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Abstract
Process mining enables the reconstruction and evaluation of business processes based on 
digital traces in IT systems. An increasingly important technique in this context is pro-
cess prediction. Given a sequence of events of an ongoing trace, process prediction allows 
forecasting upcoming events or performance measurements. In recent years, multiple pro-
cess prediction approaches have been proposed, applying different data processing schemes 
and prediction algorithms. This study focuses on deep learning algorithms since they seem 
to outperform their machine learning alternatives consistently. Whilst having a common 
learning algorithm, they use different data preprocessing techniques, implement a vari-
ety of network topologies and focus on various goals such as outcome prediction, time 
prediction or control-flow prediction. Additionally, the set of log-data, evaluation metrics 
and baselines used by the authors diverge, making the results hard to compare. This paper 
attempts to synthesise the advantages and disadvantages of the procedural decisions in 
these approaches by conducting a systematic literature review.

Keywords  Process prediction · Predictive process monitoring · Systematic literature 
review · Deep learning

1  Introduction

Today’s information systems create, utilize and store vast amounts of data about the 
business processes being executed with them. These logs capture the as-is execution. 
Process mining extracts knowledge from these logs to provide means for process dis-
covery, process monitoring and process improvement. Additionally, in case target pro-
cess models are provided, conformance-checking searches for deviations of this model. 
Consequently, process mining is situated between the disciplines of data mining and 
business process modelling (Van der Aalst et al. 2011). In recent years, much effort was 
put into process discovery to build human-readable models for further investigation by 
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domain experts (Augusto et al. 2018). These models support descriptive, retrospective 
and holistic analyses, usually performed by business process managers. However, these 
models are not able to provide operational decision support at run time.

To fill this gap, a new technique, referred to as predictive business process monitoring 
or process prediction, has been evolved. This subfield of process mining focuses on single 
process instances rather than process models and tries to gain predictive insights into the 
future of this instance. Organizations can leverage this predictive information to adapt the 
ongoing process execution and thus prevent undesired outcomes (Van der Aalst et al. 2010; 
Maggi et al. 2014). As the basis for predictive models, the usage of machine learning has 
gained considerable interest. Di Francescomarino et al. (2017) identified 62 tools, with the 
majority applying machine learning or statistical models. The prevalence of these predic-
tive systems may be due to their context agnostic nature, i.e. the same predictive algorithm 
can be used in multiple business cases with little to none modification. The same would not 
be valid for rule-based decision support systems.

In the last three years, deep learning-based process prediction approaches gained popu-
larity and led to breakthrough results (Verenich et al. 2019), e.g. the first publications on 
this topic (Evermann et al. 2017; Tax et al. 2017) gained more than 100 citations, accord-
ing to Google Scholar. Deep learning builds upon multiple layers of artificial neurons. 
Through this hierarchical structure, artificial neural networks do not rely on handcrafted 
features but are able to learn complex features on their own. This ability reduces the cus-
tomization need for algorithms to work on a wide range of prediction problems. Also, the 
learned feature representation is not limited by human imagination but can be arbitrarily 
complex. Furthermore, the computational requirements and achievable performance scale 
linearly to the available data, whereas standard process discovery algorithms suffer from 
quadratic or even exponential run time requirements (Augusto et al. 2018).

Although deep learning describes one common learning method, the actual imple-
mentations used for process prediction are fundamentally diverse. They differ in data pre-
processing, implement different network architectures or focus on varying goals such as 
outcome prediction, time prediction, and control-flow prediction. Additionally, the set of 
log-data, evaluation metrics and baselines diverges, which makes the results often incom-
parable. To overcome this issue, the goal of this paper is to give a comprehensive overview 
of deep learning-based predictive process monitoring approaches and discuss the trade-offs 
between the existing approaches. In particular, the contribution of this work is threefold: 

1.	 A systematic literature review (SLR) is conducted to create a comprehensive presenta-
tion of existing deep learning-based predictive process monitoring approaches.

2.	 The identified literature is classified along selected criteria to extract the main contribu-
tion of the approaches.

3.	 Conflicting statements and research gaps are brought to attention in order to generate 
impulses for further research.

The remainder of this paper is structured as follows. Section  2 introduces the reader to 
relevant terminology in the field of predictive process monitoring that is required to follow 
the rest of the paper. Section  3 explains the methodology of the conducted SLR. After-
wards, Sect.  4 presents the investigated literature and further classifies it along multiple 
dimensions. Section 5 discusses critical and sometimes contradictory findings and provides 
impulses for further research. Section 6 places the work in the context of the current body 
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of knowledge by examining related work, and Sect. 7 concludes the paper with a summary 
and future work.

2 � Related work

In the last years, a few surveys tackling the domain of deep learning-based process predic-
tion have been proposed. In this section, we present an overview of the related work and 
clarify the significant differences between this study and the existing surveys.

Márquez-Chamorro et al. (2017) reported a previous survey of process prediction mod-
els. The authors analyzed 39 existing process prediction methods and categorized them 
into process-aware and non-process-aware approaches, i.e. approaches that do or do not 
exploit an explicit representation of the process model. Also, they distinguished between 
regression and classification models according to the prediction target of the analyzed 
approaches. For each paper, they listed the prediction quality, the prediction metric, the 
name of the data set or the number of traces, the internal prediction algorithm, and the 
prediction target. The survey does not include any approaches, utilizing deep learning and 
therefore, does not overlap with this work.

Di Francescomarino et  al. (2018) developed a value-driven framework for classifying 
existing process prediction methods to support organizations to navigate in the predictive 
process monitoring field. This work analyzes 51 approaches with different prediction archi-
tectures. The papers are categorized along with their prediction targets in time, categori-
cal outcome, sequence of values, risk, inter-case metrics and costs. Afterwards, they are 
compared based on input data, tool support, application domain, and algorithm family. The 
survey covers but does not focus on deep learning-based approaches. In contrast to this 
study, the survey of Di Francescomarino et al. (2018) is only concerned with a qualitative 
comparison and does not include a quantitative comparison of the analyzed approaches. 
Furthermore, the survey does not tackle current deep learning methods for process predic-
tion that have led to significant prediction quality increases.

Teinemaa et al. (2019) conducted a systematic review and created a taxonomy of out-
come-oriented predictive process monitoring. In the review, 14 papers were identified and 
compared according to prefix extraction, filtering, trace bucketing, sequence encoding, and 
classification algorithm. Furthermore, an experimental evaluation was carried out, testing 
the impact of different qualitative criteria. For this evaluation, the authors relied on their 
implementation. The survey of Teinemaa et al. (2019) does not intersect with this work, 
since it does not include any deep learning-based process prediction methods. Besides, it 
only deals with outcome-oriented prediction, whereas this work covers multiple prediction 
targets.

Verenich et  al. (2019) created a survey on remaining time prediction methods. They 
identified 25 relevant papers from 2008 to 2017 and compared them based on input data, 
process awareness, prediction algorithm and application domain. They created quantitative 
comparability by performing a benchmark of 16 remaining time prediction methods on a 
selection of publicly available data sets. They covered several instances of LSTMs with dif-
ferent hyperparameter settings. While there are a few overlaps with this study, both papers 
vary regarding their focuses. Our work investigates the design decisions of neural network 
architecture and their effects on a more sophisticated level of granularity. In contrast, their 
work is more interested in the performance differences of process-aware vs non-process-
aware methods.
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Recently, another survey was published by Harane and Rathi (2020), dealing with deep 
learning approaches in predictive business process monitoring. However, the authors did 
not conduct a systematic literature review but compared three existing approaches, namely 
(Evermann et al. 2016; Mehdiyev et al. 2017; Tax et al. 2017) on a high abstraction level. 
Our work, on the other hand, covers all deep learning-based approaches according to care-
fully defined inclusion and exclusion criteria of the literature review and thus captures a 
much more comprehensive picture of the current state of deep learning methods for pro-
cess prediction.

