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Abstract

Shallow neural networks process the features directly, while deep networks extract features
automatically along with the training. Both models suffer from overfitting or poor gener-
alization in many cases. Deep networks include more hyper-parameters than shallow ones
that increase the overfitting probability. This paper states a systematic review of the overfit
controlling methods and categorizes them into passive, active, and semi-active subsets. A
passive method designs a neural network before training, while an active method adapts
a neural network along with the training process. A semi-active method redesigns a neu-
ral network when the training performance is poor. This review includes the theoretical
and experimental backgrounds of these methods, their strengths and weaknesses, and the
emerging techniques for overfitting detection. The adaptation of model complexity to the
data complexity is another point in this review. The relation between overfitting control,
regularization, network compression, and network simplification is also stated. The paper
ends with some concluding lessons from the literature.

Keywords Review - Neural network generalization - Overfitting - Regularization - Model
simplification - Model selection - Reducing hyper-parameters - Pruning - Network
compression

1 Introduction

Choosing a suitable neural network for a dataset is challenging. In the case of underfitting,
the learning model is simple and cannot learn the data relations (Dietterich 1995), while
with overfitting, the model is complex and only memorizes the training data with limited
generalizability (Dietterich 1995; Nowlan and Hinton 1992; Hawkins 2004). In both condi-
tions, the model cannot recognize different unseen data. For example, consider a regression
problem with one independent variable x and one dependent variable y that takes values of
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Table 1. The following three polynomial models and a neural network model are stated to

predict y from x:

Model 1: y = 0.8549x

Model 2: y = 0.5x* — 2.2x + 7.25
Model 3: y = 0.001157546x + 0.000444516x* + 1.969512896
Model 4: A Multi-Layer Perceptron (MLP) with a hidden layer including 100 neurons

As shown in Fig. 1, the first model is underfitted, while the third and the fourth models are
overfitted. The second model is the best fit model with small errors. The same issue occurs

in classification problems.

The simplest way to solve the underfitting problem is to extend the nonlinearity of the
model. However, the overfitting cannot be solved simply (Lawrence et al. 1997). Overfitting

Table 1 Data of a simple regression example with one independent variable (x) and one dependent variable

(80
Training data X 3.54 1.80  4.87 4.92 1.46 2.94 4.30 134 4.67 2.65
y 2.77 1.93 5.32 5.53 2.04 2.18 3.92 2.17 4.84 1.84
Testing data X 1.36 1.93 2.66 3.49 3.79 1.21 3.48 4.67 2.73 4.78
y 211 1.87 195 256 303 223 271 485 1.95  5.08
6 6
*
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Fig. 1 Comparison between an underfitted, a fit and two overfitted regression models

@ Springer



A systematic review on overfitting control in shallow and deep... 6393

Fig.2 Overfitting and best com- 0.7
plexity of a learning model 06 Best Complexity of

Learning Model

0.5

0.4

0.3

Loss Value

1
1
1
1
1
1
0.2 .

0.1

1 2 3 4 5 6 7 8
Number of Nerouns
===Train Loss ===Test Loss

Feature-2
Feature-2
Feature-2
Feature-2

Feature-2
Feature-2
Feature-2
Feature-2

Pl [ B i [ B i [ B Pl [

[ 3 [ 3 ) 3 [ 3
Feature-1 Feature-1 Feature-1 Feature-1

Fig.3 Learning models for a classification problem with 2 features and 2 classes: MLP networks with a
single hidden layer including 1-8 neurons (from left to right the hidden nodes are added and the networks
changes from underfitting to overfitting. The fourth model is the fit)

needs model simplification by decreasing the number of free parameters, weight sharing,
stopping training before overlearning, removing excess weights, decreasing redundant
parameters by second-order gradient information, or penalizing the model complexity by a
loss function (Nowlan and Hinton 1992; LeCun et al. 1990). For instance, low-rank factori-
zation is a powerful method to simply learning model when the overfitting is high (Bejani
and Ghatee 2020). Pattern deformation is another widely used approach in deep networks
to improve the generalization power (Schmidhuber 2015).

On the other hand, overfitting is dependent on the approximation schemes (Girosi et al.
1995). For example, in Li et al. (2017) a regularized version of reinforcement learning
has been used for function approximation. Classification models also approximate some
separators between classes. To minimize the losses of these models on training data, one
can augment the separators’ parameters. Nevertheless, a great number of parameters cause
overfitting (Cawley and Talbot 2007; Tzafestas et al. 1996). It is the most important reason
for overfitting as clearly shown in Fig. 2. In this figure, the training and the testing losses of
8 MLP networks with a single hidden layer are presented along with 1-8 hidden neurons.
Besides, the separators made by these models are illustrated in Fig. 3. Simply speaking, a
model with a small number of neurons cannot learn the data, and both testing and training
losses are substantial. By increasing the number of hidden neurons, the model complexity
increases, while both training and testing losses diminish. When the number of neurons is
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significantly large, the training loss possibly decreases, but the testing error grows because
of model parameters’ freedom. In Fig. 2, this happens for an MLP with 4 hidden neurons.
As can be seen in Fig. 3, this network can classify the training and the testing samples of
two classes with the greatest accuracy. Thus, a learning model’s best complexity happens
when the testing loss diverges from the training loss. This condition is useful to termi-
nate the training process (Sarle 1995) before overfitting. Later, Sect. 3.2 defines the model
complexity precisely. Then, it is possible to define a model with proper complexity for any
dataset.
In the literature, the following reasons are also stated for the overfitting problem:

1. Noise of the training samples (Liu and Castagna 1999),
Lack of training samples (under-sampled training data) (Martin-Félez and Xiang 2014;
Leung and Leung 2011; Zhao et al. 2020),

3. Biased or disproportionate training samples (Erhan et al. 2010),

4. Non-negligible variance of the estimation errors (Cawley and Talbot 2010),

5. Multiple patterns with different non-linearity levels that need different learning models
(Caruana et al. 2001),

6. Biased predictions using different selections of variables (Reunanen 2003),

7. Stopping training procedure before convergence or dropping in a local minimum (Sriv-
astava et al. 2014),

8. Different distributions for training and testing samples (Dai et al. 2007).

Any learning model should limit these overfitting sources by some overfitting control-
ling methods. These controllers can be categorized into three schemes, namely passive,
active, and semi-active. They are defined as follows:

e Passive schemes search for a suitable configuration of the network before training.
Sometimes, they are referred to as model selection methods or hyper-parameter optimi-
zation techniques. After designing a suitable model, its hyper-parameters remain fixed
throughout the training steps.

e Active schemes impose a dynamic noise on the learning model or the training algo-
rithm through the training steps, such that the model cannot memorize the details
of data and the relationship between the features and outputs. These methods do not
change the model architecture but activate some model components in each training
step. They are also referred to as regularization schemes.

¢ Semi-active schemes, similar to passive schemes, change the model architecture but
throughout the training steps. Sometimes, they are addressed as dynamic architecture
because they reconstruct the network concerning the training statues. They follow two
approaches. The first is a network construction method, which starts training with a
simple network, and incrementally adds hidden units during training. The second is net-
work pruning, which simplifies a complex network along the training process.

