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Abstract
Fault diagnosis plays an important role in actual production activities. As large amounts 
of data can be collected efficiently and economically, data-driven methods based on deep 
learning have achieved remarkable results of fault diagnosis of complex systems due to 
their superiority in feature extraction. However, existing techniques rarely consider time 
delay of occurrence of faults, which affects the performance of fault diagnosis. In this 
paper, by synthetically considering feature extraction and time delay of occurrence of 
faults, we propose a novel fault diagnosis method that consists of two parts, namely, slid-
ing window processing and CNN-LSTM model based on a combination of Convolutional 
Neural Network (CNN) and Long Short-Term Memory Network (LSTM). Firstly, samples 
obtained from multivariate time series by the sliding window processing integrates fea-
ture information and time delay information. Then, the obtained samples are fed into the 
proposed CNN-LSTM model including CNN layers and LSTM layers. The CNN layers 
perform feature learning without relying on prior knowledge. Time delay information is 
captured with the use of the LSTM layers. The fault diagnosis of the Tennessee Eastman 
chemical process is addressed, and it is verified that the predictive accuracy and noise sen-
sitivity of fault diagnosis can be greatly improved when the proposed method is applied. 
Comparisons with five existing fault diagnosis methods show the superiority of the pro-
posed method.
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1  Introduction

In actual production activities, the occurrence of system faults is inevitable due to inter-
nal factors (e.g., the wear of parts) or environmental factors (e.g., drastic changes in tem-
perature). Furthermore, these are more common in complex systems that are composed 
of many units with diverse relations. Once a fault happens to a complex system, it usually 
affects the normal operation of the system and may further lead to an immeasurable loss. 
Therefore, it is important to develop a fault diagnosis method for complex systems.

In recent years, as large amounts of data can be collected efficiently and economically, 
data-driven methods based on deep learning (DL) have achieved remarkable results of fault 
diagnosis of complex systems. However, existing techniques rarely consider the time delay 
of the occurrence of faults, which affects the performance of fault diagnosis. In this paper, 
we synthetically consider two aspects of fault diagnosis of complex systems, namely, fea-
ture extraction and time delay of the occurrence of faults.

(1)	 Feature extraction Raw data collected from production environments is generally high-
dimensional, and the attributes of the data are usually highly correlated. These kinds of 
characteristics may seriously affect the performance of subsequent learning algorithms, 
which further influences the results of fault diagnosis. When handling fault diagnosis, 
one first needs to identify those features that significantly affect the occurrence of 
faults.

(2)	 Time delay of the occurrence of faults The occurrence of faults is generally a cumulative 
process (e.g., the wear of parts), thus there may be some time delay. That is to say, the 
occurrence of faults at the current moment may depend on the change of the system 
state at the previous moments. Capturing the time delay information contributes greatly 
to the performance improvement of fault diagnosis.

Over the past several decades, many feature extraction methods for fault diagnosis have 
been reported in the literature. These methods were generally proposed based on the fault 
diagnosis of certain particular systems. In other words, the existing feature extraction meth-
ods for fault diagnosis are system-dependent and unavailable to other systems. Developing 
a feature extraction method that can be suitable for the fault diagnosis of different systems 
is an urgent problem to be solved. In recent years, the feature learning methods based on 
DL has been used for fault diagnosis. The feature learning methods can automatically learn 
useful and predictive implicit features hidden in massive data, which overcomes the short-
coming of feature extraction methods that rely excessively on domain knowledge.

Currently, delay fault diagnosis is mainly concentrated in the field of circuits. However, 
the delay fault diagnosis methods in the field of circuits cannot be applied to other fields 
due to their specificity. In other fields, such as fault diagnosis of chemical process, rotat-
ing machines, and so on, although various fault diagnosis methods have been developed in 
the past decades, they rarely consider time delay of the occurrence of faults. However, it is 
obvious that time delay of the occurrence of faults exists widely in these systems. There-
fore, there is an urgent need to develop a method to deal with time delay of the occurrence 
of faults.

DL has made breakthroughs in the fields of image recognition, speech recognition, 
machine translation, and so on. Convolutional Neural Network (CNN) is an important 
technology of DL that was first used in the field of image recognition (Krizhevsky et al. 
2017). Through a series of convolution operations, the CNN automatically extracts features 
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layer by layer. Recurrent Neural Network (RNN) is also an important DL technique. How-
ever, traditional RNN cannot handle long-term time correlations because of the problem 
of recursion, weighted exponential explosion, or disappearance (Kolen and Kremer 2009). 
Long Short-Term Memory Network (LSTM) is a special RNN that contains LSTM blocks 
that are smart units that can remember the value of the uncertain length of time. This prop-
erty of the LSTM ensures that it can capture the time delay information. The use of DL to 
solve key problems in other fields has also been well studied. Considering the superiority 
of DL, it is interesting to study its application to fault diagnosis.

Based on the above considerations, to manage the two aspects related to fault diagnosis 
of complex systems, this paper develops a DL-based fault diagnosis method by combining 
CNN and LSTM. In the proposed method, feature information and time delay information 
are first comprehensively integrated into one type of 2D image-like data obtained from 
a multivariate time series (MTS) by sliding window processing that is then regarded as 
the input of the CNN. Using CNN layers that can perform automatic feature learning, the 
feature maps as the input of LSTM layers are identified. The time delay information that 
is hidden in the 2D image-like data can be captured with the use of the LSTM layers. Fol-
lowing that, the learned feature information and the captured time delay information are 
integrated via fully connected layers as the basis for fault diagnosis. The proposed method 
ultimately outputs the occurrence probability of each type of pre-defined faults. Results 
show that the proposed method can greatly improve the performance of fault diagnosis of 
complex systems. Comparisons with several existing fault diagnosis methods, such as the 
CNN, LSTM, Artificial Neural Networks (ANN), K-Nearest Neighbor (KNN), and Sup-
port Vector Machine (SVM) methods, demonstrate the superiority of the proposed method.

