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Abstract
The location of the electric vehicle charging station is deemed to be a multiple attribute 
group decision making (MAGDM) issue involving many experts and many conflicting 
attributes. In practical MAGDM issues, the information of uncertain and fuzzy cogni-
tive decision is well-depicted by linguistic term sets (LTSs). These LTSs could be simply 
shifted into the probabilistic linguistic sets (PLTSs). In such paper, we design some novel 
probabilistic linguistic weighted Dice similarity measures (PLWDSM) and the probabilis-
tic linguistic weighted generalized Dice similarity measures (PLWGDSM). Subsequently, 
the PLWGDSM-based MAGDM methods are presented under PLTSs. In the end, a practi-
cal case which concerns about the location planning of electric vehicle charging stations is 
offered to demonstrate the proposed PLWGDSM’s applicability and advantages.

Keywords Multiple attribute group decision making · Probabilistic linguistic term set · 
Dice similarity measures · Generalized Dice similarity measures · Site selection · Electric 
vehicle charging stations

1 Introduction

In our everyday lives, decision-making issues are the regular behavior activities (Braglia 
et al. 2003; Liu et al. 2019a; Tian et al. 2017, 2018). It has been deemed that almost all 
assessing information is expressed with numerical values (Deng et  al. 2000; Bourguig-
non and Massart 1994; Tsoulfas and Pappis 2008). Due to the human thinking’s fuzzi-
ness and vagueness and the objective things’ complexity (Chen et  al. 2019a; Chen and 
Han 2019; Wei et al. 2020a, b; Wang et al. 2020), individuals are willing to express their 
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assessment information by linguistic term sets (LTSs) rather than the form of quantitative 
in more and more vague decision-making issues. For instance, the DMs may utilize the 
LTSs like “bad”, “medium” and “good” when a family car’s satisficing degree is assessed. 
Therefore, more and more studies on diverse linguistic models have brought about exten-
sive attention by more and more scholars. In order to handle these qualitative assessment 
information easily, Herrera and Martinez (2000a) designed the linguistic term sets (LTSs) 
for calculating with given words. Herrera and Martinez (2000b) used 2-tuple fuzzy lin-
guistic to combine the linguistic information and numerical. Herrera and Martinez (2001) 
designed the multi-granular hierarchical linguistic to handle linguistic 2-tuples. Geng et al. 
(2017) proposed the extension of 2-tuple linguistic DEA for tackling MAGDM issues 
which considered the attributes’ effect relationships. Furthermore, Rodriguez et al. (2012) 
brought up the hesitant fuzzy LTSs (HFLTSs) with the aid of HFSs (Torra 2010) and LTSs 
(Zadeh 1975) which allowed DMs to provide some possible LTSs. However, in most liv-
ing studies on HFLTSs, all possible values are handled by the DMs by using same weight 
or importance. Visibly, it is not consistent with our real life. In living situations, the DMs 
may assign possible linguistic terms so that the furnished information may have different 
probability distributions. Thus, Pang et  al. (2016) raised the probabilistic linguistic term 
sets (PLTSs) to surmount this defect. Bai et al. (2017) built a comparison method which 
is more appropriate and proposed a tool which is more effective to manage PLTSs. Zhang 
et al. (2016) introduced the PLTSs to express the DMs’ preferences information and dis-
cussed additive consistency of PLPR from preference relation graph. Lin et al. (2019) put 
up with the ELECTRE II method to manage PLTSs for edge computing. Liao et al. (2019) 
raised the novel operations of PLTSs to work out the probabilistic linguistic ELECTRE 
III method. Liang et al. (2018) developed the probabilistic linguistic grey relational analy-
sis (PL-GRA) for MAGDM based on geometric Bonferroni mean (Wang et al. 2018; Wei 
et al. 2019; Zhu and Xu 2013). Liao et al. (2017) designed a linear programming algorithm 
to settle the MADM issues with PLTSs. Chen et al. (2019b) extended MULTIMOORA to 
the probabilistic linguistic for cloud-based ERP system selection. Feng et al. (Feng et al. 
2019) set up the probabilistic linguistic QUALIFLEX method for MAGDM issue. Lu et al. 
(2019) designed TOPSIS method with entropy weight under the probabilistic linguistic 
environment for MAGDM issues to select the most appropriable supplier with new agricul-
tural machinery products. Kobina et al. (2017) planned some power operators for MAGDM 
with PLTSs and classical power aggregation operators (Wei 2019a; Yager 2001; Xu and 
Yager 2010).

As a major and effective tool, the similarity measure is utilized to depict similarity’s 
degree between objects (Wang et al. 2019a; Wei 2017, 2018; Wei and Wei 2018). Actu-
ally, similarity or dissimilarity’s degree between objects plays a significant role under 
the currently researches (Li and Cheng 2002; Li 2004; Chen et al. 2016; Peng and Garg 
2018; Sharaf 2018; Peng and Li 2019; Xian et al. 2019; Zhang et al. 2019). The measures 
of Jaccard, cosine and Dice similarity are frequently utilized in different domains (Dice 
1945; Jaccard 1901; Salton and McGill 1987). However, Ye (2012a) designed the measures 
of Jaccard, cosine and Dice similarity between TIFNs for MAGDM issues. Ye (2012b) 
worked out the MADM approaches by employing the measure of Dice similarity between 
the expected ITFNs. Ye (2014) designed the Dice measures to tackle the simplified neutro-
sophic sets. Ye (2016) put up with the generalized Dice measures for MADM issues under 
simplified neutrosophic setting. Tang et al. (2017) came up with the GDSM to deal with 
MAGDM issues with intuitionistic information. Mahmood et  al. (2016) designed three 
measures of similarity between simplified neutrosophic HFSs. Mandal and Basu (2016) 
defined two novel measures of similarity to conquer several limitations of existing all 
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kinds of similarity measures. Wei (2019b) developed the GDSM for MADM issues with 
HFLTSs. Wang et al. (2019b) designed some new DSM of PFSs and the GDSM of PFSs 
to tackle MAGDM issues for choosing the most appropriable ERP system. Wei and Gao 
(2018) worked out some new DSM of picture fuzzy sets for building material recognition.

