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Abstract
Game theory has found successful applications in different areas to handle competi-
tive situations among different persons or organizations. Several extensions of ordi-
nary game theory have been studied by the researchers to accommodate the uncertainty 
and vagueness in terms of payoffs and goals. Matrix games with payoffs represented by 
interval numbers, fuzzy numbers, and intuitionistic fuzzy numbers have considered only 
the quantitative aspects of the problems. But in many situations, qualitative information 
plays a crucial role in representing the payoffs of a game problem. This work presents a 
valuable study on matrix games with payoff represented by linguistic intuitionistic fuzzy 
numbers (LIFNs). First, the paper defines some new operational-laws for LIFNs based 
on linguistic scale function (LSF) and studies their properties in detail. Next, we define a 
new aggregation operator called ‘generalized linguistic intuitionistic fuzzy weighted aver-
age (GLIFWA)’operator for aggregating LIFNs. Several properties and special cases of 
GLIFWA operator are also discussed. The LSF provides an ability to consider the differ-
ent semantic situations in a single formulation during the aggregation process. Further, the 
paper introduces some basic results of matrix games with payoffs represented by LIFNs. 
We develop solution methods using a pair of auxiliary linear/nonlinear-programming mod-
els derived from a pair of nonlinear bi-objective programming models. Finally, a real-life 
numerical example is considered to demonstrate the validity and applicability of the devel-
oped methods.
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1 Introduction

The theory of fuzzy sets (FSs), proposed by Zadeh (1975), provides an efficient tool to 
deal with uncertainty and fuzziness occurred in many organizational decision making and 
game-related problems. In fuzzy sets, Zadeh associated a degree of membership (DM) to 
each element of the set, which lies in the interval [0, 1]. Here, the degree of non-member-
ship (DNM) can be directly obtained by (1 − DM) . In 1986, Atanassov (1986) general-
ized the idea of fuzzy sets by introducing the notion of the intuitionistic fuzzy set (IFS). 
In general, an IFS describes two kinds of fuzziness (agreement and disagreement) simul-
taneously, making it an efficient tool for describing real-life decision making situations 
more comprehensively. In past three decades, IFS theory has been successful applied to 
solve many complex problems related to different areas including medical diagnosis(De 
et  al. 2001; Vlachos and Sergiadis 2007; Maheshwari and Srivastava 2016), pattern 
recognition(Vlachos and Sergiadis 2007; Dengfeng and Chuntian 2002; Hung and Yang 
2008), decision making(Verma and Sharma 2012, 2013, 2014, 2015; Verma 2021), and 
image registration(Chaira 2011; Chaira and Panwar 2014).

Game theory (GT) is an important research topic of operation research that provides 
a mathematical framework to study cooperation and conflict between rational, intelligent 
decision-makers. After the pioneering work of von Neumann and MorgensternVon Neu-
mann and Morgenstern (1953), GT has been achieved great success in multiple disciplines, 
and fields (Leng and Parlar 2005; Jaeger 2008; Kapliński and Tamošaitiene 2010; Madani 
2010; McFadden et  al. 2012; Sanchez-Soriano 2013; Muggy and Heier Stamm 2014; 
Nagurney et al. 2017). In the past, a wide range of studies have been carried out to solve 
matrix games with crisp/precise payoffs. It means that the information about the game is 
entirely known by the players. But in realistic situations, the information about the pay-
offs is not entirely known by the players due to the presence of uncertainty or insufficient 
information about the problem data. Firstly, fuzzy games were studied by Aubin (1981) 
and Butnariu (1978). Campos (1989) explored the zero-sum fuzzy matrix game with a sin-
gle payoff, and the max-min problem was solved using the fuzzy mathematical program-
ming (FMP) method. Further, Sakawa and Nishizaki (1994) studied zero-sum fuzzy matrix 
games with multi-objectives. Since then, several studies have been reported in the literature 
on matrix games and bimatrix games with fuzzy payoffs and/or fuzzy goals(Vidyottama 
et al. 2004; Vijay et al. 2005). Maeda (2003) defined three types of min-max equilibrium 
strategies of matrix games with fuzzy payoffs. In 2005, Bector et al. (2004) used the fuzzy 
linear programming duality approach to solve matrix games with fuzzy goals. Later, Bector 
et al. (2004) proved the duality result for linear programming problems with fuzzy param-
eters and utilized them to solve zero-sum matrix games with fuzzy payoffs. Cevikel and 
Ahlatolu (2010) developed two models for studying two-person zero-sum matrix games 
with fuzzy payoffs and fuzzy goals. They also proved that the fuzzy relation approach and 
the max-min solution approach are equivalent.

Atanassov (1995), firstly discussed a matrix game problem with IFS. In 2009, Li and 
Nan (2009) formulated a non-linear programming method for solving the matrix games 
with payoffs represented by IFSs. Li (2010) developed a mathematical programming 
approach to get the solution of matrix games with interval-valued intuitionistic fuzzy pay-
offs. Aggarwal et al. (2012) explored the application of intuitionistic fuzzy linear program-
ming to matrix games with intuitionistic fuzzy goals. Later on, Aggarwal et al. (2012) dis-
cussed the applications of intuitionistic fuzzy sets to matrix games with fuzzy goals and 
fuzzy payoffs. Xia (2018) developed a generalized approach for solving interval-valued 
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intuitionistic fuzzy matrix games using aggregation operators based on Archimedean 
t-conorm and t-norm. Khan et al. (2017) gave an approach to solve matrix games with intu-
itionistic fuzzy goals by resolving hesitancy degree from each goal. Recently, Naqvi et al. 
(2019) designed a solution procedure for intuitionistic fuzzy matrix games by using Tanaka 
and Asai’s approach. Up to now, several attempt have been made to develop solutions for 
intuitionistic fuzzy matrix games (Seikh et al. 2015; Bhaumik et al. 2017; Nan et al. 2017; 
Verma and Kumar 2018).

Fuzzy and intuitionistic fuzzy matrix games have been widely used to solve many real-
life decision-making problems related to different application areas. However, in many 
real-world situations, the payoffs of a matrix game cannot be expressed in term of numeri-
cal values but maybe assessed easily by linguistic terms (Zadeh 1975). For example: sup-
pose two insurance companies plan to launch new competing medical insurance policies 
for the university employees. They select the time to introduce the insurance policies, and 
options are 1 month, 2 month, and 3 month from now. Since companies do not have suf-
ficient information about the market share, the payoffs cannot be quantified in numerical 
values but maybe assessed easily by using linguistic terms such as ‘good ’, ‘very good 
’and ‘poor ’. In 2006, Arfi (2006) studied game theory based on linguistic fuzzy logic by 
defining the notions of linguistic fuzzy domination and the Nash equilibrium. Following 
this work, Singh et al. (2020) developed the linguistic linear programming (LLP) model 
and then utilized it to solve a two-person zero-sum matrix game with 2-tuple linguistic 
payoffs. Firstly, Zadeh (1975) conceptualized the idea of the linguistic variable to represent 
human thinking and cognition more realistically. After that, various computational models 
were proposed to deal with linguistic information. In the fuzzy theory, this methodology is 
known as ‘computing with words’(CW), which is based on fuzzy logic and fuzzy linguistic 
approach. In 2000, Herrera and Martínez (2000) proposed a new and useful representation 
model for CW, which is called the 2-tuple linguistic model.

In IFSs, the DM and the DNM are represented by numerical values. However, there 
are many situations in which a decision-maker cannot describe his/her preferences corre-
sponding to DM and DNM in terms of numerical values. Also, intuitionistic fuzzy sets 
are incapable of representing qualitative information. In 2014, Zhang (2014) introduced 
the theory of linguistic intuitionistic fuzzy sets (LIFSs), which provides an efficient tool 
to deal with uncertain qualitative information by representing DM and DNM in terms of 
linguistic variables, respectively. Chen et al. (2015) formulated some aggregation operators 
for aggregating a collection of linguistic intuitionistic fuzzy numbers (LIFNs). Garg and 
Kumar (2018) used a set pair analysis approach to develop some new aggregation operators 
for LIF information. Peng et al. (2018) generalized the Heronian mean operator for LIFSs 
using Frank operations. Further, Verma (2020) developed the idea of linguistic trapezoi-
dal fuzzy intuitionistic fuzzy sets and discussed its application in multiple attribute group 
decision-making problems.

It is worth mentioning that the LIFN is a very prominent tool to describe qualitative infor-
mation more efficiently. So far, the discussed literature reveals that there is no study of matrix 
games under a linguistic intuitionistic fuzzy environment. Additionally, the existing methods 
cannot solve the matrix game problems with qualitative information more precisely. There-
fore, the main objective of this work is to develop the basic theory and solution method for 
matrix games with linguistic intuitionistic fuzzy payoffs. The present study makes some novel 
and valuable contributions to the ongoing research in linguistic intuitionistic fuzzy modeling 
and matrix games to achieve the objective. First, the paper defines some new operational laws 
for LIFNs based on the linguistic scale function (LSF) approach and discusses their properties 
in detail. Note that the linguistic scale function (LSF) approach provides an ability to consider 
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the expert’s semantic intention under different semantic environments during the operational 
process. Then, we define a new aggregation operator called ‘generalized linguistic intuition-
istic fuzzy weighted average (GLIFWA)’operator for aggregating different LIFNs. Some 
properties and special cases of the proposed operator are also studied. Note that the GLIFWA 
operator has a flexible parameter to consider the decision-makers’ attitudinal character during 
the information aggregation process. Next, this paper introduces the novel concept of matrix 
games with payoffs represented by LIFNs. By utilizing the developed aggregation operator, 
the work presents the mathematical formulation of the matrix games with payoffs represented 
by LIFNs and the solution methods for them. Finally, we consider a real-life numerical exam-
ple to demonstrate the application of the developed methods.

The rest of the paper is organized as follows: Sect.  2 presents some preliminary results 
on linguistic variables (LVs), LIFSs, the LSF, and the conventional matrix game. Section 3 
defines some new operational laws for LIFNs with LSF and discusses their properties in 
detail. Next, we propose the generalized linguistic intuitionistic fuzzy weighted average opera-
tor and discuss its properties and special cases. In Sect. 4 we formulate the matrix games with 
payoffs represented by LIFNs and the concept of solutions. Section 5 proves that each matrix 
game with payoffs represented by LIFNs has a solution which is obtained by solving the aux-
iliary linear/nonlinear-programming models derived from a pair of nonlinear bi-objective pro-
gramming models. A numerical example is considered to demonstrate the solution steps and 
flexibility of the given approach in Sect. 6. The work is concluded with some potential future 
directions for research in Sect. 7.

2  Preliminaries

This section briefly reviews some basic results related to LVs, LIFSs, LSF and conventional 
matrix game, which will be used for further development of the paper.

2.1  Linguistic variable

Definition 1 Let ℙ̂ =
{
pd|d = 0, 1,… , 2t

}
 be a totally ordered discrete linguistic term set 

(LTS) with the odd cardinality. Any level pd represents a possible value for a linguistic 
variable and t is a positive integer. The LTS ℙ̂ should satisfy the following properties (Her-
rera and Martínez 2000):

 (i) Order relation: If pi ≤ pj ⇔ i ≤ j

 (ii) Negation operator: neg
(
pd
)
= p2t−d

 (iii) Maximum operator: max
(
pi, pj

)
= pi ⇔ i ≥ j

 (iv) Minimum Operator: min
(
pi, pj

)
= pi ⇔ i ≤ j.

For example, a set of seven linguistic terms can be represented as:

ℙ̂ =

⎧⎪⎨⎪⎩

p0 = very dissatisfied (VD), p1 = moderately dissatisfied (MD), p2 = slightly dissatisfied (SD),

p3 = neither satisfied nor dissatisfied (NSND), p4 = slightly satisfied(SS), p5 = moderately satisfied (MS),

p6 = very satisfied (VS)

⎫⎪⎬⎪⎭
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To avoid the information loss, Xu (2007) defined the extended continuous LTS 
ℙ̂[0,2t] =

{
pd|p0 ≤ pd ≤ p2t, d ∈ [0, 2t]

}
 , where, if pd ∈ ℙ̂ , then pd is called the original lin-

guistic term (OLT), otherwise, pd is known as the virtual linguistic term (VLT).

2.2   Intuitionistic fuzzy set

Definition 2 Atanassov (1986) Let a set � be universe of discourse. An IFS � in � is 
given by

where ��(u), ��(u) ∈ [0, 1] , satisfying 0 ≤ ��(u) + ��(u) ≤ 1∀ u ∈ � . The numbers ��(u) 
and ��(u) represent, respectively, the DM and DNM of an element u ∈ � to the IFS � . 
The degree of hesitancy of u ∈ � to � is defined as ��(u) = 1 − ��(u) − ��(u) . Usually, 
the pair 

⟨
��(u), ��(u)

⟩
 is called an intuitionistic fuzzy number (IFN) and it is simplified as 

� = ⟨�� , ��⟩.

