhi and
Venkayya 1988), nonlinear analysis with constraints on system stability (Khot 1983),
minimum weight with geometric nonlinear behavior (Khot and Kamat 1985), etc. In 1990,
Hajela (1990) utilized a metaheuristic approach to handle truss structures optimization
using GA. In this study, weight minimization was considered as the objective function
given nodal displacements constraints. Capriles et al. (2005) applied five different varia-
tions of ant colony optimization (ACO) to the minimum weight design of truss structures.
The constraints were stress in each member and displacements in the nodes. Based on the
results, the authors proposed a rank-based ant system (AS) as the best algorithm among
all the utilized ACO variants. Serra and Venini (2006) studied the application of ACO

@ Springer



A.R.Kashani et al.

356

JuaWRoRdSIp [EPON
Surponq [eyuswRg

SH pue

SISSANS [BIUSWA[Y UONBZIUTUIL JYSIOM - ‘0JV ‘SL ‘0Sd ‘SH VS ‘VD 600 (6000) '[& 12 1qe5uesey
JuQWRoR[dSIp [EPON poyjowr
SuIppong [eyuswerg 9010} pue ASI9U9 PAUIqUIOD
SOSSAIS [BJUAWIA[ U0 Paseq UONeZIWTUI JYSTOp SJUBLIBA YD) vD 800T (8007) 'Te 10 TweyRy
AITTIqe)S TeoneWRUTS]
JUaWAIR[ASIP [ePON
SSOI)S [EIUSWIAH uoneziundo
Tosn oy 03 Kiiqeidecoy £3ojodoy pue adeys ‘az1g - IdV Pue SV pauIquio)  800¢ (8007) urg pue yng
JUTRI)SUOD
Kouonbay femyeu ofdnny UONBZIUTUIL JYSIOM - dSA  L00T (L00T) 'Te 10 yapezIoyD
UOTBZIWTUTW
JuowadedsIp [epou pue
QwnjoA :9A13[qO-NNIA T
sjuowaoe[dsIp [epoN uonRZIWIUIW
SISSALS [BIUSWA[Y 1yStom :2A1192(qo S[3urg “| - J71S Pue OSd PHAAY ‘OSd  L00T (L00T) 'Te 10 Iz]
syuowaoR[dsIp [epoN
S9SSAIS [BIUAWA[Y uonezrundo adeys pue 9z1g vD VO pue waysAs jue pughky 002 (L00Q) 1ZnoIyeys pue yoAey|
syuowaoe[dsIp [epoN
Surpyong [ejuswarg
SI$SANS [BIUSWA[Y UONEZIWUTUIL JYSIOA VOSS PUB NV TNISVEY ‘NISVEY 'SV L00T (L00T) 'Te 12 sopude)
Surpyong [ejuswery
S9SSAIS [BIUSWA[Y UONBZIWTUTW JYSTOM - 0DV 9002 (9007) TUTUA pUE BIIXS
waIsAg
JUY 1SIOM 1S9 puUe ‘WSS
Juy paseq yuey ‘WSS uy
sjuawade[dsIp [EPON anbruyoa) UTJA—XBIA ‘W)SAS AUuojo)
S9SSAIS [BIUSWA[Y UONBZIWTUTW JYSTOA Ayreuad aandepe iim YO UV ‘WASAS UV SIUBLIBA OOV SO0T (S002) ‘T8 10 soquide)
sjuowode[dsIp [EPON UONBZIUTUIL JYSIOM - VO 0661 (0661) ey
BLIOJLIO USISI(] EINSRE]teTe) swyjrioge paredwio)) SWYILIOS[e PIzI[I) IeoX SQOUIJY

SoINIONIS sSnI) 0} SWyILIoS[e dNsLmayelow Jo uonesrdde oy Jo Mo1Ady | 3|qel

pringer

A s



357

Population-based optimization in structural engineering:...

Judwooe[dsIp [epoN
Surpyong rejuswery
S9SSAIS [BIUSWAY

JuaWdR[dSIP [ePON
Surpyong rejuswory
S9SSAIS [BIUSWAY

Juowaoe[dsIp [EPON
S9SSAIS [BIUSWA[Y
Juowaor[dsIp [EPON
Surpyong [ejuswary
SISSAIS [BIUSWS[Y
Juowaor[dsIp [EPON
Surpyong [ejuswory
SOSSAIS [BIUSWA[Y
Juawooe[dsIp [epoN
Surpyong [ejuswery
S9SSAIS [BIUSWA[Y

sjuowode[dsIp [epoN
Surpyong rejuswery
S9SSAIS [BIUSWAY

JuawddR[dSIp [ePON
Surpyong rejuswery
S9SSAIS [BIUSWAY
JuawdR[dSIp [ePON
S9SSOI)S [RIUSWA
Juowaor[dsIp [EPON

Surpyong [ejusworyg
SOSSAIS [BIUSWI[Y

uonezrundo adeys pue oz1§

uoneZIWIUIW JYSIOA

UOTRZIWTUTI JYSTOM

UOTRZIWTUTI JYSTOM

UOTRZIWTUTI JYSTOM

UONRZIWTUTW JYTTOM

UONBZIWIUIW JYSTOM

uoneZIWIuIW 1YSIOA

UOTRZIWTUTI 1YSTOM

UOTRZIWTUTI JYSTOM

SSO
pue Dg-d49H ‘ODVSdH
‘0ODVSd ‘SH ‘0Sd VD

OSdH PU® ‘0DV ‘VS VD

SSD pPue ‘0DVSdH
‘00VSd ‘Dd0Sd ‘Od-d9H

SOVI Pue ‘0DVSdH
‘00VSd DdOSd D9-d9H
‘0d-44 ‘SH ‘0Sd ‘VD

0DVvSsd
pue ‘OSdH ‘Dd0Sd ‘0Sd ‘SH

SIVO

OSdH
puE DdOSd ‘OSd ‘SH VO

SH Pu® ‘0DV ‘0Sd VO

SSO paseq-404

ogv

11°0-L

VoI

SSO

ODVSdH

SIANV ‘0Sd

(09)4

ODVSdHA

Ood-449H

110c

110C

010C

010C

0102

600C

600C

600C

600¢

600C

(1107) Lreyele[e], pue yaAey]

(q e1107) Zowuog
(0102) 'Te 30 ugSery

(0°q
“®0107) LRYRIR[EL PUB YoARY

(o°q
“©Q107) LBYBIR[E], PUB YoARY]

(q
“®600C) LeYBIR[EL, PUB YoARY

(6002) e 12 yaySaleres

(6007) BuIYD pue ueieyaseley
(0q
“®6007) HRYRIB[EL, PUB YoARY

(oq
“®60(07) HRYRIB[BL, PUR YIARY

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

As



A.R.Kashani et al.

358

JuowaoRdsIp [EPON
Surpyong [ejuswaryg
SOSSAIS [BIUAWA[Y

JuQWRoRdSIp [EPON
S9SSAIS [BIUSWAY

Juswooe[dsIp [epoN
Surpyong rejuswory
S9SSAIS [BIUSWAY

Kouanbaiy [ernyeN
JUQWRORdSTp [EPON
Surpyonq [eyuswIg
SSOIS [EIUSWIAH

Kouanbaiy [ernyeN

Juawooe[dsIp [epON
S9SSOI)S [RIUSWA
Juowooe[dsIp [epoN
SuIpong [eludweg
S9SSOI)S [RIUSWA
Juowade[dsIp [BPON
SuIppong [eludweg
S9SSOI)S [RIUSWA
Judwooe[dsIp [epoN
S9SS2IS [RIUAWA[H

Kouonbaiy einjeN

Juowaor[dsIp [EPON
Surpyong [ejusworyg
SOSSAIS [BIUSWI[Y

UONRZIWTUTW JYSTOA
UONBZIWTUTW 1YSTOA

UONBZIWIUTW JYSTOM

uonez

-twndo ASojodo], pue 1ySropm

uoneziurur JYSop
UONRZIWTUTW 1YSTOM

UOTRZIWTUTI JYSTOM

UOTRZIWTUTW JYTTOM

UONRZIWTUTW JYSTOM

uonezrumndo adeys pue ozI§

UOTRZIWTUTI JYSTOM

SIAND pue ‘sq Dd-99 D0
‘SSO ‘dD D9V VS ‘0Sd VD
Od-99H pue ‘SSD
‘OSdH ‘0Sd ‘OJV ‘SH VD
ODVSdH
pue ‘0DVSd Dd-d9
‘S 04V VS ‘0Sd VD

OSd

SSD Pue ‘0Sd VO

SSO pue
‘09-94H ‘D9-99 ‘0Sd VO

J9g-94H pue ‘OJVSdH
‘00VSd ‘SH VS ‘'VD

VSdTAD

pue ‘OJVSdH ‘D4d-99H
09-44 ‘OSdH ‘0Sd ‘SH

0DVSdHA Pue ‘OSdH
‘Dd0Sd ‘OSd ‘SH ‘VOSS

OSd pue vO

OSdH Put 'VS ‘OSd ‘SH

vd

OSdSIN

NeJ

SSO
Aynpiqedes uonugooax
den qm DEE4-SSO PHALH

SSD-0Sd

VOID Pue “VDIO ‘VII

SHH pue SHVS

VAN
Vvd pue SH

dv-049Vv

cloc

(41114

cloc

cloc

cloc

(414

(40014

(41114

cloc
cloc

110¢

(T102) "Te 30 LreyeIele],

(Z102) ‘T8 10 LIRyRIR[EL

(2107) "Te 10 nwopuen

(T102) peySioz pue yoey]

(Z107) 1peys[oZ puE yores|
@
‘e71(07) HeYRIB[BL, PUR YIARY

(Z107) 'Te 10 LIRyEIR[RL,

(2107) unpIesaQq

(T100) ‘T8 30 Ye[[opes
(2102) [9NSHA pue [nSYA

(@ *e1107) zZowuog

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

A s



359

Population-based optimization in structural engineering:...

JUQWROR[dSIp [EPON
S9SSAIS [BIUSWAY
JuaWdR[dSIP [ePON
Surpyong rejuswory
S9SSAIS [BIUSWAY

Kouanbaiy [ernyeN
K)I[Iqe)s [eonewaury|
JuawadR[dsIp [epON
Surppong TeIuowerg
SSAIS [RIUSW[T

SSons [eIUSWRY
Juowooe[dsIp [epoN
Juowade[dsIp [BPON

S9SSI)S [RIUAWA[T

Surpyonq rejuswery
S9SSAIS [BIUSWAY
JuawddR[dSIp [ePON
Surpyong rejuswory
S9SSAIS [BIUSWY

JuowaoedsIp [EPON
Surpyong [ejuswory
S9SSAIS [BIUAWAY

Juowaor[dsIp [EPON
Surpyong [ejusworyg
S9SSAIS [BIUSWI[Y

UONBZIWIUIW JYSTOM

uoneZIWIUIW JYSIOA

uonezrundo adeys pue 9z1§
uoneziundo

KSorodo) pue adeys ‘az1g

uonezrundo adeys pue az1g

uonezrundo adeys pue 9z1g

UONRZIWIUIW JYSTOM

uoneZIWIUIW 1YSIOA

uoneZIwIuI 1YSap

UOTRZIWTUTI JYSTOM

OSdH VD

Dd0Sd pue ‘0Sd

SSD paoueyud
‘0Sd VO ‘siueLeA SH

SJUBLIEA JUQISJIP VO

VS PUE ‘SJUBLIEA JUQISJIP VO

ODVSdH ‘DdOSd
09-94 ‘0Sd ‘0dV VD

SINND pue TV
‘dD ‘OSdIN ‘SH ‘0Sd VS VD

D9-94 pue ‘SL
VDS ‘0DV ‘SH VS ‘SH ‘0Sd
Od-99H pue
04-99 ‘VSdTAD ‘SHVS
‘SHA ‘dv-04V ‘OJDVSdH
‘OSdH ‘Dd0Sd ‘0OSd ‘SH

dTVvD

0Sdsny

SHS ‘SHA ‘SH

vd
VININ pue OSddl
0SdDS Pue ‘0SdD ‘0Sd

od

HX

1d

Od1L

€10C

€10C

€10C

€10C

€10¢

€10C

€10C

€10C

€10C

€10T

(€107) TeysjV pue 1zIewere]

(€100) Te10 N

(€100)
Ie39zIeq pue yapezijoyn

(€107) T8 19 [on3IN
(€£102) Te 30 d3efoyg
(€£107) yapezijoyn

(£107) pezejeAeys| pue yores|

(PET0?) 'Te 39 Twopues

(£107) 'Te 120 1qedueseq

(€102)
nj3oreAey pue unyelRdeqg

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

As



A.R.Kashani et al.

360

Kouanbaiy [ernyeN

Kouanbaiy [ernyeN

JuowaordsIp [EPON
Surpyong [ejuswarg
S9SSAIS [BIUSWA[Y

JuowaoR[dsIp [EPON
Surpyong [ejuswarg
S9SSAIS [BIUAWA[Y
JuQWROR[dSIp [EPON
SuIppong [eyusweg
S9SSAIS [BIUWA[Y

Juswooe[dsIp [epoN
S9SSAIS [BIUWA[Y

Kouanbaiy [ernyeN

Kouanbaiy [ernyeN

Juowaor[dsIp [EPON
Surpjonq [eyusWILg
S9SSOI)S [RIUSWA

JuQWRoRdSTp [EPON

Surpyong [ejusworyg
SOSSAIS [BIUSWI[Y

UONRZIWTUTW JYSTOM

uoneZIuruI JYSop

UONBZIWTUTW JYSTOA

UONRZIWTUTW JYSTOA

UONRZIWTUTW JYSTOA

UONRZIWTUTW JYSTOM

UONBZIWIUTW JYSTOM

UOTRZIWTUTW JYSTOM

UOTRZIWTUTI 1YSTOM

UOTRZIWTUTI JYSTOM

D999-SSD Pue ‘0Sd VO

D9499-SSD ‘0Sd VD

04V payipow
pue DYV ‘v ‘siueues yo

00VS

-dHd Pue ‘0¥d ‘Og-99
‘0Sd ‘00V ‘SwueLes yo

Dd-94 pue ‘'vDS
‘SL ‘SH ‘VS ‘SH ‘00V ‘0Sd
VSdTIND pue Dg-d9H
‘SHVS ‘SSO ‘00VSdH
‘0Sd ‘O9-99 ‘0dV VD

Od'1L pue ‘SSD ‘Dd-99
‘OJV ‘Od ‘0Sd ‘SH ‘VD

0ODVSdHd pue
‘OSdH ‘Dd0Sd ‘0OSd ‘SH ‘VD

OSddH

VSOI pue VSDINO

SSvsd

0do4d

od-99d

dso

Lvd pue

‘VSD ‘VMA ‘dd ‘SH ‘SD1d

‘VSSO “T19dD “‘SHVIND ‘SO

“119d9 ‘vd D9-94 ‘091L

‘VS ‘VOT‘SSO WOOV
09V ‘4d ‘vOS ‘0Sd ‘SH VD

0¥Sd PUB ‘0Sdd ‘0¥d ‘SO
‘SSO V4 “Dd-9449 ‘SH ‘0OSd

SaIqe
-11eA uSISOp snonunuod QgD

So[qeLIeA USISIp ISP 0D

¥10C

¥10C

¥10¢

¥10C

¥10C

¥10C

¥10C

¥10C

¥10C

¥10C

(¥107) IpeAef pue yorey
(100
TAR[RIOSEN pue RIUIqNRUY]

(#107) 1qeouesey
pue pezy yopezuwozey|

(#107) uvezeyn pue yorey|

(#100) pezy
[[opeZWAZeY pue IqaoueseHq

(P100) T8 19 yaaey

(¥107) 1e1e2Ing pue 29p[oyd
(q ‘e$107) 1peyS[0Z pue yosey

G
“®PT0C) IAUPURIAL PUT YOATS]

G
“®pT0T) IAVPURIAl PUT YOATS]

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

A s



361

Population-based optimization in structural engineering:...

Kouanbaiy [ernyeN

Juowaoe[dsSIp [EPON
Surpyong [ejuswaryg
SOSSAIS [BIUAWA[Y

JuowaoRdsSIp [EPON
SOSSAIS [BIUSWI[Y

Juowade[dsIp [BPON
SuIppong [eludweg
S9SSOI)S [RIUSWA
Juswooe[dsIp [epoN
SuIppong [elusweg
S9SSOI)S [RIUSWAT

Kouanbaiy [ernyeN
ANTIqe)s TeonRWIUTY]
Juswooe[dsIp [epoN
Surpyong rejuswery
SSOI)S [BIUSW[H

Kouanbaiy [ernyeN

JuawddR[dSIp [ePON
S9SSAIS [BIUWA[H
Juowaor[dsIp [EPON
Surpyong [ejusworyg
SOSSAIS [BIUSWI[Y

UONBZIWTUTW JYSTOA

UONRZIWTUTW JYSTOA

UOTRZIWTUTI JYSTOM

uonezrundo adeys pue az1§

UONRZIWIUTW JYSTOM

uonezrundo
£3o1odo) pue adeys ‘0z1§

uoneZIwIuI 1YSIapm

UONRZIWTUTW JYSTOM

UOTRZIWTUTI JYSTOM

oddd
-SSO PU® ‘0Sdd ‘OSd VD

ODVSdHJ pue

‘OSdH ‘OSd ‘SH ‘siueLeA yo

dSD PUB ‘SHVS ‘0¥

‘0904 ‘09D ‘091L ‘dv

-09V ‘Dd-99H ‘VSdTAD
‘0d-44 ‘0SdH ‘0JV ‘VD

VAN ‘OSdH
‘SH ‘Vd ‘SH VS ‘siueLeAa yo
SSVSd pue ‘Lvd

‘VSdTND D9V ‘sd D9-99

‘ODV ‘SH ‘siueLeA VO

SH PU® ‘SSD
‘OSd¥H ‘Vd ‘S)uBLRA VO

SOD padueyud ‘0S4 ‘VO
dv

-D9V pue ‘SHVS ‘Dd-99H

‘VSdTAD ‘OSdH D9-99
‘OJV ‘SH ‘SiueLEA VO

‘Dd0Sd ‘OSdH ‘0OSd VD

04gd

VNI PU® VN ‘VOM

vdd

Oq1L

sav

DS
0sdd

Od'1LIN

SSO

S10T

S10T

g10c

S10T

S10T

S10T
¥10C

¥10C

¥10C

G
‘8G107) 1ABPURIA PUE (oA

(S100) 'Te 10 ye[[OpeS

(S102) Te 30 Sepyog

(S107) Zeaky pue spag

(S100) pezy
[OpBZWAZES] PUB IGIOULSBE]

(S102) T 32 seareduon

(Q ‘B 107) IpeYS[0Z pue YoAed

(+100) urgoysieq pue dure)

(#107) 'T& 12 pezy yopezwozesy

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

N's



A.R.Kashani et al.