Table  1 summarizes the central distinguishing factors between this review and exist-
ing related work. The table clearly shows that each related work has a different focus. The 
most similar work to this study is the review of Márquez-Chamorro et al. 2017. However, it 
was performed before the rise of deep learning and therefore does not cover deep learning 
based process prediction. The major objective of the work by Di Francescomarino et al. 
is to develop a framework that supports practitioners in selecting the right process predic-
tion algorithm for a specific use case. It therefore only evaluates qualitative criteria and 
leaves out a quantitative comparison. In addition, the work does not focus on deep learning 
methods but only includes a few deep learning approaches. Both, the works of Teinemaa 
et al. and Verenich et al. focus on one specific prediction type. The former is concerned 
with outcome-oriented prediction and the latter deals with remaining time prediction. Both 
papers do not focus on deep learning. In fact, the benchmark performed in Teinemaa et al. 
does not include any deep learning approach at all and Verenich et al. reviews only a few 

Table 1   Comparison of this study with existing process prediction literature reviews
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Qualitative performance comparison of
existing process prediction approaches
Detailed definition of inclusion and exclusion
criteria
Consideration of multiple prediction types
and grouping of existing approaches
Focus on the characteristics of Deep Learning
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Quantitative performance comparison of
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Assessment of the performance score of
multiple prediction types
Coverage and comparison of a variety of
process prediction datasets
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deep learning approaches. The work of Harane and Rathi presents only three existing deep 
learning based approaches. Furthermore, the methodology used to select these papers is 
not presented in an understandable and reproducible manner. In contrast to the related 
work, this study presents the first structured and comprehensive literature review on deep 
learning-based process prediction. The major objective of this study is to collect and com-
pare existing deep learning approaches for process prediction covering multiple process 
prediction types such as next-step prediction, outcome prediction, remaining time predic-
tion, etc.

3 � Background

3.1 � Deep learning

Deep learning refers to multi-layer neural networks as opposed to shallow machine learn-
ing (decision trees, support vector machines). Recent advances in learning algorithms and 
computational performance made deep learning feasible for many complex prediction 
tasks. Especially in natural language processing and image classification, deep neural net-
works have shown superior performance over their machine learning alternatives (LeCun 
et  al. 2015). In this section, we will provide a brief introduction to the basic concepts, 
relevant for this review. LeCun et  al. gives a more comprehensive overview. For further 
information on the implementation details, please refer to their references.

The most straightforward neural network architecture is the feed-forward multi-layer 
perceptron. Several horizontally aligned neurons constitute a layer, all of which connect 
to neurons of the previous and the following layer. Each neuron calculates weighted arith-
metic mean of all the outgoing signals of these previous neurons. An activation function is 
applied to this single scalar to achieve non-linearity, and the signal propagates to the next 
layer of neurons. The weights of the arithmetic mean are the model parameters. They are 
iteratively trained by back propagating the error between the prediction of the network and 
the correct result.

Convolutional neural networks are distinct architectures, initially developed for images. 
A convolutional layer uses a fixed size kernel to swipe over the input. The result is a matrix 
of many multiplications of the fixed kernel and local areas of the image. This approach was 
developed to achieve translational invariance. The kernel is used to identify local features 
but should be invariant of the position of this feature in the image. After convolution is 
applied, a dimensionality reduction technique like a max-pooling layer is applied, often fol-
lowed by another convolution layer. The stacking of these two layer-types allows the kernel 
to learn a hierarchical feature structure and to combine small, local features into more gen-
eral features and concepts.

Recurrent neural networks rely on a similar kind of translational invariance. The same 
parameters are used at every time step to search for local features. In addition, the out-
puts of the previous time step are supplied, as the assessment of the current features might 
depend on features found at earlier time steps. The initial, recurrent neuron concatenated 
the previous output (the hidden state) to the input at the current time step and applied the 
activation function. The repeated usage of the activation function on the hidden state leads 
to a problem, known as the vanishing gradient problem. This makes it hard for simple 
recurrent neurons to learn long-term dependencies, which lead to the development of the 
long-short-term memory cell (LSTM). This cell divides the hidden state into a hidden state 
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and a cell state. The hidden state is used with the input to decide at each time step, which 
features to use, while the cell state transports the long-term features trough the time step 
without any activation function being applied. Internally, the LSTM cell uses three activa-
tion gates: one forget gate to choose which features of the previous step to use, one update 
gate to decide how the cell state should be updated and one output gate to decide which 
features of the state should be used as output. This differentiation makes the LSTM-Cell 
computational expensive, leading to the development of the Gated Recurrent Unit (GRU). 
An adaptation using only two internal gates to be a faster version still leveraging the idea of 
splitting the hidden state and the cell state.

3.2 � Process prediction

Process mining analyses event logs created by process-aware information systems (PAIS) to 
gain insights into the inner logical structure of these business processes. Logs of actual execu-
tions are used to get an as-is picture of the process. One execution of a process is called an 
instance or a trace, which itself consists of a sequence of events. At least three distinct features 
describe each event. A trace-ID to identify individual executions, an activity-name to iden-
tify the different activities that were performed, and a timestamp to express the chronological 
order and execution time. As additional information, a resource may be attached to an event, 
to identify the person, group or machine executing the activity. Further attributes describing 
the activity can be attached. These attributes are also referred to as payload data. In addition, 
the corresponding process model can contain iteration loops, exclusive branches or concurrent 
activities. Different versions of the process can be very similar or different each time. Some 
information refers to a process execution (instance), others to a concrete event. This results in 
highly divergent event logs. Figure 1 shows a cutout from an event log in tabular presentation.

Process prediction, often referred to as predictive process monitoring, focuses on 
predicting potential outcomes of uncompleted traces. Contrary to standard process 
mining techniques like process discovery, process prediction is performed during exe-
cution and is, therefore, an online algorithm. Process discovery, on the other hand, is 
often a static task, applied to a set of finished instances. The results are process models 
of past executions, which serve as a discussion foundation for business process manag-
ers. Whereas process prediction is meant to identify unwanted outcomes at an early 
stage of the process execution, leaving managers with the ability to influence the out-
put through process adaptation.

Fig. 1   Illustration of an event log in tabular presentation
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Consequently, process prediction is performed during the instance execution, i.e. only 
realized events are known at prediction time. To differentiate between realized events 
and upcoming unknown events, we split traces into prefixes and suffixes. Prefixes repre-
sent events that have already been realized while the suffix depicts the upcoming unknown 
events. For real-world applications, prediction algorithms should be evaluated on a set of 
performance measurements, since the business problem at hand defines the required char-
acteristics. In some cases, the mean accuracy is less important than the earliness of the 
prediction. In other scenarios, earliness is not an important factor. Instead, the predictions 
have to be highly reliable. Other manifestations of process prediction are the prediction of 
the next activity, the estimation of the completion time or early detection of abnormal pro-
cess behavior indicating rule violations or compliance breaches.