2.3  Linguistic Intuitionistic fuzzy set

Zhang (2014) forwarded the notion of IFSs to linguistic environment and proposed the 
concept of linguistic intuitionistic fuzzy sets (LIFSs) to represent qualitative informa-
tion more precisely. It can be defined as follows:

Definition 3 Zhang (2014) Let � be a set of universe of discourse and 
ℙ̂[0,2t] =

{
pd|p0 ≤ pd ≤ p2t, d ∈ [0, 2t]

}
 be an extended continuous LTS. A LIFS � in � is 

given by

where p��(u), p��(u) ∈ ℙ̂[0,2t] , satisfying 0 ≤ ��(u) + ��(u) ≤ 2t ∀ u ∈ � . The LTs p��(u) and 
p��(u) represent, respectively, the DM and DNM of an element u ∈ � to the LIFS � . The 
degree of hesitancy of u ∈ � to the set � can be calculated as p��(u)

= p2t−��(u)−��(u) . For a 
given element u ∈ � , the pair 

⟨
p��(u), p��(u)

⟩
 is called a linguistic intuitionistic fuzzy num-

ber (LIFN), which can be simply denoted by Υ =
⟨
p� , p�

⟩
.

Definition 4 (Zhang 2014) (Set-theoretic operations) Let Υ =
⟨
p� , p�

⟩
 , Υ1 =

⟨
p�1 , p�1

⟩
 

and Υ2 =
⟨
p�2 , p�2

⟩
 be three LIFNs, then 

(i) Υ1 ⊆ Υ2 if p�1 ≤ p�2 and p�1 ≥ p�2;
(ii) Υ1 = Υ2 if and only if Υ1 ⊆ Υ2 and Υ2 ⊆ Υ1 ;
(iii) ΥC =

⟨
p� , p�

⟩
;

(iv) Υ1∪Υ2 =
⟨
max

(
p�1 , p�2

)
, min

(
p�1 , p�2

)⟩
;

(v) Υ1∩Υ2 =
⟨
min

(
p�1 , p�2

)
, max

(
p�1 , p�2

)⟩
.

(1)� =
{⟨

u, ��(u), ��(u)
⟩|u ∈ �

}
,

(2)� =
{⟨

u, p��(u), p��(u)

⟩
|u ∈ �

}
,
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Definition 5 (Zhang 2014) (Algebraic operations) Let Υ =
⟨
p� , p�

⟩
 , Υ1 =

⟨
p�1 , p�1

⟩
 and 

Υ2 =
⟨
p�2 , p�2

⟩
 be three LIFNs, then the algebraic operations of the LIFNs are defined as 

follows: 

 (i) Υ1⊕Υ2 =
⟨
p
𝜉1+𝜉2−

𝜉1𝜉2
2t

, p 𝜂1𝜂2
2t

⟩
;

 (ii) Υ1⊗Υ2 =
⟨
p 𝜉1𝜉2

2t

, p𝜂1+𝜂2−
𝜂1𝜂2
2t

⟩
;

 (iii) �∗Υ =

⟨
p
2t

(
1−

(
1−

�

2t

)�
), p

2t

(
�

2t

)�

⟩
;

 (iv) Υ∧� =

⟨
p
2t

(
�

2t

)� , p
2t

(
1−

(
1−

�

2t

)�
)
⟩

.

Definition 6 (Zhang 2014) Let Υ =
⟨
p� , p�

⟩
 be a LIFN, the score and accuracy values of 

Υ can be defined as

Based on these values, an order relation between two LIFNs Υ1 =
⟨
p�

1

, p�
1

⟩
 and 

Υ2 =
⟨
p�

2

, p�
2

⟩
 , is given as Zhang (2014): 

 (i) If S
(
Υ1

)
> S

(
Υ2

)
 then, Υ1 ≻ Υ2;

 (ii) If S
(
Υ1

)
= S

(
Υ2

)
, then 

(a) A
(
Υ1

)
> A

(
Υ2

)
, then Υ1 ≻ Υ2;

(b) A
(
Υ1

)
= A

(
Υ2

)
, then Υ1 = Υ2.

Zhang (2014) also defined the following arithmetic and geometric aggregation opera-
tors for aggregating a set n LIFNs Υi =

⟨
p�i , p�i

⟩
    (i = 1, 2,… , n) with weight vector 

w =
(
w1,w2,… ,wn

)T of Υi , satisfying wi > 0 and 
∑n

i=1
wi = 1 . 

(a) Linguistic intuitionistic fuzzy weighted average (LIFWA) operator 

(b) Linguistic intuitionistic fuzzy weighted geometric (LIFWG) operator 

It is worth mentioning that the operational rules given in Def. 5 were developed with the 
assumption that the absolute semantic gap (ASG) between any two LTs is always equal. 
However, in many practical situations, as the subscript of the LT expends from the middle 
to both ends, decision maker may feel that the ASG will increase or decrease, not always 
be equal. Also, the LIFWA and LIFWG operators cannot accommodate the semantic trans-
lation requirements of different decision makers (DMs). To cope with this issue, Wang 
et  al. (2014) proposed the concept of LSF by motivating the notion of numerical scale 

(3)S(Υ) = p( 2t+�−�

2

) and A(Υ) = p�+� .

(4)

LIFWA
�
Υ1,Υ2,… ,Υn

�
=
�
w1 ∗ Υ1

�
⊕

�
w2 ∗ Υ2

�
⊕⋯⊕

�
wn ∗ Υn

�
=

�
p
2t
�
1−

∏n

i=1

�
1−

𝜉i
2t

�wi
�, p

2t
�∏n

i=1

�
𝜂i
2t

�wi
�
�
,

(5)LIFWG
�
Υ1,Υ2,… ,Υn

�
=
�
Υ1

∧w1

�
⊗

�
Υ2

∧w2

�
⊗⋯⊗

�
Υn

∧wn

�
=

�
p�

2t
∏n

i=1

�
𝜉i
2t

�wi
�, p

2t
�
1−

∏n

i=1

�
1−

𝜂i
2t

�wi
�
�
.
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(Dong et al. 2009). It provides an efficient tool to convert LT into an equivalent real num-
ber and vice-versa with considering the semantic changes of DMs under different semantic 
environments.

2.4  Linguistic scale function

Definition 7 Let ℙ̂ =
{
pd|d = 0, 1,… , 2t

}
 be a discrete LTS with the odd cardinality and 

�d ∈ [0, 1] be a real number, then the LSF � can be defined as

where � is a strictly monotonically increasing function with respect to subscript d.

The LSF � satisfies the following properties: (a) �
(
p0
)
= 0 , �

(
p2t

)
= 1 (b) 

�
(
pd1

)
≥ �

(
pd2

)
if and only if d1 ≥ d2.

According to Wang et al. (2014) , we have the following three different linguistic scale 
functions, given as 

 (i) When the ASG between two adjacent LTs remains unchanged. 

 (ii) When the ASG between two semantics of the adjacent LTs is increasing with the 
extension from pt to both ends of LTS. 

 where 𝜚 > 1 is a threshold value, which can be determined by a subjective 
method according to the specific problem. If the LTS is a set of seven terms, then 
� ∈ [1.37, 1.40] .

 (iii) When the ASG between two semantics of the adjacent LTs is decreasing with the 
extension from pt to both ends of LTS. 

 where �, � ∈ [0, 1] are determined according to the specific problem. If the LTS is 
a set of seven terms, then � = � = 0.8.

In order to avoid an information loss during calculation process, the LSF can be further 
generalized to an extended continuous LTS as follows:

Definition 8 Let ℙ̂[0,2t] =
{
pd|p0 ≤ pd ≤ p2t, d ∈ [0, 2t]

}
 be an extended continuous LTS 

and �d ∈ [0, 1] be a real number, then the linguistic scale function (LSF) �∗ can be defined 
as

(6)� ∶ pd → �d(d = 0, 1,… , 2t),

(7)�1

(
pd
)
= �d =

d

2t
, (d = 0, 1,… , 2t).

(8)�2

(
pd
)
= �d =

{
�t−�t−d

2(�t−1)
, d = 0, 1,… , t

�t+�d−t−2

2(�t−1)
d = t + 1, t + 2,… , 2t.

(9)�3

(
pd
)
= �d =

{
t�−(t−d)�

2t�
, d = 0, 1,… , t

t�+(d−t)�

2t�
d = t + 1, t + 2,… , 2t.

(10)�∗ ∶ ℙ̂[0,2t] → �d,
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where �∗ is also a strictly monotonically increasing and continuous function, and its inverse 
is denoted by �∗−1.

Example 1 Let ℙ̂[0,8] =
{
pd|d ∈ [0, 8]

}
 be a continuous LTS, then the inverse correspond-

ing to the LSFs �∗
1
 , �∗

2
 and �∗

3
 can be obtained as follows: 

1. �∗
1
(pd) = �d =

d

8
, d = [0, 8] , then �∗−1

1
(�d) = p8×�d (�d ∈ [0, 1]).

2. 𝜑∗
2

(
pd
)
= 𝜅d =

{
𝜚4−𝜚4−d

2×(𝜚4−1)
, d = 0 ≤ d ≤ 4

𝜚4+𝜚d−4−2

2×(𝜚4−1)
d = 4 < d ≤ 8,

 then 

3. 𝜑∗
3

(
pd
)
= 𝜅d =

{
4𝜌−(4−d)𝜌

2×4𝜌
, d = 0 ≤ d ≤ 4

4𝜏+(d−4)𝜏

2×4𝜏
d = 4 < d ≤ 8,

 then 

2.5  A two‑person zero‑sum matrix game

This subsection recalls some preliminaries from standard non-cooperative matrix game 
theory.

Definition 9 (Barron 2008) A two-person zero-sum matrix game � is a triplet (�m,�n,A) , 
where 

1. �
m =

(
�1, �2,… , �m

)
 is a finite set of m possible strategies for person I;

2. �
n =

(
�1, �2,… , �n

)
 is a finite set of n possible strategies for person II;

3. A =
(
aij
)
m×n

 is a real matrix representing the payoffs of person I against person II, and 
−A is taken as the payoff matrix for person II.

Definition 10 (Barron 2008) A matrix game � with A =
(
aij
)
m×n

 has the maximin value 
and the minimax value , respectively, given as

Here ℵ− (person I’s gain floor) is the minimum payoff that person I is assured to receive and 
ℵ+(person II’s loss ceiling) is the maximum payoff that person II can loose. A game � has 
value if and only if ℵ− = ℵ+ . The strategies i∗ and j∗ , giving the payoffs ai∗j∗ = ℵ− = ℵ+ , 
are optimal strategies for person I and person II, respectively. In addition, aij∗ ≤ ai∗j∗ ≤ ai∗j 
∀i = 1, 2,… ,m;j j = 1, 2,… , n , and 

(
i⋆, j⋆

)
 is called the saddle point of game �.

�∗−1
2

(
�d
)
= pd =

{
p4−log�[�4−(2�4−2)�d], �d ∈ [0, 0.5]

p4+log�[(2�4−2)�d−�4+2] �d ∈ (0.5, 1]
.

�∗−1
3

(
�d
)
= pd =

{
p
4−[4�−2×4�×�d]

1
�
, �d ∈ [0, 0.5]

p
4+[2×4�×�d−4�]

1
�

�d ∈ (0.5, 1]
.

(11)
ℵ− = maxi=1,2,…,m minj=1,2,…,m

(
aij
)

ℵ+ = minj=1,2,…,m maxi=1,2,…,n

(
aij
) .

}
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Definition 11 (Barron 2008) A mixed strategy is an ordered pair of vectors 
(x, y) ∈ �

m × �
n , where

 Here, xi denotes the probability of person I choosing strategy �i and yj is the probability of 
person II selecting strategy �j .

In the next section, we define some new operational laws of LIFNs based on LSF 
and analyze a number of desirable properties associated with them in detail. We also 
develop a new generalized arithmetic aggregation operator for LIFNs using new opera-
tional laws of LIFNs.

3  New operational laws and aggregation operator for LIFNs based 
on LSF

3.1  New operational laws of LIFNs based on LSF

Definition 12 Let Υ =
⟨
p� , p�

⟩
 , Υ1 =

⟨
p�1 , p�1

⟩
 and Υ2 =

⟨
p�2 , p�2

⟩
 be three LIFNs, �∗ be 

a LSF, �∗−1 be the inverse function of �∗ and 𝜆 > 0 . Then, new operational laws are defined 
as follows: 

 (i) Υ1

▴

⊕Υ2 =
⟨
𝜑∗−1

(
𝜑∗

(
p𝜉1

)
+ 𝜑∗

(
p𝜉2

)
− 𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))
,𝜑∗−1

(
𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))⟩
;

 (ii) Υ1

▴

⊗Υ2 =
⟨
𝜑∗−1

(
𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))
,𝜑∗−1

(
𝜑∗

(
p𝜂1

)
+ 𝜑∗

(
p𝜂2

)
− 𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))⟩
;

 (iii) �
▴

∗Υ =
⟨
�∗−1

(
1 −

(
1 − �∗

(
p�
))�)

,�∗−1
((

�∗
(
p�
))�)⟩

;

 (iv) Υ
▴

∧� =
⟨
�∗−1

((
�∗

(
p�
))�)

,�∗−1
(
1 −

(
1 − �∗

(
p�
))�)⟩

.