In summary, the main contributions of this study are shown as follows:

(1)	 The feature information and time delay information of MTS are integrated into one 
type of 2D image-like data by the proposed sliding window processing, which provides 
sufficient fault diagnosis information for DL model.

(2)	 Based on the 2D image-like data obtained by sliding window processing, a novel DL 
model combining CNN and LSTM for fault diagnosis of complex systems is proposed, 
which achieves the goal of feature learning and capturing the time delay of the occur-
rence of faults.

(3)	 The fault diagnosis of the Tennessee Eastman (TE) chemical process is addressed 
based on the proposed method, and it is verified that the predictive accuracy and noise 
sensitivity of fault diagnosis can be greatly improved.

This paper is organized as follows: Some existing fault diagnosis methods are reviewed 
in Sect. 2. Section 3 presents the proposed CNN-LSTM fault diagnosis method. The imple-
mentation of the proposed method to deal with the fault diagnosis of the TE chemical pro-
cess is illustrated in Sect. 4. Conclusions and future work are provided in Sect. 5.

2 � Literature review

Traditional fault diagnosis methods, such as physics of failure (Li et  al. 2018a, b; Yang 
et al. 2013; Zhu et al. 2016) and fault tree analysis (Kabir 2017), generally focus on the 
operating mechanism or theoretical analysis of systems. They have been widely used in 
such fault diagnosis fields with high reliability requirements as aerospace and electronic. 
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However, when faced with such complex systems as chemical process, they are usually 
not feasible because it is difficult to mathematically model or analyze for these complex 
systems.

With the development of sensor technology, lots of data related to system operation can 
be easily collected and acquired. These heterogeneous and multi-source data may involve 
rich information about faults. As such, in recent years, with the use of these collected data, 
many data-driven methods (Cai et  al. 2016; Cai et  al. 2017b; El-Koujok et  al. 2014; Li 
2018; Serdio et al. 2015; Zhang et al. 2020) have been developed for fault diagnosis and 
they have been widely applied in a variety industry sectors. In particular, the data-driven 
methods based on DL (Lei et al. 2016; Li 2018; Li et al. 2019a; Rodríguez Ramos et al. 
2019; Zhang et al. 2017; Wang et al. 2020) have achieved remarkable results of fault diag-
nosis of complex systems due to their superiority in feature extraction.

In general, data-driven fault diagnosis can be treated as a classification task (Aydin 
et  al. 2012). The use of the data-driven methods for fault diagnosis usually involves the 
following four steps: data preprocessing, feature extraction, classifier building, and fault 
diagnosis.

2.1 � Data preprocessing

The raw data generally cannot be directly used as the input to the data-driven fault diag-
nosis methods, which implies that there is the need for data conversion to meet the input 
requirements of these methods. In recent years, many data conversion methods have been 
developed to meet the input requirements of the fault diagnosis method. For example, Liu 
et al. (2019) proposed an input tensor transformation scheme to transform MTS into appro-
priate tensor representation so that the model based on CNN can handle these data. A Sig-
nal-to-Image conversion method was proposed by Wen et al. (2018) for the fault diagnosis 
based on CNN. The data conversion methods proposed in these studies are differences due 
to their different model input requirements. Therefore, data conversion methods need to be 
designed according to model input requirements.

2.2 � Feature extraction

Feature extraction is a vital step to extract the features that can accurately and completely 
cover the information of the original data by reducing the dimension of the data and the 
correlation between the attributes. Over the past several decades, many feature extraction 
methods for fault diagnosis have been reported in the literature (Gao and Hou, 2016; Hong 
and Dhupia, 2014; Jing and Hou 2015; Rai and Mohanty, 2007; Yan et al. 2014). These 
methods were generally proposed based on the fault diagnosis of certain particular systems. 
For example, wavelets have been commonly used for fault diagnosis of rotating machines 
(Yan et al. 2014) while Principal Component Analysis (PCA) has been used in chemical 
systems (Jing and Hou 2015). Feature learning is a useful way to replace feature extraction. 
The feature learning method can automatically learn the features suitable for the problems 
at hand so that it overcomes the shortcoming that the feature extraction method depends 
heavily on specific problem and domain knowledge. In recent years, with the development 
of DL, DL-based feature learning methods for fault diagnosis have been extensively stud-
ied. For example, Janssens et al. (2016) proposed a DL model for condition monitoring by 
using CNN and proved that the feature learning method was significantly better than the 
feature extraction method in the fault diagnosis of rotating machines. A novel hierarchical 
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learning rate adaptive deep CNN model was proposed by Guo et  al. (2016) to solve the 
problem of extracting features automatically without significantly increasing the demand 
for machine expertise and the problem of maximizing accuracy without overcomplicating 
machine structure. Furthermore, Razavian et al. (2014) demonstrated that the generic fea-
tures learned from CNN are very powerful.

2.3 � Classifier building

The aim of this step is to build a classifier that can be used for fault diagnosis based on 
the extracted features. Many classification algorithms can be used to conduct the construc-
tion of the classifier, such as KNN (Casimir et al. 2006; Lei and Zuo 2009), SVM (Goyal 
et al. 2020), ANN (Seera et al. 2016), and so on. In recent years, with the development of 
DL, the multilayer neural network-based classifiers for fault diagnosis have emerged. In the 
construction of those classifiers, such as RNN-based fault diagnosis classifiers (de Bruin 
et al. 2017; Liu et al. 2018) and CNN-based fault diagnosis classifiers CNN (Feng et al. 
2021; Wen et al. 2018; Wu and Zhao 2018), the FC layers are generally used to map the 
feature vector to the fault probability space and perform fault classification.

2.4 � Fault diagnosis

In this step, the fault state of the system can be predicted based on the output of the con-
structed classifier.