3.3 � Deep learning based process prediction

Given a sequence of events of a running case, the objective of process prediction is to 
forecast how certain aspects of the case unfold in the future. Originally, the focus was to 
utilize deep learning for next-step prediction and outcome prediction, i.e. to predict the 
next activity or the last activity of a case based on a sequence of seen activities. This was 
motivated by the recent success of deep learning for language modeling in the field of natu-
ral language processing and its high similarity with process prediction from a conceptional 
point of view (Evermann et al. 2016). In fact, the next-step prediction task can be repre-
sented with the language modeling formula P(W

t
|W

t−k,… ,W
t−1) by replacing a word W 

with an activity A. For this reason, it is not surprising that some of the concepts that had 
already been successfully used in the natural language process domain were also applied to 
process prediction. Examples are one-hot encoding, n-grams, word embedding, recurrent 

Fig. 2   Deep learning based process prediction
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neural networks, etc. Over the past years, other prediction targets such as time-to-outcome, 
time-to-next-event or the classification of cases into specific groups have been elaborated.

Figure 2 lays down the basic steps that have to be performed in order to apply process 
prediction with deep learning. In order to pass the activity sequence to the neural network, 
it has to be converted into numerical representation, first. If multiple attributes shall influ-
ence the prediction, they need to be combined in a suitable encoding. Based on the type 
of the attributes, i.e. categorical, numerical or time attributes, different encoding schemes 
are beneficial. Regarding the choice of the encoding and architecture of the neural net-
work, a wide range of options is available, each with its own advantages and disadvantages. 
Another important aspect concerns the question how to train the neural network, efficiently. 
Usually the event log is split into process instances that are used for training the model 
and process instances that are selected for validation. In some cases, an extra test set is 
extracted. In practice, there are often not enough cases to train a deep neural network, prop-
erly. Furthermore, the traces consist of a different number of events, which is not supported 
for training common deep learning architectures. To overcome these issues, many existing 
approaches extract multiple training samples from one process instance. In addition, the 
training samples are progressed into fixed length windows of sequences.

4 � Methodology

To obtain a summarising overview of the research field of process prediction, we conduct 
a systematic literature review (SLR). To ensure the quality of the literature review, we 
follow the proposed methodology of Kitchenham et al. (2009) with a few variations. We 
start by defining the research questions. Next, we infer the search string needed to query 
the academic databases. We then apply a set of inclusion and exclusion criteria to filter out 
studies, not relevant to our research question. Afterwards, we then utilize a forward search 
to identify relevant papers, not matching the search string to broaden our literature base.

4.1 � Research question formulation

The goal of this SLR is to synthesise the advantages and disadvantages of procedural 
decisions when using deep learning for process prediction. These decisions can be bro-
ken down into several subcategories. 

	(RQ1)	Which kind of neural network is used for prediction?
	(RQ2)	Which pre-processing steps are carried out?
	(RQ3)	How is the data being encoded?
	(RQ4)	What is the prediction target?
	(RQ5)	Are there dominant approaches or does every approach come with its own advantages?
	(RQ6)	Are the proposed approaches combinable?

While research questions one to four mainly examine the state-of-the-art, questions five 
to six deal with the orientation of future research. Research questions one to four exam-
ine the deep learning approach of each paper individually. With RQ1, we analyse the 
basic structure of the underlying neural network: Does the approach use a feed-forward 
structure or a recurrent neural network to capture the time dependency. Moreover, we 
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analyse the size of the applied neural networks and their output format. In the next 
research question, we compare the pre-processing steps performed by the authors. These 
include activities such as filtering, enhancement or clustering of the log data. Whereas 
RQ3 focuses on the transformation of the input data to fit the requirements of a neural 
network. With RQ4, we analyse the different characteristics used as prediction target. 
These may be a performance measure like execution costs, a class like “success” or 
“failure” or even a sequence of classes like the whole process-suffix of this trace.

After the structural conditions of the individual approaches have been examined, they 
are compared with each other for RQ5, to identify reoccurring and dominant concepts. 
The final research question will aim to combine the proposed approaches. Grouping exist-
ing techniques into fundamentally opposed designs and addable enhancements of those 
designs makes it easier to find starting points for future research.

4.2 � Search strings

The existing literature on process prediction using deep learning was gathered using the 
common databases for computer science (Web of Science, Science Direct, IEEE Explore, 
ACM Digital Library & SpringerLink).

We developed a three-part search string to frame the relevant literature. “business pro-
cess *” was used to get only domain-specific texts. Next, “predict*” was used to get the 
literature concerned with prediction tasks and then “deep learning” or “neural networks*” 
were added to specify the used technology. The terms were searched in the title, the key-
words and the abstract. The main challenge was the definition of key terms that match a 
wide area of prediction tasks while focusing on a special technology type. Typically, the 
authors only handle one prediction task (e.g. suffix prediction or remaining time forecast-
ing). Also, they might use deep learning without explicitly mentioning the words in the 
title or keywords. On the other hand, searching for “business process*” and “prediction” 
in full texts, leads to many false positives in a database query. The adapted search strings 
are shown in table 2.

Due to the overlap of some databases and the repeated search with similar search strings, 
56 duplicates had to be excluded. The next section presents the inclusion and exclusion cri-
teria to further distil the literature.

4.3 � Inclusion and exclusion criteria

To filter out the relevant studies, we defined the following inclusion and exclusion criteria. 
A study has to comply with all inclusion criteria and none of the exclusion criteria to be 
considered in this systematic literature review.

Inclusion Criteria:

	 (IN1)	 The study is related to business process prediction and reports an implemented and 
evaluated approach.

	 (IN2)	 The study uses a deep learning method, i.e. some form of neural network for predic-
tion or it combines traditional machine learning algorithms with a deep learning 
architecture.
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Exclusion Criteria:

	 (EX1)	 The study is not published in English.
	(EX2)	 The study is not freely accessible through the standard university libraries proxy 

services or it is electronically unavailable.
	(EX3)	 The study or the presented approach is not related to the field of computer science.

After a first screening of the title and abstract, 38 papers where rejected, mostly because 
they did not relate to business process prediction or implement a deep learning solu-
tion. The remaining 39 studies were analysed in-depth, and an additional 19 papers were 
rejected since they did not implement a new kind of deep learning algorithm, but instead 
tested existing approaches in a case study. In conclusion, the systematic database search 
resulted in 21 papers to be reviewed.

To further broaden the literature base, we added a one-step forward search on the 
studies found by the database search. This step is due to the large number of synonyms 
used by authors. For example, the neural network architecture Long-Short-Term Memory 
is often abbreviated as LSTM without using the keywords “deep learning” or “neural 
network”. Therefore these studies might not have been located by the search strings. The 
forward search yielded another 11 studies, bringing the total number of studies available 

Table 2   Search strings and resulting entries

Database Search string Results

Web of Science TOPIC: (“Business Process*”) AND TOPIC: (predicti*) 20
AND TOPIC: (“*Neural networks*”)

Web of Science TOPIC: (“Business Process*”) AND TOPIC: (predicti*) 11
AND TOPIC: (“Deep Learning”)

Science Direct Title, abstract, keywords: ‘Business Process” 2
AND “Predictive” AND “Deep Learning”

Science Direct Title, abstract, keywords: “Business Process” 2
AND “Prediction” AND “Deep Learning”

Science Direct Title, abstract, keywords: “Business Process” 7
AND “Predictive” AND “Neural Networks”

Science Direct Title, abstract, keywords: “Business Process” 5
AND “Prediction” AND “Neural Networks”

IEEE Explore (((“All Metadata”:“Business process*”) AND “All Meta- 9
data”:Predicti*) AND “All Metadata”:“Deep Learning”)

IEEE Explore (((“All Metadata”:“Business process*”) AND “All Meta- 27
data”:Predicti*) AND “All Metadata”:“*Neural Networks*”)

ACM Digital Library Keyword:(“Business Process”) AND Keyword:(Predicti*) 0
AND Abstract:(“Neural Networks”)

ACM Digital Library Keyword:(“Business Process”) AND Keyword:(Predicti*) 0
AND Abstract:(“Deep Learning”)

Springer Link query=“neural+networks”+AND+(predict*) 36
&dc.title=“Business+process*”

Springer Link query=“deep+learning”+AND+(predict*) 14
&dc.title=“Business+process*”
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for an investigation to 32. An overview of the whole search process is provided in Fig. 3. 
The individual references and the exclusion reasons are presented in Online Resource 1.