362

Kouanbaiy TernyeN

Juswooe[dsIp [epoN
S9SSAIS [BIUWA[H

JuawddR[dSIp [ePON
S9SSAIS [BIUWA[H
Juowaor[dsIp [EPON
Surpyong [ejusworg
S9SSAIS [BIUSWA[Y
Juowaor[dsIp [EPON
Surpyong [ejuswary
S9SSAIS [BIUSWS[Y
Juowaor[dsIp [EPON
SOSSAIS [BIUSWA[Y
JuoWRoR[dSIp [EPON
SuIppong [eyuswerg
S9SSAIS [BIUAWA[Y

Kouonbaiy reinyeN

Kouonbaiy einjeN

Kouanbaiy [ernyeN

UONRZIWTUTW JYSTOA

UONRZIWTUTW JYSTOM

UONRZIWTUTW JYSTOM

UOTRZIWTUTI 1YSTOM

uonezrundo adeys pue 9z1§

UONRZIWTUTW JYSTOA

uonezrundo adeys pue 9z1g
uonezrundo adeys pue oz1§

UOTRZIWTUTI JYSTOM

UOTRZIWTUTI JYSTOM

O0d71L
pue ‘OSd¥H ‘D999-SSD
‘0Sdd ‘0Sd-DTVH ‘0Sd
-1V ‘09Dd ‘VSONO VO

dSO pue ‘Od1L

‘SHVS ‘dv-09V ‘0DVSdH
Sav pue ‘SSVSH
‘00VSdHA D9-949 VS

‘OSdH ‘OSd ‘SH ‘SiueLrea yo

0DVSdHA pue ‘Od1L D9V
‘OSdH “DdOSd ‘SH ‘0Sd ‘vD

‘0SdOS

‘0SdD ‘0Sd VS ‘siueLEeA VO

SD pue D

-49H ‘D9-99 ‘0Sd ‘0JV ‘VD

ODVSdHA
pue VDI ‘0¥ ‘00VSdH
‘Dd0OSd ‘0Sd ‘SH VD

od4d4d

-SSD PUB ‘SSD V4 ‘0Sd ‘VD

24d4d49-SSO
‘SSOH “SSO ‘0OSd ‘SH VO
090D pue Dgdd-SSO
‘SSD ‘0Sdd ‘0Sd ‘0904
‘0¥ D9-94 ‘00V ‘SH ‘VD

ods

vaav

SHH

0SS

4ddoI1-d

NSS-SO

SSDINI PU® ‘SSOIN

0Sd-DTVH Pue ‘0Sd-D1V

0Sd-04D

04gD-dce

910¢

910¢

910¢

S10T

g10c

S10T

S10T

S10T

S10T

S10T

(q ®9107) "¢ 30 UIYYSIL]

(9102) 99p[oyd pue jeroaIng

(9107) T 10 Suay)

(S102) BN pue ']

(S102) Te 30 nnH-0H

(§107) Hoodysyyeq pue yorey

(q*8G107) T8 10 yorey]

(S107) ueeZRYD pUB YIARY]
(0°q
‘€S 10T) IABPUBIA PUE YoAES]

G
®GT0T) TAVPURIAl PUT YoATS]

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

A s



363

Population-based optimization in structural engineering:...

Kouanbaiy TernjeN

Juowade[dsIp [BPON
SuIppong [eudweg
S9SSOI)S [RIUSWA
A)[Iqe)s [eonewaury|
Juawaoe[dsIp [ePON
SuIppong [eyuswerg
SSoIS [eJUSW[Y

Kouanbaiy [ernieN

Kouanbaiy [ernyeN
ANTIqe)s TeonRWIUTY]
JuaWdR[dSIP [ePON
Surpyong rejuswery
SSOI)S [BIUSW[H

Kouonbaiy einyeN

Kouonbaiy einjeN

Kouanbaiy [ernyeN

uonezrundo adeys pue 9z1§

UOTRZIWTUTW JYSTOM

uonezrumndo
K3o1odo) pue odeys ‘az1g

uonezrundo adeys pue oz1§

uonez
-tundo ASojodog, pue JySropm

uonezrundo adeys pue oz1§

uonezrumndo adeys pue ozI§

UOTRZIWTUTI JYSTOM

D9499-SSD ‘vd
‘0¥Sd ‘S0dd ‘SSO ‘0Sd VO

494 pue ‘ggiN ‘Sav

SJUBLIBA YD)

024d44d-SSO

pue OSd-DTVH ‘0Sd-01V

‘09D ‘OSd¥H ‘0Osdd
‘VSDINO ‘0Sd ‘SIuBLIRA VO

O9'1L pue ‘SSD ‘0Sd

0904 pue D9dd
-SD ‘VSDINO ‘OSddH
‘0Sdd ‘0Sd ‘sweLea yo
‘0Sd-DTVH
‘0971L O9499-SSD ‘9d
VSDINO D944
-SSD ‘SSOH ‘SSD ‘0Sd
-DTVH V4 ‘0Sdd ‘0Sd ‘'VD

vdD

4N 999 Savod
‘49N SAVD ‘999 Savo
‘d9ND ‘999D ‘SAVO

OSd!

4dI ‘Ad° ddqe ‘4d

Od'1L-SIN

Od'1L-DIN

HJANV

SIN-INA

L10T

L10T

910¢

910¢

910¢

910¢

910¢

910¢

(L107) 1peY3[0Z pue yarey

(L107) pezy yspezwozes|

(9107) ue30], pue 1ABZE)IOIN

(9102) Te 30 nnH-0H

(9107) 'Te 10 ruesAeg

(q ®9107) Te 19 UIOYsIR]

(9102) weyq

(9107) T8 1° YoprZUIdSSO

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

As



A.R.Kashani et al.

364

JuQWRoRdSIp [EPON
SSOI)S [BIUSWIA[H

JuawooedsIp [epoN
SSo;s [eIUSWRg
Kouanbaiy [ernyeN
Juowade[dsIp [BPON
SuIppong [eludweg
SSOIS [IUSWA[

Kouanbaiy [ernyeN
Juowade[dsIp [BPON
SuIppong [eludweg
SSOIS [BIUSWA[
K)1[1qeIs [eOneWaUTY]
Juowaoe[dsIp [epON
SuIppong [eyuswerg
SSoIS [eJUSW[Y

Kouanbaiy [ernyeN

JuowaoR[dsIp [EPON
Surpyong [ejusworyg
S9SSAIS [BIUSWA[Y

Kouanbaiy [ernyeN

UOTRZIWTUTW JYSTOM

UONRZIWTUTW JYSTOA

uonezrundo adeys pue oz1§

UOTRZIWTUTW JYSTOM

uon
-ezrundo £3ojodo) pue JySropm

UONRZIWTUTI 1YSTOM

UOTRZIWTUTI 1YSTOM

uonezrundo adeys pue 9z1§

dd pue
YN-O9V D4V ‘0Sd ‘vD

Od1L-D pue ‘Od1L VAN
‘4@ ‘Ade ‘dd VS ‘0Sd VO

VDS

pue 0904 ‘09D ‘091L
‘SHVS ‘SHA D9-99 ‘vd
‘VSDINO ‘0¥ ‘Ad ‘0sdd

‘SSOH ‘SSD ‘0OSd ‘siueLrea eD

D999-SSD Pue ‘0Sd VO

DdOSd Pue ‘O9'TLIN ‘SHVS
‘SHH ‘ODVSdH ‘OSdH ‘SH

‘dd-0971L ‘94-09'1L ‘0OSd
VS pue

‘Dd0OSd ‘091D ‘091L
‘Vd ‘0Sdd ‘OSd¥H ‘SHVS

‘SHH ‘dSSdH ‘0SdSIN
‘OSdH ‘0Sd ‘SUOnELIEA YD)

VSS

SYI0MION A9

puE UOISSaITaI Jeaul] [2J0]

PaYSIoM ‘UOISSIISAI JeoUl]

[e20] ‘sonbruyo9) sioqusrou

1S9IBAU :S[apow J)eIoLms
SuImor[oy XIS YIM HAINS

VO4dN-2

vO1

Od1LIN

pue ‘SAdIN ‘OMMIN ‘SLHIN

‘Od1L ‘SAd ‘OMM ‘SIH
SdA

SIN-O9'1L

OSdd

L10T

L10T

L10T

L10T

L10T
L10T

L10T

L10T

(L102) Te 19 dueng

(L107) Te 10 Jasdwary]

(L107) 'Te 12 soyoereuey]

(LT0?) ‘Te 32 Iref

(L107) T® 10 1uesARS
(L107) ueeZRyD pUB YOAEY]

(L107) Te 1 repySeq

(L107) Te 10 08D

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

A s



365

Population-based optimization in structural engineering:...

Juowaor[dsIp [EPON
Surpyong [ejuswary

SSOIS [BIUOWIA[H uonezrundo adeys pue ozI§ - od-99 8102 (8107) 'Te 10 pezy
Juawooe[dsIp [epoN
SuIppong [eludweg
SSaIS [ejusary UONBZIWUTUIL JYSIOM 0godd  810T (8100) 'Te 10 yaey
Juowade|dsIp [BPON
SuIpong [epuowory VI PU® ‘OMD ‘Vd
SSaIS [ejustary UONBZIWUTUIL JYSIOM - VSO D9V ‘0Sd ‘0JV VO 810¢ (8107) zowwog
HdDI pue ‘0Ssd!
‘SHIN ‘ST-OD999H ‘ST
Juawode[dsIp [BPON -SHH ‘Vdd ‘OSSdH ‘091L
SuIpong [epuowa[y uoneziundo ‘SHVS ‘dv-09V ‘VSdTAD
SSAIS [RIUAWI[T K3o1odo)y pue adeys ‘oz1g ‘SO ‘SHAYV VS ‘SiueLIRA YO VI 810C (8107) & 12 unjaeseqg
O9'1L pue ‘SHVS ‘SHH
Juawade[dsIp [EPON ‘dv-09V ‘SHI ‘00VSdH
SSans [ejusuory uonezIuIuIu JySIoA ‘OSdH ‘Dd0Sd ‘0Sd ‘SH VSDIAV Pue VSO 810C  (8107) IUBPZEA PUE BIUIqUEYY
O9'1L PU® ‘SHVS
‘ODVSdH ‘09D ‘0¥ D9
Juawade[dsIp [EpON -d9H ‘O9-99 ‘DdOSd ‘SO
SSanS [ejustary UONBZIUTUIL JYSIOM ‘V4 ‘SH VS ‘SH ‘0JV VD OMDI PUE OMD 810C (8107) ueLyeZ pu® YoAey|
KJI[IqeIs [RONBWIUTY]
JuaWdR[dSIP [ePON
SuIppong [elusweg uonezundo o91L
SSNS [eIUSWIH £3oj0doy pue adeys oz1g -SIA PUE ‘Od'1L ‘SSD ‘0Sd SOSIN Pue SOS  810¢C (8100) '[e 10 el
Juswade[dsIp [EPON D9-94d pu® ‘VOY ‘O91LIN
SSaIS [ejustary UONBZIUTUIL JYSIOM ‘OSdH ‘SH VS ‘syueLea v HS-OIWAIN ‘OINAIN  L10T (L107) uelsy
Juawade[dsIp [BPON od-d494d
SuIpong [epuowo[y pue Dg-g4dN ‘SAQVv ot
SSOIS [BIUOWIA[ UOTJRZIWITUTUX JYSTOA - Sdn pue J1S Sunerodioouy /10T (L107) pPezV Yyopezwozey]
BLIOILID USISO(] EIN b ]lere) sunyjro3[e paredwo) SWILIOS[e PazZI[N)  Teox SOOUQIJY

(ponunuoo) | sjqey

pringer

N's



A.R.Kashani et al.

366

JuowaoR[dsSIp [EPON
Surpyong [ejuswaryg
SSOI)S [BIUSWIA[H

JuowaoedsIp [EPON
Surpyong [ejuswary
SSOI)S [BIUSWIA[H

Kouanbaiy TernyeN
Juswooe[dsIp [epoN

Surpyong rejuswery
SSOI)S [BIUSWIA[H

Kouonbaiy einyeN
Kouonbaiy einjeN

Kouanbaiy [ernyeN

Juowaor[dsIp [EPON
Surpyong [ejusworyg
SSOI)S [BIUSWIA[H

0OSdd pue

‘OMOI ‘SLH ‘Vdd ‘091L

uoNEZIWIUIW WYSA,  ‘SHVS ‘OSSdH ‘OSdSIN ‘0Sd

UONRZIWTUTW JYSTOA

uonezrundo adeys pue az1§

UONRZIWIUTW JYSTOM

UONBZIWIUIW JYSTOM
uonezrumndo adeys pue ozI§

uonezrundo adeys pue az1g

uonezrundo adeys pue 9z1§

S.LH PU® ‘Vdd

VI ‘0Sd-D1VH ‘0904
‘09D ‘OMDI DI-99
‘VdD VSOV ‘0dM

‘OSSdH ‘OSdSI ‘09'1L
‘SHA ‘SHVS ‘dv-049V
‘OSdH ‘04l ‘0¥ ‘0Sd ‘00V

SSO pue

‘OSd¥H ‘0Sdd ‘0Sd ‘vD

VOdHd

pue DHYY Ad VD PIYIPON

SHH Pu® ‘0SdDS

‘0SdD ‘Og1L-ON ‘091L
‘Vd ‘ODVSdH ‘OSdH ‘0Sd

H4d°Y ‘0OSd-DTVH

‘D9499-SSD ‘SH ‘0Sd V4 ‘dd
OSd-DTVH Pue ‘0Sd-D'1V
‘294949-SSD ‘0dSd ‘0Sd VD

od4d pue

‘Ad ‘OSd¥H ‘091L-0IN
‘VDSS ‘SSOI ‘0904 ‘0dD
‘0Y 'V ‘OSSdH ‘0O91L
‘SHVS ‘SHA D49-99 ‘OSdH
‘Dd0Sd ‘0Sdd ‘0OSd ‘SH

DOH4 Pue ‘OHH VD

VSM

OSddd

ed

SHS PU® ‘SHH ‘SH yim
pauIquiod Surpuey JUTENSUOd
paseq-9[qIseaj paroxduuy

V4AdHV

S (e §

dd-o94d

610C

610C

810C

810C

810C

810C

810C

810C

(6100) T8 19 LIefer

(6100)

njSoseyAeg pue njSoseyAeq

(8100) oyreate)

(8107) UBWIP[OD pUE IWOPURD)

(8100) 'Te 10 08D
(8102) 'Te 39 nary

(8100) 'Te 10 nny-0H

(8107) YoPeZUIASSOH puv I[e(

BLIIO USIS(]

CIVREICTe)

swyio3e paredwo))

swypnos[e pazimn

i) 4

SAOURIRJY

(ponunuoo) | sjqey

pringer

A s



367

Population-based optimization in structural engineering:...

Kouonbaiy reinyeN

Kouanbaiy [ernyeN

Kouanbaiy [ernyeN

Kouanbaiy [ernyeN
SSOI)S [BIUSWIA[H
Juowaor[dsIp [EPON

Surpyong [eyusworyg
SSOI)S [BIUSWIA[H

uonezrundo adeys pue oz1§

uonezrundo adeys pue 9z1§

uonezrundo adeys pue 9z1§

uoneZIWIuIW 1YSIaA

uoneZIWIXeW Juawde[dsip
[epou pUE UONRZIWTUTUT JYSTOA

UOTRZIWTUTI JYSTOM

SdA PU® ‘0Sdd ‘SOSI

‘SOS ‘VSDINO ‘VSOI ‘09D

‘OSd-DTVH ‘0Sd-OTV

‘O41L-ON ‘091L ‘vd

‘SH ‘vOd ‘vD-DO ‘0994
‘odd ‘VOS ‘OSd¥H ‘0Sd

0d-99

PU® ‘SHH VNI ‘'VOM

‘0904 ‘09D ‘VIN ‘OSdH
‘0DVSdHA ‘das® ‘9d ‘vVS

VAAHV PU® A0y ‘O91L
-DIN ‘O9'1L ‘OSd-DTVH
‘SOSI ‘OSd¥H ‘VOdHN
‘vd ‘4d D999-SSO
‘SSOH ‘SSD ‘0Sdd ‘0Sd VD
V4dHV
pue ‘0Sd-DTVH ‘SOSIN
‘HA2Y ‘O LL-ON ‘SdA
‘09D ‘D9d949-SSD ‘0Sdd

SOSOI PUt ‘SOVOI ‘SVON

SSVSA pue ‘Ia ‘Aqe
‘SHH ‘VEINI ‘VOM VAV
‘OF'1L *$SO ‘00VSdHA
‘OSdH ‘0€D ‘SH 'VI 23u1s
NNW V] VS ‘SIUBLEA VO

Surpuey
JUTEI)SUOD PIsEq-I[qISea)
paroxdwir yim VO 2andepy

Vdd pue ‘vVd ‘W

OdSH Pu® ‘0dS

VVSIN-T PUB ‘VVSIA

SIHOW

viva

0c0c

610¢

610¢

610C

610C

610C

(0200) e 10 NI

(6100) 18R o]

(6107) 1qnofyeIql pue yoses]

(6100)
Oy[L] pue oweIed-ue[[IN

(6107) Te 10 tuefdy,

(6107) 'Te 32 unenasaq

BLIIO USISA(]

CIREICTe)

swyio3e paredwo))

swypnos[e pazimn

hi2) ¢

SAOURIRJY

(ponunuoo) | sjqey

pringer

As



A.R.Kashani et al.

368

JuowaoR[dsSIp [EPON
SSOI)S [BIUSWIA[H

Juowaor[dsIp [EPON
Surpyong [ejusworyg
SSOI)S [BIUSWIA[H

0OSd PUE ‘OMD VSO
‘VOM ‘Lvd peroxdut \Lvg
‘OMDI ‘SO VI ‘VSM ‘Odm
‘04 ‘vdd ‘Od-94 ‘dSO
‘O91LA ‘SSVSd ‘090d
‘OOH4 ‘OHA VO D4V
‘SSOINI ‘SSON ‘OSdSIN
uoneZIWIUIW JYSIOM ‘OSdH ‘0Sd ‘SiuBLRA VO
VO ‘2d-09d
‘SIN-INFL ‘OdM ‘09D ‘Od
‘09711 ‘SHVS ‘SHA ‘Og-94
‘OSSdH ‘0Sd-O'TVH
uoneZIWIUIW JYSIOM ‘VSDINO ‘0dd ‘OSdH ‘SH

WDd  020T (0207) Te 10 peyzauekrmod

(6100)
OI0 6107 UYSEY] YoPLZuIassny pue [ief

BLIIO USIS(]

EINGRE] ) swyio3e paredwo))

SWYILIOS[e PozI) Jeox SQOUQIJY

(ponunuod) | sjqer

pringer

A s



Population-based optimization in structural engineering:... 369

algorithm to weight minimization of truss structures. The design procedure took strength
of elements into account as the constraints. An amplification factor was applied to the com-
pressive elements to model the effect of buckling.

