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Abstract
Deep neural networks (DNNs), which are extensions of artificial neural networks, can learn 
higher levels of feature hierarchy established by lower level features by transforming the 
raw feature space to another complex feature space. Although deep networks are successful 
in a wide range of problems in different fields, there are some issues affecting their over-
all performance such as selecting appropriate values for model parameters, deciding the 
optimal architecture and feature representation and determining optimal weight and bias 
values. Recently, metaheuristic algorithms have been proposed to automate these tasks. 
This survey gives brief information about common basic DNN architectures including con-
volutional neural networks, unsupervised pre-trained models, recurrent neural networks 
and recursive neural networks. We formulate the optimization problems in DNN design 
such as architecture optimization, hyper-parameter optimization, training and feature rep-
resentation level optimization. The encoding schemes used in metaheuristics to represent 
the network architectures are categorized. The evolutionary and selection operators, and 
also speed-up methods are summarized, and the main approaches to validate the results of 
networks designed by metaheuristics are provided. Moreover, we group the studies on the 
metaheuristics for deep neural networks based on the problem type considered and present 
the datasets mostly used in the studies for the readers. We discuss about the pros and cons 
of utilizing metaheuristics in deep learning field and give some future directions for con-
necting the metaheuristics and deep learning. To the best of our knowledge, this is the most 
comprehensive survey about metaheuristics used in deep learning field.
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1 Introduction

Artificial Intelligence (AI) algorithms can learn feature hierarchies and generalize them to 
new contexts, and automatically learning features at multiple levels of abstraction provides 
to learn complex mappings. Shallow learning algorithms extract features using artificial 
sampling or empirical sampling. As the data size increases, the abilities of shallow tech-
niques turn to be insufficient on large-scale and high-dimensional data. More advanced and 
competent AI techniques are needed to extract features at high-level abstractions and learn 
complex mappings in large-scale, incompletely annotated data. One of the advanced repre-
sentation learning techniques that can address these issues is deep learning (DL) (Hinton 
et al. 2006), which is inspired by brain activities performed in visual cortex to establish the 
non-linear relationships. DNNs can learn higher levels of feature hierarchy by transforming 
the raw feature space into another feature space. Although they had been proposed earlier, 
their applicability had remained limited because they require high computation budget. 
However, growth in computational power enabled them to be employed in many studies, 
recently.

A DL architecture has several specific layers corresponding to a different area of cortex. 
Each layer has an arbitrary number of neurons and outputs, as well as distinct initialization 
methods, and activation functions. The values assigned for model and learning parameters, 
the way of the feature representation described and the weight and bias values determined 
affect the overall performance of DL methods while there is a trade-off between generaliza-
tion capability and computational complexity. Although Grid Search, Random Search and 
Bayesian Optimization (Bergstra et  al. 2011) are popular to configure hyper-parameters, 
they are impractical when the number of parameters and the complexity of the problem 
is high. Besides, there is no analytic approach to automatically design the optimal archi-
tecture, designing manually or using exhausted search requires high computational cost 
even if high-processing facilities such as GPU and parallel computing are used. In train-
ing of DL models, using derivative-based methods is difficult to parallelize and causes to 
slow convergence. Recently, researchers have proposed new studies to automate the search 
for their design and parameters. Among these studies, neuro-evolution applies evolution-
ary computation to explore the huge search space and mitigate the challenges of these 
approaches. Nature-inspired evolutionary metaheuristics that combine a natural phenom-
enon and randomness can deal with dynamic changes in the problem space by transferring 
the problem-specific knowledge from previous generations. They can produce high-quality 
near-optimal solutions for large-scale problems within an acceptable time.

Tian and Fong (2016) reviewed genetic algorithm (GA) and particle swarm optimiza-
tion (PSO), for traditional neural network’s training and parameter optimization. Fong 
et  al. (2017) reviewed the applications of metaheuristics in DL. Gülcü and Kuş (2019) 
reviewed the metaheuristic methods used to optimize hyper-parameters in Convolutional 
Neural Networks (CNNs). Chiroma et al. (2019) pointed out recent development issues and 
created a taxonomy based on nature-inspired algorithms for deep learning. These surveys 
report the advances in the area focusing on only some limited aspects of DL models (train-
ing or hyper-parameter optimization) or some architectures. Therefore, we have prepared 
a more comprehensive review considering most aspects of DL that can be treated as an 
optimization problem and solved by metaheuristics. As far as we know, this is the most 
comprehensive review about metaheuristics used in DL field. We believe that this review 
would be very beneficial for the researchers who prepares to study on the hybridization of 
metaheuristics and DL approaches.
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Our motivation is to provide a review about the metaheuristic algorithms used for the 
optimization problems arising in deep learning field and answer the research questions 
listed below:

• Which optimization problems do arise in the field of deep learning?
• Which metaheuristic algorithms are used to optimize DNNs?
• Which encodings can be used to map solution space to network space?
• Which problems are solved by DNNs optimized by metaheuristics?
• Which DNN architectures are optimized by metaheuristics?
• How we can validate the results of DNNs optimized by metaheuristics?
• Which datasets are mostly used in the benchmarks for DNN optimization by 

metaheuristics?

To answer the research questions, first, we give a brief information about common DNN 
architectures widely used in engineering field and optimized by metaheuristics. Second, 
we group the metaheuristic algorithms based on the number of solutions evolved and the 
natural phenomenon underpinning the nature-inspired algorithms, including evolutionary 
algorithms and swarm intelligence algorithms. We provide a section for how DNNs can be 
designed and trained by the metaheuristics. The problem statements for hyper-parameter 
optimization of DNNs, training DNNs, architecture optimization, optimization at DNN 
feature representation level are presented to highlight decision variables and the search 
space. Besides, in this section, encoding schemes, which convert a network into a solution 
vector to be evolved by a metaheuristic, are grouped based on how mapping is achieved 
between genotype-phenotype spaces and network spaces. How the researchers can validate 
the performance of a DNN designed by the metaheuristics is also given. Next, we group 
the studies related to metaheuristics and DNNs based on the problem type considered. A 
section has also been dedicated to the description of datasets which can be used to vali-
date the methodologies on the same experimental setup and compare with state-of-the-art 
algorithms.

The rest of the paper is organized as follows. In Sect. 2, the most common DL archi-
tectures are briefly introduced; in Sect.  3, the properties of metaheuristic algorithms are 
summarized. The forth section is dedicated to automated DNN search by the metaheuris-
tics. The problem statements of hyper-parameter optimization, training DNNs, architec-
ture search and optimization at feature representation level of DNNs are provided. Net-
work encodings used to represent solutions in the metaheuristics are grouped, and how 
the performance of the metaheuristics can be validated is described briefly. In Sect. 6, the 
literature review methodology is explained and the reviewed studies are grouped according 
to the optimization problem arising in DNNs. Some brief information about the common-
used datasets in this field is also provided. Section 7 provides a discussion and the last sec-
tion is dedicated to the conclusion and future directions.

2  Deep neural network architectures

A neural network (NN) is composed of connected layers which consist of interacting neu-
rons performing computations to achieve an intelligent behaviour or to approximate a com-
plex function. Deep NN models can be categorized into two groups: Discriminative and 
Generative models. The discriminative models adopt a bottom-up approach. They model 
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a decision boundary between classes based on the observed data and produce a class label 
for unseen data by calculating the maximum similarity with labeled items. The generative 
models adopt a top-down approach. They establish a model based on the actual distribu-
tion of each class and produce an output for unseen data based on the joint probability 
in an unsupervised manner. Based on architectural properties, deep neural networks can 
be categorized into four groups as shown in Fig.  1 (Patterson and Gibson 2017): Unsu-
pervised Pretrained Networks (UPN), Convolutional Neural Networks (CNNs) (Fukushima 
1980), Recurrent Neural Networks (RNNs) (Rumelhart et  al. 1986) and Recursive Neu-
ral Networks. UPNs include Auto-Encoders (AEs) (Kramer 1991), Restricted Boltzmann 
Machines (RBMs) (Smolensky 1986), Deep Belief Networks (DBNs) (Hinton et al. 2006) 
and Generative Adversarial Networks (GANs) (Goodfellow et al. 2014). Long Short-Term 
Memory (LSTM) (Hochreiter and Schmidhuber 1997) is also an implementation of RNNs.

2.1  Convolutional neural networks

CNN (Fukushima 1980) is one of the most used DNN models generally used for grid-
structured data, such as images. In CNNs (Fig. 2), a layer performs transformations and 
calculations and then propagates it to the next layer. While the dimensionality of hidden 
layers determines the width of the model, the depth of the model means the overall length 
of layers. The degree of abstraction depends on the depth of the architecture. Dense, drop-
out, reshape, flatten, convolution and pooling are some examples of layers in CNNs. The 
convolution layer weights each element in a data matrix by a probability density function. 
The number of filters and the filter sizes are important hyper-parameters of the convolu-
tion layer. The pooling layer is used to downsample the feature maps using operators such 
as max, min, average, median. Pool size and striding are to be assigned in each pooling 
layer. In the dense layers, outputs are calculated by transferring the weighted inputs to the 
activation function. The initialization mode of the weights, activation function (softmax, 
softplus, softsign, relu, tanh, sigmoid, hard sigmoid, linear, etc.) and the number of outputs 
are to be determined in each dense layer. The dropout layer assigns zeros to some randomly 
selected inputs to prevent overfitting during training. The reshape layer ensures that the 
one-dimensional feature map is conformable to the data format in other layers. The flatten 
layer reshapes a multi-dimensional data into a one-dimensional form.

Deep Neural
Networks

Convolutional
Neural Net-

works (CNNs)

Unsupervised
Pretrained
Networks

Recurrent
Neural Networks

Recursive
Neural Networks

AEs

RBMs

DBNs

GANs

See Fig. 3 LSTM

Fig. 1  A taxonomy for DNN architectures (Patterson and Gibson 2017)
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The cost function for a sample (x, y) can be defined by Eq. 1 and error at sub-sam-
pling layer is calculated by Eq. 2 (Shrestha and Mahmood 2019):

where �(l+1)
k

 is the error for (l + 1) th layer of a network and f �(z(l)
k
) represents the derivate of 

the activation function. AlexNet (Krizhevsky et al. 2012), GoogleNet (Inceptionv1) (Sze-
gedy et al. 2015), ResNet (He et al. 2016) and VGG (Simonyan and Zisserman 2014) are 
some popular and widely-used CNN models. The CNN models can be categorized as in 
Fig. 3 (Khan et al. 2020).
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Fig. 2  Architecture of a CNN
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Fig. 3  A taxonomy for CNN architecture (Khan et al. 2020)
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2.2  Unsupervised pretrained networks

UPNs employ greedy layer-wise unsupervised pretraining followed by a second stage for 
supervised fine-tuning. An unsupervised algorithm based on a nonlinear transformation 
trains each layer and extracts the variations in its input. This stage intensifies the weights 
and makes the cost function more complicated with included topological features. In 
the second stage, the labels are used and a training criterion is minimized (Erhan et  al. 
2010). UPNs have the advantage in initializing a number of layers over random initializa-
tion (Bengio 2009). Auto-Encoders (AEs) (Kramer 1991), Restricted Boltzmann Machines 
(RBMs) (Smolensky 1986), Deep Belief Networks (DBNs) (Hinton et al. 2006) and Gener-
ative Adversarial Networks (GANs) (Goodfellow et al. 2014) are representatives of UPNs 
that use training algorithms based on layer-local unsupervised criteria. These are described 
below briefly.

2.2.1  Auto‑encoders

An auto-encoder (Kramer 1991) (Fig. 4) is a special case of feed-forward NNs that learn 
features by copying its input to output. AE uses greedy layer-by-layer unsupervised pre-
training and fine-tuning with backpropagation (Kramer 1991). It is composed of two parts: 
an encoder function h = f (x) that transforms data from high-dimensional space to a low 
dimensional space as a lossy compression, and a decoder that produces a reconstruction 
r = g(h) . The aim is to achieve g(f (x)) = x nonlinear representation using an unsupervised 
algorithm because they regenerate the input itself rather than other output.

When the structure has linear one hidden layer, the k units in this layer learn the first k 
principal component of the input by minimizing mean squared error function. When the 
hidden layer is non-linear, AE does not act like Principal Component Analysis and can 
extract multi-modal variations in data by minimizing the negative log-likelihood of recon-
struction given by Eq. 3, and the loss function can be defined by Eq. 4 when the inputs are 
binary (Bengio 2009):

Fig. 4  A simple AE structure

x1 x2 x3 xn

x1 x2 x3 xn

Decoder

Encoder

h1 h2 hm
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2.2.2  Restricted Boltzmann machine and deep belief networks

RBMs (Smolensky 1986) (Fig. 5) can build non-linear generative models from unlabeled data 
to reconstruct the input by learning the probability distribution. The architecture has a hidden 
layer and a visible layer in which all units are fully connected to the units in the hidden layer, 
and there are no connections between the units in the same layer. The energy of the RBM net-
work is calculated by Eq. 5:

where �i and hj are the states of ith node. � is the set of nodes in the input layer, h is the set 
of nodes in the hidden layer, b�i and bhj are the biases for the input layer and hidden layer, 
respectively. �ij represents the weight of the edge connecting two nodes. The probability of 
each node is calculated by energy formula given in Eq. 6.

Hinton et al. (2006) showed that deeper networks could efficiently be trained using greedy 
layer-wise pretraining and proposed DBNs which are composed of a stacked set of RBMs 
with both directed edges and undirected edges. A DBN with � layers models the joint distribu-
tion between observed vector x and � hidden layers hk by Eq. 7:

where x = h0 , P(hk−1|hk) is a visible-given-hidden conditional distribution in an RBM 
associated with level k of the DBN, and P(h�−1, h�) is the joint distribution in the top-level 
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RBM. Sampling from the top level of RBM is performed using Gibbs chain. DBN is 
trained in greedy layer-wise fashion.

2.2.3  Generative adversarial neural networks

GANs (Goodfellow et al. 2014) are designed to train two adversarial networks, a generative 
model G and a discriminative model D. G, which is a differentiable function represented by 
a multilayer perceptron, can learn the generator’s distribution pg over data x while D esti-
mates the probability that a sample is drawn from the training set rather than G. A prior on 
input noise variables pz(z) is mapped by G(z;�g) , where �g is multilayer perceptron parame-
ters. A latent code is generated by the generator network. The second network D(x;�d) aims 
to assign the correct label to both training examples and samples from G, while G is trained 
to generate samples that counterattack the success of D by minimizing log(1 − D(G(z))) , 
which is a two-player minimax game with value function V(G; D) defined by Eq. 8 (Yinka-
Banjo and Ugot 2019):

To avoid saturation in early cycles of learning, G can also be allowed to maximize 
log(D(G(z))) (Goodfellow et al. 2014).

2.3  Recurrent neural networks

RNNs (Rumelhart et al. 1986) are special-purpose networks for processing sequential data, 
especially time series. The primary function of each layer is introducing memory rather 
than hierarchical processing. RNNs illustrated in Fig. 6 produce an output at each time step 
by Eq. 9 and have recurrent connections between hidden units (Eq. 10).

where ht denotes the hidden state defined by Eq. 10.

where xt and yt are the input and output at time t, and f indicates the nonlinear function. 
Learning phase updates weights which determine the information to pass onward or to 
discard.
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Fig. 6  Architecture of an RNN
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2.3.1  Long short‑term memory

LSTM (Hochreiter and Schmidhuber 1997) is an implementation of RNN, which partly 
addresses problems of vanishing gradients and long time delays. LSTM cells (Fig. 7.) with 
internal recurrence (a self-loop) are introduced to produce paths where the gradient can flow 
for long durations rather than element-wise nonlinearity. LSTM can obtain previous states and 
can be trained for applications requiring memory or state awareness. LSTM technique replaces 
hidden neurons by memory cells as multiple gating units control the flow of information.

In Fig. 7, x is the input, h is the hidden neuron, c is memory cell state, the symbol � is the 
sigmoid function and tanh is the hyperbolic tangent function, operator ⊕ is the element-wise 
summation and ⊗ is the element-wise multiplication. The input and output gates regulate the 
read and write access to the cell, the forget gates learn to reset memory cells once their con-
tents are useless. The values at the output of the gates can be given by Eqs. 11–15 (Shrestha 
and Mahmood 2019):

(11)ft = �(Wf xt + wf ht−1 + bf )

(12)it = �(Wixt + wiht−1 + bi)

(13)ot = �(Woxt + woht−1 + bo)

(14)ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxt + wcht−1 + bc)

(15)ht = ot ⊗ tanh(ct)
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where f, i, o correspond to the forget, input and output gate vectors, W, w and b are weights 
of input, weights of recurrent output and bias, respectively.