While having excluded multiple instances of identical publications, we still considered 
all existing versions of a study, if they contained improvements or new insights. In the 
analysis, we only refer to the peer-reviewed publication that introduced the approach first.

5 � Results

This section summarises the results of the in-depth analysis of the relevant studies. In 
the first step, each approach is dismantled into its fundamental principles of construc-
tion. Next, we focus on individual aspects of deep learning process prediction and com-
pare the approaches on a more granular level. After providing a profound examination 
of the used techniques, we discuss the advantages and drawbacks experienced by the 
authors in Sect. 6 to answer research questions five and six.

5.1 � Overview

We provide a high-level overview of the underlying concepts in Table 3. The general struc-
ture follows the research questions one to four, although the preprocessing steps were left 
out at this point, and we firstly focus on the data used as input.

The underlying architectures can generally be divided into three different approaches: 
feed-forward networks (FFNN), convolutional neural networks (CNN) and recurrent neural 
networks (RNN). A further investigation of the specific recurrent neural network type will 

Fig. 3   Overview of literature 
identification process
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be given in Sect. 5.2. Concerning the prediction target, the studies operate as expected and 
usually treat only one target at a time. Although many different objectives are pursued, they 
can be grouped into three distinct types. The target is either to predict the next event, to 
estimate some performance measure or to classify the entire trace. These three types differ 
mainly in their underlying mathematical problem formulation, i.e. many different business 
problems, like anomaly detection, service level agreement violations or the final event of a 
process, can be subsumed to the same prediction type.

On the input side of the neural network, the approaches show a larger diversion. The 
inputs can be composed of the four different entities of a business process or handcrafted 
features thereof. After a subset of these inputs is selected, the variables are encoded, to 
fit the requirements of a neural network. To transform categorical values and words into 
appropriate inputs, one-hot-encoding and embedding layers are the dominant strategies. 
The timestamp is a complicated continuous feature due to its wide scale (from seconds to 
years). The encoding, therefore, needs special attention and is analysed in more detail in 
Sect.  5.3. After this high-level overview, the following sections dive into the procedural 
decisions made by the authors.

5.2 � Network architecture

Deep neural networks are experiencing a steep increase in their use for prediction tasks. 
Researchers in many domains exploit their ability to map many complicated relations. In 
result, different variations of the original perceptron have been proposed to master various 
prediction tasks (LeCun et al. 2015).

Due to the temporal arrangement of the activities in a trace, the authors seem to prefer 
recurrent architectures as these have been specifically designed to cope with temporally 
depended data. Whereas Nolle et al. (2018) and Hinkka et al. (2019) used Gated Recurrent 
Units, the majority decides on Long-Short-Term Memory Cells. (Al-Jebrni et al. 2018; Di 
Mauro et al. 2019; Pasquadibisceglie et al. 2019; Park and Song 2020) on the other hand 
chose convolutional neural networks due to their simplicity and computational efficiency. 8 
studies decided to use feedforward networks. Like CNNs, these FFNNs suffer from a fixed 
input size forcing the authors to rescale prefixes of different lengths to a fixed size input 
matrix. Nolle et  al. (2018) and Pasquadibisceglie et  al. (2019) solved this restriction by 
padding all shorter prefixes to the maximum possible length. Ezpeleta et al. (2018) trained 
a separate model for multiple prefix lengths and Mehdiyev et al. (2020) used n-grams as 
inputs to model the temporal dependencies while preserving a fixed input size. Theis and 
Darabi (2019) mined a petri net for the event logs and use this information to model the 
control-flow within an FFNN input.

Park and Song (2020) even combined the CNN approach with an LSTM architecture 
using a long-term recurrent convolution network (LRCN), outperforming their LSTM and 
CNN alternatives. Khan et al. (2018) used a unique architecture of a differentiable neural 
computer. This DNC utilizes an external memory to store information. This store benefits 
from being order-free as opposed to the internal state of an LSTM-cell which is order-
dependent due to its sequential design. Khan et al. (2018) stated, that this feature simpli-
fies the exploitation of long-term dependencies in a process model. Otherwise, all long-
term features of a process model have to be represented by the internal LSTM state. Lin 
et al. (2019) focussed on modelling the relationship of activities to their attributes. Both 
are treated separately as inputs and a form of attention layer is used to combine both hidden 



814	 D. A. Neu et al.

1 3

representations before the predictions are encoded, leading to mayor performance improve-
ments to prior works.

Taymouri et al. (2020) proposed a generative adversarial architecture (GAN), where one 
neural network (generator) produces traces from random noise and another network (dis-
criminator) has to differentiate between real traces and the ones created by the generator. 
This technique originates from the domain of computer vision, where GANs are used to 
create new images, that resemble real images. Surprisingly, the authors fed real prefixes 
to the generator and used it afterwards to predict real next events. It is unclear, why Tay-
mouri et al. relied on generative adversarial architecture. Generators were designed to cre-
ate images that look like real images but are not. In their setting, the generator performs a 
classical supervised classification task.

In terms of generalization capability, it is important to keep the model as simple as pos-
sible. The complexity of a deep learning model can be measured by counting the trainable 
parameters. The initial proposal of Evermann et al. (2017) had approx. 504.000 trainable 
parameters on the BPIC12 dataset. The enhanced LSTM model of Tax et al. (2017) used 
fewer neurons and no embedding layer, which led them to approx. 208.000 parameters. 
The FFNN of Mehdiyev et al. (2017) only trained 55.600 parameters on the same dataset. 
CNN approaches share the same parameters over a wide range of input. So even though 
Di Mauro et al. (2019) used 9 hidden layers (3x3) with 32 filters each, the resulting model 
only has 48.400 parameters.

5.3 � Data preprocessing and feature engineering

To represent business processes in a unified form, the XES standard for process aware 
information systems and data mining software is used (XES 2016). Since this representa-
tion does not comply with the input requirements of neural networks, authors are required 
to pre-process the log files and convert them to a suitable format. Most authors do not 
specify if they cleaned the data set. This might be due to the fact that deep learning meth-
ods are relatively robust to noise compared to existing approaches (Khan et al. 2018). Nolle 
et al. (2016) stated that only completed traces where considered. Lin et al. (2019) discarded 
all traces with less than five activities, because these cases were irrelevant for a prediction. 
Kratsch et  al. (2020) excluded all attributes with an occurrence of below 99% to avoid 
additional bias due to excessive fill values.