However, these DSM do not directly tackle the measures of similarity for PLTSs. Hence, 
extending the Dice measure to PLTSs to tackling MAGDM issues is essential which can 
fulfill DMs preference. To do so, the main aims of such paper are: (1) two DSM’ forms 
within PLTSs are designed; (2) the GDSM and weighted GDSM with PLTSs are proposed; 
(3) the weighted GDSM are employed to work out the MAGDM issues under PLTSs; (4) 
within the process of MAGDM, the developed methods’ major merit is more flexible and 
useful compared with the existing MAGDM issues with PLTSs.

To do so, this essay’s remainder is given in the following. In Sect. 2, some fundamental 
theories which concerns about PLTSs is proposed. In Sect. 3, several measures of DSM 
and weighted DSM between PLTSs are put forward. In Sect. 4, the weighted GDSM are 
used to work out MAGDM issues with PLTSs. A practical case study for site selection of 
EVCS is offered to validate the developed weighted Dice similarity measure in Sect. 5. The 
paper with some remarks is concluded in the final section.

2  Preliminaries

Firstly, Xu (2005)worked out the additive linguistic scale and Gou et al. (2017) put up with 
the corresponding transformation function between the linguistic terms and [0, 1].

Definition 1 (Xu 2005; Gou et al. 2017) Let L =
{
l�|� = −�,… ,−2,−1, 0, 1, 2,… �

}
 be 

an LTS (Xu 2005), the linguistic terms l� can express the same information to � which is 
expressed with transformation mathematical function g (Gou et al. 2017):

� can also be represented the equal information by linguistic terms l� which is denoted with 
the transformation function g−1:

Definition 2 (Pang et al. 2016) Given the LTS L =
{
l�|� = −�,… ,−2,−1, 0, 1, 2,… �

}
 , 

a PLTS could be designed as:

where l(�)
(
p(�)

)
 is the �th linguistic term l(�) connected with the corresponding probabil-

ity p(�) , and #PL(p) is the length of PL(p) . The linguistic term l(�) in PL(p) are listed by 
ascending order.

In order to easy computation, Pang et al. (Pang et al. 2016) normalized the PLTS PL(p) 
a s 

(1)g ∶
[
l−� , l�

]
→ [0, 1], g

(
l�
)
=

� + �

2�
= �

(2)g−1 ∶ [0, 1] →
[
l−� , l�

]
, g−1(�) = l(2�−1)� = l�

(3)

PL(p) =

{
l(�)

(
p(�)

)||||||
l(�) ∈ L, p(�) ≥ 0, � = 1, 2,… , #PL(p),

#PL(p)∑
�=1

p(�) ≤ 1

}
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NPL(p) =

�
l(𝜙)

�
p̃(𝜙)

������
l(𝜙) ∈ L, p̃(𝜙) ≥ 0, 𝜙 = 1, 2,… , #NPL(p̃),

#NPL(p̃)∑
𝜙=1

p̃(𝜙) = 1

�
 , 

where p̃(𝜙) = p(𝜙)

�
#NPL(p)∑
𝜙=1

p(𝜙) for all 𝜙 = 1, 2,… , #L(p̃).

Definition 3 (Pang et  al. 2016) Let L =
{
l�|� = −�,… ,−1, 0, 1,… �

}
 be an LTS, 

NPL1(p) =
{
l
(�)

1

(
p
(�)

1

)|| � = 1, 2,… , #NPL1(p)
}

 and 

NPL2(p) =
{
l
(�)

2

(
p
(�)

2

)|| � = 1, 2,… , #NPL2(p)
}

 be two PLTSs, where #NPL1(p) and 
#NPL2(p) are the length of NPL1(p) and NPL2(p) , respectively. If #NPL1(p) > #NPL2(p) , 
then add #NPL1(p) − #NPL2(p) linguistic terms to NPL2(p) . In addition, the newly added 
linguistic terms should be the smallest linguistic term in NPL2(p) and the corresponding 
probabilities of newly added linguistic terms should be zero.

Definition 4 (Pang et al. 2016) For a PLTS NPL(p) =
{
l(�)

(
p(�)

)| � = 1, 2,… , #NPL(p)
}
 , 

the expected value EV(NPL(p)) and standard deviation SD(NPL(p)) of NPL(p) is designed 
in the following:

By using the Eqs.  (4)–(5), the order relation between two PLTSs is distin-
guished as: (1) if EV

(
NPL1(p)

)
> EV

(
NPL2(p)

)
 , then NPL1(p) > NPL2(p) ; (2)

if EV
(
NPL1(p)

)
= EV

(
NPL2(p)

)
 , then if SD

(
NPL1(p)

)
= SD

(
NPL2(p)

)
 , then 

NPL1(p) = NPL2(p) ; if SD
(
NPL1(p)

)
< SD

(
NPL2(p)

)
 , then, NPL1(p) > NPL2(p).

Definition 5 (Lin and Xu 2018) Let L =
{
l�|� = −�,… ,−1, 0, 1,⋯ �

}
 be a LTS. And let 

NPL1(p) =
{
l
(�)

1

(
p
(�)

1

)|| � = 1, 2,… , #NPL1(p)
}

 and 

NPL2(p) =
{
l
(�)

2

(
p
(�)

2

)|| � = 1, 2,… , #NPL2(p)
}

 be two PLTSs with 
#NPL1(p) = #NPL2(p)=NPL(p) , then Hamming distance HD

(
NPL1(p),NPL2(p)

)
 between 

NPL1(p) and NPL2(p) is derived:

3  Some Dice similarity measure for PLTSs

When one vector is zero, the DSM (Dice 1945) can’t induce this undefined setting which 
conquers the cosine similarity measure’s limitation. Hence, the DSM’s concept is designed 
in the chapter (Dice 1945).

