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Abstract
Knee osteoarthritis is a major diarthrodial joint disorder with profound global socioeco-
nomic impact. Diagnostic imaging using magnetic resonance image can produce morpho-
metric biomarkers to investigate the epidemiology of knee osteoarthritis in clinical trials, 
which is critical to attain early detection and develop effective regenerative treatment/
therapy. With tremendous increase in image data size, manual segmentation as the stand-
ard practice becomes largely unsuitable. This review aims to provide an in-depth insight 
about a broad collection of classical and deep learning segmentation techniques used in 
knee osteoarthritis research. Specifically, this is the first review that covers both bone and 
cartilage segmentation models in recognition that knee osteoarthritis is a “whole joint” dis-
ease, as well as highlights on diagnostic values of deep learning in emerging knee osteoar-
thritis research. Besides, we have collected useful deep learning reviews to serve as source 
of reference to ease future development of deep learning models in this field. Lastly, we 
highlight on the diagnostic value of deep learning as key future computer-aided diagnosis 
applications to conclude this review.
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1 Introduction

Knee Osteoarthritis (OA) is a whole joint disease (Loeser et al. 2012) caused by a multi-
factorial combination of biomechanical (Englund 2010), biochemical (Sokolove and Lepus 
2013), systemic and intrinsic (Warner and Valdes 2016) risk factors. Often, the disease 
is associated with joint pain and progressive structural destruction of articular cartilage; 
and causes permanent physical impairment to the patients. In a recent literature update on 
OA epidemiology, knee OA has shown high prevalence rate across the globe (Vina and 
Kwoh 2018). Besides, various studies have highlighted the harmful effect of knee OA on 
our economies in terms of countries’ GDP losses (Hiligsmann et al. 2013), direct health-
care cost burden (Palazzo et al. 2016) and annual productivity cost of work loss (Gan et al. 
2016; Sharif et al. 2017).

To date, the pathophysiology of knee OA is still not fully comprehended and there is a 
lack of effective cure to treat or halt the progression of knee OA (Favero et al. 2015). Given 
that cartilage degradation is reversible at early stage, morphological alterations in articular 
cartilage and subchondral bone are identified as two cardinal characteristics at the onset of 
knee OA development cycle. Studies have focused on biomarkers such as changes of car-
tilage volume, thickness and surface curvature (Collins et al. 2016) to quantify underlying 
morphological alternations. Ultimately, the goals are to capture the knee OA progression 
pattern, to develop effective disease modifying OA drug (DMOAD) and to design effective 
regenerative-based therapy/treatment (Zhang et al. 2016).

Literally, MR imaging technology is the central modality to analyze the progression 
and incidence of knee OA due to its’ ability to protrude soft tissue property of knee joint 
(Eckstein and Peterfy 2016). Based on the literature, MR imaging sequences such as dual 
energy steady state (DESS), fast low angle shot (FLASH), spoiled-gradient echo (SPGR), 
gradient recalled echo (GRE), turbo spin-echo (TSE), fast spin-echo (FSE), spin-echo 
spectral attenuated inversion recovery (SPAIR) and T1-weighted imaging sequence with 
fat suppression (FS) or water excitation (WE) are commonly used in cartilage imaging to 
produce high resolution knee images. Figure 1 shows several MR imaging sequences used 
in knee OA research. Selection of MR imaging sequence is vital in consideration of a few 
factors such as signal-to-noise ratio, contrast-to-noise ratio and scanning time.

Knee segmentation (see Fig. 2) plays paramount role to extract biomarkers from MR 
image (Eckstein and Wirth 2011). The biomarkers contain valuable information to char-
acterize, stimuli and predict the incidence and progression of knee OA. Two longitudi-
nal multicenter knee image datasets i.e. the Osteoarthritis Initiative (OAI) (Peterfy et al. 

Fig. 1  Different MR imaging sequences produce knee images with varied tissue contrast characteristic dis-
play. a Coronal view of FLASH, b coronal view of TSE, c sagittal view of T2 weighted image, d sagittal 
view of DESS
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2008) and Multicenter Osteoarthritis Study (MOST) (Roemer et al. 2010) distribute free 
image data to researchers upon request. A smaller knee image dataset known as Pfizer 
Longitudinal Study (PLS) also offers up to 706 MR images from 155 subjects to sup-
port knee OA research. In addition, there are two reputable open competitions to pro-
mote joint evaluation on knee segmentation models: Segmentation of Knee Image 2010 
(SKI10) by MICCAI (Heimann et  al. 2010) and MRNet by Stanford University (Bien 
et al. 2018).

Below, we have compiled a list of existing reviews on segmentation techniques of 
musculoskeletal tissues (see Table 1). In summary, there are five highlights about these 
reviews:

1. Majority of the reviews concentrated on cartilage segmentation, and covered a diverse 
semiautomatic and fully automatic segmentation models, properties of MR imaging 
sequence, as well as advantages and drawbacks of these imaging sequences;

2. Deep learning on cartilage segmentation was first described by Ebrahimkhani et al. 
(2020), but was limited to five publications only;

3. Comparison of performance among deep learning, semiautomatic and fully automatic 
segmentation models was not available;

4. The last review on bone segmentation was performed by Aprovitola et al. (2016), which 
did not cover deep learning;

5. None of current reviews provided any insight about the diagnostic value of deep learning 
in knee OA studies.

In recent years, deep learning (LeCun et al. 2015) becomes very popular in academia. 
Many reviews on deep learning has been published; covering various technical aspects such 
as architectures of deep learning variants (Dargan et al. 2019; Khan et al. 2020; Shrestha 
and Mahmood 2019), useful data repositories for deep learning practitioners (Sengupta 
et al. 2020), deep learning libraries and resources (Raghu and Schmidt 2020), as well as 
advantages, disadvantages and limitations of deep neural network models (Serre 2019). We 
also compiled existing reviews on deep learning in medical image analysis: (Greenspan 
et al. 2016; Hesamian et al. 2019; Litjens et al. 2017; Lundervold and Lundervold 2019; 
Maier et al. 2019; Shen et al. 2017; Singh et al. 2020; Zhou et al. 2019).

Fig. 2  Development of 3D models of knee is prerequisite to knee OA quantification. a Knee bone model 
consists of patella (PB), femur (FB) and tibia (TB), b posterior view of bone model. c Knee cartilage model 
consists of patellae cartilage (PC), femoral cartilage (FC) and tibial cartilage (TC). d A left knee cartilage 
model with subregion labels i.e. medial and lateral femoral cartilage, MFC and LFC; and medial and lateral 
tibial cartilage, MTC and LTC
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This review covers original research articles, book chapters, conference proceedings 
and symposium in knee cartilage and bone segmentation methods published from January 
1st 1990 until now. The search was conducted via PubMed, IEEE Xplore, Science Direct, 
Google Scholar and arXiv. Keywords “Osteoarthritis”, “Image”, “Segmentation”, “Deep 
Learning”, “MRI”, “Cartilage”, and “Bone” were used during the review process. Figure 3 
illustrates the taxonomy of knee cartilage and bone segmentation method in this review.

The review aims to contribute in the following aspects:

1. This survey gathers existing reviews on musculoskeletal segmentation in Table 1 to 
provide an overview about the recent development trend of knee segmentation

2. This survey collects existing reviews on technical aspects of deep learning and deep 
learning for medical image analysis. The objective is to promote bilateral knowledge 
transfer between deep learning and medical image analysis field by providing suitable 
source of reference at the ease of readers;

3. Since knee OA was regarded as a “whole joint” disease, bone model plays an important 
role in successive cartilage segmentation. Thus, we performs an extensive survey on 
both knee cartilage and bone segmentation models;

4. This is the first survey on deep learning-based knee bone segmentation used in knee OA 
research, and we put all related models under one special sub-section;

5. The survey provides an updated list of deep learning-based knee cartilage segmentation 
models under one special sub-section;

6. The survey compares the performance of classical and deep learning segmentation 
models in the perspective of statistical evaluation and quantification value of biomarkers;

7. The survey highlights on diagnostic values of deep learning in knee OA research by 
including related studies in prediction, detection and simulation.

The rest of this review is organized as follows: Sect.  2 presents the pathogenesis of 
knee OA. Sections  3 and 4 reviews existing bone and cartilage segmentation models, 

Knee Bone Segmentation 
Methods

Deformable Model-
based Graph-based Atlas-based

Classical Machine 
Learning-based

Miscellaneous 

Graph-based

Knee Cartilage 
Segmentation Methods

Deep Learning-based

Atlas-based

Deep Learning-basedClassical Machine 
Learning-based

Region-based Deformable Model-
based

Edge & Thresholding

Ray Casting

Level Set

Fig. 3  Taxonomy of knee bone and cartilage segmentation methods
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respectively. Section 5 discusses performance of imaging biomarkers in quantitative mor-
phometric analysis. Section 6 discusses the diagnostic value of deep learning in knee OA 
research.

2  Pathogenesis of knee osteoarthritis

Destruction of cartilage is mainly due to the loss of chondrocytes (Charlier et al. 2016) and 
alteration in extracellular matrix (Maldonado and Nam 2013). When the damage worsens, 
a broad secondary changes such as development of osteophytes, remodeling of subchondral 
bone, meniscal degeneration and formation of bone marrow lesions (BMLs) are triggered. 
In the following sub-sections, we elaborate the involvement of articular cartilage and sub-
chondral bone during the pathogenesis of knee OA.

2.1  Articular cartilage

Human articular cartilage comprises of dense layer of highly specialized chondrocyte, 
matrix macromolecules such as collagen and proteoglycans, and water. Since cartilage has 
low metabolic activities, it is extremely vulnerable to shear stress on its surface. Under 
normal circumstance, chondrocytes plays imperative role to synthesize the turnover and 
proliferation of these macromolecules whenever tissue damage is detected. The symbiosis 
relationship helps to maintain a healthy cartilage condition. In case of knee OA, the home-
ostasis between synthesis and breakdown of degraded extracellular matrix components is 
disrupted, which adversely affects the cell ability to maintain and restore cartilaginous tis-
sues (Man and Mologhianu 2014).

Aggrecanases and collagenases are components of matrix metalloproteinase (MMP) 
which are responsible to degrade the aggrecan, a causal proteoglycan in cartilage repair 
process. Under normal circumstance, tissue inhibitor of metalloproteinases (TIMPs) are 
activated to inhibit MMP activity (Kapoor et al. 2011). When the symbiosis is disrupted, 
proteoglycan aggregation and aggrecan concentration will decrease as a result of over-
whelming MMP. At the same time, structural changes in collagenous frameworks cause 
swelling in aggrecan molecules and increase in water content (Roughley and Mort 2014). 
These deteriorations reduce the stiffness of matrix and ability of self-repair. Subsequently, 
death of chondrocytes would occur and contributes to significant cartilage damage. The 
destruction of matrix structure also leads to subchondral bone changes in terms of density, 
sclerosis, formation of cysts and osteophytes (Goldring and Goldring 2010).

