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Abstract
Classification, which means discrimination between examples belonging to different 
classes, is a fundamental aspect of most scientific and engineering activities. Machine 
Learning (ML) tools have proved to be very performing in this task, in the sense that they 
can achieve very high success rates. However, both “realism” and interpretability of their 
models are low, leading to modest increases of knowledge and limited applicability, par-
ticularly in applications related to nonlinear and complex systems. In this paper, a meth-
odology is described, which, by applying ML tools directly to the data, allows formulat-
ing new scientific models that describe the actual “physics” determining the boundary 
between the classes. The proposed technique consists of a stack of different ML tools, each 
one applied to a specific subtask of the scientific analysis; all together they form a sys-
tem, which combines all the major strands of machine learning, from rule based classi-
fiers and Bayesian statistics to genetic programming and symbolic manipulation. To take 
into account the error bars of the measurements generating the data, an essential aspect 
of scientific inference, the novel concept of the Geodesic Distance on Gaussian mani-
folds is adopted. The properties of the methodology have been investigated with a series 
of systematic numerical tests for different types of classification problems. The potential 
of the approach to handle real data has been tested with various experimental databases, 
built using measurements collected in the investigations of complex systems. The obtained 
results indicate that the proposed method permits to find physically meaningful mathemati-
cal equations, which reflect the actual phenomena under study. The developed techniques 
therefore constitute a very useful information processing system to bridge the gap between 
data, machine learning models and scientific theories.
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1 � Knowledge Discovery in the natural sciences with particular 
attention to complex systems

Nowadays many fields of science investigate problems of extremely high complexity. 
Therefore the traditional approach of modelling phenomena starting from first principles 
is increasingly impractical, when not utterly impossible. Magnetic confinement thermonu-
clear fusion, to choose an example form Big Physics, is a case in point. The plasmas to be 
controlled and studied are so complex that a unified treatment is lacking; scientists have to 
make recourse to models at various physical scales, ranging from particle to fluid, kinetic 
etc., which have limited generality and do not reproduce satisfactorily many aspects of 
the dynamics (Wesson 2004). These traditional difficulties are compounded by the recent 
explosion in the amount of data available. In the last years new sensors and cheap but pow-
erful computing have become commonly deployed in most braches of the experimental 
sciences, resulting in an authentic data deluge. At CERN, the ATLAS detector has shown 
the capability of producing Petabytes of data per year. The peak data transmission of the 
Hubble space telescope was about Gigabytes of data per day. Again in the field of thermo-
nuclear fusion, the data warehouse of the Joint European Torus, the largest Tokamak in 
operation in the world, is approaching 0.5 Petabytes. Therefore, the inadequacies of theo-
retical models and the vast amounts of information available have motivated the develop-
ment of data driven tools, to complement hypothesis driven theories. In this perspective, 
various machine learning (ML) methods have been refined and to a certain extent applied 
to the natural sciences. They range from Neural Networks and Support Vector Machines to 
Fuzzy Logic classifiers; a series of examples from the field of thermonuclear fusion can be 
found in Murari (2008), Murari (2009), Rattá (2010) Vega (2014). Manifold learning tools, 
such as Self Organising Maps and Generative Topographic Maps, have provided very good 
results also in terms of describing the space, in which the relevant physics takes place 
(Cannas 2013; Murari 2013; Vega 2009; de Vries 2014).

On the other hand, even if the traditional data driven tools are providing quite impres-
sive performance in terms of accuracy, they are scientifically unsatisfactory in many 
respects. Their main problems in the perspective of applications to the physics of complex 
systems are: (a) poor “physics fidelity” i.e. excessive discrepancy between the mathemati-
cal form of the models and the physical reality of the phenomena investigated (b) insuf-
ficient estimates of the uncertainties (c) difficulties to interpret the results in terms of tra-
ditional mathematical formulations (d) consequent impossibility to compare the obtained 
results with mathematical theories based on first principles and (e) lack of extrapolability 
of the results.

In order to overcome these limitations, a new methodology has been developed to profit 
from the knowledge acquired by the machine learning tools, but presenting it in a more 
traditional format, in terms of manageable formulas, which better reflect the reality of 
the phenomena under study. The techniques, developed in the framework of the activities 
presented in this paper, address the basic goal of classification. This is a very important 
task in many scientific applications, both “per se” and as a preliminary step to subsequent 
investigations.

The goal of classification consists of assigning objects to the most appropriate classes. 
From pattern recognition to clustering, classification has become an integral part of 
research in the science of complex systems. Indeed important subjects such as phase transi-
tions, limits of operational space and stability require proper identification of the bounda-
ries in the space of the features. The objective of the analysis presented in this paper is 
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related to deriving mathematical formulas for the boundaries between classes, properly 
describing the actual physics or chemistry behind the problem. The main idea informing 
this work resides therefore in combining the learning capabilities of the machine learning 
tools with the “fidelity” and interpretability of more traditional mathematical formulations, 
for a more realistic description of the boundaries. It is worth mentioning that the developed 
tools are conceived for cross sectional data satisfying the i.i.d. assumption, meaning that 
the data are independently sampled from an identical distribution function. More advanced 
versions for time series and non-stationary situations are being investigated but are beyond 
the scope of the present work.

The proposed methodology covers the entire knowledge discovery process, from feature 
extraction to the final assessment of the quality of the derived models, addressing each 
fundamental step with a different family of tools. The main motivation behind this choice 
is that, given the broad and challenging nature of the goal, a stack of individual tools, each 
one well-tuned to a specific task, is more effective than a single technique. A flow chart 
of the main steps of the proposed technique, for the case of SVM as main ML tool, is pro-
vided in Fig. 1.

The feature extraction phase is performed with a specific refinement of Classification 
and Regression Trees (CART), the so called noise–based ensembles. The CART approach 
is particularly useful in this subtask, due to the limited computational burden and the high 

Fig. 1   The five main steps of 
the proposed methodology to 
identify the best models with a 
meaningful mathematical form 
directly from the data
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level of interpretability of the results. Indeed CART rules are easy to interpret and can 
provide interesting insights about the relevance of candidate features. It is worth pointing 
out that the effects of the noise and the errors in the measurements are taken into account 
starting already at this stage, as illustrated in Sect. 2.

The actual classification step is then based on Support Vector Machines (SVM), 
whose mathematical background is summarised in the Sect.  3, including a probabilistic 
version very important to quantify the confidence in the results. The choice of SVM is 
mainly due to their structural stability, their capability to maximize the safety margins in 
the classification. Given the high accuracy of SVM, the equation of their hypersurface in 
the original space can be considered an excellent approximation of the boundary between 
the classes and for this reason they have found many applications in physics (Bahari et al. 
2014; Baseer 2018; Beaumont et  al. 2011; Clark 2012; Sahin et  al. 2016). On the other 
hand, their mathematical representation of the boundary is extremely non intuitive (see 
Sect. 3). Indeed referring to systems of the complexity investigated in modern day complex 
science, the equations of the hypersurface can easily comprise hundreds of support vec-
tors and therefore the equation of the hypersurface contains an equal number of addends. 
More importantly, the SVM formulation of the boundary equation has typically no rela-
tion with the actual physics of the phenomena under study. It has indeed been shown, with 
many numerical examples (see Sect. 7 and Appendix 1), that the models provided by SVM 
bear absolutely no resemblance to the ones generating the data. A simple methodology 
has already been proposed and applied to complex problems, to recover the equation of 
the boundary in the case of linear kernels (Gaudio 2014). In this paper, a new technique is 
developed, which is fully general. Indeed the proposed method can be applied to SVM with 
any type of kernel and even to probabilistic versions; therefore, it has a much wider range 
of applications than the more traditional techniques. This aspect is very important in the 
study of complex, nonlinear systems out of equilibrium, which cannot be simply modelled 
by linear tools or logistic regression.

Symbolic Regression (SR) via Genetic Programming (GP), described in Sect. 4, is the 
methodology developed to express the output of SVM in an interpretable form appropri-
ate for scientific investigations. Basically, SR via GP is deployed to fit the points on the 
hypersurface identified, by the SVM as the boundary between the classes. This application 
of symbolic regression is therefore a development of a technique already very effective for 
regression (Murari 2012, 2017).

The need for a careful analysis of the uncertainties in the analysis of complex systems 
has recently emerged as a major topic. In many cases, fundamental sources of uncertain-
ties are the experimental errors. In this perspective, to take into account the error bars of 
the measurements in a statistically sound way, the formalism of the Geodesic Distance on 
Gaussian manifolds (GD) has been adopted. Basically this has been inserted in the sym-
bolic regression step: the fitness function of SR via GP is calculated using the GD. The 
implementation of the Geodesic Distance on Gaussian manifolds is described in Sect. 5.

The combination of the various tools, to derive a physically meaningful equation of the 
boundary between two classes, is the subject of Sect.  6. In the following Sect.  7 and in 
Appendix 1, a systematic series of numerical tests are reported, proving the great potential 
of the proposed methodology. The results of deploying the developed tools for the analysis 
of experimental databases, addressing completely different phenomena in various scientific 
disciplines, are reported in Sect. 8. Discussions and lines of future developments are dis-
cussed in the last Sect. 9.