On the other hand, for various systems, such as electric, pneumatic, hydraulic networks, 
chemical processes, long transmission lines, robotics, and so on, there may be some time 
delay of the occurrence of faults. In the fault diagnosis of these systems, the existence of 
time delay of the occurrence of faults must be considered; otherwise, the performance of 
fault diagnosis will drop significantly. Delay fault diagnosis has been extensively studied 
in circuit systems (Sivaraman and Strojwas 2001; Wang et al. 2005). More recently, a fault 
prediction method is proposed based on FFT, PCA, and CNN for delay circuit systems in 
the study (Khalil et  al. 2020). In the fault diagnosis of complex electronic systems, Cai 
et al. (2017a) used Dynamic Bayesian network to model the dynamic degradation process 
of electronic products considering that the performance of electronic products degrades 
over time. In the fault diagnosis of rolling bearings, RNN has been used to handle the time 
dependence of signals (Liu et  al. 2018). More generally, Gers et  al. (2002) proved that 
LSTM can solve the problem of time delay.

From the above analysis, we can see that DL-based fault diagnosis methods are more 
suitable for complex systems. In recent years, although some DL-based fault diagno-
sis methods have been proposed, they rarely consider the time delay of the occurrence of 
faults. Therefore, it is interesting to propose a DL-based fault diagnosis method for com-
plex systems that considers both feature extraction and time delay of the occurrence of 
faults.

3 � Proposed DL‑based fault diagnosis method for complex systems

As shown in Fig. 1, the framework of the proposed DL-based fault diagnosis method for 
complex systems consists of two part, namely, sliding window processing and CNN-LSTM 
model. In what follows, the two parts will be introduced in detail.
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3.1 � Sliding window processing

In the sliding window processing, 2D samples can be obtained based on the raw data X 
(Some data preprocessing has been done, such as normalization) by simultaneously con-
sidering its feature information and time delay information. A schematic diagram of sliding 
window processing is shown in Fig. 2.

Let X =
{
xt
||t = 1, 2, 3… n} ( xt ∈ Rm and X ∈ Rn×m ) be the raw data that is an 

MTS, where xt is the observation vector of the system at the time t , m represents the 

Fig. 1   The framework of the proposed DL-based fault diagnosis method for complex systems

Fig. 2   Schematic diagram of sliding window processing
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number of observation attributes, and n denotes the length of the observation time. Let 
Y =

{
yt
||t = 1, 2, 3… n} ( yt ∈ R and Y ∈ Rn ) be the label of X . Then, samples of the raw 

data can be expressed as D = {(X, Y)} . As shown in Fig.  2, a sliding window is repre-
sented by a rectangular frame whose length is the number of attributes of X and width is 
d(0 < d ≤ n) . The samples used to train the model are continuously obtained from X by 
moving the sliding window. The step size of the movement of the sliding window is an 
integer 𝜆(0 < 𝜆 ≤ n − d) . At the t th movement of the sliding window, assuming that the 
framed sub-series of X is denoted as X[t ∶ t + d] , then the label of X[t ∶ t + d] is Y[t + d] , 
where [ i: j ] denotes the operation that extracts elements between i and j from an ordered 
set. In this way, the sample (X[t ∶ t + d], Y[t + d]) will be used as the input feature maps of 
the proposed model.

The original 1D samples (data of a certain moment of MTS) only contain feature infor-
mation. After sliding window processing, the 1D samples are converted into 2D samples, 
which integrates feature information and time delay information. Practical meaning of 
these 2D samples can be interpreted as that the system state at the current time may be 
related to the system states of previous d moments. In this way, using these 2D samples 
to train the fault diagnosis classification model can make it learn feature information and 
time delay information simultaneously, which can greatly improve the performance of fault 
diagnosis. Moreover, the size of feature information and time delay information contained 
in these 2D samples are adjustable. Specifically, the size of the feature information can be 
adjusted by adjusting the size of m . The size of the time delay information can be adjusted 
by adjusting the size of d . By integrating more attributes (greater m ) and longer time delay 
(greater d ) in sliding window processing, the 2D samples more suitable for fault diagnosis 
of complex systems can be obtained.

The obtained 2D samples are used as the learning material of CNN-LSTM model to 
identify the fault category. In what follows, we will present CNN-LSTM in detail.

3.2 � CNN‑LSTM model

This subsection investigates the proposed CNN-LSTM model, which consists of CNN lay-
ers, LSTM layers, and fully connected layers as shown in Fig. 3. In what follows, the pro-
posed model will be described in detail from these layers.

3.2.1 � CNN layers

The CNN layers consist of two operation, namely, convolution operation and activation 
operation. The input of the convolution operation is a 3D data X ∈ Rw×h×c , where w , h , and 
c , respectively represent its width, its height, and the number of channels. In particular, 
when c = 1 , it is reduced to 2D data, which is used as the input of the proposed model. 
Specifically, the horizontal axis of the 2D data represents the feature dimension and the 
vertical axis depicts the time dimension. The axis scales are respectively characterized by 
the numbers of attributes and the width of the sliding window.

To illustrate the convolution operation clearly, we first define four super-parameters, 
namely, the number of convolution kernels K , the size of each convolution kernel F , the 
step size of the convolution S , and the number of zeros P . Then, for the convolution oper-
ation of each convolution kernel, zeros are filled into the data X ∈ Rw×h×c by which the 
transformed data X∗ ∈ R(w+P)×(h+P)×c is obtained. After that, the slicing operation is:



1296	 T. Huang et al.

1 3

where tw ∶ tw + F indicates the operation of picking up the subset positioned between 
Rows tw and tw + F , th ∶ th + F indicates the operation of picking up the subset positioned 
between Columns th and th + F , and∶ indicates cutting all data in the channel direction. 
tw and th take values from 1 and change by step S . As per the 

(
tw, th

)
 , data Xtw,th

 can be 
extracted from X∗ . Assume the convolution kernel is denoted as Kernel ∈ RF×F×c , then 
Ttw,th ∈ RF×F×c is defined as element-by-element multiplication of Kernel and Xtw,th

 as 
follows:

Subsequently, ytw,th can be obtained in the following manner:

where Ttw,th
[
i, j, k

]
 denotes the element of Ttw,th , and Y ∈ Rw∗×h∗ can be obtained by ytw,th 

arranged in the order of the size of tw, th . It can be noted that

For each convolution kernel, one can obtain a channel such as Y  , and then by repeat-
ing the above operations on the K convolution kernels, we can obtain a new 3D data 

(1)Xtw ,th
= X∗

[
tw ∶ tw + F, th ∶ th + F, ∶

]
,

(2)Ttw ,th = Kernel × Xtw ,th
,

(3)ytw,th =
F∑

i=0

F∑

j=0

C∑

k=0

Ttw,th

�
i, j, k

�
,

(4)w∗ =
w−F+2∗P

S
+ 1, h∗ =

h−F+2∗P

S
+ 1.

