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Abstract
Deep reinforcement learning has proved to be a fruitful method in various tasks in the field 
of artificial intelligence during the last several years. Recent works have focused on deep 
reinforcement learning beyond single-agent scenarios, with more consideration of multi-
agent settings. The main goal of this paper is to provide a detailed and systematic overview 
of multi-agent deep reinforcement learning methods in views of challenges and applica-
tions. Specifically, the preliminary knowledge is introduced first for a better understand-
ing of this field. Then, a taxonomy of challenges is proposed and the corresponding struc-
tures and representative methods are introduced. Finally, some applications and interesting 
future opportunities for multi-agent deep reinforcement learning are given.

Keywords  Deep reinforcement learning · Multi-agent · Game theory · Centralized training 
and decentralized execution · Communication learning · Agent modeling

1  Introduction

Reinforcement Learning (RL) is often considered to be a general formalization of deci-
sion-making tasks and a subfield of machine learning. In RL, agents learn not from sample 
data, as in supervised and unsupervised learning, but from experiences that interact with 
the environment. With the success of deep neural networks (DNN), reinforcement learning 
algorithms combine with it and form deep reinforcement learning (DRL) methods to solve 
complex problems in the real world. The pioneering model is Deep Q-Network, which was 
able to play Atari console games without adjusting network architecture or hyperparam-
eters. Deep reinforcement learning methods have been extensively researched and signifi-
cantly improved since then.

Most successful DRL methods have been in the single-agent domains so far, and extend-
ing DRL to multi-agent settings is indispensable. However, deep reinforcement learning 
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for multi-agent settings is fundamentally more difficult than the single-agent scenario due 
to the presence of multi-agent pathologies such as the curse of dimensionality and multi-
agent credit assignment. Despite this complexity, there has been a lot of work in the fields 
of general control, robot system (Gu et al. 2017; Kurek and Jakowski 2016), man–machine 
game (Fu et al. 2019; Lanctot et al. 2017; Leibo et al. 2017), autonomous driving (Shalev-
Shwartz et al. 2016), Internet advertising (Jin et al. 2018), and resource utilization (Xi et al. 
2018; Perolat et al. 2017).

This paper systematically summarizes several research directions in the field of multi-
agent deep reinforcement learning (MDRL), including scalability, non-stationarity, partial 
observability, communication learning, coordinated exploration, agent modeling. The rest 
of this paper is structured as follows: firstly, the basic theory of multi-agent reinforcement 
learning is reviewed in Sect. 2. The latest work of deep reinforcement learning for single-
agent and multi-agent settings are summarized in Sect. 3. The applications and prospect 
of multi-agent deep reinforcement learning are discussed in Sect. 4. The conclusion and 
directions are given in Sect. 5.

2 � Background

2.1 � Single‑agent reinforcement learning

In single-agent reinforcement learning, the agent learns through interaction with the 
dynamic environment by a trial and error procedure as shown in Fig. 1. The goal of the 
agent is to learn an optimal policy by maximizing the expected value of the cumulative 
sum of rewards.

The basic framework of reinforcement learning is the Markov decision process, which is 
a random process represented by the tuple (S,A,R,P).

(1)	 S is the state space, st ∈ S represents the state that the agent is in at the timestep t
(2)	 A is the action space, at ∈ A represents the action taken by the agent at the timestep t
(3)	 R is the reward,rt ∼ �

(
st, at

)
 represents immediate reward value received by the agent 

in state st performing action at

Fig. 1   A single agent interacting with its environment
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(4)	 P is the state transition probability, p[st+1|st, at] represents the probability that the agent 
takes action at and transfer from state st to next state st+1.

In RL, the agent in the state st selects action at depending on policy � and takes the action 
and transfers to the next state st+1 with the probability p[st+1|st, at] , meanwhile receives the 
reward rt from the environment. Assuming that the reward for each timestep t must be mul-
tiplied by a discount factor � to determine how much importance is to be given to the imme-
diate reward and future rewards, the cumulative rewards from the timestep t to the end of 
the timestep T is represented as Rt =

∑T

t�=t
� t

�−trt . The value function Q�(s, a) refers to taking 
action a in the current state s and taking the policy � until the episode ends. In this process, the 
cumulative rewards obtained by agents can be expressed as follows:

If the expected reward of policy �∗ is greater than or equal to the expected reward of all 
the other policy for all states, then the policy �∗ can be called an optimal policy. There may 
be more than one optimal policy, but they share a common function:

The function is called the optimal action-value function, and it follows the Bellman 
optimality equation:

Linear function approximators are used to approximate the action-value function usu-
ally, i.e. Q(s, a||�) ≈ Q∗(s, a) . In addition, deep neural network and other nonlinear function 
approximators can be used to approximate action-value functions or policy.

2.2 � Multi‑agent reinforcement learning

The framework of multi-agent reinforcement learning is a stochastic game based on the 
Markov decision process represented by the tuple S,A1 …An,R1 …Rn,P . Where n 
refers to the number of agents, A = A1 ×… × An is the joint action space of all agents, 
Rn ∶ S × A × S → R is the reward function of each agent, P ∶ S × A × S → [0, 1] is the state 
transition function, where it assumes that the reward function is bounded (Littman 1994). 
(Fig. 2).