Before embarking on the technical description of the developed methodology, a few 
clarification remarks are appropriate. The approach proposed in this paper is aimed at 



259A systemic approach to classification for knowledge discovery…

1 3

reconciling the prediction and knowledge discovery capability of machine learning tools 
with the need to formulate the results in such a way that they can be related to scientific 
theories and models. It is therefore worth emphasizing that the objective of the present 
work is not simply improving interpretability of machine learning tools, on which signifi-
cant work has already been done (Vapnik 2013; Garcia 2009; Vellido 2012; Molnar 2017). 
The most important aspect indeed is “physics fidelity” i.e. the formulation of the results in 
mathematical terms, which can be compared with basic theories and models of the various 
scientific disciplines. The other essential aspect of the proposed methodology, for inves-
tigations in the field of complex science, is the principled treatment of the measurement 
errors, to obtain reliable confidence intervals in the results. This has been achieved with 
the development of the concepts of Information Technology and in particular the Geodesic 
Distance on probabilistic manifolds, applied in this work to the task of classification. The 
other important point to notice is that, as can be seen in Fig. 1, the proposed methodology 
involves practically all the major fields of machine learning, from rule-based classifiers 
to Bayesian statistics, genetic programming and symbolic manipulation. Each technique 
is deployed to solve a specific aspect of the data driven theory process, to which it is par-
ticularly suited. The motivation behind the choice of the specific tools, for the applications 
described in the rest of the paper, will be provided in the sections describing the tech-
niques themselves. On the other hand, it is worth mentioning that the heart of the method is 
symbolic regression, to formulate the boundary equations in a physically meaningful way. 
Therefore, other choices of the intermediate steps are perfectly legitimate and would not 
affect the final results, provided of course their performance are competitive. In any case, 
this stacked, syncretic approach to knowledge discovery seems to be particularly promising 
for applications in the natural sciences, in which it is already finding increasing acceptance 
(see Sect. 8).

2 � Noise‑based ensembles of CART classifiers for feature selection

Among the rule-based machine learning tools, the so called Classification and Regres-
sion Trees (CART) remain among the most developed and widespread. They have been 
widely implemented for constructing prediction models from data (Breiman 1984; Lunga-
roni 2018). Such models are derived directly from the available databases by recursively 
partitioning the feature space and fitting a simple prediction rule at each partition. The 
final partitioning, once properly optimised, consists therefore of a series of rules that can 
be represented graphically by a decision tree. The performance of classification trees are 
typically quantified in terms of misclassification costs. The algorithms of this family search 
the whole database exhaustively, to determine, for each variable, which value minimizes 
the total impurity of its child nodes. To quantify the purity of a node, the version of CART 
implemented in this paper uses a generalization of the binomial variance called the Gini 
Impurity index.

Decision trees are very practical and easy to interpret but present a significant draw-
back: their sensitivity to the specific data used for their training. Indeed, a small change in 
the inputs (for example even using a subset of the training data) can imply a major varia-
tion in the resulting decision tree and in turn quite different predictions. To overcome this 
issue and to increase the success rate of the results, it is typically very advantageous to 
adopt the approach of ensemble rule-based classifiers, based on the concept of weak learn-
ers. A ’weak’ learner (either classifier or predictor) is just any machine learning tool, which 
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generates models that perform relatively poorly but are computationally simple (Breiman 
1984). The relatively limited computational resources required allow training various ver-
sions of such weak learners, which can then be pooled together (via Bagging, Random 
Forests etc.) to create a "strong" ensemble classifier.

One of the main issues of the measurements in the experimental sciences is often the 
high levels of noise. This noise is very difficult to reduce; the sources of noise are many 
and independent. Even if these uncertainties are a potential issue, they suggest a comple-
mentary approach to the method of building ensembles of weak classifiers. The idea con-
sists again of collecting ensembles but not with subsets of the original data, as in bagging 
and random forests; on the contrary the various training sets are obtained by the origi-
nal one summing random noise to the measurements. The random noise is generated from 
Gaussian distributions with variance equal to the error bars of the measurements, estimated 
on the basis of the experimental equipment characteristics. To each realization of the noise 
corresponds a different weak learner. The number of trees can be increased until the accu-
racy begins to saturate instead of improving. This approach, called Noise-based Ensemble, 
can be implemented as a step preliminary to building ensembles of CART trees and allow 
taking into account the experimental errors from the stage of feature selection.

In the application described in this paper, the Noise-based Ensembles of CART trees are 
used for feature selection. They are trained to classify, using an extensive set of potential 
features. So the input space is the set of features and the output the classes. Once CART 
trees have been trained, a simple inspection of the trees and the rules allow identifying the 
most relevant features, to be used in the following steps of the methodology. Another alter-
native consists simply of progressively pruning the trees until the performance becomes 
unacceptable and keep only the remaining features. An example of the potential of this 
approach in real life applications, characterised by sparse data and high noise levels, is 
provided in Sect. 8, while additional background on the technique can be found in (Murari 
2019, 2020).

3 � Traditional and probabilistic SVM

Traditional SVM are very powerful classifiers, whose principles of operation can be sum-
marised in intuitive terms as follows. In the case of binary classification, such as the prac-
tical examples discussed in this paper, SVM map the input examples of the two classes 
into a high-dimensional space, through a non-linear mapping implemented with the help of 
suitable kernels (Vapnik 2000). The risk of misclassification is then minimised by identify-
ing an optimal separating hyperplane in this high dimensional feature space. Such minimi-
zation of the error risk is achieved by maximizing the margins between the hyperplane and 
the closest points of each class. These examples closest to the separating hyperplane are 
called Support Vectors (SV). The minimization of the error risk, obtained with the maxi-
mization of the margins, is performed in the projected space by minimizing a quadratic 
functional with appropriate constraints.

SVM therefore basically consist of suitable kernels, which map the inputs into higher 
dimensional spaces, where the classification becomes a linearly separable problem and 
can be solved with traditional quadratic programming methods based on the Lagrange 
multipliers.



261A systemic approach to classification for knowledge discovery…

1 3

In mathematical terms, given a training set of l samples (�1, y1),… , (�
�
, y

�
) , xi ∈ ℜn , 

for a binary classification problem (i.e. yi ∈ {+1,−1} ), SVM estimates the following deci-
sion function:

where H
(
�i, �

)
 is a kernel function and the parameters �i, i = 1, ...,� are the solutions of a 

quadratic optimization with linear constraints (Vapnik 2000).
At this point a clarification of the terminology is probably appropriate. SVM find 

a separating hyperplane in the transformed space. On the other hand, the hyperplane is 
expressed in terms of Support Vectors in the original space, in which the boundary is a 
hypersurface. Since typically in the study of complex systems, researchers are interested in 
equations in the original space, and not in the transformed one, the boundary between the 
two classes will be indicated with the term hypersurface and not hyperplane in the follow-
ing. Indeed, another advantage of the SVM is that their results are expressed in terms of the 
inputs in the original space.

The second and third real life examples described in Sect. 8 adopt this approach of the 
traditional SVM, with a radial basis function kernel and a regularization strength λ equal 
to 1/n, where n is the number of observations. On the other hand, the availability of classi-
fiers, which can output a probability, would be extremely useful in most applications typi-
cal of complex science. Unfortunately, traditional SVM, as just described, provide only a 
distance to a hyperplane, in the form reported in Eq. (1). Their basic version has therefore 
to be extended to associate a probability to the outputs of their classification (Platt 2000; 
Steinwart 2008). One possible solution consists of reformulating the SVM output in terms 
of a probability with the Bayes rule, according to the formula:

In Eq. (2) y indicates the label of one of the classes. P(y = 1) is the prior probability and 
p(x|y = 1) is the likelihood. Therefore, to convert the outputs of traditional SVM to prob-
abilities, two quantities have to be determined: the prior probability and the likelihood. In 
many applications, the natural choice of the prior probability is the percentage of examples 
seen, up to a certain point in time in the experiments or observations, belonging to the class 
to which the SVM labels the new example.

The most challenging aspect of relation (2) resides in the evaluation of the likelihood. 
If a solid and reliable estimate of the likelihood is not viable for any reason, theoretical 
investigations and practical considerations have shown that one advantageous alternative 
consists of remapping the distance to the hyperplane to a probability by using a sigmoid 
function (Platt 2000; Steinwart 2008):

In Eq. (3) A and B are two fitting parameters, whereas d is the distance of the exam-
ples to the SVM hyperplane. Equation (3) therefore allows converting directly the distance 
to the hyperplane, provided by traditional SVM, into a probability. This conversion takes 
place after the training; the distances of the examples in the training set are used to fit the 
parameters of the sigmoid (3). The sigmoid is constrained to be centred on the hyperplane, 

(1)D(�) =

�∑

i=1

�iyiH
(
�i, �

)

(2)P(y = 1�x) =
p(x�y = 1)P(y = 1)

∑
i=−1,1 p(x�y = i)P(y = i)

(3)P(y = 1|d) = 1

1 + exp (Ad + B)



262	 A. Murari et al.

1 3

because points at distance zero from it have equal probability of belonging to any of the 
two classes. To obtain the points to be fitted with symbolic regression (see next Sect. 4), 
it is sufficient to select the most appropriate probability threshold (typically the one with 
better performance in terms of success rate). The points at that level of probability are the 
inputs to the fitting part of the procedure. This solution of fitting a sigmoid is the one used 
in the first real life example described in Sect. 8 of the paper.