Capriles et al. (2007) utilized a rank-based ant system (RBAS) for optimum design of
truss structures. To this end, discrete design variables were selected for elements’ cross-
sections. Three different variations of the RBAS algorithm were utilized to solve the tack-
led problem as follows: (1) RBAS with additive penalty; (2) RBAS with a local update
and multiplicative penalization (RBASLU); (3) RBAS with a local update and two-level
penalty method (RBASLU,2).

Izui et al. (2007) tackled the size optimization of truss structures using the PSO algo-
rithm and a combined PSO with sequential linear programming (SLP). The tackled prob-
lem was optimized for both single-objective and multi-objective. Three series of case
studies were conducted to evaluate the proposed algorithms’ performances: (1) weight
minimization of truss structures using continuous design variables; (2) weight minimi-
zation of truss structures using continuous design variables for the cross-section of ele-
ments and discrete design variables for the utilized material; (3) volume and displacement
minimization as two conflicting objectives. Gholizadeh et al. (2008) applied a virtual sub-
population (VSP) method (Salajegheh and Gholizadeh 2005) for weight minimization of
truss structures subject to multiple natural frequency constraints. In this study, to reduce
the optimization process’s computational time, the natural frequencies of structures were
evaluated by applying properly trained radial basis function (RBF) and wavelet radial basis
function (WRBF) neural networks.

Rahami et al. (2008) developed a method based on a combination of energy and force
method with GA for truss weight minimization. In this study, the main objective was find-
ing as to the most optimum size, geometry, and topology of the truss structures. In this
way, the objective function was defined based on the total weight of the structure, comple-
mentary energy, and strain energy.

Hasangebi et al. (2009) concentrated on the optimum weight design of truss structures
using seven optimization algorithms as follows: GA, SA, evolutionary strategy (ES), PSO,
TS, ACO, and HS. Steel structure requirements defined by ASD-AISC (Allowable Stress
Design Code of American Institute of Steel Institution) were supposed to control the
design procedure. ES and SA were found to be more efficient than others, thanks to find-
ing the best solutions in more cases. Kaveh and Talatahari (2009c) developed a hybrid big
bang-big crunch (HBB-BC) algorithm to resolve the weight minimization of truss struc-
tures. Results from the simulation of several case studies revealed that HBB-BC outper-
formed the original big bang-big crunch (BB-BC) in finding better solutions. It was indi-
cated that the hybrid algorithms with strong local search ability performed more efficiently
than HBB-BC. Kaveh and Talatahari (2009a) developed a hybrid method based on a PSO
with the passive congregation (PSOPC), ACO, and HS algorithm called discrete heuristic
particle swarm ant colony optimization (DHPSACO) for handling truss optimization prob-
lem. Numbers of case studies were selected to evaluate the performance of DHPSACO in
comparison with GA, HS, PSO, PSOPC, and HPSO. Results confirmed that DHPSACO
resulted in better solutions with less computational time and higher convergence speed.

Rajasekaran and Chitra (2009) utilized the ACO algorithm for the minimum weight
design of truss structures under static and earthquake loading. The effect of the essen-
tial parameters of ACO on the final results was explored in this investigation. The effi-
ciency of the algorithm is benchmarked through the comparison of the results with the
ones resulted from GA with the immune system (GAIS). Kaveh and Talatahari (2009b)
developed a hybrid approach based on HS, ACO, and PSOPC algorithms called heuristic
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particle swarm ant colony optimization (HPSACO) truss optimization. In this algorithm,
the PSOPC algorithm did global optimization, and the ACO algorithm provided a local
search for updating the position of particles. HS algorithm took care of bound constraint
handling, and the fly-back method handled the constraints. Moreover, a termination crite-
rion was proposed based on the amount of variation of the design variables to decrease the
number of analyses. A comparison of HPSACO to other PSO-based algorithms showed
that the proposed improvements improved the algorithm significantly. The impact of each
modification on exploration and exploitation was explored and discussed in that study by
detail. Salajegheh et al. (2009) solved truss structures’ optimization using a particle swam
optimization (PSO) algorithm. Design variables were cross-sectional areas of the trusses,
and their weights were taken as the objective function. In this study, to reduce the optimi-
zation process’s computational cost, an Adaptive Neuro-Fuzzy Inference System (ANFIS)
was applied instead of performing Finite Element Analysis (FEA) to approximate the non-
linear analysis of the structures. The applied ANFIS model was compared with a Back
Propagation Neural Network (BPNN), and results showed that ANFIS produces better per-
formance for structure design values evaluation.

Kaveh and Talatahari (2010a, b, c) utilized a charged system search (CSS) algorithm for
the optimum design of skeletal structures. It was declared that CSS works based on nine
rules. Five cases of CSS were proposed to explore the impact of some of those rules on the
efficiency of CSS. The authors compared their solutions with numbers of previous efforts
such as GA, PSO, HS, BB-BC, HBB-BC, PSOPC, PSACO, HPSACO, and improved ant
colony system (IACS). Based on the numerical simulation, it was claimed that CSS was
more efficient than the other algorithms. The ability of CSS to find the optimum solution
with a smaller number of analyses than other algorithms was mentioned as an advantage
of this algorithm. Kaveh and Talatahari (2010b) considered an imperialistic competitive
algorithm (ICA) for optimum design of truss structures. The stress in the elements and
their slenderness, together with the nodal displacement, governed the search direction.
The efficiency of ICA was compared to GA, PSOPC, HPSO, and HPSACO through some
case studies. The results confirmed an acceptable performance of ICA in dealing with
truss problems. Aragén et al. (2010) applied a modified version of a T-cell algorithm for
truss optimization problems. In fact, this proposed algorithm was basically an alternative
for an artificial immune system (AIS) algorithm adapted to the constrained optimization
problems. The results demonstrated that the proposed algorithm handled this problem
successfully.

Sonmez (2011b) solved the problem of truss structures’ optimization using an artificial
bee colony (ABC) algorithm. Discrete design variables were considered in this study to
represent the cross-section of structural elements. It was declared based on the numeri-
cal simulations that because of a very low difference between the best-found solution and
the worst one, ABC was very efficient. Moreover, the execution speed of ABC was men-
tioned as another advantage of ABC. Sonmez (2011a) incorporated an adaptive penalty
function approach to the ABC algorithm (ABC-AP) to handle the weight minimization of
truss structures. Numbers of benchmark truss optimization problems were solved using the
proposed algorithm and compared to the previously recorded results. It was demonstrated
that this algorithm was not the best solver in that comparison, though it dealt with the truss
problem successfully.

Sadollah et al. (2012) attempted to solve the weight minimization of truss structures
using the mine blast algorithm (MBA). The achieved results compared to several algo-
rithms available in other studies such as steady-state genetic algorithms (SSGA), HS, PSO,
PSOPC, HPSO, and DHPSACO. The main advantages of an MBA over other algorithms
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are mentioned as being efficient in handling large scale problems, fast convergence rate,
and low computational cost.

Degertekin (2012) tackled the problem of the optimum size of truss structures using two
improved HS called efficient HS (EHS) and self-adaptive HS (SAHS). Two different strate-
gies were proposed for constraint handling. A sensitivity analysis was conducted to moni-
tor the effect of pitch adjusting rate updating and constraint handling strategies. Numeri-
cal simulations revealed that both EHS and SAHS were in superiority over the previously
utilized algorithms. Besides, they outperformed the conventional HS in all the case stud-
ies. Talatahari et al. (2012) concentrated on the optimum weight design of truss structures
using a chaotic ICA algorithm (CICA). The authors proposed four different versions of
CICA by using four following chaotic maps for generating random numbers: sinusoidal
map, logistic map, zaslavskii map, and tent map. Those modified algorithms compared to
the original ICA, orthogonal ICA (OICA), and some previous efforts. The results from two
numerical examples approved that the sinusoidal map was more efficient for CICA. There-
fore, as a further investigation, two large scale truss structures were analyzed only using
this sinusoidal map-based CICA. For those larger structures, CICA performed better than
ICA and OICA.

Kaveh and Talatahari (2012a) proposed a hybrid algorithm that combined CSS and PSO
algorithms for the optimal design of truss structures. The proposed algorithm was in supe-
riority in comparison with some other previous studies. Kaveh and Zolghadr (2012) tack-
led the optimum design of truss structures using a combined CSS, BB-BC, and trap recog-
nition capability. The resulting algorithm was an improved CSS with a better exploration.
To that end, the authors proposed a method based on recognizing trap conditions through
a diversity index and two trap recognition criteria. The resulting BB-BC algorithm pushed
the search away from local minima. Comparing the proposed hybrid algorithm with stand-
ard CSS and some other algorithms in other studies demonstrated its better performance
and more effectiveness.

Gandomi et al. (2013e) utilized a cuckoo search (CS) algorithm for the minimum weight
design of steel structures. A comparison of the results with previous records demonstrated
that CS was more successful than other algorithms for handling tackled case studies. Tala-
tahari et al. (2013b) proposed a multi-stage PSO (MSPSO) algorithm for the minimum
weight design of truss structures. In this MSPSO, two mechanisms were applied to the
original PSO: dealing with violated constraints by resetting the velocity term to zero,
and handling bound constraints using the content of the global best solution. Talatahari
et al. (2014) tried FA for the optimum design of tower truss structures. A feasible-based
combined with penalty function constraint handling approach was applied to the design
procedure.

Degertekin and Hayalioglu (2013) considered teaching—learning-based optimization
(TLBO) for the minimum weight design of truss structures. The impact of two parameters
settings—the population size (ps) and the number of solutions generated in the learning
phase (ndlp)—were explored through four numerical simulations. The effectiveness of
TLBO was proved by comparison with previous efforts in terms of finding more optimum
solutions and better convergence capability. It was concluded that increasing ndlp resulted
in a decrease in the number of structural analyses. Hasancebi et al. (2013) utilized a bat-
inspired algorithm (BI) for minimum weight design of truss structures with discrete design
variables subject to ASD-AISC’s regulations for elemental stress and nodal displacements.
Four numerical case studies were analyzed to validate the efficiency of the BI algorithm.
Gandomi et al. (2013d) tackled the weight minimization of truss structures using the krill
herd (KH) optimization algorithm. The results compared to previously tried algorithms
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such as GA, SA, PSO, centers and force formulation (CP), augmented Lagrangian methods
(AL), and a genetic-Nelder mead simplex algorithm (GNMS) that demonstrated better per-
formance of the KH algorithm.

Kaveh and Khayatazad (2013) applied ray optimization (RO) to size and shape optimi-
zation of truss structures. It was mentioned that the RO algorithm performed better than
some other standard algorithms such as GA, ACO, PSO, and BB-BC, while it underper-
formed hybrid approaches like HPSACO.

Lu et al. (2013) considered weight minimization of truss structures following ASD-
AISC rules by enlisting an augmented PSO (AugPSO) based on applying two strategies:
(1) boundary-shifting to move the bounds between feasible and infeasible regions, and
(2) particle-position-resetting to apply a mutation for increasing diversity. Faramarzi and
Afshar (2014) applied a hybridized cellular automata and linear programming (CA-LP) to
the minimum weight design of truss structures. A comparison of the obtained results with
some other studies proved that CA-LP handled the tackled problem successfully.

Kaveh and Mahdavi (2014b, c¢) applied colliding bodies optimization (CBO) for opti-
mum design truss structures based on continuous and discrete design variables. The analy-
ses of some numerical examples proved a good performance of CBO in solving truss opti-
mization problems for both continuous and discrete design variables. Kaveh and Zolghadr
(2014a) provided a comprehensive comparison between the performance of nine algo-
rithms—PSO, HS, BB-BC, FA, CSS, CS, enhanced RO (ERO), democratic PSO (DPSO),
and hybridized PSO and RO algorithm (PSRO)—to handle size and shape optimization
of truss structures with natural frequency considerations. The results from the monitoring
diversity index proved that DPSO, PSRO, and BB-BC had a good balance between diversi-
fication and intensification that ended up to the higher quality of solutions.

Pholdee and Bureerat (2014) conducted a comparative study on the optimum design of
truss structures using several metaheuristic algorithms including GA, HS, PSO, stud GA
(SGA), differential evolution (DE), ABC, real-code ACO (ACOR), CSS, league champi-
onship algorithm (LCA), SA, TLBO, BB-BC, FA, population-based incremental learning
(BPBIL), CS, evolution strategy with covariance matrix adaptation (CMAES), continu-
ous population-based incremental learning (CPBIL), continuous scatter search algorithm
(CSSA), enhanced continuous tabu search (ETCS), evolution strategies (ES), evolutionary
programming (EP), fireworks algorithm (FWA), gravitational search algorithm (GSA), and
bat-inspired algorithm (BAT). The constraints were defined based on the natural frequency.
Numerical simulations proved that CMAES was the best algorithm due to the lower Wil-
coxon rank-sum test as well as finding the lowest mean and standard deviation values in
most of the cases. A comparison of the convergence rate showed a better performance of
the DE algorithm. Kaveh et al. (2014) enlisted chaotic swarming of particles (CSP) for size
optimization of truss structures. CSP utilized chaotic theory in two phases: (1) control-
ling the parameter values of the particle swarm optimization (CPVPSO), (2) doing a local
search (CLSPSO).

Hasangebi and Azad (2014) proposed a refined BB-BC (RBB-BC) algorithm for the
design of truss structures based on ASD-AISC. The modified algorithms RBB-BC
was capable of finding better solutions than the original BB-BC. Kaveh and Ilchi Ghaz-
aan (2014) applied an enhanced CBO algorithm (ECBO) to the weight minimization of
truss structures considering the design criteria defined by ASD-AISC. The original CBO
was considered as the benchmark, and the results showed that the proposed modification
decreased CBO'’s sensitivity to the population size. ECBO handled the tackled problem
more efficiently than the original CBO. Kazemzadeh Azad and Hasancebi (2014) used a
refined self-adaptive step-size (SASS) algorithm called elitist SASS (ESASS) for optimum
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design of truss structures. To that end, the randomness of the sampling step, an adaptive
sampling scheme, and upper bound strategy were incorporated into the ESASS. These
modifications were applied in order to increase the convergence accuracy and computa-
tional efficiency simultaneously. The results declared that the proposed algorithm satisfied
those anticipations successfully.

Khatibinia and Naseralavi (2014) applied an orthogonal multi-gravitational search algo-
rithm (OMGSA) to the optimum shape and size design of truss structures with frequency
constraints. In fact, OMSGA is proposed as a combined multi-GSA and orthogonal crosso-
ver (OC). Multi-GSA handled sub-population by the main procedure of improved GSA
(IGSA). The constraints were handled using the feasibility-based method. Kaveh and Javadi
(2014) hybridized HS, RO, and PSO algorithms for optimum size and shape design of truss
structures. In the proposed hybrid algorithm (HRPSO), the main optimizer was PSO, while
RO and HS handled the global search and local search, respectively. Kazemzadeh Azad
et al. (2014) used a guided stochastic search (GSS) technique for discrete optimization of
truss structures. Load and Resistance Factor Design-American Institute of Steel Construc-
tion (1994) (LRFD-AISC) was considered to control the design criteria. The results indi-
cated the satisfying performance of GSS in comparison to other previous efforts. Camp
and Farshchin (2014) concentrated on the optimum weight design of truss structures using
a modified TLBO (MTLBO) algorithm. MTLBO worked based on using a fitness-based
weighted mean in the teaching phase and a refined student learning system.

Kaveh and Zolghadr (2014b) solved the problem of shape and size optimization of
truss structures using a democratic PSO (DPSO). DPSO involved all the valid solutions
to update the velocity term and, consequently, the positions of the particles. The proposed
algorithm was claimed to be the best solver in handling the tackled problems and com-
pared to other techniques. Oguzhan Hasancebi and Azad (2015) presented the application
of adaptive dimensional search (ADS) for discrete size optimization of truss structures.
The ADS algorithm was assessed using two benchmark problems, and the results showed
its capability to find a better solution with less computational efforts. Bekdas et al. (2015)
used a flower pollination algorithm (FPA) for the optimum size design of truss structures.
An iterative strategy for constraint handling was proposed to incorporate the stress and dis-
placement limitations. The obtained results by FPA were comparative with other previous
efforts.

Sadollah et al. (2015) utilized the water cycle algorithm (WCA), MBA, and improved
MBA (IMBA) for discrete optimization of truss structures. The design procedure was gov-
erned by ASD-AISC specifications for stress, slenderness, and nodal displacement. Kaveh
and Mahdavi (2015b, ¢) used CBO and a modified version of the CBO algorithm called
2-dimensional CBO (2D-CBO) for the optimal weight of truss structures. Kaveh and
Mahdavi (2015a) developed a hybrid approach based on CBO and PSO (CBO-PSO) to
handle the same problem. Kaveh and Bakhshpoori (2015) enlisted a procedure called the
subspace search mechanism (SSM) to improve the convergence time of the CS algorithm.
SSM system tried to divide the search space into a number of sub-spaces by fixing some
of the design variables in each subspace. This CS-SSM algorithm was evaluated through
several numerical benchmark problems that proved its efficiency to reduce population size
and convergence time. However, it was claimed that for complex problems, it might not be
accurate enough.

Li and Ma (2015) used a subset simulation optimization algorithm (SSO) for weight
minimization of truss structures. The discrete design variables were considered in the sim-
ulation procedure using the theory of generating random variables. The effect of five dif-
ferent parameter setting was explored in the simulations. The obtained results by SSO were
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comparable to other previously utilized approaches. Cheng et al. (2016) developed a hybrid
HS algorithm (HHS) for discrete weight minimization of truss structures. In the HHS algo-
rithm, the randomization function of the original HS was replaced with the global-best
PSO search and neighborhood search. A comparative study with other utilized algorithms
demonstrated the ability of HHS to find more optimum solutions with a better convergence
rate. Bureerat and Pholdee (2016) applied an adaptive DE algorithm (ADEA) to the truss
size optimization problem. Different variants of ADEA were formed by changing the func-
tions for adaptation (i.e., linear and exponential) of optimization parameters, and the best
combination was introduced. Numbers of constraint handling approaches were also exam-
ined during the numerical simulations.

Farshchin et al. (2016a, b) developed an extension on the TLBO algorithm based on a
collaborative optimization strategy called school-based optimization (SBO). In this effort,
SBO was selected for optimum size and shape design of truss structures considering the
frequency constraints. A sensitivity analysis over the impact of effective parameters on
the final results was conducted. Results declared the SBO overcame other techniques in
terms of computational robustness and efficiency, especially for more complex cases. Hos-
seinzadeh et al. (2016) utilized a hybrid electromagnetism-like mechanism algorithm and
migration strategy (EM-MS) for size and shape optimization of truss structures. EM-MS
employed the modified electromagnetism-like mechanism algorithm to provide explora-
tion and the migration strategy for exploitation. It was claimed that the proposed algorithm
worked efficiently in terms of convergence speed, stability, and optimality of the solutions.