In the case of multi-agent settings, state transitions are the result of all agents acting 
together, so the rewards of agents depend on the joint policy, which is represented as 
H ∶ S × A → [0, 1] , and the corresponding reward for each agent is

The bellman equation is

(1)Q�(s, a) = E�

[
Rt|st = s, at = a

]

(2)Q∗(s, a) = max
�

E�

[
Rt|St = s,At = a

]

(3)Q∗(s, a) = Es�∼S

[
r + � max

a�
Q
(
s�, a�

)||||
s, a

]

(4)RH
i
= E[Rt+1|St = s,At,i = a,H]

(5)vH
i
(s) = EH

i

[
Rt+1 + �VH

i

(
St+1

)
|St = s

]

(6)QH
i
(s, a) = EH

i

[
Rt+1 + �QH

i

(
St+1,At+1

)
|St = s,At = a

]
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Stochastic games can be divided into fully cooperation games, fully competitive games, 
and mixed games. In a fully cooperative stochastic game, the reward function is the same 
for all agents, R1=R2=...=Rn so the rewards are the same, and the goal of agents is to 
maximize the common rewards. In a fully competitive stochastic game, for example, if 
n = 2,R1 = −R2 , then the two agents have opposite goals. In mixed games, agents’ rewards 
are usually different and correlated.

It is a challenge to specify good general goals for agents. Reviewing the previous litera-
ture on the definition of learning goals, it mainly can be summarized as two aspects, stabil-
ity and adaptability. Stability means that agents can converge to a stable policy. Adaptabil-
ity ensures that the performance of agents does not decrease as other agents change their 
policy (Buşoniu et al. 2010).

2.2.1 � Fully cooperation game

In a fully cooperative stochastic game, agents have the same reward function, and the learn-
ing goal is to maximize the common discounted reward. If a centralized structure is avail-
able, the goal can be expressed by learning the optimal joint-action values. Q-learning is a 
common method to learn it:

Each agent uses a greedy policy to maximize common rewards:

It is necessary to consider the cooperation between agents. Team-Q algorithm (Littman 
2001) solves cooperation problems by assuming that optimal joint action is unique. Distrib-
uted-Q algorithm (Lauer and Riedmiller 2000) solves problems with a limited computational 

(7)
Qt+1

(
st, at

)
= Qt

(
st, at

)

+�

[
rt+1 + � max

a�
Qt+1

(
st+1, a

�
)
− Qt

(
st, at

)]

(8)hi(x) = argmax
ai

max
ai ...an

Q∗(s, a)

Fig. 2   Multi agents interacting with the environment
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complexity which is similar to that of Q learning. However, this algorithm is only applicable 
to deterministic problems with non-negative reward functions.

2.2.2 � Fully competitive game

In a fully cooperative stochastic game, agents have the same reward function, and the learning 
goal is to maximize the common discounted reward. If a centralized structure is available, the 
goal can be expressed by learning the optimal joint-action values. Q-learning is a common 
method to learn it:

Each agent uses a greedy policy to maximize common rewards:

It is necessary to consider the cooperation between agents. Team-Q algorithm (Littman 
2001) solves cooperation problems by assuming that optimal joint action is unique. Distrib-
uted-Q algorithm (Lauer and Riedmiller 2000) solves problems with a limited computational 
complexity which is similar to that of Q learning. However, this algorithm is only applicable 
to deterministic problems with non-negative reward functions.

where m1 is the minimax reward of agent 1

where the policy of agent 1 in the state s is represented by h1(s,⋅) , and the point represents 
the parameter of the action.

2.2.3 � Mixed game

In mixed dynamic stochastic games, the methods are mainly divided into agent-independent 
methods and agent-aware methods. Agent-independent methods generally adopt a common 
structure based on Q learning, where policy and state values are calculated using the game 
theory solver in SG. One representative approach of agent-independent methods is Nash 
Q-learning (Hu and Wellman 2003), and there are also Correlated Q-learning (CE-Q) (Green-
wald et al. 2003) or Asymmetric Q-learning (Kononen 2004) to solve equilibrium problems 
by using correlation or Stackelberg (leader–follower) equilibrium respectively. Agent-aware 
methods typically do consider convergence, in which the representative algorithm is the Win-
or-Learn-Fast Policy Hill-Climbing (WoLF-PHC) (Xi et al. 2015). Many methods for mixed 
SG suffer from scalability challenges and are sensitive to partial observability, the latter one 
holds for agent-independent algorithms especially.

(9)h1,t
(
st, ⋅

)
= argm1

(
Qt, st

)

(10)
Qt+1

(
st, a1,t, a2,t

)
= Qt

(
st, a1,t, a2,t

)
+

�
[
rk+1 + �m1

(
Qt, at+1

)
− Qt

(
st, a1,t, a2,t

)]

(11)m1(Q, s) = max
h1(s,⋅)

min
a2

∑

a1

h1(s, a1)Q
(
s, a1, a2

)
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3 � Multi‑agent deep reinforcement learning

3.1 � Deep reinforcement learning

Deep reinforcement learning algorithms can be roughly divided into two categories: value-
based,policy-based. Value-based methods construct optimal policy by gaining an approxi-
mation of optimal function Q∗(s, a) using dynamic programming. In DRL, Q-function is 
represented with deep neural network. Policy-based algorithms directly optimize policy 
�∗without additional information about MDP, using gradient approximate estimations rela-
tive to policy parameters.