Fig. 3   Architecture diagram of CNN-LSTM model for fault diagnosis of TE chemical process



1297A novel fault diagnosis method based on CNN and LSTM and its…

1 3

X̂ ∈ Rw∗×h∗×K . In general, a specific combination of (F , P , S ) is set to make w∗ = w and 
K > c.

After the convolution operation, the activation operation is essential. It enables the 
network to acquire a nonlinear expression of the input to enhance the representation 
ability and make the learned features more dividable. With the use of rectified linear 
unit, which is widely a used one, one can activate each element of X̂ in the following 
manner:

where X̂
[
i, j, k

]
 denotes the element of X̂ , and A

[
i, j, k

]
 denotes the element of A ∈ Rw∗×h∗×K 

that is the data obtained after activation operation.

3.2.2 � Connection between CNN and LSTM layers

The output of CNN layers is 3D data in which the extracted 2D feature maps are stacked 
together. The required input of LSTM layers is 2D data, where one dimension is denoted 
as time and the other is features. In order to connect the CNN layers and the LSTM lay-
ers, it is needed to convert the 3D data output from CNN layers into 2D data input to 
LSTM layers.

In this study, a bridge is developed to connect the CNN layers and the LSTM layers. 
The operation of the bridge is shown in Fig. 4. In the bridge, the output of the CNN lay-
ers is rearranged as the input of the LSTM layers. The bridge first arranges the channels 
of the 3D data output from CNN layers so that all the extracted features are arranged 
together while keeping the time dimension unchanged. After this arrangement, the 3D 
data becomes 2D data. Then, the bridge cuts this 2D data horizontally to obtain samples 
for each time step of the LSTM layers.

(5)A
[
i, j, k

]
= f

(
X̂
[
i, j, k

])
= max

{
0, X̂

[
i, j, k

]}
,

Fig. 4   The bridge used to connect the CNN layers and the LSTM layers



1298	 T. Huang et al.

1 3

Specifically, Suppose the output of the CNN layers is Xcov ∈ Rw×h×c , then the input of the 
LSTM layers obtained by the bridge can be denoted as Xlstm ∈ Rw∗×h , where w∗ = w × c.

where ↔ denotes the splicing operation of 2D matrixes in the row direction.

3.2.3 � LSTM layers

An LSTM layer generally involves several smart units, each of which contains three gates, 
namely, forget gate, input gate, and output gate. The forget gate tells which information should 
be forgotten, the input gate determines which inputs need to be remembered, and the output 
gate decides which information needs to be output. The specific calculation process of these 
three gates is shown in Fig. 5.

At the forget gate, the information ft that needs to be discarded can be recognized in the 
following way:

where xt denotes the data at time t , ht−1 denotes the output at time t − 1 , Wf  and Rf  are the 
weight matrices associated with ft , bf  is the corresponding bias vector, and ⋅ indicates the 
dot product operation.

At the input gate, the information it that needs to be inputted and the candidate C̃t for the 
state value of the unit are identified based on the following operation:

and

where Wi and Ri are the weight matrices associated with it , bi is the corresponding bias vec-
tor, Wc and Rc are the weight matrices associated with 

∼

Ct , and bc is the corresponding bias 
vector.

At the output gate, by integrating ft , it , 
∼

Ct and the state value Ct−1 of the unit at time t − 1 , 
the unit’s state value Ct at time t can be obtained as follows:

where × indicates the element-by-element multiplication of vectors.

(6)Xlstm = Xcov[∶, ∶, 0] ↔ Xcov[∶, ∶, 1]…Xcov[∶, ∶, c − 2] ↔ Xcov[∶, ∶, c − 1],

(7)ft = �
(
Wf ⋅ xt + Rf ⋅ ht−1 + bf

)
=

1

1+e
−(Wf ⋅xt+Rf ⋅ht−1+bf )

,

(8)it = �
(
Wi ⋅ xt + Ri ⋅ ht−1 + bi

)
=

1

1+e−(Wi ⋅xt+Ri ⋅ht−1+bi)

(9)C̃t = �
(
Wc ⋅ xt + Rc ⋅ ht−1 + bc

)
=

e(Wc ⋅xt+Rc ⋅ht−1+bc)−e−(Wc ⋅xt+Rc ⋅ht−1+bc)

e(Wc ⋅xt+Rc ⋅ht−1+bc)+e−(Wc ⋅xt+Rc ⋅ht−1+bc)
,

(10)Ct = ft × Ct−1 + it × C̃t,

Fig. 5   One LSTM layer
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Finally, with the aid of the latest state value Ct , the input xt of the unit, and the output 
ht−1 of the previous unit, one can get the output ht of the unit as follows:

and

4 � Experiment and results

4.1 � Introduction of the data set

The TE chemical process is a simulation process based on the actual process flow of a 
chemical company. The details of the TE chemical process can be seen in prior work 
(Downs and Vogel 1993). Based on the simulation process, 41 measured variables denoted 
by XMEAS and 11 manipulated variables denoted by XMV  are associated with the TE 
chemical process data set. Accordingly, by observing the TE chemical process, an observa-
tion vector that can reflect the production at the time t of the TE chemical process can be 
obtained as follows:

Table 7 of the Appendix shows the details of these variables. Among these variables, 
the sampling frequency was 20 times an hour for XMV(1)-XMV(11) and XMEAS(1)

-XMEAS(22) , 10 times an hour for XMEAS(23)-XMEAS(36) , and 4 times an hour for 
XMEAS(37)-XMEAS(41).