4 � Symbolic regression via genetic programming for physics fidelity

As already briefly discussed in Sect. 1, the objective of the present work is the develop-
ment of a series of techniques, aimed at converting the models of machine learning clas-
sifiers into more realistic mathematical forms. In this context realistic means that the 
equations of the boundary should reflect the actual phenomena, determining the frontier 
between the classes. In practice, for the case of SVM classifiers, this task implies express-
ing the hypersurface separating the classes more realistically than as a sum of hundreds of 
kernel functions or as a series of points at the same probability (in the case of probabilistic 
SVM). To this end, the main tool used is Symbolic regression via Genetic Programming. 
The methods developed on the one hand allow identifying the most appropriate mathemati-
cal expression for the hypersurface with minimal “a priori” hypotheses. In this way there-
fore the potential of SVM is fully exploited and no unnecessary restrictions are imposed on 
the form of the solutions. On the other hand, the complexity of the obtained solutions can 
be controlled, allowing to find the best trade-off between complexity, success rate of classi-
fication and realism of the final models, depending on the objectives of the study. The rest 
of this section provides a brief overview of SR via GP for the reader convenience; more 
details can be found in the references (Schmid 2009; Koza 1992; Murari 2012; Murari 
2015).

Fig. 2   The main steps to express 
a model identified by SVM in 
more traditional mathematical 
notation
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The method of SR via GP consists of testing various mathematical expressions to fit 
a given database. The main steps to perform such a task are reported in Fig. 2. The vari-
ous candidate formulas are expressed as trees, composed of functions and terminal nodes. 
A simple example of this form of knowledge representation is provided in Fig.  3. The 
function nodes can be standard arithmetic operations and/or any mathematical functions, 
squashing terms as well as user-defined operators (Schmid 2009; Koza 1992). The func-
tion nodes, included in the analysis performed in this paper, are reported in Table 1. This 
representation permits to steer the models towards physics fidelity by proper selecting the 
basis functions and/or the structure of the trees. Moreover expressing the formulas as trees 
allows an easy implementation of the next step, symbolic regression with Genetic Pro-
gramming (GP). Genetic Programs are computational methods able to solve complex opti-
mization problems (Schmid 2009; Koza 1992). They have been inspired by the genetic pro-
cesses of living organisms. They work with a population of individuals, e.g. mathematical 
expressions in our case. Each individual represents a possible solution, a potential bound-
ary equation in the present application. An appropriate fitness function (FF) is selected to 
measure how good an individual is with respect to the database. A higher probability to 
have descendants is assigned to those individuals with better FF. Therefore, the better the 
adaptation (the value of the FF) of an individual to a problem, the higher is the probability 
that its genes are passed to its descendants.

In more detail, the first step of the method is the generation of the initial population of 
formulas for the boundary between two classes; then the algorithm assesses the quality of 
each element of the population by evaluating its performance with the metric expressed 
by the FF. In the following step, as with most evolutionary algorithms, genetic operators 
(Reproduction, Crossover and Mutation) are applied to individuals that are probabilistically 
selected on the basis of the FF, in order to generate the new population. This means that 
better individuals are more likely to have more children than inferior individuals. When 

Fig. 3   An example of syntax 
tree structure for the function 
2R + (S/R2)The function operator 
nodes (green) and the variable or 
constant nodes (red) are reported 
in different colours

Table 1   Types of function 
nodes included in the symbolic 
regression used to derive 
the results presented in this 
paper. xi and xj are the generic 
independent variables

Function class List of functions

Arithmetic c (constants), + ,-,*,/
Exponential exp(xi),log(xi),

power(xi, xj), power(xi,c)
Squashing logistic(xi),step(xi),sign(xi),

gauss(xi),tanh(xi), erf(xi),erfc(xi)
Trigonometric sine, cosine, hyperbolic sine,

hyperbolic cosine
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a stable and acceptable solution is found or some other stopping condition is met (e.g., a 
maximum number of generations or acceptable error limits are reached), the algorithm pro-
vides the solution with best performance in terms of the FF.

The fitness function is a crucial element of the genetic programming approach and it can 
be implemented in many ways. To derive the results presented in this paper, the AIC crite-
rion (Akaike Information Criterion) has been adopted (Burnham 2002) for the FF. The classic 
form of the AIC indicator is:

In Eq. (4), RMSE is the Root Mean Square Error between the data and the model predic-
tions, k is the number of nodes used for the model and n the number of examples provided, 
i.e. the number of entries in the database (DB). The AIC, as the other indicators used in this 
work, is to be minimised: the lower the FF the better the model. The FF parameterized above 
allows rewarding the goodness of the models, thanks to the RMSE, but at the same time their 
complexity is penalised by the dependence on the number of nodes.

In practice, quite often the quality of the data and of the prior knowledge are not enough to 
converge on a single best model. The most common and effective way to handle this situation 
consists of making recourse to the Pareto Frontier (PF). PF is the collection of the best models, 
according to the FF, for each level of complexity. The PF derives its name from the usual form 
of plotting the FF versus complexity; a generic example is shown in Fig. 4. The best points 
for each level of complexity constitute the Pareto Frontier, which presents typically a shape 
similar to a letter L. The models around the inflexion point of the PF are the ones achieving 
the best trade-off between accuracy and complexity and are the ones, to which to apply the 
techniques discussed in the rest of this section, to converge on the final choice.

To assess the quality of the final models, the well-known criteria of BIC (Bayesian Infor-
mation Criterion) and Kullback–Leibler (KLD) divergence have been used. The BIC criterion 
is defined as (Burnham 2002):

(4)AIC = 2k + n ⋅ log
(
RMSE

n

)

Fig. 4   Typical shape of a generic 
Pareto Frontier, identified by the 
red triangles
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where ∈= ydata − ymodel are the residuals, �2
(∈)

 their variance and the others symbols are 
defined in analogy with the AIC expression. Again the better the model, the lower its BIC. 
A more sophisticated form of both the AIC and BIC indicators, to take into account the 
error bars of the measurements using the formalism of the GD, is introduced in the next 
section.

The aim of the KLD is to quantify the difference between the computed probability 
distribution functions, in other words to quantify the information lost when p

(
ȳmodel

(
x⃗
))

 is 
used to approximate q

(
ȳdata

(
x⃗
))

 (Burnham 2002). The KLD is defined as:

The Kullback Leibler Divergence assumes positive values and is zero only when the 
two probability distribution functions (pdfs), p and q, are exactly the same. In our applica-
tion p is the pdf of the data, considered the reference, and q the pdf of the model estimates. 
Therefore the smaller the KLD is, the better the model approximates the data, i.e. the less 
information is lost by representing the data with the model.

The last step of the methodology is the non linear fitting of the models. Once the best 
mathematical expression to interpret the data has been found with SR via GP, it is neces-
sary to perform a final fitting of the database for two main reasons. First, modern non linear 
fitting routines allow fine tuning the parameters of the models, improving their generalisa-
tion capability. Even more importantly, with this final step it is possible to associate con-
fidence intervals to the parameters of the equations, which is an essential aspect in many 
scientific applications. A detailed overview of SR via GP for scientific applications is pro-
vided in (Murari 2013, 2016).

5 � Geodesic distance on Gaussian manifolds to include the effects 
of the error bars

In this section the geodesic distance on probabilistic manifolds is introduced in subsec-
tion 5.1. The use of the geodesic distance in the SR is then detailed in subsection 5.2.

5.1 � Geodesic distance

As seen in the previous section, the goal of SR via GP is to extract the most appropri-
ate formulas to describe the available data. To achieve this, typically a quantity somehow 
proportional to the sum-of-squares of the distances between the data and the model pre-
dictions is used in the FF (the RMSE in Eq. 4 and the variance in Eq. 5). In this way, SR 
is implicitly adopting the Euclidean distance to calculate the (dis)similarity between data 
points and predictions. However the Euclidean distance implicitly requires considering all 
data as single infinitely precise values. This assumption can be appropriate in other appli-
cations but it is obviously not the case in the science of complex systems, since all the 
measurements available typically present an error bar. An alternative idea is to use a new 
distance between data, which would take into account the measurement uncertainties. The 

(5)BIC = n ⋅ log
(
�2
(∈)

)
+ k ⋅ log (n)

(6)KLD(P||Q) = ∫ p(x) ⋅ log
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p(x)

q(x)

)
dx
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additional information provided by this distance is more coherent with the nature of the 
available features and renders the final results more robust (Murari 2013; Lungaroni 2019).