3.1.1 � Deep Q‑network

Deep Q-Network (DQN) proposed by Mnih et  al. (2013) is a representative method of 
Value-based methods. Concisely, the DQN structure leverages the deep neural network to 
directly extract a representation of input state from the environment. The output of DQN 
produces Q-values of all possible actions. Therefore, DQN can be considered as a value 
network parameterized by � , which is trained continually to the approximate optimal pol-
icy. Mathematically, DQN uses the Bellman equation mentioned before to minimize the 
loss function L(�)

The demerit of using the neural network to approximate value function is unstable and 
may cause divergence due to the bias of correlative samples. Mnih et al. presented a tar-
get network parameterized by �′ to make the samples uncorrelated. The target network 
is updated in every N step from the estimation network. Besides, generated samples are 
stored in an experience replay memory and are retrieved randomly from it. Therefore, 
Eq. (13) can be rewritten as:

On the basis of DQN, a variety of deep reinforcement learning algorithms was pro-
posed. Double Deep Q-network (DDQN) was proposed by Hasselt et al. By applying Dou-
ble Q-learning to DQN, it can separate action selection and policy evaluation, reducing 
the risk of overestimating Q value [26 ~ 27]. Dueling Deep Q-network was put forward by 
Wang et al., the model divides the abstract features extracted by CNN into two branches, 
one of which represents the state value function and the other represents the advantage 
function. Through this dueling network structure, agents can identify the correct behaviors 
faster in the process of policy evaluation and network architecture can be better integrated 
(Wang et al. 2015). Schaul et al. proposed a double deep Q network with proportional pri-
oritization based on DDQN. This method replaces uniform sampling with priority-based 
sampling, improves the sampling probability of some valuable samples, and thus speeds 
up the learning of optimal policy (Schaul et  al. 2015). Lakshminarayanan et  al. pro-
posed Dynamic Frame Skip Deep Q-Network (DFDQN), which uses dynamic frameskip 

(12)L(�) = E
[(
r + � maxQ

(
s�, a�|�

)
− Q(s, a|�)

)2]

(13)L(�) = E
[(
r + � maxQ

(
s�, a�|��

)
− Q(s, a|�)

)2]

(14)�′ ← � for every N steps
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to replace action repeated k times per moment in DQN. Experiments show that DFDQN 
achieves better performance in some Atari 2600 games (Lakshminarayanan et  al. 2016). 
Vincent et al. use the adaptive discount factor and learning rate in DQN, the convergence 
speed of the deep network is accelerated (Francois-Lavet et al. 2015). Tom Schaul et al. 
developed a framework for prioritizing experience and used it in DQN to replay important 
transitions more frequently and learn more effectively (Schaul et al. 2015). Fortunato et al. 
(2017) proposed adding noise to the parameters instead of �-greedy to increase the explo-
ration ability of the model. The success of DQN encouraged full-scale research of value-
based methods by studying various demerits of DQN and developing auxiliary extensions. 
Hessel et al. proposed Rainbow DQN (Hessel et al. 2017), which uniting seven Q-learning-
based ideas in one procedure to verify whether these merged extensions are essentially nec-
essary for the RL algorithms.

3.1.2 � Deep deterministic policy gradient

The actor-critic algorithm is a widely used policy-based method. The structure consists 
of two networks, a policy network called the actor network and a value network called the 
critic network. Actor network input state and output action while critic network input state 
and action and output Q value (Zhao et al. 2019, 2018; Ding et al. 2019). Lillicrap et al. 
proposed the Deep Deterministic Policy Gradient (DDPG) method based on the actor-critic 
structure, which can be used to tackle the problem of continuous action space in DRL. 
Experiments show that DDPG is not only stable in a series of continuous action space 
tasks, but also requires far fewer time steps than DQN to obtain the optimal policy. Com-
pared with the DRL method based on value function, the deep deterministic policy gradi-
ent method based on the AC framework has higher optimization efficiency and faster speed 
(Lillicrap et al. 2016; Silver et al. 2014). Besides, various algorithms are derived based on 
the AC model, such as asynchronous advantage action critic (A3C) algorithm (Mnih et al. 
2016) and distributed proximal policy optimization (DPPO) algorithm (Schulman et  al. 
2017; Heess et al. 2017). A3C algorithm was proposed by Mnih in 2016. In A3C, multi-
thread is used to collect data in parallel, and each thread is an independent agent searching 
for an independent environment. At the same time, each agent can use a different explora-
tion policy to sample in parallel, so that the samples obtained by each thread are naturally 
unrelated and the sampling speed is faster. Fujimoto et al. (2018) proposed Twin Delayed 
DDPG (TD3) algorithms to tackle the overestimation problems in actor-critic structure by 
taking the minimum value between a pair of critics. Tuomas et al. proposed a soft actor-
critic method based on the maximum entropy RL framework. The actor network maxi-
mizes expected rewards while also maximizing entropy (Haarnoja et al. 2018).

3.2 � MDRL research progress: challenges and structures

Many MDRL methods suffer from scalability issues and are sensitive to partial observ-
ability (Partial observability means that the agents do not know complete information of 
states pertaining to the environment when they interact with the environment). There are 
two mainstream structures used in multi-agent settings. The first structure is decentral-
izing training and decentralizing execution structure (DTDE), each agent is trained inde-
pendently of the other agents. This structure can handle the scalability problems caused 
by the growth of the number of agents, but other problems are emerging, including envi-
ronment non-stationary, reward distribution, and independent agents is sensitive to partial 
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observability. The paradigm of centralized training and centralized execution (CTCE) can 
tackle these problems, in which agents are modeled together to learn a joint policy. The dis-
advantage of this centralized structure is the huge input and output space dimension. With 
the increase in the number of agents, the space dimension of the output joint policy renders 
an exponential increase. Another main structure is centralized training and decentralized 
execution (CTDE), which can solve partial observability problems meanwhile avoid huge 
input and output space dimensions caused by centralized execution.