2.4  Recursive neural networks

Recursive NNs are defined as skewed tree structures (Fig. 8), and a deep recursive NN can 
be constructed by stacking multiple layers of recursive layers (Irsoy and Cardie 2014).

Assuming that l(�) and r(�) are left and right children of a node � in a binary tree, a 
recursive NN computes the representations at each internal node � by Eq. 16:

where WL and WR are square weight matrices of left and right child, respectively, and b is a 
bias vector. The result at the output layer can be calculated by Eq. 17: representation layer:

where Wo is the output weight matrix and bo is the bias vector to the output layer.
When each hidden layer lies in a different space in stacked deep learners, Irsoy and Car-

die (2014) proposed a stacked deep recursive NN of individual recursive by Eq. 18:

where i is the layer index of the multiple stacked layers, W (i)

L
 and W (i)

R
 are weight matrices of 

left and right child in layer i, and V (i) is the weight matrix between (i − 1) th and ith hidden 
layers.

3  Metaheuristic algorithms

Most of the optimization problems in real-world are hard such that their objective functions 
and constraints have high nonlinearity, multi-modality, discontinuity in addition to con-
flicting with each other etc (Karaboga and Akay 2009). These hard problems might not be 
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solved by exact methods in a reasonable time, and approximate algorithms are preferred to 
find good solutions. Metaheuristic algorithms are a group of approximate algorithms which 
mimic a natural phenomenon using operators performing intensification and diversifica-
tion. They adopt an encoding scheme to represent a solution to the problem and use some 
search operators to change the solution in search space, systematically. These search opera-
tors try to find high-quality solutions by exploiting the current knowledge (intensification) 
or explore new solutions (diversification) to avoid getting stuck to local minima. A good 
algorithm performs intensification and diversification in a balanced manner. To guide the 
search for a better region in the search space, algorithms employ some greedy and stochas-
tic selection operators.

The metaheuristic algorithms can be divided into two main groups as given in Fig. 9 
depending on the number of solutions considered during the search.

3.1  Single solution‑based algorithms

The first group called trajectory methods or single solution-based methods start with a 
single solution and construct next solution using a perturbation mechanism. Tabu Search 
(TS) (Glover 1986) and Simulated Annealing (SA) (Kirkpatrick et al. 1983) algorithms are 
popular examples of the first group.

TS proposed by Glover (1986) applies local search to construct a solution and uses a 
tabu list as a memory to prohibit the previous solutions. In each iteration, worse solutions 
have a chance to be accepted if no improvement can be obtained. SA proposed by Kirkpat-
rick et al. (1983) mimics metallurgical annealing in which heat of a material is increased 
and cooled down to optimize its crystal structure to prevent defects. In each time step, the 
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SA
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Swarm In-
gelligence
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GA

DE

...

ACO
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Fig. 9  A simple taxonomy of metaheuristic algorithms
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algorithm generates a random solution, and the new solution is accepted or rejected accord-
ing to the probability calculated based on thermodynamic principles.

3.2  Population‑based algorithms

The second group uses a group of solutions called a population and tries to improve the 
population collectively. In the population-based algorithms, solutions might use the infor-
mation due to the other solutions in the population, or the next population might be gen-
erated considering whole population. Evolutionary Computation (EC) algorithms such as 
Evolution Strategies (ES) (Rechenberg 1965), Evolutionary Programming (EP) (Fogel et al. 
1966) and Genetic Algorithms (GA) (Holland 1975), Genetic Programming (GP) (Koza 
1990) and Differential Evolution (DE) (Storn and Price 1995), and Swarm Intelligence 
algorithms such as Artificial Bee Colony (ABC) (Karaboga 2005), Particle Swarm Opti-
mization (PSO) (Kennedy and Eberhart 1995), Ant Colony Optimization (ACO) (Dorigo 
et al. 1996) algorithms are the most popular members of population-based algorithms.

3.2.1  Evolutionary computation algorithms

EC algorithms mimic natural selection and genetic operations during the search, and they 
can be grouped as ES by Rechenberg (1965), EP by Fogel et al. (1966), GA by Holland 
(1975) and GP by Koza (1990). For each solution in the population, EC algorithms gen-
erate offsprings by genetic recombination, and mutation operators and next population is 
formed by the solutions corresponding to better regions in the search space. DE proposed 
by Storn and Price (1995) is an evolutionary algorithm proposed to optimize the function 
of real-valued decision variables.

3.2.2  Swarm intelligence algorithms

Swarm intelligence algorithms mimic the collective behaviour of creatures to establish a 
global response through local interactions of agents in a swarm. They adopt self-organiza-
tion and division of labour, where self-organization is characterized by positive feedback to 
intensify better patterns, negative feedback to abandon the patterns exploited sufficiently, 
multiple interactions between agents and fluctuations to bring diversity to swarm. PSO 
developed by Kennedy and Eberhart (1995) simulates the flocking of birds and schooling 
of fishes. The algorithm changes the velocity and location of each particle using the parti-
cle’s self-experience and the global information of all particles. ACO proposed by Dorigo 
et  al. (1996) is an analogy of ants’ path finding between the nest and source using the 
pheromone trail. In each iteration, ants change their positions based on probabilities pro-
portional with pheromone amount between the nodes. An edge visited by more ants will 
have higher pheromone, and a higher amount of pheromone will attract more ants while 
the pheromone is evaporating by time. ABC proposed by Karaboga (2005) is another well-
known swarm intelligence algorithm which simulates the foraging behaviour of honey 
bees. There are three types of bees allocated for foraging task: employed bees, onlooker 
bees and scout bees, which all try to maximize the nectar amount unloaded to the hive. 
There are some other metaheuristics as well as the modifications of these algorithms.
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4  Automated DNN search by metaheuristics

While solving a specific problem by using a DNN, there are some design decisions that 
influence the performance of the DNN. Selecting the hyper-parameters of a DNN, train-
ing a DNN to find the optimal weights and bias values, deciding the optimal architecture 
parameters of a DNN, or reducing the dimensionality in feature representation level of a 
DNN can be considered as optimization problems. Metaheuristic algorithms can be used 
for solving these types of optimization problems. In each evolution cycle, present solution/s 
is/are assigned a fitness value, and new solution/s is/are generated by reproduction opera-
tors. The selection operators of metaheuristics guide the search to promising regions of 
the search space based on the information of solutions, and this makes the metaheuristics 
efficient tools to solve complex problems.

4.1  Problem statements

The optimization problems encountered in DNN design and training are formulated in the 
subsections.

4.1.1  Hyper‑parameter optimization

Most DL models have model-specific hyper-parameters that have to be tuned before the 
model starts the learning phase. Some of these parameters are related to macro structure 
of DNN (outer level) while some are cell or block-level parameters (inner level). Training 
the model with these parameters is very influential in the behaviour and performance of the 
network. Assuming that �h is a hyper-parameter vector, the hyper-parameter optimization 
can be defined by Eq. 19 (Li et al. 2017):

where Err is the error on the test set, ∧h is hyper-parameter space, A�h
 is learning algorithm, 

� represents the model parameters, xtrain and xtest are train and test datasets, respectively. By 
deciding the optimal hyper-parameter values, the error of the model is minimized.

Running different configurations manually and evaluating them to decide the best 
parameter setting is quite labor-intensive and time-consuming especially when the search 
space is high-dimensional. It should also be noted that a tuned hyper-parameter setting 
by an experienced user is application-dependent. Therefore, automatic hyper-parameter 
optimization is needed to reduce computational cost and user involvement. The steepest 
gradient descent algorithm is not suitable to optimize hyper-parameter configurations. 
Although Grid Search, Random Search (RS) and Bayesian Optimization are popular to 
configure hyper-parameters, they are impractical as the DNN model gets more complicated 
and deeper or when the number of parameters and the complexity of the problem is high 
(Nakisa et  al. 2018). Some studies evaluate the hyper-parameters on a low dimensional 
model and apply the values to the real model (Hinz et al. 2018). Metaheuristic algorithms 
have been used to obtain a faster convergence and to find a near-optimal configuration in 
a reasonable time. They systematically search the hyper-parameter space by evolving the 
population at each iteration.

(19)�∗
h
= argmin

�h∈∧

Err(xtest,Fnetwork(xtrain,A�h
, �)))
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4.1.2  Training DNNs

Although deep learning models can be successfully applied to solve many problems, train-
ing them is complicated for several reasons. Some studies employ derivative methods such 
as stochastic gradient descent, conjugate gradient, Hessian-free optimization to determine 
the optimal values of weights and biases. These conventional training methods suffer from 
premature convergence and vanishing (or exploding) gradients problem which means that 
the gradients calculated layer-wise in a cascading manner are decreasing or increasing 
exponentially and tend to explode. Because the weights are updated based on the gradient 
values, the training might go to stagnation or overshoot, especially when nonlinear activa-
tion functions ranging in a small scale are employed, and hence, the solutions may not 
converge to the optimum. The gradient-based algorithms can get stuck to saddle points 
arising due to flat regions in the search space. Besides, steep edges in the search space 
surface leads overshoot during weight updates. Parallelizing the derivative-based training 
algorithms and distributing to computing facilities to reduce the computational cost is also 
hard. Therefore, the metaheuristic algorithms are introduced in the training of deep learn-
ing methods. Training a DNN can be expressed as an optimization problem defined by 
Eq. 20:

4.1.3  Architecture optimization (architecture search)

Deep learning models require to define an application-dependent architecture that affects 
the model accuracy. These parameters include the model-specific parameters such as con-
volutional layers’ parameters, fully-connected layers’ parameters, and parameters of the 
training process itself. The problem of finding an optimal CNN architecture (Eq. 21) can be 
considered as an expensive combinatorial optimization problem.

where i = 1, 2,… , LN , LN is the number of layers, �N is the global parameter set of the net-
work, �Li parameter set for ith layer ∧N and ∧Li

 are parameter spaces for global parameters 
and layer-wise parameters, respectively.

If a compact model is established, the accuracy may be adversely affected whilst if a 
complex model is adopted, training time and computational cost will be higher. Addition-
ally, when the network is expanded with large number of computations units, this time 
the network might get overfitting to the outliers in the data. There is a trade-off between 
generalization capability and computational complexity. In one-shot models (Brock et al. 
2017; Bender et al. 2018), a large network that represents a wide variety of architectures 
is trained, and weight sharing is applied between sub-models instead of training separate 
models from scratch. Architecture optimization is hard because it involves optimizing too 
many real, integer, binary and categoric variables. Depending on the values of outer level 
parameters, the number of inner-level parameters to be optimized changes and therefore, 
the search space has variable-size dimension. There is no analytic approach to automate 
the design of DL model architecture. Since there are many possible configurations, an 

(20){w, b}∗ = argmin
�,b∈ℝ

Err(xtest,Fnetwork(xtrain,�, b))

(21){�N , �Li ,w, b}
∗ = argmin

�,b∈ℝ,�N∈∧N ,�Li
∈∧Li

Err(xtest,Fnetwork(xtrain,�, b, �N , �Li ))
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exhaustive search is too expensive. Therefore, researchers have employed metaheuristics to 
automatically search for optimal architecture to maximize performance metrics defined in 
Sect. 4.6.

4.1.4  Optimization at feature representation level

Metaheuristic algorithms have been used in the feature representation level of deep models 
or dimensionality reduction. They find a subset of features by maximizing a fitness func-
tion measuring how good the subset Fs represents the whole set F (Eq. 22).

where F is the feature set, Fs is a subset of F and I is a fitness function such as mutual 
information. The features extracted are transferred to the input layer of deep models.

4.2  Representations used in metaheuristics for encoding DNN parameters

Encoding is converting the network parameters or structure into a solution representation 
of the metaheuristic, so that the reproduction operators can operate on the solutions and 
generate candidate solutions. Adopting an efficient representation and encoding strategy is 
a critical design issue because search operators are decided in accordance with the encod-
ing selected, and they affect the performance of the metaheuristic and the DNN produced. 
The suitable representation is related with how the DNN optimization is handled. If the 
network topology is fixed, and hyper-parameters or weights are optimized, a fixed-length 
representation might be employed. However, when the topology is evolved during search, 
a variable-length representation is required to be able to encode larger or smaller networks 
constructed by the search operators. The encoding of networks can be divided into three 
main groups: direct, indirect and implicit encoding. For encoding solutions based on these 
encoding types, bit strings, real-valued vectors, index vectors for categorical data, adja-
cency matrices, context-free grammar, directed cyclic graphs or trees can be used.

In the direct encoding, an evaluation of genotype-phenotype mapping for the network 
is employed. There are a variety of direct encoding types, including, but not limited to, 
connection-based, cell-based, layer-based, module-based, pathway-based, block-based, 
operation-based (Fekiač et al. 2011; Kassahun et al. 2007). An example of direct encoding 
for a chained CNN architecture and its hyper-parameters is shown in Fig. 10.

• Connection-based: in a predetermined network structure, each switch connection can 
be represented by one bit, or weights can be represented by bit strings or real values. 
If the connectivity matrix of a network is represented by a matrix, when the network 
includes n neurons, the matrix is of size n2 , which can cause the scalability problem. 
After reproduction, the solutions may not be feasible and need repairing mechanisms.

• Cell-based: the individual contains all the information about the nodes and their con-
nectivity. A list can contain nodes and their connections, or a tree can represent the 
nodes and connection weights. The complete architecture is constructed by stacking 
the cells based on a predefined rule (Koza and Rice 1991; Schiffmann 2000; Suganuma 
et al. 2017; Pham et al. 2018; Zoph et al. 2018; Real et al. 2019).

(22)F∗
s
= argmax

Fs∈F

I(Fs)
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• Layer-based: the individual encodes the layers’ parameters together with the global net-
work parameters (Jain et  al. 2018; Baldominos et  al. 2019; Mattioli et  al. 2019; Sun 
et al. 2019b; Pandey and Kaur 2018; Martín et al. 2018).

• Module-based: it can be seen as a special case of cell-based representation. Because 
some modules are repeating in the networks such as GoogleNet and ResNet, the mod-
ules and the blueprints are encoded in the chromosomes. The blueprint chromosomes 
correspond to a graph of nodes pointing a specific module while the module chromo-
somes correspond to a network. Blueprint and module chromosomes are assembled 
together to construct a large network (Miikkulainen et al. 2017).

• Pathway-based: a set of paths represented by context-free grammar is used to describe 
the paths from the inputs to the outputs. This encoding can be preferred especially for 
recurrent networks (Jacob and Rehder 1993; Cai et  al. 2018a). Especially for chain-
structured structures such as Inception models (Szegedy et  al. 2016), ResNets (He 
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et al. 2016) and DenseNets (Huang et al. 2017), path-based representation and evolu-
tion modifies the path topologies in the network and maintains functionality by means 
of weight reusing. Bidirectional tree-structured representation can be used for efficient 
exploration (Cai et al. 2018a) (Fig. 11).

• Block-based: in block-based networks, two-dimensional arrays holds different internal 
configurations depending on the structure settings and weights (Zhong et al. 2018; Jun-
ior and Yen 2019; Wang et al. 2019b). Sun et al. (2018a) proposed block based defini-
tion for CNN architecture which is composed of ResNet, DenseNet blocks and pooling 
layer unit.

• Operation-based: phases are encoded by a directed acyclic graph describing the opera-
tions within a phase such as convolution, pooling, batch-normalization or a sequence 
of operations. Skip connections are introduced for bypassing some blocks. The same 
phases are not repeated in network construction (Xie and Yuille 2017; Lu et al. 2019).

• Multi-level encoding: one or more encoding types can be used jointly to represent 
structures, nodes, pathways and connections. Stanley and Miikkulainen (2002) repre-
sented augmenting topologies by connection genes which refer to two node genes being 
connected and neuron genes which specifies the in-node, the out-node, the weight of 
the connection, whether or not the connection gene is expressed (an enable bit), and 
an innovation number, which allows finding corresponding genes during crossover, as 
shown in Fig. 12.

In the indirect encoding, phenotype can be converted to a genotype in a smaller search 
space based on a production rule. L-System, cellular encoding, developmental and genera-
tive encoding, connective compositional pattern producing networks are some examples of 
indirect encoding.

• L-System is a mathematical model simulating the natural growth (Lindenmayer 1968). 
Information exchange between neighboring cells arises by continually determining 
rewriting steps to make a neural network based on grammar production rules.

• Cellular Encoding is similar to L-system as it has grammar based production rule. It 
starts with an initial cell and constructs a graph grammar network until it contains only 
terminals (Gruau 1994).
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• Developmental and generative encoding mimics DNA mapping to a mature phenotype 
through a growth process and reactivating genes during the development process. The 
connectivity patterns are generated by applying the right activation functions and rep-
etition with variation motifs (Gauci and Stanley 2007).

• Connective compositional pattern producing networks exploit geometry and represent 
connectivity patterns as functions of Cartesian space (Stanley et al. 2009).