2.2  Subchondral bone

Subchondral bone is a thin cortical lamellae located beneath the calcified cartilage layer 
where its role is to facilitate the force distribution and reduce the shear stress on articu-
lar cartilage. For instance, adaptive process of bone modelling and remodeling play vital 
role in maintaining the good responsiveness of joint. Bone remodeling comprises of bone 
resorption by osteoclasts at damaged bone site and generation of new bone by osteoblastic 
precursors on the resorbed surface. Likewise, bone modeling continues to drive change in 
bone architecture and volume via direct apposition to existing bone surface due to skeletal 
adaption to the stressor. Together with articular cartilage, both components are actively 
preserving the homeostasis of healthy joint environment (Li et al. 2013).
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When the strain threshold is beyond the normal adaptive process, disruption to normal 
bone modelling and remodeling cause delay in new bone formation which weaken the bone 
structure (Stewart and Kawcak 2018). Subchondral bone volume and density changes are 
indicative biomarkers to the modification of bone architecture. As the pathological events 
progress, the subchondral bone plate becomes thicker, which affects the ability of articular 
cartilage to withstand mechanical loading. The deformation causes horizontal clefts within 
the deep zone of cartilage as well as other pathological features such as sclerosis, osteo-
phytes, bone shape alternation and bone cysts (Barr et al. 2015). Even though our knowl-
edge about the pathogenesis of knee OA is advancing, there are still much questions about 
the underlying mechanisms and their relationships which requires further clinical investi-
gations (Sharma et al. 2013).

3  Knee bone segmentation

Knee OA-affected bone endures consistent loss of mineralization, causing it sensitives to 
structural deformation (Neogi 2012). Some radiologically visible structural changes such 
as osteophytes, bone marrow lesions (BMLs) and subchondral bone attrition (SBA) are 
good biomarkers for OA-related clinical trials. A study has reported that subchondral 
BMLs were apparent across knee regions with increased biomechanical loading (Hunter 
et al. 2006) whereas other studies showed that development of BMLs was related to carti-
lage loss (Davies-Tuck et al. 2010; Neogi et al. 2009; Wluka et al. 2009). Bone segmenta-
tion is needed to support the discovery and characterization of these biomarkers.

Specifically, purposes of knee bone segmentation are reflected in the following applica-
tions: to produce bone-cartilage interface (BCI) in order to extract cartilage tissue from 
bone surface (Fripp et al. 2007; Kashyap et al. 2016; Yin et al. 2010), to quantify and mon-
itor the changes of bone shape and surface associated with structural deformations (Neogi 
et al. 2013), and to compute bone model to investigate the effect of biomechanical stress 
at different localized knee sites (Paranjape et al. 2019). An example of 2D bone structure 
and segmentation result is shown in Fig. 4. Because knee bone has regular shape and big 
anatomical size, bone segmentation is easier than cartilage segmentation. At the end of this 

Fig. 4  The position and anatomical size of knee bones compared to other tissues give advantages to knee 
bone segmentation. a Sagittal view of knee joint with femur (FB), tibia (TB) and patella (PB) at the center 
of image, b knee bone is the biggest structure of knee joint with consistent shape (white arrows: FB; red 
arrows: TB), c segmented femur (FB) and tibia (TB) usually have better boundary delineation
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section, complete lists of classical and deep learning-based knee bone segmentation mod-
els were provided in Tables 2 and 3, respectively.

3.1  Deformable model‑based methods

An active contour is defined by a collection of points along the curve, 
X(s) = (X(s), Y(s)), s ∈ [0,1] , which is governed by either parametric or geometric infor-
mation available in the image. Parametric (Cohen 1991; Kass et al. 1988) and geometric 
(Caselles et al. 1993, 1997; Malladi et al. 1995) deformable models differ in terms of the 
evolving curves and surface representations. For instance, parametric deformable models 
represent curves and surfaces explicitly in their parametric form as an energy minimizing 
and dynamic force formulation, whereas geometric deformable models represent the evolv-
ing curves and surfaces implicitly as a function of level set.

Active contours model (ACM) (Kass et al. 1988) is the benchmark deformable model in 
image segmentation. Deformation of active contour is equivalent to minimizing an energy 
function, �(X) , which comprises of internal and external spline force as shown below:

The formulation aims to identify a parameterized curve that minimizes the weighted 
sum of both spline force. The internal spline force, �int(X) , controls the elasticity of con-
tour deformation based on contour tension and rigidity. The external spline force, �ext(X) , 
matches the boundary of deformable model toward the targeted object. On the other hand, 
evolution of geometric curves is independent of parameterization. The model relies on geo-
metric measures such as the unit normal and curvature along the normal direction to form 
the representation function. Given a moving curve �(p, t) =

[
X(p, t), Y(p, t)

]
 , where p is any 

parameterization, t is time, N is its inward unit normal and κ is its curvature, evolution of 
curve can be described as:

where V(κ) is known as a speed function that determines the speed of curve evolution.
In addition, primary deformable model has been extended by incorporating prior shape 

information. Some prominent extensions include statistical shape model (SSM) (Heimann 
and Meinzer 2009), active shape models (ASM) (Cootes and Taylor 1992) and active 
appearance models (AAM) (Cootes et al. 2001). Intuitively, these deformable models usu-
ally involve training to acquire details of shape variability or appearance feature about the 
targeted object. The infusion of priori knowledge can be performed via manual interaction 
such as placing a set of landmark points to form a point distribution model (PDM).

Due to its shape consistency and size advantages, deformable model was extensively 
used in knee bone segmentation. These deformable models include active contour model 
(ACM) (Guo et al. 2011; Lorigo et al. 1998; Schmid and Magnenat-Thalmann 2008), sta-
tistical shape model (SSM) (Fripp et  al. 2007; Seim et  al. 2010; Wang et  al. 2014) and 
active appearance model (AAM) (Neogi et  al. 2013; Williams et  al. 2010b). Semiauto-
matic hybrid geodesic active contour was implemented in both Lorigo et  al. (1998) and 
Guo et al. (2011). Classical active contours was sensitive to the location of contour place-
ment (it would fail when the contour was placed too far from target object) and lacked the 
convergence to boundary concavities (Abdelsamea et al. 2015). Besides, it often leaked in 
the event of varied intensity across the trabecular bone areas and noisy boundary. Initially, 

(1)ε(X) = εint(X) + εext(X)

(2)
�γ

�t
= V(�)N
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texture information was added into the model to compensate the weakness of intensity 
gradient-based energy function (Lorigo et  al. 1998). Then, a statistical overlap constrain 
was introduced to the active contour stopping function to overcome boundary leaking (Guo 
et al. 2011). A performance comparison between both models showed that the later (Dice 
Similarity Coefficient (DSC): 0.94) outperformed the former (DSC: 0.89).

Fripp et al. (2007) built three separate 3D SSM models for femur, tibia and patella with 
adapted initialization from existing atlas. The surface related to the atlas was propagated 
to the knee image through affine transform obtained from aligning the atlas to the knee 
image. In total, there were 2563, 10,242 and 10,242 correspondence points on the surface 
of femur, tibia and patella, respectively. Then, pose and shape parameters of the propagated 
surface were trained to estimate the pose and shape variation inside the SSM (Fripp et al. 
2007). Similar automatic bone segmentation model was found in Seim et al. (2010), where 
SSMs of tibia and femur were generated. Since SSM could generate robust bone model, 
it was frequently used to extract BCI from surface of bone model. Another application of 
shape model was to predict the onset of radiographic knee OA. Neogi et al. (2013) trained 
the AAM by using 96 knees to learn the shape variation and graylevel texture of femur, 
tibia and patella. Then, these information were encoded as principal components. A total of 
69, 66 and 59 principal components for femur, tibia and patella bone were created to gener-
ate the AAM models (Neogi et al. 2013).

3.2  Graph‑based methods

Graph-based method treats an image as a graph, G = (V ,E) where the pixel is denoted 
as node, v ∈ V  and the relationship between two neighboring nodes is denoted by edge, 
e ∈ E ⊊ V × V  . Every edge is assigned by a weight, w , which is extracted from value dif-
ference between two nodes vi and vj . Retrospectively, graph segmentation started to gain 
attention after the normalized cut (Jianbo and Malik 2000) and s∕t graph cuts (Boykov and 
Jolly 2001) were published. In this context, the partition of graph is known as a “cut”. A 
general graph-based binary segmentation will partition the graph into two subgraphs i.e. 
gm and gn , where gm ∪ gn = V  and gm ∩ gn = ∅ , by minimizing the degree of dissimilarity 
across gm and gn . We calculate the dissimilarity as the total weight of the edges that have 
been removed:

where vgm and vgn are nodes in two disjoint subgraphs.
In practice, achieving an optimal “cut” is a non-trivial task. The solution requires mini-

mizing an energy function, which is known to be NP-hard. Wu and Leahy (1993) proposed 
to divide the graph into K sub-graphs based on Max-flow min-cut theorem. The theorem 
defines a maximum flow from node s to node t is equivalent to the minimum cut value 
(minimal cost) that separates s and t . In order to obtain the optimal solution, the algorithm 
would recursively search for every potential cut that divide the two nodes with minimal 
cost (Wu and Leahy 1993). Nonetheless, the algorithm is biased to segmenting small frac-
tion of nodes. Normalized cut has been proposed by Jianbo and Malik (2000) to address 
this problem.

The s∕t graph cuts for binary image segmentation was formulated based on maximum 
flow algorithm with addition seeds as hard constraint. Users need to mark some pixels as 
“foreground” or “background” to represent the designated terminal nodes s (source) and t 

(3)cut
(
gm, gn

)
=

∑

p∈gm,q∈gn

w(p, q)
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(sink), respectively. The aim is to attain an optimal cut that severs the edges between these 
two types of terminal nodes. Hence, a minimal cost may correspond to a segmentation with 
a desirable balance of boundary and regional properties (Boykov and Funka-Lea 2006). 
The segmentation energy of graph cuts, E(A) , is defined as:

where A =
(
A1,… ,Ap,… ,A|P|

)
 is label vector assigned to pixel p in P , Rp(⋅) is the 

regional term of A and B{p,q} is the boundary term of A . Coefficient � ≥ 0 controls a rel-
ative importance of the regional term, Rp(⋅) , versus boundary term, B{p,q} . The regional 
term, Rp(⋅) , assumes that the individual penalties for assigning pixel p to “foreground” 
and “background”, correspondingly. For example, Rp(⋅) may reflect on how the intensity 
of pixel p fits into a known intensity mode (e.g. histogram) of the “foreground” and “back-
ground”. Meanwhile, the boundary term measures the penalty of discontinuity between 
pixel p and q.

Other prominent graph-based segmentation methods include random walks (Grady 
2006), intelligent scissors (Mortensen and Barrett 1998) and Live Wire (Falcao et  al. 
2000). The segmentation model can be automatic or interactive. Several studies (Ababneh 
et al. 2011; Kashyap et al. 2018; Park et al. 2009; Shim et al. 2009b; Yin et al. 2010) have 
implemented graph cuts to extract knee bone from MR image. Shim et  al. (2009b) has 
implemented semiautomatic graph cuts to segment femur, tibia and patella. To localize the 
search space during the segmentation, user needed to place scribbles on region of interest 
as hard constraint. The authors only compared the efficiency of graph cuts with manual 
segmentation and the model’s accuracy performance was not available (Shim et al. 2009b). 
Besides, classical semiautomatic graph cuts model depend heavily on seeds to initialize 
and refine the segmentation, which led to substantial amount of manual intervention.