3.2.1 � Scalability and DTDE

Scalability is one of the core issues of MDRL domains. Scalability mainly refers to the 
extension from single-agent environment to multi-agent environment, including the expan-
sion of state dimension and action dimension and the number of agents.

Tampuu et al. (2017) first proposed playing the Atari Pong game with two independent 
DQN agents. The result indicates that DQNs can be extended for the decentralized learn-
ing of multi-agent systems. It is the earliest work to adopt the DTDE framework to solve 
the scalability problem. Leibo et al. (2017) applied independent DQN to Sequential Social 
Dilemmas issues and they analyzed the dynamics of multiple independent agent learn-
ing policy, each using its deep Q network. Foerster et al. (2017) proposed two methods to 
improve the experience replay method to make multi-agents more stable and compatible. 
On the one hand, it adopted importance sampling to naturally attenuate outdated data. On 
the other hand, each agent can infer the action of other agents by observing the policy of 
other agents.

Song et al. (2018) proposed a new multi-agent policy gradient algorithm, which solved 
the high variance gradient estimation problem and effectively optimized multi-agent 
cooperative tasks in a highly complex particle environment. Wai et  al. (2018) proposed 
a decentralized local exchange scheme to make the method more extensible and robust. 
Each agent communicates only with its neighbors through the network and iterates spa-
tially and temporally to combine adjacent gradient information and local reward informa-
tion respectively. Abouheaf and Gueaieb (2017) proposed an online adaptive reinforcement 
learning method for multi-agent settings based on graph interaction. In this method, the 
bellman equation of multi-agent setting is solved by the reduced value function, reducing 
the computational complexity and solving the large-scale optimization problem. Palmer 
et al. (2018) proposed LDQN algorithm, which introduced the lenient policy into the deep 
Q network and adopted the leniency treatment method for the update of negative policies to 
improve the convergence and stability.

The weakness of independent agents is that by treating other agents as part of the envi-
ronment, it ignores the fact that their policies change over time. While independent agent 
avoids the scalability caused by centralized learning, it brings a new problem that the envi-
ronment becomes non-stationary from the point of view of each agent. In this situation, the 
optimal policy of an agent can be affected by the learning among agents. Meanwhile, the 
convergence theory of Q-learning applied in single-agent reinforcement is not suitable for 
most multi-agent settings as the Markov property is no longer valid in the non-stationary 
environment.
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3.2.2 � Partial observability and CTDE

In real-world tasks, there are many situations where the environment is partially observ-
able. In other words, when agents interact with the environment, they do not know all the 
information about the state of the environment. This type of problem is typically modeled 
using a partially observable Markov decision process (POMDP).

In single-agent deep reinforcement learning, there are many models and algorithms 
dealing with POMDP, among which deep recurrent Q-network (DRQN) is the most repre-
sentative. Hausknecht and Stone (2015) modified DQN combined a Long short-term Mem-
ory with DQN to tackle the noisy observations problems of POMDP. Although the DRQN 
sees only one frame at a time, it can still combine information across frames to detect rel-
evant information, such as the speed of objects on the screen. Foerster et al. (2016) pro-
posed Reinforced Inter-Agent Learning (RIAL) which is also based on DRQN to address 
the partial observability problems and they proposed two variations on it. In one variant, 
agents learn policy using their own network parameters as independent Q-learning, treating 
the others as part of the environment. In another variant, agents use the same network in 
which parameters are shared among all agents.

Gupta et al. (2017) introduced parameter sharing (PS) method to improve learning in 
homogeneous partially observable multi-agent environments where agents have the same 
action space. The idea is that a globally shared policy network can still perform differently 
through different inputs (individual agent observation). They tested three different methods 
through parameter sharing: PS-DQN, PS-DDPG and PS-TRPO, and the results showed that 
PS-TRPO was superior to the other two methods.

In fact, in many multi-agent settings, partial observability needs the learning of decen-
tralized policy, because on the one hand it only necessitates local action observation history 
of each agent. On the other hand, decentralized policies naturally address the problem that 
joint action spaces grow significantly with the number of agents. Fortunately, decentralized 
policies are often learned in a centralized way. Partial observability problem can be tack-
led by centralized training and decentralized execution structure. Lowe et al. (2017) adopt 
the CTDE paradigm, allowing the policies to use others information to improve training. 
They proposed an extension of actor-critic setting where the critics added extra information 
about other agents’ policies, while the actor only has local information. After training is 
completed, only the local actors are used at the execution phase, acting in a decentralized 
manner. Concretely, consider a game having N agents whose policies are � = and policies 
parameters are �=

{
�1 … ,�N

}
.Then the gradient of the expected reward for agent i with 

policy �i , J
(
�i
)
= E

[
Ri

]
 is present as:

where Q�

i

(
x, a1,… , aN

)
 is a centralized action-value function that takes all agents’ 

action a1,… , aN and some state information x (i.e., x = 
(
o1, ...oN

)
 ) as input, and out-

puts the Q-value for agent i. The experience replay buffer D contains the tuples (
x, x′, a1, ..., aN , r1...rN

)
 recording experiences of all agents, where x′ represents the next 

state after taking actions a1, ..., aN The centralized action-value function Q�

i
 is updated as:

(15)∇�i
J
(
�i
)
= Ex,a∼D

[
�i

(
oi
)
∇aiQ

�

i

(
x, a1,… , aN

)|||ai = �i

(
oi
)]

(16)L
(
�i
)
= Ex,a,r,x�

[
Q

�

i

(
x, a1,… , aN

)
− y

]2
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where �� =

{
�
�
�

1

,… ,�
�
�

N

}
 is the set of target policies with delayed parameters �′

i
 . It is 

worth noting that the centralized Q function is only used during training, while each policy 
��i

 only takes local information oi to produce an action during decentralized execution. 
(Fig. 3).