Figure 4 illustrates some methods which follow these schemes. Note that the bounda-
ries between these schemes are not rigid. For example, when an active scheme imposes a
dynamic noise on some network weights, it changes the model through training implicitly,
and it is similar to a semi-active method. Further, in some cases, a combination of some
different controllers should be assigned to solve overfitting. For example, in Heidari et al.
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Fig.4 The categorization of the different methods to control overfitting in neural networks

(2020) embedding-specific dropout, batch normalization, weight decay, shuffled terms are
used to generalize the results. Furthermore, in some references, architecture selection is
used instead of overfitting control. Architecture selection algorithms balance the complex-
ity of a model with the required performance. Thus, the produced model fits almost all
training data samples, but it cannot successfully generalize the results for unseen data. In
Engelbrecht (2001), the architecture selection approaches are categorized into four groups,
including brute-force, regularization, network construction, and pruning. Brute-force
approaches are close to passive schemes. Regularization and active schemes are similar.
The others belong to semi-active methods.

This paper reviews different controllers for overfitting and their advantages and limita-
tions in the continuation of these works. To the best of our knowledge, there is no compre-
hensive review to categorize these controllers. Although there are many review papers on
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shallow and deep neural networks (Ding et al. 2013; Liu et al. 2017; Li et al. 2018; Jaafra
et al. 2019; Zhang et al. 2018; Darwish et al. 2020), the focus on the overfitting is limited
to (Amer and Maul 2019) on modularization techniques, (Cheng et al. 2018) on model
compression, (NarasingaRao et al. 2018) on some definition of overfitting, and (Bejani and
Ghatee 2019) on some regularization methods. The contributions include the following:

e A comprehensive review of overfitting controlling schemes in three branches, such that
one can select an efficient overfitting controller for any shallow or deep neural network.

e Summarization of the strengths and weaknesses of different methods with an in-depth
discussion of their characteristics and relationships.

The rest of the paper is organized as follows. In Sect. 2, the searching methodology is pre-
sented. Section 3, presents the related topics to overfitting. Sections 4-6, include passive,
active, and semi-active overfitting controlling methods. The final section ends the paper
with some lessons.

2 Searching Methodology

The recommendations of the systematic review approach (Moher et al. 2009) were used to
ensure the review research’s reproducibility. Here, Google Scholar and Scopus were used
to search the papers. The keywords were looked for in papers’ titles, abstracts, and key-
words. The initial keywords were chosen based on an influential paper written by Nowlan
and Hinton (1992) as one of the first papers on neural network simplification and overfit-

9 < 9 < 9

ting avoidance. Based on this paper, “overfitting”, “overlearning”, “generalization”, “regu-
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larization”, “simplifying neural network”, “neural network simplification”, “weight shar-
ing”, “model selection”, “pruning of neural network”, and “neural network pruning” were
considered as the initial keywords. Then, the most cited papers since 2010 were taken into
account, and their references were considered deeply to find the most related papers. Then,
the titles, abstracts, and the keywords of the found papers were tokenized by “Keras tokeni-
zation tool” (Chollet et al. 2015). After stemming process and removing stop-words, the
most frequent words were extracted, and after post-processing, the results have been pre-

sented in Fig. 5. By searching these 40 keywords, a complimentary review was performed.
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Fig.5 The most frequent words in the titles, abstracts, and keywords of the related papers on neural net-
work overfitting
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As one can see, regularization, dropout, augmentation, deep, shakeout, image, random,
generalization, redundant, and convolutional are the most 10 frequent words. These led to
some important keywords related to overfitting. They also showed the importance of over-
fitting in deep networks, convolutional networks, and image processing problems. Finally,
the words with the least frequencies were obtained. They were used as the emerging words
in the relevant literature. The first 40 meaningful emerging words were as follows:

brute-force, Bayesian, Gaussian, leverage, surpass, Dirichlet, break-
through, decorrelation, eliminating, drop-connect, conjunction, corre-
lations, oversized, shifted, filtering, cosine, discarding, adaptively, re-
flecting, compression, aggregating, lasso, elastic-net, hyper-parameter,
cross-validation, robust, occlusion, flipping, re-identification, genera-
tive, meta-learning, resolution, meta-level, mini-batch, rotation, shear-
ing, transfer, embedded, Alexnet, co-adapting

By searching on the related papers, the following emerging keywords were extracted:

“correlation regularization”, “regularization oversized neural network”,
“regularized negative correlation learning”, “spatial-temporal regular-
ized correlation filter”, “deep neural network sparsity”, “decorrelation
regularization™’, “gradient learning algorithm with smoothing”, “gradi-
ent based adaptive regularization”, “local overfitting control via lever-

ages”, and “robust deep learning”

The last search on all of the obtained keywords was done in August 2020, with no start-
ing date. All of the obtained papers were categorized into passive, active, and semi-active
schemes.

3 Related Topics to Overfitting

The overfitting happens in the gap between data complexity and model complexity. The
model complexity can be stated in terms of VC-dimension (Vapnik 2006) and Bias-Var-
iance trade-off (Geman et al. 1992). Some overviews have also been given in Hawkins
(2004), NarasingaRao et al. (2018). To control the complexity of a model, there are differ-
ent methods, see e.g., (Chen and Yao 2009; Li et al. 2018; Zhu et al. 2018; Liu et al. 2014;
Eigenmann and Nossek 1999; Finnoff et al. 1993).

3.1 Dataset Complexity

In Ho and Basu (2002), Ho et al. (2006) for data complexity computation, three main
measures have been considered, including the overlap of individual features, separability of
classes, and geometry of the manifold. Their details are stated in Table 2. The last proposed
method in this table simplifies the nonlinear space. These methods are known as nonlin-
ear dimensionality reduction (Roweis and Saul 2000). The overfitting can be limited by
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removing unrelated features, and then the remaining features improve accuracy (Abpeykar
and Ghatee 2019). Furthermore, in Abpeikar et al. (2020), the learning model is adapted
with the data complexity.

On the other hand, some data visualization techniques enable to decrease the data com-
plexity. As some instances, t-SNE (Maaten and Hinton 2008), LLE (Roweis and Saul
2000), Laplacian Eigenmap (Belkin and Niyogi 2002) can be addressed. They usually keep
the distances between the samples. The knowledge representation in the space with a lower
dimension is simpler where the unnecessary features can be neglected (Bejani and Ghatee
2018). As a wider scope, one can refer to feature extraction methods, including Principal
Component Analysis (PCA), nonnegative matrix decomposition, binary decomposition,
and other matrix decomposition techniques (Eldén 2019). Instead of feature extraction,
a subset of features can be selected. For a review, one can refer to (Guyon and Elisseeff
2003). Feature clustering to define clusters of features with maximum relevancy and mini-
mum redundancy is another approach to simplifying the data space. To see more details,
one can refer to (Abpeykar et al. 2019).