�
m =

{(
x1, x2,… , xm

)
∶ xi ≥ 0, i = 1, 2,… , n;

m∑
i=1

xi = 1

}
;

�
n =

{(
y1, y2,… , yn

)
∶ yj ≥ 0, j = 1, 2,… ,m;

n∑
j=1

yj = 1

}
.

Table 1  The values of various 
operational laws of LIFNs based 
on different LSFs

Operational law LSF

�∗ = �∗
1

�∗ = �∗
2

(� = 1.5)
�∗ = �∗

3

(� = � = 0.8)

Υ1

▴

⊕Υ2

⟨
p6.4992, p0.2504

⟩ ⟨
p6.9319, p0.3029

⟩ ⟨p6.3211, p0.2178⟩

Υ1

▴

⊗Υ2

⟨p2.5000, p2.7504⟩ ⟨p1.4788, p3.6634⟩ ⟨
p2.9805, p2.6805

⟩

3
▴

∗Υ ⟨p4.6248, p0.4216⟩ ⟨p6.5304, p0.3572⟩ ⟨p4.0402, p0.3724⟩
Υ

▴

∧3
⟨p0.4128, p6.0472⟩ ⟨

p0.1696, p7.1730

⟩ ⟨
p0.0968, p5.3195

⟩
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Example 2 Let Υ = ⟨p2, p3⟩ , Υ1 = ⟨p4, p2⟩ and Υ2 = ⟨p5, p1⟩ be three LIFNs defined on 
ℙ̂[0,8] and � = 3 . Then, using the new operational laws mentioned in Def. 12 with different 
LSFs, we get the results as shown in Table 1.

Theorem 1 Let Υ1 =
⟨
p�1 , p�1

⟩
 and Υ2 =

⟨
p�2 , p�2

⟩
 be two LIFNs. If Υ3 = Υ1

▴

⊕Υ2 and 

Υ4 = Υ1

▴

⊗Υ2. Then, both Υ3 and Υ4 are also LIFNs.

Proof Since Υ3 = Υ1

▴

⊕Υ2 =
⟨
p𝜉3 , p𝜂3

⟩
 . From Def. 12, we have

Since p�i , p�i ∈ ℙ̂[0,2t] and �i + �i ≤ 2t for i = 1, 2 , then �∗
(
p�i

)
 , �∗

(
p�i

)
∈ [0, 1] and 

�∗
(
p�i

)
+ �∗

(
p�i

)
≤ 1 for i = 1, 2 . Using these results, we have

 Therefore

 By using Eqs. (12) and (13), we get

 which shows that Υ3 is a LIFN. Similarly, we can prove that Υ4 is also a LIFN.
This completes the proof of Theorem.   ◻

Theorem  2 Let Υ =
⟨
p� , p�

⟩
 be a LIFN and 𝜆 > 0. If Υ1 = �

▴

∗Υ and Υ2 = Υ
▴

∧�, then, 
both Υ1 and Υ2 are also LIFNs.

Proof Since Υ1 = �
▴

∗Υ =
⟨
p�1 , p�1

⟩
 . Using Def. 12, we get

 Also p� , p� ∈ ℙ̂[0,2t] and � + � ≤ 2t , then �∗
(
p�
)
 , �∗

(
p�
)
∈ [0, 1] and �∗

(
p�
)
+ �∗

(
p�
)
≤ 1 . 

It gives

(12)p�3 = �∗−1
(
�∗

(
p�1

)
+ �∗

(
p�2

)
− �∗

(
p�1

)
�∗

(
p�2

))
;

(13)p�3 = �∗−1
(
�∗

(
p�1

)
�∗

(
p�2

))
.

0 ≤ �∗
(
p�1

)
+ �∗

(
p�2

)
− �∗

(
p�1

)
�∗

(
p�2

)
≤ 1 and 0 ≤ �∗

(
p�1

)
�∗

(
p�2

)
≤ 1.

�∗−1
(
�∗

(
p�1

)
+ �∗

(
p�2

)
− �∗

(
p�1

)
�∗

(
p�2

))
,

�∗−1
(
�∗

(
p�1

)
�∗

(
p�2

))
∈ ℙ̂[0,2t].

�∗
(
p�3

)
+ �∗

(
p�3

)
= �∗

(
p�1

)
+ �∗

(
p�2

)
− �∗

(
p�1

)
�∗

(
p�2

)
+ �∗

(
p�1

)
�∗

(
p�2

)

≤ �∗
(
p�1

)
+ �∗

(
p�2

)
− �∗

(
p�1

)
�∗

(
p�2

)
+
(
1 − �∗

(
p�1

))(
1 − �∗

(
p�2

))
= 1.

(14)p�1 = �∗−1
(
1 −

(
1 − �∗

(
p�
))�)

;

(15)p�1 = �∗−1
((

�∗
(
p�
))�)

.

0 ≤ 1 −
(
1 − �∗

(
p�
))�

≤ 1; 0 ≤
(
�∗

(
p�
))�

≤ 1.



5137Matrix games with linguistic intuitionistic fuzzy Payoffs…

1 3

Therefore

 From Eqs. (14) and (15), we have

which confirms that Υ1 is a LIFN. Similarly, we can prove that Υ2 is also a LIFN.
This proves the Theorem.   ◻

Remark 1 In the following, let us examine the �
▴

∗Υ and Υ
▴

∧� for some special cases of � 
and Υ . 

(i) If Υ =
�
p� , p�

�
= ⟨p2t, p0⟩ , then 

(ii) If Υ =
�
p� , p�

�
= ⟨p0, p2t⟩ , then 

(iii) If � → 0 , then 

(iv) If � → +∞ , then 

(v) If Υ =
�
p� , p�

�
= ⟨p0, p0⟩ , then 

�∗−1
(
1 −

(
1 − �∗

(
p�
))�)

,�∗−1
((

�∗
(
p�
))�)

∈ ℙ̂[0,2t].

�∗
(
p�1

)
+ �∗

(
p�1

)
= 1 −

(
1 − �∗

(
p�
))�

+
(
�∗

(
p�
))�

≤ 1 −
(
1 − �∗

(
p�
))�

+
(
1 − �∗

(
p�
))�

= 1.

�
▴

∗Υ =
�
�∗−1

�
1 −

�
1 − �∗

�
p2t

����
,�∗−1

��
�∗

�
p0
�����

= ⟨p2t, p0⟩;

Υ
▴

∧� =
�
�∗−1

��
�∗

�
p2t

����
,�∗−1

�
1 −

�
1 − �∗

�
p0
�����

= ⟨p2t, p0⟩.

�
▴

∗Υ =
�
�∗−1

�
1 −

�
1 − �∗

�
p0
����

,�∗−1
��

�∗
�
p2t

�����
= ⟨p0, p2t⟩;

Υ
▴

∧� =
�
�∗−1

��
�∗

�
p0
����

,�∗−1
�
1 −

�
1 − �∗

�
p2t

�����
= ⟨p0, p2t⟩.

�
▴

∗Υ =
�
�∗−1

�
1 −

�
1 − �∗

�
p�
����

,�∗−1
��

�∗
�
p�
�����

= ⟨p0, p2t⟩;

Υ
▴

∧� =
�
�∗−1

��
�∗

�
p�
����

,�∗−1
�
1 −

�
1 − �∗

�
p�
�����

= ⟨p2t, p0⟩.

�
▴

∗Υ =
�
�∗−1

�
1 −

�
1 − �∗

�
p�
����

,�∗−1
��

�∗
�
p�
�����

= ⟨p2t, p0⟩;

Υ
▴

∧� =
�
�∗−1

��
�∗

�
p�
����

,�∗−1
�
1 −

�
1 − �∗

�
p�
�����

= ⟨p0, p2t⟩.

�
▴

∗Υ =
�
�∗−1

�
1 −

�
1 − �∗

�
p0
����

,�∗−1
��

�∗
�
p0
�����

= ⟨p0, p0⟩;

Υ
▴

∧� =
�
�∗−1

��
�∗

�
p0
����

,�∗−1
�
1 −

�
1 − �∗

�
p0
�����

= ⟨p0, p0⟩.
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Theorem 3 Let Υ1 =
⟨
p�1 , p�1

⟩
 and Υ2 =

⟨
p�2 , p�2

⟩
 and Υ3 =

⟨
p�3 , p�3

⟩
 be three LIFNs, 

then new operational laws of LIFNs satisfy the following properties: 

(a) Υ1

▴

⊕Υ2 = Υ2

▴

⊕Υ1;

(b) Υ1

▴

⊗Υ2 = Υ2

▴

⊗Υ1;

(c) 
(
Υ1

▴

⊕Υ2

)
▴

⊕Υ3 = Υ1

▴

⊕

(
Υ2

▴

⊕Υ3

)
;

(d) 
(
Υ1

▴

⊗Υ2

)
▴

⊗Υ3 = Υ1

▴

⊗

(
Υ2

▴

⊗Υ3

)
.

Proof The proof follows directly from Definition 12.   ◻

Theorem 4 Let Υ =
⟨
p� , p�

⟩
 , Υ1 =

⟨
p�1 , p�1

⟩
 and Υ2 =

⟨
p�2 , p�2

⟩
,Υ3 =

⟨
p�3 , p�3

⟩
 be four 

LIFNs and 𝜆, 𝜆1, 𝜆2 > 0, then 

(a) 
(
𝜆
▴

∗Υ1

)
▴

⊕
(
𝜆
▴

∗Υ2

)
= 𝜆

▴

∗

(
Υ1

▴

⊕Υ2

)
;

(b) 
(
Υ1

▴

∧𝜆

)
▴

⊗

(
Υ2

▴

∧𝜆

)
=

(
Υ1

▴

⊗Υ2

)▴

∧

𝜆;

(c) 
(
𝜆1

▴

∗Υ
)

▴

⊕
(
𝜆2

▴

∗Υ
)
=
(
𝜆1 + 𝜆2

)▴
∗Υ;

(d) 
(
Υ

▴

∧𝜆1

)
▴

⊗

(
Υ

▴

∧𝜆2

)
= Υ

▴

∧
(
𝜆1 + 𝜆2

)
;

(e) �1
▴

∗
(
�2

▴

∗Υ
)
=
(
�1�2

)▴
∗Υ;

(f) 
(
Υ

▴

∧�1

)▴

∧

�2 = Υ
▴

∧
(
�1�2

)
;

(g) ΥC
1

▴

⊕ΥC
2
=

(
Υ1

▴

⊗Υ2

)C

;

(h) ΥC
1

▴

⊗ΥC
2
=

(
Υ1

▴

⊕Υ2

)C

;

(i) 
(
ΥC

)▴

∧
� =

(
�
▴

∗Υ
)C

;

(j) �
▴

∗
(
ΥC

)
=

(
Υ

▴

∧�

)C

.

Proof Here, we shall prove only (a), (b) and (g), the proofs of the other statements can be 
obtained similarly.
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(a) Utilizing the operational laws given in Def. 12, we have

 and

 Therefore, we get

 and

 Hence, from (16) and (17), we get

(b) From operational laws defined in Def. 12, we know

 and

 Therefore, we get

 and

 Hence, Eqs. (18) and (19) gives

�
▴

∗Υ1 =
⟨
�∗−1

(
1 −

(
1 − �∗

(
p�1

))�)
,�∗−1

((
�∗

(
p�1

))�)⟩
,

�
▴

∗Υ2 =
⟨
�∗−1

(
1 −

(
1 − �∗

(
p�2

))�)
,�∗−1

((
�∗

(
p�2

))�)⟩
,

Υ1

▴

⊕Υ2 =
⟨
𝜑∗−1

(
𝜑∗

(
p𝜉1

)
+ 𝜑∗

(
p𝜉2

)
− 𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))
,𝜑∗−1

(
𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))⟩
.

(16)

(
𝜆
▴

∗Υ1

)
▴

⊕
(
𝜆
▴

∗Υ2

)
=
⟨
𝜑∗−1

(
1 −

(
1 − 𝜑∗

(
p𝜉1

))𝜆(
1 − 𝜑∗

(
p𝜉2

))𝜆)
,𝜑∗−1

((
𝜑∗

(
p𝜂1

))𝜆(
𝜑∗

(
p𝜂2

))𝜆)⟩
,

(17)

𝜆
▴

∗

(
Υ1

▴

⊕Υ2

)
=
⟨
𝜑∗−1

(
1 −

(
1 − 𝜑∗

(
p𝜉1

))𝜆(
1 − 𝜑∗

(
p𝜉2

))𝜆)
,𝜑∗−1

((
𝜑∗

(
p𝜂1

))𝜆(
𝜑∗

(
p𝜂2

))𝜆)⟩
.

(
𝜆
▴

∗Υ1

)
▴

⊕
(
𝜆
▴

∗Υ2

)
= 𝜆

▴

∗

(
Υ1

▴

⊕Υ2

)
.

Υ1

▴

∧� =
⟨
�∗−1

((
�∗

(
p�1

))�)
,�∗−1

(
1 −

(
1 − �∗

(
p�1

))�)⟩
;

Υ2

▴

∧� =
⟨
�∗−1

((
�∗

(
p�2

))�)
,�∗−1

(
1 −

(
1 − �∗

(
p�2

))�)⟩
;

Υ1

▴

⊗Υ2 =
⟨
𝜑∗−1

(
𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))
,𝜑∗−1

(
𝜑∗

(
p𝜂1

)
+ 𝜑∗

(
p𝜂2

)
− 𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))⟩
.