Many works have emerged based on this framework. Li et al. (2019) studied the prob-
lem of training robust DRL agents with continuous action in multi-agent learning settings, 
so that the trained agents still have the generalization ability when the opponent’s policy 
changes. They proposed the MiniMax Multi-agent Deep Deterministic Policy Gradient 
(M3DDPG) method with two main contributions: on the one hand, they introduced a mini-
max extension of the popular MADDPG algorithm for robust policy learning. On the other 
hand, because the continuous action space leads to the computational difficulty of mini-
max learning objectives, they proposed Multi-Agent Adversarial Learning (MAAL) to effi-
ciently tackle that problem.

Foerster et al. (2018) proposed a novel multi-agent actor-critic method like MADDPG 
called counterfactual multi-agent policy gradients (COMA) to learn decentralized policies 
for cooperative agents. In addition, COMA addresses credit assignment problems in multi-
agent setting by using a counterfactual baseline. That baseline keeps the other agents’ 
actions fixed and marginalizes out the action of a single agent. Then, by comparing the 
current Q value with the baseline, an advantage function can be calculated. This counter-
factual was inspired by difference rewards (Tumer and Agogino 2007), which is a way to 
capture individual contributions from agents in a coordinated multi-agent setting.

Coordinated MDRL application problems such as coordinating self-driving vehicles 
often could be treated using a centralized approach. However, Sunehag et al. (2017) found 
that the centralized approach consistently fails on these simple cooperative MDRL tasks 
in practice. Specifically, the centralized approach learned inefficient policies with only one 
agent behaving actively and the other being “lazy”. It occurs when an agent learns an effec-
tive policy, then the other agents are discouraged from learning. The authors proposed a 
new value decomposition network (VDN) architecture to solve these problems and trains 

(17)y = ri + �Q
��

i

(
x�, a�

1
,… , a�

N

)|||a
�

j
= ��

j

(
oj
)

Fig3   Architecture of Multi-Agent Deep Deterministic Policy Gradient
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individual agents to decompose team value functions into agent-wise value functions. They 
proved that value-decomposition has a much better performance than centralization or fully 
independent learners.

Rashid et al. (2018) proposed a novel value-based method called QMIX. They demon-
strated that the full decomposition of VDN is unnecessary to extract decentralized policies. 
QMIX is an extension of VDN, which gets the joint action-value function by summarizing 
local action-value functions of each agent. QMIX adopts a hybrid network to merge local 
value functions of single- agent and adds global state information in the training and learn-
ing process to improve algorithm performance(Fig. 4).

However, VDN and QMIX achieve the value decomposition heuristically without valid 
theoretical groundings. Yang et al. (2020) theoretically derived a linear decomposing for-
mation from Qtot to each Qi . Based on this theoretical discovery, they introduced multi-head 
attention mechanisms to approximate the decomposition of each term in the formula and 
provided theoretical explanations. Son et al. (2019) proposed a new factorization method 
named QTRAN, which is not subject to structural constraints in the factorization process 
of VDN and QMIX. Yang et al. (2020) proposed the Q-value Path Decomposition (QPD) 
method to decompose global Q-values of the system into Q-values of individual agents lev-
eraging the integrated gradient attribution technique (Table 1).

In addition to the above classification, the next sections describe two current mainstream 
branches, communication learning and agent modeling, in which most of the methods are 
also used to solve scalability, partial observability, non-stationary problem in MDRL. 
Actually, some of them can also be categorized into the table above.

3.3 � Communication learning

Communication between agents is one of the hotspots in the MDRL field in recent years. 
Communication learning setting usually considers a set of cooperated agents in the par-
tially observable environment where agents exchange information through communication 
to promote the cooperation between agents.

Foerster et  al. (2016) first proposed the mechanism of updating the communication 
model through the backpropagation method, namely Differentiable Inter-Agent Learn-
ing (DIAL). DIAL takes information from other agents as input, providing a reference for 
agent decision-making. Gradient flow will update the communication generator layer at the 

Fig.4   Architecture of QMIX
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same time. Foerster et al. proposed the Deep Distributed Recurrent Q-network (DDRQN) 
based on DRQN, which enables the agent teams to learn to solve communication problems 
and establish coordination tasks. The agents do not receive any pre-designed communica-
tion protocols in these tasks so that they must automate the development first and agree on 
their communication protocols. This is the first success of deep reinforcement learning in 
learning communication protocols.

Sukhbaatar et  al. (2016) proposed the CommNet method in a similar way. A single 
agent extracts information from other agents through broadcasting. The CommNet model 
is showed in Fig. 5. The left one is a view of the model for single agent that the parameters 
are shared across all agents. The middle one is a single communication step where each 
agent modules propagate their internal state, as well as broadcasting a communication vec-
tor on a common channel (shown in yellow). The Right one is the full model, showing 
input states for each agent, two communication steps and the output actions for each agent.