The implementation of many architectures requires the input features to be of a fixed 
size. Hence, the authors cut the traces into fixed-sized prefixes (Evermann et al. 2017; Tax 
et al. 2017; Nolle et al. 2018; Schoenig et al. 2018; Al-Jebrni et al. 2018; Di Mauro et al. 
2019; Camargo et al. 2019). For the prediction of events having a shorter prefix, the feature 
matrix is padded with zeros. Taymouri et al. (2020) on the other hand dropped samples, 
when the prefix was to short. This leads to incomparable results. On the Helpdesk data, for 
example, they reported their accuracy for prefixes of size 4 and 6. With a mean trace length 
of 3.6, more than half of the data was dropped in their approach.

A business process trace consists at least of an activity and a timestamp, but not all the 
information available in the log was used as input. Most studies used the activity to map 
the control-flow, while only (Bandis et al. 2018; Camargo et al. 2019; Wahid et al. 2019; 
Tax et al. 2017a; Metzger et al. 2019; Pasquadibisceglie et al. 2019; Di Francescomarino 
et al. 2017; Metzger and Föcker 2017; Metzger and Bohn 2017) used the timestamp infor-
mation as additional input. Resource information was utilized in 5 publications. Evermann 
et al. (2017) evaluated the information gain of adding resource information to the network 
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inputs. They concluded that the performance delta depends strongly on the characteristics 
of the business process.

The majority of publications used the raw information of the log. Wahid et al. (2019) 
did simple enhancements to the raw data, by adding the elapsed time since the start to 
the features. Metzger and Neubauer (2018a) included information about process instances 
being executed in parallel into the trace data. This information is available at prediction 
time and might be important for time predictions if many traces are using one resource 
simultaneously. Bandis et al. (2018) drew upon domain knowledge to map the timestamp 
to binary variables signalling peak hours. Theis and Darabi (2019) added a complete pre-
processing step and firstly mined a petri net from the event log. The attributes of this petri 
net were used afterwards to make deep learning predictions. Park and Song (2020) fol-
lowed a similar approach and mined an annotated transition system prior to their actual 
deep learning prediction. Ezpeleta et al. (2018) applied linear-temporal-logic rules to the 
trace and used the resulting signatures as input for their FFNN to perform classification.

For the usage in a neural network, most inputs need further processing. The inner logic 
of neurons is designed for input vectors with values between – 1 and 1 and a mean of 0. 
The process of adjusting the input data to this range is known as data encoding. Scalar val-
ues are usually encoded with a min-max-normalization or their standard-score. Categorical 
data can be encoded in multiple ways: one-hot-encoding or embedding are two possibili-
ties. For both, the category is first converted into an integer between 0 and number of cat-
egories – 1. A one-hot-encoding results in a vector of size number of categories. All values 
are zero except the value at the index of the category, which is one. An embedding, on the 
other hand, maps the index to a vector of arbitrary length with real-valued values. Embed-
dings are used as a dimension reduction technique when the number of categories is large. 
Additionally, they are able to provide a kind of proximity measure for the classes due to the 
real-valued data. One-hot-encoded classes are treated as equidistant.

Both encoding techniques are used throughout the publications. Eleven studies fell back 
on one-hot-encoding, and another 11 studies used embedding. Wahid et al. (2019) directly 
compared one-hot-encoding to embedding in their implementation and found that embed-
ding leads to increased performance. Tax et al. (2017) observed better performance with 
their one-hot-encoding solution compared to the embedding approach of Evermann et al. 
(2017). However, their approaches differed in more design choices than the encoding, mak-
ing the results hard to pinpoint on the encoding. Additionally, the vocabulary size (number 
of categories) on the underlying dataset was 7, resulting in a one-hot-encoded vector of 
size 7, while Evermann et al. (2017) used an embedding size of 500. So for this dataset, the 
embedding did not perform a dimensionality reduction, but rather a heavy dimensionality 
expansion.

The conversion of the time stamp into a suitable format requires more case-specific 
decisions. Treating the time as single scalar, the standard score could be used. However, 
this representation would make it hard to correlate seasonal dependencies. Business pro-
cesses can have seasonal changes at many levels (per-month, per-week, per-day) and the 
time interval between events is heavily dependent on the business process. Therefore, a 
universal time-encoding is not possible. Di Francescomarino et  al. (2017) used a 3-fold 
time encoding with three scalars: relative time increase since the last event, time since mid-
night and time since begin of week. Pasquadibisceglie et al. (2019) expressed the execution 
time in days as a single scalar. The authors do not mention if a normalization was applied 
before training, as the scalar exceeds the usual input size of neurons by at least one mag-
nitude. Navarin et al. (2017) used the time from trace start, time from the last event, the 
time and weekday in which the event started, but also do not mention any normalization. 
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Camargo et al. (2019) used the relative time since the last activity and applied min-max-
normalization. However, because some executions took a very long time, the distribution 
of the variable is highly skewed. So they try log-normalization as well and observe better 
performance with log-normalization when the time interval is highly variable.

5.4 � Prediction target

To categorise the analysed prediction targets, we differentiated the tasks along two dimen-
sions: the prediction level and the prediction type. The former category splits into process-
level predictions and time-step level predictions. A prediction on a process level can be 
carried out at any time step. However, it is always expected to yield the same result, i.e. a 
characteristic of the entire trace. In contrast, a timestep level prediction should yield results 
for the upcoming timestep. It is therefore expected to get different results at every predic-
tion time step. This differentiation is made because the performance evaluations of these 
two methods diverge. As Teinemaa et  al. (2018) pointed out, the value of early process 
level predictions is higher than the latter ones, and their usability deteriorates when clas-
sification results bounce back and forth. As a result, predictions on a process level need to 
be evaluated on their earliness and temporal stability.

The grouping of existing approaches by their underlying prediction type focuses on the 
subsequent evaluation metrics. We distinguish between regression and classification tasks. 
In both cases, we use a performance metric to calculate the distance between the prediction 
of the model and the actual value. For regression tasks, mean squared error (MSE) or mean 
absolute error (MAE) are standard metrics, whereas accuracy (Acc.), precision (Prec.) or 
recall are used in classification problems.

Table 4 shows the focus on next-event prediction and process classification. For regres-
sion targets, only time is considered. Even though other scalar values might be of inter-
est for business applications, we found no publication that focuses on execution cost or 
attribute value estimation. Also, few studies are concerned with a prediction on a business 
process model level. Park and Song (2020) state that predictions on an instance level are 
useful for short term process instance adaptations, but business process managers are pri-
marily concerned with business process model optimizations. Hence the authors predict 
the mean activity execution time for all running instances at a given time step.

Additionally, time performance predictions using only one trace as input implicitly 
presume that the depended variable is in the trace itself. However, the workload of each 
resource can strongly influence the execution time, i.e. the number of concurrent instances 
also using this resource. As Metzger and Neubauer (2018) point out, this information is 
available at prediction time and does not require a preceding process discovery step.

It can also be seen from Table 3, that the studies mainly focus on single prediction tar-
gets. Only (Metzger and Neubauer 2018; Khan et  al. 2018; Tax et  al. 2017) performed 

Table 4   Classification of 
prediction targets

Process level Time-step level

Regression Process duration [2] Remaining time [1]
Time to next event [3]

Classification Final event [2] Next event [16]
Process classification [5] Next resource [3]
Anomalistic process [1] Anomalistic activity [1]
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multiple predictions. Metzger and Neubauer (2018) compared an iterative next-event pre-
diction to a direct final event prediction approach, whereas Khan et al. (2018); Tax et al. 
(2018) leveraged multitask learning by predicting a time measure and the next event with 
the same neural network. Neural networks can be trained on multiple tasks simultaneously. 
This is achieved by using multiple output heads, each responsible for a different prediction. 
The usage of multiple, inter-related tasks can help the network to leverage the additional 
information in each of the tasks to improve the generalization capability on all of the tasks 
(Zhang and Yang 2017).