(18)

(
Υ1

▴

∧𝜆

)
▴

⊗

(
Υ2

▴

∧𝜆

)
=
⟨
𝜑∗−1

((
𝜑∗

(
p𝜉1

))𝜆(
𝜑∗

(
p𝜉2

))𝜆)
,𝜑∗−1

(
1 −

(
1 − 𝜑∗

(
p𝜂1

))𝜆(
1 − 𝜑∗

(
p𝜂2

))𝜆)⟩
,

(19)

(
Υ1

▴

⊗Υ2

)▴

∧

𝜆 =
⟨
𝜑∗−1

((
𝜑∗

(
p𝜉1

))𝜆(
𝜑∗

(
p𝜉2

))𝜆)
,𝜑∗−1

(
1 −

(
1 − 𝜑∗

(
p𝜂1

))𝜆(
1 − 𝜑∗

(
p𝜂2

))𝜆)⟩
.

(
Υ1

▴

∧𝜆

)
▴

⊗

(
Υ2

▴

∧𝜆

)
=

(
Υ1

▴

⊗Υ2

)▴

∧

𝜆.
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(g) Using operational laws given in Defs. 4 and 12, we have

 and

 From Eqs. (20) and (21), we obtain

Hence proved.   ◻

Theorem  5 Let Υ1 =
⟨
p�1 , p�1

⟩
 and Υ2 =

⟨
p�2 , p�2

⟩
 be two LIFNs, then the following 

results are true: 

(a) 
(
Υ1 ∪ Υ2

) ▴

⊕
(
Υ1 ∩ Υ2

)
= Υ1

▴

⊕Υ2;
(b) 

(
Υ1 ∪ Υ2

) ▴

⊗
(
Υ1 ∩ Υ2

)
= Υ1

▴

⊗Υ2.

Proof In the following, we shall prove only (a) part, and (b) can be proved similarly.

This completes the proof.   ◻

3.2  Generalized weighted arithmetic aggregation operator for LIFNs with LSF

In this subsection, we formulate a generalized linguistic intuitionistic fuzzy weighted average 
operator by using the new operational laws defined in Def. 12 in order to aggregate a collec-
tion of n LIFNs Υi =

⟨
p�i , p�i

⟩
, (i = 1, 2,… , n) . Let Ξ be the collection of all LIFNs.

Definition 13 Let Υi =
⟨
p�i , p�i

⟩
, (i = 1, 2,… , n) be a collection of n LIFNs and 

GLIFWA ∶ Ξn
→ Ξ , if

(20)
ΥC

1

▴

⊕ΥC
2
=
⟨
𝜑∗−1

(
𝜑∗

(
p𝜂1

)
+ 𝜑∗

(
p𝜂2

)
− 𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))
,𝜑∗−1

(
𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))⟩
,

(21)

(
Υ1

▴

⊗Υ2

)C

=
⟨
𝜑∗−1

(
𝜑∗

(
p𝜂1

)
+ 𝜑∗

(
p𝜂2

)
− 𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))
,𝜑∗−1

(
𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))⟩
.

ΥC
1

▴

⊕ΥC
2
=

(
Υ1

▴

⊗Υ2

)C

.

(
Υ1 ∪ Υ2

) ▴

⊗
(
Υ1 ∩ Υ2

)

=
⟨
𝜑∗−1

(
𝜑∗

(
max

(
p𝜉1

, p𝜉2

))
+ 𝜑∗

(
min

(
p𝜉1

, p𝜉2

))
− 𝜑∗

(
max

(
p𝜉1

, p𝜉2

))
𝜑∗

(
min

(
p𝜉1

, p𝜉2

)))
,

𝜑∗−1
(
𝜑∗

(
min

(
p𝜂1

, p𝜂2

))
𝜑∗

(
max

(
p𝜂1

, p𝜂2

)))⟩

=
⟨
𝜑∗−1

((
max

(
𝜑∗

(
p𝜉1

)
,𝜑∗

(
p𝜉2

)))
+
(
min

(
𝜑∗

(
p𝜉1

)
,𝜑∗

(
p𝜉2

)))

−
(
max

(
𝜑∗

(
p𝜉1

)
,𝜑∗

(
p𝜉2

)))(
min

(
𝜑∗

(
p𝜉1

)
,𝜑∗

(
p𝜉2

))))
,

𝜑∗−1
((
min

(
𝜑∗

(
p𝜂1

)
,𝜑∗

(
p𝜂2

)))(
max

(
𝜑∗

(
p𝜂1

)
,𝜑∗

(
p𝜂2

))))⟩

=
⟨
𝜑∗−1

(
𝜑∗

(
p𝜉1

)
+ 𝜑∗

(
p𝜉2

)
− 𝜑∗

(
p𝜉1

)
𝜑∗

(
p𝜉2

))
,𝜑∗−1

(
𝜑∗

(
p𝜂1

)
𝜑∗

(
p𝜂2

))⟩

= Υ1

▴

⊕Υ2..
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 then GLIFWA is called the generalized linguistic intuitionistic fuzzy weighted average 
operator, where 𝜆 > 0 , w =

(
w1,w2,… ,wn

)T is a weight vector of Υi with wi > 0 and ∑n

i=1
wi = 1.

Theorem  6 Let Υi =
⟨
p�i , p�i

⟩
, (i = 1, 2,… , n) be a collection of n LIFNs. Then, the 

aggregated value by using the GLIFWA operator is also a LIFN and is given by

Proof The first result follows quickly from Definition 12 and Theorem 1. In the following, 
we first prove

 by using the principle of mathematical induction on n.
First, let n = 2 , by using the operational laws of LIFNs listed in Def. 12, we get

 then

 That is, Eq. (24) true for n = 2.
Next, suppose that Eq. (24) holds for n = k , i.e.,

 When n = k + 1 , based on the operational laws mentioned in Def. 12, we have

(22)

GLIFWA
(
Υ1,Υ2,… ,Υn

)
=

((
w1

▴

∗

(
Υ1

▴

∧𝜆

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧𝜆

))
▴

⊕…
▴

⊕

(
wn

▴

∗

(
Υn

▴

∧𝜆

)))▴

∧
1

𝜆
,

(23)

GLIFWA
�
Υ1,Υ2,… ,Υn

�

=

�
�∗−1

⎛⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

� 1

� ⎞⎟⎟⎠
,�∗−1

⎛⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�i

����wi

� 1

� ⎞⎟⎟⎠

�
.

(24)

(
w1

▴

∗

(
Υ1

▴

∧𝜆

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧𝜆

))
▴

⊕…
▴

⊕

(
wn

▴

∗

(
Υn

▴

∧𝜆

))

=

⟨
𝜑∗−1

(
1 −

n∏
i=1

(
1 −

(
𝜑∗

(
p𝜉i

))𝜆)wi

)
,𝜑∗−1

(
n∏
i=1

(
1 −

(
1 − 𝜑∗

(
p𝜂i

))𝜆)wi

)⟩
.

Υ1

▴

∧� =
⟨
�∗−1

((
�∗

(
p�1

))�)
,�∗−1

(
1 −

(
1 − �∗

(
p�1

))�)⟩
,

Υ2

▴

∧� =
⟨
�∗−1

((
�∗

(
p�2

))�)
,�∗−1

(
1 −

(
1 − �∗

(
p�2

))�)⟩
.

(
w1

▴

∗

(
Υ1

▴

∧𝜆

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧𝜆

))
=

⟨
𝜑∗−1

(
1 −

2∏
i=1

(
1 −

(
𝜑∗

(
p𝜉i

))𝜆
)wi

)
,𝜑∗−1

(
2∏
i=1

(
1 −

(
1 − 𝜑∗

(
p𝜂i

))𝜆
)wi

)⟩
.

(25)

(
w1

▴

∗

(
Υ1

▴

∧𝜆

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧𝜆

))
▴

⊕…
▴

⊕

(
wk

▴

∗

(
Υk

▴

∧𝜆

))

=

⟨
𝜑∗−1

(
1 −

k∏
i=1

(
1 −

(
𝜑∗

(
p𝜉i

))𝜆)wi

)
,𝜑∗−1

(
k∏

i=1

(
1 −

(
1 − 𝜑∗

(
p𝜂i

))𝜆)wi

)⟩
.
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 Hence it is clear that the Eq. (24) holds for n = k + 1 . Therefore, by the principle of math-
ematical induction, the result given in Eq. (24) is true for all n ∈ Z+ . Then

 This completes the proof of theorem.   ◻

Based on Definition  14, we can easily prove some desirable properties of the 
GLIFWA operator.

Theorem  7 Let Υi =
⟨
p�i , p�i

⟩
, (i = 1, 2,… , n) be a collection of n LIFNs and 

w =
(
w1,w2,… ,wn

)T be the weighting vector of Υi with wi > 0 and 
n∑
i=1

wi = 1, then we 

have the following properties: 

(a) (Idempotency) If Υi = Υ =
⟨
p� , p�

⟩
∀ i , then 

(b) (Monotonicity) Let Υ�

i
=
⟨
p��

i

, p��
i

⟩
(i = 1, 2,… , n) be a collection of LIFNs such that 

p�′
i

≥ p�i and p��
i

≤ p�i ∀ i , then 

(c) (Boundedness) If Υ▴ =
⟨
max

i

(
p�i

)
, min

i

(
p�i

)⟩
 and Υ▾ =

⟨
min
i

(
p�i

)
, max

i

(
p�i

)⟩
 are 

two LIFNs , then 

Proof (a) By Theorem 6, we have

(26)

(
w1

▴

∗

(
Υ1

▴

∧𝜆

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧𝜆

))
▴

⊕…
▴

⊕

(
wk+1

▴

∗

(
Υk+1

▴

∧𝜆

))

=

⟨
𝜑∗−1

(
1 −

k∏
i=1

(
1 −

(
𝜑∗

(
p𝜉i

))𝜆)wi

)
,𝜑∗−1

(
k∏

i=1

(
1 −

(
1 − 𝜑∗

(
p𝜂i

))𝜆)wi

)⟩

▴

⊕

⟨
𝜑∗−1

(
1 −

(
1 −

(
𝜑∗

(
p𝜉k+1

))𝜆
)wk+1

)
,𝜑∗−1

((
1 −

(
1 − 𝜑∗

(
p𝜂k+1

))𝜆
)wk+1

)⟩

=

⟨
𝜑∗−1

(
1 −

k+1∏
i=1

(
1 −

(
𝜑∗

(
p𝜉i

))𝜆)wi

)
,𝜑∗−1

(
k+1∏
i=1

(
1 −

(
1 − 𝜑∗

(
p𝜂i

))𝜆)wi

)⟩
.

GLIFWA
�
Υ1,Υ2,… ,Υn

�

=

��
�∗−1

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

�
,�∗−1

�
n�
i=1

�
1 −

�
1 − �∗

�
p�i

����wi

���▴

∧

1

�

=

�
�∗−1

⎛⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

� 1

� ⎞⎟⎟⎠
,�∗−1

⎛⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�i

����wi

� 1

� ⎞⎟⎟⎠

�
.

GLIFWA
(
Υ1,Υ2,… ,Υn

)
=
⟨
p� , p�

⟩
.

GLIFWA
(
Υ1,Υ2,… ,Υn

)
≤ GLIPFWA

(
Υ

�

1
,Υ

�

2
,… ,Υ

�

n

)
.

Υ▾ ≤ GLIFWA
(
Υ1,Υ2,… ,Υn

)
≤ Υ▴.
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 (b) Since p�′
i

≥ p�i and p�′
i

≤ p�i for all i, then

and

 Therefore, according to Definition 6, we obtain

 that is,

(c) It directly follows from part (b).
This completes the proof.   ◻

GLIFWA
�
Υ1,Υ2,… ,Υn

�
= GLIFWA(Υ,Υ,… ,Υ)

=

�
�∗−1

⎛
⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�
����wi

� 1

� ⎞⎟⎟⎠
,�∗−1

⎛
⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�
����wi

� 1

� ⎞⎟⎟⎠

�

=

�
�∗−1

��
1 −

�
1 −

�
�∗

�
p�
����� 1

�

�
,�∗−1

�
1 +

��
1 − �∗

�
p�
���� 1

�

��
=
�
p� , p�

�
= Υ.

(27)

n�
i=1

�
1 −

�
�∗

�
p��

i

���
�wi

≤

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

⇒ 1 −

n�
i=1

�
1 −

�
�∗

�
p��

i

���
�wi

≥ 1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

⇒

�
1 −

n�
i=1

�
1 −

�
�∗

�
p��

i

���
�wi

� 1

�

≥

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

� 1

�

⇒ �∗−1
⎛⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p��

i

���
�wi

� 1

� ⎞⎟⎟⎠
≥ �∗−1

⎛⎜⎜⎝

⎛⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

����wi

� 1

� ⎞⎟⎟⎠

⎞⎟⎟⎠
,

(28)

n�
i=1

�
1 −

�
1 − �∗

�
p�

�

i

���
�w

i

≤

n�
i=1

�
1 −

�
1 − �∗

�
p�

i

����w
i

⇒ 1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

�

i

���
�w

i

≥ 1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

i

����w
i

⇒

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

�

i

���
�w

i

� 1

�

≥

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

i

����w
i

� 1

�

⇒ �∗−1
⎛
⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

�

i

���
�w

i

� 1

� ⎞⎟⎟⎠
≤ �∗−1

⎛
⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�

i

����w
i

� 1

� ⎞⎟⎟⎠
.