3.2 Model Complexity

Reducing the data complexity is not applicable, but the stiffness of the model is adjustable.
To compute the complexity of a learning model, VC-dimension (Vapnik and Chervonenkis
2015) states a function f of 6. On the training data {x,x,, ...,x,}, @ minimizes the error
function of model f. When Ey, ;. (f) and Eq,,(f) are the error of model f on the training and
the testing data, for each # € [0, 1], the following probabilistic inequality is met (Wittek
2014):

N \/ (h(log 2n/h) + 1) — log (n/4)> . W

n

P<ETe.vt(f) < ETrain(f)

where 4 is VC-dimension of model f. The VC-dimension of a feed-forward neural network
with ReLU activation function satisfies (Harvey et al. 2017):

log(W/L)

h>WL
- 640

2
where W is the number of weights, and L is the number of layers. For big W and L (in
deep networks), & becomes great. Thus, the probability (1) indicates that the testing error
increases for any # and the generalization becomes poor. Thus, controlling both training
and testing errors is needed. In reality, the testing data does not exist. It is common to apply
a part of the training data to measure the generalization power as the validation data. For
any training step ¢, the following ratio of the errors on the validation and training data can
be evaluated as the overfitting level (Bejani and Ghatee 2020a):

Ey b (t
V(l) — Valm’almn( ) )

ETrain(t) (3)

On the other hand, the complexity of neural network models can be evaluated by the condi-
tion number of the weight matrix W (Bejani and Ghatee 2020b):

. _ —1
cond,(W) = [|W]|,IIW~"1|,, “4)
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where p € {1,2, ..., 00} indicates the base for the norm. For nonlinear learning models,
the condition number can be also extended (Bejani and Ghatee 2020, 2021).

4 Overfitting Control by Passive Methods

To select a model with suitable complexity, we can use model selection methods. They
compare the different learning models on the validation data to choose the best model.
When they use the validation data in the training process, the model probably overfits the
validation data. Ng (Ng 1997) explains how overfitting occurs on validation data. He shows
that if the set of hypotheses or learning models is large, folklore warns about overfitting the
cross-validation data. Besides, the NAS method (Zoph and Le 2017), which chooses a con-
troller to achieve a model with the maximum validation accuracy on the last five epochs,
needs regularization methods on some small datasets. For such datasets, this reference
uses a combination of embedding dropout and recurrent dropout techniques. To show what
happens when the validation data is used for model selection, Table 3 presents a learning
model selection example. In this example, some approximation models py(x) = ZnNzl c,x"
estimate y for x where the training, the validation, and the testing datasets include 7, 4
and 4 samples. As the second part of this table shows, the best validation errors E(V) are
obtained for N = 5 or N = 6. Their training errors E(Tr) are zero. Thus a model selection
method chooses ps(x) or ps(x). However, as the last column shows, the testing error E(7e)
increases when N grows. The worst testing errors happen for N = 5 and 6. Thus, the best
model based on the validation data cannot necessarily recognize unseen data. Meanwhile,
if the testing data follow the same distribution of training data and validation data, and
their sizes are great, the generalization results are reliable; see, e.g., (Nannen 2003) for
more details.

In a model selector, the estimated error can be decomposed into bias and variance. A
model qualifies when its bias and variance are small. To avoid overfitting in model selec-
tion, see (Cawley and Talbot 2010). Since training of deep models is time-consuming, the
model selection on deep models is not very useful. For some model selection researches,
see Table 4. They cover search methods, modularization, ensembling, and adaptive
statistics.

4.1 Search Methods

When a learning model is in hand and can simplify without losing performance (Asadi and
Abbe 2020), the simplification is useful. In other cases, a model generator produces a set of
models with different architectures to learn training samples. The different searching meth-
ods evaluate the models’ performances on the validation dataset, and the best one(s) are
selected. The following searching methods have been widely considered in the literature. In
the grid search, the different models are created based on a grid of data before the search-
ing process, while the others define the models iteratively by a particular strategy during
the searching process.

4.1.1 Grid Search

It uses a grid of parameters I = {y,,...,ys} with a discrete number of values for each
hyper-parameter of the learning model. When § increases, the chance of finding better
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hyper-parameters increases, and obviously, the model quality grows. In a grid search pro-
posed by Liu et al. (2006), an evolutionary algorithm is used to search, but it can be sub-
stituted by other meta-heuristic algorithms directly. Jeng (2005) applies a competitive
agglomeration clustering algorithm with a grid search to improve a regression model.
Monari and Dreyfus (2002) uses a leave-one-out score for nonlinear model selection. It
estimates the leverages and confidence intervals of samples during the training process and
selects the best model among various models with and without equivalent complexities.

A similar approach to grid search for deep neural networks is given in Salman and Liu
(2019) that trains N deep neural networks with different parameters. It also takes a pre-
defined threshold to determine whether or not the class recognition probability is sufficient.
For each sample x and model n € {1, ..., N}, these probabilities for all classes are retained
and their minimum is denoted with P, (x). If max,_, _yP,(x) overcomes the threshold, the
corresponding model classifies x, and otherwise the model rejects x to classify.

It is worth noting that a random search is similar to the grid search that takes the sam-
ples of I randomly (Bergstra and Bengio 2012). When the random search takes samples by
prior knowledge of hyper-parameters, it overcomes the grid search. For a random search
on hyper-parameter optimization, see (Bergstra and Bengio 2012). Besides, (Bergstra and
Bengio 2012) presents a model selection under uncertainty independent of the dataset. But
this model causes overfitting in some cases.

4.1.2 Gradient Search

It applies a gradient descent algorithm to optimize a set of hyper-parameters of a learn-
ing model. To this end, the model selector states the learning performance in terms of
model hyper-parameters implicitly or explicitly. Different linear and quadratic approxima-
tion functions are useful in this step. For example, (Bengio 2000) minimizes the following
approximation loss function:

min a(y) + b0 + L0T(DH(OG), S)
) 2

where y shows the vector of the model’s hyper-parameters, and 6(y) indicates the model
parameter that is a function of y. An approximation algorithm obtains the real function
a(y), the vector function b(y), and the matrix function H(y). However, the complexity of
the Hessian matrix calculation is high. Maclaurin et al. (2015) uses a reverse-mode gradi-
ent descent instead of the Hessian matrix. Franceschi et al. (2017) also states a forward
gradient-based algorithm. Larsen et al. (2012) uses a gradient method to find the weight
decay method’s parameters. Also, (Larsen et al. 2012) applies the gradient of the average
of validation errors in k-fold cross-validation for the same purpose. Getting the gradient
is not limited to supervised learning. For example, (Li et al. 2015) uses a gradient method
to regularize the Least Squares Temporal Difference (LSTD) algorithm for unsupervised
learning.