To compare prediction results on each task, not only the architectural choices are rel-
evant, but also the datasets used for evaluation–noise and available information in the event 
log influence the achievable results. Therefore, we present a summary: Overall, the evalu-
ation of the results is done on 28 different datasets. Most approaches are only evaluated on 
a small subset of the publicly available process logs. This heterogeneity in test data makes 
the studies hard to compare. The most prominent process logs are the business process 
intelligence challenge from 2012 with 18 usages, followed by the Helpdesk dataset with 13 
usages. Nolle et al. (2018); Wang et al. (2019); Lin et al. (2019); Di Francescomarino et al. 
(2017); Hinkka et  al. (2019); Khan et  al. (2018) evaluated their implementation on five 
datasets or more to study the robustness of their approach while 14 publications only use 
one or two process logs to test.

In the subsequent paragraphs, we will present the individual performance measures 
reported by the authors. The tables should be used to get a holistic impression of the capac-
ity of current deep learning prediction algorithms. For roughly comparable results, we 
extracted the single scalar measurements by following a structured process. Firstly, if the 
paper reported the results on one of the most commonly used datasets, we chose these 
datasets, even if the approach yielded higher scores on different datasets. If none of the 
two datasets was used, we firstly report the results on other BPI Challenge datasets, and 
then we fell back on uncommon or private data. On the chosen dataset, we selected the 
best variant, even if this variant did not dominate on all datasets. When per-class metrics 
were reported, as in Ezpeleta et al. (2018), we display the arithmetic mean. Most authors 
executed the performance evaluation on a separate testing dataset to mitigate overfitting. 
Only Nolle et al. (2016) seems to have evaluated the approach on the training data. When 
splitting data into testing and training sets, random sampling or strategic partitioning are 
possible policies.

On the other hand, k-fold cross-validation uses random sampling to create k subsets. 
The training is performed multiple times, and at each iteration, a different fold is used as 
a testing set. The final score is the arithmetic mean of all k tests. This method is more 
robust as all the available data points are used once in the test sample to represent the 
entirety. Furthermore, smaller folds (larger k) lead to larger training sets and potentially 
better scores, but smaller folds are computationally more expensive, as the training has to 
be performed k times. Therefore, we included the testing method, as it may influence maxi-
mum performance and metric reliability.

Figure 4 shows the results for the next-event prediction task. Most authors report their 
prediction accuracy, i.e. the percentage of correctly classified activities. Unfortunately, this 
metric is susceptible to class frequency, which will be discussed in more detail in Sect. 6. 
The Matthews correlation coefficient (MCC) is similar to the accuracy and less suscep-
tible to class frequency. The precision captures type I errors, whereas the recall is focus-
ing on type II errors. Contrary to the accuracy, the F1-Score presents a harmonic mean of 
precision and recall by balancing the two. AUC is the area under the receiver operating 
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characteristic curve.The results of Evermann et al. (2017) are not shown in the figure, since 
the authors only reported the precision.

For the task of next-event prediction, current top architectures reach an accuracy of 90% 
or higher. Interestingly, the most promising studies each follow a different approach. Lin 
et al. (2019) used the combination of LSTM layers and a modulator layer to create a form 
of attention. Al-Jebrni et al. (2018) relied on a deep convolutional neural network and Theis 
and Darabi (2019) expanded the data preprocessing step by mining a petri net in advance.

While 14 studies performed next-event prediction, only 5 evaluated the ability to pre-
dict all upcoming events until process completion. The measurement in use throughout the 
studies is the Damerau-Levenstein (DL) distance or more precisely, a normalized similar-
ity based on the DL distance. The Levenstein distance counts the number of insertions 
and deletions of activities to convert the predicted suffix into the correct suffix. The Dam-
erau-Levenstein distance additionally allows a swapping operation instead of one insertion 
and one deletion. The delta between the results on the BPIC 12 and the Helpdesk data 
underline the importance of the event log in terms of maximal achievable performance (see 
Fig. 5). The dependent variables for this prediction task might not be in the event log itself.

The trace classification results are shown in Table 5. Although most authors performed 
a binary classification, the underlying business problems are different and might be of var-
ying difficulty. Nolle et al. (2018) identified anomalistic traces, whereas Metzger and Neu-
bauer (2018) predicted final events and Ezpeleta et al. (2018) maped new traces to known 
process clusters. Metzger and Neubauer only reported the MCC (0,626) and are therefore 
not listed in the table.

When analysing scalar process performance measures, the results get even harder to 
compare, because the evaluation metrics are not scaled to a fixed interval. In this case, a 

Fig. 4   Individual results on next-event prediction

Fig. 5   Individual results on suffix prediction
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meaningful comparison can only be made on identical data (see Fig. 6). For future evalu-
ations, scaled metrics should be used, e.g. the coefficient of determination. The regression 
results of Bandis et al. (2018); Wahid et al. (2019) are not shown, since their evaluation 
was done on individual datasets with time scales, several magnitudes smaller.

After the individual results have been presented, the next section will synthesise and 
discuss the findings of the studies. We focus on insights that should impact future research 
on all prediction targets.

6 � Discussion

This section is structured as follows. We start by discussing the input data and the cor-
responding pre-processing steps. Next, the recurrent architectures identified in this review 
will be analysed in depth. This will unveil a common problem of deep neural networks, 
known as vanishing gradients. Especially stacked LSTM layers suffer from this problem. 
As a consequence, we will consider the advantages and disadvantages of convolutional 
neural networks. Afterwards, we change the perspective and discuss the class frequency 
problem when doing trace classification or next event prediction. We conclude with a gen-
eral comparability assessment of the studies.

Table 5   Individual results on trace classification

*Values estimated from figure

Study Dataset Acc. Prec. Recall F-score ROC

Ezpeleta et al. BPIC 11 – 0.972 0.97 0.97 –
Kratsch et al. BPIC 11 0.750 – – 0.847 0.729

BPIC 13 0.927 – – 0.917 0.923
Metzger and Föcker* Cargo ∼ 0.93 ∼ 0.99 ∼ 0.69 – –
Nolle et al. (2016) Synthetic – 1 1 1 –
Nolle et al. (2018) BPIC 12 – – – 0.58 –
Wang et al. BPIC 12 – – – – 0.693

Fig. 6   Individual results on performance prediction
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6.1 � Consideration of input features

Throughout the studies, the usage of more input features lead to better performance. There 
were some exceptions, where adding new information resulted in a deteriorated perfor-
mance, but in general, the opposite turned out to be true. Surprisingly, only one publication 
made use of all four entities available in a process log (activity, timestamp, resource and 
attributes). Further research might evaluate possible ways to address input selection with-
out domain knowledge. In addition, the sparsity of attributes should be investigated, when 
attributes only relate to a subset of all activities. Kratsch et al. (2020) mention the risk of 
additional bias when using excessive fill values, but they do not investigate if this assump-
tion is valid.