Another group of encoding is implicit encoding in which a network is represented based on 
biological gene regulatory (Floreano et al. 2008) or based on the parameters of Gaussian 
distribution where the weights are assumed to be sampled (Sun et al. 2019a).

While designing a search space, various architectures can be represented using a single 
one-shot model as a super-graph of DNN components. The template network is trained 
to predict the validation accuracies of the architectures. The pretrained one-shot model 
is used to validate the architectures, and the best architectures are re-trained from scratch 
(Bender et al. 2018). An example of one-shot model is shown in Fig. 13.

The representation can also be grouped into flat and hierarchical representations (Liu 
et al. 2017b).

• Flat Representation: Each architecture A = assemble(G, o) is represented as a single-
source, single-sink directed acyclic graph in which each node corresponds to a feature 
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map, and each edge is associated with available primitive operators, o = {o1, o2,…} , 
such as convolution, pooling etc. G is adjacency matrix where Gij = k if ok operation 
is performed between nodes i and j. To calculate the feature map of a node, the feature 
maps of the predecessor nodes of the current node are concatenated in depth-wise man-
ner or element-wise manner.

• Hierarchical Representation: In this representation there are several motifs at different lev-
els of hierarchy. Assuming that the hierarchy has L levels and � th level includes M

�
motifs. 

Lower level motifs correspond to operations used to construct the high level motifs. The 
lowest level, � = 1 , contains a set of primitive operations while the highest level, � = L , 
corresponds to the entire full architecture as a composition of previous layers (Liu et al. 
2017b, 2018). The set of operations in level � − 1can be defined recursively as 
o(�)
m

= assemble(G(�)
m
, o(�−1)),∀� = 2,… ,Lwhere o(�−1) =

{
o
(�−1)

1
, o

(�−1)

2
,… , o

(�−1)

M(�−1)

}

(Liu et al. 2017b). An example of this operation is shown in Fig. 14.

A problem related to the network encoding is that multiple different genotypes can be 
mapped to the same genotype. This is called competing conventions problem and can mis-
lead the search process (Stanley and Miikkulainen 2002; Hoekstra 2011).

4.3  Evolutionary operators used for evolving DNN architecture and parameters

The initial solutions in metaheuristics can be generated randomly, by applying a large 
number of mutations (Liu et al. 2017b) to a trivial genotype, using a constructive heuristic 
(Lorenzo and Nalepa 2018) or a rule (Zoph and Le 2016), by morphing apriori networks 
for neural network architecture search. Elsken et al. (2018) and Real et al. (2017) inherit 
knowledge from a parent network by using network morphism and obtained speed-up com-
pared to random initialization. To find optimal parameters in one-shot or separate mod-
els, initial solutions are generated in real space or discrete space based on the type of the 
parameter. To evolve the solutions and guide the search towards the optimum, some opera-
tors compatible with the representation can be used during search, including arithmetic and 
binary crossover, mutation operators.

Crossover combines the information of two or more individuals to create two new net-
works or parameter set to exploit the information in the architecture space (Miikkulainen 
et al. 2017). It achieves information sharing among the solutions in the population. Single 
point crossover, n-point crossover, uniform crossover, shuffle crossover, arithmetic crosso-
ver, flat crossover, unimodal normal distribution crossover, fuzzy connective based crosso-
ver, simplex crossover, average bound crossover, geometrical crossover, partially mapped 
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crossover, order-based crossover, and hybrid crossover operators (Lim et al. 2017) can be 
used to produce new solutions exploiting the information of current solutions. When an 
integer representation is adopted, position-based, edge-based, order-based, subset-based, 
graph partition and swap-based crossover operators can be used while swap, semantic, cut 
and merge, matrix addition, distance-based and probability based operators are suitable 
when tree structures are used to represent solutions (Pavai and Geetha 2016). Although 
crossover operator is very helpful for numeric and binary problems, it was shown that it 
does not provide significant improvement in combinatorial problems compared to mutation 
operator (Osaba et al. 2014; Salih and Moshaiov 2016). For variable-size chromosomes, 
Sun et al. (2019a) proposed unit alignment and unit restore to align the chromosomes to the 
top based on their orders and then restore them after applying reproduction.

Mutation operator can be applied for different purposes during evolution similar to 
human designer actions, including layer deepening, layer widening, kernel widening, 
branch layer, inserting SE-skip connection, inserting dense connection (Chen et al. 2015a; 
Wistuba 2018; Zhu et al. 2019), altering learning rate, reseting weights, inserting convo-
lution, removing convolution, altering stride, altering number of channels, changing fil-
ter size, inserting one to one identity connection, adding skip, removing skip (Real et al. 
2017). Cai et  al. (2018a) presented an RNN which iteratively generates transformation 
operations based on current network topology and reinforcement.

4.4  Selection operators and diversity preserving

The selection operator in evolutionary algorithms is an analogy of natural selection lead-
ing survival of the fittest individuals. It means that during evolution, genetic information 
of the best solutions are assigned higher chance to be transferred to the next generations 
by means of reproduction. A very strong selection that consider only the fittest solutions 
can cause genetic drift and stagnation in the population due to reduced diversity. Although 
a weak selection can maintain diversity in the population, it may slow down convergence. 
There are different types of selection operators. Some of them are used to sample the indi-
viduals to be reproduced while some are used to determine solutions to be survived in the 
next generation population (Real et al. 2017, 2019; Liu et al. 2017b), p[t + 1] = s(v(p[t])) , 
where p[t] is the population at generation t, v(.) is the variation operator and s(.) is the 
selection operator. Truncation selection, stochastic universal sampling, tournament selec-
tion, roulette wheel selection, rank-based selection, greedy selection, elitism and Boltz-
mann selection can be used in evolutionary search.

Especially for population-based metaheuristics, diversity is an important factor in the 
initialization and during evolution of the population (Moriarty and Miikkulainen 1997). 
Diversity preserving mechanisms can be integrated into the algorithms by applying weak 
selection strategies for avoiding the individuals to be very similar or applying mutation 
with high rate to increase diversity in the population. Fitness sharing (Goldberg et al. 1987) 
to prevent genetic drift, niching (Mahfoud 1995) to reduce the effect of genetic drift, and 
crowding mechanisms (De Jong 1975) are also helpful to maintain the diversity.

When an offspring is generated in the initialization or after reproduction operators, it 
may not satisfy all of the problem-specific constraints. These solutions are classified as 
infeasible solutions. The constraint handling techniques may apply a distinction between 
feasible and infeasible solutions, penalize the constraint violations or use a repairing mech-
anism to transform infeasible solutions into feasible solutions (Koziel and Michalewicz 
1999).
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4.5  Speed‑up methods

Because finding the optimal architecture, parameters and weights requires thousands of 
GPU days, some speed-up methods have been introduced. To reduce the training time, a 
downscaled model and data can be used (Li et al. 2017; Zoph et al. 2018), a learning curve 
can be extrapolated based on the results of previous epochs (Baker et  al. 2017), warm-
start can be used by weight inheritance/network morphisms (Real et al. 2017; Elsken et al. 
2018; Cai et al. 2018a), one-shot models can be used (Brock et al. 2017; Pham et al. 2018; 
Bender et al. 2018) or surrogate models can be used to approximate the objective functions 
(Gaier and Ha 2019). Parallel implementation of the approaches can also be used to gain a 
speed-up (Desell 2017; Real et al. 2017; Martinez et al. 2018).

4.6  Validating the performance of the designed DNN architectures

In order to validate the performance of a network designed by metaheuristics, experiments 
might rely on the performance metrics, including loss function such as cross entropy, vali-
dation error, predictive accuracy, precision, recall, and F1 ; network size metrics, including 
the number of parameters, neurons, depth, layers; memory consumption metrics, includ-
ing the number of processing units, floating point operations per second (FLOP), memory 
usage and network inference time. One or more of these metrics can be considered during 
optimization in a single objective or multi-objective manner based on penalty, decomposi-
tion or Pareto-based approaches (Coello 2003). Some of these metrics can be treated as 
constraints and constraint handling techniques are used during optimization to guide the 
search towards feasible region (Koziel and Michalewicz 1999). When the objective func-
tion calculation is expensive, surrogate models can be alternative to reduce computational 
cost based on approximation (Jin 2011).

When a study focuses on architecture optimization, although there is no state-of-the-
art algorithm validated on architecture search (Li and Talwalkar 2020), the efficiency of 
the metaheuristics can be verified against random search, grid search, tree-based Bayesian 
optimization (Bergstra et al. 2011; Hutter et al. 2011), Monte Carlo tree search (Negrinho 
and Gordon 2017), reinforcement learning (Zoph and Le 2016; Baker et al. 2016) or dis-
crete gradient estimators (Xie et al. 2018). Jin et al. (2019) proposed an approach based on 
network morphism and Bayesian optimization for architecture search.

5  Literature review

5.1  Methodology and paper inclusion/exclusion criteria

In this section, we provide a review of the studies on utilizing metaheuristic algorithms 
to solve the optimization problems encountered in DL field. We searched databases Else-
vier, Springer, IEEExplore, Web of Science, Scopus and Google Scholar in October 2019 
by filtering with some combinations of the keywords deep learning, deep neural network, 
optimization, evolutionary, metaheuristic, hyper-parameter, parameter tuning, training, 
architecture, topology, structure. We reached 179 publications at the end of the search. 
The results included articles, book chapters and conference papers reporting original stud-
ies. The date range of papers was 2012 when the first paper was appeared and 2019 when 
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the search was conducted. 77 of 179 publications were excluded because they used other 
optimization methods rather than employing a metaheuristic or they were written in some 
other languages rather than English. Within 102 publications included, there were 4 survey 
papers. The number of studies on training DL models using metaheuristics is 21, the num-
ber of publications on hyper-parameter optimization of DL models using metaheuristics 
is 30, the number of studies on architecture (topology) optimization of DL models using 
metaheuristics is 39, and the number of publications on using metaheuristics at feature rep-
resentation level is 8.

In the subsequent sections, we summarize how metaheuristics are applied to solve opti-
mization problems encountered in the deep learning field. The DNN architecture used, the 
encoding scheme, the fitness function and search operators tailored for the metaheuristics 
are presented as much as possible provided that they are described in the original paper. 
The datasets on which the study was validated and the results are also presented in the rest 
of the paper.

5.2  Studies using metaheuristics for hyper‑parameter optimization of deep neural 
networks

5.2.1  Articles

Zhang et al. (2017) introduced MOEA/D integrated to DBN ensemble for remaining useful 
life estimation, which is a core task in condition-based maintenance (CBM) in industrial 
applications. The proposed method was incorporated with DE operator and Gaussian muta-
tion to evolve multiple DBNs optimizing accuracy and diversity. Each DBN with a fixed 
number of hidden layers was trained using contrastive divergence followed by BP. The 
number of hidden neurons per hidden layer, weight cost, and learning rates used by con-
trastive divergence and BP were encoded as decision variables. The proposed method was 
evaluated on NASA’s C-MAPSS aero-engine data set (Saxena and Goebel 2008), which 
contained four sub-datasets. From the results, it was concluded that the proposed approach 
demonstrated outstanding performance in comparison with some existing approaches.

The study by Delowar Hossain and Capi (2017) and another study by Hossain et  al. 
(2018) presented an evolutionary learning method that combined GA and DBNN for robot 
object recognition and grasping. The DBNN consisted of a visible layer, three hidden lay-
ers, and an output layer. The parameters of DBNN including the number of hidden units, 
the number of epochs, learning rates and momentum of the hidden layers are optimized 
using GA algorithm. Visible units were set to the activation probabilities, while hidden 
units were set to the binary values. They generated a dataset of images of six robot grasp-
able objects in different orientations, positions, and lighting conditions in the experimental 
environment. They considered the error rates and network training time as the objective to 
be minimized and reported that their method was efficient at assigning robotic tasks.

Lopez-Rincon et  al. (2018) proposed an evolutionary optimized CNN classifier for 
tumor-specific microRNA signatures. In the approach, the number of layers was fixed 
to 3, and each layer was described by output channels, convolution window, max-pool-
ing window. Together with the output channels in the fully connected rectifier layer, 10 
hyper-parameters were tuned by EA, whose fitness was the average accuracy of CNN 
on a 10-fold validation process. The approach was validated on a real-world dataset 
containing miRNA sequencing isoform values taken from The Cancer Genome Atlas 
(TCGA) (2006) featuring 8129 patients, for 29 different classes of tumors, using 1046 
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different biomarkers. The presented approach was compared against 21 state-of-the-art 
classifiers. The hyper-parameters optimized by EA helped CNN to improve average val-
idation accuracy to 96.6%, and their approach was shown to be the best classifier on the 
considered problem.

Nakisa et  al. (2018) presented a framework to automate the search for LSTM hyper-
parameters including the number of hidden neurons and batch size using the DE algorithm. 
The fitness function is the accuracy of emotion classification. The performance evaluation 
and comparison with state-of-the-art algorithms (PSO, SA, RS, and TPE) were performed 
using a new dataset collected from a lightweight wireless EEG headset (Emotiv) and smart 
wristband (Empatica E4) which can measure EEG and BVP signals. This performance was 
evaluated based on four-quadrant dimensional emotions: High Arousal Positive emotions 
(HA-P), Low Arousal-Positive emotions (LA-P), High Arousal-Negative emotions (HA-
N), and Low Arousal- Negative emotions (LA-N). The experimental results showed that 
the average accuracy of the system based on the optimized LSTM network using DE and 
PSO algorithms attained progress in each time interval and could improve emotion classifi-
cation significantly. Considering the average time, the processing time for the SA algorithm 
was lower than the others, DE consumed the most processing time overall iterations, how-
ever, its performance was higher than all other algorithms. It was noted that after a number 
of iterations (100 iterations), the performance of the system using ECs (PSO, SA, and DE) 
did not change significantly due to the occurrence of a premature convergence problem.

Loussaief and Abdelkrim (2018) proposed a GA-based CNN model to learn optimal 
hyper-parameters. For a CNN with Dp convolutional layers (CNN depth), the genetic algo-
rithm optimized 2 ∗ Dp variables which are Dp pairs of values (Filter Number per Layer 
and Filter Size per Layer). The experiments on the Caltech-256 (Griffin et al. 2007) data-
set proved the ability of the GA to enhance the CNN model with a classification accu-
racy of 90%. They inserted a batch normalization layer after each convolutional layer and 
improved the quality of the network training. GA simulation produced a pretrained CNN 
performing an accuracy of 98.94%.

Soon et  al. (2018) trained CNN by tuning its parameters for the vehicle logo recog-
nition system. For this purpose, the hyper-parameters of CNN were selected by the PSO 
algorithm on The XMU dataset (Huang et al. 2015). Optimized hyper-parameters were the 
learning rate ( � ), spatial size of convolutional kernels, and the number of convolutional 
kernels in each convolutional layer i. They reported that the proposed CNN framework 
optimized by PSO achieved better accuracy compared to other handcrafted feature extrac-
tion methods.

Hinz et al. (2018) aimed to reduce the time needed for hyper-parameter optimization of 
deep CNNs. The parameters considered in the optimization process were the learning rate, 
the number of convolutional and fully connected layers, the number of filters per convolu-
tional layer and their size, the number of units per fully connected layer, the batch size, and 
the L1 and L2 regularization parameters. They identified suitable value ranges in lower-
dimensional data representations and then increased the dimensionality of the input later 
during optimization. They performed experiments with random search, TPE, sequential 
model-based algorithm, and GA. The approaches were validated on Cohn-Kanade (CK+) 
data set (Lucey et al. 2010) to classify the displayed emotion, the STL-10 data set (Coates 
et al. 2011), the Flowers 102 dataset (Nilsback and Zisserman 2008). All three optimiza-
tion algorithms (random search, TPE, GA) produced similar values for the different hyper-
parameters for all resolutions. There were minor differences in the number of filters and 
units per convolutional or fully connected layer. The hyper-parameters found by the GA 
and TPE produced better results compared to the results achieved by RS.
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de Rosa and Papa (2019) presented a GP approach for hyper-parameter tuning in DBNs 
for binary image reconstruction. Hyper-parameters were encoded as terminal nodes, and 
internal nodes were the combinations of mathematical operators. The individual (solution) 
vector was composed of four design variables: learning rate ( � ), number of hidden units 
(n), weight decay ( � ), and momentum ( � ). In the experiments, the difference between the 
original and reconstructed images was used as the fitness function. Each DBN is trained 
with three distinct learning algorithms: contrastive divergence, persistent contrastive diver-
gence (PCD), and fast persistent contrastive divergence (FPCD). GP was compared to nine 
approaches including RS, RS-Hyperopt, Hyper-TPE, HS, IHS, Global-Best HS (GHS), 
Novel GHS (NGHS), Self-Adaptive GHS (SGHS), Parameter-Setting-Free HS (PSF-HS). 
Performances of the methods were evaluated on the MNIST, CalTech 101 Silhouettes 
(Marlin et al. 2010), Semeion Handwritten Digit datasets (Semeion 2008). Depending on 
the results, GP achieved the best results, and it was statistically similar to IHS in some 
cases. On the Semeion Handwritten Digit dataset, only GP achieved the best results.