As shown in Table  8 of the Appendix, the TE chemical process included 21 pre-set 
faults and 1 normal state. For each fault as well as the normal state, the status of the 
TE chemical process was reflected in a training data set and a test data set. Each train-
ing data set contained 480 samples, and each test data set contained 960 samples. With 
a total of 22 system statuses, there were 22 × 480 = 10560 original training samples and 
22 × 960 = 21120 original test samples.

4.2 � Comparative experiments

The proposed CNN-LSTM fault diagnosis model belongs to the category of feature learn-
ing-based methods. To demonstrate the superiority of the proposed model, we conducted 
two sets of comparative experiments by considering the performance of the corresponding 
models in three aspects: predictive accuracy (PA), noise sensitivity (NS), and predictive 
real-time (PR).

(1)	 The first set of comparative experiments was a comparison between the proposed model 
with three feature extraction-based fault diagnosis models (i.e., KNN, SVM, and ANN);

(2)	 and the second set was a comparison with two classical DL models, such as CNN and 
LSTM.

(11)Ot = �
(
Wo ⋅ xt + Ro ⋅ ht−1 + bo

)
=

1

1+e−(Wo ⋅xt+Ro ⋅ht−1+bo)

(12)ht = Ot ∗
eCt−e−Ct

eCt+e−Ct
.

xt = [XMEAS(1),XMEAS(2),… ,XMEAS(41),XMV(1),… ,XMV(11)]T .
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4.2.1 � Sliding window processing for the data set

The sliding window processing (d = 52, � = 1) denoted as W(52, 1) is used to obtain the 
2D samples for CNN-LSTM and CNN models from the TE process data sets. W(52, 1) 
is performed on each original training set and test set that can be viewed as MTS. The 
length of these MTS is 480 and 960 for each original training set and test set, respec-
tively. One can easily calculate that the number of the obtained 2D samples by W(52, 1) 
is 428 for original training set and it is 908 for original test set. There is a total of 22 
training sets and 22 test sets, thus the total number of samples for training and test are 
22 × 428 = 9416 and 22 × 908 = 19976 . The result of W(52, 1) for each original training 
set and test set is shown in Table 1.

4.2.2 � Experiment setup

Similar to our proposed model, the classical CNN model also belongs to the type of fea-
ture learning-based fault diagnosis methods. The ANN, KNN and SVM models belong 
to the type of feature extraction-based fault diagnosis methods. The LSTM model has 
no feature extraction process, and thus it does not belong to the above two types of 
methods, but it performs well in capturing the time delay of the occurrence of faults. 
Below are some settings for these models.

•	 The PCA method, which is a commonly used method at the feature extraction phase 
of fault diagnosis of the TE chemical process, was employed when using the feature 
extraction-based methods (i.e., KNN, SVM, and ANN) to conduct fault diagnosis of 
the TE chemical process.

•	 The number of layers of all the hierarchical models (i.e., CNN-LSTM, CNN, LSTM, 
and ANN) was supposed to be 6 and the parameters of the models were roughly the 
same to make their complexity roughly equal. The detailed settings of each layer of the 
four models are shown in Table 2.

•	 We added L2 regularization on the LSTM layers and used the dropout method in the 
fully connected layers to prevent over-fitting.

4.2.3 � Evaluation index

To comprehensively evaluate the performance of each model, three indexes, namely, 
PA, NS, and PR are introduced in this subsection.

Table 1   The result of sliding window processing for each training set and test set

Categories Data set Length of time series The number of 
the obtained 2D 
samples

Normal or Faults 1–21 Training set 480 428
Test set 960 908
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Definition 1  In the test phase of the model, assume that the number of samples in the test 
set is n, and the number of samples accurately predicted by the model is m. Then, the pre-
dictive accuracy of a model is

The index of PA reflects the predictive accuracy degree of the model. The larger the PA 
is, the higher the predictive accuracy degree is.

Definition 2  Given an Additive white Gaussian noise (AWGN) N
(
0, �2

)
 (Hughes, 1991) 

and is added to the test set, the index of PAnoise is obtained based on the test set with noise, 
and the index of PAnone is obtained based on the test set without noise. Then, the noise sen-
sitivity of a model is.

NS is an index that reflects the adaptability of the model used in the actual production 
environment. The smaller the NS is, the stronger the noise immunity of the model is.

Note: We comply with the concept of AWGN defined in Hughes (1991). According to 
the definition of AWGN, the mean is usually 0 and the variance reflects the size of noise. 
Below we introduce how to determine the variance of noise.

First of all, we recall the notion of signal to noise ratio (SNR) as shown below,

where Psignal denotes power of signal and Pnoise denotes power of noise.
Then, we assume that SNR is 30 dB, which is a general value for sensor (Murata 

et al. 2020). Moreover, the average power of the normalized signal Psignal can be calcu-
lated by its amplitude and it is equal to 1. In this way, according to the following equa-
tion, we have Pnoise ≈ 0.001.

For AWGN, its variance �2 is defined as Pnoise , so we have �2 = Pnoise ≈ 0.001.

Definition 3  Assume that there are three test sets, namely, a test set with small sample 
size, one with a middle sample size, and one with large sample size, and the numbers of 
the samples in the three sets are respectively defined as ns , nm , and nl . Moreover, ts , tm and 
tl respectively denote the time taken for the prediction when the three test sets are predicted 
by a model. Then, the predictive real-time of the model is.

PR is an index that reflects the ability of the model to meet the timeliness of a particu-
lar scenario. The smaller the PR is, the better the prediction real-time performance of the 
model is.

(13)PA =
m

n
× 100%.

(14)NS =
PAnone−PAnoise

PAnone

× 100%.