(4)E(NPL(p)) =

#NPL(p)∑
�=1

g(NPL(p))p(�)

/
#NPL(p)∑
�=1

p(�)

(5)SD(NPL(p)) =

√√√√#NPL(p̃)∑
𝜙=1

(
g(NPL(p))p(𝜙) − EV(NPL(p))

)2
/

#NPL(p)∑
𝜙=1

p(𝜙)

(6)
HD

�
NPL1(p),NPL2(p)

�
=

∑#NPL(p)

�=1

����p
(�)

1
g
�
l
(�)

1

�
− p

(�)

2
g
�
l
(�)

2

�����
#NPL(p)
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Definition 6 (Dice 1945) Let A=
(
a1, a2,… , an

)
 and B=

(
b1, b2,… , bn

)
 be two set of pos-

itive real numbers. Then the DSM is defined in the following:

where A ⋅ B =
∑n

j=1
ajbj is the inner product between A and B and ‖A‖2 =

�∑n

j=1

�
aj
�2 

and ‖B‖2 =
�∑n

j=1

�
bj
�2 are the Euclidean norms of A and B.

The value of DSM belongs to the interval [0, 1] . Thus, if aj = bj = 0(j = 1, 2,… , n) , 
then DSM(A,B)=0.

3.1  Dice similarity measure for PLTSs

In such section, some DSM and some weighted DSM (WDSM) between PLTs are designed 
on the basis of the concept of the DSM.

Definition 7 Let L =
{
l�|� = −�,… ,−1, 0, 1,⋯ �

}
 be an LTS, 

NPL1(p) =
{
NPL1j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

1j

(
p
(�)

1j

)||| � = 1, 2,… , #NPL1j(p)

}
(j = 1, 2,… , n) and 

NPL2(p) =
{
NPL2j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

2j

(
p
(�)

2j

)||| � = 1, 2,… , #NPL2j(p)

}
(j = 1, 2,… , n) be 

two sets of PLTSs, where #NPL1j(p) and #NPL2j(p) are the numbers of PLTS NPL1j(p) and 
NPL2j(p) , #NPL1j(p) = #NPL2j(p) = #NPLj(p) respectively, the probabilistic linguistic 
DSM (PLDSM) between NPL1j(p) and NPL2j(p) is designed as follows:

Example 1 Let NPL1(p) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

NPL2(p) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of nor-

malized PLTSs, then in terms of the Eq. (8), we can acquire:

(7)DSM(A,B) =
2A ⋅ B

‖A‖2
2
+ ‖B‖2

2

=
2
∑n

j=1
ajbj

∑n

j=1

�
aj
�2

+
∑n

j=1

�
bj
�2

(8)

PLDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=
1

n

n�
j=1

2

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
#NPLj(p)∑
�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2
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The DSM between NPL1(p) and NPL2(p) also fulfills the subsequently properties:

(1) 0 ≤ PLDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
≤ 1;

(2) PLDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
= PLDSM1

PLTSs

(
NPL2(p),NPL1(p)

)
;

(3) PLDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
= 1,  i f  

∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
=
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)
 , 

j = 1, 2,… , n.

If we take into account the weights �j of NPLkj(p)(k = 1, 2) , then, a probabilistic lin-
guistic weighted DSM (PLWDSM) between NPL1(p) and NPL2(p) is designed in the 
following:

where � =
(
�1,�2,… ,�n

)T is the weight of NPLkj(p)(k = 1, 2) , with �j ∈ [0, 1] , ∑n

j=1
�j = 1 . Particularly, if � = (1∕n, 1∕n,… , 1∕n)T , then the PLWDSM reduces to the 

PLDSM. Then there is: 
PLWDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
= PLDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
.

Example 2 Let NPL1(p) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

NPL2(p) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of 

normalized PLTSs, the weight values are: � = (0.2, 0.5, 0.3)T , then in accordance with the 
Eq. (9), we can acquire:

PLDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=
1

n

n�
j=1

2

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2

=
1

3
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2×
�

(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�
�

(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+
2×

�
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�
�

(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+
2×

�
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�
�

(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.5914

(9)

PLWDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=

n�
j=1

�j

2

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2
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Obviously, the PLWDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
 also fulfills the subsequently 

properties:

(1) 0 ≤ PLWDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
≤ 1;

(2) PLWDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
= PLWDSM1

PLTSs

(
NPL2(p),NPL1(p)

)
;

(3) PLWDSM1

PLTSs

(
NPL1(p),NPL2(p)

)
= 1, i f  

∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
=
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)
 , 

j = 1, 2,… , n.

3.2  Another form of the DSM for PLTSs

In such chapter, Dice similarity measure’ another form for PLTSs is designed below:

Definition 8 Let L =
{
l�|� = −�,… ,−1, 0, 1,… �

}
 be an LTS, 

NPL1(p) =
{
NPL1j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

1j

(
p
(�)

1j

)||| � = 1, 2,… , #NPL1j(p)

}
(j = 1, 2,… , n) and 

NPL2(p) =
{
NPL2j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

2j

(
p
(�)

2j

)||| � = 1, 2,… , #NPL2j(p)

}
(j = 1, 2,… , n)

 be 

two sets of PLTSs, where #NPL1j(p) and #NPL2j(p) are the numbers of PLTS NPL1j(p) and 
NPL2j(p) , #NPL1j(p) = #NPL2j(p) = #NPLj(p) respectively, another form of probabilistic 
linguistic DSM (PLDSM) between NPL1j(p) and NPL2j(p) is designed in the following:

PLWDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=

n�
j=1

�j

2

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2

= 0.2 ×
2 ×

�
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

�
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+ 0.5 ×
2 ×

�
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

�
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+ 0.3 ×
2 ×

�
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

�
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

= 0.7167
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Example 3 Let NPL1(p) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

NPL2(p) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of nor-

malized PLTSs, then in accordance with the Eq. (10), we can acquire:

Another form of probabilistic linguistic DSM (PLDSM) between NPL1j(p) and 
NPL2j(p) also fulfills the subsequently properties:

(1) 0 ≤ PLDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
≤ 1;

(2) PLDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
= PLDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
;

(3) PLDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
= 1, if NPL1(p) = NPL2(p),  i . e . 

∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
=
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)
 , j = 1, 2,… , n.