(29)

�
�∗−1

⎛⎜⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p
�
�

i

���
�wi

� 1
�
⎞⎟⎟⎟⎠
,�∗−1

⎛⎜⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p
�
�

i

���
�wi

� 1
�
⎞⎟⎟⎟⎠

�

≥

�
�∗−1

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�
1 −

n�
i=1

�
1 −

�
�∗

�
p�i

���
�wi

� 1
�
⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
,�∗−1

⎛⎜⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �∗

�
p�i

���
�wi

� 1
�
⎞⎟⎟⎟⎠

�
,

GLIFWA
(
Υ1,Υ2,… ,Υn

)
≤ GLIPFWA

(
Υ

�

1
,Υ

�

2
,… ,Υ

�

n

)
.
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Example 3 Let Υ1 = ⟨p4, p3⟩,Υ2 = ⟨p1, p5⟩,Υ3 = ⟨p2, p3⟩,Υ4 = ⟨p3, p1⟩ and 
Υ5 = ⟨p2, p4⟩ be five LIFNs derived from ℙ̂[0,8] =

{
pd|d ∈ [0, 8]

}
 . Further assume that 

w = (0.20, 0.10, 0.15, 0.25, 0.30)T represents the weight vector associated with LIFNs 
Υi(i = 1, 2,… , 5) . Hence, the aggregated values based on developed GLIFWA aggregation 
operator mention in Eq. (23) by taking different LSFs are summarized in Table 2.

Now, we investigate some special cases of the proposed GLIFWA operator. 

SC1.  If � = 1 , then GLIFWA operator becomes the linguistic intuitionistic fuzzy 
weighted averaging (LIFWA) operator. 

SC2.  If � = 2 , then GLIFWA operator is reduced to the quadratic linguistic intuitionistic 
fuzzy weighted averaging (QLIFWA) operator. 

SC3.  When � = 3 , then GLIFWA operator reduces to the cubic linguistic intuitionistic 
fuzzy weighted averaging (CLIFWA) operator. 

SC4.  If � → 0 , then GLIFWA operator becomes the linguistic intuitionistic fuzzy 
weighted geometric (LIFWG) operator. 

SC5.  If � = 1 and �∗ = �∗
1
 , then GLIFWA operator is reduced into the LIFWA operator 

mentioned in Eq. (4) .
SC6.  If � → 0 and �∗ = �∗

1
 , then GLIFWA operator becomes the LIFWG operator given 

in Eq. (5) .

(30)GLIFWA
(
Υ1,Υ2,… ,Υn

)
=
(
w1

▴

∗Υ1

)
▴

⊕
(
w2

▴

∗Υ2

)
▴

⊕…
▴

⊕
(
wn

▴

∗Υn

)
.

(31)

GLIFWA
(
Υ1,Υ2,… ,Υn

)
=

((
w1

▴

∗

(
Υ1

▴

∧2

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧2

))
▴

⊕…
▴

⊕

(
wn

▴

∗

(
Υn

▴

∧2

)))▴

∧
1

2
.

(32)

GLIFWA
(
Υ1,Υ2,… ,Υn

)
=

((
w1

▴

∗

(
Υ1

▴

∧3

))
▴

⊕

(
w2

▴

∗

(
Υ2

▴

∧3

))
▴

⊕…
▴

⊕

(
wn

▴

∗

(
Υn

▴

∧3

)))▴

∧
1

3
.

(33)GLIFWA
(
Υ1,Υ2,… ,Υn

)
=

(
Υ1

▴

∧w1

)
▴

⊗

(
Υ2

▴

∧w2

)
▴

⊗…
▴

⊗

(
Υn

▴

∧wn

)
.

Table 2  Aggregated values 
based on GLIFWA aggregation 
operator with different LSF

GLIFWA LSF

�∗ = �∗
1

�∗ = �∗
2

(� = 1.5)
�∗ = �∗

3

(� = � = 0.8)

� = 1 ⟨p2.6320, p2.6152⟩ ⟨p2.4453, p2.4030⟩ ⟨
p2.7419, p2.7363

⟩
� = 3

⟨
p2.8752, p2.3984

⟩ ⟨p2.5880, p2.2143⟩ ⟨p3.0508, p2.5060⟩
� = 5

⟨
p3.0912, p2.1920

⟩ ⟨p2.7312, p2.0210⟩ ⟨
p3.3041, p2.2963

⟩
� = 7 ⟨p3.2576, p2.0160⟩ ⟨

p2.8590, p1.8401

⟩ ⟨
p3.4777, p2.1191

⟩
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4  Matrix games with linguistic intuitionistic fuzzy payoffs 
and solutions

Suppose that Ã denotes a matrix game with payoffs represent by LIFNs. Let 
�
m =

(
�1, �2,… , �m

)
 and �n =

(
�1, �2,… , �n

)
 be two finite sets of pure strategies for person 

I and person II, respectively and ℙ̂[0,2t] =
{
pd|p0 ≤ pd ≤ p2t, d ∈ [0, 2t]

}
 be a continuous 

LTS with odd cardinality. Here, t is a positive integer. If person I chooses a pure strategy 
�i ∈ �

m and person II selects a pure strategy �j ∈ �
n , then at the outcome 

(
�i, �j

)
 , the person I 

gains a payoff represented by LIFN Υij =
⟨
p�ij , p�ij

⟩
 with the conditions p�ij , p�ij ∈ ℙ̂[0,2t] and 

0 ≤ �ij + �ij ≤ 2t . On the other hand, person II gains a negation of LIFS Υij =
⟨
p�ij , p�ij

⟩
 , i.e. 

ΥC
ij
=
⟨
p�ij , p�ij

⟩
 . Thus the matrix gameÃ can be expressed as 

Let Rn denotes the n-dimensional Euclidean space and Rn
+
= {z|z ∈ Rn, z ≥ 0} . Let 

xi (i = 1, 2,… ,m) and yj (i = 1, 2,… , n) be the probabilities for the persons I and II, respec-
tively, to choose the pure strategies �i and �j , respectively. The probability vectors 
x =

(
x1, x2,… , xm

)T
∈ Rm

+
 and y =

(
y1, y2,… , yn

)T
∈ Rn

+
 are said to be the mixed strategies 

for persons I and II, respectively, if they satisfy xTem = 1 and yTen = 1 with 
em = (1, 1,… , 1) ∈ Rm

+
 and en = (1, 1,… , 1) ∈ Rn

+
 , respectively. Further, let 

X =
{
x|x ∈ Rm

+
, xTem = 1

}
 and Y =

{
y|y ∈ Rn

+
, yTen = 1

}
 be the mixed strategy spaces for 

the persons I and II, respectively. Then, a matrix game with payoffs represented by LIFNs in 
mixed strategies can be shown by 𝔏ℑ𝔉𝔊 =

(
𝕊
m,X,𝕊n, Y , �ℙ[0,2t], Ã

)
 , which is usually called 

the matrix game Ã =
(
Υij

)
m×n

 with payoffs represented by LIFNs.
Suppose person I chooses a mixed strategy x ∈ X and person II chooses a mixed strategy 

y ∈ Y , then the expected payoff for person I is obtained as 

Then, by using the GLIFFWA operator defined in Eq. (28) with � = 1 , the expected value 
�(x, y) can be expressed as

(34)

�(x, y) =

⟨
�∗−1

(
1 −

n∏
j=1

m∏
i=1

(
1 − �∗

(
p�ij

))xiyj

)
,�∗−1

(
n∏
j=1

m∏
i=1

(
�∗

(
p�ij

))xiyj

)⟩
=
⟨
p�xy , p�xy

⟩
.
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 Without loss of generality, let us assume that the person I is a maximizing person and 
person II is a minimizing person. Then, based on the maximin and minmax prin-
ciples of the persons I and II, respectively, if there exists a pair of mixed strategies (
x⋆, y⋆

) (
x⋆ ∈ X, y⋆ ∈ Y

)
 such that

then, x⋆ and y⋆ are known as optimal strategies for persons I and II, respectively and 
x⋆TÃy⋆ is called the value of the matrix game with LIFNs.

Definition 14 Let Ῡ and ̄̄Υ be two LIFNs. If there exist x̄ ∈ X and ȳ ∈ Y  such that 
x̄TÃy ⊇ Ῡ and xTÃȳ ⊆ ̄̄Υ for any x ∈ X, y ∈ Y  , then 

(
x̄, ȳ, Ῡ, ̄̄Υ

)
 is called the fesiable solu-

ation of the matrix game Ã with LIFN payoffs,Ῡ and ̄̄Υ are known as the feasible values for 
the person I and II, respectively, and x̄ and ȳ are called feasible strategies for the persons I 
and II, respectively.

Definition 15 Let M1 and M2 be the sets of all feasible values for the persons I and II, 
respectively. Assume that there exist Υ⋆ ∈ M1 and Υ⋆⋆ ∈ M2 . If there do no exist 
Ῡ ∈ M1 and ̄̄Υ ∈ M2 such that Ῡ ⊇ Υ⋆and ̄̄Υ ⊆ Υ⋆⋆ , with Ῡ ≠ Υ⋆and ̄̄Υ ≠ Υ⋆⋆ , then (
x⋆, y⋆,Υ⋆,Υ⋆⋆

)
 is called the solution of the matrix game Ã with LIFN payoffs. In addi-

tion, x⋆ is called a maximin strategy for person I and y⋆ is called a minimax strategy for 
person II; Υ⋆ and Υ⋆⋆ are called the values of the matrix game Ã with LIFN payoffs for 
person I and II, respectively.

5  Mathematical‑programming models for matrix games with payoffs 
represented by LIFNs

The minimum expected gain Ψ for person I can be given as:

Note that here Ψ is the function of x only. Then, to maximize the value of Ψ , the person I 
will select a mixed strategy x⋆ ∈ X , i.e.,

Such a mixed strategy x⋆ is called the maximin strategy for person I and Ψ⋆ is called the 
gain floor for person I.

The maximum expected loss Ω for person II is represented as:

It is worth mentioning that here Ω is the function of y only. Then, to minimize the value of 
Ω , the person II will choose a mixed strategy y⋆ ∈ Y  , i.e.,

(35)x⋆TÃy⋆ = max
x∈X

min
y∈Y

{
xTÃy

}
= min

y∈Y
max
x∈X

{
xTÃy

}
,

Ψ =
⟨
p�Ψ , p�Ψ

⟩
= min

y∈Y
�(x, y) =

⟨
min
y∈Y

(
p�xy

)
, max
y∈Y

(
p�xy

)⟩
.

Ψ⋆ =
⟨
p𝜉Ψ⋆ , p𝜂Ψ⋆

⟩
= max

x∈X
min
y∈Y

�(x, y) =

⟨
max
x∈X

min
y∈Y

(
p𝜉xy

)
, min
x∈X

max
y∈Y

(
p𝜂xy

)⟩
.

Ω =
⟨
p�Ω , p�Ω

⟩
= max

x∈X
�(x, y) =

⟨
max
x∈X

(
p�xy

)
, min
x∈X

(
p�xy

)⟩
.
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The mixed strategy y⋆ is called the minimax strategy for person II and Ψ⋆ is called the loss 
ceiling for person II.

Theorem 8 Let Ψ⋆ and Ω⋆ be the gain floor and the loss ceiling for persons I and II, 
respectively, then we have Ψ⋆ ⊆ Ω⋆.

Proof From Eq. (34), we know that �(x, y) is a LIFN. Then

Hence

Using Eq. (36), it can be easily obtained that

Thus, we have

It follows that

Therefore, we have

 which gives

Eqs. (37) and (38) show that p𝜉Ψ⋆ , p𝜂Ψ⋆ ∈ �ℙ[0,2t] and 0 ≤ 𝜉Ψ⋆ + 𝜂Ψ⋆ ≤ 2t . Hence Ψ⋆ is a 
LIFN. Similarly, we can also prove that Ω⋆ is a LIFN.

For any x ∈ X and y ∈ Y  , we have

Hence

Therefore, we get

Ω⋆ =
⟨
p𝜉Ω⋆ , p𝜂Ω⋆

⟩
= min

y∈Y
max
x∈X

�(x, y) =

⟨
min
y∈Y

max
x∈X

(
p𝜉xy

)
, max
y∈Y

min
x∈X

(
p𝜂xy

)⟩
.

(36)p�xy , p�xy ∈ ℙ̂[0,2t] and 0 ≤ �xy + �xy ≤ 2t

(37)max
x∈X

min
y∈Y

(
p�xy

)
, min
x∈X

max
y∈Y

(
p�xy

)
∈ ℙ̂[0,2t]

0 ≤ �xy +min
y∈Y

(
�xy

)
≤ �xy +max

y∈Y

(
�xy

)
≤ 2t.