Yoo (2019) proposed a search algorithm called a univariate dynamic encoding algo-
rithm that combines local search and global search to improve the training speed of a net-
work with several parameters to configure. In the local search, a bisectional search and a 
uni-directional search was performed while in global search, the multi-start method was 
employed. The batch size, the number of epochs, and the learning rate were the hyper-
parameters optimized. The cost function was the average of the difference between the 
decoded value and the original image for the AE, and the inverse of the accuracy for the 
CNN. The proposed method was tested for AE and CNN on the MNIST dataset and its 
performance was compared with those of SA, GA, and PSO, and it was shown that the pro-
posed method achieved fast convergence rate and less computational cost.

Wang et  al. (2019b) proposed a cPSO to optimize the hyper-parameters of CNNs. 
cPSO-CNN employed a confidence function defined by a normal compound distribution to 
improve exploration capability and updates scalar acceleration coefficients according to the 
variant ranges of CNN hyper-parameters. A linear prediction model predicted the ranking 
of the PSO particles to reduce the cost of fitness function evaluation. In the first part of the 
experiments, the first convolutional layers of AlexNet and the other CNNs including VGG-
Net-16, VGGNet-19, GoogleNet, ResNet-52, ResNet-101, DenseNet-121 were optimized 
on CIFAR-10 dataset using CER as the performance metric. From the experiments, the 
approach was effective with all CNN architectures. In the second part of the experiments, 
eight layers of AlexNet were optimized using cPSO and the results were compared to those 
obtained by state-of-the-art methods, including GA, PSO, SA, Nelder-Mead. It was dem-
onstrated that cPSO-CNN performed competitively according to both performance metrics 
and overall computation cost.

Sabar et  al. (2019) proposed a hyper-heuristic parameter optimization framework 
(HHPO) to set DBN parameters. HHPO iteratively selects suitable heuristics from a heu-
ristic set using Multi-Armed Bandit (MAB), applies the heuristic to tune the DBN for a 
better fit with the current search space. In this study, the DBN parameters optimized by the 
framework were learning rate, weight decay, penalty parameter, and the number of hidden 
units, and MSE was utilized as the cost function. The proposed approach was compared 
with PSO, HS, IHS, and FFA on the MNIST, CalTech 101 Silhouettes, Semeion datasets. 
The proposed HHPO achieved the best test MSE across almost all datasets except for on 
Semeion data with a one layer DBN trained using CD. The p-value results obtained by the 
Wilcoxon test demonstrated that HHPO was statistically better than other algorithms.

Lin et  al. (2019) proposed a DBN optimized with GA for predicting wind speed and 
weather-related data collected from Taiwan’s central weather bureau. The seasonal 
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autoregressive integrated moving average (SARIMA) method and the least squares sup-
port vector regression for time series with genetic algorithms (LSSVRTSGA) were used to 
forecast wind speed in a time series, and the least-squares support vector regression with 
genetic algorithms (LSSVRGA). In DBN, the momentum and learning rate was consid-
ered in both unsupervised learning and supervised learning stages. Two parameters of the 
LSSVR and LSSVRTS models were tuned by GA using negative RMSE values as the fit-
ness function. DBNGA models outperformed the other models according to forecasting 
accuracy.

Guo et  al. (2019) combined GA and TS in hyper-parameter tuning to avoid wasting 
redundant computational budget arising from repeated searches. They reported that grid 
search is not suitable as the number of hyper-parameters increases. To avoid repeated 
searches in GAs, the proposed method integrated a Tabu list to GA (TabuGA) and was 
validated on the MNIST and Flower5 (Mamaev 2018) datasets. It was indicated that the 
Flower5 dataset was more sensitive to the values of hyper-parameters than the MNIST 
dataset was. The experiment on the MNIST dataset was performed on the classic LeNet-5 
convolutional neural network while the experiment on the Flower5 dataset was carried 
out using a four-layer CNN structure. In the LeNet architecture, learning rate, batch size, 
number of F1 units, dropout rate, l2 weight decay parameters were optimized. In the CNN 
architecture, learning rate, batch size, number of F1 units, number of F2 units, number of 
F3 units, number of F4 units, l2 weight decay, dropout rate1, dropout rate2, dropout rate3, 
dropout rate4 parameters were evolved during optimization. Both results of experiments on 
MNIST and Flower-5 showed that TabuGA was preferable by reducing the required num-
ber of evaluations to achieve the highest classification accuracy. The proposed TabuGA 
was superior to the existing popular methods, including RS, SA, CMA-ES, TPE, GA, TS.

Yuliyono and Girsang (2019) proposed ABC to automate the search for hyper-param-
eters of LSTM for bitcoin price prediction. The sliding window size, number of LSTM 
units, dropout rate, regularizer, regularizer rate, optimizer and learning rate were encoded 
in a solution and RMSE was used as the fitness function. ABC-LSTM revealed an RMSE 
of 189.61 while LSTM without tuning resulted in an RMSE of 236.17, and the ABC-
LSTM model outperformed the latter.

5.2.2  Conference papers

Zhang et al. (2015) applied an ensemble of deep learning network (DBN) and MOEA/D 
in diagnosis problems with multivariate sensory data. A multi-objective ensemble learn-
ing was conducted to find optimal ensemble weights of deep NNs. Diversity and accu-
racy as the conflicting objectives were employed with MOEA/D to adjust the ensemble 
weights. Turbofan engine degradation dataset (Saxena and Goebel 2008) was used to vali-
date the efficacy of the proposed model. The results indicated that the average accuracy of 
multi-objective DBN ensemble learning schemes outperformed mean and majority voting 
ensemble schemes.

Rosa et al. (2016) used the Firefly Algorithm (FFA), PSO, HS, IHS algorithms to prop-
erly fine-tune RBM and DBN hyper-parameters in the learning step, including learning rate 
� , weight decay � , penalty parameter � , and the number of hidden units n. They considered 
three DBN structures: one layer, two layers, and three layers. The experiments were per-
formed on MNIST (Lecun et al. 1998), CalTech 101 Silhouettes (Li et al. 2003), Semeion 
(Semeion 2008) datasets. The experiment results showed that FFA produced the best 



854 B. Akay et al.

1 3

results with fewer number of layers and less computational effort compared to the other 
optimization techniques considered in the study.

Nalepa and Lorenzo (2017) introduced PSO and parallel PSO techniques for automati-
cally tuning DNN hyper-parameters, including the receptive field size, number of receptive 
fields, stride size, receptive field size. The experiments were performed for several DNN 
architectures on multi-class benchmark datasets, MNIST (Lecun et al. 1998) and CIFAR-
10 (Krizhevsky 2009). They also analyzed the convergence abilities of their sequential and 
parallel PSO for optimizing hyper-parameters in DNNs using the Markov-chain theory. 
The convergence time, the number of processed generations, and the number of visited 
points in the search space were examined according to the values of DNN hyper-parame-
ters. It was shown that adding new particles to the swarm increased the computational cost 
significantly while improving the generalization performance of the final DNN slightly. 
Therefore, smaller swarms were noted to be preferable in practice.

Hossain and Capi (2017) integrated DBN with NSGA-II for real-time object recognition 
and robot grasping tasks. The number of hidden units and the number of epochs in each 
hidden layer were considered as decision variables to optimize accuracy and network train-
ing time. Normalization and shuffling operations were performed in preprocessing step. 
As a result of the optimization step, the number of hidden units was determined as 515, 
707 and 1024 in three hidden layers, respectively. The number of epochs iterated in three 
hidden layers was 129, 153 and 184, respectively. Experimental results showed that the 
approach proposed method was efficient in object recognition and robot grasping tasks.

Qolomany et  al. (2017) utilized a PSO algorithm to optimize parameter settings to 
reduce computational resources in the tuning process. The deep learning models were 
trained to predict the number of occupants and their locations on a dataset from a Wi-Fi 
campus network. PSO was used to optimize the number of hidden layers and the number 
of neurons in each layer for deep learning models. They reported that the proposed method 
was an efficient approach for tuning the parameters and decreased the training time com-
pared to the grid search method.

Fujino et al. (2017) proposed a GA-based deep learning technique for the recognition 
of human sketches. They focused on the evolution of hyper-parameters in AlexNet, includ-
ing the number of filters, filter sizes and, max-pooling sizes. In order to reduce the training 
time of GA-based CNN evolution, a memory was integrated into GA to retrieve the fitness 
of a solution when it was encountered in the subsequent generations instead of recalculat-
ing the fitness. The proposed approach was applied to sketch recognition dataset that con-
tains 250 object categories (Eitz et al. 2012). The proposed method showed higher perfor-
mance even on smaller size images and provided high generalization ability.

Bochinski et al. (2017) introduced an EA-based hyper-parameter optimization by a com-
mittee of multiple CNNs. An individual was represented by the hyper-parameters h, which 
is a set of the configuration tuple of the ith layer and the layer sizes. A one-point crossover 
and the variation and the elimination or creation of a gene mutation operators were applied 
in (� + �) EA. They compared the performances of the evolutionary-based hyper-parame-
ter optimization for a committee of independent CNNs. The experiments were validated on 
the MNIST dataset and significant improvements were reported over the state-of-the-art.

Sinha et  al. (2018) optimized CNN parameters by PSO on CIFAR-10 (Krizhevsky 
2009) and road-side vegetation dataset (RSVD). Each particle was represented by a binary 
vector of 4 input image sizes, 8 filter sizes, 8 number of filters, and 2 architectures. Top-1 
score error measurement was used to evaluate the performance of each approach. CNN 
optimized by the proposed approach revealed a higher accuracy than the grid search and 
standard Alexnet classification for the CIFAR-10 dataset. For RSVD, the best network 
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obtained a higher accuracy than the grid search approach and class-semantic color-texture 
textons approach. It was shown that increasing the swarm size and the number of iterations 
increase accuracy.

Sun et al. (2018b) investigated stacked AE models, including AEs, SAEs, DAEs, and 
CAEs optimized using PSO and compared them to the grid search method. Stacked AEs 
were preferred due to their small number of hyper-parameters that the grid search method 
can exploit all combinations within the given experimental time slot. In the proposed 
method, the hyper-parameters including the number of neurons n, weight balance factor � , 
predefined sparsity � of SAE, sparsity balance factor � of SAE, corruption level z of DAE, 
contractive term balance factor � of CAE were considered during optimization. The experi-
ments were validated on the MINST dataset variations (Larochelle et al. 2007) including 
the MNIST with Background Images (MBI), Random Background (MRB), Rotated Digits 
(MRD), with RD plus Background Images (MRDBI), the Rectangle, the Rectangle Images 
(RI), and the Convex Sets (CS) benchmarks. They reported that AE models optimized by 
PSO could achieve the comparative classification accuracy but only took 10% to 1% com-
putational complexity to that of grid search.

Agbehadji et al. (2018) introduced an approach to adjust the learning rate of LSTM by 
using two different aspects of Kestrel bird behavior (KSA). Six biological datasets (Car-
cinom, SMK_CAN_187, Tox_171, CLL_SUB_111, Glioma, Lung) (Li et al. 2018) were 
used in the experiments. The results showed that out of the six datasets, KSA has the best 
learning parameter (highlighted in bold) in three datasets.

Sabar et  al. (2017) proposed an evolutionary hyper-heuristic (EHH) framework for 
automatic parameter optimization of DBN, which was tedious and time-consuming when 
handled manually. EHH performed a high-level strategy and a pool of large sets of evolu-
tionary operators such as crossover and mutation and employed a non-parametric statisti-
cal test to identify a subset of effective operators. The number of hidden units, learning 
rate, penalty parameter, and weight decay were the hyper-parameters optimized using the 
mean squared error as the objective function. Three datasets, MNIST, CalTech 101 Silhou-
ettes, Semeion Handwritten Digit datasets were used to evaluate the performance of the 
proposed approach. Three different DBN models using three different learning algorithms 
were tested, and the results of the proposed approach were compared to those of existing 
metaheuristics based DBN optimization methods. The results demonstrated that the pro-
posed approach was competitive compared to state-of-the-art methods.

Sehgal et  al. (2019) employed GA for tuning hyper-parameters used in Deep Deter-
ministic Policy Gradient (DDPG) combined with Hindsight Experience Replay (HER) to 
speed up the learning agent. GA maximized task performance and minimized the number 
of training epochs considering the following parameters: discounting factor � , polyak-aver-
aging coefficient � , learning rate for critic network �critic , learning rate for actor-network 
�actor , percent of times a random action is taken � . The experiments were validated on 
fetch-reach, slide, push, pick and place and door opening robotic manipulation tasks. They 
reported that the proposed method could find the parameter values yielding faster learning 
and better or similar performance at the chosen tasks.

5.2.3  Others

Jaderberg et al. (2017) introduced a Population-Based Training (PBT) algorithm to jointly 
optimize a population of models and their hyper-parameters to maximize performance with 
a fixed computational budget. PBT was validated on reinforcement learning, supervised 
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learning for machine translation, and training of Generative Adversarial Networks. They 
evaluated the GAN model by a variant of the Inception score on a pretrained CIFAR classi-
fier, which used a much smaller network and made evaluation much faster. PBT optimized 
the discriminator’s learning rate and the generator’s learning rate separately. In all cases, 
PBT produced stable training and a better final performance by the automatic discovery of 
hyper-parameter schedules.

Steinholtz (2018) evaluated the Nelder-Mead Algorithm, PSO, Bayesian Optimization 
with Gaussian Processes (BO-GP) and Tree-structured Parzen Estimator (TPE) for two 
hyper-parameter optimization problem instances. In the first experiment, LeNet5 struc-
ture was adopted for the CIFAR-10 dataset. In the second experiment, an RNN model of 
LSTM-units was applied to a language modeling problem on the PTB dataset to predict the 
next word in a sentence by a given history of previous words. In LeNet structure, learning 
Rate, number of filters C1, number of filters C2, receptive field size C1, receptive field size 
C2, receptive field size P1, receptive field size P2, stride size P1, stride size P2, number 
of neurons FC1, number of neurons FC2, dropout probability FC2 parameters were opti-
mized. In LSTM, learning rate, learning rate decay, pre-decay epochs, maximum gradi-
ent norm, initialization scale, number of layers, layer Size, number of steps, dropout prob-
ability parameters were optimized. Experimental results showed that the TPE algorithm 
achieved the highest performance according to mean solution quality for both problems. 
The NM, PSO and BO-GP algorithms outperformed the RS for the first experiment.

These studies are summarized in Table 1.

5.3  Studies using metaheuristics for training deep neural networks

5.3.1  Articles

Rere et al. (2015) proposed SA to train CNN on MNIST (Lecun et al. 1998) dataset that 
consists of digital images of handwriting. The best solution produced by SA was stored 
as the weights and bias values of CNN, and then the output of CNN was used to compute 
the loss function. When various neighbourhood sizes including 10, 20 and 50 were investi-
gated, the percentage accuracy of CNN trained by SA was better when the neighbourhood 
size was 50. They concluded that although the computation time increased, the accuracy of 
the model was improved by the proposed method compared to the traditional CNN.

Rere et al. (2016) proposed SA, DE, and Harmony Search (HS) to improve the accuracy 
of CNN by computing the loss function of vector solution or the standard error on the 
training set. The experiments were performed on MNIST and CIFAR-10 datasets. The pro-
posed methods and the original CNN were compared to LeNet-5 architecture. CNNSA pro-
duced the best accuracy for all epochs. The computation time of CNNSA was in the range 
of 1.01 times compared to the original CNN. They concluded that although the proposed 
methods showed an increase in the computation time, the accuracy achieved by them was 
also improved up to 7.14 percentage.

Syulistyo et al. (2016) utilized PSO in CNNs to improve the recognition accuracy of 
neural networks on the handwritten dataset from MNIST. The system gained 95.08% in 
4 epochs, which was better than the conventional CNN and DBN without increasing the 
execution time. Besides, they concluded that CNN trained by PSO has better accuracy 
compared to CNN trained by SA and CNNPSO had the advantages of fast searching 
ability with the minimum iteration of CNN. In terms of execution time, DBN using 
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contrastive divergence was very fast while CNNPSO consumed more time due to extra 
calculations in the PSO algorithm.