Kazemzadeh Azad (2017) enlisted six guided optimization algorithms—guided adap-
tive dimensional search (GADS), guided exponential big bang-big crunch (GEBB), guided
modified big bang-big crunch (GMBB), guided adaptive dimensional search-exponential
big bang-big crunch (GADS_EBB), guided adaptive dimensional search modified big
bang-big crunch (GADS_MBB), and guided adaptive dimensional search-exponential and
modified big bang-big crunch (GADS_EBB_MBB)—for minimum weight design of truss
structures based on LRFD-AISC requirements. The results compared to the original algo-
rithms (i.e., Adaptive dimensional search algorithm (ADS), exponential BB-BC (EBB),
and modified BB-BC (MBB)). Numerical simulations indicated that GADS_EBB was the
best algorithm among the other utilized techniques in light of the ease of use, less compu-
tational time, and high-quality solutions.

Baghlani et al. (2017) proposed a constraint handling approach based on mapping the
search space to the boundaries of the feasible solution area. The TLBO-MS algorithm was
developed by considering this constraint handling scheme and applied to the truss optimi-
zation problem. The effectiveness of this method was compared to the penalty function
(TLBO-PF) and fly-back (TLBO-FB). Numerical simulations demonstrated that TLBO-
MS was better than both TLBO-PF and TLBO-FB. TLBO-MS and TLBO-FB converged
to the optimal solutions without constraints violations while TLBO-PF ended up to slightly
violated designs.

Kaveh and Ilchi Ghazaan (2017) utilized a vibrating particle system algorithm (VPS)
for weight minimization of truss structures based on natural frequency constraints. Jalili
et al. (2017) concentrated on the optimum design of truss structures using the league cham-
pionship algorithm (LCA). Two different strategies based on the tie concept were proposed
to enhance the LCA algorithm (LCA-tie-I and LCA-tie-II). LCA handled the truss problem
successfully, and the mentioned modification was found to be effective in enhancing the
LCA algorithm.

Krempser et al. (2017) incorporated local surrogate models into the DE algorithm
(SMDE) to solve the truss optimization problem considering both continuous and discrete
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design variables. The utilized surrogated models were the nearest neighbors’ techniques,
local linear regression, weighted local linear regression, and RBF Networks. A parameter
F was defined to scaler the differences between components of candidate individuals at
each surrogate model. Different settings of F values were examined. An adaptive penalty
function was considered for combining the constraints into the design procedure. The pro-
posed modifications found to be effective in improving the performance of DE, particularly
by using r-nearest neighbors using »=0.001 and F=0.7. Duarte et al. (2017) utilized a
social spider algorithm (SSA) to weight minimization of truss structures considering stress
and displacement limitations. Several case studies were resolved by continuous and dis-
crete design variables.

Pholdee and Bureerat (2018) tackled Six traditional truss sizing design problems with
mass objective function subject to displacement and stress constraints. They considered
eighteen self-adaptive meta-heuristics MHs and compared the results in terms of conver-
gence rate and consistency. They found for the problems without buckling constraints, Suc-
cess-History Based Adaptive Differential Evolution with Linear Population Size Reduc-
tion (L-SHADE) and Success-History Based Adaptive Differential Evolution (SHADE)
were the top two optimizers. While for buckling constraints problems, LSHADE and
L-SHADE with Eigenvector-Based Crossover and Successful-Parent-Selecting were better,
respectively.

Kazemzadeh Azad (2018) explored the effect of a modification called seeding the initial
population (SIP) with feasible solutions on optimization algorithms’ performances. The
effect of this enhancement was explored through three optimization algorithms, includ-
ing ADS, modified BB-BC (MBB-BC), and exponential BB-BC (EBB-BC) for optimum
design truss structures. The feeding part was handled based on three different strategies to
monitor its effect: (1) no feeding solution, (2) feeding a feasible solution with the largest
available cross-sections, and (3) selecting the least violated solution from a pool of ran-
domly generated designs. Moreover, the upper bound strategy (UBS) was applied to the
mentioned algorithms to increase their efficiencies. The constraints were defined based on
LRFD-AISC regulations. The effect of those modifications was explored and explained
based on several numerical simulations. Aslani et al. (2018) applied single-solution and
population-based mean—variance mapping optimization (MVMO and MVMO-SH) to size
minimization of truss structures. The nodal displacement and elemental stress were incor-
porated into the design procedure as inequality constraints. The adaptive quadratic exterior
penalty function method was selected to handle the defined constraints.

Kaveh and Zakian (2018) applied a grey wolf optimizer (GWO) and an improved GWO
(IGWO) to the optimal design of truss structures. Beforehand, the impact of the proposed
modifications on the GWO algorithm was examined through eighteen mathematical bench-
mark problems. Results revealed that IGWO outperformed GWO in terms of efficiency,
accuracy, stability, and convergence speed. Khatibinia and Yazdani (2018) applied an
accelerated multi-gravitational search algorithm (AMGSA) to the optimum size design of
truss structures. The AMGSA algorithm was developed based on combining the simplex
crossover (SPX) and mutation operator used in breeder GA (BGA) with the GSA algo-
rithm. A sensitivity analysis was conducted over the effect of hyperparameters on the per-
formance of the AMGSA algorithm.

Sonmez (2018) provided a comprehensive comparison between eight metaheuristics in
handling truss optimization problem. The effect of the number of iterations in relation to
the dimension of problems was compared for the utilized algorithms. The control param-
eters free algorithms (GWO and JA) and single-parameter algorithm (ABC) performed bet-
ter than other algorithms. Kaveh et al. (2018) applied a chaotic ECBO (CECBO) algorithm
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to the optimum design of truss structures. In this CECBO algorithm, some chaotic maps
(i.e., Chebyshev, Circle, Gaussian, Liebovitch, Logistic, Piecewise, Singer, Sinus, Sinu-
soidal, and Tent) were used to control random variables in three ways: (1) changing the
probability of colliding bodies, (2) selecting candidate solutions, and (3) regenerating the
selected variable by chaos signals.

Cao et al. (2018) resolved the truss optimization problem using a subspace HS (SHS)
algorithm combined with an improved feasible-base constraint handling approach. A sensi-
tivity analysis over different settings of harmony memory size (HMS) and subspace HMS
(SHMS) was conducted. Furthermore, the proposed constraint handling approach was
applied to the HS and EHS to provide a more comprehensive comparison. The obtained
results compared to the previously recorded results using different optimization algorithms.
Gandomi and Goldman (2018) tried the parameter-less population pyramid (P3) for truss
optimization with discrete design variables. As P3 is a black-box evolutionary optimiza-
tion algorithm, the results were compared to some other well-known black-box algorithms,
including random restart hill climbing (RRHC), parameter-less hierarchical Bayesian opti-
mization algorithm (PHBOA), DE, and a modified GA. The results were sufficient in terms
of convergence speed rather than finding the most optimum solutions.

Baykasoglu and Baykasoglu (2019, 2021) utilized weighted superposition attraction
(WSA) for the sizing optimization of truss structures. Jafari et al. (2019) proposed truss
optimization using a hybrid approach based on elephant herding optimization (EHO) and
cultural algorithm (CA), known as elephant herding optimization cultural (EHOC) algo-
rithm. Degertekin et al. (2019) concentrated on size, shape, and topology optimization of
truss structures using an advanced JA algorithm. The proposed algorithm solved this prob-
lem using discrete design variables, so it was named after a discrete advanced JA (DAJA)
algorithm. A comparison of the results of DAJA with other state-of-art algorithms proved
its superiority and promising performance. Jalili and Kashan (2019) tackled the truss opti-
mization problem using optics inspired optimization (OIO). Pouriyanezhad et al. (2020)
explored the truss optimization problem using the eigenvectors of the covariance matrix
(ECM) inspired by the covariance matrix adaptation evolution strategy (CMA-ES). In this
algorithm, a dynamic penalty function was considered to incorporate the constraints into
the design procedure. ECM was compared to some other algorithms (i.e., whale optimiza-
tion algorithm (WOA), GSA, GWO, and PSO) in terms of final solutions optimality, stabil-
ity, and convergence rate.

4.1.2 Shape optimization

Shape optimization of truss structures minimizes the weight by changing the elements’
sizes and nodal positions given a fixed number of elements and topology. Kaveh and Shah-
rouzi (2007) developed a hybrid algorithm based on ant strategy and a GA for size and
layout optimization of truss structures. This hybrid approach aimed to adjust the GA popu-
lation size in every single run to enhance its performance. Population tuning in this algo-
rithm was handled using the indirect data share strategy of AS. The final objective function
in this study was the total weight of structure given elemental stress and nodal displace-
ment limitations. The results revealed that the population size increase was stopped after
finding the global optimum solution. Moreover, using the proposed strategy resulted in less
computation effort and better convergence rate to global optimum Another advantage of
this hybrid method was mentioned as finding the global optimum solution in a single run.
It was shown that the population size was related to the convexity of the problem on the
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one hand and other GA parameters, on the other hand. Therefore, this hybrid approach was
helpful in eliminating the parameter setting step for GA.

Kaveh and Talatahari (2011) developed an improved CCS algorithm using the concept
of fields of forces (FOF). This algorithm was applied to the problem of shape and size opti-
mization of truss structures. The original CSS algorithm was considered as a benchmark
to evaluate the performance of the proposed algorithm. This enhanced algorithm proved
to be efficient in handling the selected problems. Miguel and Miguel (2012) tackled truss
size and shape optimization problems considering natural frequency constraints. HS and
firefly algorithm (FA) automated the design procedure. A series of 2D and 3D truss struc-
tures were subjected to evaluate the effectiveness of the proposed algorithms compared
with some earlier efforts. Although the elapsed time for the HS algorithm to converge the
optimal solution was less than FA, in all the cases, FA ended up with better solutions.

Gholizadeh (2013) developed two combined approaches based on cellular automata
(CA) and PSO for shape optimization of truss structures. The proposed hybrid approaches
were a novel CA-based PSO scheme called CPSO and a sequential cellular PSO called
SCPSO algorithm. Moreover, a cellular PSO (CPSO) was considered for simulations. The
sensitivity of the essential parameters of this algorithm was examined through four case
studies, and the best combination was proposed. Gholizadeh and Barzegar (2013) tackled
shape and size optimization of truss structures based on frequency constraints using an
enhanced HS (EHS) and sequential EHS (SHS) algorithms. A sensitivity analysis was per-
formed on the different essential parameter settings of the algorithm. The numerical simu-
lation results declared that EHS performed better than simple HS, and SHS was better than
both HS and EHS. Shojaee et al. (2013) applied a combination of improved discrete parti-
cle swarm optimization (IDPSO) and method of moving asymptotes (MMA) for size and
layout optimization of the truss structures. The results showed that the hybrid of IDPSO
and MMA could accelerate the convergence rate and reach the optimum design quickly.

Dede and Ayvaz (2015) applied the TLBO algorithm for size and shape optimization of
truss structures. The investigators of this study confirmed the ability of TLBO to handle the
tackled problem effectively based on providing a comparative study with other algorithms.
Kaveh and Ilchi Ghazaan (2015) applied two combined algorithms to an optimum size
and shape design of truss structures considering frequency constraints as (1) hybrid PSO
and aging leader and challengers (ALC-PSO), and (2) harmony search-based ALC-PSO
(HALC-PSO). Kaveh et al. (2015b) tackled truss structure optimization using an improved
magnetic charged system (IMCSS) that hybridized an improved HS (HIS) and the mag-
netic charged system (MCSS). Ho-Huu et al. (2015) applied an improved constrained DE
(D-ICDE) for size and shape optimization of truss structures. Based on the results, D-ICDE
handled the truss optimization problem effectively in terms of finding a more optimum
solution with less computational effort.

Pham (2016) applied an enhanced DE (ANDE) to the truss optimization problem. Basi-
cally, ANDE considered three major modifications as (1) using P-best strategy to balance
global and local search, (2) applying directional mutation rule to improve the solution, and
(3) using the nearest neighbor comparison method to ignore unpromising solutions before-
hand. P-best strategy randomly selects an individual from the top P solutions for mutation.
Success-History based Adaptive Differential Evolution (SHADE) with Linear decrease
in population size (L-SHADE) was also utilized for handling the optimization procedure.
ANDE evaluation through numerical simulations proved that it was comparable to other
sophisticated algorithms. Different settings for P-value were assessed in the numerical
simulations. The results from simulations confirmed the satisfying performance of ANDE.
Farshchin et al. (2016a, b) attempted to solve truss size and shape optimization using a
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multi-class TLBO algorithm (MC-TLBO). MC-TLBO worked based on two phases, includ-
ing (1) search the solution space through parallel classes, and (2) the best solutions in the
first phase were selected to initialize the population for a modified TLBO. The effect of the
different number of classes was explored in the numerical simulations.

Ho-Huu et al. (2016) investigated the capability of an improved DE algorithm based on
adaptive mutation (IDE) in handling truss structure optimization. The design procedure
was planned based on weight and layout optimization given to natural frequency require-
ments. The improvements applied to IDE was imposing a new selection strategy to muta-
tion operator. The performance of IDE was assessed through a comparison with DE and
some other utilized techniques for handling numerical simulations. Moreover, two other
variations of DE called the elitist selection technique (eDE), and the DE with the proposed
adaptive mutation strategy (aDE) were applied to one of the tackled problems to see the
effect of applied modifications. The proposed IDE algorithm was able to find solutions
similar to or better than DE with less computational efforts.

Kaveh and Zolghadr (2017) applied the cyclical parthenogenesis algorithm (CPA) to the
layout optimization of truss structures based on dynamic considerations. A comprehensive
study was conducted against different combinations of essential parameters of this algo-
rithm. A comparison of the obtained results with some other algorithms confirmed that
CPA handled the tackled problem satisfactorily. Cao et al. (2017) took an enhanced PSO
(EPSO) for optimum size and layout design of truss structures. The applied modification to
the PSO algorithm was using a particle categorization strategy for the sake of decreasing
the number of analyses and increasing computational efficiency. In this study, a parameter,
R, was defined to count the number of trials that need to be checked for constraint viola-
tions. The results from numerical analyses were discussed based on statistical approaches,
R, convergence rate, and computational time. The effect of hyperparameters was examined
through the simulations. EPSO was found to be more efficient than PSO in terms of com-
putational effort without affecting constraint violations. Kanarachos et al. (2017) optimized
the size and layout of truss structures using a contrast-based fruit fly optimization algo-
rithm (c-mFOA).

Kazemzadeh Azad et al. (2018) employed the BB-BC algorithm for size and layout
optimization of truss structures given different dynamic excitations. To that end, LRFD-
AISC considerations with discrete design variables were the basis of the design procedure.
Periodic loadings with different periods as well as the finite rise time of non-periodic step
force. Jalili and Hosseinzadeh (2018) developed a hybrid optimization algorithm based on
DE and biogeography-based optimization (BBO) algorithms (BBO-DE) for truss structure
optimization. In this algorithm, DE took care of a mutation mechanism to provide explora-
tion. Moreover, a modified migration operator was applied to strengthen the local search-
ability. The performance of the BBO-DE algorithm was examined through several case
studies and compared to the previously utilized algorithms as well as the original BBO
and DE algorithms. Ho-Huu et al. (2018) developed an improved DE based on roulette
wheel selection (ReDE) to deal with size and shape optimization of truss structures with
frequency constraints. Two modifications were applied to ReDE as follows: (1) using rou-
lette wheel selection for the mutation phase, and (2) using an elitist selection technique to
improve the convergence speed. Lieu et al. (2018) applied a combined algorithm based on
FA and DE called novel adaptive hybrid evolutionary firefly algorithm (AHEFA) to truss
optimization problems. An adaptive mutation operator is utilized according to the differ-
ence between the best-found solution and the whole population at the previous generation.
The proposed AHEFA improved considerably in terms of convergence speed compared
to DE and FA. Carvalho et al. (2018) studied the effectiveness of craziness-based PSO
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(CRPSO) with an adaptive penalty method. Natural frequency constraints, as well as cardi-
nal constraints for automatic member grouping, were considered in the design procedure.

Tejani et al. (2019) utilized a multi-objective HTS algorithm (MOHTS) for weight
minimization and nodal displacement maximization for truss structures, simultaneously.
The results compared to some other methods like MOAS, MOACS, and MOSOS. Millan-
Paramo and Filho (2019) tried to enhance the modified SA (MSAA) algorithm by com-
bining it with the WWO algorithm. Kaveh and Mahjoubi (2019) applied a hypotrochoid
spiral optimization approach (HSPO) for size and layout optimization of truss structures.
The obtained results were compared to the original method spiral optimization algorithm
(HSPO) to observe the effect of those modifications. Le et al. (2019) hybridized the elec-
tromagnetism-like mechanism (EM) and FA to introduce the EFA method for optimum
design of truss structures. The feasible-based approach was utilized for incorporating the
constraints that resulted from stress, buckling, and displacement. Liu et al. (2020) com-
bined an adaptive vision search strategy with a fruit fly optimization algorithm (FOA). The
optimization procedure was based on weight and layout optimization considering natural
frequency constraints. In order to apply constraints, an improved, feasible-based constraint
handling approach was considered in this study. The obtained results compared with previ-
ous efforts on similar case studies.

4.1.3 Topology optimization

The final strategy in optimal design of truss structures is deciding about the presence of
elements in addition to the nodal position and elements’ sizes. Luh and Lin (2008) uti-
lized an ant algorithm to handle optimum size, shape, and topology of truss structures. The
proposed ant algorithm was based on a two-stage strategy combining AS and API (after
“apicalis” in Pachycondyla apicalis) algorithms. In this way, AS took care of fining optimal
topology while the API search for optimum size and shape. The optimization procedure
proposed to be weight minimization given providing the following criteria: (1) user satis-
faction, (2) kinematic stability, (3) elemental stress capacity, (4) nodal displacement.

Kaveh and Zolghadr (2013) used the CSS algorithm for topology optimization of truss
structures based on static and dynamic constraints. A comparison of the results obtained
by CSS with PSO and previous efforts proved the better performance of CSS for handling
the tackled problems. Miguel et al. (2013) explored the application of the firefly algorithm
(FA) for size, shape, and topology of truss structures. Two phases were considered for the
simulations as: with and without slenderness related constraints. Discrete design variables
were considered for cross-section areas, while the nodal positions were defined by continu-
ous variables. Gongalves et al. (2015) used the search group (SG) algorithm for discrete
size, shape, and topology optimization of truss structures.

Savsani et al. (2016) studied the topology optimization of truss structures using a modi-
fied subpopulation TLBO (MS-TLBO). In this study, both static and dynamic constraints
were considered during the design procedure—the presented modifications were found to
be effective in enhancing the performance of the TLBO algorithm. Mortazavi and Togan
(2016) proposed an integrated PSO (iPSO) for optimum size, shape, and topology design
of truss structures. iPSO incorporated weighted particle definition and improved fly-back
constraint handling scheme into the PSO algorithm.