4.1.3 Bayesian Optimization

It finds the global solution of a learning performance function using a Gaussian Process
(GP) on all available information about samples (Mockus et al. 1978). For example, assume
a learning model with a hyper-parameter with different values 6, ..., 6,. Commonly, the
learning model is trained with these values separately. One can model the achieved training
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errors E,(6,), ..., E,(6,) with the following multivariate Gaussian distribution with respect
to the vector of hyper-parameters § = (6, ...,0,):
K K . K
El(el) U Kl,l K1,2 Kl,n
Eo=| ¢ |=A([: || 2T ), ©)
E,©,) 79 2 P
" " Kn,l Kn,Z Kn,n
For i,j=1,....n, y; indicates the mean of E,(6,) on the training samples and K;; is the

covariance of E; and E; on the same samples. The Bayesian optimization techniques try to
find a minimum of E(#) by using acquisition functions to construct E(f) from the model
posterior. More practically, to simplify the computations of K, ;, some kernel functions are
presented. For more details, see (Snoek et al. 2012). Besides, (Snoek et al. 2015) applies a
neural network instead of GP to accelerate the searching in the solution space. Zhao et al.
(2019) proposes an adaptive and data-dependent regularization based on the empirical
Bayes method. For more different applications of Bayesian techniques for hyper-parameter
optimization, including evidence maximization, Bayesian model averaging, slice sampling,
and empirical Bayes, see (Feurer and Hutter 2019). Furthermore, (Crammer et al. 2013)
states the model parameters with the normal distribution. In the learning process, it updates
the mean and the standard deviation of this distribution such that the probability of getting
correct solutions increases. By sampling the network weights from the normal distribution,
uncertainty increases and avoids overfitting. But this process is very time-consuming.

4.1.4 Meta-Heuristic Algorithms

Meta-heuristic algorithms such as evolutionary algorithms can be used to design a network
or achieve network parameters to prevent overfitting (Ding et al. 2013; Abpeykar et al.
2019; Abpeikar et al. 2020). (Sharma et al. 2013) optimizes SVM parameters and regular-
izes the results with the help of the firefly algorithm, Particle Swarm Optimization (PSO),
and accelerated PSO. Suganuma et al. (2017) proposes a genetic algorithm to design a Con-
volutional Neural Network (CNN) architecture, where the fitness is the network accuracy.
Darwish et al. (2020) incorporates a dropout method in the evolutionary-deep-networks.
Besides, (Fong et al. 2018) reviews on meta-heuristic algorithms for deep learning models
in the context of big data analytics. This reference also points out some research directions
to cover the gaps between meta-heuristics and deep learning models.

4.1.5 Network Architecture Search

Network Architecture Search (NAS) (Zoph and Le 2017) uses a recurrent neural network
as a controller to find an architecture of a neural network with the highest accuracy on
the validation dataset. This controller is trained by a reinforcement learning method and
includes some similar blocks of some common CNN layers (convolution layers and pool-
ing layers). This method is very time-consuming and probably overfitted on the validation
data. For advanced versions of NAS, refer to (Real et al. 2019; Jaafra et al. 2019). Real
et al. (2019), obtains the best architecture by using an iterative algorithm based on search-
ing on a queue of different networks and two different mutations generating new networks.

Besides, in NAS (Zoph and Le 2017), an LSTM network is considered with two layers.
In every five time-steps, the outputs of LSTM are determined to state the architecture of
a layer. The LSTM network results determine the filter height, filter width, stride height,
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stride width, and the number of the filters for a convolution layer. Based on the number of
layers, the LSTM network generates an architecture. The designed architecture is trained
on the dataset, and the performance on the validation dataset is considered as a reward sig-
nal, R, to prepare the LSTM network by reinforcement learning. In this process, the expec-
tation of R should be maximized. Since the reward signal, R is not differentiable, (Williams
1992) uses a different policy to compute the gradient. To see a deep Q-learning, one can
refer to (Mnih et al. 2013).

4.2 Modularization

A modular neural network is a neural network that breaks down into several relatively inde-
pendent, replicable, and composable networks (or modules). Topological modularization
acts as a kind of regularization. On the other hand, tightly coupled modules lead to overfit-
ting. As an instance, (Kirsch et al. 2018), proposes a modularization scheme to design a
network with high performance. It uses a two-step algorithm. In the first step, it defines the
compositions of the modules. In the second step, it trains all modules and a controller to
find better performance. Formally, this approach seeks to find the best composition of the
trained modules by maximizing the following log-likelihood:

N
L©O,$) = ) log P(y,|x,, 0, p), )
n=1

where 0 is the parameters of the used modules, ¢ is the parameters of the controller, and
{x;, yi}fi , is the training dataset. For a comprehensive review, see (Amer and Maul 2019).

4.3 Ensembling

By training multiple neural networks and aggregating their results, one can improve the
overall performance significantly. Such ensembles of neural networks can predict unknown
samples more accurately than the individuals (Li et al. 2018; Bejani and Ghatee 2018;
Abbasi et al. 2016). In Abbasi et al. (2016) an ensemble of Radial Bases Function (RBF)
networks is stated. In Abpeykar and Ghatee (2019), Abpeykar et al. (2019), different
ensembles of neural networks in the decision tree structures are investigated. In Abbasi
et al. (2016) a regularization term is added to the ensemble method. In Abpeykar et al.
(2019), Abpeykar and Ghatee (2019) clustering algorithms are used to decompose the fea-
tures into some subsets to reduce redundancy and increase dependency. This approach sim-
plifies data space and controls overfitting in high-dimensional datasets. Also, in Abpeykar
and Ghatee (2019), a cut point is used in a neural tree to decrease the computation time
and prevent overfitting. Besides, in Abpeikar et al. (2020), an expert system is developed to
control overfitting. This expert system that is located in any node of the neural tree evalu-
ates data complexity and selects a suitable neural network. A meta-heuristic algorithm is
also used to define a reasonable set of features to avoid overfitting when it is high.

4.4 Conclusions and Future Works on the Passive Schemes
The passive methods are some meta-models that create learning models. After training, it

evaluates the performance of the learning models on the validation data. Based on these
evaluations, it updates the learning models. One can repeat this procedure until achieving
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a suitable model for a learning task. Passive methods’ problems are their long computation
time and overfitting on the validation data. For solving the first problem, someone uses
prior knowledge to initialize the model parameters or modify the searching process (Yam
and Chow 2000; Ivanova and Kubat 1995). For solving the second, it is possible to use ran-
dom sampling in the training process (Bergstra and Bengio 2012). The following topics are
important when choosing a passive method:

e They add some hyper-parameters to the learning models, and finding hyper-parameters
is hard.

These methods can be used on shallow models usually, as they contain few parameters.
These methods are very time-consuming for applying on deep models.

They produce models possibly overfitted to the validation data.

By combining randomness in the passive methods, the results probably improve,
although the processing time remains long.

Using the uncertainty and prior knowledge in the process of model selection can be con-
sidered in future works. To accelerate the processing time of passive schemes, one can
decrease the number of hyper-parameters and use the previous results to limit the searching
space. Considering multi-criteria decision-making techniques for model selection can also
be followed, but it seems useful for shallow models. To date, no effective model selection
method has been proposed for deep learning models.

5 Overfitting Control by Active Methods

Regularization methods simplify complex models along the training process. They impose
dynamic noises on the model parameters or the training parameters (Blanc et al. 2020). It
causes control overfitting. Figure 6 displays the published papers’ trend on the regulariza-
tion methods. Because of the importance of these methods, in what follows, the related
references are compared substantially.