In Park et  al. (2009) and Ababneh et  al. (2011), automatic graph cuts segmentation 
models were proposed. To replace manual seed deployment, extra priori information was 
required to complement the lack of discriminative power faced by classical graph cuts 
energy function. Park et al. (2009) proposed to incorporate shape obtained from shape tem-
plate into their model, and decomposed translation, rotation and scale parameters for shape 
prior configuration. Then, branch-and-mincut algorithm was repetitively computed to opti-
mize the decomposition. In addition, low intensities of bone tissues was taken as inten-
sity prior to further improve the segmentation accuracy (Park et al. 2009). Ababneh et al. 
(2011) proposed a multi-stage bone segmentation framework. At initial stage, the image 
was divided into n × n square blocks and classified into background and non-background 
blocks based on a set of features extracted from training data. Then, these image blocks 
were treated as seeds to initiate the graph cuts algorithm while several GLCM-derived fea-
tures were exported into the construction of energy function (Ababneh et al. 2011). Both 
improved graph cuts models have registered DSCs of 0.958 (Park et al. 2009) and 0.941 
(Ababneh et al. 2011).

3.3  Atlas‑based methods

An atlas is defined as a reference model with labels related to the anatomical struc-
tures. These labels contain useful priori information to describe certain anatomical 
structure. Example of priori information includes topological, shape and positional 
details of the structure, as well as spatial relationship between them. Atlas registration, 

(4)E(A) = �
∑

p∈P

Rp

(
Ap

)
+

∑

{p,q}∈N

B{p,q} ⋅ �
(
Ap,Aq

)
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selection and propagation are three fundamental steps in atlas-based segmentation. 
Given precise point-to-point correspondence from an image to pre-constructed atlas, 
the methods are capable of segmenting image with poor relation between regions and 
pixel’s intensities due to diffuse boundary or image noise. The process of coordinate 
mapping is known as registration. For an image, I , and an atlas, A , the correspondence 
is defined as a coordinate transformation T  that maps any specific image coordinates, � 
in the domain of I onto the atlas, A . The mapping is given below:

Overall, there are four atlas selection methods: single atlas, the best atlas, average-
shape atlas and multiple atlas (Rohlfing et al. 2005). Single atlas method uses an indi-
vidual segmented image. The selection can be random or based on certain criterion 
such as quality of image. The best atlas chooses the most desirable atlas from a set 
of atlases. In order to identify an optimal segmentation from the results of different 
atlases, one could check the image similarity by using normalized mutual information 
(NMI) and magnitude of deformation after registration. Compared to previous meth-
ods, the averaged shape atlas maps all original individual images onto a common refer-
ence to produce an average image. Then, the original images are mapped onto the first 
average to produce a new average. The mapping process occurs iteratively until con-
vergence. Multiple atlases approach applies different atlases onto a raw image. Then, 
the segmentations are combined into a final segmentation based on “Vote Rule” deci-
sion fusion.

Several research groups have utilized multiple templates to perform knee bone seg-
mentation (Dam et al. 2015; Lee et al. 2014; Shan et al. 2014). Due to the overlapping 
tibiofemoral boundary after segmentation, direct cartilage segmentation was challeng-
ing. Therefore, an initial bone segmentation would serve as shape prior to guide suc-
cessive cartilage segmentation. Lee et al. (2014) applied non rigid registration to align 
all templates to target image and selected the best matched template. Then, a locally 
weighted vote approach with local structure analysis was deployed to generate label 
fusion. Instead of intensity similarity metrics, the new voting scheme used cartilage 
model as local reference to generate probability of correspondence to compute the tar-
get label. As a result, it was able to avoid poor accuracy attributed to magnetic field 
inhomogeneity (Lee et al. 2014). The bone segmentation model has reported an aver-
age surface distance error of 0.63  mm for femur and 0.53  mm for tibia, which were 
lower than other bone-cum-cartilage segmentation models.

Dam et  al. (2015) introduced a multiatlas pre-registration as a source of training 
before kNN-based classification of cartilage voxels. During the training process, a 
rigid registration would transform a given atlas to a common training space to enable 
the determination of region of interest (ROI) for each anatomical structure and feature 
extraction (Dam et al. 2015). Based on a set a features from Folkesson et al. (2007), 
kNN classifier would classify the voxels within the ROI instead of whole image. The 
structure-wise ROI identification reduced the computation cost of classifiers but con-
struction of atlas was a daunting task. Plus, segmentation accuracy would depend on 
several other factors, such as high quality registration to create precise structure-wise 
ROI and reliability of features used to perform classification. In this model, only tibia 
was segmented from knee images, which gave DSC of 0.975 on 30 training data.

(5)I(�) → A(T(�))
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3.4  Miscelleneous segmentation methods

Other knee bone segmentation models were found to be using edge and thresholding 
(Lee and Chung 2005), ray casting (Dodin et al. 2011), and level set (Dalvi et al. 2007; 
Gandhamal et al. 2017). Lee and Chung (2005) proposed a multi-stage knee bone seg-
mentation model with a series of edge detection, thresholding and contrast enhance-
ment to enhance the contrast of bone edges and extract bone boundary information. The 
information was incorporated into region grow algorithm to perform a final segmenta-
tion. Then, the model was evaluated by using 40 knees but the presentation of result was 
not clear (Lee and Chung 2005). Meanwhile, Dodin et al. (2011) has imported the ray 
casting algorithm, which was typically used to create solid geometry model in computer 
graphic, into knee bone segmentation. The algorithm decomposed knee image into mul-
tiple surface layers via Laplacian operators. At each surface layer, the algorithm relied 
on a set of localization points known as “observers” as input to project the ray pattern 
at different angles and derived the cylindrical pattern of bone. The model was able to 
capture local bone irregularities such as osteophytes, which might be taken as error by 
shape-based methods. Eventually, the model was validated on a larger data size of 161 
images and has reported DSC of 0.94 for femur and 0.92 for tibia (Dodin et al. 2011).

In a similar fashion, Dalvi et  al. (2007) and Gandhamal et  al. (2017) have imple-
mented level set in their knee bone segmentation models. Specifically, Dalvi et  al. 
(2007) used a region growing algorithm to undersegment the knee bone and followed 
by segmentation refinement via Laplacian level set algorithm. It was validated by using 
sensitivity (Sens) and specificity (Spec) evaluation metrics on two healthy subjects. 
Gandhamal et al. (2017) proposed a hierarchical knee bone segmentation model. At pre-
processing stage, the image intensity was transformed by a sigmoid-alike function to 
improve the contrast between soft and hard tissues. Then, two automatic seeds was iden-
tified to represent the femur and tibia, and used to initiate a novel distance-regularized 
level-set evolution (DRLSE) algorithm to extract the bone regions. Once the evolution 
completed in one slice, geometric centroids of the level set function would be updated 
and used in successive slices. The limitation of this level-set function, for instance, was 
that it would stop if the area of the earlier segmented bone region was less than 100 pix-
els. Therefore, the algorithm would perform badly in very small bone region as well as 
when the bone was separated into two regions.

In conclusion, there were two key highlights. First, segmentation models in this cat-
egory were independent on any training dataset or user interaction, which were different 
from shape-, atlas-, graph-, and machine learning-based methods. To ensure the model 
remained automatic, the learning gap was filled by a variety of preprocessing and image 
property learning procedures instead. Second, different strategies have been adopted 
to attain the final bone segmentation based on modified image properties. While these 
models were able to overcome common anatomical features of bone, their suitability 
would depend heavily on tissue and image property of the image. Besides, some models 
required predefined threshold values. Consequently, it could be hard to generalize these 
models to dataset of larger size in comparison to modern machine learning techniques, 
especially deep learning.
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3.5  Classical machine learning‑based methods

General machine learning framework comprises of data and prediction algorithm. The 
data is a set of observations used during the training and testing while prediction algo-
rithm learns descriptive data pattern to perform certain classification task. Classical 
machine learning uses a set of discriminative handcrafted features to describe the object 
of interest and fed to a classifier to assign image pixel to the most likely label. The fam-
ily of machine learning is wide; comprising of supervised learning, unsupervised learn-
ing, semi-supervised learning and reinforcement learning. Noteworthy, supervised and 
unsupervised learning represent two dominant clusters of learning algorithms which can 
be applied to any machine learning.

Supervised learning studies the relationship between an input space x and a label 
(output) space y . Given a set of labels {0,1, ..,L} , the model acquires the functional rela-
tionship between the input and label f ∶ x → y , where the mapping f  is a classifier by 
taking training data, 

(
X1, Y1

)
,… ,

(
Xn, Yn

)
∈ x × y , as source of learning. Supervised 

learning is commonly applied for regression and classification problems. Common 
supervised learning algorithms include:

1. Decision Tree (Quinlan 1986): The algorithm is in a form of tree structure with branches 
and nodes. Each leaf node represents a class label and each branch represents the out-
come. The algorithm will hierarchically sort attributes from the root of the tree until it 
reaches a leaf node.

2. Naïve Bayes (Rish 2001): The algorithm applies Bayes’ Theorem, which assumes that 
features are statistical independent. The classification is performed based on conditional 
probability of an occurrence of an outcome derived from the probabilities imposed on 
it by the input variables.

3. Support Vector Machine (Cortes and Vapnik 1995): A margin is defined as the distance 
between two supporting vectors which are separated by a hyperplane. Larger margin 
implies smaller classification errors. Thus, the algorithm aims to draw the most suitable 
margins in which the distance between each class and the nearest margin is maximized.

4. Ensemble Learning (Rokach 2010): A method to aggregate multiple weak classifiers to 
construct a strong classifier. Important ensemble learning algorithms include boosting 
and bagging.

On the other hand, there is no labeled data in unsupervised learning. So unsupervised 
model draws inferences from input data based on similarities and redundancy reduction 
during the training. Clustering and association rule are two well-known types of unsu-
pervised learning. Popular unsupervised learning algorithms include:

1. k-Means (MacQueen 1967): This clustering algorithm groups data into k clusters based 
on their homogeneity. An individual mean value represents the center of each cluster. 
During the implementation, data values will be assigned to the most likely class label 
based on their proximity to the nearest mean with the least error function.

2. Principal Component Analysis (Jolliffe 2002): This method aims to reduce of dimen-
sionality of data by finding a set of mutually un-correlated linear low dimensional data 
representations which have largest variance. This linear dimensionality technique is 
useful in exploring the latent interaction between the variable in an unsupervised setting.
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Bourgeat et al. (2007) extracted additional texture features from phase information of 
MR image to consider magnetic property of tissue. The features were fed into a multiscale 
support vector machine (SVM) framework. An image subsampling process would classify 
the voxels from coarse-to-fine representation. In total, 40,000 voxels were extracted from 
4 training images. In order to maintain the segmentation quality, contour refinement was 
performed to eliminate jaggy boundary from the segmented bones (Bourgeat et al. 2007). 
Fabian et al. (2015) applied random forest (RF) classifier with bagged decision trees of 20 
trees to segment the femur. Only 5% of the femur voxels and 5% of the non-femur voxels 
from each data were selected to train the classifier by using a set of features that included 
spatial location, volumetric mean, volumetric variance, volumetric entropy, skewness, kur-
tosis, edge and Hessian (Fabian et al. 2015). Nonetheless, the classification accuracy relied 
heavily on the quality of labeled data, which indicated the major limitation faced by classi-
cal machine learning.