Savsani et al. (2017) explored the effect of using random mutation on the performance
of four metaheuristic algorithms (i.e., heat transfer search (HTS), water wave optimization
(WWO), passing vehicle search (PVS), and TLBO) in truss topology optimization. These
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modified algorithms—MHTS, MWWO, MPVS, and MTLBO—were evaluated through
several benchmark problems, and MPVS was found to be the best algorithm among all the
techniques.

Tejani et al. (2018) applied some modifications to the symbiotic organisms’ search
(SOS) algorithm for the sake of increasing its efficiency in handling optimization of truss
structures. To that end, an adaptive mutation was incorporated into this modified SOS
(MSOS) algorithm. Degertekin et al. (2018) applied the Jaya algorithm (JA) for size,
shape, and topology optimization of truss structures. JA was applied to several benchmark
problems and compared to a wide range of state-of-art algorithms. The statistical analysis
of the results showed its efficiency in handling the tackled problems.

4.2 Frame optimization

Optimum design of frame structures, large-scale structures, in particular, is a challeng-
ing task in civil engineering because of dealing with a large number of design variables
and constraints. Due to the massive amount of materials required for constructing a given
frame, any effort in decreasing the steel weight may cause saving a considerable amount of
budget in every project. Frame structures optimization was handled based on continuous,
discrete, and mixed continuous-discrete design variables. Moreover, a wide range of con-
straints has been defined in the previous efforts to provide the essential strength to with-
stand the effective loads and provide serviceability. Satisfying optimality criterion given
providing stability, strength, and serviceability is a very difficult task in large scale struc-
tures. Metaheuristics, as a perfect alternative, was considered in a wide range of studies
with regard to frame structures, as discussed accordingly. In this section, a detailed review
of frame structures optimization is provided accordingly. Moreover, Table 2 summarized
the highlights in the relevant literature.

4.2.1 Steel frame

In 1991, Balling (1991) utilized a SA algorithm for discrete optimization of 3D steel
frames. In this study, the objective function was defined as the total weight minimization
of an unsymmetrical six-story building. The tackled structure had a total of 156 members
that classified into 11-member groups—seven-column groups and four girder groups. The
constraints were defined based on AISC regulations for inters-story drift in each direc-
tion and combined stress constraints (i.e., combined tension and a combined compres-
sion). In a similar effort, May and Balling (1992) applied a filtered SA (FiSA) strategy
for discrete optimization of the same frame as Balling (1991). The linearized branch and
bound strategy (LB&B) was utilized for discrete optimization. A sensitivity analysis was
conducted on the effect of different neighborhood sizes on the performance of the LB&B
strategy. Moreover, the effect of different settings of hyperparameters of FiSA was exam-
ined through several case studies. In both studies (Balling 1991; May and Balling 1992),
11 groups of structural elements for columns and girders were made from wide-flange (W)
shape sections available in AISC.

In 2000, Pezeshk et al. (2000) automated the non-linear optimum design of steel frame
structures. The design procedure followed the defined requirements and available W-sec-
tion elements by AISC-LRFD. In this study, different combinations of linear and non-
linear analysis with considering and ignoring P-A effects. The positive impacts of a pro-
posed group selections mechanism, as well as using an adaptive cross-over operator, were
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confirmed. P-A effects on the final design were found to be negligible. It was mentioned
that geometrically nonlinear analysis resulted in 4% heavier structures than other cases.
Sarma and Adeli 2000) studied a fuzzy discrete multicriteria optimization (FDMCO) of
steel frames. To this end, the objective function was defined as total cost minimization
given three simultaneous design criteria as follows: (1) minimum material cost, (2) mini-
mum weight, and (3) a minimum number of different section types. Four different combina-
tions of the effective parameters of FDMCO were examined to reach the best performance.

In 2001, Toropov and Mahfouz (2001) utilized a modified GA (MGA) algorithm for dis-
crete optimization of the total weight of steel frames. Two modifications were considered
in this MGA as follows: (i) starting with a very large initial population, and (ii) the com-
mon features of the best individuals were extracted and applied to the rest of the population
other than the elite. The design procedure, as well as the available sections for the structural
elements, were defined in accordance with British standards. Hayalioglu (2001) employed
a GA for weight minimization of moment-resisting frames based on both AISC-LRFD and
AISC-ASD requirements (stress and displacements). It was claimed that fitness scaling, as
well as higher crossover probability, resulted in faster convergence. LRFD-based designs
were found to be 28%, 12%, and 0.7% saving in the weight in comparison with ASD-based
designs for the three tackled frames. From this pattern, it was inferred that for dominant
stress cases, LRFD resulted in lighter designs then ASD, while for the dominant displace-
ment case, there is no sensible difference between them.

In 2002, Sarma and Adeli (2002) tackled life-cycle cost optimization of steel structures
using fuzzy logic. Four fundamental objectives were followed during the design procedure:
(i) select available sections with the lowest cost, (ii) select available sections with the low-
est weight, (iii) select the minimum number of different available sections, and iv- select
available section with the minimum total perimeter length. The optimization procedure in
this study was the same as Sarma and Adeli (2000). Lagaros et al. (2002) enlisted sev-
eral evolutionary algorithms—GA, micro GA (UGA), modified pGA (muGA), ES, multi-
membered ES (MMES), contemporary ES (CES), and adaptive ES (AES) algorithms—for
structural optimization. Moreover, the sequential quadratic programming (SQP) approach
was incorporated into the GA (GA-SQP) and ES (ES-SQP) algorithms for the sake of
improving their performances. Two approaches were proposed to handle the sensitivity
analysis as a requirement of SQP as follows: (1) Global finite difference method, and (2)
Semi-analytical method. To that end, after finishing the search process using the mentioned
evolutionary algorithms, SQP started the second phase to improve the best-found solution
obtained in the first phase. The cross-section of each member was suggested to be I-shape
defined using two design variables satisfying Eurocode 3 (1993) requirements. The perfor-
mances of the following constraint handling schemes on the GA were examined through
numerical simulations: static penalties, dynamic penalties (D-GA), Augmented Lagrangian
method (AL-GA), and Segregated GA (S-GA). Their performances were measured using
two parameters: objective values and the average level of violation.

In 2003, Liu et al. (2003) applied a multi-objective GA (MO-GA) to the discrete steel
frame optimization. In this study, three different objectives were determined based on ini-
tial material costs, lifetime seismic damage (LSD) costs, and detailing/erection complexity
as measured by a diversity index. Seismic design requirements were extracted from AISC-
LRFD seismic provisions and NEHRP (Federal Emergency Management Agency. NEHRP
Recommended Provisions for Seismic Regulations for New Buildings and Other Structures
1998) provisions. Acceleration response spectra in three hazard levels were considered
(i.e., 2%, 10%, and 50% PE in 50 years). Damage state was defined in seven different levels
based on the drift (i.e., none, slight, light, moderate, heavy, major, and destroyed).
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In 2004, Hayalioglu and Degertekin (2004) employed a GA for the optimum design of
semi-rigid connections steel frames. The best settings for different parameters of the GA,
such as population size and crossover as well as fitness scaling, were proposed. Results
confirmed that using semi-rigid connections ended up with a reduction of 24% at most in
the final cost rather than rigid connections. However, semi-rigid connections increased the
sway of the frame between 19 and 100%. In the case of using semi-rigid column bases, a
reduction of 3-25% was observed. Greiner et al. (2004) studied both discrete and continu-
ous frame optimization using evolutionary algorithms. Rebirth and auto-adaptive rebirth
operators were incorporated into the utilized algorithms. This research explored both single
objective (considering weight minimization) and multi-objective (simultaneous minimiza-
tion of total weight and number of different cross-section types) optimizations.

In 2005, Camp et al. (2005) employed an ACO algorithm for the optimum design of
steel frame based on AISC-LRFD regulations. A comparison of the results with a GA in
previous studies implied that ACO was capable of finding a more optimum solution with
less computational efforts. Hayalioglu and Degertekin (2005) attempted to solve the cost
minimization of steel frames with semi-rigid connections and column bases using a GA. In
this way, two different strategies were proposed for selecting design variables: (i) selecting
columns and beams from smaller and larger height profiles, respectively; and (ii) selecting
each of the columns and beams from two separate steel section lists. A comparison of the
results obtained based on AISC-LRF with AISC-ASD ended up finding fewer costs using
the former. The effect of stiffness of semi-rigid connections was explored through solving
eight different semi-rigid connection types and semi-rigid column bases.

Yun and Kim (2005) cope with steel frame discrete optimization using a GA. To that
end, second-order inelastic analysis—refined plastic hinge analysis in particular—was
accounted for in the design procedure. In the refined plastic hinge analysis method, geo-
metric nonlinearity is considered by using the stability functions of beam-column mem-
bers, and the material nonlinearity is considered by using the gradual stiffness degradation
model that includes the effects of residual stresses, moment redistributions by the occur-
rence of plastic hinges, and geometric imperfections of members. Three case studies were
resolved using the proposed methodology, and the results compared to elastic-based design
following the AISC-LRFD requirements, nonlinear geometric analysis, and plastic zone
analysis methods. A comparison of the results indicated that elastic-based design did not
show ductile behavior, while geometric nonlinear analysis and plastic zone analysis meth-
ods could carry ultimate loads and showed ductile behavior.

In 2006, Gero et al. (2006) compared the elitist GA (EGA) with classical optimization
algorithms for handling 3D steel frames. Discrete design variables governed the optimiza-
tion procedure based on the available sections in the Spanish Basic Building Code (NBE
EA-95).

In 2007, Degertekin (2007) compared GA and SA algorithms in dealing with geo-
metrically nonlinear steel space frames. Stress capacity was defined based on AISC-ASD
and AISC-LRFD. The numerical simulations showed that SA was successful in saving
2.3-5.6% of weights rather than GA based on the LRFD code. That was about 1.3-8%
when ASD code was utilized. Moreover, the running time for GA was less than SA. In
another study, Artar and Daloglu (2018) utilized an HS algorithm for weight minimization
of steel frame structures based on AISC-LRFD requirements and discrete design variables.
A comparison of the results obtained by HS with GA and ACO proved the better perfor-
mance of this algorithm. HS ended up to 2.7-5.0% lighter design than GA and 1.2-2.7%
lighter than ACO. A low standard deviation of the results (about 3%) demonstrated the
stability of the HS algorithm.
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In 2009, Ali et al. (2009) applied a GA to the multi-stage production cost of semi-rigid
steel frames. In this effort, the total cost of different stages of production was minimized.
In this way, structural members and joint detailing were taken into account in the final
cost estimation. Material supply, fabrication, erection, and foundation stages were involved
in computing the production cost of a steel building project. The obtained results from
the simulations proved that the proposed methodology decreased the final cost by around
10-25% compared to traditional designs. Moreover, it was stated that the cost of joints rep-
resented more than 20% of the optimal cost design.

In 2010, Kaveh et al. (2010) proposed an ACO algorithm as a solver to handle perfor-
mance-based seismic design of steel frames using discrete design variables. Four perfor-
mance levels were considered in the nonlinear analysis of the structure based on the lateral
drift (i.e., operational, immediate occupancy, life safety, and collapse prevention). Moreo-
ver, two different approaches for numerical modeling and analytical process were com-
pared as follows: (i) the refined plastic hinge analysis method, (ii) the plastic zone analysis
method. The refined plastic hinge analysis method accounted for the geometric nonlinearity
of a steel frame structure, the gradual plastification of member sections, and the geometric
imperfection of column members. A push-over analysis was taken care of first-order elastic
and second-order geometric stiffness properties. The seismic loadings were taken from four
earthquake probability of 50%, 20%, 10%, and 2% in a 50-year period. The results obtained
by ACO compared with a GA and confirmed the superiority of ACO over a GA.

Kaveh and Talatahari (2010a) developed an improved ACO algorithm (IACO) for dis-
crete optimum design of frame structures. Basically, IACO worked on two phases, includ-
ing global and local searches. In the first phase, a sub-optimization mechanism (SOM)
based on the finite element method was incorporated into the search procedure to reduce
the time by shrinking the search space. The second phase tried to optimize the solution
obtained by the first phase by tweaking the design variables. Hasancebi et al. (2010b) uti-
lized an adaptive HS algorithm (AdHS) to handle discrete optimization of steel frames.
The obtained results were compared to the original HS algorithm as well as other previ-
ously utilized algorithms in the same case study. It was stated that AdHS outperform the
HS’s results significantly. Studying the effect of control parameters of AdHS revealed that
it did not affect the accuracy, but the adaptation rate was changed.

Hasancebi et al. (2010a) provided a comparative study over the performances of seven
algorithms, including GA, SA, ES, PSO, TS, ACO, and HS algorithms for handling rigid
steel frame optimization. The affected loads included dead, live, snow, and wind com-
bined based on ASCE 7-05 (ASCE 7-05. Minimum Design Loads for Building and Other
Structures 2005) recommendations. Issa and Mohammad (2010) made a modification on
distributed GA (DGA) by enlisting twin analogy and elitism strategy in addition to using
three mutation schemes (i.e., linear, quadratic, and exponential). The mutation was found
to be effective in convergence speed and finding a more optimal solution. Although all the
mutation schemes were efficient in improving the performance of the presented algorithm,
an exponential scheme was the most efficient strategy. Gholizadeh and Salajegheh (2010)
developed an artificial intelligence-based approach for the seismic design of structures.
The proposed method was based on a hybridizing PSO algorithm with an adaptive virtual
sub-population (AVSP) algorithm for weight minimization. The response of structure as
a necessary part of the seismic design was predicted using a hybrid approach based on
adaptive neuro-fuzzy inference system (ANFIS), wavelet transforms (WT), and radial basis
function (RBF) neural networks called fuzzy wavelet radial basis function (FWRBF) neu-
ral network. This proposed approach facilitated evaluating the time history response. In
this study Uniform Building Code (UBC) was utilized as seismic code to select and scale
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ground motion time history component. Stress and displacement were supposed to control
the design procedure.

Degertekin and Hayalioglu (2010) utilized the HS algorithm for steel frame optimization
with semi-rigid connection and column bases. In order to evaluate the proposed model, the
results were compared to rigid connection frames, and the GA was also considered for fur-
ther examination. Three case studies were resolved in this study, considering eight different
stiffnesses for the semi-rigid connections. HS was successful in the finding of 4.4-29.6%
lighter and 2-31.8% less cost than GA, with a lower number of analyses. Furthermore,
HS performed more stable than GA, with a standard deviation of less than 3%. From the
minimum-weight design viewpoint, a rigid connection resulted in better designs. However,
considering the total cost, semi-rigid connections were more economical.

In 2011, Liu (2011) investigated the minimum weight design of steel moment frames
accounting for the progressive collapse. In this way, the alternate path method with three
different analysis procedures—linear static, nonlinear static, and nonlinear dynamic—
was considered according to the regulations provided by the United States Department of
Defense United Facilities Criteria (UFC) Design of Buildings to Resist Progressive Col-
lapse. Moreover, traditional seismic design without the effects of the progressive collapse
was also considered as a benchmark. Four different combinations of dead, live, roof, snow
loads in addition to the five-percent damped design spectral response acceleration param-
eter at short periods, and the effect of horizontal seismic forces. Two additional loading
combinations resulted from the amplified seismic loads were considered for checking the
column strength under a specific condition. Linear static design procedure resulted in the
heaviest results. On the other hand, the more accurate nonlinear static and dynamic proce-
dures ended up more optimal solutions resistance to progressive collapse but more compu-
tational efforts.

Kripakaran et al. (2011) utilized a GA for the optimum design of moment-resisting steel
frames. The cost of steel and connections were included in the final objective value. As the
material and labor costs are location-dependent, the objective function was defined based
on their ration to generalize its application. In this study, each joint could have either a
fully-rigid or hinge connection. In addition to the cross-section of the elements, a binary
decision making was conducted to determine connections’ types. The optimization proce-
dure was based on two phases as (1) finding the least weight solution for only considering
the rigid connections, and (2) finding a trade-off between a number of rigid and hinge con-
nections using a GA. Based on the results, it was concluded that the total cost was optimum
when only a few connections were rigid. In the case of having fixed supports, a trade-off
between the number of rigid connections and the total cost was observed, while for hinge
supports, there not such a trade-off.

Oskouei et al. (2012) took into account the weight optimization of steel frames with
semi-rigid connections using a GA. In this study, modal analysis, as well as linear and
non-linear static analysis of the structures were considered. During the optimization pro-
cedure, a different level of rigidity of connections was assessed to find the most optimum
case. Nine different case studies from low rise to high rise frames were simulated during
the design procedure. It was indicated that the weight of structure increased by decreas-
ing the rigidity of connections for low rise with low periods, while for medium and high-
rise buildings with long periods, it was reverse. Cost-effective designs were observed for
medium and high-rise buildings in the case of using semi-rigid connections and non-linear
analysis, while for short buildings using rigid connections and nonlinear analysis was the
case. Kaveh and Bakhshpoori (2013) concentrated on the weight minimization of steel
frames using a CS algorithm. A sensitivity analysis of the optimal settings of the essential
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parameters of CS was conducted based on different case studies. Results declared that the
displacement was controlling the design as the height of the structure got higher. CS results
were better than other algorithms in most of the cases.

Kaveh and Farhoudi (2011) did a comprehensive survey on some metaheuristics (GA,
PSO, ACO, and BB-BC) for layout optimization of steel frame structures. They evaluated
the effect of necessary parameters of each algorithm on its performance based on a cri-
terion called convergence factor as the average possibility of the exemplars. The design
procedure is considered to be based on controlling drift, deflection, compaction, strength,
stability coefficient, irregularity, and slenderness based on available standard codes (AISC
Committee. Specification for Structural Steel Buildings (ANSI/AISC 360-05). Ameri-
can Institute of Steel Construction, Chicago-Illinois., 2005; ANSI/AISC 341-05. Seismic
Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chi-
cago, Illinois 60601-1802; March 9, 2005; ASCE/SEI 7-05. Minimum Design Loads for
Buildings and Other Structures. American Society of Civil Engineers., 2009; International
Building Code 2006; International Code Council, INC., 2006).

Hasancebi et al. (2011) tackled the problem of high-rise steel building weight minimi-
zation using an ES integrated parallel algorithm. Based on the results, parallel computing
was found to be a time-efficient method for large scale problems. Safari et al. (2011) devel-
oped an improved multiple-deme GA (IMDGA) algorithm by proposing new crossover
and mutation operators for optimum design of steel frames. The obtained results from the
proposed algorithm were compared to the original GA and multiple-deme GA (MDGA)
algorithms.