Badem et al. (2017) combined ABC and L-BFGS method for tuning the parameters 
of a DNN. The DNN architecture used in the study included one or more AE layers 
cascaded to a softmax layer. The proposed method combines the exploitation ability of 
L-BFGS’s and the exploration capability of ABC to avoid getting trapped minima. The 
performance of the proposed method was validated on the 15 benchmark data sets from 
UCI (Dua and Graff 2017) and compared with the state-of-the-art classifiers, includ-
ing MLP, SVM, KNN, DT and NB. It was reported that the proposed hybrid strategy 
achieved better classification performance on a wide range of the data sets and boosted 
the performance of the DNN classifier on the data sets consisting of binary and multiple 
classes.

Deepa and Baranilingesan (2018) designed a DLNN model predictive controller to 
investigate the performance of a non-linear continuous stirred tank reactor (CSTR). The 
train data was collected from a state-space model of a CSTR. The weights of DLNN were 
tuned by a hybrid model of PSO and Gravitational Search Algorithm (GSA) to avoid the 
random initialization of the weights. The hybrid model aimed to overcome the inefficiency 
of each individual algorithm in exploration and exploitation. The effectiveness of the pro-
posed approach was compared with those of some state-of-the-art techniques, and it was 
reported to achieve better minimal integral square error.

Rashid et al. (2018) implemented an LSTM to overcome the weaknesses of NNs related 
to learning speed, error convergence and accuracy due to long-term dependencies. They 
employed HS, Gray Wolf Optimizer (GWO), Sine Cosine Algorithm (SCA), and Ant Lion 
Optimization Algorithm (ALOA) to train LSTM for classification of real and medical time 
series data sets (Breast Cancer Wisconsin Data Set and Epileptic Seizure Recognition Data 
Set). Classification accuracy measure was used as a cost function in the training phase and 
the 5-fold cross-validation is performed to verify the results. They concluded that as the 
number of individuals in the population increased, the performances of the algorithms 
were improved. The performances of the models were not affected by the increase in the 
number of neurons in the hidden layer for breast cancer dataset while those deteriorated for 
epileptic seizure recognition dataset. The results indicated that training time, communica-
tion overhead and accuracy were improved.

Banharnsakun (2018) proposed a distributed ABC algorithm to discover initial weights 
of a CNN classifier based on solutions. The method was compared to other existing algo-
rithms including the ordinary CNN, the CNN-SA, CNN-GA and the CNN-PSO. The 
method was validated on MNIST dataset, and a sevenfold cross-validation method was per-
formed during training. Experimental results showed that the proposed method enhanced 
the CNN performance in both recognition accuracy and computing time compared to other 
approaches in the study.

Lakshmanaprabu et al. (2019) presented a study on the classification of lung CT images 
using an Optimal Deep Neural Network (ODNN) and Linear Discriminate Analysis (LDA). 
Features were extracted from the images in the database comprised of 50 low-dosage and 
recorded lung cancer CT images (VIA/I-ELCAP 2019) and reduced by LDA method. 
These features were given to ODNN, which worked with the help of DBN and RBM. The 
best solutions obtained from Modified Gravitational Search Algorithm (MGSA) (Rashedi 
et al. 2009) were set as the weights of ODNN. The proposed model was compared with 
existing classifiers like MLP, RBF, SVM, ANN, KNN, DNN. The comparative results 
showed that ODNN produced the accuracy of 94.56%, a sensitivity of 96.2%, a specificity 
of 94.2%, and outperformed the other methods.
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Wang et al. (2019a) combined the back-propagation algorithm and EA for optimizing 
generative adversarial networks (GANs). They aimed to remove training problems such as 
instability and mode collapse. A population of generators was evolved to play the adver-
sarial game with the discriminator. Each individual was updated based on different adver-
sarial training objectives. The fitness of each individual was measured by the quality and 
diversity of generated samples. The performance of E-GAN was evaluated on CIFAR-10, 
LSUN bedroom (Yu et  al. 2015), and CelebA (Liu et  al. 2015) datasets. They modified 
both the generative and discriminator networks based on the DCGAN architecture. The 
batch norm layers were removed from the generator, and more feature channels were con-
nected to each convolutional layer. Maximum Mean Discrepancy, the Inception score and 
the Frechet Inception distance were used as quantitative metrics. From the experiments, it 
was concluded that the proposed generative network improved the training stability and 
achieves good performance in image generation.

5.3.2  Conference papers

David and Greental (2014) applied GA to train deep NNs. They represented the multiple 
sets of encoding and decoding weights as a chromosome in GA. The root mean squared 
error (RMSE) was calculated in the training phase. Results indicated that the proposed 
approach produced an efficient deep AE and a sparser neural network. The worst half of 
GA-population was replaced with the best chromosomes in the population. A comparison 
was conducted between the results of GA, and the least reconstruction error (best tuned) 
of backpropagation algorithm repeated 10 times. According to the results, the GA-assisted 
method yielded a smaller reconstruction error, as well as a sparser network. The represen-
tation quality of the networks was compared by a Support Vector Machine with a radial 
basis function (RBF) kernel. The traditional AE achieved a 1.85% classification error by 
SVM, while the GA-assisted method produced a 1.44% classification error.

Ayumi et  al. (2016) presented a Microcanonical Annealing (MCA) to optimize CNN 
according to the accuracy and the loss function. From the experimental results on MNIST 
dataset, they reported an increase in computation time (1.02×–1.38× ) while the proposed 
method enhanced the performance (up to 4.60%) compared to traditional CNN. On the 
CIFAR10 (Krizhevsky 2009) dataset, the proposed method achieved 99.14% accuracy. 
They compared the proposed approach with some approaches including CNN using Har-
mony Search (HS), Fractional Pooling, Large ALL-CNN, Spatially Sparse CNN, LSUV 
and CNN. The proposed approach was shown to have better accuracy against these 
methods.

Tirumala et al. (2016) presented an analysis of optimizing the learning process inspired 
by the existing unconventional approaches. The study dealt with the problem of slow train-
ing procedure by introducing EC co-evolution strategies to reduce training time. Competi-
tive co-evolution (CCEA) and Cooperative co-evolution (COCA) both combined the infor-
mation of other individuals to improve efficiency. In the proposed method, there were two 
populations: one is for a competitive strategy to identify the fittest individual, and the other 
one is for a cooperative strategy to construct an optimal solution. They interchanged their 
best solutions by a migration strategy. An automatic self-destruction process was executed 
at regular intervals to remove non-active individuals. The experiments were performed 
on a 5-layered DNN trained layer-wise by gradient descent and back-propagation for the 
entire network. An evolved DNN-CCEA and a DNN-COCA were employed for classifica-
tion purpose on MNIST and IRIS data sets. Their approaches improved the classification 
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accuracy on both MNIST and IRIS datasets, and they empirically shown that the training 
process of DNN with EC approach was faster than the regular approach considerably.

Liu et  al. (2017a) proposed an evolutionary gradient descent algorithm (EGD) which 
combined ES and the gradient descent methods to be used in the training phase of deep 
belief networks which was composed of the stacked RBMs and a softmax classifier. The 
experiments were validated on MNIST and Wine datasets, and the results were compared 
to those of DBNs optimized by the traditional gradient descent method, the combination 
of the stacked RBMs and SVM, and the combination of the stacked RBMs and the ES-
based softmax classifier. On MNIST and Wine datasets, the EGD-based softmax classi-
fier obtained the lowest error while SVM produced the lowest time cost. It was observed 
that the difference of training and test errors for the EGD-based softmax classifier was far 
below that for SVM. It was shown that the EGD-based softmax classifier could avoid over-
fitting problem better. The experimental results demonstrated that the proposed method had 
higher classification accuracy in less time and anti over-fitting ability compared to other 
classification methods. The proposed method was reported to have accelerated the conver-
gence rate and improved the exploitation ability of the gradient descent method.

Alvernaz and Togelius (2017) introduced a scalable low-dimensional and hierarchal 
representation and analyzed it in the VizDoom environment built on the classic FPS Doom. 
In the approach, an autoencoder generated a compressed representation of a three-dimen-
sional video game. The AE was trained using the backpropagation algorithm to reproduce 
input images of the environment. The compressed representation was cascaded to a smaller 
behaviour-generating NN optimized by CMA-ES method. The paper highlighted that train-
ing with compressed data had advantages overtraining with the raw visual data. They con-
cluded that using EAs on the compressed representation could improve agent behaviour.

Chhabra et  al. (2017) proposed a hybrid PSO algorithm to tackle with the training 
complexity problem of CNNs by reducing the number of training epochs. The proposed 
CNNPSO was compared with other deep learning methods based on the accuracy and the 
error on MNIST dataset. In the approach, CNN was first trained with backpropagation to 
establish some predefined weights for the neural network, and then these weights were 
encoded as one-hot vector corresponding to particles updated by PSO updates, iteratively. 
The proposed algorithm avoided the local minima problem of the regular backpropagation 
and improved the accuracy 3–4% in less number of epochs.

Khalifa et al. (2017) employed a PSO algorithm to train the output layer weights in Con-
vNet in order to optimize the accuracy on MNIST data sets. The first six layers were opti-
mized by SGD algorithm while the last layer was optimized by PSO. The method produced 
better accuracy compared to the ConvNet which used SGD in all layers.

Muñoz-Ordóñez et  al. (2018) designed a framework called Deep Neuroevolution 
Framework (DNF) based on a range of different metaheuristics including PSO, Global-best 
Harmony Search (GBHS) and DE algorithms. The framework was applied to regression 
and classification of handwritten dataset MNIST. In the experiments, Adam and RMSProb 
optimizers were integrated with the same DNF architecture and compared to each other. 
They compared the best results of the metaheuristics and their memetic version using the 
cross entropy-based cost function. When GBHS used RMSProp as its local optimizer, it 
obtained a better performance than when the Adam optimizer was used. In the second 
experiments, the effect of the number of training periods in the local search within GBHS 
was evaluated. It was stated that GBHS obtained better convergence rate, and it was supe-
rior over RMSProp as the number of training epochs increases.

Kösten et al. (2018) used an improved PSO in the training of LeNet-5 architecture for 
classification purpose on MNIST dataset. Each particle was a vector of all parameters in 
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the network to be trained. It was observed that the classification performance varied based 
on the number of particles. When the number of particles was 20, the accuracy was about 
90% while that was 96.29 when the number of particles was 64%.

Cai et al. (2018b) introduced Nondominated Sorting Genetic Algorithm II (NSGA-II) 
in the training of stacked AE to avoid the vanishing gradient (or exploding gradient) and 
local optima problems of gradient-based methods. In the approach, encoder’s weights and 
decoder’s weights of the auto-encoder were expressed as a closed-form solution, and the 
weights were optimized by NSGA-II. They introduced a Ridge Regression (RR) classi-
fier to finish the final classification. The proposed approach was compared with existing 
architectures on MNIST, CIFAR-10, USPS, Pendigits, Optdigits datasets. PCA was applied 
to reduce the feature dimension to 20 to all the datasets, and then the max-min scale was 
performed to normalize each dataset. In training, NSGA-II algorithm optimized two objec-
tive functions. The first one is the L1-norm of the hidden-layer outputs, which guarantees 
sparsity and alleviates overfitting. The second objective function was the mean square error 
between target outputs and the actual decoder’s outputs. Once NSGA-II was applied to 
optimize objective functions, then the solution which maximizes the second objective was 
selected as the final solution. The approach was compared to two ELM-based methods: 
Extreme Learning Machine and Multi-layer Extreme Learning Machine, two Stacked AE, 
neural networks trained by Stochastic Gradient Descent: SAE and SAE with L1 constraint, 
Multi-layer Perception trained by SGD and two traditional algorithms: Ridge Regression 
and Logistic Regression classifiers. The proposed method was shown to be more stable 
compared to ML-ELM and SAE-L1 when the depth was increased. Based on sparsity 
investigation, SEvoAE restricted the redundant neurons straightforwardly, which alleviated 
the overfitting problem. According to test classification accuracy on 7 datasets, SEvoAE 
produced an improvement of 1.21,2.05, and 0.98% compared to ML-ELM, SAE and SAE-
L1, respectively. They concluded that the resulting architecture could obtain better results 
with a simple structure, and optimizing the multiple objectives simultaneously avoided 
adjusting hyper-parameter.

Zavalnyi et al. (2018) extended their previous work on favourable gradients optimized 
by ES. The training loss was considered as the estimation of the objective function value 
(fitness). Two different optimizers were used: SGD and RMSprop. The approach was eval-
uated on the MNIST dataset. A comparison was performed among SGD with backpropaga-
tion, SGD with favourable gradients and RMSprop with favourable gradients. SGD with 
backpropagation achieved good results much faster. RMSprop with favourable gradients 
performed better than SGD does. In the case of using SGD optimizer, the number of evalu-
ations needed for ES was higher than that needed for backpropagation. Because using only 
favourable gradients was quite slow, the combination of ES and backpropagation was also 
investigated for MNIST and CIFAR10 datasets. In the hybrid model, favourable gradients 
were used on every 25th batch, and backpropagation was used for the rest of the optimiza-
tion steps. The combination of two methods improved the training results on both datasets. 
From the results, it was observed that when ES was applied to optimizing favourable gradi-
ents used by local optimizers, more stable convergence results were obtained.

5.3.3  Others

Lamos-Sweeney (2012) investigated GA in the training phase of deep networks, especially 
with a large number of layers. Layer-wise training was adopted to reduce the computational 
cost and increase the flexibility of the algorithm. The reconstruction error of the algorithm 
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was used to determine the fitness of each individual. In the study, data compression and 
object classification problems were considered on datasets such as handwriting, face and 
cat datasets. It was reported that if the resulting size of the deep network was insufficient to 
contain the data in the testing set, training error increased drastically.

These studies are summarized in Table 2.

5.4  Studies using metaheuristics for architecture optimization of deep neural 
networks

5.4.1  Articles

Miikkulainen et  al. (2017) proposed a new approach called, CoDeepNeat, by extending 
NEAT Stanley and Miikkulainen (2002) for co-evolutionary optimization of DNN com-
ponents, topologies, and hyper-parameters. The fitness function was established based on 
training error. There were two populations of modules and blueprints that were evolved 
independently. Each module denoted a small DNN and blueprint chromosome was a graph 
of pointers (nodes) each for a specific module type. Although the module and blueprint 
chromosomes were evolved separately, they were combined together and a larger network 
was constructed during evaluation. The approach was used to evolve a CNN topology on 
CIFAR-10 dataset. The approach was integrated with two types of mutations switching the 
connections between nodes and layers and applied to an LSTM topology optimization on 
Penn Treebank benchmark (Mitchell et  al. 1999) task of language modeling. It was also 
utilized in a real-world application of automated image captioning on MSCOCO dataset 
(Chen et al. 2015b) and a new dataset.

(Liu et al. 2017b) introduced hierarchical representation which encodes several motifs at 
different levels of hierarchy, where lower-level motifs were used as building blocks (opera-
tions) during the construction of higher-level motifs as stated in Sect.  4.2. Convolutions 
with larger receptive fields and channels were defined based on primitive operations includ-
ing 1 × 1 convolution of C channels, 3 × 3 depth-wise convolution, 3 × 3 separable con-
volution of C channels, 3 × 3 max-pooling, 3 × 3 average-pooling and identity in a chain 
structure. Wider convolutions with more channels can be obtained by concatenating the 
outputs of multiple convolutions. All convolutional operations were followed by batch nor-
malization and ReLU activation. A diversification-based scheme was used to generate the 
initial population by applying a large number of random mutations. A single mutation of a 
hierarchical genotype consisted of a set of actions, including sampling a target non-prim-
itive level ≥ 2 , sampling a target motif m in the target level, sampling a random successor 
node i in the target motif, sampling a random predecessor node j in the target motif, replac-
ing the current operation between j and i with a randomly sampled operation. Tournament 
selection was applied to select parents and determine surviving offspring. The architecture 
was trained for a fixed number of iterations and the average accuracy was used as fitness 
function. The experiments were performed on MINST (Krizhevsky 2009) and ImageNet 
Russakovsky et  al. (2015) datasets. It was shown that efficient results could be obtained 
using simple search algorithms based on a well-designed architecture representation.

Sun et al. (2018a) presented GA to evolve CNN architectures based on ResNet blocks 
and DenseNet blocks without any intervention in pre and post processing steps. The fully-
connected layers were not considered in the approach. A variable-length encoding scheme 
was employed not to restrict the depth of the CNN. For ResNet block and DenseNet block, 
the number of blocks, the input spatial size and the output spatial size, an additional 
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parameter k for DenseNet block. Pooling type was encoded for pooling layer. The one-
point crossover operator and cascade adjustments were performed. Adding block, remov-
ing block and modifying the information operations were used in mutation operator and 
again some adjustments were performed. The approach was validated on CIFAR10 and 
CIFAR100 datasets Krizhevsky (2009). Experimental results revealed that the proposed 
approach was better than state-of-the-art CNNs in terms of the classification accuracy and 
computation time.