(15)SNR = 10 log
(

Psignal

Pnoise

)

(16)30 = 10 log
(

1

Pnoise

)

(17)PR =
ts+tm+tl

ns+nm+nl
.
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4.2.4 � Results and analysis

The changes of PA and mean square error (MSE) in the training and validation processes 
of the CNN-LSTM model, CNN model, LSTM model, and ANN model are depicted in 
Figs. 6, 7, 8, 9. The training PA and the validation PA increased while the training MSE and 
the validation MSE decreased along with the increase of the iterations, and they tended to 
be stable when the iterations reached or exceeded certain numbers. Specifically, the train-
ing PA and the validation PA obtained by using the CNN-LSTM model remained at 0.9888 
(see Fig. 6). In the case of the CNN model, the ANN model, and the LSTM model, the 
values were 0.9583, 0.6783, and 0.9841, respectively (see Figs. 7, 8, 9). The results shown 
in Figs. 6, 8, 9 indicate that the corresponding models did not result in severe over-fitting. 
Besides, in terms of convergence speed, the CNN-LSTM model outperformed the other 
three models. The CNN-LSTM model converged after 10 iterations (see Fig. 6), while the 
CNN, ANN, and LSTM models converged after 36, 60, and 22 iterations, respectively (see 
Figs. 7, 8, 9).   

Since the super-parameters of the KNN model and the SVM model are few, a grid 
search algorithm that considers all the possible values of super-parameters was used 
to select the optimal super-parameters of the KNN model and the SVM model. At each 

Fig. 6   Variation trends of PA 
and MSE obtained by training 
and validating the CNN-LSTM 
model

Fig. 7   Variation trends of PA and 
MSE obtained by training and 
validating the CNN model
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super-parameter selection process, the grid search algorithm uses a combination of super-
parameters to evaluate the model’s performance. The optimal super-parameters of the 
KNN model obtained by the grid search algorithm are given below.

•	 The weight function used in prediction was selected as “distance”. In this case, closer 
neighbors of a query point will have a greater influence than neighbors which are fur-
ther away.

•	 The number of neighbors was selected as 1.
•	 The power parameter for the Minkowski metric (it only works when the weight function 

is set to “distance”) used to calculate distance was selected as 1.

The optimal super-parameters of the SVM model obtained by the grid search algorithm 
are given below.

•	 The kernel function used in the SVM model (it must be one of “linear”, “polynomial”, 
“radial basis function”, and “sigmoid”.) was selected as “radial basis function”. The 
details of these kernel functions is provided in Table 3.

•	 The penalty parameter of the error term was selected as 20.

Fig. 8   Variation trends of PA and 
MSE obtained by training and 
validating the ANN model

Fig. 9   Variation trends of PA and 
MSE obtained by training and 
validating the LSTM model
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Table 2   Detailed settings of the CNN-LSTM model, CNN model, LSTM model, and ANN model, where 
bold indicates the operations defined in Sect 3.2.2 that realizes the connection between CNN and LSTM 
layers

Model Name of layer Output shape Kernel size/Kernel number/ 
Stride/ Zero-padding

Number of 
parameters

CNN Layer 1 conv2d_1(Conv2D) (None,10,52,52) (3,3)/10/1/1 100
Layer 2 conv2d_2(Conv2D) (None,20,52,52) (3,3)/20/1/1 1820
Layer 3 conv2d_3(Conv2D) (None,35,52,52) (3,3)/35/1/1 6335
Layer 4 max_

pooling2d_1(MaxPooling2)
(None,35,26,26) – 0

conv2d_4(Conv2D) (None,55,26,26) (3,3)/55/1/1 17,380
Layer 5 max_

pooling2d_1(MaxPooling2)
(None,55,13,13) – 0

flatten_1(Flatten) (None,9295) – 0
dense_1(Dense) (None,100) – 929,600

Layer 6 dropout_1(Dropout) (None,100) – 0
dense_2(Dense) (None,22) – 2222

LSTM Layer 1 lstm_1(LSTM) (None,52,100) – 61,200
Layer 2 lstm_2(LSTM) (None,52,250) – 351,000
Layer 3 lstm_3(LSTM) (None,52,200) – 360,800
Layer 4 lstm_4(LSTM) (None,100) – 120,400
Layer 5 dense_1(Dense) (None,1000) – 101,000
Layer 6 dropout_1(Dropout) (None,1000) – 0

dense_2(Dense) (None,22) – 22,022
ANN Layer 1 dense_1(Dense) (None,60) – 3180

Layer 2 dense_2(Dense) (None,400) – 24,400
Layer 3 dense_3(Dense) (None,1000) – 401,000
Layer 4 dense_4(Dense) (None,400) – 400,400
Layer 5 dense_5(Dense) (None,300) – 120,300
Layer 6 dense_6(Dense) (None,22) – 6622

CNN-LSTM Layer 1 conv2d_1(Conv2D) (None,10,52,52) (3,3)/10/1/1 100
Layer 2 conv2d_2(Conv2D) (None,20,52,52) (3,3)/20/1/1 1820
Layer 3 trans_1(Bridge) (None,52,1040) – 0

lstm_1(LSTM) (None,52,100) – 456,400
Layer 4 lstm_2(LSTM) (None,200) – 240,800
Layer 5 dense_1(Dense) (None,1000) – 201,000
Layer 6 dropout_1(Dropout) (None,1000) – 0

dense_2(Dense) (None,22) – 22,022

Table 3   Details of the kernel 
functions

Name of kernel function Formula

Linear k
(
x, xi

)
= x ∙ xi

Polynomial k
(
x, xi

)
= (x ∙ xi)

d

Radial basis function k
(
x, xi

)
= exp(−||x − xi||

2)

Sigmoid
k
(
x, xi

)
=

���(x−xi)−exp(−(x−xi))
���(x−xi)+exp(−(x−xi))
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The results of PA are shown in Table 4. The values of PAnone and PAnoise obtained by 
using the feature extraction-based models were below 80%, whereas the PAnone and PAnoise 
obtained by using the feature learning-based models were above 95%. This indicates that 
the performance of the feature learning-based models was significantly better than the fea-
ture extraction-based models in terms of predictive accuracy degree.