3.6  Deep learning‑based methods

Deep learning is a powerful machine learning model equipped with automatic hierarchical 
feature representation learning ability. General architecture comprises of input layer, hid-
den (feature extraction) layers and output (classification) layer (Goceri 2018). A compari-
son between classical machine learning and deep learning is shown in Fig. 5. Major archi-
tectures of deep learning (LeCun et  al. 2015) are convolutional neural network (CNN), 
recurrent neural network (RNN), recursive neural network and unsupervised pretrained 
networks (UPN). Among these networks, CNN is well suited to image processing applica-
tions such as object detection, image classification and segmentation. During model train-
ing, the value of each node is estimated by parameterizing weights through convolutional 
filters and the objective function is then optimized via backpropagation.

A list of deep learning-based knee bone segmentation is indicated here: (Almajalid et al. 
2019; Ambellan et  al. 2019; Cheng et  al. 2020; Lee et  al. 2018; Liu et  al. 2018a; Zhou 
et al. 2018). In general, knee bone segmentation model adopts CNN architecture with some 
modifications. Liu et al. (2018a) built a 10-layers SegNet framework with discarded fully 
connected layer after the decoder network, to perform pixelwise semantic labelling on 2D 
knee image. The processed labels were fed to the marching cube algorithm to generate 3D 
simplex mesh. Then, the simplex mesh was sent to 3D simplex deformable process with 
each individual segmentation objects being separately refined based on the source image 
(Liu et al. 2018a). Lastly, performance of the model was compared to U-net. Because Seg-
Net removed fully connected layer, the model has lower number of parameters. Besides, 
SegNet performed a nonlinear upsampling; hence, credential features and boundary deline-
ation could be better reconstructed. Later, Zhou et al. (2018) extended the model into mul-
tiple tissue segmentation by using conditional RF to perform multiclass classification. The 
model has reported DSC accuracy of 0.97 for femur, 0.962 for tibia and 0.898 for patella 
(Zhou et al. 2018).

Ambellan et al. (2019) adopted the concept of slice-wise segmentation from Liu et al. 
(2018a) and added SSM as extra feature into their 2D/3D U-net based bone segmentation 
model. The purpose of SSM was to overcome the holes in segmentation masks due to poor 
intensity contrast or image artifacts as well as to remove false positive voxels from femur 
and tibia that were detected at the outside of typical range of osteophytic growth. By utiliz-
ing 60 training shapes, the model has attained excellent DSC of 0.986 for femur and 0.985 
for tibia (Ambellan et al. 2019). Notwithstanding, the good performance was achieved at 
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the expense of huge computational resources and localized training. For instance, general-
purpose graphic cards with smaller memory were not capable to support the 3D convolu-
tion, so it wouldn’t be easy to extend the model to process larger dataset without suitable 
graphic card. Besides, the 3D model was trained on small subvolumes of 64 × 64 × 16 vox-
els along the bone contours to reduce computational burden and compensated the inability 
of SSM to provide osteophytic details. The training option, however, compromised the sur-
rounding voxel intensity and texture feature.

In recognition of abovementioned limitations, Cheng et al. (2020) proposed a simplified 
CNN model, known as holistically nested network (HNN), to segment femur and patella 
bones. HNN eliminated the decoding path to form a forward-feeding network; and reduced 
the graphic card computational size. Plus, the network was trained on whole knee image by 
using a 1 × 1 convolution at first layer (to produce fine details such as edge) until a 32 × 32 
convolution at fifth layer (to produce coarse details such as shape of bone; thereby, acquir-
ing both local and global contextual information. At the end, a weighted fusion layer was 
developed to average the probability map at each layer and successively computed the final 
prediction (Cheng et  al. 2020). Although the authors tried to perform a comprehensive 
validation against current state-of-art, it was hindered by the type of bone selection (imma-
ture bone vs mature bone; and different bone compartment) and the absence of public 
groundtruth. Moreover, it is noteworthy that training of deep learning model is computa-
tionally heavy in spite of its better robustness. According to Ambellan et al. (2019), imple-
mentation of deep learning model on large scale data image of 50,000 would consume 
43 weeks on a single computational node, which explicitly highlighted the expansive cost 
of computation. Some researchers have simplified CNN architecture to reduce complexity, 
but the issue still required further analysis.

Feature 
Extraction 

Dimensionality 
Reduction Classification

(a)

Deep Learning Algorithm
( Feature Extraction + Classification )

Input layer
Output layer

(b)

Fig. 5  Segmentation of knee bone by using a classical machine learning and b deep learning. Feature engi-
neering of classical machine learning involves handpicked feature representations and mapping. On the 
other hand, deep learning uses multiple hidden layers to extract hierarchical feature representations
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4  Knee cartilage segmentation

Knee cartilage segmentation from MR image produces cartilage model, which is used in a 
broad range of OA-related studies: imaging biomarkers analysis (Hafezi-Nejad et al. 2017; 
Schaefer et al. 2017; Shah et al. 2019; Williams et al. 2010a), classification and detection 
of knee OA progression (Ashinsky et al. 2017; Ashinsky et al. 2015; Chang et al. 2018; 
Almajalid et  al. 2019a; Tiulpin et  al. 2019), biomechanical modeling (Liukkonen et  al. 
2017b) and stimulation of cartilage degeneration (Liukkonen et al. 2017a; Mononen et al. 
2019, 2016; Peuna et al. 2018). To date, cartilage segmentation remains an active research 
problem because knee cartilage has very thin structure at a few millimeters wherein some 
extremely thin areas are measured in submillimeter. Examples of knee cartilage geometry 
complexity are shown in Fig. 6. Moreover, femoral, tibial and patellae cartilage have dis-
tinctively different and changing shapes across the slides.

Some medical image analysis tools (Akhtar et al. 2007; Bonaretti et al. 2020; Duryea 
et al. 2016; Gan et al. 2014a; Iranpour-Boroujeni et al. 2011) were developed to preprocess 
knee image, segment the cartilage and quantify knee OA progression via imaging biomark-
ers. Established medical image analysis consultancy such as Imorphics (based in Man-
chester, UK), ArthroVision (based in Montreal, Canada) and Chondrometrics (based in 
Ainring, Germany) caters to the need of medical image analysis service. Complete lists of 
classical cartilage segmentation model were given in Table 4 (semiautomatic) and Table 5 
(fully automatic). An updated list of deep learning-based knee cartilage segmentation mod-
els was given in Table 6.

4.1  Region‑based methods

Region growing exploits the homogeneity property of neighboring pixels’ values. Often, 
users need to place an initial set of seed points Si =

{
S1, S2, .., Sn

}
 . Then, the algorithm will 

start to expand to neighboring pixels in search for homogenous pixels (Adams and Bischof 
1994). Let T  be the set of all pixels which are adjacent to at least one of the pixels in Si

where nb(x) is the set of immediate neighbors of the pixel x . The search will continue 
updating the mean of corresponding region and expand until the similarity criterion is 
breached. Common similarity criterion includes intensity or image texture. Classical 
region growing is not good at coping with inhomogeneous image property landscape of 
knee image. As a result, researchers need to combine region growing with other image pro-
cessing techniques in their segmentation models.

Pakin et al. (2002) applied region growing to obtain an initial segmentation of knee car-
tilage from image background. A subsequent two-class local clustering voting mechanism 
was introduced to determine the class of unlabeled regions based on their proximity to 
knee bone and contrast difference at the region boundaries. Lastly, surface mesh was gener-
ated to produce a 3D cartilage model (Pakin et al. 2002). While the model has reported an 
accuracy of 98.87%, it was validated on a MR image of knee only. Cashman et al. (2002) 
proposed a multistage region growing-based knee cartilage segmentation model. At pre-
processing stage, image noise was filtered with median filter and background image was 
removed by using edge detection and thresholding. Then, a recursive region grow method 

(6)T =

{
x ∉

n⋃

i=1

Si|nb(x) ∩
n⋃

i=1

Si ≠ �

}
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would pre-segment the image to produce a bone-plus-cartilage region mask, where the 
bone region would be subtracted to leave-out cartilage (Cashman et al. 2002). Similar work 
was found at Riza et al. (2019).

Region growing was one of the earliest segmentation algorithm implemented in knee 
cartilage segmentation. Although it was simple to use, direct implementation was com-
putational heavy. Further, knee images were infamous for weak tissue boundaries; caus-
ing potential under- or oversegmentation. Significant amount of manual intervention was 
required throughout the segmentation to fill in discontinued boundary during edge detec-
tion, to place seed points inside bone region during pre-segmentation and to eliminate any 
residual non-cartilage pixels adhering to the outside of cartilage. Furthermore, perfor-
mance of region growing methods (Pakin et al. 2002; Riza et al. 2019) were not properly 
validated. These limitations question the applicability of region growing to be extended to 
large patient groups.

4.2  Deformable model‑based methods

Application of traditional ACM in knee cartilage segmentation model could be found 
in Stammberger et  al. (1999), Lynch et  al. (2000), Duryea et  al. (2007) and Brem et  al. 
(2009). As highlighted in Sect. 3.1, traditional ACM was sensitive to initialization and suf-
fered from poor convergence performance of the contour for concave boundaries. Some 
improvement works were proposed. Gradient Vector Flow (GVF) was integrated into ACM 
to resolve abovementioned problems but the model was still vulnerable to poor tissue con-
trast or blur cartilage boundary (Tang et  al. 2006). Carballido-Gamio et  al. (2005) used 
Bezier spline to control active contour formation. The Bezier spline was created by manu-
ally inserting control points inside the cartilage. Then, local information acquired from the 
initial control points would update the Bezier spline until it reached the articular surface. 
The model also took into consideration the disconnected cartilage boundary; hence, it was 
more robust to weak boundary problem (Carballido-Gamio et al. 2005). Meanwhile, Ahn 
et al. (2016) applied level set contour as an active contour. At initialization phase, 20 nor-
mal knee templates were used to estimate the initial contour in level set. The energy func-
tion was designed to consider local regions while spatial information from the templates 
was incorporated into the energy function to minimize the effect of noise (Ahn et al. 2016).

Fig. 6  Illustrations of anatomical complexity demonstrated by knee cartilage. a Irregular cartilage structure 
with diffuse boundary (white arrowheads). b Thin cartilage structure (white arrowheads) adds more chal-
lenges to segmentation process. c Effusion between at patellofemoral cartilage (white arrows) adds ambigu-
ity to segmentation accuracy. d Narrow tibiofemoral boundary (white arrows) hardens the segmentation of 
tibial and femoral cartilage



2465From classical to deep learning: review on cartilage and bone…

1 3

Ta
bl

e 
4 

 S
um

m
ar

y 
of

 se
m

ia
ut

om
at

ic
 k

ne
e 

ca
rti

la
ge

 se
gm

en
ta

tio
n 

te
ch

ni
qu

es

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

Pa
ki

n 
et

 a
l. 

(2
00

2)
Re

gi
on

 g
ro

w
in

g
1 

su
bj

ec
t

–
A

cc
ur

ac
y:

 9
8.

87
%

; S
en

s:
 6

6.
22

%
; S

pe
c:

 9
9.