Liu et al. (2018) proposed a layer-wise structure learning method with high representa-
tion and better generalization ability. Therefore, the visible data was defined by the struc-
ture of many hidden units. An MOEA was adopted to optimize representation ability and 
connecting the sparsity of the network simultaneously. The experiments were implemented 
on single-layer level, hierarchical level, and application level, respectively. In the experi-
ments, on the single-layer level, the improved MOEA optimized single-layer structure. In 
the experiments on the hierarchical level, the single-layer structures were stacked, and the 
deep structured network was evaluated on the the MNIST and CIFAR-10 datasets with dif-
ferent training samples. The experiments demonstrated the effectiveness of the improved 
MOEA and structure learning model.

Liu et al. (2019) presented a GA-based network evolution approach to optimize CNN 
network structures automatically. The evolutionary process was expedited through an 
experience-based greedy exploration strategy and transfer learning. A possible solution 
included the type of the optimizers, the choice of the activation function, the number of 
layers, and the number of neurons and evolution was applied to the complementary-gene 
set. The Peak Signal-to-Noise Ratio (PSNR) was used as the fitness function. The pro-
posed model was evaluated on denoising of 10,775 computed tomography perfusion (CTP) 
images. The results of the proposed approach outperformed those of state-of-the-art meth-
ods at various noise levels.

Junior and Yen (2019) proposed a PSO algorithm with variable-length particles with 
virtually no size limitation. The encoding strategy represented an architecture with two 
blocks: one block included convolutional and pooling layers, while the other included only 
fully connected layers. The operators handled two solutions with a different number of lay-
ers and parameters. The fitness evaluation was performed by the loss function. The loss 
function of each particle was compared to the cross-entropy loss. The method was vali-
dated on MNIST, MINST variations, Rectangle, Convex (Larochelle et al. 2007) and Fash-
ion (Xiao et al. 2017) datasets. The results demonstrated that the proposed method could 
find CNN models which were capable of achieving better results compared to more com-
plex and complicated architectures.

Baldominos et  al. (2019) improved the performance of the models by using commit-
tees using GA and grammatical evolution (GE) to automatically tuning the structure of 
CNNs that maximize accuracy. The GA encoding included a 69-bit binary string using 
gray encoding. Input configuration, convolutional layers, dense layers, and learning pro-
cess parameters were encoded in a gene solution. Convolutional layer parameters were 
composed of the number of convolutional layers, for each convolutional layer, the number 
of kernels, kernel size, pooling size (or no pooling), and activation function. Dense layer 
parameters included the number of dense layers, for each dense layer, type of the layer 
(feedforward or recurrent), number of neurons, activation function, weights regulariza-
tion (L1 or L2), and dropout rate. Learning process parameters included the optimizer and 
learning rate. The classification error of the network was assigned as the individual fitness, 
and the adjusted fitness provided by the niching was computed. Experiments were vali-
dated on the MNIST database, and then the optimal structure was transferred to EMNIST 
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(Cohen et al. 2017). The study reported that the error produced by a committee was less 
than the average error rate of its constituents individually.

Mattioli et  al. (2019) used GAs in deep neural networks architecture selection. One 
descriptor for convolutional layers and second descriptor for fully connected layers were 
encoded in a solution. Convolutional layer descriptors consisted of the activation function, 
number of filters, kernel size, stride, and pooling size, while fully connected layer descrip-
tors included the number of neurons and the dropout probability. The fitness function was 
represented by the test accuracy of the solution. MNIST and CIFAR-10 datasets were 
investigated to validate the model. Using a fitness predictor in the evaluation yielded a sig-
nificant reduction in execution time, and the proposed method was able to find competing 
topologies compared to state-of-the-art methods.

Sun et al. (2019b) proposed a PSO model that used an encoding strategy for particles 
with nonidentical lengths to optimize stacking AEs. Each particle contained different num-
bers of convolutional layers and pooling layers. Each convolution filter had filter width, fil-
ter height, stride width, stride height, convolution type, number of feature maps, the coeffi-
cient �2 parameters whilst each pooling layer had kernel width, kernel height, stride width, 
stride height parameters. The objective function for training was defined by the reconstruc-
tion error. The experiments were conducted on MNIST, CIFAR-10, STL-10 (Coates et al. 
2011), CalTech 101 (Fei-Fei et  al. 2007). The experimental results showed that the pro-
posed method outperformed the algorithms considered in the study in terms of accuracies.

Sun et al. (2019a) implemented a new variable-length encoding scheme, a new genetic 
operator and a slacked selection operator to evolve CNN architectures for image classifica-
tion problems. The first part of the chromosome contained the convolutional layers and the 
pooling layers, and the second part is the full connection layers. Instead of representing 
hundreds of thousands connection weights of fully connected layer, the standard deriva-
tion and mean value of the connection weights were encoded and the connection weights 
were sampled from the corresponding Gaussian distribution based on these values. In each 
training step, the fitness of an individual was calculated by three components: classification 
error based on the current weights and the batch data, the mean and standard derivations 
errors of these batch data, and the number of weights. The approach utilized a slack version 
of the binary tournament selection according to thresholds for the mean values of individu-
als and the parameter numbers. The simulated crossover operator applied unit alignment 
and unit restore to produce offspring from parents with different chromosome lengths. For 
a selected mutation point, addition, deletion or modification was applied with a probability 
of 1/3. They also employed an environmental selection to address elitism and the diversity. 
The proposed approach was validated on Fashion (Xiao et al. 2017), MNIST Krizhevsky 
(2009) and MNIST variations Larochelle et  al. (2007) datasets and compared to some 
state-of-the-art methods. It was reported that their approach outperformed them on almost 
all these datasets in addition to yielding a much smaller number of parameters.

Wei et  al. (2019) proposed hybridization of PSO and GA algorithms to optimize the 
DBN’s network structure for intrusion detection classification. PSO algorithm was com-
bined with genetic operators with self-adjusting crossover probability and mutation prob-
ability. Accuracy, FPRate, FNRate, and DRate were used as evaluation indicators for 
optimization algorithm performance. The experimental results showed that the optimized 
intrusion detection model had higher detection speed and detection accuracy.

Shi et  al. (2019) presented a PSO algorithm to optimize the number of hidden layer 
nodes of DNN for digital modulation recognition. The aim was to improve the perfor-
mance of recognition under the condition of low signal-to-noise ratio (SNR). Experimental 
results demonstrated that the recognition rate was improved by 9.4% and 8.8% compared 



867A comprehensive survey on optimizing deep learning models by…

1 3

to conventional DNN and support vector machine (SVM) when SNR was 0dB and 1dB, 
respectively. Compared with GA, the proposed method was more effective in optimizing 
DNN.

Wang et al. (2019b) proposed a new encoding strategy coding architecture and shortcut 
connections separately. The proposed encoding strategy was incorporated with a combina-
tion of PSO and GA algorithms to optimize CNN architecture. The number of blocks and 
for each block, the number of convolutional layers, and the growth rate were encoded in 
the first dimension and then the shortcut connections were encoded in a binary vector at 
the second-level encoding. The accuracy of the trained model was treated as the fitness 
function. The proposed algorithm was evaluated on three widely used benchmark datasets 
from MNIST variations (Larochelle et  al. 2007) and CIFAR-10, and compared with 12 
peer Non-EC based competitors and one EC based competitor. The experimental results 
demonstrated that the proposed method outperformed the other methods in terms of clas-
sification accuracy.

Ye (2017) used PSO and the steepest gradient descent algorithm combination to deter-
mine the optimal network structure parameters, including learning rate, dropout rate, 
momentum, weight decay, and the number of neurons of each hidden layer. In the proposed 
approach, parameters corresponding to the structure were coded as a set of real-number 
m-dimensional vectors. The training accuracy or the last loss value were used as the score 
(fitness value) for the individual of the PSO algorithm. The approach was validated for 
classification purpose on MNIST (Lecun et al. 1998) and regression purpose on the Kaggle 
Competition biological dataset (KGD) (Kaggle 2017). Results showed that PSO combined 
with the steepest gradient descent algorithm produced better network structure and gener-
alization ability.

Chiba et  al. (2019) utilized Improved GA and SA to build a DNN automatically for 
anomaly Network Intrusion Detection System (IDS). Each solution represented parameters 
including normalization, activation function, number of nodes in hidden layer 1, number of 
nodes in hidden layer 2, learning rate, and momentum term. AUC metric was considered 
as fitness function to guide the search problem. Experiments were carried out on three IDS 
datasets, CICIDS2017 (CICIDS2017 2017), NSL-KDD (NSL-KDD 2019) and CIDDS- 
001 (CIDDS-001 2019) dataset and the results demonstrated that the proposed model could 
detect intrusions with high detection accuracy and low false alarm rate, and it was superior 
over state-of-the-art methods.

5.4.2  Conference papers

Lander and Shang (2015) proposed an EA to optimize network weights and structure 
of AEs in which each hidden node and its corresponding connections and weights were 
encoded in a solution of EA. The proposed method employed a mini-batch variant that 
accelerated search on large datasets. Starting from a pool of encoded solutions, the pro-
posed method first applies backpropagation in training each AE to minimize the recon-
struction error. Then, EA evolved the population in the feature and structure space of AE. 
Experiments were validated on the MNIST dataset, and it was reported that mini-batch 
and Evo-batch had compelling influence as data size grows. The proposed method pro-
duced an easily tunable AE and revealed smaller reconstruction errors against multi-start 
approaches.

Tanaka et  al. (2016) explored network structure of LSTM recurrent neural network 
for speech recognition. They applied CMA-ES in which solutions encode layer-wise 
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parameters. WER and computational time were minimized simultaneously by a Pareto 
based approach. Experiments were performed on the Corpus of Spontaneous Japanese 
(CSJ) (Furui et al. 2000) and the individual headset microphone (IHM) subset of the AMI 
meeting speech transcription corpus (Carletta et  al. 2006). It was shown that CMA-ES 
improved WER on the datasets (CSJ and AMI) and multi-objective optimization reduced 
WER and computational time jointly.

Suganuma et  al. (2017) proposed a Cartesian GP (CGP) encoding based evolution 
approach to assemble a ResNet architecture. The encoding scheme represented as directed 
acyclic graphs with a two-dimensional grid defined on computational nodes and was able 
to map variable-length network structures and skip connections. Highly functional mod-
ules, such as convolutional blocks and tensor concatenation, were adopted as the node 
functions in CGP. There were six types of node functions called ConvBlock, ResBlock, 
max pooling, average pooling, concatenation, and summation. The summation and concat-
enation operations were provided to represent shortcut connections or branching layers. A 
point mutation operator randomly changed the type and connections of each node. If the 
fitnesses of the offsprings did not improve, a parent was modified by the neutral mutation, 
which changed only the genes of the inactive nodes without the modification of the pheno-
type. After the CGP process, the best CNN architecture was trained using SGD. The per-
formance of the validation dataset was used as the fitness of the individual. It was tested on 
CIFAR-10 and CIFAR-100 (Krizhevsky 2009) datasets and it was seen that the proposed 
approach could automatically find the competitive CNN architecture compared with the 
state-of-the-art models

Vidnerova and Neruda (2017) designed an algorithm for the optimization of 
a network architecture based on ES. In the approach, ES was used to search for 
the optimal architecture of DNN, while the weights were learned by gradient-
based technique. The model implemented as sequential was built layer-by-layer. 
I = ([size1, drop1, act1, �

size

1
, �

drop

1
]1,… , [sizeH , dropH , actH , �

size

H
, �

drop

H
]H) where H was the 

number of hidden layers, sizei was the number of neurons in corresponding layer that was 
dense (fully connected) layer, dropi was the dropout rate (zero value represents no drop-
out), acti ∈ {relu, tanh, sigmoid, hardsigmoid, linear} stand for activation function, and 
�size

i
 and �drop

i
 were strategy coefficients corresponding to size and dropout. In this paper, 

only fully connected feedforward layer was optimized. The approach was tested on MNIST 
and a real air pollution monitoring dataset (Vito et al. 2012). On the air pollution data set, 
the algorithm outperformed Support Vector Regression and manually tuned architectures. 
For the MNIST dataset, the network with ReLU and hard sigmoid unit outperformed the 
baseline solution. The main drawback of the proposed method was its computational cost.

Martín et  al. (2017) proposed a GA to evolve the parameters and the architecture of 
a DNN to maximize the malware classification accuracy and to minimize the complex-
ity of the model jointly. Each genome was composed of global network parameters and 
a variable-size section, which contained a set of layers. The global parameters included 
the optimizer type, the maximum number of epochs or iterations, the number of samples, 
while the layer-related parameters were the number of outputs, the initialization function, 
and the activation function. The fitness of each individual was calculated by accuracy. The 
proposed model was tested on a specific problem of determining the malware family of dif-
ferent malicious samples. The experimental results showed that the proposed approach suc-
cessfully determined the parameters and enhanced the results achieved by Support Vector 
Machines trained with different kernel functions.

Xie and Yuille (2017) proposed an encoding scheme using fixed-length binary string ini-
tialized by sampling from a Bernoulli distribution. The approach utilized standard roulette 
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wheel selection, bit flipping mutation and crossover operators. Recognition accuracy was 
used as objective function during training. It was validated on small scale CIFAR10 dataset 
and the learned patterns were transfered to large scale ImageNET dataset. Each solution 
represented a family of networks with S stages of ordered KS nodes corresponding to con-
volutional operations that were performed after element-wise summing summation. They 
obtained interesting results although it was also noted that the fraction of network struc-
tures was limited.

Desell (2017) presented an evolutionary algorithm based algorithm to evolve struc-
ture of CNNs on MNIST dataset. The approach was built on the structure of CNN can be 
evolved by determining the filter sizes and how filters are connected. It was implemented 
in a multi-threaded manner. CNN genomes are evaluated in workers. When the number of 
genomes in the workers reaches to the predetermined population size, mutation (adding 
adges, enabling edges, disabling edges, splitting edges, and change node sizes) or crosso-
ver operations are performed. The experiments on MNIST and TinyImage (Torralba et al. 
2008) datasets have shown that the approach improved the train and test accuracy com-
pared to human designed benchmark neural networks.

Real et al. (2017) presented EA based technique to minimize manual crafting effort in 
end-to-end evolution and training as a one-shot model. Their approach considered no fixed 
depth, arbitrary skip connections, and numerical parameters that had few restrictions on 
the values they can take. To be able to reach a large scale architecture, a massively-parallel, 
asynchronous, lock-free infrastructure was used. Each architecture was encoded as a graph 
in which the vertices represent rank-3 tensors or activations. Activation functions that 
were applied at the vertices could be either batch-normalization with rectified linear units 
(ReLUs) or plain linear units. Edges in the graph corresponded to identity connections or 
convolutions and parameters. The learning-rate value was also encoded in the chromo-
some. To generate offspring, mutation operator was applied by randomly selecting one of 
the actions, including altering learning rate, identity, resetting weights, inserting convolu-
tion at a random location, removing convolution, altering stride, altering number of chan-
nels, changing filter size, inserting one to one identity connection, adding skip connection 
between randomly selected layers, removing skip connections randomly. The approach was 
validated on CIFAR-10 and -100 datasets and it was shown that evolutionary algorithm 
based evolution could explore a large space and construct accurate networks.

Kramer (2018) introduced convolutional highways which are based on multiple stacked 
convolutional layers for feature preprocessing. Each convolutional highway layer has two 
gates for the flow of information, followed by dense layers and a final softmax layer. The 
structure and hyper-parameters (kernel size of all highways, the kernel size of the max 
pooling layers, and the activation function types of all highways and of the dense layers) of 
convolutional highways were optimized using binary encoding (1+1)-EA which used adap-
tive flipping mutation based on Rechenberg’s rule and a niching mechanism. EA evolved 
the learning rate of the network and applied Adam as gradient descent optimizer. The cat-
egorical cross-entropy was considered as fitness function. The approach was verified on 
MNIST (Krizhevsky 2009) data set.

Bibaeva (2018) implemented RS, GA, SA, MA to optimize CNN architecture on 
MNIST and CIFAR-10 datasets. Binary encoding of the entire architecture includes 
activation function, pooling type, filter size, step size, and the number of outputs. All 
layers were fixed to the same length according to layer count and input image size. It 
was assumed that evolving one excellent architecture and tuning its training parameters 
afterward was less time consuming than evolving many architectures together with their 
training parameters. Thus, each CNN was trained with Stochastic Gradient Descent 
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using standard values for batch size, momentum, weight decay etc. It was shown the 
proposed approach achieved competitive results with state-of-the-art performance with-
out user involvement and MA and SA algorithms outperformed the RS and GA for 
hyper-parameter optimization.