If we consider the weights �j of L̃kj(p̃) (k = 1, 2) , then, another form of probabilistic 
linguistic weighted DSM (PLWDSM) between NPL1j(p) and NPL2j(p) is developed in 
the following:

(10)

PLDSM2

PLTSs

�
NPL1(p),NPL2(p)

�

=

2
∑n

j=1

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
⋅

∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

∑n

j=1

⎛
⎜⎜⎝

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2⎞
⎟⎟⎠

PLDSM2

PLTSs

�
NPL1(p),NPL2(p)

�

=

2
∑n

j=1

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
⋅

∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�

∑n

j=1

⎛⎜⎜⎝

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2⎞⎟⎟⎠

=

2 ×

⎛⎜⎜⎜⎜⎝

�
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+
�

(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+
�

(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

��
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

��

+

��
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

��

+

��
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

��

⎞⎟⎟⎟⎟⎟⎟⎠
= 0.6677
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where � =
(
�1,�2,… ,�n

)T is the weight vector of NPLkj(p) (k = 1, 2) , with �j ∈ [0, 1] , ∑n

j=1
�j = 1 . Particularly, if � = (1∕n, 1∕n,… , 1∕n)T , then the PLWDSM reduces to the 

PLDSM. Then there is: 
PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
= PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
.

Example 4 Let L̃1(p̃) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

L̃2(p̃) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of nor-

malized PLTSs, the weight values are: � = (0.2, 0.5, 0.3)T , then according to the Eq. (9), 
we can obtain:

Obviously, the PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
 also meets the following properties:

(1) 0 ≤ PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
≤ 1;

(2) PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
= PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
;

(3) PLWDSM2

PLTSs

(
NPL1(p),NPL2(p)

)
= 1, i f  

∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)
=
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)
 , 

j = 1, 2,… , n.

(11)

PLWDSM2

PLTSs

�
NPL1(p),NPL2(p)

�

=

2
∑n

j=1

�
�2

j

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

��

∑n

j=1
�2

j

⎛
⎜⎜⎝

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2⎞
⎟⎟⎠

PLWDSM2

PLTSs

�
NPL1(p),NPL2(p)

�

=

2
∑n

j=1

�
�2

j

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

��

∑n

j=1
�2

j

⎛⎜⎜⎝

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2⎞⎟⎟⎠

=

2 ×

⎛⎜⎜⎜⎜⎝

0.22 ×
�

(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+ 0.52 ×
�

(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+ 0.32 ×
�

(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

⎞⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

0.22 ×

��
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

��

+ 0.52 ×

��
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

��

+ 0.32 ×

��
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

��

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.8946
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3.3  The generalized Dice similarity measure for PLTSs

In such chapter, as the Dice similarity measure’s generalization, the probabilistic linguis-
tic generalized Dice similarity measure (PLGDSM) between NPL1j(p) and NPL2j(p) are 
designed below.

Definition 9 Let L =
{
l�|� = −�,… ,−1, 0, 1,… �

}
 be an LTS, 

NPL1(p) =
{
NPL1j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

1j

(
p
(�)

1j

)||| � = 1, 2,… , #NPL1j(p)

}
(j = 1, 2,… , n) and 

NPL2(p) =
{
NPL2j(p)

}
(j = 1, 2,… , n) =

{
l
(�)

2j

(
p
(�)

2j

)||| � = 1, 2,… , #NPL2j(p)

}
(j = 1, 2,… , n) be 

two sets of PLTSs, where #NPL1j(p) and #NPL2j(p) are the numbers of PLTS NPL1j(p) and 
NPL2j(p) , #NPL1j(p) = #NPL2j(p) = #NPLj(p) respectively, the PLGDSM between 
NPL1j(p) and NPL2j(p) is proposed in the following:

where � is a positive parameter for 0 ≤ � ≤ 1.

Example 5 Let NPL1(p) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

NPL2(p) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of nor-

malized PLTSs, let � = 0.3 , then according to the Eqs. (12–13), we can obtain:

(12)

PLGDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=
1

n

n�
j=1

�
∑#NPLj(p)
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⋅
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l
(�)

2j

�

#NPLj(p)
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�

�
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�=1

p
(�)

1j
g
�
l
(�)
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�
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�2

+ (1 − �)

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2

(13)

PLGDSM2

PLTSs

�
NPL1(p),NPL2(p)

�

=

∑n

j=1

��
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�
⋅

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)
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�

#NPLj(p)

��

�
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j=1

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�
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+ (1 − �)
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j=1
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∑#NPLj(p)

�=1

p
(�)
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g
�
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(�)
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�

#NPLj(p)

�2
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Then, the PLGDSM involves some special situations by modifying the parameter value �.

If � = 0.5 , the two PLGDSM (12) and (13) reduced to PLDSM (14) and (15):

PLGDSM1

PLTSs

�
NPL1(p),NPL2(p)

�

=
1

n

�n

j=1

�
∑#NPLj(p)

�=1
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�
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⋅

�
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�
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�
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�

�

�
∑#NPLj(p)

�=1

p
(�)

1j
g
�
l
(�)

1j

�

#NPLj(p)

�2

+ (1 − �)

�
∑#NPLj(p)

�=1

p
(�)

2j
g
�
l
(�)

2j

�

#NPLj(p)

�2

=
1

3
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2×
�

(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

0.3×
�

(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+0.7×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+
2×

�
(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

0.3×
�

(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+0.7×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+
2×

�
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

0.3×
�

(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+0.7×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.7023
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�
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�=1
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(�)

2j
g
�
l
(�)
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�

#NPLj(p)

�2

=

2 ×

⎛⎜⎜⎜⎜⎝

�
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�
×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

�

+
�

(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�
×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

�

+
�

(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�
×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

�

⎞⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

�
0.3 ×

�
(2+3)∕ 6×0.4+(3+3)∕ 6×0.6

2

�2

+ 0.7 ×
�

(−3+3)∕ 6×0.8+(−1+3)∕ 6×0.2

2

��

+

�
0.3 ×
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(1+3)∕ 6×0.2+(2+3)∕ 6×0.8

2

�2

+ 0.7 ×
�

(2+3)∕ 6×0.6+(3+3)∕ 6×0.4

2

��

+

�
0.3 ×

�
(−1+3)∕ 6×0.2+(1+3)∕ 6×0.8

2

�2

+ 0.7 ×
�

(−2+3)∕ 6×0.7+(−1+3)∕ 6×0.3

2

��

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.7982
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If � = 0, 1 , the two PLGDSM reduced to the subsequently measures of asymmetric simi-
larity respectively:

(14)
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(16)
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In terms of the above analysis, it could be found that these four measures of asym-
metric similarity are the corresponding extension of the relative projection measure of 
the PLTSs.