On the other hand, compared to the values of PAnone and PAnoise obtained by using the 
CNN model and the LSTM model, the values obtained by using the CNN-LSTM model 
were larger, which indicates that the CNN-LSTM model outperforms the CNN model and 
the LSTM model in terms of PA. Theoretically, the CNN model has strong feature learning 
capabilities, and the LSTM model can capture time delay information. The improvement of 
the CNN-LSTM model may be attributed to the integration of CNN and LSTM. Further-
more, the value of PAnone ( PAnoise ) dropped by 3.23% (7.66%) when only CNN was applied, 
and it dropped by 0.65% (3.35%) under the situation where only LSTM was used. We can 
see that the decrease of PAnone ( PAnoise ) when only LSTM is used is smaller than the one 
when CNN is applied, which may result from that time delay information extracted by 
LSTM contributes more to fault diagnosis than feature information extracted by CNN does.

Regarding the measurement of NS, the feature learning-based models generally outper-
formed the feature extraction-based models. This shows that the former kind of models 
is superior to the latter one in terms of adaptability. The value of NS associated with the 
CNN-LSTM model was lower than the ones associated with the CNN and LSTM models, 
which indicates that the integration of feature information and time delay information is 
beneficial to the model against noise.

Tables  5 and 6 present the computing results of PR under the situations where dif-
ferent models were applied for fault diagnosis of the TE chemical process. One can see 
from Table 5 that the feature learning-based models showed worse performance than the 
feature extraction-based models in terms of PR . This is mainly due to the relatively high 

Table 4   The PA of using a 
variety of models for noisy 
and noise-free data sets, 
� = 0, �2

= 0.001

Index Feature learning-based 
models

LSTM Feature extraction-based 
models

CNN-LSTM CNN ANN KNN SVM

PAnone 0.9906 0.9583 0.9841 0.6782 0.7467 0.7662
PAnoise 0.9851 0.9085 0.9516 0.5376 0.6541 0.7107
Δacc 0.0055 0.0498 0.0325 0.1406 0.0926 0.0555
NS 0.6 5.2 3.3 20.7 12.4 7.2

Table 5   Cumulative time-
consumption of prediction using 
different models ( n

s
= 5,n

m
= 10

,n
l
= 100)

Feature learning-based 
models

LSTM Feature extraction-
based models

CNN-LSTM CNN ANN KNN SVM

ts(ms) 209 39.60 18.10 9.06 9.58 7.92
tm(ms) 336 60.20 23.40 12.20 16.10 14.20
tl(ms) 2670 457 143 80 162 128
PR(ms) 27.96 4.84 1.60 0.88 1.63 1.31
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computational cost of CNN for feature learning. One can also find that the CNN-LSTM 
model performed worse in terms of PR compared with the CNN and LSTM models. This 
is mainly because the CNN-LSTM model has a bridge that is used to combine the CNN 
layer and the LSTM layer and the bridge greatly increases the computational complexity of 
the CNN-LSTM model.

The number in Table 6 indicates how long it took for a model to predict a single sam-
ple. Interestingly, the average sample prediction time of the DL-based models (i.e., CNN-
LSTM model, CNN model, and LSTM model) decreased along with the increasing of the 
sample size. When the sample size reaches a relatively large scale, whether the perfor-
mance of PR of the DL-based models will be superior to the feature extraction-based mod-
els is a question that remains to be further studied.

The experimental results show that the proposed CNN-LSTM model had a good per-
formance in terms of PA and NS . However, there is a trade-off relationship between PA, 
NS, and PR. A better combination of PA and NS is usually accompanied by a worse PR, 
which is results from the high complexity of a model. Therefore, the bad performance of 
the CNN-LSTM model in terms of PR is inevitable compared to the other five models. The 
proposed CNN-LSTM model is an effective tool for solving the fault diagnosis problems 
where the requirements for PA and NS are high, but the requirements for PR performance 
are very low.

4.3 � Fault modes analysis

We visualize the output of each layer (Conv2d_1, Conv2d_2, Lstm_2, Dense_1 and 
Dense_2) of the proposed CNN-LSTM model to observe the fault modes learned by the 
model. Firstly, we select two different samples with the same fault from the test set. Then, 
we use the trained CNN-LSTM model to predict the two samples. Finally, the outputs of 
each layer of the model are visualized as shown in Fig. 9.

One can summarize the following findings from Fig. 10:

(1)	 The outputs of Conv2d_1 layer and Conv2d_2 layer indicate that some attributes have 
been extracted as shown in the red box. Moreover, the extracted attributes are the same 

Table 6   Average time-
consumption of prediction using 
different models ( n

s
= 5,n

m
= 10

,n
l
= 100)

Feature learning-
based models

LSTM Feature extraction-
based models

CNN-LSTM CNN ANN KNN SVM

ts∕ns(ms) 41.80 7.92 3.62 1.81 1.92 1.58
tm∕nm(ms) 33.6 6.02 2.34 1.22 1.61 1.42
ts∕ns(ms) 26.7 4.75 1.43 0.8 1.62 1.28
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Fig. 10   The visualizations of fault diagnosis for two samples with the same fault
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for these two different samples, which may indicate that those extracted attributes 
highly correlated with fault mode.

(2)	 The outputs of Lstm_2 layer model the hidden state of the last LSTM unit that can be 
regarded as the extracted time feature. We can find that the extracted time features of 
the two different samples are almost identical, which may indicate that the extracted 
time feature highly correlated with fault model.

(3)	 The outputs of Dense_1 integrate the extracted attributes information and the extracted 
time feature, which can be regarded as an abstract fault mode identified by the CNN-
LSTM model.

(4)	 The abscissa corresponding to the peak of the visualization curve of outputs of Dense_2 
is regarded as the result of fault diagnosis. We can see that the fault diagnosis results 
of the two different samples are consistent with their labels, which verifies the validity 
of the identified fault mode.

Figure  11 shows the visualizations of fault diagnosis for two samples with different 
faults. One can find that the extracted attributes information, time feature and fault modes 
are different for the two samples with different faults, and the fault diagnosis results of the 
two different samples are consistent with their labels, which further verify the validity of 
the identified fault modes. 