Falco et  al. (2018) optimized architecture of DNN through the DE algorithm for 
Obstructive Sleep Anpnea classification. To decrease execution times, a distributed ver-
sion of the DE algorithm was introduced and the size of the training set was reduced by a 
box-based reduction. The number of hidden layers, the number of neurons in each layer, 
the activation function and the number of learning steps were considered in the optimiza-
tion. Experiments were carried out on a medical data set about Obstructive Sleep Anpnea 
(McNicholas and Levy 2000). It was shown that sub-optimal DNN hyper-parameters val-
ues were obtained in a much lower time without a detriment in the classification accuracy 
over the test set.

Pandey and Kaur (2018) used a GA to determine the best hyper-parameter settings for 
LSTM models. The population was initialized with random combinations of the number 
of layers, neurons per layer, dense layer activation function and network optimizer etc. The 
proposed model was applied in inhibiting the extensive spread of fake news and clickbait 
by utilizing the lexical and semantic features of the corresponding text. It was reported that 
LSTM designed based on GA provided an accuracy of 94.36% in LSTM and 95.61% in 
BiLSTM.

Martinez et al. (2018) integrated Dakota optimization library, TensorFlow, and Galaxy 
HPC workflow management tool to perform massively parallel function evaluations in a 
GA to avoid extensive hyper-parameter searches for multivariate regression for spectrum 
reconstruction problem. A deep regression was performed on input features for recon-
structing a vibrational spectrum on specific HUMS configurations in rotorcraft. The num-
ber of neurons in the three hidden layers and the dropout rates in the three hidden layers, a 
total of six design variables were considered in the optimization. An initial random popula-
tion was generated and genetic operators were employed to create the next generation. In 
order to evaluate the solutions, MSE between the predicted spectrum and the true spec-
trum was calculated as the loss function. An experiment was provided information about 
the influence of each hyper-parameter over the objective function. It was reported that the 
number of units in the first hidden layer correlated with the cost function significantly. GA 
improved the validation accuracy of several models by 5–7% in less than 72 h. Compared 
with random generated and hand-tuned models, their approach was significantly faster and 
better for tuning hyper-parameter configurations. It was noted that fine-tuning of muta-
tion, crossover, and the initial population size was required to avoid local minima during 
training.

Ding et al. (2018) employed GA to learn the CNN structure for HSI classification. In 
this study, the first encoding area contained 3 nodes, the second encoding area contains 4 
nodes, and the final stage contains 5 nodes. After the encoding process, GA was used to 
determine the best CNNs structure. The method was validated on the Indian Pines scene 
and Pavia University scene images. Experimental results demonstrated the effectiveness of 
the proposed CNNs framework in HSI classification accuracy.

Martín et al. (2018) proposed an EA to evolve the architecture of a DNN to optimize the 
classification accuracy. Individuals were generated by Finite-State Machine defining possi-
ble paths. Each genome was a set of global parameters which defines the general behaviour 
of the network, and a sequence of layers with an arbitrary number of them. Layer param-
eters were different for each layer in the architecture. Some of the latter were common to 
any kind of layer while others were specific to a type of layer. The proposed model was 
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tested on the MNIST handwritten digits images. It was shown that EA was able to con-
struct the DNN architecture with a 98.93% accuracy in the best run.

Tian et al. (2018a) proposed an approach based on GA to select or regenerate the best 
pre-trained CNN models for different visual datasets. Each individual represented a possi-
ble combination of the CNN model defined with a finite-length string. The fitness function 
was defined by the average F1-score from the validation data as the feedback to evaluate. 
In each generation, a set of pre-trained CNN models was selected, and an automatically 
created network with several dense layers was employed to leverage the deep feature rep-
resentations. Then, a linear SVM classifier was trained on the deep features. They vali-
dated the approach on the CIFAR-10, Network Cameras (Pouyanfar et al. 2018), Youtube 
video (Tian et al. 2018b) datasets. The experimental results demonstrated that the proposed 
method outperforms several existing approaches in visual data classification.

Wang et  al. (2018) utilized PSO to search for the optimal architecture of CNNs. The 
encoding strategy was inspired by Network IP addresses to be able to encode all the types 
of CNN layers. Each subnet can be used to define a specific type of CNN layer while the 
encoded information can vary according to types of layers. There were three parameters 
related to the convolution layers: filter size, number of feature maps, and stride size. As 
the particle length of PSO was fixed after initialization, another layer type called the dis-
abled layer was introduced in order to cope with the variable-length CNN architectures. 
The mean value of the accuracies for each individual represented the individual fitness. 
The proposed algorithm was compared with 12 state-of-art methods on MINST varia-
tions including MNIST Basic, the MNIST with Rotated Digits plus Background Images 
(MRDBI) and the Convex Sets (CS) (Larochelle et  al. 2007). The experimental results 
showed that the proposed algorithm achieved a competing accuracy and outperformed the 
other methods on the MDRBI benchmark dataset, being the second-best on the MNIST 
benchmark dataset and ranking above the middle line on the CS benchmark dataset.

Gibb et  al. (2018) used GA to evolve the structure parameters of a CNN used in the 
detection of the concrete images (Cha et  al. 2017) containing cracks. CNN in the study 
had three convolution layers, two pooling/subsampling layers, and two activation layers. 
GA was employed to tune the hyper-parameters, including convolution layer sizes, pool-
ing layer sizes, activation function types, network depth, optimization function type, and 
learning rate of the optimization function. Stochastic gradient descent (SGD) was used 
for updating weights in training. The accuracy metric was assigned as the fitness function. 
Experimental results showed that it was possible to generalize the process of optimizing a 
CNN for image classification through the use of a GA.

Evans et al. (2018) proposed a GP approach to design CNNs automatically. A strongly-
typed GP was used to enforce a tiered structure. The stages were roughly broken into tiers 
and then stacked to simulate the original image classification pipeline. The fitness func-
tion used was the proportion of correctly classified instances. The proposed approach was 
tested on four benchmark image datasets, Cars (Agarwal et al. 2004), Jaffe (Cheng et al. 
2010), Faces (Sung and Poggio 1998), Pedestrian (Munder and Gavrila 2006). the experi-
mental results showed that the method produced competitive performance compared to the 
state-of-the-art techniques and could automatically generate highly interpretable evolved 
programs.

Loni et al. (2018a) proposed a multi-objective framework to discover near-optimal 
DNN architectures in terms of the accuracy and the network size. The main architec-
tural hyper-parameters of DNNs were encoded using direct encoding, and the recom-
bination relied on one-point crossover operation. The proposed approach was inte-
grated with NSGA-II to optimize both objectives jointly. The method was validated on 
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MNIST and CIFAR-10 datasets. The evaluation results demonstrated the effectiveness 
of the approach in terms of pure kernel time and communication time.

Loni et al. (2018b) presented a multi-objective CGP for encoding the genome as a 
directed graph that is mapped in a two-dimensional matrix. This representation defined 
two node types, active and inactive. The functionality of each node block was a com-
position of max-pooling, average pooling, concatenation, activation, summation, Con-
vBlock, and ResBlock. The convBlock included an ordinary convolution layer, batch 
normalization and activation, respectively. Moreover, ResBlock was a bit more com-
plicated where it consisted of ConvBlock, convolution layer, batch normalization, and 
summation to perform element-wise addition on ConvBlock input and the normaliza-
tion output. Finally, the output node was always a fully connected layer with the soft-
max activation function. The Score factor was calculated as the fitness function. The 
framework was validated on CIFAR-10 then compared to cutting-edge architectures. 
The results indicated that the proposed method improved the network architecture and 
efficiency.

Kumar and Batra (2018) optimized RNN with GA for various combinations of num-
ber network parameters, including the number of hidden layers, number of neurons per 
layer, activation function, and optimizer. The model was trained with a dataset that is 
sliced according to the best window size. RMSE on the validation set was utilized as 
the fitness in GA. The results were evaluated based on training time, error, and accu-
racy. With sample data streams, simple RNN produced higher accuracy than LSTM 
and GRU for single hidden layer architecture. It was reported that as the RNN went 
deeper, LSTM and GRU outperformed simple RNN, and accuracy was improved for 
all the architectures. LSTM showed better performance compared to Simple RNN and 
GRU with an equal number of layers, and the optimized RNN demonstrated competing 
performance with LSTM. The optimized version of RNN improved training time sig-
nificantly, with a slight reduction in the accuracy.

Assuncao et al. (2018) investigated compressed data forms generated by AEs using 
EAs. The candidate solutions were represented with variable-length ordered lists of 
integers, where each integer represented the number of neurons of a specific layer. For 
each individual, the number of layers was selected, and only then the number of neu-
rons in each layer was sampled. To train the AEs, the error between the reconstructed 
signal and the mean signal of the class was utilized as the fitness function. Experi-
ments were performed on the MNIST dataset, and the results demonstrated that the 
proposed approach could reduce dimensionality with the advantage of superior perfor-
mance on the original uncompressed images.

Ai et al. (2019) presented an LSTM for forecasting peak demands in a home/neigh-
bourhood energy management system to obtain a more reliable prediction automati-
cally. They selected network structures through empirical or enumerative approaches. 
In the study, an evolutionary ensemble method was introduced to train LSTM networks 
in order to solve the problems, including diverse learning efficiency and falling into a 
local minimum. Mean absolute percentage error (MAPE) was used to evaluate the peak 
demand prediction of an anonymous western Norwegian domestic household. They 
concluded that the proposed model achieved better performance than single LSTM net-
work, and the evolutionary parameters had variant impacts on the model performance.

These studies are listed in Table 3.
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5.5  Studies using metaheuristics at feature representation level of deep neural 
networks

5.5.1  Articles

Miranda et al. (2014) proposed to use a combination of EA and PSO in AE to reduce the 
dimensionality of the search space without loss of accuracy. The EA obtained distinct solu-
tions through iterations instead of random sampling to obtain a denser representation. The 
solutions were transferred to AE to encode/decode. While the particles were updated in the 
reduced space, the fitness was calculated according to the original space. The experimen-
tal results illustrated that searching in a compressed space could discover more promising 
regions compared to searching the original space.

Gong et al. (2015) proposed a multi-objective sparse feature learning (MO-SFL) model 
to avoid choosing the constant, which controlled the sparsity of representations. MO-SFL 
handled two objectives, the sparsity of hidden units and reconstruction error. The sparse 
feature learning problem was expressed as a MOP and a multi-objective induced learn-
ing procedure (Sa-MODE/D) was designed according to the learning process of SR-RBM. 
The solution found by Sa-MODE/D was transferred to the fast updating step in which the 
reconstruction error was minimized using the stochastic gradient descent algorithm. The 
experiments were performed on MNIST and Berkeley (Ranzato et al. 2006) datasets and 
demonstrated that useful features could be learned by the multi-objective sparse feature 
learning model.

Ghamisi et al. (2016) used Fractional Order Darwinian PSO (FODPSO) to improve the 
overall accuracy of CNN. The selected most informative bands by PSO were given to the 
designed CNN to produce the final classification map. The overall accuracy was expressed 
as the fitness value. In this study, Indian Pines captured by AVIRIS over a rural area in NW 
Indiana, and Pavia dataset captured by ROSIS-03 were used. Results indicated that the pro-
posed model could classify hyper-spectral data via a CNN trained with a limited number of 
training samples.

Hosseini et al. (2017) utilized principal component analysis (PCA), independent com-
ponent analysis (ICA), and Differential Search Algorithm (DSA) to extract features in BCI 
seizure prediction task and localization from scalp EEG and ECoG big data. The EEG data 
was decorrelated by PCA while I-ICA separated the remaining higher-order dependencies 
and DSA found the global minimum. The approach was extended on existing deep-learn-
ing structures. Stacked AE and CNN were applied to BCI seizure prediction and localiza-
tion from scalp EEG and ECoG big data. The results on the ECoG datasets illustrated the 
advantage of the proposed approach in patient-specific BCI prediction.

The approach proposed by Trivedi et  al. (2018) used a sparse AE for feature extrac-
tion and a CNN tuned by the GA algorithm for the softmax classifier. After color trans-
formations and each image was resized to 28 ×  28, a sparse AE was employed to learn 
the approximation of input data and then to obtain the best features. The study aimed to 
extract low-dimensional features by reducing the number of nodes and imposing the spar-
sity parameter. In the sparse AE used in the study, the input layer was of dimension 1024, 
and the output layer was of dimension 81. The sparse AE was trained using L-BFGS gra-
dient optimization using the cost function of the sum of square errors, weight decay, and 
KL distance. The CNN architecture was executed once AE output was obtained. After 
mean pooling from the pooling layer of CNN architecture, the inputs of a fully-connected 
layer were obtained by GA and the weights were tuned by L-BFGS. They concluded that 
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incorporating the GA with CNN architecture improved accuracy, while increasing the 
number of iterations caused an increase in the length of the chromosome, which made the 
GA encoding technique less efficient.

Tian and Liu (2019) integrated a CNN and immune algorithm principles to improve 
the extraction of rolling bearing fault features. CNN was used to extract the characteristics 
of the time domain and frequency domain signals of rolling bearings. A cloning strategy 
and a mutation operation were applied to enhance the efficiency of the learning stage. The 
experiments were investigated on the rolling bearing data by Case Western Reserve Uni-
versity Data Center (Smith and Randall 2015). The raw data was the vibration acceleration 
signal, which was composed of hashed data points. The experimental results showed that 
the proposed model was useful in classification and recognition.

5.5.2  Conference papers

Blanco et al. (2018) developed a CNN to classify network connections using only features 
available at a network node, distinguishing between normal data and a set of attack classes. 
In order to select the optimal layout of the input features, GA was used by reducing the 
number of different features if required. Kappa metric was used as the fitness function 
because it considered the imbalance of the instances in different classes among the train-
ing dataset. The tests were performed on two different public datasets with different ratio 
of attacks: UNSW (Nour and Slay 2015) (10 classes) and NSL-KDD (NSL-KDD 2019) (4 
classes). Experiments on (NSL-KDD 2019) produced better results because it could pro-
portionate between the different classes, obtaining a cross-validated multi-class classifier 
with K of 0.95.

Silva et  al. (2018) proposed a binary PSO that searches the possible combinations to 
find out a fusion rule at the feature level. A comparison was performed among sum, mul-
tiplication, and minimum fusion rules and the proposed approach. The last layers of VGG 
model trained for face recognition were replaced to best represent the number of classes 
on the training database. The experiments were performed using iris and periocular region 
(NICE.II competition database) (Proenca et  al. 2010). The experiments in the NICE.II 
competition databases showed that the transfer learning representation for iris modality 
achieved a new state-of-the-art when the fusion at feature level by PSO was performed on 
periocular and iris modalities, decidability of 3.45 and 5.55% of EER.

These studies are summarized in Table 4.

5.6  The most used datasets in the reviewed studies

Complex models such as DL models require large-scale datasets in training to avoid over-
fitting and generate consistent results over unseen data. Researchers created datasets by 
collecting data from some domains, including handwriting, face, eeg, car, iris, flower etc., 
and some of the datasets are labeled by domain experts for classification purposes. In this 
section, some brief information is given about the most used public datasets used in the 
studies we reviewed, although there are more datasets in the literature.

MNIST handwritten digit recognition database (Lecun et  al. 1998): It is an extended 
version of the NIST database. Each sample is a 28 × 28 grayscale image and contains a tar-
get class label between 0 and 9 corresponding to each digit. It has 60,000 training images 
and 10,000 testing images.
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MNIST variations (Larochelle et  al. 2007): There are the MNIST Basic (MB), the 
MNIST with Background Images (MBI), Random Background (MRB), Rotated Digits 
(MRD), with RD plus Background Images (MRDBI), the Rectangle, the Rectangle Images 
(RI), and the Convex Sets (CS) benchmarks. The rectangle or not for the Rectangle and RI 
benchmarks, and the convex or not for the Convex benchmark) sets are for the shape recog-
nition purpose. These datasets are more challenging than the original MNIST because they 
also contain irrelevant information to the problem.

Fashion-MNIST (Xiao et al. 2017): It consists of 60,000 training and 10,000 test images 
for the cloth classification purpose. Each sample is 28 × 28 gray scale image assigned to 
one of 10 classes.

EMNIST Database (Cohen et al. 2017): It is an extended version of MNIST and consists 
of both digits and letters. It contains over 81,4255 images for both digit and letter classifi-
cation. There are 62 classes in the dataset.

Semeion Handwritten Digit (Semeion 2008): This dataset contains 1593 grayscale 
images from handwritten 0–9 digits. Each sample is 16 × 16 in a grayscale of 256 values. 
USPS (Hull 1994): The dataset includes 7291 train and 2007 test images assigned to one of 
0–9 digit classes.