5.1 Imposing Noise to the Learning Model

Tikhonov and Arsenin (1977) have proposed this method to find a stable solution for ill-
posed systems. In Natterer (1984) the error bound of Tikhonov regularization has been

Fig.6 The number of published 35000
papers on “regularization” +
“neural network” based on the
Google-Scholar database
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determined. In Scherzer et al. (1993) a posterior strategy has been presented for choos-
ing the regularization parameters of the Tikhonov model. Some applications have been
also given in Golub et al. (1999), Beck and Ben-Tal (2006), Calvetti and Reichel (2003),
Nashed (1986). Because the loss function of a neural network can be minimized by solv-
ing a nonlinear system, the Tikhonov method can be extended to construct a fit neural
network. Any stable solution of a nonlinear system leads to a learning model with low
complexity. Based on (Bishop 1995), Tikhonov regularization for neural network train-
ing is equivalent to the training with noise augmentation. Generalized Tikhonov meth-
ods are also considered in Vauhkonen et al. (1998). In Bejani and Ghatee (2020b), the
effect of Tikhonov term in CNN training is analyzed, and it is combined with Singular
Value Decomposition (SVD) of weights. In Bejani and Ghatee (2020), Tikhonov term is
incorporated with low-rank matrix decomposition. To present some details, consider the
following empirical error for learning model f on the training samples {x;, yi}f.)= *

H}inE(f;{xis)’i}f):l)- ¥

To train these D samples, the empirical error should be minimized to achieve the hyper-
parameters (weights) of f. Meanwhile, the error of a model on unseen data is important to
judge the quality of the learning model. As Fig. 1 shows, sometimes the complexity of the
model is not proportional to the data complexity. To adapt these complexities, one can add
a regularization term to the empirical error as the following:

IT}}HE*(f,{x,syl},zl) =E(f7{xny1}lD=1)+iR(f)7 (9)

where, the nonnegative function R(f) measures the complexity of the learning model f. The
closer f to a linear function, the more R(f) converges to 0. Conversely, for a non-linear
learning model f, the value of R(f) is high. This function can be stated as the following:

R() = / o7

o"x

By setting m = 1(m = 2) in Eq. 10, R(f) interprets the summation of values of the first (the
second) derivative of the learner model f. The coefficient A adapts the regularization effect
and depends on the complexity of data. In many cases, data complexity cannot be defined
precisely. Instead, AR(f) changes randomly to add a noisy effect on the loss function of
the learning model. The optimal solution of Problem 9, leads to a simple learning model
with the minimum empirical error. This function does not memorize the training data, and
hence the overfitting diminishes. In Table 5, some researches on Tikhonov regularization
that impose the noise on the learning model have been described. This table covers three
main approaches. The first approach leads to the minimization of the network weights mag-
nitudes. The second increases the correlation between the network weights. The third re-
frames the inputs with respect to the outputs.

Furthermore, imposing the noise to the learning model can also be defined indepen-
dently of the Tikhonov term. Optimally Pruned Extreme Learning Machine (OP-ELM)
(Miche et al. 2011) with Gaussian kernel is an example. In Belkin et al. (2006) a fam-
ily of learning algorithms based on the manifold regularization has been developed by
exploiting the geometry of the marginal distribution. Also, in Abbasi et al. (2016) a
weight decay regularization term for an ensemble learning model is augmented.

dx (10
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5.2 Imposing Noise to the Learning Algorithm

These schemes implicitly affect the models and the training dataset. They can be
referred to as non-Tikhonov regularization and are categorized as follows.

5.2.1 Dropout Family

The dropout (Srivastava et al. 2014) is the most popular scheme to control overfitting in
the training processes. This method considers a Bernoulli probability p in each training
iteration to decide whether or not the training process updates neurons’ weights. The
dropout scheme can be represented as a Tikhonov method by using the following com-
plexity function (Demyanov 2015, P. 66):

1-—
R = — Al an

where p is the keep probability, A is a diagonal matrix of eigenvalues of the covariance
matrix of the dataset, and w is the weight vector of the linear model. In recent works, Low-
Rank matrix Factorization (LRF) has been used to drop out some parameters of a learning
model along the training process when the complexity of each layer is high (Bejani and
Ghatee 2020). This method, which is entitled “Adaptive LRF”, simplifies the network only
when it is needed. In Bejani and Ghatee (2021), Laliga is defined that applies the least aux-
iliary loss-functions together adaptive weights to regularize VGG neural networks.

In another approach, the noise is imposed on inputs. The constant noise leads to
overfitting because, in the training process, the model learns this noise as a principal
part of the input data. By imposing the random noise on the input data in each iteration
of the learning process, the model cannot learn the constant noise of the input data.
As an instance, the whiteout scheme (Li and Liu 2016) adds the following noise to the
inputs of layers:

= _ (D
= e, (12)
where the components of e; = (e, ;) are stated with the following normal distribution:

o2

e i~N©O, ———
(1+1)
i1

Ly

y € [0,2], 0 > 0, and 4 > O are the parameters of this method. This regularization method
changes the inputs in each epoch and does not allow the network to memorize the training
data. For other extensions, see (Wan et al. 2013; Kang et al. 2018; Khan et al. 2018; Krue-
ger et al. 2017; Larsson et al. 2017; Khan et al. 2019; Liu et al. 2020). In Zhao et al. (2020)
wavelet transforms of data are incorporated into the training process to produce a set of
diverse data when the training data are limited. Discrete wavelet transforms are also used
by Eftekhari and Ghatee (2018) to extract the features and to improve generalization. In
Heidari et al. (2020), the SVD of weights are used to produce diverse patterns to improve
generalization.

In another approach, reweighting algorithms are used on the samples to control
overfitting. In Ren et al. (2018), a meta-learning gradient-based algorithm is defined to
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assign weights to training samples of a mini-batch to minimize the loss on a clean, unbi-
ased validation dataset.

5.2.2 Augmentation Family

The augmentation of a dataset is a popular method to increase the number of samples and
to increase generalization power. In some instances (Kwasigroch et al. 2017; Wasowicz
et al. 2017; Galdran et al. 2017), the experimental results of the affine transition augmenta-
tion have been presented. Also, in Jin et al. (2015), the effect of the noise on the input of
models has been discussed. In Yang et al. (2020), the gradient augmentation is defined that
works on randomly transformed training samples to regularize a set of sub-networks to
learn well-generalized and more diverse representations. Besides, the overfitting in graph-
structured convolutional neural networks has been presented by Kipf and Welling (2017).
In Verma et al. (2019), a regularized training scheme for graph neural network is developed
by using data augmentation. In Table 6, some important augmentation schemes have been
expressed.

On the other hand, a Generative Adversarial Network (GAN) (Goodfellow et al. 2014)
enables raising the number of samples. GAN models include convolutional based GAN
(Yu et al. 2017), condition-based GAN (Mirza and Osindero 2014), and autoencoder based
GAN (Donahue et al. 2017). See (Pan et al. 2019) for more details. The application of
GAN for data augmentation can be seen in Antoniou et al. (2017). Also, in Perez and Wang
(2017), a GAN has been trained to generate different styles in a dataset.