Peng et al. (2017) came up with a new communication network, Multi-agent Bidirec-
tional-Coordinated Nets (BicNet). BicNet uses bi-directional RNN as a communication 
channel and stores local state memory. The BicNet is different from DIAL, CommNet in 
that BicNet can adjust the order of agents joining communication networks and support 
continuous action space. However, BicNet requires each agent to obtain a global state.

Mao et al. (2017) proposed an Actor-Coordinator-Critic Net (ACCNet) framework for 
solving learning-to-communicate problems in multi-agent setting. The ACCNet completes 
the output of the integrated state through communication channel, and then uses integrated 
state to complete the agent-independent actor-critic learning process. On the other hand, 
ACCNet carries out communication in the critic part to obtain better estimated Q-values. 
Jiang et  al. (2018) proposed a novel method named ATOC to use attention to complete 
communication. ATOC uses attention unit to build a communication group (select agents 
for information sharing) and bi-directional LSTM unit as a communication channel. In 
addition, ATOC supports an environment of a large number of agents.

3.4 � Agent modeling

An important ability of agents is to reason about the other agents’ behaviors. By construct-
ing model agents can make predictions about the modeled agents’ properties of interest, 
including actions, goals, beliefs. Typically, a model is a function that takes a portion of 

Fig. 5   Architecture of CommNet
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the observed interaction history as input and outputs predictions about some of the related 
properties of the modeled agent. The interaction history contains information such as past 
actions taken by the modeled agent in various situations. Various modeling approaches 
now exist in multi-agent environments, with vastly different approaches and underlying 
assumptions.

He et al. (2016) proposed Deep Reinforcement Opponent Network (DRON) algorithm, 
which is an early work using deep neural networks for agents modeling. The network archi-
tectures have two networks, one evaluates Q values and the other one learns a representa-
tion of the opponent policy. In addition, they proposed to have several expert networks. 
Each expert network captures one type of opponent policy to combine their predictions 
in order to get the estimated Q value. While DRON defines the opponent network using 
hand-crafted features, Deep Policy Inference Q-Network (DPIQN) (Hong et al. 2018) learn 
“policy features” directly from original observations of the other agents. DPIQN consists 
of three main parts: Q value learning module, feature extraction module, and auxiliary pol-
icy feature learning module. The first two modules are responsible for learning the Q value, 
while the last module is mainly concerned with learning hidden representations from other 
agent policies.

A variety of opponent modeling approaches are learned from observations. Raileanu 
et al. (2018) proposed a different approach Self Other Modeling (SOM). SOM uses agents’ 
policies to predict the actions of opponents. The authors present a new method for inferring 
hidden states from the behavior of other agents and using these estimates to select actions. 
SOM uses two networks, one to calculate the agent’s own policy and the other to infer the 
opponent’s target. This approach does not require any additional parameters to model other 
agents. These networks have the same input parameters but the different values of the agent 
or the opponent. Compared with previous methods, the focus of SOM is not to learn the 
opponent’s policy, but to estimate the opponent’s target. (Fig. 6)

Rabinowitz et  al. (2018) came up with a new neural network, Theory of Mind Net-
work (ToMnet), that is capable of understanding the mental states of itself and the agents 
around it. Theory of mind refers broadly to the ability of humans to represent the mental 
states of others, such as desires, beliefs, and intentions. Theory of mind is part of recursive 
reasoning approaches (Gmytrasiewicz and Doshi 2005; Gmytrasiewicz and Durfee 2000; 
Camerer et al. 2004; Carmel and Markovitch 1996). In these approach agents have explicit 
beliefs about the other agents’ mental states. ToMnet is composed of three networks, the 
first one is a character network that learns from past information, the second one is a men-
tal state network that takes the character output and the most recent trace as its input; the 
third one is the prediction network, its input are the current state and the outputs of the 
other two networks. The output is to predict the opponent’s next action in general. ToMnet 
can learn a generic model of agents in a training distribution and build agent-specific mod-
els whilst observing the actions of new agents.

Yang et  al. (2019) proposed Deep Bayesian Theory of Mind Policy (Bayes-ToMoP), 
which takes inspiration from theory of mind. Their setup assumes that the opponent has a 

Fig.6   general agent model
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different set of policies to act on, and changes over time. Earlier work such as BPR + (Her-
nandez-Leal et  al. 2016) extends the Bayesian policy reuse framework (Rosman et  al. 
2016) to multi-agent domains to deal with this setup. Deep Bayes-ToMoP provide a higher-
level reasoning policy than BRP + by using theory of mind. In addition, Deep BPR + Zheng 
et al. (2018) method is also inspired by BPR + . It uses not only environmental rewards but 
also the idea of online learning opponent model (Hernandez-Leal and Kaisers 2017) to 
construct a rectified belief on the opponent policy. In addition, it extracts ideas from policy 
distillation (Rusu et al. 2015; Hinton et al. 2015) and extends them to multi-agent settings 
to create a policy network of distillation.

Lanctot et  al. (2017) quantified a serious problem with independent reinforcement 
agents, joint policy Correlation (JPC), which limits the versatility of these methods. They 
presented a generalized multi-agent reinforcement learning algorithm that includes several 
previous algorithms. They demonstrated that PSRO/DCH produces a general policy of 
significantly reducing JPC in partially observable coordinated games in their experiment. 
(Table 2).

4 � Applications and prospect of MDRL

In recent years, MDRL methods have been applied in various fields to solve complex real-
world tasks. This section outlines the application of these methods in different domains 
(Mao et al. 2019; Wang et al. 2019; Tan 1993; Duan et al. 2016).