56
%

St
am

m
be

rg
er

 e
t a

l. 
(1

99
9)

A
C

M
15

 k
ne

es
3D

 F
LA

SH
 F

S
In

te
r-o

bs
er

ve
r R

M
S 

C
V

: 3
.3

–1
3.

6%
Ly

nc
h 

et
 a

l. 
(2

00
0)

A
C

M
4 

su
bj

ec
ts

T1
-w

ei
gh

te
d 

G
R

E 
FS

Si
ng

le
 sl

ic
e 

C
V:

 2
.4

%
; W

ho
le

 R
O

I C
V

: 2
.1

%
D

ur
ye

a 
et

 a
l. 

(2
00

7)
A

C
M

8 
O

A
 a

nd
 7

 h
ea

lth
y 

su
bj

ec
ts

3D
 D

ES
S

In
te

r- 
ob

se
rv

er
 R

M
S 

C
V

: V
C

 2
.5

%
 (F

C
); 

2.
8%

 
(M

TC
); 

8.
6%

 (L
TC

); 
3.

3%
 (P

C
), 

Th
C

 1
.9

%
 (F

C
); 

2.
5%

 (M
TC

); 
5.

2%
 (L

TC
); 

3.
3%

 (P
C

)
In

tra
- o

bs
er

ve
r R

M
S 

C
V

: V
C

 1
.6

%
 (F

C
); 

3.
0%

 
(M

TC
); 

3.
4%

 (L
TC

); 
3.

5%
 (P

C
), 

Th
C

 1
.2

%
 (F

C
); 

2.
1%

 (M
TC

); 
1.

7%
 (L

TC
); 

1.
9%

 (P
C

)
B

re
m

 e
t a

l. 
(2

00
9)

A
C

M
12

 su
bj

ec
ts

3D
 D

ES
S

R
M

S 
C

V:
 V

C
 0

.9
–1

.2
%

, A
C

 0
.3

–0
.7

%
, t

A
B

 
0.

6–
2.

7%
, T

hC
 0

.8
–1

.5
%

Ta
ng

 e
t a

l. 
(2

00
6)

A
C

M
-G

V
F

4 
ca

da
ve

rs
3D

 F
LA

SH
In

te
r-s

ub
je

ct
 R

M
S 

C
V:

 T
hC

 1
.3

4%
 (T

)
B

ae
 e

t a
l. 

(2
00

9)
G

ra
ph

 c
ut

s
20

 su
bj

ec
ts

3D
 D

ES
S

In
tra

-o
bs

er
ve

r C
V

 ±
 S

D
: 1

.2
9 ±

 1.
05

%
 (o

bs
er

ve
r1

) 
an

d 
1.

67
 ±

 1.
14

%
 (o

bs
er

ve
r2

)
In

te
r-o

bs
er

ve
r: 

C
V

 ±
 S

D
: 1

.3
1 ±

 1.
26

%
 (s

es
si

on
 1

) 
an

d 
1.

79
 ±

 1.
72

%
 (s

es
si

on
 2

)
Sh

im
 e

t a
l. 

(2
00

9a
)

G
ra

ph
 c

ut
s

10
 su

bj
ec

ts
3D

 D
ES

S
In

te
r-o

bs
er

ve
r D

SC
: 9

4.
3%

G
an

 e
t a

l. 
(2

01
7)

R
an

do
m

 w
al

ks
15

 n
or

m
al

 im
ag

es
 a

nd
 1

0 
O

A
 im

ag
es

3D
 D

ES
S

D
SC

 ±
 S

D
 (n

or
m

al
): 

0.
82

 ±
 0.

04
9 

(F
C

); 
0.

80
 ±

 0.
07

4 
(T

C
); 

0.
82

 ±
 0.

05
0 

(P
C

)
D

SC
 ±

 S
D

 (O
A

): 
0.

80
 ±

 0.
08

2 
(F

C
); 

0.
76

 ±
 0.

07
2 

(T
C

); 
0.

77
 ±

 0.
05

1 
(P

C
)

G
an

 e
t a

l. 
(2

01
9)

R
an

do
m

 w
al

ks
-S

A
G

E
20

 h
ea

lth
y 

an
d 

20
 O

A
 k

ne
es

3D
 D

ES
S

D
SC

 ±
 S

D
 (n

or
m

al
): 

0.
94

 ±
 0.

03
6 

(F
C

); 
0.

91
 ±

 0.
07

9 
(T

C
); 

0.
88

 ±
 0.

10
 (P

C
)

D
SC

 ±
 S

D
 (O

A
): 

0.
93

 ±
 0.

03
4 

(F
C

); 
0.

88
 ±

 0.
09

5 
(T

C
); 

0.
84

 ±
 0.

00
94

 (P
C

)
G

ou
go

ut
as

 e
t a

l. 
(2

00
4)

Li
ve

 w
ire

5 
he

al
th

y 
su

bj
ec

ts
3D

 S
PG

R
 F

S
In

te
r-o

pe
ra

to
r C

V
 ±

 S
D

: 3
.0

 ±
 2.

6%
In

te
r-s

ca
n 

C
V

 ±
 S

D
: 2

.7
 ±

 1.
0%

B
ow

er
s e

t a
l. 

(2
00

8)
Li

ve
 w

ire
7 

ca
da

ve
r a

nd
 7

 h
um

an
 sc

an
s

3D
 F

LA
SH

 W
E

C
ad

av
er

 C
V:

 3
.0

2%
in

 v
iv

o 
C

V:
 3

.6
5%



2466 H.-S. Gan et al.

1 3

Ta
bl

e 
4 

 (c
on

tin
ue

d)

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

(L
iu

kk
on

en
 e

t a
l. 

20
17

b)
R

ad
ia

l i
nt

en
si

ty
-th

re
sh

ol
d

6 
he

al
th

y 
kn

ee
s

3D
 P

D
 T

SE
 S

PA
IR

, 3
D

 
PD

 F
SE

 F
S;

 3
D

 T
2 

G
R

E

D
SC

 ±
 S

D
: 0

.8
6 ±

 0.
02

 (F
C

); 
0.

88
 ±

 0.
01

 (T
C

)

(T
ha

ha
 e

t a
l. 

20
20

)
M

od
ifi

ed
 ra

di
al

 se
ar

ch
29

 O
A

 k
ne

es
PD

 F
SE

/T
2-

w
ei

gh
te

d 
FS

D
SC

 ±
 S

D
: 8

4.
8 ±

 2.
0%

 (F
C

); 
81

.8
 ±

 2.
4%

 (T
C

)

PD
 P

ro
to

n 
D

en
si

ty
, V

C
 V

ol
um

e 
of

 C
ar

til
ag

e,
 T
hC

 T
hi

ck
ne

ss
 o

f C
ar

til
ag

e,
 A
C

 A
re

a 
of

 C
ar

til
ag

e 
Su

rfa
ce

, t
AB

 T
ot

al
 A

re
a 

of
 S

ub
ch

on
dr

al
 B

on
e,

 R
M
S 

Ro
ot

 M
ea

n 
Sq

ua
re

, C
V 

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n,
 S
D

 S
ta

nd
ar

d 
D

ev
ia

tio
n



2467From classical to deep learning: review on cartilage and bone…

1 3

Ta
bl

e 
5 

 S
um

m
ar

y 
of

 fu
lly

 a
ut

om
at

ic
 k

ne
e 

ca
rti

la
ge

 se
gm

en
ta

tio
n 

te
ch

ni
qu

es

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

A
hn

 e
t a

l. 
(2

01
6)

A
C

M
-L

ev
el

 se
t

19
 su

bj
ec

ts
3D

 D
ES

S
D

SC
 ±

 S
D

: 8
7.

1 ±
 1.

10
%

 (F
C

); 
84

.8
 ±

 1.
79

%
 (T

C
); 

81
.7

 ±
 1.

40
%

 (P
C

)
So

llo
w

ay
 e

t a
l. 

(1
99

7)
A

SM
12

 n
or

m
al

 a
nd

 1
6 

O
A

 su
bj

ec
ts

3D
 S

PG
R

C
V:

 T
hC

 2
.8

%
G

on
zá

le
z 

an
d 

Es
ca

la
nt

e-
R

am
íre

z 
(2

01
3)

A
SM

 w
ith

 w
av

el
et

16
 v

ol
um

e 
se

ts
T2

* 
w

ei
gh

te
d

D
SC

 ±
 S

D
 (H

aa
r)

: 0
.8

13
8 ±

 0.
03

46
D

SC
 ±

 S
D

 (H
er

m
ite

): 
0.

82
36

 ±
 0.

02
60

D
SC

 ±
 S

D
 (S

ym
-1

5)
: 0

.8
32

9 ±
 0.

02
60

G
on

zá
le

z 
an

d 
Es

ca
la

nt
e-

R
am

íre
z 

(2
01

4)
A

SM
 w

ith
 L

B
P

16
 v

ol
um

e 
se

ts
T2

* 
w

ei
gh

te
d

D
SC

 ±
 S

D
: 0

.8
13

2 ±
 0.

09
94

Y
in

 e
t a

l. 
(2

01
0)

LO
G

IS
M

O
S

9 
tra

in
in

g 
an

d 
60

 te
st 

su
bj

ec
ts

3D
 D

ES
S 

W
E

D
SC

 ±
 S

D
: 0

.8
4 ±

 0.
04

 (F
C

); 
0.

80
 ±

 0.
04

 (T
C

); 
0.

80
 ±

 0.
04

 (P
C

)
K

as
hy

ap
 e

t a
l. 

(2
01

8)
LO

G
IS

M
O

S-
JE

I
34

 tr
ai

ni
ng

 &
 1

08
 te

st 
im

ag
es

3D
 D

ES
S

2%
 M

ax
 av

er
ag

e 
er

ro
rs

 (9
8–

10
0%

) 
cM

FC
 u

ns
ig

ne
d:

 0
.7

6 ±
 0.

60
%

; c
LF

C
 

un
si

gn
ed

: 1
.4

6 ±
 2.

36
%

; c
M

TC
 

un
si

gn
ed

: 1
.2

8 ±
 0.

47
%

; c
LT

C
 

un
si

gn
ed

: 1
.2

9 ±
 0.

47
%

Ta
m

ez
-P

eñ
a 

et
 a

l. 
(2

01
2)

M
ul

ti-
at

la
s

6 
tra

in
in

g 
at

la
s

3D
 D

ES
S

D
SC

 ±
 S

D
: 0

.8
8 ±

 0.
04

 (F
C

); 
0.

84
 ±

 0.
05

 (T
C

)
Sp

ec
 ±

 S
D

: 0
.9

99
 ±

 0.
00

0 
(F

C
); 

1.
00

0 ±
 0.

00
0 

(T
C

)
Se

ns
 ±

 S
D

: 0
.8

8 ±
 0.

04
 (F

C
); 

0.
89

 ±
 0.

06
 (T

C
)

Sh
an

 e
t a

l. 
(2

01
2b

)
M

ul
ti-

at
la

s
18

 k
ne

e 
im

ag
es

T1
 w

ei
gh

te
d 

SP
G

R
D

SC
: 7

5.
2%

 (F
C

); 
81

.7
%

 (T
C

)
Le

e 
et

 a
l. 