5.2.3 Normalization Family

A simple but effective regularization scheme is batch-normalization (Ioffe and Szegedy
2015). This scheme has been proposed for solving the internal covariate shift, which occurs
in neural networks. Each batch of training samples produces a new distribution in the
output of each layer of the network, and each layer has to learn the new distribution per
batch data. In Luo et al. (2019), it is shown that this scheme can control overfitting prob-
lems. More researches have been stated in Arpit et al. (2016), Ioffe (2017), Wu and He
(2018), Ba et al. (2016), Heidari et al. (2020). In a more different approach, the weights of

Table 6 The augmentation schemes for increasing the samples and decreasing overfitting

Refs. Description

Patel et al. (2019) Finding the cuts of shapes to generate new data

Mikotajczyk and Grochowski (2018) Transferring the image styles

Salamon and Bello (2017) Combining four sub-methods, including ‘Time Scratching’,’ Pitch
Shifting’, ‘Dynamic Range Compression’, and ‘Background Noise’

Taylor and Nitschke (2018) Using geometric and photometric techniques to transform the shapes
and shifting their pixels

Zhong et al. (2020) Exchanging a random region of the input with some noise

Cubuk et al. (2019) Using the reinforcement learning to learn the augmentation strategy

Verma et al. (2019) Interpolating hidden states by generating new images based on the

random angles with uniform distribution
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a network are normalized to increase the generalization power (Miyato et al. 2018; Sali-
mans and Kingma 2016). However, normalization schemes decrease the speed of learning.

5.2.4 Activation Function Family

The activation function is a part of a neural network offering non-linearity power to the
network. If all activation functions are linear, the entire network is just a linear model.
Thus, activation functions have great roles in the non-linearity of the networks. In shallow
networks, sigmoid or tanh are usually applied. In deep networks, the exploiting and vanish-
ing of gradient (Bengio et al. 1994) are common problems. For solving vanishing gradient,
Rectified Linear Units (ReLU) is utilized as the activation function (Nair et al. 2010). The
derivative of this function is greater than one when the corresponding neuron is active. In
Glorot and Bengio (2010), the role of activation function on the learning performance of
deep models has been discussed. The extensions of this activation function have been also
used for regularization, see (Clevert et al. 2016; Xu et al. 2015; He et al. 2015; Jie et al.
2020).

5.3 Conclusions and Future Works on the Active Schemes

Since active methods impose a dynamic noise on the learning model or learning algorithm,
the model does not learn the training data’s noises. A model that learns the training pat-
terns’ noise fails to perform well on the testing dataset (Salman and Liu 2019). To inves-
tigate the effect of different noise types on the training process, consider an example on
the Yale dataset (Lee et al. 2005), including 165 images from 15 classes. The input size is
32 % 32. To train a multilayer perceptron (MLP) neural network, we consider the following
six scenarios:

(S1): Training on data set without noise and regularization,

(S2): Training on data set without noise and with Dropout regularization,

(S3): Training on data set with fixed noise and without regularization,

(S4): Training on data set with fixed noise and Dropout regularization,

(S5): Training on data set with fixed noise and applying PCA on data for noise smooth-
ing and without regularization,

e S6: Training on data set with fixed noise and using PCA on data for noise smoothing
and Dropout regularization.

Figure 7 compares the results of the training and testing errors for these scenarios. As we
expected, the worst case happens when the learning model tries to learn the noises (S3).
The (S5) scenario also converse rapidly, similar to (S3), while its testing error is better than
(S3). This result shows that smoothing the noise by PCA causes an improvement in the
testing error. Comparing (S3) and (S5) with (S1) shows that the imposing noise accelerates
the training process, while it cannot solve overfitting completely. The best testing result
is obtained from (S2) that trains with regularization. The results of (S6) and (S4) are also
close to (S2). It shows that the active methods can rarely remove the effect of data noise.

In Table 7, the results of active methods are compared, considering the learning compo-
nents. The following results can be summarized:
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Fig.7 Comparison between training and testing errors (in the top and down sub-figures) by considering the
noise on samples and training process

They increase the training time but probably less than passive methods do.

If the imposing noise is excessive, the model learns slowly, while if the noise is limited, the
model is likely to overfit. To show evidence, consider a VGG-16 network to train CIFAR-
10 data with different p for Dropout regularization. Let p belongs to {0.9,0.3,0.01}. Fig-
ure 8 presents the training results. Since p = 0.9 is very high, a tremendous amount of
noise is imposed on the learning model, and the convergence speed is meager. p = 0.011s
very small, and it seldom affects the training process, and the testing loss increases after
some iterations. Finally, p = 0.3 performs well to control overfitting. However, in the final
steps, the testing error rises slightly. As a result, this experiment shows that regularization
hyper-parameters are fundamental, and the training is highly dependent on these values.

e The level of the overfitting changes in each training iteration and the magnitude of noise
should be adapted.

e Typically, the active regularization methods do not adapt their parameters with respect to
the level of overfitting. For an instance of an adaptable version, see (Bejani and Ghatee
2020a) which uses a small parameter for overfitting control in the first steps of the training,
as the model is underfitted. Conversely, it increases the regularization parameters when
V() becomes large.

e The combination of data augmentation and adaptive regularization can also be investigated
in future studies.
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Fig.8 Comparison between training and testing errors (in the top and down sub-figures) by considering dif-
ferent p for Dropout regularization method

6 Overfitting Control by Semi-active Methods

These methods do not affect the entire architecture of the network and do not train several
models simultaneously. They update networks by adding or removing neurons or connec-
tions. They are designed with bottom-up and top-down paradigms. The methods that add
neurons or connections are called bottom-up, while other methods that remove neurons or
connections are called top-down.

6.1 Pruning Method (Top-Down)

To simplify a model that learns the samples but drops in overfitting, the pruning procedure
removes the unnecessary parameters (Han et al. 2015). Han et al. (2015) prunes a network
in three steps. The first step is training the network and finding essential connections. The
second step removes all links whose weights are less than a predefined threshold. In the
last step, the network is trained again to retrieve the performance. It uses different regu-
larization schemes, including weight decay or dropout, to improve the results. The dropout
parameters are adjustable for each layer in the retraining step by the following:

D =D, =", (14)

where D, is initialized randomly. C;, and C;, are the numbers of connections of the ith layer
before and after pruning.

Hu et al. (2016) introduces a network trimming method for deep networks that itera-
tively prunes unimportant neurons based on output analysis. For a convolution layer, Aver-
ages Percentage of Zeros (APoZ) is evaluated as the following:

Yooy Xt SO0, () = 0)
NxM

APoZ? = (as)

s

where O is the output of the cth channel in ith layer. f(x) = 1if x is true, and f(x) =0
otherwise. N is the number of validation samples, and M is the dimension of output Ogi).