In various situations, the weight �j(j = 1, 2,… , n) of the elements L̃kj(p̃)(k = 1, 2) could 
be taken into consideration. For instance, in the process of MADM, there exist different 
importance for the considered attributes, thus different weights should be considered to 
assign. However, the subsequently two probabilistic linguistic weighted GDSM (PLWG-
DSM) for PLTSs are further to proposed, respectively, as follows:

(18)
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where � =
(
�1,�2,… ,�n

)T is the weight of NPLkj(p)(k = 1, 2) , with �j ∈ [0, 1] , ∑n

j=1
�j = 1 . Particularly, if � = (1∕n, 1∕n,… , 1∕n)T , then the PLWGDSM reduces to the 

PLGDSM. Then there is PLWGDSMk

PLTSs

(
L̃1(p̃), L̃2(p̃)

)
= PLGDSMk

PLTSs

(
L̃1(p̃), L̃2(p̃)

)
(k = 1, 2).

Example 6 Let NPL1(p) =
[[{

l2(0.4), l3(0.6)
}
,
{
l1(0.2), l2(0.8)

}
,
{
l−1(0.2), l1(0.8)

}]]
 and 

NPL2(p) =
[[{

l−3(0.8), l−1(0.2)
}
,
{
l2(0.6), l3(0.4)

}
,
{
l−2(0.7), l−1(0.3)

}]]
 be two sets of nor-

malized PLTSs, the weight values are: � = (0.2, 0.5, 0.3)T , � = 0.3 then according to the 
Eq. (20–21), we can get:
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After that, the PLWGDSM involves some special cases by modifying the parameter 
value �.

If � = 0.5 , the two weighted GDSM (20) and (21) reduced to weighted DSM (22) and 
(23):
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If � = 0, 1 , the two PLWGDSM reduces to the subsequent asymmetric weighted DSM, 
respectively:

(23)
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In terms of the above analysis, it could be found that these four measures of asym-
metric weighted similarity are the corresponding extension of the relative weighted 
projection measure of PLTSs.

4  The weighted GDSM for probabilistic linguistic MAGDM with entropy 
weight

In this chapter, we put forward a novel probabilistic linguistic weighted GDSM 
(PLWGDSM) method for MAGDM issues with unknown weight. The subse-
quently mathematical notations are made use of solving the probabilistic linguis-
tic MAGDM issues. Let A =

{
A1,A2,… ,Am

}
 be a discrete collection of alternatives, 

and G =
{
G1,G2,… ,Gn

}
 with weight vector w =

(
w1,w2,… ,wn

)
 , where �j ∈ [0, 1] , 

j = 1, 2,… , n , 
∑n

j=1
wj = 1 , and a collection of experts E =

{
E1,E2,… ,Eq

}
 . Sup-

pose that there are n qualitative attribute A =
{
A1,A2,… ,Am

}
 and their values are 

evaluated by qualified experts and denoted as linguistic expressions information 
lk
ij
(i = 1, 2,… ,m, j = 1, 2,… , n, k = 1, 2,… , q).

Then, PLWGDSM method is designed to solve the MAGDM problems with entropy 
weight. The elaborated calculating procedures are given in the following:

Step 1 Shift cost attribute into beneficial attribute. If the cost attribute value is l� , then 
the corresponding beneficial attribute value is l−� (� = −3,−2,−1, 0, 1, 2, 3).

Step 2 Convert the linguistic information lk
ij
(i = 1, 2,… ,m, j = 1, 2,… , n, k = 1, 2,… , q) 

into PLTs l(�)
ij

(
p
(�)
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)
, � = 1, 2,… , #Lij(p) and construct the probabilistic linguistic assess-

ing matrix PL =
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m×n
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(i = 1, 2,… ,m, j = 1, 2,… , n).

(27)
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Step 3 Derive the normalized probabilistic linguistic matrix NPL =
(
NPL

ij
(p)

)
m×n

 , 

NPL
ij
(p) =

{
l
(�)

ij

(
p
(�)

ij

)||| � = 1, 2,… , #NPL
ij
(p)

}
(i = 1, 2,… ,m, j = 1, 2,… , n) . Thus, 

probabilistic linguistic information for given alternative Ai ∈ A with regard to all the attrib-
ute G can be depicted as: PLAi =

(
l
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(
p̃
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)
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(
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)
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in

(
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in

))
 , 

𝜙 = 1, 2,… , #L
ij
(p̃).

Step 4 Compute the weight values with entropy.
The attributes’ weight is very significant in decision making issues. Entropy (Shan-

non 1948) is a conventional term from information theory which is also used to determine 
weight of attributes. Firstly, the normalized decision matrix NL

ij
(p) is derived as follows:

Then, the information of Shannon entropy E =
(
E1,E2,… ,En

)
 is calculated in the 

following:

and NL
ij
(p) lnNL

ij
(p) is defined as 0, if NL

ij
(p) = 0.

Finally, the attribute weights w =
(
w1,w2,… ,wn

)
 is computed:

Step 5 Decide the probabilistic linguistic positive ideal solution (PLPIS):

Step 6 Calculate the PLWGDSM between PLAi(i = 1, 2,… ,m) and PLPIS as follows:

or
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(30)wj =
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�
1 − Ej

� , j = 1, 2,… , n.
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)
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Step 7 All the given alternatives Ai(i = 1, 2,… ,m) can be ranked and the optimal one(s) 
could be selected by PLWGDSM1

PLTSs

(
PLAi,PLPIS

)
 or PLWGDSM2

PLTSs

(
PLAi,PLPIS

)
 

(i = 1, 2,… ,m) . If any alternative has the highestvalues PLWGDSM1

PLTSs

(
PLAi,PLPIS

)
 or 

PLWGDSM2

PLTSs

(
PLAi,PLPIS

)
 , then, it is the optimal alternative.