0 ≤ min
y∈Y

(
�xy

)
+min

y∈Y

(
�xy

)
≤ �xy +max

y∈Y

(
�xy

)
≤ 2t.

0 ≤ min
y∈Y

(
�xy

)
+min

x∈X
min
y∈Y

(
�xy

)
≤ min

y∈Y

(
�xy

)
+min

x∈X
max
y∈Y

(
�xy

)
≤ �xy +min

x∈X
max
y∈Y

(
�xy

)
≤ 2t.

0 ≤ max
x∈X

min
y∈Y

(
�xy

)
+min

x∈X
min
y∈Y

(
�xy

)
≤ max

x∈X
min
y∈Y

(
�xy

)
+min

x∈X
max
y∈Y

(
�xy

)
≤ max

x∈X

(
�xy

)
+min

x∈X
max
y∈Y

(
�xy

)
≤ 2t,

(38)0 ≤ max
x∈X

min
y∈Y

(
�xy

)
+min

x∈X
max
y∈Y

(
�xy

)
≤ 2t.

min
y∈Y

(
p�xy

)
≤

(
p�xy

)
≤ max

x∈X

(
p�xy

)
.

min
y∈Y

(
p�xy

)
≤ min

y∈Y
max
x∈X

(
p�xy

)
.
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On the other hand, for any x ∈ X and y ∈ Y  , we have

Hence

Therefore, we obtain

Using the inequalities given in Eqs. (39) and (40), we can conclude that

This completes the proof.   ◻

The maximin strategy x⋆ and the gain floor Ψ⋆ =
⟨
p𝜉Ψ⋆ , p𝜂Ψ⋆

⟩
 for person I can be 

obtained by solving the following nonlinear bi-objective programming model:

where p�Ψ = min
y∈Y

(
p�xy

)
,  p�Ψ = max

y∈Y

(
p�xy

)
.

Then according to the Def. 4 and Eq. (34), we have

which are equivalent to the following inequalities:

(39)max
x∈X

min
y∈Y

(
p𝜉xy

)
≤ min

y∈Y
max
x∈X

(
p𝜉xy

)
⇒ p𝜉Ψ⋆ ≤ p𝜉Ω⋆ .

max
y∈Y

(
p�xy

)
≥

(
p�xy

)
≥ min

x∈X

(
p�xy

)
.

max
y∈Y

(
p�xy

)
≥ max

y∈Y
min
x∈X

(
p�xy

)
.

(40)min
x∈X

max
y∈Y

(
p𝜂xy

)
≥ max

y∈Y
min
x∈X

(
p𝜂xy

)
⇒ p𝜂Ψ⋆ ≥ p𝜂Ω⋆ .

Ψ⋆ ⊆ Ω⋆.

(41)

(���1) max
�
p�Ψ

�
, min

�
p�Ψ

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

p�xy ≥ p�Ψ , for any y ∈ Y

p�xy ≤ p�Ψ , for any y ∈ Y

p�xy , p�xy , p�Ψ , p�Ψ ∈ ℙ̂[0,2t],

0 ≤ �Ψ + �Ψ ≤ 2t, 0 ≤ �xy + �xy ≤ 2t

xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m

(42)

�
p�xy ≥ p�Ψ
p�xy ≤ p�Ψ

⇔

⎧
⎪⎨⎪⎩

�∗−1
�
1 −

∏n

j=1

∏m

i=1

�
1 − �∗

�
p�ij

��xiyj
�
≥ p�Ψ

�∗−1
�∏n

j=1

∏m

i=1

�
�∗

�
p�ij

��xiyj
�
≤ p�Ψ

⇔

⎧
⎪⎨⎪⎩

∏n

j=1

∏m

i=1

�
1 − �∗

�
p�ij

��xiyj
≤ 1 − �∗

�
p�Ψ

�
∏n

j=1

∏m

i=1

�
�∗

�
p�ij

��xiyj
≤ �∗

�
p�Ψ

�
.
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except for p�Ψ = p2t , p�Ψ = p0 , p�ij = p2t and p�ij = p0.
Since �∗ is a strictly monotonically increasing function, then we have

Utilizing the weighted averaging operator Harsanyi (1955), the objective function of 
(MOD-1) can be written as:

where � ∈ [0, 1] reflects the person’s attitudinal character, which is provided by the persons 
according to the situation.

Combining Eq. (44)) with Eq. (43), then (MOD 1) can be expressed as

except for p�Ψ = p2t , p�Ψ = p0 , p�ij = p2t and p�ij = p0.
Further let ℜ1 = � ln

(
1 − �∗

(
p�Ψ

))
+ (1 − �) ln

(
�∗

(
p�Ψ

))
 , then (Model 2) can be 

rewritten as

Since Y is a finite and compact convex set, so, we can consider only the extreme points of 
the set. Therefore, (MOD-3) can be modified as follows:

(43)⇔

⎧
⎪⎨⎪⎩

∑n

j=1

∑m

i=1
xiyj ln

�
1 − �∗

�
p�ij

��
≤ ln

�
1 − �∗

�
p�Ψ

��
∑n

j=1

∑m

i=1
xiyj ln

�
�∗

�
p�ij

��
≤ ln

�
�∗

�
p�Ψ

��
.

max
{
p�Ψ

}
⇔ max

{
�∗

(
p�Ψ

)}
⇔ min

{
1 − �∗

(
p�Ψ

)}
⇔ min

{
ln
(
1 − �∗

(
p�Ψ

))}
for any p�Ψ ∈ ℙ̂[0,2t],

min
{
p�Ψ

}
⇔ min

{
�∗

(
p�Ψ

)}
⇔ min

{
ln
(
�∗

(
p�Ψ

))}
for any p�Ψ ∈ ℙ̂[0,2t].

(44)min
{
� ln

(
1 − �∗

(
p�Ψ

))
+ (1 − �)

(
ln
(
�∗

(
p�Ψ

)))}
,

(45)

(���2) min
�
� ln

�
1 − �∗

�
p�Ψ

��
+ (1 − �)

�
ln
�
�∗

�
p�Ψ

����

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n

j=1

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
xiyj

≤ � ln
�
1 − �∗

�
p�Ψ

��
+ (1 − �) ln

�
�∗

�
p�Ψ

��
for any y ∈ Y

p�ij , p�ij , p�Ψ , p�Ψ ∈ ℙ̂[0,2t],

0 ≤ �Ψ + �Ψ ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m

(46)

(���3) min
�
ℜ1

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

∑n

j=1

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
xiyj ≤ ℜ1 for any y ∈ Y

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ �ij + �ij ≤ 2t,

ℜ1 ≤ 0, xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m
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Similarly, the minimax strategy y⋆ and the loss ceiling Ω⋆ =
⟨
p𝜉Ω⋆ , p𝜂Ω⋆

⟩
 for person II can 

be generated by solving the following nonlinear bi-objective programming model given as 
follows:

where p�Ω = max
x∈X

(
p�xy

)
,  p�Ω = min

x∈X

(
p�xy

)
.

Then according to the Def. 4 and Eq. (34), we have

which are equivalent to the following inequalities:

except for p�Ω = p2t , p�Ω = p0 , p�ij = p2t and p�ij = p0.
Since �∗ is a strictly monotonically increasing function, then we have

Using the weighted averaging operator Harsanyi (1955), the objective function of (MOD-
5) can be represented as:

(47)

(���4) min
�
ℜ1

�

s.t.

⎧
⎪⎪⎨⎪⎪⎩

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
xi ≤ ℜ1, j = 1, 2,… , n

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ �ij + �ij ≤ 2t,

ℜ1 ≤ 0, xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m

(48)

(���5) min
�
p�Ω

�
, max

�
p�Ω

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

p�xy ≤ p�Ω , for any x ∈ X

p�xy ≥ p�Ω , for any x ∈ X

p�xy , p�xy , p�Ω , p�Ω ∈ ℙ̂[0,2t],

0 ≤ �Ω + �Ω ≤ 2t, 0 ≤ �xy + �xy ≤ 2t

yi ≥ 0,
∑n

j=1
yj = 1, j = 1, 2,… , n

(49)

�
p�xy ≤ p�Ω
p�xy ≥ p�Ω

⇔

⎧
⎪⎨⎪⎩

�∗−1
�
1 −

∏n

j=1

∏m

i=1

�
1 − �∗

�
p�ij

��xiyj
�
≤ p�Ω

�∗−1
�∏n

j=1

∏m

i=1

�
�∗

�
p�ij

��xiyj
�
≥ p�Ω

⇔

⎧
⎪⎨⎪⎩

∏n

j=1

∏m

i=1

�
1 − �∗

�
p�ij

��xiyj
≥ 1 − �∗

�
p�Ω

�
∏n

j=1

∏m

i=1

�
�∗

�
p�ij

��xiyj
≥ �∗

�
p�Ω

�
,

(50)⇔

⎧⎪⎨⎪⎩

∑n

j=1

∑m

i=1
xiyj ln

�
1 − �∗

�
p�ij

��
≥ ln

�
1 − �∗

�
p�Ω

��
∑n

j=1

∑m

i=1
xiyj ln

�
�∗

�
p�ij

��
≥ ln

�
�∗

�
p�Ω

��
.

min
{
p�Ω

}
⇔ min

{
�∗

(
p�Ω

)}
⇔ max

{
1 − �∗

(
p�Ω

)}
⇔ max

{
ln
(
1 − �∗

(
pΩΨ

))}
for any p�Ω ∈ ℙ̂[0,2t],

max
{
p�Ψ

}
⇔ max

{
�∗

(
p�Ψ

)}
⇔ max

{
ln
(
�∗

(
p�Ψ

))}
for any p�Ω ∈ ℙ̂[0,2t].

(51)max
{
� ln

(
1 − �∗

(
p�Ω

))
+ (1 − �)ln

(
�∗

(
p�Ω

))}
.
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Combining Eq. (51)) with Eq. (50), then (MOD 5) can be formulated as

except for p�Ω = p2t , p�Ω = p0 , p�ij = p2t and p�ij = p0.
Besides, let ℜ2 = � ln

(
1 − �∗

(
p�Ω

))
+ (1 − �) ln

(
�∗

(
p�Ω

))
 , then (Mod 6) can be 

rewritten as

Since X is a finite and compact convex set, so, we can consider only the extreme points of 
the set. Therefore, (MOD-7) can be modified as follows:

Theorem  9 For any � ∈ [0, 1], the matrix game Ã with payoffs represented by LIFNs 
always has a solution (x⋆, y⋆, x⋆T

Ay⋆).

Proof For any given � ∈ [0, 1] , the (MOD 4) and (MOD 8) given in Eqs. (47) and (54), 
respectively, are a pair of dual-primal linear programming models corresponding to the 
matrix game with the payoff matrix

 According to the minimax theorem for matrix games Barron (2008),the (MOD 4) and 
(MOD 8) always have optimal solutions, which are represented by 

(
x⋆,Ψ⋆

)
 and 

(
y⋆,Ω⋆

)
 , 

respectively, where Ψ⋆ = Ω⋆ . Hence,the matrix game Ã with payoffs represented by 
LIFNs always has a solution (x⋆, y⋆, x⋆T

Ay⋆) .   ◻

(52)

(���6) max
�
� ln

�
1 − �∗

�
p�Ω

��
+ (1 − �)ln

�
�∗

�
p�Ω

���

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n

j=1

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
xiyj

≥ � ln
�
1 − �∗

�
p�Ω

��
+ (1 − �) ln

�
�∗

�
p�Ω

��
for any x ∈ X

p�ij , p�ij , p�Ω , p�Ω ∈ ℙ̂[0,2t],

0 ≤ �Ω + �Ω ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

yj ≥ 0,
∑n

j=1
xi = 1, j = 1, 2,… , n

(53)

(���7) max
�
ℜ2

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

∑n

j=1

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
xiyj ≥ ℜ2 for any x ∈ X

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ �ij + �ij ≤ 2t,

ℜ2 ≤ 0, yj ≥ 0,
∑n

j=1
yj = 1, j = 1, 2,… , n

(54)

(���8) max
�
ℜ2

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
yj ≥ ℜ2, i = 1, 2,… ,m

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ �ij + �ij ≤ 2t,

ℜ2 ≤ 0, yj ≥ 0,
∑n

j=1
yj = 1, i = 1, 2,… , n

(55)
(
� ln

(
1 − �∗

(
p�ij

))
+ (1 − �) ln

(
�∗

(
p�ij

)))
m×n
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Theorem 10 ℜ1 and ℜ2 are monotonic and nondecreasing functions of � ∈ [0, 1].