MDRL is used in various domains such as autonomous driving, Internet marketing, 
resource management, and traffic control. Shalev-shwartz et al. (2016) improved and opti-
mized the safety and environmental unpredictability of autonomous driving. They dem-
onstrated policy gradient iterations can be used without Markovian assumptions. In addi-
tion, they decomposed the problem into components of Policy for Desires and trajectory 
planning with hard constraints, which enabled the comfort of driving and the safety of 
driving respectively. Jin et  al. (2018) proposed the Distributed Coordinated Multi-Agent 
Bidding (DCMAB) algorithm which combined the idea of clustering with the MDRL 
method to optimize the performance of real-time online bidding in the face of a large num-
ber of advertisers. In order to balance the competition and cooperation between advertis-
ers, a practical distributed coordinated multi-agent bidding algorithm was proposed and 

Table 2   Multi-agent deep reinforcement learning main approachs

Approachs Value-based Policy-based

Communication learning RIAL and DIAL (Foerster et al. 2016) CommNet (Sukhbaatar and Fergus 
2016)

BiCNet (Peng et al. 2017)
ACCNET (Mao et al. 2017)
ATOC (Jiang and Lu 2018)

Agent modeling DRON (He et al. 2016) SOM (Raileanu et al. 2018)
DPIQN and DRPIQN (Hong et al. 2018) ToMnet (Rabinowitz et al. 2018)
Deep Bayes-ToMoP (Yang et al. 2019)
Deep BPR + (Zheng et al. 2018)
PSRO/DCH (Lanctot et al. 2017)
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implemented. As shown in Fig. 7, the model use structure of separate actor and Q network 
for each agent. ai is calculated through ui using g and x as input. Where g represents general 
information and x represents the clustering feature. In addition to states and actions, con-
sumer distribution d is collected as the input of all agents’ Q function.

In the field of resource management, Xi et  al. (2018) proposed a novel MDRL algo-
rithm named PDWoLF-PHC to solve the stochastic disturbance problem of the power grid 
system caused by the integration of the distributed energy and new energy. It can real-
ize the application of stochastic games in non-Markovian environments effectively. That 
model has a faster convergence speed and stronger robustness, so that the power grid sys-
tem can improve the utilization rate of new energy under more complex conditions. Perolat 
et  al. (2017) studied the emergent behavior of groups of independent-agents in partially 
observable Markov games. It modeled the occupant of common-pool resources, revealed 
the relationship between exclusivity, sustainability and inequality, and proposed solutions 
to improve resource management ability. Kofinas et al. (2018) proposed the fuzzy Q learn-
ing method to effectively improve the energy management ability of decentralized micro 
grid. Noureddine et al. (2017) proposed a DRL cooperative task allocation method, which 
enables multiple agents to interact and effectively allocate resources and tasks. In a loosely 
coupled distributed multi-agent setting, agents can benefit from collaborative neighbors.

In the traffic control domains, Chen et  al. (2016) proposed a cooperative multi-agent 
reinforcement learning framework to alleviate bus congestion on bus lanes in real time. 
They adopted coordination graphs to automatically selecting the coordinated holding 
actions when multiple buses are stationed at the stops. In addition, for the particularity 
of the sparsely structured graphs, they developed sparse collaborative Q learning algo-
rithms for coordinated holding actions. Simulations experiments proved the method 
could be applied in an advanced public transportation system to improve the performance 
of bus operation. Vidhate et  al. (2017) proposed a traffic control model based on coop-
erative multi-agent reinforcement learning for the control and optimization of the traf-
fic systems, which can deal with unknown complex states. The model extends the traffic 
value of the vehicle, including delay time, the newly arriving vehicles and the number of 
vehicles parked at a signal to learn and set the optimal actions. The model makes a great 
improvement to traffic control, which proves that it can realize real-time dynamic traffic 
control. As shown in Fig.  8, in a real-world environment, the flow of four signals with 
eight flows is considered. Calvo et al. (2018) proposed a novel IDQN algorithm to solve 

Fig.7   Structure of DCMAB algorithm
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the heterogeneity problem of urban traffic signal control in multi-agent environment. Each 
agent learns through dueling double deep Q-network (DDDQN), which integrates dueling 
networks, DDQN and priority experience replay. As shown in Fig.  9, agents learn from 
local experience and the exchange of information between them. Agents interact in two 
ways: one is an intra-level way that agents interact with each other at the same level and 
another is an inter-level way where agents interact with each other at different hierarchy 

Fig. 8   Traffic flow and control of four intersections with eight flow directions

Fig. 9   Architecture of traffic signal control
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levels. Traffic agents use inter-level ways to communicate with the monitor-agent. Sharing 
information between traffic agents is intra-level.

The agents interact in two manners: (1) intra-level or horizontal interaction; where the 
agents interact with each other at the same level, and (2) inter-level; where the agents inter-
act with each other in different levels of hierarchy. Traffic agents use intra-level interaction 
by sharing information between them, and the communication between the monitor-agent 
and the traffic agents is inter-level. (Table 3).

5 � Conclusion and research directions

Deep reinforcement learning has shown success in many single-agent fields, and the 
next step is to focus on multi-agent scenarios. However, deep reinforcement learning for 
multi-agent settings is fundamentally more difficult due to non-stationarity, the increase 
of dimensionality, the partial observability and the credit assignment problem, among 
other factors (Stone and Veloso 2000; Panait and Luke 2005; Hernandez-Leal et al. 2017, 
2018; Albrecht and Stone 2018; Silva and Costa 2019; Palmer et al. 2019; Wei et al. 2018; 
Nguyen et al. 2018; Xu et al. 2016).