5  A case study and comparative analysis

5.1  A case study for site selection of EVCS

With the rapid development of economy, resource shortage and environmental pollu-
tion become more and more serious, thus, people pay more and more attention to their 
health and living environment. At present, the huge car market is aggravating the cost 
of resources and adding more pressure to the urban environment. And electric vehicle 
because of its energy saving and environmental protection characteristics is becoming 
the main development direction of the automobile industry. Liu et al. (2019b) proposed 
the integrated MCDM method by a grey decision-making trial and evaluation laboratory 
(DEMATEL) and uncertain linguistic multi-objective optimization by ratio analysis plus 
full multiplicative form (UL-MULTIMOORA) for obtaining the most suitable EVCS 
site in terms of multiple interrelated criteria. Wu et al. (2017) defined the hesitant fuzzy 
integrated MCDM method for quality function deployment with a case study in electric 
vehicle. Liu et al. (2017) explored the critical factors influencing the diffusion of elec-
tric vehicles in China form the multi-stakeholder perspective. As a supporting infra-
structure for electric vehicles, charging stations must be planned and constructed first. 
The site selection of EVCS is deemed as a kind of MAGDM issue (Wu et al. 2019a, b; 
Deng and Gao 2019; Li and Lu 2019; Lu and Wei 2019; Wang et al. 2019c). Thus, in 
this section a numerical case is designed for site selection of EVCS. There are five pos-
sible EVCS sites Ai(i = 1, 2, 3, 4, 5) to be assessed. The invited experts select four attrib-
utes to assess five underlying EVCS sites: ③  G1 the traffic convenience; ④  G2 the service 
capability; ①  G3is waste discharge; ②  G4 is construction cost. The construction cost  (G4) 
is not beneficial attribute, others are beneficial attribute. The five underlying EVCS sites 
Ai(i = 1, 2, 3, 4, 5) are to be assessed by utilizing the linguistic variables

by five DMs, as listed in the Tables 1, 2, 3, 4 and 5.
Whereafter, we employ the PLWGDSM method developed for selecting the optimal 

EVCS sites.

(34)
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L = {l−3 = extremely poor(EP), l−2 = very poor(VP),

l−1 = poor(P), l0 = medium(M), l1 = good(G),

l2 = very good(VG), l3 = extremely good(EG)}
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Step 1 Shift cost attribute  G4 into beneficial attribute. If the cost attribute value is 
l� , then the corresponding beneficial attribute value is l−� (� = −3,−2,−1, 0, 1, 2, 3) (See 
Tables 6, 7, 8, 9 and 10)

Step 2 Shift the linguistic information into probabilistic linguistic assessing matrix 
(Table 11).

Step 3 Calculate the normalized assessing matrix with PTSs (Table 12).
Step 4 Compute the weight values for attributes from Eqs.  (28)–(30): 

w1 = 0.1416,w2 = 0.4892,w3 = 0.1021,w4 = 0.2671.
Step 5 Determine the PLPIS by Eqs. (31)–(32) (Table 13):
Step 6 Calculating the PLWGDSM between PLAi(i = 1, 2,… , 5) and PLPIS 

(Tables 14, 15):
Step 7 All the given alternatives Ai(i = 1, 2,… ,m) can be ranked and the optimal 

one(s) can be selected by PLWGDSM1

PLTSs

(
PLAi,PLPIS

)
 or PLWGDSM2

PLTSs

(
PLAi,PLPIS

)
 

(i = 1, 2,… , 5) (Tables 16, 17).
From the Tables  16 and 17, taking different � and different PLWGDSM, the ranking 

orders can be different. Then A1 , A5 and A3 should be the optimal EVCS sites in accordance 
with the principle of the maximum PLWGDSM.

Furthermore, for the two PLWGDSM’s special situations, we acquire the subsequent 
results:

Table 1  Linguistic assessing 
matrix by  DM1

Alternatives G1 G2 G3 G4

A1 VG EG G G
A2 P VP EP P
A3 EP EP G VG
A4 G EP VG EP
A5 EG M P G

Table 2  Linguistic assessing 
matrix by  DM2

Alternatives G1 G2 G3 G4

A1 VG VG G VG
A2 M VP P VP
A3 P VP VG VG
A4 G EP EG VP
A5 EG M P G

Table 3  Linguistic assessing 
matrix by  DM3

Alternatives G1 G2 G3 G4

A1 VG VG G EG
A2 M VP P EP
A3 EP VP VG VG
A4 G EP VG EP
A5 VG M P EG
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• When � = 0 , the two PLWGDSM reduced to the corresponding weighted projection 
measures of Ai (i = 1, 2, 3, 4, 5) on PLPIS. Thus, A1 should be the optimal EVCS site 
in accordance with the maximum PLWGDSM. In such situation, we could obtain the 
same optimal EVCS site as the above mentioned three methods. Thus our proposed 
method is effective.