The principle, behind the approach proposed in this paper, consists of considering the 
measurements not as points, but as Gaussian distributions. This is a valid assumption in 
many scientific applications. In many complex systems, in particular, the measurements are 
often affected by a wide range of noise sources, which from a statistical point of view can 
be considered random variables. Since the various noises are also typically independent 
and additive, they can be expected to lead to measurements with a global Gaussian dis-
tribution around the most probable value, the actual value of the measured quantity. Each 
measurement can therefore be modelled as a probability density function of the Gaussian 
type, determined by its mean μ and its standard deviation σ:

Modelling measurements not as punctual values, but as Gaussian distributions, requires 
defining a distance between Gaussians. The most appropriate definition of distance 
between Gaussian distributions is the geodesic distance (GD), on the probabilistic manifold 
containing the data, which can be calculated using the Fischer-Rao metric (Amari 2000). 
For two univariate Gaussian distributions p1

(
x|�1, �1

)
 and p2

(
x|�2, �2

)
 , parameterised by 

their means �i and standard deviations �i(i = 1, 2) the geodesic distance GD is given by:

The meaning of the GD can be appreciated by inspecting Fig. 5, which reports the dis-
tance between two couples of Gaussian distributions. The distance between the means 
of the members of the two couples is the same. On the other hand, the Gaussian pdfs of 
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Fig. 5   Examples to illustrate how the GD determines the distance between two Gaussians. The two couples 
of pdf in the figure have the same mean but different σ. The geodesic distance between the two with higher 
σ is much smaller. GD indicates the geodesic distance and <  > the Euclidean distance
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one couple have a standard deviation an order of magnitude higher the other. The distance 
between the pdfs with higher standard deviation is therefore significantly lower than the 
one of the more concentrated pdfs, which is intuitively and conceptually correct since they 
overlap much more. This property of the GD increases the robustness of the results and 
reduces the risk of overfitting, as verified with a series of numerical tests (see also next 
subsection).

5.2 � Use of geodesic distance in symbolic regression

To take into account the measurement errors in a statistically sound way, the last step 
required consists of inserting the GD into the SR. To this end, a good solution has been 
obtained by replacing the RMSE and variance with the GD in the AIC and BIC criteria, 
according to the following formulas:

where the symbols have the same meaning as in formulas (8) and (9) and the index i runs 
over the entries of the database. It is worth pointing out that this idea of inserting the GD in 
the FF of the SR is another original development proposed by the authors.

Since in the genetic programming, implementing symbolic regression, the GD is to be 
calculated as the distance between the experimental values and the estimates of the model, 
the Gaussian parameters µ and σ must be properly chosen. For the experimental data, the 
typical assumption is to take the measured value as µ, assuming that the average value is 
the most likely measurement. For the standard deviation, a reasonable assumption is to 
adopt the value of the error bars in the experimental points. With regard to the model, the 
point estimate is considered the mean and the confidence intervals are used for σ (Murari 
2017). Of course, these estimates are relatively straightforward for the examples discussed 
in the present paper, because the uncertainties are supposed to obey a Gaussian distribu-
tion. In case of different statistics, more sophisticated density estimation technique could 
be necessary.

In practice, it has been tested with tens of equation that the SR using GD is practically 
never outperformed by the SR using the RMSE or the variance. Moreover, the GD is also 
more robust against outliers, as proved for regression in (Murari 2016; Murari 2017). It is 
indeed a well-known statistical fact that the RMSE and variance are not very robust indica-
tors and are particularly vulnerable to outliers. As an example of these tests, the following 
equations have been used to generate synthetic data:

(9)AIC = 2k +
∑

i

GDi

(10)BIC = n ⋅ log

(
∑

i

GDi

)
+ k ⋅ log (n)
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The range of variations of the independent variables, for the examples reported in the 
following, is:

Two different types of noise have been implemented: Gaussian noise, of zero mean and 
standard deviation equal to a fixed percentage of the mean value of the functions, and noise 
with outliers. The distribution of the outliers has been modelled with a second Gaussian 
with a mean different from zero. The weight of this second Gaussian, generating the out-
liers, can be selected. In general, for tens of different synthetic databases and a number 
of outliers from 5 to 50% of the entries, SR with the GD outperforms systematically the 
version using the RMSE. SR with GD manages always to approximate the generating func-
tions not worse than the version with RMSE and it provides better results in about 50% of 
the cases.

6 � Combining SVM and symbolic regression for boundary equations

From a methodological perspective, this section is the heart of the paper; indeed it is meant 
to explain in detail how SR via GP and the SVM technology can be combined to derive 
realistic equations of the boundary between classes, suitable to scientific investigations. 
The subject of Subsection 6.1 is the description of the technique developed to find points 
on the hypersurface identified by the SVM. Subsection 6.2 explains how symbolic regres-
sion can be deployed to fit the previously derived points, in such a way to derive more 
realistic boundary equations.

6.1 � How to find points on the SVM hypersurface

In order to interpret the results produced by the SVM, the first step consists of determining 
a sufficient number of points on the hypersurface separating the two classes. These points 
can be then given as inputs to the SR to obtain a more manageable equation for the hyper-
surface. In the case of probabilistic SVM, obtaining the points on the boundary is techni-
cally very simple. The main decision to be taken is the choice of the most appropriate value 
for the probability threshold to separate the classes; this can be achieved on the basis of the 
success rate and the objectives of the classification.

Obtaining the hypersurface points in the case of a traditional, non-probabilistic, SVM 
is a bit more involved and requires a specific procedure described in the rest of this sub-
section. A mesh is built first, with resolution equal or better than the error bars of the 
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measurements used as inputs to the SVM. The limits of the domain are defined by the 
ranges of variables. Obviously, more grid points and a better refined mesh can improve 
robustness and convergence (but not accuracy since the grid is already finer than the error 
bars of the measurements). Therefore, the total number of grid points can be set based on 
computational limitations. On the other hand, for selecting the number of intervals more 
efficiently, a good solution consists of allocating more intervals along the direction of 
stronger curvature.

After building the grid, the algorithm starts selecting the SVs on the positive side of the 
hypersurface and moves towards the SVs on the other side, one point on the mesh at the 
time. At each step, the distance to the hypersurface is computed using the already trained 
SVM. If the distance remains positive, the process is repeated, since the new point remains 
on the same side of the hypersurface. When the distance of a new point changes sign, the 
two points with different signs are considered points on the hypersurface. This assumption 
is more than reasonable because, by construction of the mesh, these points, for which the 
distance changes sign, are within a distance from the hypersurface equal or smaller than 
the error bar of the features (typically measurements). Therefore, for all practical purposes 
in the science of complex systems, these points are sufficiently close to the hypersurface 
to be considered on it. This way to obtain SVM hypersurface points for synthetic data is 
shown pictorially in Fig. 6.

6.2 � Deriving the equation of the hypersurface with symbolic regression

The previous subsection has described how to find a sufficient high number of points close 
to the hypersurface, identified by the SVM. The next phase of the method consists of deriv-
ing the equation of the hypersurface itself with the help of SR via GP, using the points 
obtained with the method detailed in Subsection 6.1. Indeed SR can be directly run to fit the 
points close to the hypersurface; to maximise the efficiency of this step, it is wise to choose 
as the independent variable the quantity with the largest dynamic range. Once obtained the 
best equation identified by SR via GP, what remains is to evaluate the quality of the model. 
A natural and immediate approach consists of applying the statistical indicators described 

Fig. 6   SVM hypersurface points for a synthetic, linearly separable data set. For illustrative purposes the dis-
tance between the points and the hypersurface has been exaggerated. The blue squares and the green circles 
represent the points identified as belonging to the hypersurface separating the two classes
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in Sect. 4, to assess how well the SR model fits the original data. A complementary test can 
be easily implemented, generating a series of points from the candidate formula and insert-
ing them in the trained SVM. If the equation represents well the boundary between the two 
classes, the distance of these points from the hypersurface should be close to zero and in 
particular smaller than the error bars. Indeed, if the points generated by the SR model are 
in a range of distances from the SVM hypersurface not higher than the uncertainties in the 
measurements, in practice the obtained equation can be considered a good approximation 
of the boundary between the two classes. An additional test consists of course of checking 
that the final model classifies the original data exactly or almost exactly as the SVM.

To better take into account the error bars of the measurements, symbolic regression can 
be run with the FF including the geodesic distance, according to Eqs. (9) and (10).

7 � Numerical tests of SR via GP to obtain boundary equations

The procedure described in the previous section has been subjected to a systematic series 
of numerical tests. The results have always been positive and the proposed technique has 
always allowed recovering the original equations describing the boundary between the two 
classes. In the following Subsection 7.1, an example, of the same level of complexity as 
the experimental cases presented later, is described in detail. Subsection 7.2 provides some 
information about the computational requirements to implement the proposed techniques. 
More details and the main results about these numerical tests are provided in Appendix 1 
(Table 2).