@ Springer



6416 M. M. Bejani, M. Ghatee

When APoZ(" is great, cth channel in ith layer is eliminated. Then, the network is trained
again. These steps repeat while the validation error can improve.

Matrix computation methods are also useful to prune the network and to avoid overfit-
ting. For example, (Hassibi et al. 1993) uses the inverse of the Hessian matrix to prune the
network. Schittenkopf et al. (1997), applies principal components to reduce the dimension
of both inputs and internal representations, causing better generalization and less overfit-
ting. There are different criteria to detect the connections for pruning. Cottrell et al. (1994)
removes the weights when they have low relevancy. The details of the pruning schemes are
summarized in Table 8. For more study, one can also see (Reed 1993).

6.2 Network Construction Method (Bottom-Up)

Assume a simple network that cannot learn the samples. Adding new parameters, includ-
ing neurons or a hidden layer, the network complexity increases, and the new network is
retrained to improve the results. This iterative method can be executed several times.

Moody and Antsaklis (1996) uses a dependency identification algorithm to add a hidden
layer when the performance is poor. In each iteration, if the error of the trained network is
less than a pre-defined threshold, the following optimization problem is solved for all data-
batch i € B to find the weights vector w;:

min trace((@(w;u) — d)T(cD(wiu) —d)), (16)

where m is the batch-size, n is the output feature, u € R™" is the output of the last layer,
@() is an activation function, and d is the desired output. The function trace() returns the
trace of the matrix. After solving this optimization problem, matrix W containing columns
w; is considered as the weights of a new hidden layer.

Fahlman and Lebiere (1990) adds a hidden neuron that maximizes the following sum of
correlations over candidate neurons o € O and samples p € P:

0=arg — max{ 2 | Z(Vp,o - V())(Ep,{] -E,)| }7 (17

0oe0 peP

where V, , is the output of neuron o for the sample p, E, , is the corresponding residual
error, and V, and E, are the means of V,o0and E, ,over all samples

Setiono (2001) uses the cross- Vahdatlon and trains a small network. If adding a new
hidden neuron improves accuracy, it continues. Otherwise, it comes back to the former
network. Similarly, to add multiple hidden nodes, consider two networks, including H and
H + h hidden neurons. If the accuracy of the first network overcomes the second one, the
algorithm terminates. Otherwise, it trains a network with H + 2h hidden neurons. This pro-
cess continues while the accuracy can improve. To avoid overfitting during the training of
these networks, one can use the following regularization term (Setiono 1997):

p p7,
R(w,v):el(;w+zl+ﬂ >+e2<2w +Z ”> (18)

where €, €,, and f are positive coefficients, w is the weight matrix between the input layer
and the hidden layer, and v is the weight matrix between the hidden layer and the output
layer.
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Zhang et al. (2014) constructs a neural network architecture by a two-stage orthogonal
least-squares method. It determines model terms, model coefficients, and model size by
minimizing the following Akaike Information Criterion (AIC):

AIC = Nlog (11V<E(M),E(M)>> +2M,, 19

where E(M) is the residual error of model M, (., .) is the inner product, N is the size of the
dataset, and M is the model size. Let model M* minimizes AIC. To determine the neces-
sary terms of M* in each step, one can minimize the Error Reduction Ratio (ERR). Based
on the ERR, a term that maximally reduces the error is selected.

The bottom-up methods for network construction are compared based on their termina-
tion criteria and the construction methods in Table 9.

6.3 Conclusions and Future Works on the Semi-active Schemes

The construction methods suffer from some problems. Firstly, they use the validation data-
set to construct the next layer or the next block. Secondly, there are few efforts to construct
deep neural networks for a specific task. Meanwhile, to construct a network, a subset of
network parameters can be optimized, but it is an NP-hard problem (He et al. 2017). Usu-
ally, network construction is used for simple tasks and shallow networks.

On the other hand, compression techniques simplify the network (Serra et al. 2020;
Yang et al. 2020). They belong to the semi-active methods, but they are somewhat differ-
ent. Many parameters of a deep network cause some difficulties in computing the output,
especially on mobile devices with power limitation (Bejani and Ghatee 2020a). To solve
this problem, Moblie-Net uses depth-wise convolution, and so the number of operations
decreases, while its accuracy remains acceptable (Howard et al. 2017; Sandler et al. 2018).
There are four major approaches to compressing the deep networks, including parameter
pruning and sharing, low-rank factorization, compact convolutional filters, and knowledge
distillation. In this regard, (Cheng et al. 2018) reviews different compression methods.
They seek and eliminate unnecessary details of deep models. Thus, the models resulting
from compression schemes are smoother, and then the corresponding models are regular-
ized and can avoid overfitting. However, compression and overfitting controlling methods
are different and play different roles. Thus, they cannot replace each other. The compres-
sion methods should decrease the complexity of the model and may lower the model per-
formance. Conversely, the semi-active methods do not disturb the model performance
and improve generalization power. The following conclusions on semi-active methods are
useful:

e The computation time of semi-active methods is long. But they overcome passive
methods.
Using statistical tests for semi-active methods improves their performance.
Semi-active methods are widely applicable in the shallow networks, including RBF
networks, Extreme Learning Machines (ELM), and other feed-forward networks.

e Semi-active methods can construct the networks or prune them in parallel.

However, the application of semi-active methods in deep networks is challenging. For deep

network construction, trial and error schemes are tedious, and usually, expertise plays a
more critical role. Possibly, a recommender system enables to collect such expertness to
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generate new semi-active methods to control overfitting in deep networks. For example,
(Abpeikar et al. 2020) develops an expert node in the neural tree to prevent overfitting.
Similarly, one can create a new block in deep learning models to prune or re-construct the
network.

7 Lessons from Literature

The overfitting occurs in shallow and deep networks, but it is not easy to control its effect.
Obviously, this phenomenon affects deep networks more broadly. To descibe the effect of
overfitting controllers in deep networks, an example is given by Bejani and Ghatee (2020b)
on GPS dataset where the differences of the training accuracy and testing accuracy for dif-
ferent regularization schemes including ASR, early stopping, dropout, dropconnect, shake-
out, spectral dropout, bridgeout, noise injection, and weight decay are 11.2, 13.1, 2.6,
18.1, 4.7, 0.4, —0.5, 14.9 and 17.1, respectively. This difference for the learning model
without regularization is 15.6. This example proves the necessity of defining an effective
overfitting controller for any learning task. On the other hand, using some general measures
such as complexity, efficiency, convergence speed, and scalability in different networks, the
effectiveness of each overfitting controller can be evaluated. Tables 10, 11 compare these
measures. Generally, we conclude the following points.

Lesson 1: Overfitting controllers usually decrease the convergence speed of the training
algorithms. For online learning, the methods proposed in Clevert et al. (2016), Ba et al.
(2016), Toffe and Szegedy (2015), Bejani and Ghatee (2020b), Bejani and Ghatee (2020a)
are useful. The low-speed methods can only be used for off-line applications on very com-
plex datasets. For better understanding, the processing times of different learning models
with and without overfitting control can be compared. Unfortunately, many references have
not reported such a comparison. To quantitatively measure the processing time, the number
of FLoating-point OPeration (FLOP) can be considered. A lower FLOP indicates the supe-
riority of the model and low computation complexity. Generally speaking, the overfitting
controllers do not cause a heavy computational overhead. Meanwhile, in some cases, such
as pruning methods (Han et al. 2015; Vu et al. 2019), the computational burden can be
reduced, and definitely, the accuracy can slightly diminish. Table 12 reports more informa-
tion on FLOPs.