Proof Since ℜ1 = � ln
(
1 − �∗

(
p�Ψ

))
+ (1 − �) ln

(
�∗

(
p�Ψ

))
 with p�Ψ , p�Ψ ∈ ℙ̂[0,2t] . Then, 

the partial derivative of ℜ1 with respect to � is calculated as follows:

Since p�Ψ , p�Ψ ∈ ℙ̂[0,2t] , which satisfies �Ψ + pΨ ≤ 2t , then �∗
(
p�Ψ

)
,�∗

(
p�Ψ

)
∈ [0, 1] and 

�∗
(
p�Ψ

)
+ �∗

(
p�Ψ

)
≤ 1 . Therefore 

(
1−�∗

(
p�Ψ

)

�∗
(
p�Ψ

)
)

≥ 1, except for �∗
(
p�Ψ

)
= 0 . Hence

which clearly shows that the ℜ1 is a monotonic and nondecreasing function of � ∈ [0, 1] . 
Similarly, we can prove that ℜ2 is a monotonic and nondecreasing function of � ∈ [0, 1] .  
 ◻

Theorem  11 Assume that (x⋆,ℜ⋆
1
) and (y⋆,ℜ⋆

2
) are optimal solutions of (MOD 4) 

and (MOD 8) with 0 < 𝜃 < 1, respectively. Then, (x⋆,Ψ⋆) and (y⋆,Ω⋆) are Pareto opti-
mal/noninferior solutions of (MOD 1) and (MOD 5), where Ψ⋆ =

⟨
p𝜉Ψ⋆ , p𝜂Ψ⋆

⟩
 and 

Ω⋆ =
⟨
p𝜉Ω⋆ , p𝜂Ω⋆

⟩
 are the LIFNs, respectively.

Proof Let us suppose (x⋆,Ψ⋆) is not a Pareto optimal/noninferior solution of (MOD 1), 
then there exists an optimal solution (x∙,Ψ∙) , where x∙ ∈ X and Ψ∙ =

⟨
p�Ψ∙ , p�Ψ∙

⟩
 such that

p𝜉Ψ∙ ≥ p𝜉Ψ⋆ , p𝜂Ψ∙ ≤ p𝜂Ψ⋆ , and at least one of which is strictly valid.
As 0 < 𝜃 < 1 , then we have

 and

(56)
dℜ1

d�
= ln

(
1 − �∗

(
p�Ψ

))
− ln

(
�∗

(
p�Ψ

))
= ln

(
1 − �∗

(
p�Ψ

)

�∗
(
p�Ψ

)
)

ln

(
1 − �∗

(
p�Ψ

)

�∗
(
p�Ψ

)
)

≥ 0 ⇒
dℜ1

d�
≥ 0,

(57)s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗−1

�
1 −

∏n

j=1

∏m

i=1

�
1 − �∗

�
p�ij

��x∙
i
yj
�

≥ p�Ψ∙ , for any y ∈ Y

�∗−1

�∏n

j=1

∏m

i=1

�
�∗

�
p�ij

��x∙
i
yj
�

≤ p�Ψ∙ , for any y ∈ Y

p�ij , p�ij , p�Ψ∙ , p�Ψ∙ ∈ ℙ̂[0,2t],

0 ≤ �Ψ∙ + �Ψ∙ ≤ 2t, 0 ≤ �ij + �ij ≤ 2t

x∙
i
≥ 0,

∑m

i=1
x∙
i
= 1, i = 1, 2,… ,m

(58)s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∑n

j=1

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
x∙
i
yj

≤ � ln
�
1 − �∗

�
p�Ψ∙

��
+ (1 − �) ln

�
�∗

�
p�Ψ∙

��
for any y ∈ Y

p�ij , p�ij , p�Ψ∙ , p�Ψ∙ ∈ ℙ̂[0,2t],

0 ≤ �Ψ∙ + �Ψ∙ ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

x∙
i
≥ 0,

∑m

i=1
x∙
i
= 1, i = 1, 2,… ,m
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Since Y is a finite and compact convex set, it makes sense to consider only the extreme 
points of the set Y, thus, Eq. (58) is reduced into the following:

 Let ℜ∙
1
= � ln

(
1 − �∗

(
p�Ψ∙

))
+ (1 − �) ln

(
�∗

(
p�Ψ∙

))
 , then

 It means 
(
x∙,ℜ∙

1

)
 is an optimal solution of (MOD 4), Eq. (59) gives ℜ∙

1
< ℜ⋆

1
 . Therefore, 

there exists a contradiction with the fact that 
(
x⋆,ℜ⋆

1

)
 is the optimal solution of (MOD 4). 

Hence, 
(
x⋆,Ψ⋆

)
 is a Pareto optimal/noninferior solution of (MOD-1). Similarly, we can 

prove that 
(
y⋆,Ω⋆

)
 is a Pareto optimal/noninferior solution of (MOD-5).

It is worth mentioning that if p�ij = p2t and p�ij = p0 , then ln
(
1 − �∗

(
p�ij

))
→ −∞ and 

ln
(
�∗

(
p�ij

))
→ −∞ . In this situation, the (MOD 4) and (MOD 8) have no sense. Thus, we 

can rewrite the (MOD 4) and (MOD 8) as the following nonlinear-programming models:

and

(59)
𝜃 ln

(
1 − 𝜑∗

(
p𝜉Ψ∙

))
+ (1 − 𝜃) ln

(
𝜑∗

(
p𝜂Ψ∙

))
< 𝜃 ln

(
1 − 𝜑∗

(
p𝜉Ψ⋆

))
+ (1 − 𝜃) ln

(
𝜑∗

(
p𝜂Ψ⋆

))
.

(60)s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
x∙
i

≤ � ln
�
1 − �∗

�
p�Ψ∙

��
+ (1 − �) ln

�
�∗

�
p�Ψ∙

��
, j = 1, 2,… , n

p�ij , p�ij , p�Ψ∙ , p�Ψ∙ ∈ ℙ̂[0,2t],

0 ≤ �Ψ∙ + �Ψ∙ ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

x∙
i
≥ 0,

∑m

i=1
x∙
i
= 1, i = 1, 2,… ,m

(61)

s.t.

⎧
⎪⎪⎨⎪⎪⎩

∑m

i=1

�
� ln

�
1 − �∗

�
p�ij

��
+ (1 − �) ln

�
�∗

�
p�ij

���
x∙
i
≤ ℜ1, j = 1, 2,… , n

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ �ij + �ij ≤ 2t,

ℜ∙
1
≤ 0, x∙

i
≥ 0,

∑m

i=1
x∙
i
= 1, i = 1, 2,… ,m

(62)

(���9) min
��

1 − �∗
�
p�Ψ

����
�∗

�
p�Ψ

��(1−�)�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏m

i=1

��
1 − �∗

�
p�ij

����
�∗

�
p�ij

��(1−�)
�xi

≤
�
1 − �∗

�
p�Ψ

����
�∗

�
p�Ψ

��(1−�)
for any y ∈ Y

p�ij , p�ij , p�Ψ , p�Ψ ∈ ℙ̂[0,2t],

0 ≤ �Ψ + �Ψ ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m
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Further assume that

 Using Eqs. (64) and (65), the (MOD 9) and (MOD 10) are transformed into the nonlinear-
programming models given by:

and

From Eqs. (47), (54), (66), and (67), we have ℑ⋆
1
= ℑ⋆

2
 and ℑ⋆

1
= eℜ

⋆
1 ,ℑ⋆

2
= eℜ

⋆
2  , where (

x⋆,ℜ⋆
1

)
 and 

(
y⋆,ℜ⋆

2

)
 are the optimal solutions of (MOD 4) and (MOD 8) and 

(
x⋆,ℑ⋆

1

)
 

and 
(
y⋆,ℑ⋆

2

)
 are the optimal solutions of (MOD 9) and (MOD 10) , respectively.

In the next section, we consider a real-life numerical example to demonstrate the 
solution procedure.

(63)

(���10) max
��

1 − �∗
�
p�Ω

����
�∗

�
p�Ω

��(1−�)�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏n

j=1

��
1 − �∗

�
p�ij

����
�∗

�
p�ij

��(1−�)
�yj

≥
�
1 − �∗

�
p�Ω

����
�∗

�
p�Ω

��(1−�)
for any x ∈ X

p�ij , p�ij , p�Ω , p�Ω ∈ ℙ̂[0,2t],

0 ≤ �Ω + �Ω ≤ 2t, 0 ≤ �ij + �ij ≤ 2t,

yj ≥ 0,
∑n

j=1
yj = 1, j = 1, 2,… ,m

(64)ℑ1 =
(
1 − �∗

(
p�Ψ

))�(
�∗

(
p�Ψ

))(1−�)

(65)ℑ2 =
(
1 − �∗

(
p�Ω

))�(
�∗

(
p�Ω

))(1−�)
.

(66)

(���9) min
�
ℑ1

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

∏m

i=1

��
1 − �∗

�
p�ij

����
�∗

�
p�ij

��(1−�)
�xi

≤ ℑ1 for any y ∈ Y

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ ℑ1 ≤ 1, 0 ≤ �ij + �ij ≤ 2t,

xi ≥ 0,
∑m

i=1
xi = 1, i = 1, 2,… ,m

(67)

(���10) max
�
ℑ2

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

∏n

j=1

��
1 − �∗

�
p�ij

����
�∗

�
p�ij

��(1−�)
�yj

≥ ℑ2 for any x ∈ X

p�ij , p�ij ∈ ℙ̂[0,2t],

0 ≤ ℑ2 ≤ 1, , 0 ≤ �ij + �ij ≤ 2t,

yj ≥ 0,
∑n

j=1
yj = 1, j = 1, 2,… ,m
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6  Application

Example 4 Let us suppose two companies ∁1 and ∁2 produce three-dimensional (3D) print-
ers.It is assumed that the demand amount of the 3D printers in the targeted market basi-
cally is fixed. It means the market share of one company is increased while the other is 
decreased. In order to achieve their goal, these two companies have to choose their market-
ing strategies very carefully. The company ∁1 has three options: (i) to reduce the price of 
their 3D printers 

(
�1
)
 (ii) to up-to-date the technology 

(
�2
)
 and (iii) to give some advertise-

ments in print media and sell their 3D printers at a reasonable price 
(
�3
)
 . The company ∁2 

has three options as well: (i) to sell their 3D printers at a low price with free home delivery (
�1
)
 (ii) to provide a money-back voucher with their 3D printers and sell at the current 

price 
(
�2
)
 and (iii) to give an advertisement on the broadcast media and sell at a reason-

able price 
(
�3
)
 . Note that both the companies have limited amount of money, so, they can 

choose one option only. Thus, this competitive decision problem may be regarded as a 
matrix game, i.e., the companies ∁1 and ∁2 are regarded as persons I and II, respectively. 
The payoffs correspond to how much market share a company can expect to receive will 
depend on the option as selected by the respective company. Due to very limited informa-
tion and unpredictable nature of the market, the payoffs can not be quantified in numerics. 
Based on to the experts’ opinions, the payoff matrix Ã for the company ∁1 is formed by 
using the LIFNs defined on LTS

 as follows: 

Solution steps: Utilizing the (MOD 4) and (MOD 8) given in Eqs. (47) and (54), the 
linear-programming models are constructed as follows:

and

ℙ̂ =

⎧⎪⎨⎪⎩

p0 = very very low (VVL), p1 = very low (VL), p2 = moderately low (ML),

p3 = slightly low (SL), p4 = average (Avg), p5 = slightly high (SH),

p6 = moderately high (MH), p7 = very high (VH), p8 = very very high (VVH)

⎫⎪⎬⎪⎭
,

(68)

min
�
ℜ1

�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

x1 +
�
� ln

�
1 − �∗

�
p2
��

+ (1 − �) ln
�
�∗

�
p6
���

x2
+
�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p2
���

x3 ≤ ℜ1,�
� ln

�
1 − �∗

�
p6
��

+ (1 − �) ln
�
�∗

�
p2
���

x1 +
�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

x2
+
�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p7
���

x3 ≤ ℜ1,�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p2
���

x1 +
�
� ln

�
1 − �∗

�
p6
��

+ (1 − �) ln
�
�∗

�
p2
���

x2
+
�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

x3 ≤ ℜ1,

xi ≥ 0, i = 1, 2, 3 and x1 + x2 + x3 = 1.
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Taking a specific LSF as per the semantic situation and assume different values of 
� ∈ (0, 1) , we can solve the optimization models given in Eqs. (68) and (69) by the exist-
ing methods for linear programming problems. The obtained optimal solutions and cor-
responding expected values of the models mentioned in Eqs. (68) and (69) are summarized 
in Tables 3, 4 and 5, respectively.

Further, corresponding to the models given in Eqs. (66) and (67), the non-linear pro-
gramming models are constructed as follows:

and

(69)

min
�
ℜ2

�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

y1 +
�
� ln

�
1 − �∗

�
p6
��

+ (1 − �) ln
�
�∗

�
p2
���

y2
+
�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p2
���

y3 ≥ ℜ2,�
� ln

�
1 − �∗

�
p2
��

+ (1 − �) ln
�
�∗

�
p6
���

y1 +
�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

y2
+
�
� ln

�
1 − �∗

�
p6
��

+ (1 − �) ln
�
�∗

�
p2
���

y3 ≥ ℜ2,�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p2
���

y1 +
�
� ln

�
1 − �∗

�
p1
��

+ (1 − �) ln
�
�∗

�
p7
���

y2
+
�
� ln

�
1 − �∗

�
p7
��

+ (1 − �) ln
�
�∗

�
p1
���

y3 ≥ ℜ2,

yj ≥ 0, j = 1, 2, 3 and y1 + y2 + y3 = 1.