Kaveh et al. (2012) handled a performance-based multi-objective optimization of space
frames using a modified non-dominated sorting genetic algorithm (NSGA-II) by apply-
ing the DE operator (NSGA-II-DE). In this algorithm, at every generation, a population of
size N (Pr) was generated using the basic NSGA-II algorithm, and another population with
the same size would be generated using three selected individuals form Pt through crosso-
ver and mutation operators. The best N individuals of the combined population would be
directed to the next generation. This multi-objective approach tackled the initial and life-
cycle costs as two separate objectives. The structural performance was estimated by per-
forming a push-over analysis for a structure affected by gravity and seismic loads. ASCE-7
(2009) and FEMA-273 (1997) were utilized to evaluate dead and live loads combinations.
The lifecycle cost of a structure was evaluated based on lifetime seismic damage cost as a
total of initial cost, the cost of damage or repair, loss of contents, injuries, and human fatal-
ity, and other economic loss caused by structural damage. The damage was defined as a
percentage level of initial cost respect to the level of damage (none, slight, light, moderate,
heavy, major, and destroyed). In order to decrease computational efforts, the response of
structure was evaluated using a hybrid metamodel as a combination of the multi-layer per-
ceptron and radial basis function (RBF) networks and the support vector machines.

In 2012, Dogan and Saka (2012) utilized the PSO algorithm for the optimum design
of unbraced steel frames based on LRFD-AISC specifications. Togan (2012) considered a
TLBO algorithm for the optimum design of steel-framed based on AISC-LRFD. Hasancebi
and Kazemzadeh Azad (2012) proposed two reformulations of the BB-BC algorithm as
exponential (EBB-BC) and modified BB-BC (MBB-BC) for discrete optimum design of
steel frames using W-shape sections. AISC-ASD was utilized to set the stress, displace-
ment, geometric constraints for beams and columns at joints for constructability. Aydogdu
and Saka (2012) utilized the ACO algorithm for the minimum weight design of regular
and irregular steel space frames by including the warping effect. A sensitivity analysis was
conducted over different features of the ACO algorithm. Four case studies (two regulars
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and two irregulars) were solved using the proposed methodology with and without the
warping effect. The results indicated that considering the warping effect causes a signifi-
cant increase in the optimum designs of both symmetrical and asymmetrical space frames.
Gholizadeh and Fattahi (2014) developed a modified PSO (MPSO) for the optimum design
of tall steel buildings. This MPSO algorithm worked based on using PSO with a multi-
stage strategy where the output of each stage would be the initial population for its next
stage. Kaveh and Talatahari (2012b) utilized the CSS algorithm for the optimum design of
frame structures. The fundamental regulations of design procedure were compatible with
AISC-LRFD specifications for stress and displacement.

In 2013, Phan et al. (2013) concentrated on the weight minimization of cold-formed
steel portal frames using a GA. The trial designs were constructed using three design
variables as sections size, spacing, and pitch of the frames. Two different types of frames
were studied as a rigid-jointed cold-formed portal frame with and without knee braces.
Constraints were defined for columns and rafters to check combined axial compression
and bending, distortional buckling, and combined bending and shear. Knee braces were
checked against compression and tension. Numerical simulations declared that consider-
ing topological variations during the optimization procedure resulted in more optimal solu-
tions. Moreover, incorporating braces into the frames ended up decrease in the final cost.

Kazemzadeh Azad et al. (2013) utilized an upper bound strategy (UBS) for optimum
design of steel frames by metaheuristic algorithms. To that end, they employed a BB-BC
algorithm and its two improved versions (MBB-BC and EBB-BC). The main objective of
using this scheme is eliminating unnecessary analyses within the optimization process.
Structural analyses were handled using SAP2000 software in conjunction with MATLAB.
The proposed approach resulted in decreasing the structural analyses for 135-member
structure by 94.97%, 89.75%, and 92.94% for the UBB-BC, UMBB-BC, and UEBB-BC
algorithms, respectively. Moreover, those numbers for 1026-member were 95.72%, 94.1%,
and 97.1%, respectively. Therefore, the proposed strategy was proved to be efficient in
computationally expensive problems without affecting the exploration and exploitation of
the optimization algorithms. Talatahari et al. (2013a) employed accelerated PSO (APSO)
for optimum design of frame structures based on AISC-LRFD requirements. Yang et al.
(2013) developed a parallel modified guaranteed converged PSO algorithm (PMGCPSO)
for size and topology optimization of frame structures. During the topology optimiza-
tion procedure, the main objective was finding the best layout for bracing. The obtained
results by PMGCPSO were compared to the covariance matrix adaptation ES (CMA-ES)
algorithm.

Gong et al. (2013) delivered a multi-objective optimization of eccentrically braced
steel frames (EBF) using a multi-objective GA (MOGA). The objective functions in this
study were cost minimization, seismic input energy E; to the seismic-force-resisting sys-
tem (SFRS) minimization, and the hysteretic energy of fuse members maximization. The
analyzing procedure was mainly based on nonlinear response history analysis (NRH) to
capture both dynamic and inelastic behavior of a structure. The constraints defined for
checking the model validity were: (1) the plastic deformation on fuse members, (2) the
plastic deformation constraints on non-fuse members, and (3) inter-story drift constraints.
The proposed procedure was applied to the design of an EBF frame from a 3-story space
office building with a symmetric plan located in Vancouver, British Columbia, Canada.
In this three-bay three-story EBF frame, all the columns were pinned-supported. Three
ground motions were adopted from PEER (2008) in this research to find average values of
structural response. Kaveh and Zakian (2013) explored the application of two metaheuris-
tic algorithms—CSS and improved HS (IHS)—for optimum design of steel frames under
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seismic loads. Structural analysis was conducted in two phases as follows: (1) performing a
time history analysis with relative lateral displacement, and (2) performing a simultaneous
dynamic—static analysis with relative displacement and stress constraints. The proposed
methodology was evaluated through solving four frame structures affected by three earth-
quake time-history records (i.e., El Centro (N-S component, 1940), Kobe (090 component,
1995), and Tabas (LN component, 1978)).

In 2014, Hasangebi and Carbas (2014) selected the BAT algorithm for discrete size
optimization of steel frames based on AISC-ASD. The authors did extensive research on
the parameter setting of the BAT algorithm in this paper and indicated the impact of each
parameter as well as the best parameter setting. A comparison of the results in this study
with other previous efforts proved the efficiency of their tackled algorithm for handling
frame optimization problem. Murren and Khandelwal (2014) tackled steel frame optimiza-
tion using a design-driven HS (DDHS) algorithm. DDHS used a more intelligent mutation
operator which considered available information from previous solutions as well as param-
eter-specific search to explore the solution space. The optimization procedure was based on
grouped discrete design variables selected from W-shape sections subject to stress and drift
related constraints. DDHS was found to be efficient in terms of accuracy, computational
efforts, and optimality of the final solutions when it was compared to other solvers.

Yassami and Ashtari (2015a) utilized a fuzzy GA (FGA) for weight optimization of
steel frames with semi-rigid connections. Four types of semi-rigid connections based on
different rotational stiffness values, in addition to a rigid connection, were analyzed using
the proposed FGA and a simple GA. The proposed FGA was proved to be better than GA
in finding more optimal solutions with faster convergence. Yassami and Ashtari (2015b)
studied the weight minimization of steel frames with semi-rigid connections using the
same strategy as Yassami and Ashtari (2015a) for design procedure. To that end, three
optimization algorithms we selected as simple GA, FGA, and ABC. Kaveh and Nasrol-
lahi (2014) utilized the CSS algorithm for the performance-based seismic design of steel
frames. In this study, the design procedure was based on a push-over analysis using a semi-
rigid connection concept. Two moment frames affected by dead, live, and earthquake loads
were optimized using CSS and compared to GA and ACO. For seismic analysis, spectral
acceleration was evaluated based on four performance levels as operational, immediate
occupancy, life safety, and collapse prevention based on the probability of an earthquake
happening within 50 years. A comparison of the results obtained by the explored algo-
rithms indicated that CSS outperformed GA and ACO by finding lower weights.

Mabheri and Narimani (2014) used an enhanced HS algorithm (EHS) based on alter-
ing the updating phase of the HS algorithm for the minimum weight design of steel
moment frames. Saadat et al. (2014)] concentrated on the performance-based optimiza-
tion of structures based on a multi-objective approach. In this way, a MOGA was consid-
ered to minimize the combination of the present value of the total economic cost (PC,T)
and expected annual social loss (EASL). The design procedure was based on inelastic time
history analysis considering different levels of earthquake hazard. The numerical simula-
tions were conducted for two locations in the United States including, Memphis and Los
Angeles. The constraints were defined considering two hazard levels for collapse preven-
tion and immediate occupancy in addition to the AISC specifications for strong column-
weak beam criteria. A FEMA-SAC structure was considered for numerical simulation and
model validation (FEMA 355C, 2000). Discrete design variables were considered as two
columns and three beams selected from W-shape sections. Kaveh et al. (2015a) tried the
CS algorithm for seismic weight minimization of space steel frames. Seismic analysis of
the structures was conducted through two different approaches based on equivalent static
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and response spectral analyses for the first two cases and spectral response analysis for the
third case. The obtained results using the proposed algorithm were compared to ES, SA,
and TS algorithms.

In 2015, Alberdi and Khandelwal (2015) did a comparative study on the performance of
six metaheuristic techniques—ACO, GA, HS, PSO, SA, and TS—and their three modified
versions—DDHS, AHS, and iSA—for weight minimization of steel frames. The efficiency
of utilized algorithms was assessed in terms of convergence consistency regardless of the
variable space and irrespective of the initial trials. Based on the results of simulations,
DDHS and TS were the best solvers in this case study. Gholizadeh and Poorhoseini (2015)
applied a modified dolphin echolocation optimization (MDEOQ) algorithm for the optimiza-
tion of steel frames. This modified algorithm was based on using one-dimensional Gauss
chaotic maps for determining the step locations. The performance of the proposed algo-
rithm was examined through a comparison with the original dolphin echolocation (DEO)
algorithm in addition to some other algorithms applied to the same examples previously.
Moreover, a sensitivity analysis of an effective parameter in the MDEO algorithm called
power was conducted to reach its best performance. The results approved the better perfor-
mance of MDEO thanks to finding lighter designs.

Alberdi et al. (2015) concentrated on topology optimization of connections in steel
moment frames. In this way, four optimization algorithms—GA, HS, ACO, and TS—were
considered to optimize both member section and connections rigidity. As a result of two
available connections at two ends of each beam (pinned and moment-connected), four dif-
ferent types of beams were available based on the connections. The objective function was
defined in terms of material cost, in addition to the connections derived costs. The first
example was resolved under different assumptions, such as considering fixed and varia-
ble connection topology, along with solving the problem with and without constructabil-
ity constraints. Kazemzadeh Azad and Hasangebi (2015) tackled the optimum design of
steel frames with discrete design variables using a design-driven heuristic approach called
the guided stochastic search (GSS) technique. The applied constraints into the design pro-
cedure were strength and displacement based on AISC-LRFD. Comparison of the results
obtained by GSS with some other algorithms—upper bound strategy (UBS), UBS com-
bined with BB-BC (UBB-BC), UBS combined with modified and exponential BB-BC
(UMBB-BC and UEBB-BC), and UBS combined with PSO (UPSO)—indicated its prom-
ising performance thanks to finding more optimal solutions with less computational efforts.

Hadidi and Rafiee (2015) hybridized HS and BB-BC algorithm (HS-BB-BC) to tackle
the problem of frame weight minimization considering the optimal arrangement of semi-
rigid connections types. In this way, eight different semi-rigid connections were proposed
based on the rotational stiffness. The objective function was defined as the total cost of
materials in addition to the surcharge due to connection types. In this study, a non-linear
structural analysis was accomplished based on the non-linear moment-rotation behavior of
connections and P-A effects. Numerical simulations declared that the proposed HS-BB-BC
was successful in finding better solutions than the original HS and BB-BC algorithms with
a better convergence rate. Talatahari et al. (2015) studied the optimum design of frame
structures using a two-stage optimization algorithm based on the eagle strategy and DE
(ES-DE). The proposed ES-DE outperformed the original DE, and its performance was
comparable to other previously utilized algorithms.

In 2016, Carbas (2016) proposed an enhanced FA (EFA) for steel frame optimiza-
tion. The design procedure followed LRFD-AISC regulations using discrete design
variables. In this way, several constraints were incorporated into the design process
to check elements stress capacities, maximum displacement, geometrical constraints
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for beam-column connections, and columns related constraints to prevent soft story.
Based on the results, EFA was successful in finding more optimal solutions than the
FA. In another effort, Carbas (2017) utilized the BBO algorithm for the minimum
weight design of frame structures with the same strategy as Carbas (2016). The pro-
posed approach was applied to the optimum design of two real-size steel space frames.
Comparison of BBO with some other algorithms which were tried previously in similar
cases studies revealed its superiority and success to find better solutions.

Gholizadeh and Poorhoseini (2016) utilized an improved DEO (IDEO) algorithm
for seismic performance-based layout optimization of braced frames. The proposed
improvement on the algorithm was using the chaos theory for modifying the accumula-
tive fitness equation of standard DEO. To that end, three performance levels (i.e., imme-
diate occupancy, life safety, and collapse prevention) were considered for seismic hazard
analysis. Therefore, the basic seismic loading was represented by three earthquake level
corresponding to 20, 10, and 2% probability of exceeding in a 50-year period. In this
study, cross-sections of structural elements as well as placement of the X-bracing in the
frame were supposed to be design variables. The design procedure of the structure was
conducted using nonlinear pushover analysis. In the former type, the design procedure
was linear, and geometry constraints were ignored to be uniform with the original study.
In the latter, the tackled frames were solved based on two strategies as (i) size optimiza-
tion of frames wit fixed configuration of braces, and (ii) layout optimization of braces.
During the design procedure, a sensitivity analysis over the variation of one of the most
effective parameters of Ide named power was conducted to catch its best performance.

Aydogdu et al. (2016) concentrated on the optimization of steel space frames using
an ABC algorithm with levy flight distribution (LFABC). The performance of the pro-
posed algorithm was compared with ABC, ACO, and dynamic HS (DHS). Kaveh and
BolandGerami (2017) proposed a cascade optimization method for the optimum design
of large-scale space steel frames. To this end, the ECBO algorithm was utilized succes-
sively to handle every single case study. Papavasileiou and Charmpis (2016) utilized
ES for optimum cost and braces topology design of earthquake-resisting multi-story
steel-column composite structures. The design procedure was based on discrete opti-
mization with I-shaped sections fully encased in concrete for the columns, I-shaped
sections for beams, and L-shaped sections braces. The objective function was the total
cost of steel and column that satisfied the requirements defined by Eurocodes 3 and
4. Nonlinear pushover and eigenvalue analyses were considered for structural analysis.
The constraints were defined to guarantee enough stress capacity, prevent unacceptable
displacement due to earthquake, and preventing undesirable long-period buildings.

Carraro et al. (2017) utilized a search group algorithm (SGAO) for the minimum
weight design of frame structures based on AISC-LRFD. Daloglu et al. (2016) con-
sidered the effect of soil-structure interaction in steel frame optimization. In this way,
the minimum-weight design of frame structures located on elastic foundations was
the subject of the study. The soil of the foundation was specified using three param-
eters (i.e., moduli of subgrade reaction, soil shear parameter, and vertical deformation
profile within subsoil). Prendes-Gero et al. (2016) utilized a GA developed from the
Eugenics Evolutionary theory (GAET) for the cost minimization of steel frames. The
final cost resulted from the cost elements and connections. During the design proce-
dure, columns were selected from HEB sections, and the beam was selected form I sec-
tions. Three case studies were proposed to examine the efficiency of the proposed algo-
rithm. In these examples, the effects of different parameter settings of the algorithm,
number of sub-beam-elements, and different optimization processes (elitist strategy,
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steady-state replacement, roulette wheel, tournament selection, and Eugenics theory)
were examined.

In 2017, Gholizadeh et al. (2017) utilized an enhanced MFO algorithm (EMFO) for the
optimum design of steel frames. The applied modification was related to position updat-
ing using the best information obtained from the search agents during the optimization
process. Moreover, a mutation operator was added to this algorithm. Kaveh et al. (2017b)
studied seismic design optimization of steel moment frames with connection types arrange-
ment considerations. To that end, in addition to the cross-section of elements, connection
types (simple or rigid) were considered as the design variables. The objective function was
defined in terms of material and connection costs. The optimization procedure was accom-
plished using the PSO and ECBO algorithms. An ANN-based approach was proposed to
predict structural seismic response for seismic time-history analysis. ECBO was found to
be much better than PSO in solving the tackled problem. Moreover, considering the con-
nection types in the optimization procedure resulted in more efficient designs.

Gholizadeh and Baghchevan (2017) tackled multi-objective optimization of the perfor-
mance-based design of steel moment-resisting frames. To this end, a chaotic multi-objec-
tive firefly algorithm (CMOFA) was utilized to minimize the total weight of the structure,
while inter-story drift was maximized subject to the serviceability and ultimate limit-state
constraints. Three different steel frames were considered to endure dead, live, and earth-
quake loads considering three performance levels (i.e., immediate occupancy, life safety,
and collapse prevention). Maheri et al. (2017) employed an enhanced honey bee mating
optimization (EHBMO) algorithm for the optimum design of steel frames. This modifica-
tion defined a distance factor that gave credence to less feasible solutions to broaden the
search space. Kaveh et al. (2017a) tackled seismic optimization of 3D steel frames using
nine different algorithms as SA, PSO, ABC, WOA, GWO, HS, CBO, ECBO, and invasive
weed optimization (IWO). Three different types of lateral resisting steel moment frames
were studies according to the AISC-LRFD design criteria as follows: ordinary moment
frame (OMF), intermediate moment frame (IMF), and special moment frame (SMF). The
optimization procedure was based on the Response Spectrum Analysis (RSA) approach.
Optimization results demonstrated that OMF resulted in lighter designs in most of the
cases. On the other hand, IMF was not a good choice for structures with box shape col-
umns. HS, PSO and CBO performed better than other techniques.

In 2018, Gholizadeh and Ebadijalal (2018) utilized the center of mass optimization
(CMO) algorithm for weight and topology optimization of steel braced frames. Topology
optimization of the frames dealt with finding the best configuration of X- and diagonal-
bracing system in a given steel frame. In this study, in addition to design variables for
selection cross-section of the elements, four different options were defined for the brace
configuration in each bay. The design procedure was based on nonlinear time history analy-
sis considering three performance levels as immediate occupancy, life safety, and collapse
prevention. Gholizadeh and Milany (2018) developed an improved firework algorithm
(IFWA) for discrete optimization of steel structures. The obtained results were compared
to the original algorithm (FWA) to assess the efficiency of the proposed modifications.
Results demonstrated that IFWA outperformed FWA, and its results were also competi-
tive with other previously utilized algorithms. Farshchin et al. (2018) a school-based opti-
mization (SBO) algorithm for optimum design of steel frames considering AISC-LRFD
regulations. Artar and Daloglu (2018) studied the optimum weight design of steel space
frames with semi-rigid connections using an HS algorithm and a GA. In addition to a rigid
connection, six types of semi-rigid connections based on different rotational stiffness were
considered within the design procedure.
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In 2019, Bybordiani and Kazemzadeh Azad (2019) investigated the optimum design of
steel braced framed with dynamic soil-structure interaction. Typical steel frames were con-
sidered resting on a rigid base as well as half-space. A standard massless foundation was
used to model the unbounded soil domain. The seismic time-history analysis was applied
to the model based on two sets of ground motions. BB-BC algorithm was selected to han-
dle the optimization problem. Zakian (2019) tackled steel moment-resisting frames con-
sidering natural frequency constraints using five optimization algorithms as follows: PSO,
CSS, TLBO, GWO, and improved GWO (IGWO). To this end, the natural frequency of
structure was obtained using eigenvalue analysis. The results declared that TLBO, IGWO,
and PSO were the best solvers. Hassanzadeh and Gholizadeh (2019) accounted for col-
lapse-performance-aided optimization of steel concentrically braced frame (SCBF) using
the CMO algorithm. To this end, three major steps were proposed as follows: (1) size and
topology optimization based on seismic performance-based analysis, (2) generating fragil-
ity curves for the optimal solutions using the incremental dynamic analysis, and (3) fixed
and optimized braces configurations were compared in terms of minimum weight and col-
lapse capacity. The performance-based analysis was conducted based on three hazard lev-
els—immediate occupancy, life safety, and collapse prevention. The design variables were
defined as the cross-section and brace placement in the frame. Based on the results, it was
found that the topology optimization resulted in more optimal solutions with considerably
better collapse safety.