7.1 � Example including the effect of noise on high dimensional data

As mentioned, there is no conceptual difficulty in applying the proposed methodology 
to high dimensional problems. Of course, the computational resources required increase 
exponentially with the number of independent variables (the so called curse of dimen-
sionality). Also the quality of the measurements must be adequate. But these are problems 
related to the available computational power and/or the quality of the data; in no way they 
affect the applicability of the proposed technique. Indeed it has been verified with a series 
of systematic tests that, with adequate level of computer time, high dimensional problems 
can be solved. As an example, a quite demanding case is reported in the following, for an 
equation involving 7 variables. The equation used to generate the data is:

Table 2   General GP parameters 
for the calculation of the 
boundary equations

GP Parameters Value(s)

Population size 500
Selection method Ranking and Tournament
Fitness function AIC
Constant range Integers between − 10 and 10
Maximum depth of trees 7
Genetic operators (probability) Crossover (45%)

Mutation (45%)
Reproduction (10%)
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It is worth mentioning that there are many applications of complex science, for example 
deterministic chaos, in which one has to deal with problems of dimensionality not higher 
than 7. A total of 4000 points, 2000 per class, have been generated starting from the previ-
ous equation. Adding an appropriate level of random noise to the synthetic points (sampled 
from a Gaussian pdf with standard deviation equal to 10% of the values in the reported 
examples), forces them to fall on one side of the generating equation, which is meant to 
simulate a generic boundary. Therefore the generated points become unbiased examples of 
the two classes. More details about the synthetic data are provided in Table 3. After gener-
ating the grid, training the SVM and finding the hyper-surface points, SR via GP has been 
applied and the following expression for the hyper-surface has been found:

The equation identified by the method is practically the original one. The slightly dif-
ferent multiplicative factor in front is not to be ascribed to a weakness of the method but 
to the dataset provided as input, since the accuracies of both the SVM and the mathemati-
cal equation obtained are equal to 100%. Again, this example proves that, if the surface of 
the boundary between the cases is sufficiently regular, the dimensionality is not an insur-
mountable issue, provided enough computational power is available.

The numerical examples presented previously and in Appendix 1include cases where 
the success rate of the SVM classification is close to 100% (always well in excess of 98% 
when no differently specified). This is an interesting situation from a scientific point of 
view; the SVM has learned almost perfectly the boundaries between the classes and there-
fore the main issue remaining consists of formulating the equations of these boundaries in 
a mathematical form appropriate for understanding the phenomena. If the data are such 
that the success rate of classification of the SVM is lower, the proposed method works 
well anyway, since its objective is the reformulation of the boundary equation found by 
the SVM. The success rate required for the SVM and the interpretation of the results is 
an issue, which depends on the application and the objective of the analysis, but does not 
impact on the validity of the developed technique.

It is worth also restating that, in all the cases tested (see also Appendix 1), even if the 
final models of the boundaries obtained by the SVM allow classifying with almost 100% 
accuracy, they have nothing to do with the equations generating the data. Indeed, whatever 
the actual formula generating the data, the model of the SVM is always of the form of 
Eq.  (1). Therefore in many scientific applications related to the physics of complex sys-
tems, whose objective consists of understanding the actual phenomena behind the bound-
aries and not simply achieving high classification rates, the SVM are not of much use, 
except when combined with SR via GP, as proposed in this work.
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Table 3   The function used to 
generate the data and the range 
of variables

Steps: Values:

Initial function y = x
1
x
2
+ sin

(
x
3

)
+ cos

(
x
4

)
− x

5
∕x

6

Ranges of variables 0 < x1 < 2 & 1.5 < x2 < 3

−2 < x3 < 4 & 0 < x4 < 6

4 < x5 < 12 & 1 < x6 < 4

Number of nodes for each 
class

2000
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7.2 � Computational requirements

To provide an estimate of the computational resources required by the developed meth-
odology, a specific test has been run for the example of 5 variables in Appendix 1. The 
computer, used to perform the calculations, was an Intel Xeon E5520, with 2 processors, 
a 2.27 GHz clock, with 8 cores and 24 gigabyte of RAM, with Windows 64 bit operating 
system. The step of finding the hyper-surface points on a grid of 164 * 51 (16 for the four 
independent variables and 51 for the dependent one) took 3 h. In its turn, the SR calcula-
tion required 48 h, whereas training the SVM took only a few minutes. The SR is therefore 
by far the task requiring most of the computational resources. On the other hand, it is worth 
considering that the implemented routines have not been parallelized in any way. There-
fore, since both the building of the grid and SR via GP could be easily parallelized, reduc-
ing the computational resources even of orders of magnitude is considered a realistic target 
for future applications.

8 � Real world examples

To show the potential of the proposed methodology to attack real life problems, in this sec-
tion its application to some experimental databases is reported. They have been collected 
in the framework of various disciplines. The first example is a typical case of a major issue 
at the frontiers of complexity in Big Physics experiments, namely Magnetic Confinement 
Nuclear Fusion (MCNF); the determination of the boundary between the safe and disrup-
tive regions of the operational space. For this example, all the various aspects of the pro-
posed method are described, particularised for the case of probabilistic SVM. The other 
two applications consist of important examples of remote sensing in the field of atmos-
pheric physics and for brevity sake only the main aspects of the technique are covered. The 
term remote sensing indicates the set of measurement methods aimed at obtaining informa-
tion about objects without being in contact with them. These techniques can be used to 
monitor various aspects of the atmosphere and also the effects of human activities on the 
environment. One example is a case of imagery applied to the assessment of the health of 
vegetation. The other involves the analysis of laser backscattering signals for the detection 
of forests fires. For these two cases of application to remote sensing, the traditional SVM 
method has been implemented. The excellent results obtained in these real life applications 
prove the value and the flexibility of the proposed methodology.

8.1 � The identification of the boundary between disruptive and safe regions 
of the operational space in Tokamaks

In the last years, collapses and their causes have become not only a major field of research 
but have also captured the attention of the mainstream media. From market crashes to 
earthquakes and structural failures in civil engineering, increasing attention is devoted 
to surprising and typically unexpected abrupt changes in complex systems, leading to 
catastrophic consequences. The statistical investigation of these phenomena, particu-
larly for robust prediction, requires the development of new mathematical tools (Hadlock 
2012). The systematic use of machine learning methods for this purpose is continuously 
increasing.
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Thermonuclear fusion is a field of research aimed at reproducing in the lab the physical 
process generating energy in the stars, which consists of coalescing light nuclei to generate 
heavier ones. The very high temperatures required convert the fuel into a specific state of 
matter called plasma. To confine this ionised gas, the approach using magnetic fields is the 
most advanced. In Tokamaks, the most successful magnetic configuration to achieve ther-
monuclear fusion, disruptions remain the most serious cause of collapse. Disruptions are 
sudden losses of confinement, leading to the abrupt quenching of the plasma with potential 
major risks for the structural integrity of the devices (Wesson 2004). Since the potential 
hazard posed by disruptions increases with size, the percent of disruptions allowed in the 
next generation of devices is quite limited. But disruptions are also a serious issue for the 
present largest devices. For example, they are one of the main impediments to systematic 
high current operation in JET (Wesson 2004), (Ongena 2004), (Romanelli 2009), particu-
larly now that the new combination of materials, Be in the main chamber and W in the 
divertor, renders the first wall less forgiving than in the past.

Given their potential impact on the integrity of the devices, disruptions are a subject of 
extensive research at present. Various methods of mitigation are being investigated, par-
ticularly massive gas injection and shatter pellets (Meitner 2017). The main objective of 
these techniques consists of limiting the energy conducted directly to the wall by convert-
ing the highest percentage of it into radiation. On the other hand, these conversion methods 
have not only to be effective but are also required not to pose themselves other hazards 
to the machines, such as excessive increases of the eddy currents due to very fast current 
quenches. To reduce the strain on the devices also avoidance tactics are being considered, 
to undertake remedial actions and prevent the occurrence of disruptions. This is particu-
larly important in the perspective of the final reactor, since already in the demonstrative 
fusion reactor unmitigated disruptions will have to be almost completely avoided and the 
number of mitigated ones minimised (Wenninger 2016).

Of course, robust prediction tools are a prerequisite to any mitigation or avoidance strat-
egy. Unfortunately, the theoretical understanding of the causes of disruptions is not suf-
ficient to guarantee reliable predictions. As a consequence, existing first principle models 
are not effective in predicting disruptions on a routine basis. Therefore, in the last decades, 
a lot of efforts have been devoted to developing empirical models, capable of launching 
an alarm when a disruption is approaching. Various generations of predictors based on 
machine learning tools have also been applied to JET data in the last decades. Many alter-
natives have been explored, ranging from Neural Networks to Self Organizing Maps and 
fuzzy decision trees (Cannas 2013; Murari 2013; Vega 2009; Gaudio 2014; (Murari 2016, 
2017). Unfortunately all these different solutions are practically black boxes, which can 
help in practice but so far have not contributed much to the understanding of the physics 
behind disruptions.