(70)

min
�
ℑ1

�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�x1

��
1 − �∗

�
p2
����

�∗
�
p6
��(1−�)�x2

��
1 − �∗

�
p1
����

�∗
�
p2
��(1−�)�x3

≤ ℑ1,��
1 − �∗

�
p6
����

�∗
�
p2
��(1−�)�x1

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�x2

��
1 − �∗

�
p1
����

�∗
�
p7
��(1−�)�x3

≤ ℑ1,��
1 − �∗

�
p1
����

�∗
�
p2
��(1−�)�x1

��
1 − �∗

�
p6
����

�∗
�
p2
��(1−�)�x2

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�x3

≤ ℑ1,

xi ≥ 0, i = 1, 2, 3 and x1 + x2 + x3 = 1.

(71)

min
�
ℑ2

�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�y1

��
1 − �∗

�
p6
����

�∗
�
p2
��(1−�)�y2

��
1 − �∗

�
p1
����

�∗
�
p2
��(1−�)�y3

≥ ℑ1,��
1 − �∗

�
p2
����

�∗
�
p6
��(1−�)�y1

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�y2

��
1 − �∗

�
p6
����

�∗
�
p2
��(1−�)�y3

≥ ℑ1,��
1 − �∗

�
p1
����

�∗
�
p2
��(1−�)�y1

��
1 − �∗

�
p1
����

�∗
�
p7
��(1−�)�y2

��
1 − �∗

�
p7
����

�∗
�
p1
��(1−�)�y3

≥ ℑ1,

yj ≥ 0, j = 1, 2, 3 and y1 + y2 + y3 = 1.

Table 3  Optimal solutions of the models given in Eqs. (68) and (69) and the corresponding expected pay-
offs with 𝜑⋆

= 𝜑⋆
1

𝜑⋆ = 𝜑⋆
1

� x
⋆T ℜ⋆

1
y
⋆T ℜ⋆

2
�
(
x
⋆, y⋆

)

0.1 (0.5521, 0.3041, 0.1439) − 1.4169 (0.1478, 0.2783, 0.5739) − 1.4169 ⟨p5.160, p1.647⟩
0.2 (0.5247, 0.3007, 0.1747) − 1.3759 (0.1819, 0.2733, 0.5448) − 1.3759 ⟨p5.222, p1.666⟩
0.3 (0.5041, 0.2939, 0.2020) − 1.3369 (0.2122, 0.2650, 0.5228) − 1.3369 ⟨p5.251, p1.683⟩
0.4 (0.4886, 0.2843, 0.2271) − 1.2989 (0.2398, 0.2540, 0.5062) − 1.2989

⟨
p5.262, p1.698

⟩
0.5 (0.4772, 0.2722, 0.2506) − 1.2611 (0.2657, 0.2404, 0.4939) − 1.2611 ⟨p5.261, p1.714⟩
0.6 (0.4691, 0.2578, 0.2731) − 1.2229 (0.2904, 0.2246, 0.4851) − 1.2229 ⟨p5.254, p1.714⟩
0.7 (0.4638, 0.2413, 0.2949) − 1.1840 (0.3144, 0.2065, 0.4791) − 1.1840 ⟨p5.244, p1.714⟩
0.8 (0.4608, 0.2225, 0.3166) − 1.1439 (0.3381, 0.1862, 0.4757) − 1.1439 ⟨p5.238, p1.707⟩
0.9 (0.4600, 0.2016, 0.3384) − 1.1022 (0.3619, 0.1636, 0.4745) − 1.1022

⟨
p5.227, p1.693

⟩
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Choosing a specific LSF according to the semantic situation and assume different values of 
� ∈ (0, 1) , the optimization models given in Eqs. (70) and (71) can be solved by using the 
non-linear programming methods. Tables 6, 7, 8 shown the obtained optimal solutions and 
corresponding expected values of the models mentioned in Eqs. (70) and (71), respectively.

The results presented in the Tables 3, 4, 5, 6, 7, 8 clearly show that as the values of 
parameter � and the LFS change, we obtain different mixed strategies corresponding to 
the persons I and II, respectively. It is important to note that the values of ℜ⋆

1
 , ℜ⋆

2
 , ℑ⋆

1
 

and ℑ⋆
2
 are monotonic and nondecreasing with respect to � . Also the maximin strategies 

x⋆ and minimax strategies y⋆ obtained by the models mentioned in Eqs. (68) and (69) 
are, respectively, similar as those obtained by the models given in Eqs. (70) and (71), 
i.e., ℑ⋆

1
= eℜ

⋆
1  and ℑ⋆

2
= eℜ

⋆
2  , with p�ij ≠ p2t and p�ij ≠ p0 (i, j = 1, 2, 3) . It is interesting to 

note the the developed approach provide an ability to the decision-makers to consider 
different semantic situation in a single formulation.

Table 4  Optimal solutions of the models given in Eqs. (68) and (69) and the corresponding expected pay-
offs with 𝜑⋆

= 𝜑⋆
2

𝜑⋆ = 𝜑⋆
2
 (� = 1.5)

� x
⋆T ℜ⋆

1
y
⋆T ℜ⋆

2
�
(
x
⋆, y⋆

)

0.1 (0.5117, 0.3305, 0.1578) − 1.0990 (0.1648, 0.2800, 0.5552) − 1.0990 ⟨p5.238, p1.817⟩
0.2 (0.4902, 0.3251, 0.1847) − 1.0739 (0.1977, 0.2719, 0.5304) − 1.0739 ⟨p5.286, p1.821⟩
0.3 (0.4742, 0.3169, 0.2089) − 1.0497 (0.2272, 0.2610, 0.5118) − 1.0497 ⟨p5.305, p1.824⟩
0.4 (0.4625, 0.3062, 0.2313) − 1.0257 (0.2542, 0.2479, 0.4979) − 1.0257 ⟨p5.308, p1.825⟩
0.5 (0.4541, 0.2935, 0.2524) − 1.0017 (0.27970.23250.4878) − 1.0017 ⟨p5.301, p1.822⟩
0.6 (0.4486, 0.2786, 0.2728) − 0.9773 (0.3041, 0.2151, 0.4808) − 0.9773

⟨
p5.289, p1.814

⟩
0.7 (0.4454, 0.2619, 0.2927) − 0.9522 (0.3279, 0.1956, 0.4765) − 0.9522 ⟨p5.276, p1.800⟩
0.8 (0.4443, 0.2431, 0.3126) − 0.9262 (0.3516, 0.1741, 0.4744) − 0.9262 ⟨p5.264, p1.780⟩
0.9 (0.4451, 0.2223, 0.3326) − 0.8990 (0.3752, 0.1504, 0.4744) − 0.8990 ⟨p5.253, p1.752⟩

Table 5  Optimal solutions of the models given in Eqs. (68) and (69) and the corresponding expected pay-
offs with 𝜑⋆

= 𝜑⋆
3

𝜑⋆ = 𝜑⋆
3
(𝜌 = 𝜏 = 0.8)

� x
⋆T ℜ⋆

1
y
⋆T ℜ⋆

2
�
(
x
⋆, y⋆

)

0.1 (0.5730, 0.2912, 0.1358) − 1.5638 (0.1390, 0.2724, 0.5887) − 1.5638
⟨
p4.310, p2.916

⟩
0.2 (0.5417, 0.2892, 0.1691) − 1.5145 (0.1748, 0.2691, 0.5561) − 1.5145

⟨
p4.367, p2.915

⟩
0.3 (0.5182, 0.2834, 0.1984) −  1.4681 (0.2064, 0.2620, 0.5316) − 1.4681

⟨
p4.398, p2.915

⟩
0.4 (0.5005, 0.2744, 0.2251) − 1.4231 (0.23510.25180.5131) − 1.4231

⟨
p4.414, p2.915

⟩
0.5 (0.4874, 0.2626, 0.2500) − 1.3787 (0.2618, 0.2388, 0.4993) − 1.3787

⟨
p4.416, p2.912

⟩
0.6 (0.4779, 0.2482, 0.2738) − 1.3340 (0.2873, 0.2233, 0.4893) − 1.3340

⟨
p4.419, p2.905

⟩
0.7 (0.4715, 0.2315, 0.2970) − 1.2885 (0.3121, 0.2054, 0.4825) − 1.2885

⟨
p4.416, p2.891

⟩
0.8 (0.4677, 0.2124, 0.3199) − 1.2417 (0.3366, 0.1850, 0.4783) − 1.2417 ⟨p4.413, p2.871⟩
0.9 (0.4663, 0.1909, 0.3428) − 1.1930 (0.3612, 0.1622, 0.4766) − 1.1930 ⟨p4.410, p2.843⟩
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7  Conclusions

In this paper, we have studied matrix games with payoffs represented by LIFNs. First, paper 
has defined some new operational laws for LIFNs based on LSF and proved several properties 
associated with them. Second, we have designed a new generalized aggregation operator for 
LIFNs. The work has also studied the properties and special cases of the proposed aggrega-
tion operator in detail. Next, we have developed some basic concepts for matrix games with 
payoffs represented by LIFNs.The maximin and minimax strategies for I and II persons have 
been defined and obtained by solving a pair of linear/nonlinear-programming models derived 
from two auxiliary nonlinear bi-objective programming models. The linguistic scaling func-
tion based aggregation operator has been used to calculate the expected value of the game to 
consider different semantic situations under different environment. Finally, a real-life numeri-
cal example has been given to illustrate the solution steps and effectiveness of the method.

Table 6  Optimal solutions of the models given in Eqs. (70) and (71) and the corresponding expected pay-
offs with 𝜑⋆

= 𝜑⋆
1

𝜑⋆ = 𝜑⋆
1

� x
⋆T ℑ⋆

1
y
⋆T ℑ⋆

2
�
(
x
⋆, y⋆

)

0.1 (0.5521, 0.3041, 0.1439) 0.2425 (0.1478, 0.2783, 0.5739) 0.2425 ⟨p5.160, p1.647⟩
0.2 (0.5247, 0.3007, 0.1747) 0.2526 (0.1819, 0.2733, 0.5448) 0.2526 ⟨p5.222, p1.666⟩
0.3 (0.5041, 0.2939, 0.2020) 0.2627 (0.2122, 0.2650, 0.5228) 0.2627 ⟨p5.251, p1.683⟩
0.4 (0.4886, 0.2843, 0.2271) 0.2728 (0.2398, 0.2540, 0.5062) 0.2728

⟨
p5.262, p1.698

⟩
0.5 (0.4772, 0.2722, 0.2506) 0.2834 (0.2657, 0.2404, 0.4939) 0.2834 ⟨p5.261, p1.714⟩
0.6 (0.4691, 0.2578, 0.2731) 0.2944 (0.2904, 0.2246, 0.4851) 0.2944 ⟨p5.254, p1.714⟩
0.7 (0.4638, 0.2413, 0.2949) 0.3060 (0.3144, 0.2065, 0.4791) 0.3060 ⟨p5.244, p1.714⟩
0.8 (0.4608, 0.2225, 0.3166) 0.3186 (0.3381, 0.1862, 0.4757) 0.3186 ⟨p5.238, p1.707⟩
0.9 (0.4600, 0.2016, 0.3384) 0.3322 (0.3619, 0.1636, 0.4745) 0.3322

⟨
p5.227, p1.693

⟩

Table 7  Optimal solutions of the models given in Eqs. (70) and (71) and the corresponding expected pay-
offs with 𝜑⋆

= 𝜑⋆
2

𝜑⋆ = 𝜑⋆
2
 (� = 1.5)

� x
⋆T ℑ⋆

1
y
⋆T ℑ⋆

2
�
(
x
⋆, y⋆

)

0.1 (0.5117, 0.3305, 0.1578) 0.3332 (0.1648, 0.2800, 0.5552) 0.3332 ⟨p5.238, p1.817⟩
0.2 (0.4902, 0.3251, 0.1847) 0.3417 (0.1977, 0.2719, 0.5304) 0.3417 ⟨p5.286, p1.821⟩
0.3 (0.4742, 0.3169, 0.2089) 0.3500 (0.2272, 0.2610, 0.5118) 0.3500 ⟨p5.305, p1.824⟩
0.4 (0.4625, 0.3062, 0.2313) 0.3585 (0.2542, 0.2479, 0.4979) 0.3585 ⟨p5.308, p1.825⟩
0.5 (0.4541, 0.2935, 0.2524) 0.3673 (0.27970.23250.4878) 0.3673 ⟨p5.301, p1.822⟩
0.6 (0.4486, 0.2786, 0.2728) 0.3763 (0.3041, 0.2151, 0.4808) 0.3763

⟨
p5.289, p1.814

⟩
0.7 (0.4454, 0.2619, 0.2927) 0.3859 (0.3279, 0.1956, 0.4765) 0.3859 ⟨p5.276, p1.800⟩
0.8 (0.4443, 0.2431, 0.3126) 0.3961 (0.3516, 0.1741, 0.4744) 0.3961 ⟨p5.264, p1.780⟩
0.9 (0.4451, 0.2223, 0.3326) 0.4070 (0.3752, 0.1504, 0.4744) 0.4070 ⟨p5.253, p1.752⟩
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In future work, we will utilize the developed aggregation operator in other problems includ-
ing supplier selection, faculty requirement, and ERP software selection. We will also study the 
matrix games with linguistic interval-valued intutionistic fuzzy payoffs.
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