In 2020, Kaveh et al. (2020) utilized several optimization algorithms—ABC, BB-BC,
cyclical parthenogenesis algorithm (CPA), CS, thermal exchange optimization (TEO),
water evaporation Optimization algorithm (WEOA), and TLBO algorithms—to solve steel
frame optimization problems. In terms of more fit solutions, WEO, CS, and TEO proved to
be the best optimizer while the convergence speed was better for TEO, TLBO, and WEO.

4.2.2 Concrete frame

In 2008, Paya et al. (2008) considered multi-objective optimization of concrete frames
using a SA algorithm (MO-SA) based on four different objectives as follows: the economic
cost, the constructability, the environmental impact, and the overall safety of RC framed
structures. The Spanish code NBE AE-88 (Fomento 1988) for concrete structures governed
the design procedure. The trade-off between all the objectives was explored through a sen-
sitivity analysis. Paya-Zaforteza et al. (2009) utilized a SA algorithm for the optimization
of a reinforcement concrete (RC) frame. To this end, SA dealt with minimizing CO, emis-
sions and economic costs. The design procedure was controlled using the Spanish code
for concrete structures (Fomento 1998). The effects of the number of design variables on
the CPU time and the number of floors on CO, emission was explored through a sensitiv-
ity analysis. Moreover, the tradeoff between CO, and the final cost was observed. Results
declared that embedded emissions and costs are highly correlated. The lowest CO, emis-
sion was only 2.77% more expensive than the most optimum cost-based solution. On the
other hand, the most cost-effective design caused a 3.8% increase in CO, emissions.

Camp and Huq (2013) tackled CO, and Cost optimization of RC frames using a
BB-BC algorithm. The design procedure was based on the American Concrete Insti-
tute (ACI) specifications. Discrete optimization is based on the geometry of beams and
columns defined by width and height along with steel rebars areas defined by the num-
ber and size of bars. Many constraints were defined to control beam elements’ valid-
ity following stress, serviceability, and geometrical requirements. The sufficiency of the
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columns for withstanding the combined effects of axial force and bending moments was
checked through some constraints. Results declared that BB-BC was efficient in han-
dling the tackled problems. A comparison of the results considering the cost and CO,
emission demonstrated that the best solution by CO, minimization might be slightly
more costly.

Gharehbaghi and Fadaee (2012) proposed an automated procedure to design optimi-
zation of RC structures by optimizing a three-bay eighteen-story RC frame using par-
ticle swarm optimization (PSO) algorithm. The construction cost was considered the
objective function, and constraints were conformed to the ACI318-08 code and standard
2800-code recommendations as primary allowable section conditions, capacity criteria,
and seismic. The results showed that a design candidate could be achieved associated
with the minimum construction cost that conforms to the standard code provisions by
application of an automated design process. Khatibinia et al. (2013) applied a discrete
gravitational search algorithm (DGSA) and a metamodelling framework for reliabil-
ity-based design optimization (RBDO) of reinforced concrete frames. In this study, a
metamodel based on a wavelet weighted least squares support vector machine (WWLS-
SVM) and the standard GSA were considered to reduce the computational effort. Fur-
thermore, the kernel function of WLS-SVM is replaced with a cosine Gaussian Morlet
wavelet function to improve the performance generality of WLS-SVM. Their results
showed that the metamodel’s prediction performance is influenced by selecting its ker-
nel function and WWLS-SVM parameters. The numerical results of training and testing
the metamodel also showed that the metamodel’s performance generality is higher than
that of WLS-SVM. Gharehbaghi and Khatibinia (2015) tackled RC structures’ optimal
seismic design by considering a hybrid particle swarm optimization algorithm and an
intelligent regression model, subjected to several time-history earthquake loads. The
proposed IRM consists of three components: SA, K-means clustering approach, and
WWLS-SVM.

In 2016, Yazdani et al. (2017) used a modified discrete gravitational search algorithm
(MDGSA) for the sum of construction and repair costs minimization of RC frames. The
utilized algorithm’s efficiency was assessed against the original GSA through a nine-story
RC building’s performance-based design subject to both probabilistic and deterministic
constraints. The metamodel was used to predict the structure’s seismic response based on
the weighted least squares support vector machine. Annual probabilities of nonperform-
ance were also selected as the probabilistic constraints. In addition, in the dynamic finite
element analysis of the soil-structure system, nonlinear soil-structure interaction effects
were taken into account. Gharehbaghi et al. (2016) also applied Particle Swarm Optimi-
zation (PSO) algorithm to minimize the construction cost of three low- to high-rise RC
frame structures under earthquake loads with and without considering strong column-weak
beam (SCWB) constraint. In this study, an intelligent pre-processing method was consid-
ered using a Tree Classification Method (TCM) and a nonlinear optimization technique in
which the TCM automatically creates sections database and assigns sections to structural
members.

Gharehbaghi (2018) minimized the construction cost of reinforced concrete frame struc-
tures by applying a PSO algorithm binary model. Due to earthquake excitations, a uniform
damage distribution was considered over the structure’s height in this study. The allowable
degree of damage was defined based on the concept of the global collapse mechanism.
They compared uniform damage-based optimum seismic design and the strength-based
optimum seismic design. The results showed that the uniform damage-based method offers
a design that will suffer less damage under severe earthquakes.
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4.3 Dam optimization

Dams are among the most strategic structures for every country due to their economic
and political role. Hence, any issue in their performance will end up catstrophic disas-
ters due to the level of money and life loss. On the other hand, bulk materials of these
monsters make the final cost considerable. Therefore, any effort in decreasing the final
cost while preserving the serviceability and safety at high level would be highly worth-
while. Those facts have made the optimum design of dams a hot debate in civil engi-
neering. A detailed review of this sort of studies is presented in this section.

Seyedpoor et al. (2009) explored the efficiency of a combination of particle swarm
optimization, FIS, and neural network for shape optimization of under earthquake load-
ing. In this way, two strategies were adopted to improve the optimization process. First,
they tried to anticipate the structural response of fewer dam design variables applying
an adaptive neuro-fuzzy inference system. Second, the arch-dam response was pre-
dicted by an adequately trained wavelet radial basis function neural network employing.
Seyedpoor et al. (2011) also examined a hybrid version of particle swarm optimiza-
tion (PSO) with simultaneous perturbation stochastic approximation (SPSA) algorithm
for shape optimization of arch dams subjected to earthquake loading. They compared
the combination of SPSA-PSO those result of SPSA and PSO. Results showed that the
SPSA—PSO converges to a superior solution compared to the SPSA and PSO.

Khatibinia and Khosravi (2014) tackled shape optimization of concrete gravity dams,
including dam—water—foundation rock interaction subjected to earthquake loading. They
used a hybrid approach combination of improved gravitational search algorithm (IGSA)
with orthogonal crossover (OC). They optimized four benchmark problems using IGSA-
OC and compared the results with the standard gravitational search algorithm (GSA)
and the other modified GSA methods. Results showed that the proposed IGSA-OC
outperformed the standard GSA, IGSA, and PSO in weight minimization and conver-
gence. Khatibinia et al. (2016) also explored the shape optimization of concrete gravity
dams effects subjected to earthquake loading. The optimization was conducted using the
integration of an improved gravitational search algorithm (IGSA) and the orthogonal
crossover (OC). In this study, the dam body was treated as a two-dimensional struc-
ture involving the geometry and material nonlinearity effects using the Drucker—Prager
model, and weighted least squares support vector machine (WLS-SMV) regression
model was utilized to approximate the nonlinear dynamic analysis.

Kaveh and Mahdavi (2013) examined the efficiency of three optimization algorithms
(PSO, CSS, and CSS-PSO) for shape optimization of double-curvature arch dams under
earthquake loading. In this way, the geometrical model of the tackled arc dam was
formed by two different features: (1) the shape of the central vertical section and (2) the
horizontal section’s shape—both the curvature and the thickness change horizontal and
vertical directions. The minimum cost or concrete volume design of the dam was the
main objective of this study, considering the constraints defined by stress capacity and
geometrical conditions. Model evaluation was conducted through two case studies as (i)
concrete volume minimization of Morrow Point arch dam and (ii) cost minimization of
a hypothetical well-known benchmark arc dam. A parametric study was also established
based on changing the depth of water and earthquake intensity.

Mahani et al. (2015) explored the double arch concrete dams optimization under
earthquake loading. They integrated ant colony optimization (ACOR) and parti-
cle swarm optimization (PSO) in the optimization process. In this way, a preliminary
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optimization is accomplished using ACOR then PSO was applied using the optimal ini-
tial swarm of the ACOR. The numerical results showed that ACOR-PSO converges to
better solutions and provides a faster convergence rate compared to the application of
ACOR and PSO individually.

Mirzaei et al. (2015) tackled the shape optimization of homogeneous earth dams using
particle swarm optimization (PSO) incorporated to weighted least squares support vector
machine (WLS-SVM). The objective function was minimizing the seepage through the
dam body and a homogeneous earth dam’s weight. The design variables were considered
the upstream and downstream slopes of the earth dam, the length of oblique and horizontal
drains, and the drains’ angle. The results showed that the seepage through the dam body
as an objective function is more important than the earth dam’s weight. Chiti et al. (2016)
also examined the shape optimization of concrete gravity dams subjected to earthquake
load using a reliability-based design optimization (RBDO). In this way, subset simulation
was integrated with a hybrid optimization method to solve the RBDO approach of con-
crete gravity dam. In this study, the concrete gravity dam was treated as a two—dimen-
sional structure involving the material nonlinearity effects and dam-reservoir—foundation
interaction.

4.4 Miscellaneous

In light of an optimization algorithm’s robustness to solve difficult problems, a wide range
of efforts have been conducted to find their civil engineering applications. In the following,
the efficiency of those algorithms to deal with structural engineering problems is examined
and discussed in detail. The initial efforts in handling civil engineering problems using
heuristic approaches can be found in different studies accordingly. Changwen (1989) and
Simdes (2001) utilized the same approaches based on fuzzy optimization following two
phases to handle structural engineering problems. Changwen (1989) applied this method
to a three-bar truss and corrugated bulkhead. Simdes (2001) considered solving a prismatic
beam, portal frame, and reinforced concrete slab. Jenkins (1991) applied a GA to minimize
the total mass of different structures. In this study, the optimum design of a trussed-beam
roof, 2D truss structures, and thin-walled cross-section.

Grierson and Pak (1993) employed a GA for size, shape, and topology optimization of
steel frameworks. Riche and Haftka (1993) tackled the optimization of laminate stacking
sequence for buckling load maximization using a GA. Xie and Steven (1994) proposed
an evolutionary approach to find optimal shape and topology of structures (i.e., L-shape
plate and short beam) based on the natural frequency maximization or minimization. Liu
et al. (n.d.) utilized a GA to optimize composite wing structures. To this end, a two-level
optimization approach was proposed with the following features: (1) wing-level optimiza-
tion dealing with weight minimization of the wing, and (2) panel-level optimization deal-
ing with buckling load maximization based on a given amount of piles in each direction.
Botello et al. (1999) employed GA, SA, and a combined approach based on GA and SA
algorithms (GSSA) for optimum design of some structural benchmark problems (i.e., pla-
nar bar structure, 10-bar truss structure, pedestrian bridge structure, electric tower, and a
tridimensional structure with 2440 elements).

In 2000, Liu et al. (2000) developed a two-level structural optimization procedure
for designing a composite wing. To this end, several constraints were applied based on
strength and buckling constraints. The optimization procedure was conducted based on two
main phases, including wing-level design and panel-level design. In the prior phase, the
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main objective was the minimization of the total weight of the structure as a function of
thicknesses of upper and lower skin panels. In the latter phase, the main effort was find-
ing the optimal stacking sequence for a given amount of piles that maximizes the buckling
load factor. The GA was responsible for automating the design procedure. The proposed
model was validated through six-variable, eighteen-variable, and fifty-four-variable design
problems.

In 2002, Hansel et al. (2002) developed two different topology optimization approaches
to find the minimum weight of laminate structures. Those two approached were based on
a heuristic optimization algorithm and a GA-based topology optimization. The heuristic
approach considered numbers of laminate elements composed of four single layer elements
and equal thicknesses. Numbers of strength constraints were applied to the design proce-
dure to guarantee enough load-carrying capacity. In the GA-based approach, the material
distribution and the local reinforcement directions were adapted to reach the optimum
weight of structures. Both approaches were examined through a cantilever plate and an
L-shaped cantilever.

In 2004, Burczynski et al. (2004) studied shape and topology optimization as well as
defect identification using distributed evolutionary algorithms. In this way, the design vari-
ables were defined as shape, topology, and material parameters. The proposed evolution-
ary scheme was based on the coupling finite element method and the boundary element
method to find the optimal design. Four different case studies were presented to examine
the efficiency of the proposed model as follows: (1) identification of hole in an elastoplastic
3D structure, (2) evolutionary shape design of a thermomechanical structure, (3) identi-
fication of voids for a thermomechanical problem, and (4) dynamically loaded plate. In
2005, Wang and Tai (2005) selected a GA for topology optimization of structures using
a bit-array representation method. In this study, the main effort was addressing the design
connectivity issue by defining an equality constraint. The optimization process was a sin-
gle objective function defined in two different ways as follows: (1) minimizing compliance
with a constraint on the volume fraction, and (2) minimizing the weight with a constraint
on the maximum displacement. Several case studies were explored using the proposed
methodologies to examine their efficiencies in terms of finding the topologies with higher
structural performance, less unusable material, and fewer separate objects in the design
domain.

In 2006, Bochenek and Forys$ (2006) developed an improved PSO algorithm for struc-
tural optimization considering post-buckling behavior. Those modifications accounted for
both the velocity updating and constraint handling. In this way, an additional term was
embedded into the formula to represent the distance between the particle position and the
position of the best particle among its neighbors. For inequality constraint handling, a
method called “controlled reflection” was proposed where the violated particle will move
on the boundary or reflected back to the feasible solution area. The objective function was
defined as the sum of squared distances between the given equilibrium path and the recon-
structed one. This modified algorithm was applied to several structural simple rigid—elas-
tic, finite-degree-of-freedom models that catch the post-buckling behavior as follows: (1) a
model of the column, (2) a model of the frame, (3) Koiter frame with additional support.

In 2008, Liu et al. (2008) explored the application of a GA to structural topology opti-
mization. In this study, the optimality of the structures was defined as finding minimum
weight or strain energy. The applied constraints for minimum weight design and mini-
mum strain energy were based on prescribed maximum displacement and prescribed total
weight, respectively. Three case studies were resolved using the proposed methodology
with different settings for prescribed total weight and displacement. Kaveh et al. (2008)
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tackled structural topology optimization using an ACO algorithm. The main objective of
this study was to minimize the strain energy to reach the stiffest possible structure. Four
case studies were explored using the proposed methodology (i.e., simple beam, cantilever
beam, knee structure, and a 3D bridge). The obtained results by ACO-based procedure was
compared to a topology optimization research code called TOPS (Topology Optimization
of Structures).

In 2009, Barakat and Altoubat (2009) studied the cost optimization of conical reinforced
concrete water tanks. To that end, three evolutionary techniques were selected, including
a shuffled complex evolution (SCE), a SA, and a GA. In order to describe the problem
geometrically, a global cylindrical coordinate system was proposed. Thanks to axisymmet-
ric shape, the problem was described independently of the rotational angle. The analyz-
ing process was handled using the finite element method. Six design variables including
the thickness of the wall at the base and the top of the tank, the thickness of the base, the
depth of the tank, the angle made by the inner wall surface with the axis of symmetry, and
the concrete compressive strength were proposed for describing the model. The utilized
constraints for model qualification were applied to the design procedure was based on ACI
requirements. Two methods of design, namely, working-stress design and ultimate strength
design, were utilized. Numerical simulations were conducted to examine the effects of
different optimization methods, the design methods, reinforcing bar size, water tank wall
inclination, and material unit cost. The superiority of the SCE algorithm was indicated
through several numerical case studies.

Luh and Lin (2009) utilized an ACO algorithm for structural topology optimization. To
this end, a given continuum structure was discretized into several small square elements.
For each element, two choices of either presence or absence were available for the mate-
rial. The objective function was defined as the stiffness-to-weight ratio, where stiffness
was inverse of topology’s maximum displacement. The constraints were defined based on
allowable stress. A cantilever plate was designed using the proposed methodology under
four different loading cases where a downward point load was affected by different loca-
tions of the plate. In 2011, Luh et al. (2011) applied a binary PSO (BPSO) algorithm to
the same problem and using the same strategy as Luh and Lin (2009). The obtained results
were compared to the one recorded by ACO that indicated the better performance of BPSO
in dealing with ACO.

In 2012, Muc and Muc-Wierzgon (2012) utilized the ES algorithm for topology opti-
mization of multi-layered idealized thin cylindrical shell structures. It was assumed that
every given structure was constituted by stacking sequences of the individual layers in the
laminate with prescribed fiber orientation. Therefore, in addition to the mentioned features
for describing a trial structure’s model, a finite number of key points on a curve for char-
acterizing the external boundary of the structure were defined as the design variables. Two
numerical examples were discussed in this study to assess the efficiency of the proposed
method as follows: (1) stacking sequence optimization subjected to buckling and the First-
Ply-Failure constraints, and (2) optimization of laminate configuration and shell thickness.

Kaveh and Ahangaran (2012) explored the discrete optimization of composite floor sys-
tems using social harmony search (SHS) algorithms. The objective function was defined as
the total cost of the floor based on the costs of concrete, steel I beam, and shear studs. Six
design variables were proposed to describe the trial models, namely, concrete compres-
sive strength, concrete slab thickness, steel section shape, steel beam spacing, shear stud
diameter, and the number of shear studs for one beam. The analyzing procedure was based
on AISC-LRFD specifications and plastic design concepts. In this way, several constraints
were applied to the design procedure based on flexural strength constraints, deflection
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constraints, shear, and spacing constraints. Numerical simulations were conducted for one
span floor constructed with and without shores. The obtained results using the proposed
algorithm states its more efficiency compared with ACO, HS, IHS, and highly reliable har-
mony search (HRHS) algorithms.