• When � = 0.5 , the two PLWGDSM reduced to the PLWDSM on PLPIS. Thus, A1 
should be the optimal EVCS site in accordance with maximum PLWDSM between 

Table 4  Linguistic assessing 
matrix by  DM4

Alternatives G1 G2 G3 G4

A1 VG VG G EG
A2 M VP P P
A3 EP VP VG VG
A4 G P VG EP
A5 VG M EP VG

Table 5  Linguistic assessing 
matrix by  DM5

Alternatives G1 G2 G3 G4

A1 VG VG G EG
A2 M VP P EP
A3 EP P EG VG
A4 G VP EG EP
A5 EG M VP VG

Table 6  Linguistic assessing 
matrix by  DM1

Alternatives G1 G2 G3 G4

A1 VG EG G P
A2 P VP EP G
A3 EP EP G VP
A4 G EP VG EG
A5 EG M P P

Table 7  Linguistic assessing 
matrix by  DM2

Alternatives G1 G2 G3 G4

A1 VG VG G VP
A2 M VP P VG
A3 P VP VG VP
A4 G EP EG VG
A5 EG M P P

4159



 G. Wei et al.

1 3

Table 8  Linguistic assessing 
matrix by  DM3

Alternatives G1 G2 G3 G4

A1 VG VG G EP
A2 M VP P EG
A3 EP VP VG VP
A4 G EP VG EG
A5 VG M P EP

Table 9  Linguistic assessing 
matrix by  DM4

Alternatives G1 G2 G3 G4

A1 VG VG G EP
A2 M VP P G
A3 EP VP VG VP
A4 G P VG EG
A5 VG M EP VP

Table 10  Linguistic assessing 
matrix by  DM5

Alternatives G1 G2 G3 G4

A1 VG VG G EP
A2 M VP P EG
A3 EP P EG VP
A4 G VP EG EG
A5 EG M VP VP

Table 11  Probabilistic linguistic assessing matrix

Alternatives G1 G2

A1
{
l2(1)

} {
l2(0.8), l3(0.2)

}
A2

{
l−1(0.2), l0(0.8)

} {
l−2(1)

}
A3

{
l−3(0.8), l−1(0.2)

} {
l−3(0.2), l−2(0.6), l−1(0.2)

}
A4

{
l1(1)

} {
l−3(0.6), l−2(0.2), l−1(0.2)

}
A5

{
l2(0.4), l3(0.6)

} {
l0(1)

}

Alternatives G3 G4

A1
{
l1(1)

} {
l−3(0.6), l−2(0.2), l−1(0.2)

}
A2

{
l−3(0.2), l−1(0.8)

} {
l1(0.4), l2(0.2), l3(0.4)

}
A3

{
l1(0.2), l2(0.6), l3(0.2)

} {
l−2(1)

}
A4

{
l2(0.6), l3(0.4)

} {
l2(0.2), l3(0.8)

}
A5

{
l−3(0.2), l−2(0.2), l−1(0.6)

} {
l−3(0.2), l−2(0.4), l−1(0.4)

}
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PLTSs. For such case, we could also obtain the same optimal EVCS site as the above 
mentioned three methods. Thus our proposed method is effective.

Table 12  The assessing matrix with Normalized PTSs

Alternatives G1 G2

A1
{
l2(0), l2(0), l2(1)

} {
l2(0), l2(0.8), l3(0.2)

}
A2

{
l−1(0), l−1(0.2), l0(0.8)

} {
l−2(0), l−2(0), l−2(1)

}
A3

{
l−3(0), l−3(0.8), l−1(0.2)

} {
l−3(0.2), l−2(0.6), l−1(0.2)

}
A4

{
l1(0), l1(0), l1(1)

} {
l−3(0.6), l−2(0.2), l−1(0.2)

}
A5

{
l2(0), l2(0.4), l3(0.6)

} {
l0(0), l0(0), l0(1)

}

Alternatives G3 G4

A1
{
l1(0), l1(0), l1(1)

} {
l−3(0.6), l−2(0.2), l−1(0.2)

}
A2

{
l−3(0), l−3(0.2), l−1(0.8)

} {
l1(0.4), l2(0.2), l3(0.4)

}
A3

{
l1(0.2), l2(0.6), l3(0.2)

} {
l−2(0), l−2(0), l−2(1)

}
A4

{
l2(0), l2(0.6), l3(0.4)

} {
l2(0), l2(0.2), l3(0.8)

}
A5

{
l−3(0.2), l−2(0.2), l−1(0.6)

} {
l−3(0.2), l−2(0.4), l−1(0.4)

}

Table 13  PLPIS

G1 G2

PLPIS
{
l2(0), l2(0.4), l3(0.6)

} {
l2(0), l2(0.8), l3(0.2)

}

G3 G4

PLPIS
{
l2(0), l2(0.6), l3(0.4)

} {
l2(0), l2(0.2), l3(0.8)

}

Table 14  The PLWGDSM
1

PLTSs

(
PLA

i
,PLPIS

)

�
(
PLA1,PLPIS

) (
PLA2,PLPIS

) (
PLA3,PLPIS

) (
PLA4,PLPIS

) (
PLA5,PLPIS

)

0 0.7189 0.4254 0.1883 0.5268 0.5056
0.1 0.7281 0.4502 0.1999 0.5381 0.5343
0.2 0.7386 0.4795 0.2140 0.5516 0.5682
0.3 0.7506 0.5148 0.2318 0.5679 0.6087
0.4 0.7648 0.5584 0.2548 0.5882 0.6583
0.5 0.7823 0.6145 0.2862 0.6145 0.7207
0.6 0.8049 0.6906 0.3319 0.6508 0.8022
0.7 0.8370 0.8021 0.4056 0.7056 0.9149
0.8 0.8910 0.9885 0.5459 0.8035 1.0871
0.9 1.0233 1.3922 0.9257 1.0541 1.4118
1.0 3.3674 3.4816 10.0016 4.8074 2.6743

4161



 G. Wei et al.

1 3

Table 15  The PLWGDSM
2

PLTSs

(
PLA

i
,PLPIS

)

�
(
PLA1,PLPIS

) (
PLA2,PLPIS

) (
PLA3,PLPIS

) (
PLA4,PLPIS

) (
PLA5,PLPIS

)

0 0.7657 0.3792 0.1263 0.3977 0.5036
0.1 0.7868 0.4110 0.1397 0.4269 0.5418
0.2 0.8092 0.4487 0.1563 0.4606 0.5861
0.3 0.8329 0.4940 0.1775 0.5002 0.6384
0.4 0.8580 0.5495 0.2052 0.5471 0.7009
0.5 0.8847 0.6191 0.2433 0.6039 0.7770
0.6 0.9131 0.7087 0.2986 0.6737 0.8716
0.7 0.9434 0.8288 0.3865 0.7618 0.9924
0.8 0.9757 0.9977 0.5479 0.8764 1.1522
0.9 1.0104 1.2533 0.9403 1.0316 1.3732
1.0 1.0476 1.6849 3.3150 1.2536 1.6992