Furthermore, the use of deep learning methods enables process prediction algorithms 
to utilitize new kinds of attribute data. This might be sensory data from a machine used as 
a resource, the textual description of a problem attached to the attributes in the Helpdesk 
data or images from cameras monitoring the process execution. The latter two usually need 
much deeper neural networks to extract useful low dimensional features. However, in the 
spirit of transfer learning, pre-trained networks can be attached to the process prediction 
network.

The review of encoding methods for categorical methods did not yield a definite result. 
Embedding is usually used for wordlists with a vocabulary size from thousands to mil-
lions. For small categorical data with 5 to 20 classes, the benefits of embedding might be 
negligible. For larger scales, embedding should be able to play out its superiority. Further 
research would be interesting for categories that can be logically allocated to clusters. Like 
resources that can be aggregated to resource groups, which therefore have a meaningful 
distance measure between each other. In such cases, dimensionality reduction should be 
possible without information loss.

When evaluating their architectures, all studies report different results for each log. This 
indicates that process specific characteristics influence the performance of the model. Only 
a few analyse the possible reasons for this behaviour. It is common in other deep learning 
disciplines, such as computer vision to use synthetic input data to analyse the behaviour of 
models. Therefore, synthetic event logs could help to unveil the problematic characteristics 
of an event log. Other researchers could use this information to focus on specific process 
characteristics when implementing new architectures. Identified problematic characteristics 
include loops in the control-flow, repeated consecutive executions of the same activity and 
activities executable in parallel.

6.2 � Ellaboration on network architecture

This review shows the dominant use of a recurrent structure to model time-dependency. 
Surprisingly, most authors use a fixed prefix size throughout the training. This might be 
due to computational restrictions, but in theory, recurrent networks such as the LSTM are 
able to process prefixes variable in length during training. For example the current version 
of TensorFlow (2.1) (Abadi et al. 2015) allows different prefix sizes for supervised train-
ing. Although for computational reasons, prefixes of a training batch have to be the same, 
which can be achieved by online-padding. This way, no prefix has to be cut or aggregated 
with the threat of information loss and computational effort is reduced, compared to pad-
ding all prefixes to the maximum possible size. Another advantage of this dynamic behav-
iour of RNNs reveals itself in case a new prefix is longer than the maximum prefix in the 
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training set. In this situation, RNNs can still perform predictions, while models with a fixed 
input size and paddings like CNNs or FFNNs would not be able to predict an outcome in 
this case.

Khan et al. (2018) suggest the use of external storage for better long term memory. They 
tested their architecture on the BPIC 12 and the Helpdesk data with mean traces lengths 
of 20 and 4,7 respectively. Still, the architecture of Lin et  al. (2019) outperformed their 
approach with a regular LSTM network. This might imply, that the sequence length seen in 
BPIC 12 and the Helpdesk data is not a problem for the long-term memory of an LSTM. 
Results should be compared on much longer sequences such as the Click-Log dataset 
(BPIC 16) with up to 9.701 events in one trace. On these long sequences, the LSTM archi-
tecture of Lin et al. (2019) achieved its worst results.

The internal computation of LSTM Gates uses tanh and sigmoid activation functions. 
These activation functions have been proven to cause the vanishing gradient problem when 
backpropagating through deep neural networks. Especially when stacking multiple layers 
of LSTMs, training becomes more difficult. Gates of LSTM need to scale their output to 
the range of – 1 to 1, so other activation functions like ReLU are not applicable. To facili-
tate the learning process throughout deeper recurrent networks, LSTM should be supple-
mented with simple perceptrons or convolutional layers. This way, higher-level features can 
be calculated without the problem of vanishing gradients.

Convolutional networks have proven to be very powerful in recognising small and large 
feature patterns in their inputs. While the approach of Pasquadibisceglie et al. (2019) relies 
on handcrafted features, Al-Jebrni et al. (2018) show that embedding raw data and convo-
lutional networks can be combined. Their 11 layer network demonstrates the capability of 
deep neural networks to learn elaborate patterns in process logs. Their approach reached 
93% accuracy on the BPIC 12 dataset, which is close to the current maximal performance 
of the LSTM architecture of Lin et al. (2019), reaching 0.97% accuracy. Additionally, Park 
and Song (2020) demonstrate that convolutional and recurrent layers can be combined into 
one model, outperforming their individual counterparts. Through the use of global pooling 
layers, CNNs would additionally break their fixed input size restriction, paving the way for 
new input types.

6.3 � The issue with imbalanced class frequencies

A common problem in deep learning classification tasks is the relative class frequency. 
For optimal prediction results, the prediction classes should be equally frequent. When 
frequencies diverge, deep learning classifiers tend to overfit to the dominant classes and 
perform worse on the infrequent classes. Because most publications do not evaluate the 
per activity precision and recall metric, only Pasquadibisceglie et al. (2019) noticed the 
strong correlation between class frequency in the training set and class accuracy of the 
model. Metzger and Neubauer (2018) used Matthews correlation coefficient instead of 
accuracy because the accuracy is susceptible to imbalanced data, but they do not fit their 
training to this insight. Mehdiyev et  al. (2020) compared their aggregated prediction 
results on balanced and imbalanced training data and report a steep increase in perfor-
mance, when the training data is balanced. The most commonly used datasets Help-
desk and BPIC 12 are heavily imbalanced. A naive model that predicts only the final 
event closed reaches 37% accuracy on the Helpdesk data. While important events such 
as the raise support level activity show a frequency of < 1% . For business managers, 
this infrequent activity is likely to be cost and time-intensive. The prediction accuracy 
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of small frequency activities can therefore be of utmost importance for practitioners. To 
cope with this prediction problem, over and under sampling are used in deep learning 
applications to balance datasets during training. The effects of these techniques should 
be analysed in more detail.

Nolle et  al. (2016) used the property of imbalanced data in their approach: an 
autoencoder is trained to reconstruct a completed trace. As reconstruction error, the 
mean squared error between the input and the output is used. After training, they clas-
sify a trace as anomalous if the reconstruction error surpasses a certain threshold. The 
approach works well on their synthetic dataset, where every infrequent deviation of the 
main process model is considered an anomaly. On real-life datasets, not all infrequent 
activities or deviations have to be anomalies. In conclusion, to provide reliable pre-
dictions in all situations, over and under-sampling of the training data should be con-
sidered. Furthermore, if the identification of abnormal or unusual traces is of interest, 
imbalanced training sets help in the identification of infrequent patterns.

6.4 � Thoughts on quantitative comparability of existing approaches

The analysed literature on deep learning methods for process prediction lacks quantita-
tive comparability. This is due to several factors. To evaluate the relative performance 
of publications, one needs a common performance measurement. While most authors 
rely upon the prediction accuracy, this metric does not capture all relevant aspects. 
The accuracy is a metric incorporating two kinds of errors: false negatives and false 
positives. The reduction of one error type always yields an increase of the other, so in 
classification tasks, an appropriate balance between these two is desired. In business 
applications, however, one error type can be more expensive than the other one, e.g. 
when predicting service-level-agreement violations. This is the reason why presented 
approaches should be analysed on both prediction errors individually and their sensitiv-
ity when focusing only on one error type. Additionally, the accuracy score is susceptible 
to imbalanced datasets, i.e. naive classifiers can reach higher accuracy scores on imbal-
anced data. This makes the accuracy a problematic metric when it is used on different 
testing data.