(2
01

4)
M

ul
ti-

at
la

s
10

0 
tra

in
in

g 
an

d 
50

 te
st 

im
ag

es
T1

 w
ei

gh
te

d 
G

R
E 

FS
D

SC
: 7

1.
7%

 (F
C

); 
72

.4
%

 (T
C

)
Sh

an
 e

t a
l. 

(2
01

4)
M

ul
ti-

at
la

s
15

5 
su

bj
ec

ts
3D

 S
PG

R
D

SC
 ±

 S
D

: 0
.8

56
 ±

 0.
05

7 
(F

C
); 

0.
85

9 ±
 0.

04
7 

(T
C

)
Li

u 
et

 a
l. 

(2
01

5)
M

ul
ti-

at
la

s
30

 tr
ai

ni
ng

 a
nd

 4
0 

te
st 

im
ag

es
–

D
SC

 ±
 S

D
: 8

1.
8 ±

 3.
0%

 (F
C

); 
79

.2
 ±

 4.
6%

 (T
C

)
D

am
 e

t a
l. 

(2
01

5)
M

ul
ti-

at
la

s-
kN

N
C

C
B

R
: 3

0 
tra

in
in

g 
an

d 
11

0 
va

lid
at

io
n

T1
 w

ei
gh

te
d 

Tu
rb

o 
3D

D
SC

 ±
 S

D
 (t

ra
in

in
g)

: 0
.8

46
 ±

 0.
06

4 
(M

TC
); 

0.
82

2 ±
 0.

06
3 

(M
FC

)
D

SC
 ±

 S
D

 (v
al

id
at

io
n)

: 0
.8

39
 ±

 0.
04

8 
(M

TC
); 

0.
80

4 ±
 0.

05
9 

(M
FC

)



2468 H.-S. Gan et al.

1 3

Ta
bl

e 
5 

 (c
on

tin
ue

d)

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

O
A

I: 
44

 tr
ai

ni
ng

 a
nd

 4
4 

va
lid

at
io

n
3D

 D
ES

S 
W

E
D

SC
 ±

 S
D

 (t
ra

in
in

g)
: 0

.8
05

 ±
 0.

05
6 

(M
TC

); 
0.

86
4 ±

 0.
03

7 
(L

TC
); 

0.
80

8 ±
 0.

04
9 

(M
FC

); 
0.

84
4 ±

 0.
03

9 
(L

FC
); 

0.
73

4 ±
 0.

10
3 

(P
C

)
D

SC
 ±

 S
D

 (v
al

id
at

io
n)

: 0
.8

12
 ±

 0.
05

5 
(M

TC
); 

0.
86

6 ±
 0.

03
4 

(L
TC

); 
0.

81
4 ±

 0.
04

4 
(M

FC
); 

0.
84

2 ±
 0.

04
3 

(L
FC

); 
0.

73
9 ±

 0.
11

6 
(P

C
)

Fo
lk

es
so

n 
et

 a
l. 

(2
00

7)
kN

N
 c

la
ss

ifi
ca

tio
n

13
9 

kn
ee

s
T1

 w
ei

gh
te

d
D

SC
: 0

.8
0;

 S
en

s:
 8

3.
9%

; S
pe

c:
 9

9.
9%

D
od

in
 e

t a
l. 

(2
01

0)
B

ay
es

ia
n 

cl
as

si
fic

at
io

n
9 

O
A

 k
ne

es
3D

 D
ES

S
D

SC
 (B

as
el

in
e)

: 0
.8

33
3 

(F
C

 +
 T

C
 +

 P
C

)
D

SC
 (1

2 
M

on
th

s)
: 0

.8
31

1 
(F

C
 +

 T
C

 +
 P

C
)

Le
e 

et
 a

l. 
(2

01
1)

B
in

ar
y 

cl
as

si
fic

at
io

n
17

 su
bj

ec
ts

D
ES

S
D

SC
: 0

.7
7 

(F
C

); 
0.

81
 (T

C
)

W
an

g 
et

 a
l. 

(2
01

4)
SS

M
88

 su
bj

ec
ts

3D
 D

ES
S 

W
E

D
SC

 ±
 S

D
: 8

4.
96

 ±
 3.

30
%

 (F
C

); 
83

.7
4 ±

 4.
00

%
 (T

C
); 

79
.1

6 ±
 8.

88
%

 
(P

C
)

Ö
zt

ür
k 

an
d 

A
lb

ay
ra

k 
(2

01
6)

kN
N

 c
la

ss
ifi

ca
tio

n
23

 te
st 

im
ag

es
–

D
SC

: 8
2.

6%
 (F

C
); 

83
.1

%
 (T

C
); 

72
.6

%
 

(P
C

)
Se

ns
: 7

9.
9%

 (F
C

); 
84

.0
%

 (T
C

); 
71

.5
%

 
(P

C
)

Sp
ec

: 9
9.

8%
 (F

C
); 

99
.9

%
 (T

C
); 

99
.9

%
 

(P
C

)
Zh

an
g 

et
 a

l. 
(2

01
3)

SV
M

-D
R

F 
cl

as
si

fic
at

io
n

11
 su

bj
ec

ts
SP

G
R

 F
S,

 G
R

E 
W

E
D

SC
: 0

.8
6 

(F
C

); 
0.

88
 (T

C
)

Se
ns

: 8
2.

6%
 (F

C
); 

86
.0

%
 (T

C
). 

Sp
ec

: 
99

.6
%

 (F
C

); 
99

.5
%

 (T
C

)
Pa

ng
 e

t a
l. 

(2
01

5)
B

ay
es

ia
n 

cl
as

si
fic

at
io

n
30

–4
2 

im
ag

e 
sl

ic
es

T2
 w

ei
gh

te
d 

FS
D

SC
: 0

.8
04

 (F
C

); 
0.

72
6 

(T
C

); 
0.

70
0 

(P
C

)



2469From classical to deep learning: review on cartilage and bone…

1 3

Ta
bl

e 
5 

 (c
on

tin
ue

d)

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

R
in

i e
t a

l. 
(2

02
0)

D
ou

gl
as

-R
ac

hf
or

d 
sp

lit
tin

g
16

 su
bj

ec
ts

–
D

SC
 (4

 in
pu

t s
et

s o
nl

y)
: 0

.9
79

1 
(F

C
); 

0.
97

82
 (T

C
); 

0.
92

08
 (P

C
)

Se
ns

 (4
 in

pu
t s

et
s o

nl
y)

: 0
.9

64
6 

(F
C

); 
0.

96
27

 (T
C

); 
0.

92
12

 (P
C

)
Sp

ec
 (4

 in
pu

t s
et

s o
nl

y)
: 0

.9
96

9 
(F

C
); 

0.
99

51
 (T

C
); 

0.
99

80
1 

(P
C

)

Th
C

 T
hi

ck
ne

ss
 o

f c
ar

til
ag

e;
 A
SD

 av
er

ag
e 

su
rfa

ce
 d

ist
an

ce
, V

O
E 

vo
lu

m
et

ric
 o

ve
rla

p 
er

ro
r, 
SD

 S
ta

nd
ar

d 
D

ev
ia

tio
n



2470 H.-S. Gan et al.

1 3

Ta
bl

e 
6 

 S
um

m
ar

y 
of

 d
ee

p 
le

ar
ni

ng
-b

as
ed

 k
ne

e 
ca

rti
la

ge
 se

gm
en

ta
tio

n 
te

ch
ni

qu
es

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

Pr
as

oo
n 

et
 a

l. 
(2

01
3)

U
-n

et
11

4 
sc

an
s

3D
 T

ur
bo

 T
1 

w
ei

gh
te

d
D

SC
: 0

.8
24

9 
(T

C
); 

Se
ns

: 8
1.

92
%

 (T
C

); 
Sp

ec
: 9

9.
97

%
 (T

C
)

R
aj

 e
t a

l. 
(2

01
8)

µ-
ne

t
80

 tr
ai

ni
ng

 a
nd

 2
0 

te
sti

ng
 d

at
as

et
s

D
ES

S
D

SC
: 0

.8
49

 (F
C

); 
0.

85
65

 (L
TC

); 
0.

80
66

 
(M

TC
); 

0.
78

47
 (P

C
)

V
O

E:
 2

6.
13

5 
(F

C
); 

24
.9

70
2 

(L
TC

); 
32

.1
56

2 
(M

TC
); 

34
.1

78
1 

(P
C

)
N

or
m

an
 e

t a
l. 

(2
01

8a
)

U
-n

et
12

1 
tra

in
in

g,
 3

7 
va

lid
at

io
n,

 1
6 

te
st 

im
ag

es
3D

 D
ES

S 
W

E
D

SC
: 0

.8
78

 (F
C

); 
0.

82
2 

(L
TC

); 
0.

79
5 

(M
TC

); 
0.

76
7 

(P
C

)
Ta

ck
 a

nd
 Z

ac
ho

w
 (2

01
9)

U
-n

et
D

at
as

et
 C

ho
nd

ro
m

et
ric

s:
 1

37
8 

su
bj

ec
ts

D
ES

S
D

SC
 ±

 S
D

 (b
as

el
in

e)
: 8

2.
85

 ±
 5.

53
 (M

TC
), 

86
.1

1 ±
 4.

37
 (L

TC
)

D
SC

 ±
 S

D
 (1

2 
m

on
th

s)
: 8

2.
27

 ±
 5.

80
 

(M
TC

), 
85

.8
3 ±

 4.
30

 (L
TC

)
D

at
as

et
 Im

or
ph

ic
s:

 8
8 

su
bj

ec
ts

D
ES

S
D

SC
 ±

 S
D

 (b
as

el
in

e)
: 8

8.
02

 ±
 4.

62
 (M

TC
), 

91
.2

7 ±
 2.

33
 (L

TC
)

D
SC

 (1
2 

m
on

th
s)

: 8
7.

43
 ±

 4.
02

 (M
TC

), 
90

.7
8 ±

 2.
42

 (L
TC

)
A

m
be

lla
n 

et
 a

l. 
(2

01
9)

U
-n

et
-S

SM
O

A
I I

m
or

ph
ic

s:
 8

8 
su

bj
ec

ts
D

ES
S

D
SC

 ±
 S

D
 (b

as
el

in
e)

: 8
9.

4 ±
 2.

41
 (F

C
), 

86
.1

 ±
 5.

33
 (M

TC
), 

90
.4

 ±
 2.

42
 (L

TC
)

D
SC

 ±
 S

D
 (1

2 
m

on
th

s)
: 8

9.
1 ±

 2.
41

 (F
C

), 
85

.8
 ±

 5.
00

 (M
TC

), 
90

.0
 ±

 2.
57

 (L
TC

)
O

A
I Z

IB
: 5

07
 su

bj
ec

ts
D

ES
S

D
SC

 ±
 S

D
: 8

9.
9 ±

 3.
60

 (F
), 

85
.6

 ±
 4.

54
 (T

)
A

SD
 ±

 S
D

: 0
.1

6 ±
 0.

07
 (F

), 
0.

23
 ±

 0.
12

 (T
)

Pa
nfi

lo
v 

et
 a

l. 
(2

01
9)

U
-n

et
-M

ix
up

-U
D

A
88

 su
bj

ec
ts

D
ES

S
D

SC
 ±

 S
D

: 0
.9

07
 ±

 0.
01

9 
(F

), 
0.