5 � Conclusions and future works

In this paper, we propose a novel DL-based method for the fault diagnosis of complex 
systems by synthetically considering feature extraction and time delay of the occurrence of 
faults simultaneously. The proposed fault diagnosis method consists of two parts, namely, 
sliding window processing and CNN-LSTM model. Samples for the development of CNN-
LSTM model can be obtained by sliding window processing integrating the feature infor-
mation and time delay information of MTS. The developed CNN-LSTM model is a com-
bination of CNN layers and LSTM layers. Automatic feature learning can be performed 
through the CNN layers. Time delay information can be captured through the LSTM lay-
ers. Through addressing the fault diagnosis of the TE chemical process, it is verified that 
the predictive accuracy and noise sensitivity of fault diagnosis can be greatly improved 
when the proposed method is applied. Comparisons with several existing fault diagnosis 
methods show the superiority of the proposed method.

The following aspects are worthy of future research:
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Fig. 11   The visualizations of fault diagnosis for two samples with different faults
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(1)	 The fault diagnosis of TE chemical process is considered as an application of the pro-
posed method. To further verify the generalization of the proposed method, using it to 
solve fault diagnosis of such complex systems as wind turbine blades (Du et al. 2020), 
rotor (Nath et al. 2020), gearbox (Wu et al. 2019), subsea pipelines (Cai et al. 2020) 
and so on, deserves further study.

(2)	 DL is a kind of “black box” approach with little interpretability, which weakens the 
reliability of fault diagnosis that is a critical goal for fault diagnosis. On the other hand, 
such traditional fault diagnosis methods as physics of failure and fault tree analysis are 
reliable. How to integrate these reliable methods into DL to improve the interpretability 
of DL-based fault diagnosis methods is worthy of further research.

(3)	 The fault data collected from real industrial scene is rare owing to that the system is not 
allowed to run for a long time under fault conditions. It is a big challenge for DL when 
the collected data is insufficient. It may be a good attempt to integrate knowledge of 
complex systems into DL models for solving this problem (Feng et al. 2021; Li et al. 
2019b; Yu and Liu 2020). Therefore, how to integrate system knowledge into the DL-
based fault diagnosis model is worthy of in-depth study.

Appendix

See Tables 7 and 8.
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Table 7   Variables involved in the 
TE chemical process and their 
description

Variable Description Unit

XMV(1) D Feed Flow (stream 2) (Corrected Order) kg/hr
XMV(2) E Feed Flow (stream 3) (Corrected Order) kg/hr
XMV(3) A Feed Flow (stream 1) (Corrected Order) kscmh
XMV(4) A and C Feed Flow (stream 4) kscmh
XMV(5) Compressor Recycle Valve %
XMV(6) Purge Valve (stream 9) %
XMV(7) Separator Pot Liquid Flow (stream 10) m3/hr
XMV(8) Stripper Liquid Product Flow (stream 11) m3/hr
XMV(9) Stripper Steam Valve %
XMV(10) Reactor Cooling Water Flow m3/hr
XMV(11) Condenser Cooling Water Flow m3/hr
XMEAS(1) A Feed (stream 1) kscmh
XMEAS(2) D Feed (stream 2) kg/hr
XMEAS(3) E Feed (stream 3) kg/hr
XMEAS(4) A and C Feed (stream 4) kscmh
XMEAS(5) Recycle Flow (stream 8) kscmh
XMEAS(6) Reactor Feed Rate (stream 6) kscmh
XMEAS(7) Reactor Pressure kPa gauge
XMEAS(8) Reactor Level %
XMEAS(9) Reactor Temperature Deg C
XMEAS(10) Purge Rate (stream 9) kscmh
XMEAS(11) Product Sep Temp Deg C
XMEAS(12) Product Sep Level %
XMEAS(13) Prod Sep Pressure kPa gauge
XMEAS(14) Prod Sep Underflow (stream 10) m3/hr
XMEAS(15) Stripper Level %
XMEAS(16) Stripper Pressure kPa gauge
XMEAS(17) Stripper Underflow (stream 11) m3/hr
XMEAS(18) Stripper Temperature Deg C
XMEAS(19) Stripper Steam Flow kg/hr
XMEAS(20) Compressor Work kW
XMEAS(21) Reactor Cooling Water Outlet Temp Deg C
XMEAS(22) Separator Cooling Water Outlet Temp Deg C
XMEAS(23) Component A in stream 6 mole %
XMEAS(24) Component B in stream 6 mole %
XMEAS(25) Component C in stream 6 mole %
XMEAS(26) Component D in stream 6 mole %
XMEAS(27) Component E in stream 6 mole %
XMEAS(28) Component F in stream 6 mole %
XMEAS(29) Component A in stream 9 mole %
XMEAS(30) Component B in stream 9 mole %
XMEAS(31) Component C in stream 9 mole %
XMEAS(32) Component D in stream 9 mole %
XMEAS(33) Component E in stream 9 mole %
XMEAS(34) Component F in stream 9 mole %
XMEAS(35) Component G in stream 9 mole %
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Table 7   (continued) Variable Description Unit

XMEAS(36) Component H in stream 9 mole %
XMEAS(37) Component D in stream 11 mole %
XMEAS(38) Component E in stream 11 mole %
XMEAS(39) Component F in stream 11 mole %
XMEAS(40) Component G in stream 11 mole %
XMEAS(41) Component H in stream 11 mole %

Table 8   Details of faults of the TE chemical process

No Description Fault type

1 A/C feed flow ratio changes, component B content remains the same (flow 4) Step
2 The content of component B changes, and the A/C feed flow ratio does not 

change (flow 4)
Step

3 The temperature of material D changes (flow 2) Step
4 Reactor cooling water inlet temperature changes Step
5 Condenser cooling water inlet temperature changes Step
6 Material A loss (flow 1) Step
7 Material C pressure loss (flow 4) Step
8 The composition of materials A, B, and C changes (flow 4) Random variables
9 The temperature of material D changes (flow 2) Random variables
10 The temperature of material C changes (flow 2) Random variables
11 Reactor cooling water inlet temperature changes Random variables
12 Condenser cooling water inlet temperature changes Random variables
13 Random Variables Slow drift
14 Reactor cooling water valve stick to
15 Condenser cooling water valve stick to
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Flow 4 valve is fixed in steady state position Constant position
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