In addition to balancing the data set, the choice of inputs also plays a significant role 
in the maximal achievable performance scores. This makes it infeasible to differentiate 
between the performance effect of the architectural choices and the input choices. Further-
more, if the authors did not perform an exhaustive hyperparameter search, their core contri-
bution could have yielded a higher performance metric. In terms of the testing procedure, 
we also identified different strategies. Some authors used k-fold validation of varying sizes, 
others used a fixed percentage as testing data, and some papers even tested on the training 
data. We propose to use a unified evaluation approach for further publications like k-fold 
validation, as its reliability has been proven for small and big datasets. A unified bench-
mark of existing implementations on the wide range of publicly available data would be 
required to allow for a trustworthy quantitative assessment. Moreover, it would be useful to 
entail additional metrics, e.g. the per-activity prediction accuracy or the temporal stability 
of trace-level predictions, to capture all of the relevant aspects of the process prediction.
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7 � Future challenges & research agenda

In Sect.  6, we discussed the methodological decisions made by authors in current 
approaches. Based on this evaluation, we presented potential next steps to ameliorate 
the results of these approaches. In this section, we take a step back and provide a more 
general view on the field of process prediction. During our evaluation, we identified 
five major challenges for business process prediction that should be addressed in future 
research: 

1.	 Prediction to action the need for process prediction is often justified through the ability 
to identify malicious or unwanted process executions at an early stage. The economic 
benefit is achieved through process adaptations at runtime, that might mitigate unwanted 
process behavior. Hence, the process prediction is only a first step, and the value of the 
prediction is defined by the performance improvements achievable through its cor-
responding process adaptation. The nature of the business process provides a wide 
range of possible adaptations: change the next step to be executed, change the resources 
allocated to the next step, increase the execution priority and many other. However, the 
translation of a prediction result into an appropriate adaptation is no trivial task. In our 
study, we found that only (Metzger et al. 2019; Metzger and Föcker 2017) investigated 
their prediction quality through the results of the consecutive process adaptations. They 
revealed the important trade-off between earliness and accuracy of prediction, since the 
implementation of adaptations usually has non-negligible latencies. Future approaches 
should therefor incorporate the conversion of predictions into action suggestions, as this 
holistic view might highlight further requirements for a prediction.

2.	 Leveraging domain knowledge process mining is applied to gain prescriptive insights 
on processes through the analysis of event logs. While this data-centric approach yields 
scalable and transferable methods, it neglects the predictive information in human 
knowledge. The latter can be used at training time or during predictions to enhance and 
support data-based algorithms. The identification of concurrent events, for example, 
is extensively studied and hard to detect, even in large datasets. Human experts on the 
other hand can identify those with little to no effort, since they know the events are 
generated in distinct systems or they might be handled by different departments. This 
concurrency information could be leveraged at training time through data modelling. 
As an example, in the permit log of the BPIC 20 dataset, there are activities relating to a 
travel permit instance (Permit APPROVED by ADMINISTRATION) and multiple travel 
declaration instances (Declaration SUBMITTED by EMPLOYEE). By combining the 
textual description with a brief log analysis, one can conclude that multiple declarations 
can be submitted independently and that their respective events are concurrent. This 
information is utilized at training time, by representing the events not as a sequence, by 
as an acyclic directed graph. Another exemplary case of useful domain knowledge could 
be the temporal unavailability of one resource due to technical issues. Such information 
is rarely present in event logs but is highly relevant at prediction time for short-term 
process adaptations. Di Francescomarino et al. (2017) exploited such rules and thereby 
improve their prediction results. Although they did not include real domain knowledge, 
but Linear Temporal Logic rules extracted from the log, the concept is transferable to 
real time domain knowledge. Hence, future approaches could increase their performance 
by developing structured approaches to incorporate human domain knowledge into the 
prediction process.
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3.	 Input variables closely related to the usage of domain knowledge is the selection of 
input variables. Through the ongoing digitization of business processes, the amount of 
electronically available process-related data is growing, whereas current approaches 
merely focus on the control-flow, i.e. the sequence of activities. Thereby, a significant 
part of the contextual information on process executions is dropped even though it may 
play a vital role in the prediction of future outcomes. This context information can be 
structured in key-value pairs such as the case attributes in the BPIC 20 (Overspend, 
TotalDeclared, BudgetNumber, AcitivityNumber, ProjectNumber) or may be unstruc-
tured as in the Helpdesk process, where the textual description of the ticket could be 
included as input. Recent advances in Natural Language Processing have shown that 
deep neural networks are able to extract useful information out of unstructured data. 
This is an advantage of deep learning algorithms that has not been exploited by cur-
rent approaches. At the same time, widening the scope of potential input variables will 
induce the need for systematic selection methods. Especially, when the explanatory 
power of an attribute will vary from business case to business case. Evermann et al. 
(2017) support this hypothesis, as they observed negative and positive performance del-
tas when they included resource information as input. The influence differs from event 
log to event log in their experiment. Consequently, a methodical framework to identify 
explanatory variables for business processes should be developed. Aside the selection of 
appropriate input data, the representation of events should be revised. Handling events 
as sequential data implies some dependency, i.e. when one event precedes another, it is 
a prerequisite of this event. Consequently, Di Francescomarino et al. (2017) show that 
current approaches struggle with concurrent control-flow branches and loops. Process 
executions should be represented in a data structure that is capable of representing the 
concurrency and loop information in a more natural way. We propose the use of directed 
graphs: the internal logic of a process execution is kept and could be leveraged by future 
prediction algorithms.

4.	 Causality and explainability of prediction aside the question of What will happen?, 
future approaches should as well answer the question Why did it happen?. It has been 
shown that the “black-box” nature of neural networks hinders the application of pre-
diction models in real-life scenarios because decision-makers do not trust predictions 
provided as-is with no further explanation. When process prediction is the basis for 
high-value business judgements or is used for automated decision-making, it is crucial 
to create a profound understanding of the model’s behavior and the logic behind its 
prediction. Providing a relation of causality benefits the decision support system in two 
ways. On one side, it creates a prediction refutable by humans, as the causal relationship 
of input data to output can be scrutinized. Which may lead to broader acceptance in 
practice. On the other side, identifying root causes for unwanted process behavior may 
support business process model improvements, thereby eliminating the need for repeated 
process instance adaptations. The research field of explainable AI developed a range 
of methods to depict and explain the reasoning of neural networks. These approaches 
should be transferred to the domain of process prediction. One possibility to depict 
causality is the usage of relevance scores, provided through the neural network weights. 
These allow for an importance assessment on the individual input variables.
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8 � Conclusion

In recent years, there is an increasing interest in deep learning for process prediction. 
Although the first studies were only published in 2016, the research community has pre-
sented many new approaches. In this paper, a systematic literature review is carried out to 
capture the state-of-the-art deep learning methods for process prediction. In total, 32 dif-
ferent approaches are compared against carefully selected criteria to identify strengths and 
weaknesses and reveal research gaps for future research.

The main focus of this literature review lays on a qualitative comparison of existing 
implementations. In particular, the literature is classified along the dimensions: neural net-
work type, prediction type, input features and encoding methods. Although Sect.  5 also 
reports on the performance scores as presented in the examined papers, due to the sparse 
intersection of testing data and evaluation methods, it is impossible to carry out a reliable 
performance ranking. As discussed in Sect. 6, a unified benchmark would allow a quantita-
tive comparison of process prediction approaches.

Deep learning enables new levels of decision support in the context of business pro-
cess management. We presented a list of approaches with increasing performance meas-
ures. In our opinion, it is possible to improve them even further by broadening the scope 
of research to the five major challenges discussed above and thereby creating new tools to 
support business process managers in their everyday work.
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