89
7 ±

 0.
02

8 
(T

C
), 

0.
87

1 ±
 0.

04
6 

(P
C

)
Ta

n 
et

 a
l. 

(2
01

9)
V-

ne
t w

ith
 a

dv
er

sa
ria

l n
et

w
or

k
12

0 
tra

in
in

g,
 2

6 
va

lid
at

io
n,

 3
0 

te
sti

ng
 

im
ag

es
D

ES
S

D
SC

 ±
 S

D
: 0

.9
00

 ±
 0.

03
7 

(F
), 

0.
88

9 ±
 0.

03
8 

(T
C

), 
0.

88
0 ±

 0.
04

3 
(P

C
)

A
SD

 ±
 S

D
: 0

.0
74

 ±
 0.

04
1 

(F
), 

0.
08

2 ±
 0.

05
1 

(T
C

), 
0.

07
5 ±

 0.
03

8 
(P

C
)

V
O

E 
±

 S
D

: 1
8.

82
 ±

 6.
00

6 
(F

), 
19

.8
1 ±

 6.
07

2 
(T

C
), 

21
.1

9 ±
 6.

59
4 

(P
C

)



2471From classical to deep learning: review on cartilage and bone…

1 3

AS
D

 A
ve

ra
ge

 S
ur

fa
ce

 D
ist

an
ce

, V
O
E 

Vo
lu

m
et

ric
 O

ve
rla

p 
Er

ro
r, 
SD

 S
ta

nd
ar

d 
D

ev
ia

tio
n

Ta
bl

e 
6 

 (c
on

tin
ue

d)

Pu
bl

ic
at

io
n 

re
fe

re
nc

e
Te

ch
ni

qu
e 

us
ed

N
o.

 o
f s

ub
je

ct
s

M
R

 im
ag

in
g 

se
qu

en
ce

Pe
rfo

rm
an

ce

(X
u 

an
d 

N
ie

th
am

m
er

 2
01

9)
D

ee
pA

tla
s

20
0 

tra
in

in
g,

 5
3 

va
lid

at
io

n,
 2

54
 te

sti
ng

 
im

ag
es

–
D

SC
 ±

 S
D

: 8
1.

19
 ±

 3.
47



2472 H.-S. Gan et al.

1 3

Apart from ACM, researchers also apply ASM for cartilage segmentation. The model 
requires user to place n landmark points, 

{(
x1, y1

)
,
(
x2, y2

)
,… ,

(
xn, yn

)}
 on cartilage 

boundary (see Fig. 7), which is arranged as a 2n element vector, X = (x1,… , xn, y1,… , yn)
T . 

The landmarking process is repeated on a stack of N training images to produce a cloud of 
landmark points. These shapes are aligned in a common model coordinate frame by using 
the Procrustes algorithm. Then, principal component analysis (PCA) is implemented on 
the set of vectors 

{
Xi

}
 . An affine transformation will be defining the position, 

(
Xt, Yt

)
 , ori-

entation, � , and scale, s , of the model in knee image frame.

Active Shape Model Algorithm Summary:

1. Calculate the mean of the data
∼

X=
1

N

∑N

i=1
Xi

2. Calculate the covariance of the data

S =
1

N−1

∑N

i=1
(Xi−

∼

X)(Xi−
∼

X)
T

3. Compute the eigenvectors, Pi and corresponding eigenvalues, �i of the covariance matrix. Each 
eigenvalue gives the variance of the data about the mean in the direction of the corresponding eigen-
vector

4. Select the m largest eigenvalues where m is the number of mode of variation
5. Approximate the linear shape model given the eigenvectors 

{
Pi

}
 and shape parameters b

X ≈
∼

X +
∑

m Pmbm

6. Update the parameters pose parameters 
(
Xt,Yt , s, �

)
 and shape parameters b

7. Repeat until convergence

Solloway et al. (1997) placed 42 around the cartilage boundary and 22 landmark points 
around the endosteal surface of femoral condyles to produce a 2D femoral cartilage ASM 
model. In total, 10 modes of variations were utilized to derive the mean shape approxima-
tion. The model has achieved CV of 2.8% for cartilage thickness measurement (Solloway 
et al. 1997). However, the shape variation flexibility was often constraint by the number of 
principal components extracted from the diagonal of the covariance matrix, which depend 
on the number of training shapes. As a result, traditional ASM suffered from over-restric-
tive shape variation and problematic re-initialization in knee cartilage segmentation.

To overcome these limitations, two studies have integrated additional feature informa-
tion during the training of shape model. González and Escalante-Ramírez (2013) has tested 
Hermite transform, Haar- and Sym-5 wavelet transform on the x and y coordinate direc-
tions of the contour in an attempt to capture more information from the contours at differ-
ent spatial resolutions. The Sym-5 wavelet transform based model has reported the best 
DSC score of 0.8329 with 16 training samples (González and Escalante-Ramírez 2013). 
In another study, González and Escalante-Ramírez (2014) has combined texture features 
from Local Binary Patterns (LBP) into ASM. The texture information from each landmark 
point was computed into LBP histogram. Unfortunately, the model only produced DSC 
of 0.8132. (González and Escalante-Ramírez 2014). Accordingly, different modified ASM 
models failed to demonstrate apparent accuracy attainment, instead these models contin-
ued to rely on handpicked feature and number of training samples. Although direct perfor-
mance comparison between different deformable models is not available, neither a single 
deformable model nor modified deformable model seems to be able to cope with frequent 
changes in cartilage structure.
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4.3  Graph‑based methods

Graph cuts defines a segmentation as an optimization of energy cost function problem. 
Bae et al (2009) and Shim et al. (2009a) have applied classical graph cuts to segment knee 
cartilage of 20 and 10 subjects, respectively. User scribbles were utilized as hard constraint 
and the segmentation has reported good DSC accuracy of 94.3%. However, both works did 
not address the notorious smallcut problem and image noise problem suffered by the algo-
rithm. Besides, classical graph cuts does not support multiclass segmentation.

To address abovementioned limitations, a hierarchical segmentation model known as 
Layered Optimal Graph Segmentation of Multiple Objects and Surfaces (LOGISMOS) 
was proposed by Yin et al. (2010). The model approximated the interaction between inter-
acting surfaces of different objects by utilizing prior knowledge about knee structure, 
which was infused as multi-surface interaction constraint and multi-objective interactive 
constraint during graph construction. The former analyzed the relationship between bone 
and surrounding soft tissue inclusive of cartilage, while the latter analyzed the relation-
ship between bone and cartilage. The design of cost function was essential to accommo-
date all pretrained information (Yin et al. 2010). Unfortunately, the cost function in orig-
inal LOGISMOS failed to capture the regionally-specific appearance of the surrounding 
menisci, muscle bone and other anatomies; which caused certain intensity profile of nor-
mal cartilage areas to be mistaken as pathological case. An extension of LOGISMOS with 
Just Enough Interaction (JEI) was introduced in Kashyap et al. (2018) to rectify the cost 
function.

Another type of graph-based method, random walks models the segmentation problem 
as looking for solution to Dirichlet problem. In theory, a harmonic function that satisfies 
the boundary condition will minimize the Dirichlet integral. Thus, the probability of unla-
beled pixel belongs to each label class could be computed by solving a system of linear 
equations.

Fig. 7  Traditional ASM suffers from over-restrictive shape variation. In practice, users are required to place 
substantial amount of landmark points on curved cartilage boundary (a). However, scrupulous landmarking 
does not guarantee desirable result and refinement is needed (b)
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Random Walks Algorithm Summary:

1. Map the image intensity value, g , to edge weights, w , for two pixels i  and j in lattice structure

wij = exp
(
−�

(
gi − gj

)2) where � is a free parameter

2. Organize the nodes into two sets, VM (labeled nodes) and VU (unlabeled nodes) such that VM ∪ VU = V  
and VM ∩ VU = ∅

3. Obtain a set of VM labeled pixels with K labels via interactive or automatic approach
4. Define the set of labels for the labeled pixels as a function
Q
(
vj
)
= s,∀vj ∈ VM where s ∈ ℤ, 0 < s < K

5. Define the ||VM
|| × 1 vector for each label, s , at node vj ∈ VM as

ms
j
=

{
1 ifQ

(
vj
)
= s

0 ifQ
(
vj
)
≠ s

6. Resolve the combinatorial Dirichlet problem for each label
LUx

s = −BTms

7. Compute a final segmentation by assigning to each node, vi , the label corresponding to maxs(xsi ) , where 
the probabilities at any node will sum to unity,

∑
s x

s
i
= 1,∀vi ∈ V

Because random walks is robust to weak boundary problem, it can overcome the dif-
fuse boundary observed in pathological cartilage. Thorough analyses were conducted 
to analyze the performance of random walks for knee cartilage segmentation (Gan and 
Sayuti 2016; Gan et  al. 2017,2019,2018,2014b, c). The model was evaluated against 
manual segmentation. As shown in Fig. 8, classical random walks relied heavily on seed 
points’ locations to provide local information about knee structure (Gan et  al. 2017). 
Subsequently, an improved model was developed, which demonstrated DSC accuracy 
of 0.94, 0.91 and 0.88 for normal femoral, tibial and patellae cartilage, as well as 0.93, 
0.88 and 0.84 for pathological femoral, tibial and patellae cartilage (Gan et al. 2019).

In summary, design of energy function plays an influential role in developing graph-
based methods. A majority of the graph-based methods’ energy function in knee car-
tilage segmentation aimed to partition the graph through min-cut concept. However, 
minimization of the energy function was always a daunting task due to various issues 
such as smallcut and binary segmentation problem. Besides, incorporation of user inter-
action to provide priori knowledge was ubiquitous in both advanced graph model such 
as LOGISMOS and other simpler graph-based models. User-specific markers was man-
ually inserted through scribbles or boundary points. The priori knowledge was essential 
to initialize and modify the segmentation (Bowers et  al. 2008; Gan et al. 2017, 2019; 
Gougoutas et al. 2004) as well as to compensate the lacking of cost function (Kashyap 
et al. 2018). Consequently, graph-based methods were often plagued with overdepend-
ence on user interaction in order to attain desirable segmentation results.

4.4  Atlas‑based methods

Different from previously discussed segmentation methods, atlas-based segmentation 
makes use of priori knowledge from labeled training images to segment the target image. 
Because the atlas is directly created by expert, the priori information is rich of discrimi-
native details about the location, shape, object class, priori probabilities and topological 
details of target object. Given that the knee cartilages are sharing similar texture and spatial 
features, as well as ill-defined boundary with surrounding soft tissues, atlas-based meth-
ods is expected to excel in knee cartilage segmentation. Still, atlas-based methods are not 
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without any disadvantage. Creation of atlas can be time- and resources consuming, and 
small number of atlas image can potentially lead to overfitting problem.