In 2013, Kociecki and Adeli (2013) explored the weight minimization of free-form steel
space-frame roof structures using a two-phase GA. In this study, a discrete optimization
was conducted using hollow structural sections (HSS). The design procedure was based
on the AISC-LRFD code and ASCE-10 for dead, snow, wind, and seismic loading. The
main objective was weight minimization of the structure as a function of the wall thick-
ness of members in the roof, the wall thickness of members in the column group, width,
height, and thickness of the roof and column members. Two free-form steel space-frame
roof structures were resolved using the proposed methodology: (i) 224 ft (68.27 m) long,
75 ft (22.86 m) wide, and 27 ft (8.23 m) tall, with 278 structural members in the roof plus
ten inclined columns, and (ii) 203 ft (61.874 m) long, 67 ft (20.422 m) wide, and 55 ft
(16.764 m) tall, with 306 roof members and 34 inclined columns.

Kamyab Moghadas et al. (2013) employed a FA for minimum weight design of dou-
ble-layer scallop domes for static loading considering linear and non-linear behaviors.
Nonlinear optimization dealt with geometrical nonlinearity effects. The analysis of every
trial structure was conducted using ANSYS (2006) commercial software. AISC-ASD was
selected to define the constraints based on the displacement of the joints and the stress of
the members’ limitations. Three case studies were presented and solved using the proposed
procedure as three double-layer scallop domes with 6, 8, and 10 segments. The results indi-
cated that the final design of the nonlinear structure was significantly less than that of the
linear one. Nonlinear analysis reached to the final solution in a smaller number of genera-
tions than that linear. Increasing number of segments was resulted in decreasing the weight
of linear and nonlinear structures.

Finotto et al. (2013) optimized topology and size of cabled-truss structures using a
hybrid fuzzy-genetic system. The cross-sectional areas of the members and pre-stress lev-
els in the cables were considered as the design variables to deal with sizing optimization.
Topology optimization was concern about the distribution of the elements. The applied
constraints to the design procedure were related to allowable stress and displacement. A
nonlinear finite element approach was considered for structural analysis. 10-element and
15-element ground structures were resolved using the proposed methodology. The obtained
results were compared to the truss structures with the same topology and bar elements.
Cabled-trusses were found to be a significantly improved alternative for bar-trusses in
terms of minimal weights. Amini and Ghaderi (2013) developed a hybrid optimization
algorithm for optimal locating the structural dampers. Three different structures were tack-
led using the proposed methodology. The first case was a shear building with 16 stories
subjected to El-Centro ground acceleration. The main objective was finding the best con-
figuration of Magneto-Rheological (MR) dampers within six floors of a 16-story defined as
minimizing the maximum shear base over the period of ground acceleration. In the second
case, the optimal layout of eight viscous dampers was found for a two-dimensional truss
structure. The objective function was defined as the minimization of the maximum infinity-
norm of the displacement vector at the time t. A planar 3-span 10-story braced frame was
selected as the third case study. In this case, the objective function was defined as minimiz-
ing the maximum shear forces in the columns of the ground floor over the period of ground
acceleration.

In 2014, Sharafi et al. (2014) considered an ACO algorithm for topology and layout
optimization of reinforced concrete beams for dynamic responses. In this way, the final cost
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was determined based on the costs of concrete, longitudinal steel, shear steel, and form-
work. Flexure, shear, and displacement of a multi-span continuous beam constituted by
assembling numbers of uniform Euler—Bernoulli beam segments were evaluated based on
its dynamic response to a time-dependent external force. The proposed concept was applied
to a beam under two loading cases as (1) static uniformly distributed load (UDL), and (2) a
moving point load along the beam. Bertagnoli et al. (2014) studied reinforcements’ direc-
tions optimization in concrete shells using a GA. The finite element analysis was consid-
ered during the design procedure. In this way, a reinforced concrete shell was described by
a sandwich element with two external layers and one internal layer. The objective function
of this study was the minimization of steel reinforcement volume. The obtained results
proved the effectiveness of the proposed method in handling the tackled problem.

Sadollah et al. (2014) utilized an MBA algorithm for geometry optimization of a cylin-
drical fin heat sink. To that end, the minimization of three different responses of electro-
magnetic emitted radiations, thermal resistance, and mass of the heat sink was defined as
the main objectives. The design variables were the width of the heat sink, number of fins,
fin height, and fin diameter. In addition to handling every objective independently, an addi-
tional objective function was defined as an error function as a weighted combination of the
three aforementioned objectives. A benchmark problem was selected for numerical simula-
tions and compared to the previous efforts (i.e., GA, Taguchi-based gray relational analy-
sis, epsilon constraint method, Taguchi-based epsilon constraint method). The superiority
of the MBA was proved based on its more optimal results. A parameter sensitivity analysis
was also conducted to determine the effect of each variable on the objective values, while
all the other parameters were kept fixed.

Gholizadeh and Shahrezaei (2015) utilized the BA algorithm for optimal placement
of steel plate shear walls. Flexural and axial forces in the beams and columns as well as
tension in the web plate were calculated using the finite element method through ANSYS
software. The orthotropic membrane model proposed in AISC was used to distribute the
forces between the wall members. Two different frame structures were subject to size opti-
mization as a three-bay, five-story, and a three-bay, 10-story steel frame. Those structures
were subjected to a uniform distributed gravity load and earthquake concentrated loads.
The optimization procedure was conducted based on fixed shear walls layouts and com-
pared with an optimized configuration of the walls. The total weight of the structure was
minimized subject to strength and displacement constraints defined based upon AIS-LRFD
specifications. The proposed methodology for optimizing the layout of shear walls resulted
in a considerable decrease in final designs rather than a fixed layout. Furthermore, a com-
parison of the results with GA and PSO demonstrated the superiority of BA in handling the
tackled problem.

In 2016, Kaveh et al. (2016b) tackled the problem of large-span prestressed concrete
slabs optimization using a probabilistic PSO (PPSO) algorithm. A probabilistic approach
was incorporated into the velocity updating rules of the original PSO. The objective func-
tion was defined as the final cost as a result of the cost of concrete and tendon. Every trial
model was developed using the following design variables: the thickness of the slab, num-
ber of tendons in X-direction, number of tendons in Y-direction, the diameter of tendons in
the X-direction, the diameter of tendons in Y-direction, tendon eccentricity at one end of
the slab, tendon eccentricity at the other end of the slab, tendon eccentricity at the middle
of the slab, the allowable tensile stress of tendons. The effective constraints to reach a valid
design are defined based on Canadian standard association (CSA) requirements, includ-
ing stress in concrete, the stress in tendons, ultimate bending moment, minimum factored
resistance, punching shear, and maximum/minimum eccentricity. SAP2000 was utilized to
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handle the analyzing procedure. The efficiency of PPSO was examined by considering a
prestressed concrete slab and compared to the PSO and HS algorithms. Moreover, a sensi-
tivity analysis was conducted on two probability terms in the PPSO algorithm to find their
best configurations.

Kaveh et al. (2016a) tackled the cost optimization of post-tensioned concrete bridges
using an MCBO algorithm. The objective function was defined as the final cost minimiza-
tion of the bridge superstructure as a result of material and construction costs of concrete,
prestressing steel, reinforcement, and formwork. Seventeen following design variables were
defined to describe the model: concrete strength, girder depth, top slab thickness, bottom
slab thickness, web thickness, length of cantilever, end thickness of cantilever, initial thick-
ness of cantilever, length of haunch, width of haunch, number of strands per tendon, num-
ber of tendons in each web, number of anchorages in each row, lowest anchorage position,
prestressing force, top slab reinforcement ratio, and cantilever slab reinforcement ratio. The
applied constraints to the design procedure were determined in accordance with AASHTO
(2002) standard regulations as follows: (1) flexural working stress, (2) allowable stress in
prestressing steel, (3) ultimate flexural strength, (4) ductility, (5) ultimate shear strength,
(6) deflection, (7) slabs design, and (8) cantilever slab deflection. A typical prestressed box
girder bridge was resolved using the proposed methodology and compared with the results
of PSO and CBO. The effect of different parameters on the final cost variations was exam-
ined through a sensitivity analysis.

In 2017, Toklu et al. (2017) utilized an HS algorithm for analyzing cable structures
through energy minimization. In this way, a structural system was found to be in an equi-
librium state only if the total potential energy is minimum. Total potential energy was
defined as a function of nodal displacements in all three dimensions for every free node.
Six numerical cases were analyzed using the proposed methodology as follows: (1) Flat
cable net 1x 1, (2) Flat cable net 2x 1, (3) Flat cable net 2x2, (4) Hyperbolic paraboloid
net, (5) Spatial cable network, and (6) Dual cable. The proposed optimization algorithm
outperformed other previous methods. Pedro et al. (2017) developed a two-stage optimi-
zation approach for the optimum design of steel-concrete composite I-girder bridges. In
the first step, a simplified structural model developed by a designer was selected as the
starting point for global optimization. The utilized algorithm at this stage was BSA, FA,
GA, ICA, and SGA. The second step was devoted to refining the solution from the first
step through a local search using an SGA combined with a finite element method to reach
the global optimal solution. In this study the main objective was total cost of bridge as a
function of four groups of design variables: (1) Geometric values, (2) Material character-
istics, (3) Reinforcement, and (4) The number of the beams used in the bridge. Structural
constraints were defined based on the AASHTOO (2002) standard recommendations for
reinforcement, shear stress, and maximum deflection in the slab, allowable stress and maxi-
mum deflection in the girders, and shear connector, support stiffener, transversal stiffener,
longitudinal stiffener, and diaphragm of accessories. Based on the results, it was stated that
the structural cost was decreased by 7.43% in the first step and up to 9.17% at the end of
the optimization procedure.

Talaei et al. (2017) utilized a hybrid PSO and HS algorithm, so-called PSOHS, for opti-
mum cost design of prestressed concrete slabs. The objective function was defined as the
final cost of structure as a result of concrete and tendons costs. The design variables for
describing a trial model were the slab’s thickness, the number of tendons in the x-direction,
the number of tendons in the y-direction, the diameter of tendons in the x-direction, the
diameter of tendons in the y-direction, the tendon eccentricity at one end of the slab, the
tendon eccentricity at the other end of the slab, the tendon eccentricity at the middle of the
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slab, and the allowable tensile stress of tendons. Canadian standard association require-
ments were considered to form the following applied constraints to the design procedure:
(1) stress in concrete, (2) stress in concrete, (3) stress in tendons, (4) ultimate bending
moment, (5) minimum factored resistance, (6) punching shear, and (7) maximum/mini-
mum eccentricity. The SAP2000 software was utilized to analyze the structures. The pro-
posed modified algorithm was compared to the original PSO by solving a large-scale slab.
The results indicated that the PSOHS was better than the original PSO due to slightly bet-
ter solutions and being less sensitive to the hyperparameters setting.

Kaveh and Ghazaan (2018) tackled the weight optimization of large-scale dome struc-
tures subject to natural frequency constraints using a hybrid meta-heuristic algorithm. This
hybrid approach, named MDVC-UVPS method, combined the vibrating particles system
(VPS), multi-design variable configuration (Multi-DVC) cascade optimization, and an
upper bound strategy (UBS). Four numerical case studies were selected to evaluate the
effectiveness of the proposed algorithm as follows: 120-bar dome truss, 600-bar single
layer dome truss, 1180-bar dome truss, and 1410-bar double-layer dome truss. The final
results were compared with DPSO, ECBO, ECBO with cascade optimization, and VPS.
The results revealed that MDVC-UVPS outperformed other mentioned algorithms in han-
dling this tackled problem.

In 2018, Kaveh and Mahjoubi (2018) employed a lion pride optimization algorithm
(LPOA) to handle the optimum weight design of double-layer barrel vaults. The design
procedure was formed based on AISC-ASD regulations for stress, slenderness, and dis-
placement. The efficiency of the LPOA was examined through a comparison with PSO,
CS, and ABC algorithms in handling three large-scale benchmark optimization problems.
Moreover, the final results were compared with previous findings using a wide variety of
methods, such as GA, ACO, HS, BB-BC, MBB-BC, MCSS, IMCSS, ADS, CBO, and
ECBO algorithms as well as engineering designs. Seo et al. (2018) utilized an ACO algo-
rithm to find the optimal number and locations of seismically retrofitted RC columns for a
school building. Nonlinear time history analysis coupled with finite element method was
conducted using LS-DYNA commercial software for seismic structural analysis. Glass
fiber-reinforced polymer (GFRP) was utilized for retrofitting the columns. The objective
function was defined in a way that minimized the total number of retrofitted columns as
a function of retrofitted columns distribution. The design procedure was governed by sev-
eral constraints for allowable strains of retrofitted and non-retrofitted column members
and inter-story displacement. Model evaluation was triggered for a three-story RC struc-
ture consisting of 62 columns on each floor, which was designed originally for non-seismic
loading. The optimization procedure proposed retrofitting 60.2% of the columns would
help to endure peak ground acceleration of 0.2 g.

Kaveh and Rezaei (2018) considered the problem of shape and size optimization of
domes using the ECBO algorithm. In this way, geometrically nonlinear analysis of large-
scale double-layer domes and suspend-domes with rigid and pinned connections were con-
ducted during the volume minimization procedure. The design variables for describing the
tackled problems were the length of the strut, the cable initial strain, the cross-sectional
areas of the cables and steel elements, and the height of domes. Stress, the slenderness
of the elements, and nodal displacements were the applied constraint to the optimization
procedure based on AISC-LRFD. Two numerical case studies were explored as follows:
(1) Lamella suspend-dome with pin-jointed and rigid-jointed connections, and (2) double-
layer Lamella domes.

In 2019, Kaveh and Ghafari (2019) applied nine optimization algorithms to size and
shape optimization of steel pitched roof frames with tapered fabricated members. In this
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study, the total weight of the structure was related to seven design variables that deter-
mined flange width and thickness as well as web height and thickness at three sections of
the frame. Beams and columns were tapered I-shaped members fabricated by steel plates.
A finite element method that considered P-A effects was selected to handle the analyzing
procedure using SAP2000 software. Nine following metaheuristic algorithms were exam-
ined through two numerical case studies, including CBO, GWO, HS, ABC, ECBO, IWO,
PSO, SAO, and WOA. Seven load combinations were applied to the structures resulted
from dead, live, earthquake, wind, snow, and roof live loads. Strength design criteria and
allowable vertical and horizontal displacements were assigned to the constraints, according
to AISC360-10 (2010) and AISC341-10 (2010). A sensitivity analysis was also conducted
over the variation of different roof angles, height, and tapered length ratios.

Kaveh and Javadi (2019) explored the efficiency of chaos-based FA for minimum
weight design of large-scale braced steel domes subject to natural frequency constraints.
Two chaotic maps (Logistic and Gaussian maps) were substituted for attractiveness and
light absorption coefficients to improve the FA’s performance by decreasing its random-
ness. Three numerical simulations were solved using those proposed algorithms as follows:
(1) fifty-two-bar dome truss, (ii) 600-bar single-layer dome, and (iii) 1410-bar double layer
dome truss. Those two chaotic FAs (CLFA and CGFA) compared to other previous optimi-
zation algorithms (i.e., PSO, DPSO, FA, CPA, ReDE, HRPSO, AHEFA, ANDE, ECBO-
Cascade, BB-BC, HS, and CPA) to examine their effectiveness.

5 Conclusion

This study presents a comprehensive survey on the application of metaheuristic algorithms
to optimization problems in civil and structural engineering Reliability, and probabilistic
based optimization research are not considered in this review. Moreover, only the jour-
nal papers published in the Scopus and ISI indexed journals have been included in this
work. The selected structural optimization papers are categorized into three main subfields
as truss optimization, frame optimization, and miscellaneous applications. In all the prob-
lems, optimization algorithms have been utilized to find the optimal design and minimize
some measure of cost (such as the amount of material, operational cost, labor cost, or envi-
ronmental impact). Based on the reviewed papers, truss design typically is focused on size,
shape, or topology optimization, either considered independently or simultaneously. Frame
optimization is focused on determining the optimal size of each element in the structure.
There are a few studies that focused on the topology optimization of braces in frames. The
miscellaneous optimization category includes the optimum design of steel, concrete, and
composite structures. In all the structural optimization problems, several constraints were
applied to the design procedure to provide adequate strength, stability, and serviceability.
As a whole, the number of publications on civil engineering optimization has increased
over the last few decades, with the majority of the research focused on problems in struc-
tural and geotechnical engineering. In most cases, the design and analysis of these systems
must satisfy guidelines and specifications defined by local building codes. It can be seen
that in the initial studies, much simpler cases with a lot of simplifications were studied.
In early studies, only limited or simplified conditions from building codes were incorpo-
rated into design procedures. However, in the course of time, as more robust state-of-art
algorithms were developed, studies included more complex cases with more realistic,
code-based constraints. Trends in current research have focused on updating benchmark
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problems, applying new algorithms, and improving computational efficiencies through dif-
ferent strategies such as applying various constraint handling approaches and strengthening
the local and global searches by hybridization.

In general, most studies used basic statistical measures, including minimum, maximum,
mean, median, and standard deviation when evaluating the performance of algorithms.
In some cases, convergence rate history and diversity metric were utilized as additional
features to measure the efficiency of some algorithms. All of these indicators are used to
measure the robustness and computational efficiency of optimization algorithms.

One characteristic of real-world problems from the engineering perspective is that most
projects have several different conflicting goals. It is vitally important to reach a balance
and trade-off between different objectives to develop the best possible design. These prob-
lems could be addressed through bi- and multi-objective optimization.

Based on the work presented in this review, the following are research areas that may be
addressed in future studies to close existing gaps:

(1) Developing benchmark problems that incorporating realistic conditions and limitations
from building codes and consider any concerns of practising engineers

(2) Automating the design of large-scale structures that currently available in the literature

(3) Find the best possible formulation of an engineering problem to be optimized more
effectively. One example could be using a semi-independent variable, introduced in
Gandomi et al. (2019).

(4) Embedding engineering knowledge into population-based algorithms in order to narrow
down the search space and boosting the optimization process.

(5) Informing constraint handling methods with engineering and domain knowledge to
handle mechanical and geometrical constraints more efficiently.

(6) Since finding a feasible solution could be challenging in engineering practice, adopting
engineering problems with constraint handling to more efficiently searching the feasible
solution would be very beneficial (Gandomi and Deb 2020)

(7) Application of hybridization methods that are very efficient in boosting the performance
of optimization algorithms for certain categories of problems

(8) Development of more sophisticated metrics for optimization algorithm performance

(9) Continuing work on bi- and multi-objective optimization problems that provide more
real-world designs.
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