This paper makes a systematic review of multi-agent deep reinforcement learning, 
including the background, classical algorithm, research progress and practical applica-
tion. In many practical problems and fields, multi-agent deep reinforcement learning has 
shown great potential, with endless research results and various algorithms emerging. In 
this paper, the theoretical background and classical algorithms of multi-agent reinforce-
ment learning are introduced firstly, including the Markov framework and stochastic game 
model. Then the recent innovations and improvements of multi-agent deep reinforcement 
learning algorithms from different perspectives are reviewed in detail. Finally, the practical 
application and future prospect of multi-agent deep reinforcement learning are discussed. 
There are some research directions that are not detailed in this paper but are still promising, 
including learning from demonstration, model-free deep RL and transfer learning.

Learning from demonstration which consists of imitation learning and inverse RL 
has made significant progress in single-agent deep RL (Piot et al. 2016). Imitation learn-
ing attempts to map states to actions in a supervised way. It extends the expert policy 
directly to the unvisited state, making it closer to the multi-class classification problem 
in the case of finite action sets. Inverse RL agents try to infer a reward function based 

Table 3   Typical MDRL applications in different fields

Application field Based structure Research

Autonomous driving Policy Gradient Shalev-shwartz et al. (Shalev-Shwartz et al. 2016)
Internet marketing Actor-Critic Jin et al. (Jin et al. 2018)
Resource management PDWoLF-PHC Xi et al. (Xi et al. 2018)

DQN Perolat et al. (Perolat et al. 2017)
Fuzzy DQN Kofinas et al. (Kofinas et al. 2018)
IDQN Noureddine et al. (Noureddine et al. 2017)

Traffic control DQN Chen et al. (Chen et al. 2016)
DQN Vidhate et al. (Vidhate and Kulkarni 2017)
IDQN Calvo et al. (Calvo and Dusparic 2018)
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on expert demonstrations (Hadfield-Menell et al. 2016, 2017). However, these methods 
have not been fully studied in multi-agent settings. In MAS, these applications create a 
very direct challenge that requires multiple experts who can demonstrate tasks collabo-
ratively. Moreover, the communication and reasoning abilities of experts are difficult to 
be described and modeled by autonomous agents in MAS. These raise important ques-
tions for the extensions of imitation learning and inverse RL to MDRL (Christiano et al. 
2017; Nguyen et al. 2018, 2018). Zhang et al. combined human prior suboptimal knowl-
edge with RL to introduce a knowledge guided policy network (Zhang et al. 2020). In 
addition, model-free deep RL has been applied to solve many complex problems in the 
field of single-agent and multi-agent domains. However, such methods require a large 
number of samples and a long learning time to achieve good performance. Model-based 
deep learning extensions have made great progress in single-agent field, such as (Finn 
and Levine 2017; Gu et al. 2016; Levine et al. 2016), but these extensions have not been 
widely studied in multi-agent setting.

Many studies have promoted transfer learning to improve the performance of MDRL 
models during training and reduce computational cost. Yin et al. (2017) introduced pol-
icy distillation framework to apply knowledge transfer to DRL. This method reduces 
training time and has better performance than DQN, but its exploration policy is not 
effective enough. Egorov et al. (2016) reconstructed the multi-agent environment as an 
image-like representation and used CNNs to estimate the Q value of each agent. When 
the transfer learning method can be used to speed up the training process, it can solve 
the scalability problem in MAS. Parisotto et  al. (2015) proposed a role simulation 
method for multi-task transfer learning to improve the learning speed of deep policy 
networks. The network is not very complex, but it can achieve expert performance on 
multiple games at the same time.

Although MDRL is a recent area, there are still many open-source benchmarks 
that can be used for different characteristics, such as Starcraft Multi-agent Challenge, 
Hanabi and so on. Starcraft Multi-agent Challenge (Samvelyan et al. 2019) is based on 
StarCraft II which is a real-time strategy game. It focuses on the challenges of micro-
management, which means the fine-grained control of individual units. Each unit is con-
trolled by an independent agent that acts according to local observations. Hanabi is a 
cooperative multiplayer card game that includes two to five players.

The game is designed that players can’t see their own cards, but other players can 
reveal their information. This presents an interesting challenge to learning algorithms, 
especially in the case of self-play learning and ad-hoc teams (Bard et  al. 2020; Hes-
sel et  al. 2018; Bowling and McCracken 2005). Pommerman (Resnick et  al. 2018) is 
another multi-agent benchmark that supports partial observability and communication 
learning among agents. It can be used to test cooperative, competitive and mixed tasks. 
Pommerman is a very challenging field because the rewards are very sparse and delayed 
(Gao et al. 2019). The Apprentice Firemen Game (Palmer et al. 2019) and Fully Coop-
erative Multiagent Object Transporation Problems (CMTOPs) (Palmer et al. 2018) are 
both two-agent pixel-based environment. In addition to the above, there are many bench-
marks such as MuJoCo Multi-agent Soccer (Liu et al. 2019), Neural MMO (Suarez et al. 
1903), Arena (Song et al. 2019), MARLO competition (Johnson et al. 2016), MAgent 
(Zheng et al. 2017).

Acknowledgements  This work is supported by the National Natural Science Foundations of China (Nos. 
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