To show the potential of the method proposed in this paper to find the boundary between 
the safe and disruptive regions of the operational space, a large database of JET, including 
thousands of experiments of the largest device in the world, has been analysed (see Appen-
dix 2). A systematic analysis with the CART approach has shown that, among the global 
quantities available in real time on JET (including magnetic field, plasma current, safety 
factor at the edge, plasma beta, diamagnetic energy, radiated power etc.), the locked mode 
amplitude and internal inductance signals are among the most relevant for disruption pre-
diction. Adding additional quantities practically does not improve the performance of the 
classifiers. Therefore, also for continuity with the past treatments, they are the two features 
adopted in this pilot study. The posterior probabilities have then been calculated as indi-
cated in Sect. 3. The adaptive training has been performed for a whole range of threshold 
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Fig. 7   Top: plot of the safe and disruptive regions of the operational space in JET with the ILW. The colour 
code represents the posterior probability of the classifier. The black circles are all the non-disruptive shots 
(10 random time slices for each shot). The red squares are the data of the disruptive shots at the time slice 
when the predictor triggers the alarm. The yellow crosses are the false alarms. Bottom: zoom of the most 
relevant boundary region. In thermonuclear fusion, the internal inductance of the plasma is normalised and 
becomes a dimensionless quantity. Empty brackets on the x axis of the plots indicate this fact
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probabilities. It turns out that the probability value, which provides the best performance in 
terms of success rate, is 60%.

The level plots of the posterior probability obtained are reported in Fig. 7. The curve in 
light green represents the equation derived with SR via GP (see later). The safe and disruptive 
regions are well separated in the plane of the locked mode and internal inductance. The clear 
separation is confirmed by the results in terms of success rate and false alarms reported in 
Table 4, from which it is easy to appreciate the extremely good performance of the probabilis-
tic SVM. To fully appreciate the results reported in Table 4, it should also be considered that, 
with the adaptive training from scratch implemented, practicality all the examples inputted 
to the classifier are to be considered new and never seen before by the SVM [(Murari 2019, 
(Murari 2020)].

The methodology, described in the Section on Symbolic Regression, has then been applied 
to the model obtained at the end of the adaptive training. The following model has been 
retained as a good compromise between complexity and accuracy:

where y is the locked mode expressed in 10–4 Tesla, x the internal inductance and the coef-
ficients assume the values:

The performance of the previous equation, in terms of the usual figures of merit adopted 
to qualify predictors, reproduces very well the one of the original model as can be appreciated 
from Table 5.

Comparing Tables 4 with Table 5, it is possible to see how the obtained equation reflects 
almost exactly the performance of the original model derived by training the probabilistic 
SVM. In graphical terms, Eq.  (15) is shown in light green in Fig. 7; from the plots of this 

(15)y(x) = a0 exp
(
a1x

a2
)

(16)

a0 = 5.4128 ± 0.0031;

a1 = − 0.11614 ± 0.00085;

a2 = 2.21 ± 0.011;

Table 4   The results reported in the row Training refer to the ones obtained by the adaptive training

The ones in the row called Test have been obtained by reapplying the final model obtained at the end of the 
last campaign back to the entire set of data. The terms Tardy alarms, Missed alarms and Early alarms are 
defined in Appendix 2

Model Success rate Tardy Early Missed False Missed + Tardy

TRAINING 96.2% (180/186) 2.7%
(5/186)

0.5%
(1/186)

0.5%
(1/186)

3.9%
(40/1016)

3.2%
(6/186)

TEST 97.9%
(183/187)

2.1%
(4/187)

0%
(0/187)

0%
(0/187)

2.8%
(29/1020)

2.1%
(4/187)

Table 5   The figures of merit obtained using Eq. (15)

The terms Tardy alarms, Missed alarms and Early alarms are defined in Appendix 2

Probability Threshold Success rate Tardy Early Missed False

60 97.9% (183/187) 2.1% (4/187) 0% (0/187) 0% (0/187) 2.8% (29/1020)
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figure, it easy to appreciate how the analytical formula, obtained with the proposed methodol-
ogy, follows almost exactly the 60% curve level of the probabilistic SVM. Therefore, reformu-
lating the equation of the boundary, in a more interpretable way than the output of the SVM, 
does not imply any significant loss of information in this case. In addition to the good perfor-
mance, it must be noticed how Eq. (15) represents a major simplification compared to the sum 
of tens of Gaussians centred on the support vectors, the model of the original SVM. It should 
also be mentioned that model (15) has also been applied to much more recent campaigns, and 
therefore to complete new examples, with performance comparable to those of Table 5, con-
firming the capability of the methodology to provide results of great generalisation potential 
(Murari [B] 2020). From the point of view of the physics interpretation, Eq. (15) shows how 
the critical amplitude of the locked mode depends on the internal inductance and therefore on 
the current profile. In particular, more peaked profile can tolerate a higher level of the locked 
mode before disrupting. This evidence generalises other treatments, such as the one proposed 
in (Vries 2015), where it is argued that the amplitude of the locked mode is not the unique 
quantity to interpret the boundary between the safe and disruptive regions of the operational 
space.

8.2 � Botany: “wilt” database

Healthy vegetation is a prerequisite for the survival not only of many biological commu-
nities and ecosystem processes, but of the entire human species. Various remote sensing 
techniques have become increasingly important for monitoring and understanding the state 
of the vegetation in many parts of the planet. The reflectance from the foliage in specific 
ranges of wavelengths allows monitoring the chlorophyll concentration in the vegetation, 
which is a key factor in determining its health and potential for growth. Healthy vegetation 
typically absorbs in the red and blue regions of the spectrum, reflects strongly in the near 
infrared (NIR) and displays strong absorption in wavelengths typical of atmospheric water. 
Measuring variations in the emission of radiation from vegetation, particularly the ratio 
between visible and infrared, can provide meaningful information about plant health, envi-
ronmental stress, and other important characteristics.

For applying our proposed algorithm to real-world health vegetation remote sensing, 
we selected a database related to botany named “wilt”. This database was prepared by 
Brian Johnson from the Institute of Global Environmental strategies in Japan in 2013 and 
contains the results of a remote sensing study, for detecting diseased trees, with Qickbird 
imagery (Johnson 2013). The data set consists of image segments, generated by processing 
the available pansharpened pictures. The segments contain spectral information from the 
Quickbird multispectral image bands and texture information from the panchromatic (Pan) 
image band. In the following, the entries of this database are listed:

Class: ’w’ (diseased trees), ’n’ (all other land cover).
GLCM_Pan: GLCM mean texture (Pan band).
Mean_G: Mean green value.
Mean_B: Mean blue value.
Mean_NIR: Mean NIR value.
SD_Pan: Standard deviation (Pan band).
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This database contains 4339 samples: 74 of them from sick trees and the rest related 
to other land cover. The new proposed methodology has been applied to this database for 
finding the classification hyper-surface between the two mentioned classes. The entries 
have been classified first with the SVM (with the RBF kernel). The subsequent applica-
tion of our technique to traditional SVM, grid plus SR, has allowed finding the following 
equation:

The test accuracy value reported has been obtained with the leave one out method, cho-
sen because of the very imbalanced character of the database available. Since it presents 
a success of 99%, practically the same as the SVM, the derived Eq. (17) indicates that the 
important attributes for classifying this database are the Mean green values and the Mean 
blue values. Figure 8 reports the entries of the database projected on the plane of these two 
variables, together with the hyper-surface obtained with Eq. (17).

It is also worth mentioning that, to obtain the same success rate, the SVM has to utilise 
1299 support vectors. Therefore the application of the proposed methodology results in a 
simplification of orders of magnitude in the complexity of the equation, without any sig-
nificant loss in terms of classification accuracy. Moreover, the obtained formula is suscep-
tible of comparison with models and theoretical considerations, whereas the SVM model is 
practically intractable from this point of view.

8.3 � Remote sensing of the environment: detection of widespread smoke 
with LIDAR

Light Detection And Ranging (LIDAR) is a remote sensing technique to monitor the 
atmosphere of a quite long tradition. It was originally proposed at the beginning of the 
1960s, shortly after the invention of the laser. LIDAR measuring systems combine laser-
focused imaging with the capability of calculating distances, by measuring the time for 
a signal to return to the point of emission. LIDAR was first developed for meteorology 

(17)MeanB = 22.39 ⋅Mean 0.4705
G

Train Accuracy ∶ 99.4% Test Accuracy ∶ 99.5 %

Fig. 8   Distribution of data in the “wilt” database. The green points are diseased trees and the blue points 
indicate all other types of land cover. The red line indicates the equation obtained for the hyper-surface
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but nowadays the approach has become widespread and it is a consolidated technology to 
make high-resolution maps. The ability to map large areas from a significant distance has 
allowed the technique to be very useful in many applications from geomatics, archaeology 
and geography to seismology, forestry and geology. Particularly important have been the 
results obtained in remote sensing, atmospheric physics and contour mapping.