Table 16  The 
PLWGDSM

1

PLTSs

(
PLA

i
,PLPIS

)
 

and ranking orders

� Ranking orders The worst 
alternative

The 
optimal 
alternative

0 A1 > A4 > A5 > A2 > A3 A1 A3

0.1 A1 > A4 > A5 > A2 > A3 A1 A3

0.2 A1 > A5 > A4 > A2 > A3 A1 A3

0.3 A1 > A5 > A4 > A2 > A3 A1 A3

0.4 A1 > A5 > A4 > A2 > A3 A1 A3

0.5 A1 > A5 > A2 = A4 > A3 A1 A3

0.6 A1 > A5 > A2 > A4 > A3 A1 A3

0.7 A5 > A1 > A2 > A4 > A3 A5 A3

0.8 A5 > A2 > A4 > A4 > A3 A5 A3

0.9 A5 > A2 > A4 > A1 > A3 A5 A3

1.0 A3 > A4 > A2 > A1 > A5 A3 A5

Table 17  The 
PLWGDSM

2

PLTSs

(
PLA

i
,PLPIS

)
 

and ranking orders

� Ranking orders The worst 
alternative

The 
optimal 
alternative

0 A1 > A5 > A4 > A2 > A3 A1 A3

0.1 A1 > A5 > A4 > A2 > A3 A1 A3

0.2 A1 > A5 > A4 > A2 > A3 A1 A3

0.3 A1 > A5 > A4 > A2 > A3 A1 A3

0.4 A1 > A5 > A2 > A4 > A3 A1 A3

0.5 A1 > A5 > A2 > A4 > A3 A1 A3

0.6 A1 > A5 > A2 > A4 > A3 A1 A3

0.7 A5 > A1 > A2 > A4 > A3 A5 A3

0.8 A5 > A2 > A1 > A4 > A3 A5 A3

0.9 A5 > A2 > A4 > A1 > A3 A5 A3

1.0 A3 > A5 > A2 > A4 > A1 A3 A1
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• When � = 1 , the two PLWGDSM reduced to the corresponding weighted projection 
measures of PLPIS on Ai (i = 1, 2, 3, 4, 5) . Thus, A3 should be the optimal EVCS site in 
accordance with the principle of the maximum degree of PLWDSM between PLTSs.

However, in accordance with different PLWGDSM and different � , there exists slightly 
different with ranking orders. Therefore some value of � and some measure can assign to 
the presented PLWGDSM methods to fulfill the requirements of DMs preference and flex-
ible decision making issues.

5.2  Comparative analysis

Firstly, PL-GRA method (Liang et  al. 2018) (let � = 0.5 ) is used to compare 
with our proposed PLWGDSM method, then we can get the calculating results: 
�+
1
= 0.6865, �+

2
= 0.4094, �+

3
= 0.3848, �+

4
= 0.6220, �+

5
= 0.4451. Furthermore, we can 

derive the ranking order: A1 > A4 > A5 > A2 > A3 . Thus, we also have the same optimal 
EVCS site A1.

Secondly, probabilistic linguistic weighted average (PLWA) operator (Pang et al. 2016) 
is used to compare with our proposed PLWGDSM method. If the attribute weights are 
completely known, the calculating results is: E

(
Z1(w)

)
= s 0.2735 ,E

(
Z2(w)

)
= s−0.2052 , 

E
(
Z3(w)

)
= s−0.6567, E

(
Z4(w)

)
= s−0.0132, E

(
Z5(w)

)
= s−0.0920 and we can obtain the sort-

ing order: A1 > A4 > A5 > A2 > A3 , thus, we have the same optimal EVCS site A1.
Finally, PL-TOPSIS method (Pang et  al. 2016) is employed to compare with PLWG-

DSM method, then we can acquire the calculating results and sorting results (Table 18).
In terms of the above analysis, it can be found that these above mentioned methods have 

the same optimal EVCS site A1 , and there are slightly different in the three methods’ rank-
ing results from our presented PLWGDSM methods, which can confirm the PLWGDSM 
methods we presented are more flexible and fulfill the requirements of DMs’ preference. 
All these methods have their good advantages: (1) PL-GRA method emphasis the shape 
similarity degree from the positive ideal solution; (2) PLWA operator emphasis group 
influences; (3) PL-TOPSIS method emphasis the distance similarity degree from the posi-
tive and negative ideal solution with incomplete weight information. (4) Some value of � 
and some measure can assign to the presented PLWGDSM methods to fulfill the require-
ments of DMs’ preference and flexible decision making. Evidently, on the basis of the Dice 
measures and the projection measures, the MAGDM methods are the special situations of 
the presented MAGDM methods based on PLWGDSM. Thus, in the process of MAGDM, 
the MAGDM methods put forward in such paper are more useful and more flexible com-
pared with existing MAGDM issues under PLTSs.

6  Conclusion

In this paper, we design some novel DSM of PLTSs and the GDSM of PLTSs and indicate 
that the DSM and PLTSs’ asymmetric measures are special situations of the PLWGDSM 
with different parameter values. Then, we propose the PLWGDSM-based MAGDM meth-
ods with PLTSs. In the end, a demonstrative case study for location planning of electric 
vehicle charging stations is offered to illustrate the PLWGDSM’s efficiency. Thus, the main 

4163



 G. Wei et al.

1 3

contributions of such paper are: (1) two DSM’ forms within PLTSs are designed; (2) the 
GDSM and weighted GDSM with PLTSs are defined; (3) the weighted GDSM are uti-
lized to tackle the MAGDM issues under PLTSs; (4) within the process of MAGDM, the 
developed methods’ major merit is more flexible and useful compared with the existing 
MAGDM issues with PLTSs. In the future, the proposed PLWGDSM of PLTSs can be 
widely applied and investigated in dynamic and intricate MADM or MAGDM issues and 
various unpredictable environments. The designed methods could also tackle other issues, 
such as environmental sustainability competency analysis, intelligent sustainable supplier 
selection and comprehensive assessment for water pollution.
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