CIFAR10 (Krizhevsky 2009): Each sample is 32 × 32 color images and contains a tar-
get of 10 classes, where each class has 6000 images. This dataset consists of 60,000 color 
images. There are five batches for training, composed of 50,000 images, and one batch of 
test images consists of 10,000 images. CIFAR-10 and CIFAR-100 are labeled subsets of 
the 80 million tiny images. CIFAR 100 (Krizhevsky 2009) is similar to CIFAR-10 except it 
has 100 classes where each one has 600 images. There are 50,000 training and 10,000 test 
images.

CalTech 101 dataset (Li et al. 2003): This dataset contains 9146 images from Google 
images assigned to 101 classes corresponding to objects and shapes. CalTech 101 Silhou-
ettes (Marlin et al. 2010) is generated based on CalTech 101 dataset, comprising silhou-
ettes of images from 101 classes with a resolution of 28 ×  28. The training and testing 
sets are composed of 1185 and 2307 samples, respectively. CalTech-256 (Griffin et  al. 
2007) is an extended version of CalTech 101 by including more categories and more num-
ber of images in each category. Artifacts in the predecessor dataset are also avoided in 
CalTech-256 datasets.

STL-10 data set (Coates et al. 2011): This dataset consists of 96 × 96 images acquired 
from ImageNet. There are 10 classes, and each class has 500 images for training and 800 
images for testing purposes.

The CICIDS 2017 dataset (CICIDS2017 2017): The dataset satisfies indispensable char-
acteristics of a valid intrusion detection system dataset, namely Anonymity, Attack Diver-
sity, Complete Capture, Complete Interaction, Complete Network Configuration, Available 
Protocols, Complete Traffic, Feature Set, Metadata, Heterogeneity, and Labeling. It con-
tains the abstract behaviour of 25 users based on the HTTP, HTTPS, FTP, SSH, and email 
protocols. Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, 
Botnet and DDoS attacks are performed. 83 statistical features such duration, number of 
packets, number of bytes etc. There are a total of 2,827,876 flows in the dataset. NSL-KDD 
Dataset (NSL-KDD 2019): Each sample in the dataset is related to a network connection 
and consists of 41 features. There are 4,898,431 records and the records are labeled as nor-
mal or one of the specific attack names which fall into four major categories: DOS, U2R, 
R2L, PROBE. CIDDS-001 Dataset (CIDDS-001 2019): (Coburg Network Intrusion Detec-
tion Dataset) is a labeled dataset of flow in a Cloud environment based on OpenStack plat-
form. It consists of three logs files (attack logs, client configurations, and client logs) and 
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traffic data from two servers where each server traffic comprises of 4 four week captured 
traffic data. It contains 14 attributes, the first 10 attributes are the default NetFlow attrib-
utes and the last four attributes are additional attributes. A total of 32 million of normal 
and attack flows are captured in the dataset within four weeks. There are 92 types of attacks 
in the dataset.

The XMU dataset (Huang et al. 2015): It consists of 13 classes of vehicle logo, namely 
Buick, Chery, Citroen, Honda, Hyundai, Lexus, Mazda, Peugeot, Toyota, and Volkswagen, 
Proton, Nissan, and Perodua. Each image is 70 × 70 pixels in a greyscale format. There are 
13,000 training images and 1950 test images These vehicle logo images encompass various 
outdoor imaging conditions such as distortions, illumination variance, and translation.

CK+ Dataset (Lucey et al. 2010): Cohn-Kanade (CK+) data set consists of 593 images 
depicting facial expressions of 210 adults, and the task is to classify the emotions including 
neutral, sadness, surprise, happiness, fear, anger, contempt and disgust. The resolution of 
the images is 640 × 490.

Faces Dataset by AT&T (Sung and Poggio 1998): This dataset contains a set of face 
images taken between April 1992 and April 1994 at the lab. There are 10 samples for each 
of 40 classes, 400 in total. Each image is 92 × 112 pixels, with 256 gray levels per pixel. 
The images were taken at different times, varying the lighting, facial expressions (open/
closed eyes, smiling/not smiling), and facial details (glasses/no glasses).

Ubiris.v2 (Proenca et al. 2010) has 11,102 images from 261 classes. The images were 
acquired under different distances, angles, lightning in order to simulate real noise condi-
tions. The images have 800 × 700 resolution. The database was used in the NICE.II com-
petition for the iris recognition purpose. The dataset is balanced regarding the number of 
images per subject.

Flower Dataset (Nilsback and Zisserman 2008): This dataset has 8189 flower images of 
102 different flower types. There are 2040 training images and 6149 testing images. Each 
image is 500 × 500 pixels.

An overview of the most used dataset in the reviewed studies is presented in Table 5.

6  Discussion

Deep learning models are similar to neural networks, but have much more parameters and 
many design issues at both representation level and connected dense layers. While weights 
and bias values in network models are numeric, there are many discrete and categorical 
valued parameters, which makes derivation-based methods unsuitable for optimizing the 
problem. Deep learning models have some hyper-parameters to be appropriately tuned. 
Since running each different configuration manually is quite labor-intensive, and time-
consuming, automatic hyper-parameter optimization is needed to reduce computational 
cost. Designing an efficient architecture is another significant issue to be handled. Further-
more, at feature representation level, there are some tasks to be optimized, such as feature 
selection, feature dimension reduction, thresholding, determining sparsity-inducing term, 
deciding optimal input layout. Therefore, researchers introduced metaheuristics to solve 
these optimization problems arising in the deep learning field. This paper reviews the use 
of metaheuristic algorithms in hyper-parameter optimization, training, architecture design, 
and at feature representation level of deep learning models. By reviewing the studies in the 
previous section, we can deduce the results given below:



880 B. Akay et al.

1 3

Ta
bl

e 
5 

 A
n 

ov
er

vi
ew

 o
f t

he
 m

os
t u

se
d 

da
ta

se
ts

 u
se

d 
in

 th
e 

stu
di

es
 re

vi
ew

ed

D
at

as
et

In
pu

t s
iz

e
C

la
ss

es
Tr

ai
n 

si
ze

Te
st 

si
ze

D
om

ai
n

M
N

IS
T 

(L
ec

un
 e

t a
l. 

19
98

)
28

 ×
 2

8
10

60
,0

00
10

,0
00

H
an

d-
w

rit
te

n 
di

gi
ts

M
N

IS
T-

R
D

 (L
ar

oc
he

lle
 e

t a
l. 

20
07

)
28

 ×
 2

8
10

12
,0

00
50

,0
00

H
an

dw
rit

te
n 

di
gi

ts
M

N
IS

T-
R

B
 (L

ar
oc

he
lle

 e
t a

l. 
20

07
)

28
 ×

 2
8

10
12

,0
00

50
,0

00
H

an
dw

rit
te

n 
di

gi
ts

M
N

IS
T-

B
I (

La
ro

ch
el

le
 e

t a
l. 

20
07

)
28

 ×
 2

8
10

12
,0

00
50

,0
00

H
an

dw
rit

te
n 

di
gi

ts
M

N
IS

T-
R

D
 +

 B
I (

La
ro

ch
el

le
 e

t a
l. 

20
07

)
28

 ×
 2

8
10

12
,0

00
50

,0
00

H
an

dw
rit

te
n 

di
gi

ts
EM

N
IS

T 
D

at
ab

as
e 

(C
oh

en
 e

t a
l. 

20
17

)
28

 ×
 2

8
62

69
7,

93
2

11
6,

32
3

H
an

dw
rit

te
n 

di
gi

ts
 a

nd
 le

tte
rs

Se
m

ei
on

 (S
em

ei
on

 2
00

8)
16

 ×
 1

6
10

15
93

H
an

dw
rit

te
n 

di
gi

ts
U

SP
S 

(H
ul

l 1
99

4)
16

 ×
 1

6
10

72
91

20
07

H
an

dw
rit

te
n 

di
gi

ts
C

IF
A

R-
10

 (K
riz

he
vs

ky
 2

00
9)

32
 ×

 3
2

10
50

,0
00

10
,0

00
O

bj
ec

t r
ec

og
ni

tio
n

C
IF

A
R-

10
0 

(K
riz

he
vs

ky
 2

00
9)

32
 ×

 3
2

10
0

50
,0

00
10

,0
00

O
bj

ec
t r

ec
og

ni
tio

n
C

al
te

ch
-1

01
 (L

i e
t a

l. 
20

03
)

30
0 

× 
20

0
10

1
91

46
O

bj
ec

t d
et

ec
tio

n
C

al
Te

ch
-1

01
 S

ilh
ou

et
te

s (
M

ar
lin

 e
t a

l. 
20

10
)

28
 ×

 2
8

10
1

11
85

23
07

O
bj

ec
t r

ec
og

ni
tio

n
C

al
Te

ch
-2

56
 (G

riffi
n 

et
 a

l. 
20

07
)

35
1 

pi
xe

ls
 in

 av
er

ag
e

25
6

30
,6

07
O

bj
ec

t r
ec

og
ni

tio
n

ST
L-

10
 d

at
a 

se
t (

C
oa

te
s e

t a
l. 

20
11

)
96

 ×
 9

6
10

50
00

80
00

O
bj

ec
t r

ec
og

ni
tio

n
Re

ct
an

gl
es

 (L
ar

oc
he

lle
 e

t a
l. 

20
07

)
28

 ×
 2

8
2

12
00

0
50

,0
00

Sh
ap

e 
re

co
gn

iti
on

Re
ct

an
gl

e-
I (

La
ro

ch
el

le
 e

t a
l. 

20
07

)
28

 ×
 2

8
2

12
,0

00
50

,0
00

Sh
ap

e 
re

co
gn

iti
on

C
on

ve
x 

(L
ar

oc
he

lle
 e

t a
l. 

20
07

)
28

 ×
 2

8
2

80
00

50
,0

00
Sh

ap
e 

re
co

gn
iti

on
Th

e 
C

IC
ID

S 
20

17
 d

at
as

et
 (C

IC
ID

S2
01

7 
20

17
)

83
15

2,
82

7,
87

6
ID

S
N

SL
-K

D
D

 D
at

as
et

 (N
SL

-K
D

D
 2

01
9)

41
5

4,
89

8,
43

1
ID

S
C

ID
D

S-
00

1 
D

at
as

et
 (C

ID
D

S-
00

1 
20

19
)

14
5

32
 m

ill
io

n
ID

S
M

N
IS

T-
Fa

sh
io

n 
(X

ia
o 

et
 a

l. 
20

17
)

28
 ×

 2
8

10
60

,0
00

10
,0

00
C

lo
th

 c
la

ss
ifi

ca
tio

n
X

M
U

 (H
ua

ng
 e

t a
l. 

20
15

)
70

 ×
 7

0
10

13
,0

00
19

50
Ve

hi
cl

e 
lo

go
 re

co
gn

iti
on

CK
+

 D
at

as
et

 (L
uc

ey
 e

t a
l. 

20
10

)
64

0 
× 

49
0

8
59

3
Em

ot
io

n 
cl

as
si

fic
at

io
n

Fa
ce

s D
at

as
et

 b
y 

A
T&

T 
(S

un
g 

an
d 

Po
gg

io
 1

99
8)

92
 ×

 1
12

40
40

0
Fa

ce
s

U
bi

ris
.v

2 
(P

ro
en

ca
 e

t a
l. 

20
10

)
80

0 
× 

70
0

26
1

11
,1

02
Ir

is
 re

co
gn

iti
on

Fl
ow

er
 D

at
as

et
 (N

ils
ba

ck
 a

nd
 Z

is
se

rm
an

 2
00

8)
50

0 
× 

50
0

10
2

20
40

61
49

Fl
ow

er
 c

la
ss

ifi
ca

tio
n



881A comprehensive survey on optimizing deep learning models by…

1 3

• According to our search (October 2019), the number of papers on training DL models 
using metaheuristics is 21, the number of papers on hyper-parameter optimization of 
DL models using metaheuristics is 30, the number of papers on architecture (topology) 
optimization of DL models using metaheuristics is 39, and the number of papers on 
using metaheuristics at feature representation level is 8. It is seen from the number of 
publications that particularly hyper-parameter optimization and architectural design by 
metaheuristics are hot topics in the field. Based on these studies, it can be stated that 
metaheuristics can automatically generate highly interpretable evolved networks com-
pared to cutting-edge architectures.

• As seen in Fig. 15, starting from 2012, there is an acceleration in the number of studies 
related to the optimization of the deep learning models. Most of the DNNs optimized 
by metaheuristics target image classification problems.

• The number of studies grouped depending on DL architectures used in the reviewed 
publications is shown in Fig.  16. Traditional CNN is the most investigated architec-
ture, followed by DNN, AE, DBN, LSTM. Simplicity of CNN architecture, existing 
open-source libraries, and computational burden affect the architecture choice of the 
researchers. Unsupervised pretraining models and generative models are also widely 
used in the publications. More complex networks are employed in a limited number of 
studies due to their requirement for high computing facilities.

• Many kinds of metaheuristics have been applied to solve various optimization prob-
lems arising in the field of deep learning. The number of studies with respect to the 
metaheuristic employed in the studies is given in Fig.  17. It should be noted that 
modified and hybrid algorithms are treated as a separate method. GA is the most used 
metaheuristic in deep learning optimization since the solution representation in GA 
is more suitable to encode network structures and it is also best-known metaheuristic 
among researchers.
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• Efficient metaheuristic algorithms with global search ability do not suffer from the 
problems of gradient-based approaches, including premature convergence and vanish-
ing (or exploding) gradients problem. Besides, they can be applied to mixed program-
ming problems with real, binary, categorical and discrete decision variables, such as 
network architecture search.

• Adopting multi-objective heuristics is appropriate for simultaneously handling multiple 
conflicting objectives such as obtaining a sparse network, improving network accuracy, 
minimizing computation complexity. Non-dominated sorting and decomposition-based 
multi-objective techniques generate well-distributed solutions for this kind of problems.

• To reduce the computational cost, population-based metaheuristics are more conveni-
ent to be distributed to parallel computing facilities compared to derivative-based train-
ing algorithms.

• Although indirect encoding schemes are flexible and can yield efficient compact net-
works, they are hard to be incorporated into the metaheuristics compared to direct 
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encoding schemes. Automatic programming approaches, such as GP or ABCP, has a 
good potential in generating network architectures because its solution representation 
fits indirect encoding.

• Hybrid approaches which optimize the network architecture using metaheuristics while 
training the network using gradient-based methods may be helpful for some problems. 
Similarly, hybridization of two metaheuristics with different search characteristics 
can improve the overall exploitation and exploration ability compared to the ability of 
each individual metaheuristics. Integrating local search heuristics with metaheuristics 
enhances the intensification ability of search.

• As there is no unique algorithm to solve any kind of problems, ensemble or hybrid 
methods have been also proposed to extend the problem types that can be solved. The 
error of the models using committees is better than the average error rate of its constitu-
ents individually.

• There is a variety of public datasets in the literature. MNIST and its variations, CIFAR, 
and CalTech are the most used datasets in the experiments to validate the approaches. 
Novel approaches can be validated on these datasets. However, the comparisons with 
state-of-the-art algorithms would be more fair if the papers gave more detail about the 
conditions they performed the studies, such as initialization values, data sampling, data 
separation, augmentation, model parameters, preprocessing steps, etc.

7  Conclusion and future directions

In this paper, we aimed to provide brief information about the basis of common DNN 
networks and give recent advances in the field of deep learning by using metaheuristics. 
We defined main optimization problems in DL field and presented representation schemes 
to encode a DNN structure for metaheuristics. And then, ee reported the studies on the 
metaheuristics used for optimization problems in deep learning field and discussed the 
advantages and drawbacks of the approaches. Based on our review and discussion, it is 
concluded that using metaheuristics in deep learning is open for further developments. The 
future directions can be listed as below:

• Designing efficient and compact architectures
• New projections and kernel trick methods at feature level to deal with nonlinearity and 

heterogeneity
• Efficient automatic labeling approaches on huge datasets based on self-supervised 

models and unsupervised generative models
• Resource-efficient hardware implementations, especially the hardware implementation 

of hierarchical and coupled architectures
• Implementing more elaborate and multi-level encoding schemes that do not have com-

peting conventions problem, and appropriate efficient intensification and global explo-
ration operators

• Studying on self-adaptive metaheuristics for tuning the control parameters automati-
cally based on population trajectory

• Aiming efficient parallelization of metaheuristics distributed to high computing facili-
ties (GPUs, TPUs) in order to reduce computational cost of the fitness functions due to 
large-scale architecture and big data
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• Efficient constructive heuristics and morphological operators for morphologic pertur-
bation of the networks during search by metaheuristics

• Introducing dynamic optimization methods that can cope with changing conditions and 
network structure to avoid overfitting

• Enhancing metaheuristics that increase diversity and boost the exploration to deal with 
real, binary, discrete, categoric decision variables

We hope this paper will be very useful for readers performing researches in the deep learn-
ing and metaheuristics fields for further advances.
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