With regard to remote sensing of the atmosphere, global warming has rendered the prob-
lem of wildfires particularly severe in many regions of the world, from the Americas to Aus-
tralia. In this field, LIDAR has been profitably deployed for the detection of the smoke plume 
emitted by wild fires. The technique can indeed combine the reliable survey of large areas 
with the potential for early detection (Fiocco 1963; Andreucci 1993; Bellecci 2007; Bellecci 
2010; Vega 2010; Gelfusa 2014). Up to now, the main research efforts have been devoted to 
improving the accuracy of detecting quite concentrated smoke plumes, which are the main 
feature exploited for raising alarms during the first stage of wildfires. The operational strategy 
is based on continuously monitoring the area to be surveyed with a suitable laser; a significant 
peak in the backscattered signal is considered a sign of a starting fire, justifying the triggering 
of an alarm. In these circumstance, the strong peaks in the backscattered signal are the features 
to be detected and various quite successful methods have been refined to this end. In different 
contexts, it would be useful also to detect widespread smoke, which can be due either to strong 
winds dispersion or to the presence of non-concentrated sources (Gelfusa 2015). In this appli-
cation, the measurement requirements are quite different; the signature of the smoke presence 
is not a strong peak in the detected power but an overall increase over large regions of the 
signal. Typical backscattered signals for the alternatives of no smoke, strong smoke plume and 
widespread smoke are reported in Fig. 9.

Starting from the typical Lidar equation (Fiocco 1963), it has been decided to fit the back-
scattered signal intensity with a mathematical expression of the form:

Fig. 9   Examples of LIDAR back scattered signals: a Clear atmosphere (blue line) b strong smoke plume 
(red line) c widespread smoke (green line)
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where K1 and K2 are constants and R is the range. The data of Fig. 9 have been fitted with 
this formula. The results of the non –linear fit are:

In case of widespread smoke:

Clear atmosphere:

The results of the fit, Eqs. (19) and (20), indicate quite clearly that the parameter K2 
are very similar for both the case of widespread smoke and clear atmosphere. On the 
other hand, there is a clear difference, of the order of 25% in the constants K1. This is 
expected since K1 includes the effects of the backscattering properties of the atmos-
phere [(Fiocco 1963), (Bellecci 2010)].

Since the attempt to identify the presence of widespread smoke is a quite pioneering 
application of the LIDAR technique, it is important not only to be able to discriminate 
between the two situations but also to provide models for the interpretation of the phys-
ics. In particular, the identification of the boundary, in the space of the parameters K1 
and K2 for the two cases, is considered an essential piece of information for comparison 
with theories. The proposed methodology has therefore been applied to a quite substan-
tial database:

Total number of data = 521.
number of non-smoke data = 312.
number of widespread smoke data = 209.
number of train data (~ 80%) = 431.
number of test data (~ 20%) = 90.

(18)P =
K1

R2
e−2K2R

(19)P =
2.648 × 10−1

R2
× exp

(
−1.259 × 10−3 ⋅ R

)

(20)P =
1.734 × 10−1

R2
⋅ exp

(
−1.171 × 10−3 × R

)

Fig. 10   Eq. (21), describing the 
boundary between the cases of 
clear atmosphere and widespread 
smoke, in the space of the param-
eters K1 and K2
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For the SVM, a radial basis functions kernel has been used. The best equation found 
is:

The equation of the boundary between clear atmosphere and widespread smoke, in 
the space of the parameters K1 and K2, is shown in Fig. 10.

To understand the importance of the results obtained, it should also be considered 
that the model of the SVM consists of 154 support vectors. Therefore the level of sim-
plification obtained with Eq. (21) is substantial. Moreover, also in this case the formal-
ism of the SVM provides an equation of the boundary between the two classes, which 
has no relation with the relevant physics.

9 � Conclusions

The study of nonlinear complex systems typically requires sophisticated forms of pattern 
recognition, clustering and in general identification. The arsenal of traditional machine 
learning tools for classification is very powerful in terms of success rate; on the other hand 
the models of most available techniques lack physics fidelity and interpretability. In this 
paper, an original methodology has been presented to obtain the equation of the boundary 
between two classes, combining almost all the main machine learning techniques available. 
With the proposed approach, the power of machine learning tools is combined with the 
realism, physics fidelity and interpretability of equations expressed in the usual formal-
ism of typical scientific theories. In particular, the noise-based ensemble of CART trees 
has proved essential in identifying the most important features to include in the analysis 
in an efficient way, taking into account the problem of the noise from the first step of the 
treatment. The choice of SVM ensures that their structural stability, their capability to 
maximize the safety margins in the classification, is fully retained in the final results. On 
the other hand, symbolic regression via genetic programming allows achieving very good 
physics fidelity and finding a good trade-off between accuracy of classification and com-
plexity of the final equations of the boundary. Therefore the models, obtained with the 
proposed methodology, are able to better support fundamental scientific activities such as 
testing of mathematical theories, evaluation of confidence intervals, scaling, extrapolations 
and experimental design (Murari [B] 2019). It is also worth mentioning that, given the high 
flexibility of SR via GP, it is normally crucial to exploit all the available “a priori” informa-
tion about the investigated systems, in order to steer the solutions towards mathematical 
expressions, which best reflect the actual physical processes of the phenomena under study. 
The prior knowledge of the scientists can be brought to bear at least on three different 
stages: on the selection of the most appropriate basis functions, on the definition of the 
suitable constraints on the structure of the trees and finally on the definition of the fitness 
function details.

Given the fact that the objectives of the approach are realism and interpretability, a rea-
sonable reduction of the classification performance is not a major issue and can be toler-
ated. It is also true that symbolic regression via genetic programming can reproduce the 
accuracy of the classification by the SVM, provided sufficient computational power is 
available and the data is of adequate quality.

(21)K1 = 0.1083 ⋅ sin
(
15.61 ⋅ K2

2

)
+ 0.1083 ⋅ cos

(
1.5941 ⋅ K0.264

2

)

Train Accuracy ∶ 89.33 % Test Accuracy ∶ 91.11 %
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It is also worth emphasizing one more time that the proposed procedure is coherent in 
the treatment of the error bars of the measurements. This is a very important aspect in the 
perspective of the application of the developed tools in the domain of complex science, in 
which small inaccuracies can have dramatic consequences. In the proposed approach, from 
the noise-based ensemble and the choice of the σ in the Radial Basis Function kernel of the 
SVM, to the use of the GD as the fitness function for the SR, the effects of the uncertain-
ties in the measurements can be fully taken into account in all the steps of the procedure. 
For noise of Gaussian distribution, the probabilities obtained have been always satisfactory 
both in the case of numerical simulations and the analysis of experimental data (Murari 
[A] 2017, Murari 2012). In this respect, the information theoretic tool of the Geodesic Dis-
tance can be quite effective. Of course, the improvements ascribable to GD depends on the 
individual circumstances but its deployment can significantly improve results, particularly 
in challenging situations often typical of practical applications, such as presence of high 
noise level, scarcity of data and significant number of outliers (Murari [B] 2016). For the 
experimental DBs discussed in Sect. 8, which are of good quality, the degradation conse-
quence of replacing the GD with the RMSE is of the order of a couple of percent points. 
In any case, a systematic analysis of the improvements, potentially provided by the GD in 
the case of experimental databases, is beyond the scope of the present paper and is left for 
future works. Also proving that, in general, the final probabilities are well calibrated, also 
for noise and perturbations of pdfs different from a Gaussian, remains a serious tasks for 
further developments.

The numerical tests shown have proved the effectiveness of the proposed technique to 
identify the real equation of the boundary between classes even in relatively high dimen-
sions, provided the shape of the boundary is a simply connected and sufficiently regular 
surface. This is very encouraging since, in many scientific applications, the boundaries 
between the various classes are quite regular functions. This has been confirmed by the 
application of the methodology to experimental databases of different scientific disciplines, 
for which sufficient prior information is available to guide the algorithms towards realistic 
models. On the other hand, in applications to complex system, for example in the identifi-
cation of attractors, it would be very useful to have a data mining tool adequate to handle 
more complex and even multiply connected surfaces. It is indeed a topic of future investi-
gations to extend the technique to the investigation of more complex boundaries (Peluso 
2014).

The proposed methodology is also susceptible of various additional improvements. First 
of all, the technique should be extended to other machine learning tools such a neural net-
works (the only major thread of machine learning not included in the present version of the 
methodology). Moreover, the task of regression, and not only classification, should also be 
tackled (Peluso 2014; Murari 2015, 2013). Also applications to various aspects of tomog-
raphy inversion are envisaged (Marrelli 1998, Martin 1997, Craciunescu 2018).