Lesson 2: To study the effect of overfitting controllers on the accuracy, their results
on the famous standard image datasets are analyzed. Table 13 presents the top-1 error on
CIFAR-10, CIFAR-100, SVHN and MNIST, together with the top-5 error on ImageNet.
Although not all of the references have evaluated the same analysis, the reported results
are sufficiently insightful. By comparing these results with baseline networks without
overfitting control, auto-augmentation provides results with minimum errors. Also, when
augmentation and other kinds of overfitting controllers are used together, the generaliza-
tion power grows significantly (Bejani and Ghatee 2020a). To reach a fair comparison, the
Average of Relative Improvement (ARI) is defined as follows:

B D depatasers Max{(Errorye — Error ), 0}/ Errory,:
|DataSets|

ARI (20)

where |DataSets| shows the number of datasets, Errory,- and Error, indicate the errors of
the models without and with the overfitting control. Based on the last column of Table 13,
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Table 12 Comparison between FLOP of the different schemes with and without overfitting control on dif-
ferent datasets

Ref. Experimental results

Ma et al. (2019) Integrated transformed ¢, does not drastically reduce accuracy, while reduces
FLOPs significantly. It decreases FLOPS on MNIST, Fashion-MNIST,
SDD, Pendigits, CIFAR-10 and CIFAR-100 datasets to 10.7%, 30.9%,
15.8%, 33.0%, 28.3% and 58.9% of the corresponding FLOPs of #, models

Bejani and Ghatee (2020b)  Compares the FLOPs of Wide-Resnet-28 s 10 with ASR, Weight Decay,
and without regularization. They are 11333.31, 11333.29, and 11332.98
GFLOPS, respectively. Thus ASR and weight decay just increases the
FLOP counts 0.0029% and 0.0027%, respectively

Louizos et al. (2018) The expected FLOPs during training for # regularized networks are
less than the original dropout. On CIFAR-10 and CIFAR-100, the
FLOPs are approved. On these datasets, the expected FLOP belongs to
[3.25,3.3] * 10! while expected FLOP for dropout is close to 3.5 # 10!

Vu et al. (2019) On different ResNet models with a constant FLOP count for the training,
it is shown that adding mixup (cutout) regularization improves accuracy
0.18—1.37% (1.04—2.13%) compared with the baseline. Also, adding
pruning decreases accuracy between 0.7and1.07% and decreases FLOPs
between 14.6and15.2%

Han et al. (2015) Using ¢, regularization to penalize non-zero parameters after pruning and
before retraining, FLOP counts reduce 8%, 16%, 30% and 21% for Lenet-
300-100, Lenet-5, AlexNet, and VGG-16, respectively. On the ImageNet
dataset, the number of parameters of AlexNet reduces from 61 to 6.7 mil-
lion, and the number of parameters of VGG-16 reduces from 138 to 10.3
million with no loss of accuracy

the overfitting controllers can be ranked. As can be seen, dropout (Srivastava et al. 2014),
adaptive dropout (Bejani and Ghatee 2020a), adaptive weight decay (Bejani and Ghatee
2020a), auto-augmentation (Cubuk et al. 2019) and enhancing diversity of features (Ayinde
et al. 2019) have shown the best results.

Lesson 3: In addition to the accuracy, overfitting controllers can be compared by other
machine learning measures, including precision, recall, and f-measure (Powers 2011).
Such comparisons on regularized deep networks are limited. Sometimes, this gap leads to
misunderstandings. Table 14 outlines the comparisons found. Some references, including
figures of these measures (Li et al. 2016), as well as the references without the baseline
results (Shekar and Dagnew 2020), have been excluded from this table. Note that since the
datasets are different, the results are not comparable. However, the methods with great pre-
cision and recall are the best candidates to follow in general learning tasks.

Lesson 4: There is no priority among active and passive schemes to improve training
performance. Nevertheless, active methods are almost less time-consuming than passive
methods. Sometimes, an active method provides better accuracy and computational time.
For example, dropout (Srivastava et al. 2014) does not add more computational burden,
while its performance is better than meta-heuristic algorithms (Suganuma et al. 2017).

Lesson 5: When the computational capacity and the training time are not limited,
passive methods can be used. However, the resulting model may overfit on the valida-
tion data. Random sampling can help solve this problem.

Lesson 6: When the training time is limited, semi-active methods are suggested for
shallow networks.
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Lesson 7: In cases with limited computational capacity or limited training time, the
active methods are the best options. Meanwhile, their hyper-parameters can be adjusted by
an expert system; see (Abpeikar et al. 2020) for an initial plan.

Lesson 8: Sometimes, regularization methods decrease the generalization power, as they
make mistake in choosing the model with the right complexity due to the data complexity.
In these cases, regularization is destructive. For example, in Bejani and Ghatee (2020b),
there is an experiment on MobileNet without regularization where the training accuracy is
100%, and the testing accuracy is 84%. When the regularization methods, including early
stopping, dropout, dropconnect, shakeout, spectral dropout, and noise injection, have been
used, the testing accuracies decrease to 65.1%, 39.2%, 80.1%, 79.4%, and 75.3%. In these
situations, the tuning of the regularization parameters with respect to the data complexity
is essentially required.

Lesson 9: The training procedure is related to a nonlinear optimization problem that can
be transformed into a system of linear or nonlinear equations. When these systems are ill-
posed (Tikhonov and Arsenin 1977), the solution is unstable, and the corresponding learn-
ing model becomes overfitted (Bejani and Ghatee 2020b). Using condition number, it is
possible to detect an ill-posed component of the system. Through causality analysis, once a
component is discovered as the reason for the ill-posed problem, only this component can
be corrected to improve the system performance. Possibly, this type of causality analysis
can be furthered to tune-up overfitting controllers of deep models in future works.

8 Conclusion

Learning models deal with unseen data prediction based on training on finite seen data.
Sometimes the seen data are not adequate to give a fair inference. When a learning model
fits these data, the model cannot learn some real data details. Although the model learns
seen data entirely, it cannot generalize on unseen data. It is entitled to overfitting. There
are three branches of schemes to control overfitting; passive, active, and semi-active meth-
ods. They affect the different parts of the learning model, training algorithm, or training
data. In this paper, we classified the most important schemes to control overfitting in these
branches. We compare their concepts, criteria, advantages, and disadvantages for each of
them and extract their lessons. We also stated some future works for each branch. This sys-
tematic review helps find a roadmap for the next research and select a reasonable overfit-
ting controller for different shallow and deep neural network models.

Acknowledgements The authors would like to sincerely appreciate the anonymous reviewers for their lead-
ing comments in three rounds.
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