From a methodological perspective, it should be considered that, even if all the aspects 
of the proposed procedure are essential, the most delicate is certainly SR via GP, due to the 
importance of the fitness function in the selection of the best models. Indeed, parsimony 
pressure in GP tends to focus just on the size of the evolved expression (e.g. (Poli 2003; 
Luke and Panait 2002)). The model selection criteria implemented do not properly quan-
tify the complexity of the equations, with the consequent danger of overfitting the training 
data (Raja). For example, (x + x + x) has a larger tree size than sin(x), yet the latter has a 
far more complex behaviour (Vapnik 2013). Further efforts should therefore certainly be 
devoted to devising better indicators of the model complexity, to be used in the FF.



282	 A. Murari et al.

1 3

Another important theoretical aspect is the extension of the approach to cases affected 
by noise of different statistics (and not only the usual Gaussian). In this respect, advances 
in information geometry, with the formulation of geodesic distances valid for other noise 
statistics, are considered the right direction of future work. From the computational point 
of view, the heaviest step of the proposed methodology is SR via GP. It is clear that this 
part of the method is highly parallelizable; therefore much progress is expected, in the 
reduction of running time, by parallel implementation of SR via GP.

Appendix 1 Numerical Tests for SR via GP to obtain realistic boundary 
equations

The procedure described in Sect. 6 has been subjected to a systematic series of numeri-
cal tests. A significant set of these tests is reported in this Appendix after a detailed 
description of the numerical method implemented.

The main technique to produce synthetic data and to test the methodology consists of 
the following 6 steps:

1.	 Definition of an initial function for the boundary
2.	 Generating samples of the two classes from the function
3.	 Training the SVM for classification
4.	 Building an appropriate mesh on the domain
5.	 Determining a sufficient number of points on the hyper-surface identified by the SVM
6.	 Deploying symbolic regression to identify the equation of the hypersurface from the 

points previously obtained

In the rest of this Appendix, more details about this procedure are provided with the 
discussion particularised for the case of binary classification and traditional SVM.

In the first step, an initial function as a combination of arithmetic, trigonometric, and 
exponential operators of independent variables xi is defined. In general, this function 
can be written as follows:

In the second step, an adequate number of random points in the valid range of the 
variables are generated. Then, a positive offset and some random values are added to the 
y for half of the data to produce the first class; a negative offset and some random values 
are added to y for the other half to produce the second class. The equations for produc-
ing the two classes can be summarized as follow:

where y1 and y2 are the values for the first and second class, respectively.
In the third step, an SVM with "Gaussian Radial Basis Function kernel" is trained. 

The method used to find the separating hyperplane is "Sequential Minimal Optimiza-
tion". Depending on the level of random noise, different success rates can be obtained. 
For the numerical tests presented in the following, the success rate in the classification 
of the SVM is always very close to 100%.

y = f
(
x1, x2 …

)
a1 < x1 < b1 a2 < x2 < b2etc

y1 = y + noise of standard deviations + offset

y2 = y + noise of standard deviations − offset
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In the fourth step, a mesh on the domain has to be built in order to identify points 
sufficiently close to the hypersurface.

The fifth step consists of the identification of the points sufficiently close to the 
hypersurface, with the algorithm described in Sect. 6.

In the sixth step, the selected hypersurface points are used as inputs to the symbolic 
regression code, to find the appropriate formula for describing the hypersurface. The 
settings adopted to run the GP implementing the SR are reported in Table 2.

Examples for two independent variables

Example 1  As a first test, a purely arithmetic function has been tested. The function and 
ranges of the variables are:

After carrying out the six-step procedure described in Sect. 6, the following expression 
has been obtained:

SR via GP converges on a final expression that is in excellent agreement with the initial 
function, describing the boundary between the two classes. This is particularly true since 
such a good approximation has been obtained without the non-linear fitting, normally the 
last step of the SR method.

Example 2  As a second test, a more complex function comprising exponential, arithme-
tic, and power operators has been assumed for the boundary between the two classes. The 
function and ranges of the variables are:

After carrying out the six-step procedure in Sect. 6, the following expression has been 
obtained:

Again SR via GP converges on a final expression that is in excellent agreement with 
the initial function describing the boundary between the two classes, even without making 
recourse to the non-linear fitting step.

Example 3  As the third test, a more complex function comprising trigonometric and arith-
metic operators has been defined and 4% classification noise was added to the database. 
The function and ranges for the variables are:

After carrying out the six-step procedure in Sect. 6, the following expression has been 
obtained:

y = x1 + x2 − x1 ⋅ x2 where − 1 < x1 < 1 & 1 < x2 < 2

y = 1.011
(
x1 + x2 − x1 ⋅ x2

)

y = e(x1 ⋅ x2 )
0.5

where 0 < x1 < 1 & 1 < x2 < 3

y = 0.974 e( x1 ⋅ x2)
0.5

y = sin
(
x1
)
+ x2 where − 3 < x1 < 3; − 2 < x2 < 2

y = 0.985
(
sin

(
x1
)
+ x2

)
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Again SR via GP converges on a final expression that is in excellent agreement with the ini-
tial function describing the boundary between the two classes, even without making recourse 
to the non-linear fitting step. Figure 11 presents the results of this example in pictorial form.

Examples for three independent variables

Some examples considering equations with three independent variables are reported in 
this section.

Example 1  As a first test, a function comprising only arithmetic operators has been defined. 
The function and ranges for the variables are:

Initial Defined Function: y = x1 − x2 + x3
Range of Variables: 1 < 1 < 2 ; 3 < x2 < 5 ; 0 < x3 < 1.

The final function obtained from the hypersurface points is:

Example 2  As a second test, a function comprising trigonometric and arithmetic operators 
has been defined. The function and ranges for the variables are:

Initial Defined Function: y = x1 + sin
(
x2 ⋅ x3

)
.

Range of Variables: 1 < x1 < 2; 3 < x2 < 5; 0 < x3 < 1.

The final function obtained from the hypersurface points is:

y = 1.002
(
x1 − x2 + x3

)

Fig. 11   Points and surfaces of example 3 with two independent variables. The green rectangles are points gen-
erated from the initial function, the blue are the points belonging to the first class, the red points are those 
belonging to the second class, and the orange surface identifies the hyper-surface obtained with the SR via GP
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Again these results confirm the great potential of the approach. Almost exactly the 
original function can be obtained already at the stage of SR. With additional rounding 
off of the results or application of non-linear fitting, exactly the original function can 
easily be recovered.

Example for four independent variables

In this subsection, we describe the results of the application of the SVM-GP methodology 
to a more complex and noisy database. A five-dimensional synthetic database has been 
generated with the characteristics described in Table 6.

The procedure for finding the best sigma for the SVM has been applied and the best 
sigma for the classification is equal to 0.6. The final accuracies of classification for the train 
and test data are presented in Table 7.

After generating the grid and finding the hyper-surface points, SR via GP has been 
applied and the following expression for the hyper-surface has been obtained:

The obtained equation is in good agreement with the initial function. The quality of this 
estimate can be confirmed by comparing the success rate of the SVM and of the equation 

y = 0.98
(
x1 + sin

(
x2 ⋅ x3

) )

y = 0.9334 sin
(
0.9190

(
x1 + x2

))
− 0.5010 x3 ⋅ x4

Table 6   Settings for testing SVM-GP on a five-dimensional synthetic database

Steps: Values:

Initial function y = sin
(
x
1
+ x

2

)
− 0.5 x

3
⋅ x

4

Ranges of variables −1.5 < x
1
< 1.5 & − 2 < x

2
< 2

0 < x
3
< 2 & 2 < x

4
< 4

Number of nodes for each class 2000
Thickness of the data’s bulk 3
Offset 10% of y domain
Classification noise  ~ 4%

Table 7   The success rates of 
the SVM for the train and test 
data on the classification of the 
synthetic database with the best 
sigma that equals to 0.6

Database type: Classification 
accuracy in 
percent:

Train data 96.1337
Test data 96.0422

Table 8   The success rates 
obtained for the train and test 
data for the classification of 
the synthetic database with the 
expression obtained via SR

Database type: Classification 
accuracy in 
percent:

Train data 96.1060
Test data 96.3061
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found by SR via GP. The classification success rate of the equation found with SR is 
reported in Table 8 (to be compared with the results reported in Table 8).

The comparison of the accuracies obtained via SVM and with our proposed technique 
allows concluding that the SVM-GP approach has excellent performance, even for more 
complex databases and in higher dimensions, in interpreting the SVM hyper-plane as a 
hyper-surface equation.

Appendix 2 Database of JET with a metallic wall

All experiments in JET campaigns C29 to C31 have been considered. After proper clean-
ing and validation of the DB, overall 187 disruptive and 1020 non disruptive shots are 
included, unless differently specified. JET database with the ILW has been used to imple-
ment the methodology described in this paper. In building the database, the intentional 
disruptions have been excluded from the training. Only time slices, whose plasma cur-
rent exceeds 750 kA, have been considered but no other general selection has been imple-
mented. All the signals have been resampled at 1kH frequency. Alarms, which are launched 
10 ms or less from the beginning of the current quench, are considered tardy, since 10 ms 
is the minimum time required on JET to undertake mitigation action. Alarms triggered 
more than 2.5 s before the beginning of the current quench are considered early.
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