There are common four atlas selection methods, namely single atlas (which selects 
a reference image from a set of labeled images), the best atlas (which identify the most 
suitable labeled image from the set), averaged-shape atlas (which constructs an averaged 
atlas from a set of labeled images), and multiple atlases (which registers every individual 
labeled image to the test image independently). The preceding three selection approaches 
were not robust enough though, so most studies have employed the multiple atlas method 
in knee cartilage segmentation model (Carballido-Gamio and Majumdar 2011; Dam et al. 
2015; Lee et al. 2014; Liu et al. 2015; Shan et al. 2012a, 2012b, 2014; Tamez-Peña et al. 
2012). The main role of atlas was to provide spatial prior to guide an automatic multilayer 
knee cartilage segmentation model at initialization stage.

Among these works, Shan’s research group has conducted a pipeline of studies to inves-
tigate the most suitable atlas-assisted probabilistic classification segmentation structure 
(Shan et al. 2012a, 2012b, 2014). Priori information was transferred from the atlas to test 
image via non-rigid image registration. Interestingly, the concept was somehow similar to 
the classical machine learning-based methods, which we would discuss later. Compared 
to other atlas-based models, their final model (Shan et al. 2014) have registered the best 
DSC score of 0.856 for femoral cartilage and 0.859 tibial cartilage on a group of 155 sub-
jects. A major disadvantage of atlas-based method, however, was its dependence on regis-
tration method and anatomical similarity between the atlas and the subject to achieve good 
performance.

4.5  Classical machine learning‑based methods

Given its anatomical complexity, classification of cartilage is a daunting task indeed. 
Folkesson et al. (2007) has published one of the earliest classification model by using two 
binary kNN classifiers to segment the femoral and tibial cartilage. The feature learning was 
a computational heavy process. Approximately 500,000 training voxels for background, 
120,000 voxels for tibia cartilage and 300,000 voxels for femoral cartilage were involved. 
To alleviate this issue, human knowledge prior about the location of the cartilage was pre-
defined at the initialization stage (Folkesson et al. 2007). Even though the model reported 
DSC of 0.80, it became the benchmark for future classification-based knee cartilage seg-
mentation model.

Fig. 8  Influence of seeds’ positions on cartilage segmentation using random walks. a, c Placement of label 
seeds on knee image to indicate the cartilage and non-cartilage tissues. b, d Over- and undersegmentation 
occur due to imprecise location of seeds
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Numerous multi-stage/multi-level (Dodin et  al. 2010; Lee et  al. 2011; Öztürk and 
Albayrak 2016; Pang et al. 2015; Wang et al. 2014; Zhang et al. 2013) classification mod-
els have employed different approaches such as bone pre-segmentation to derive BCI (Lee 
et al. 2011; Wang et al. 2014), SVM based edge classification (Pang et al. 2015), utilization 
of four types of image contrast to extract rich features (Zhang et al. 2013) and subsampling 
of background voxels to enable feasible kNN classification (Öztürk and Albayrak 2016). 
Because different researchers were restricted to their own classification strategies, their 
models’ architectures varied significantly according to the image feature, spatial priors, 
imaging sequence type and cartilage type. Consequently, these models lacked the general-
izability to unseen pathological features in knee image. Further, handpicked features were 
subjective to the training data; these concerns severely undermined the robustness of clas-
sification models.

For example, Öztürk and Albayrak (2016) applied central coordinate computation and 
one-versus-all classification. During the training, subsampling processes were adopted to 
eliminate abundant background voxels step-by-step and helped to increase computational 
feasibility. A total of 150 features were extracted. At the testing, separate kNN classifi-
ers were used to classify femoral, tibial and patellae cartilage. Despite its complexity, the 
model merely achieved DSC of 0.826 for femoral cartilage, 0.831 for tibial cartilage and 
0.726 for patellae cartilage. In Zhang et al. (2013), T1-weighted FS SPGR, T2/T1-weighted 
FIESTA, T2/T1-weighted IDEAL GRE waster and fat imaging sequence were used to 
exploit spectral correlation among different imaging sequences. But the model has reported 
very big results variance; depending on the inclusion of number of features (DSC ranged 
from 0.019 to 0.880) and classification models (DSC ranged from 0.456 to 0.880).

4.6  Deep Learning‑based methods

Recently, artificial intelligence (AI), especially deep learning, has emerged as a popular 
research topic (Goceri and Goceri 2017). Deep learning uses convolutional filters to extract 
deep features and fed the concatenated feature vector into dense layer (see Fig. 9). Large 
number of studies (Ambellan et al. 2019; Norman et al. 2018a; Panfilov et al. 2019; Pra-
soon et al. 2013; Raj et al. 2018; Tack and Zachow 2019; Tan et al. 2019; Xu and Nietham-
mer 2019) which used deep learning in knee cartilage segmentation were published. In 
particular, CNN architecture has received the most research attention. For example, a U-net 
architecture of 4 convolutional layers and kernel filter of 5 × 5 for 2D CNN and 5 × 5 × 5 for 
3D CNN was adopted in Ambellan et al. (2019). In Prasoon et al. (2013), three CNN mod-
els were computed from xy-, -yz, and –zx planes respectively with a kernel size of 5 × 5. 
Meanwhile, a 3D CNN with 5 convolutional layers and 3 × 3 × 3 kernel filter was adopted 
in Tack and Zachow (2019).

Among these works, some have added extra improvements to enhance the accuracy of 
existing models. Given that U-net failed to segment low contrast areas, Ambellan et  al. 
(2019) imported shape information from SSM to fill in holes and sub-holes in segmen-
tation masks. A better segmentation accuracy of 85.6–89.9% (DSC) was reported at the 
expense of laborious SSM construction. On the other hand, Panfilov et al. (2019) attempted 
two regularization techniques, namely mix-up and unsupervised domain adaptation (UDA) 
to improve the robustness of their U-net model. Unfortunately, their investigation showed 
mixed results, and even performance deterioration when both mix-up and UDA were com-
bined together.
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Tan et al. (2019) introduced a deep learning segmentation framework which integrated 
collaborative multi-agent learning mechanism to label cartilage and discriminator to deter-
mine output cartilage label. A V-net with 3 convolutional layers and 2 × 2 kernel filters 
served as the fundamental of segmentation model. Their work has reported high accuracy 
of 0.900 ± 0.037 for femoral cartilage, 0.889 ± 0.038 for tibial cartilage and 0.880 ± 0.043 
for patellae cartilage. Another deep learning segmentation, DeepAtlas (Xu and Nietham-
mer 2019) proposed a joint learning mechanism from weakly supervised image registration 
and semi-supervised segmentation learning. The authors have adopted a U-net structure. 
During the learning mechanism, an anatomy similarity loss would compute the segmen-
tation dissimilarity through matching segmentations between the target image and the 
warped moving image in order to guide the model training. Despite the authors claimed the 
DeepAtlas would benefit from fewer manual segmentations during model training, it suf-
fered from lower accuracy performance i.e. DSC of 81.19 ± 3.47% and complex learning 
objective function.

Many deep learning-based segmentation models were validated on more than one data-
set. For example, DeepAtlas was validated on the OAI dataset and OASIS-TRT dataset 
(brain MR images), while Tack and Zachow(2019) and Ambellan et  al. (2019) utilized 
SKI10, OAI Imorphics and OAI Zuse Institute Berlin (ZIB) dataset to evaluate their mod-
els’ performance. However, a real problem in medical image analysis was the lack of large-
scale annotated image data with high quality (Goceri 2019). To segment knee cartilage, 
research groups have to either train their CNN models from scratch by utilizing small 
amount of labelled images or build a large in-house training dataset. The former could eas-
ily lead to overfitting problem while the latter would incur substantial financial and expert 
resources. Another concern associated with deep learning model was the enormous com-
putational memory requirement, which was implicitly reflected through the selection of 2D 
slice-by-slice segmentation option in most knee cartilage segmentation models.

5  Evaluation of computational segmentation models

In 2010, SKI10 was announced in Grant Challenge Workshop organized by MICCAI (https 
://ski10 .org) to promote a common evaluation framework among segmentation models by 
using a public dataset. A total of 170 research teams have registered and the best research 
team has reported an averaged total score of 75.73 (Ambellan et al. 2019). Besides, evalu-
ation were localized into subregions in many cartilage segmentation studies (see Fig. 10). 
Given a broadly diversified types of segmentation models, it is hard to systematically 
evaluate their performance as a whole. Therefore, in following sub-sections, we analyzed 
performance of these models from the perspective of 1) deep learning against classical seg-
mentation models, and 2) biomarkers in computational models.

Fig. 9  Convolution performed on DESS knee image

https://ski10.org
https://ski10.org
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5.1  Performance of deep learning versus classical segmentation models

The standard practice to assess the performance of computational knee segmentation model 
is by comparing the segmentation results against groundtruth. Because groundtruth is often 
created by expert through manual segmentation, there is a scarcity of public groundtruth 
to assess different segmentation models in global domain. Among the statistical evaluation 
metrics (see Table 7), DSC was extensively applied metric in classical and deep learning 
segmentation models, especially cartilage segmentation to evaluate the degree of agree-
ment between groundtruth and segmentation. Besides, two surface distance evaluation 
metrics were frequently used in bone segmentation i.e. average symmetric surface distance 
(ASD) and root-mean-square symmetric surface distance (RMSD). To compute the meas-
urement, each surface boundary voxel of the segmentation was compared to the closest 
boundary voxel in groundtruth and Euclidean distance difference was derived and stored 
in a list.

A number of fully automatic segmentation models overlapped either 2D or 3D seg-
mented cartilage (Ahn et al. 2016; Dodin et al. 2010; Folkesson et al. 2007; Liu et al. 2015; 
Öztürk and Albayrak 2016; Tamez-Peña et al. 2012; Zhang et al. 2013) or segmented bone 
(Ababneh et al. 2011; Bourgeat et al. 2007; Fabian et al. 2015; Fripp et al. 2007; Gandha-
mal et al. 2017; Wang et al. 2014) with groundtruth to validate the accuracy of their mod-
els. Overall, classical cartilage segmentation models’ DSC ranged from 70 to 88% while 
classical bone segmentation models’ DSC ranged from 90 to 97%. In semiautomatic carti-
lage segmentation models, both DSC (Gan et al. 2017, 2019; Liukkonen et al. 2017b; Shim 
et al. 2009a) and CV (Bae et al. 2009; Bowers et al. 2008; Brem et al. 2009; Duryea et al. 
2007; Gougoutas et al. 2004; Lynch et al. 2000; Stammberger et al. 1999; Tang et al. 2006) 
were two equally important evaluation metrics. DSCs of semiautomatic cartilage segmen-
tation models ranged from 80 to 94% and CV was measured from the perspective of differ-
ent observers (inter-observer), within observer (intra-observer), different subjects, and dif-
ferent scans. The result details of CV could be referred to Table 4. Despite semiautomatic 
cartilage segmentation models have achieved better DSC results than fully automatic seg-
mentation models, the number of knees in the former was small, attributed to the need of 
expert to supervise the segmentation. On the other hand, the highest DSC score attained by 
bone segmentation model was 97%. The high accuracy of segmented bone model enables 
researchers (Dam et al. 2015; Lee et al. 2014; Shan et al. 2014; Wang et al. 2014; Yin et al. 
2010) to exploit the spatial relationship between bone and cartilage surface and facilitate 
subsequent cartilage segmentation.

Overall, deep learning-based cartilage and bone segmentation models attained DSC 
ranged from 80–90% and 97–98%, respectively. In both cases, deep learning models did 
not demonstrate apparent performance superiority compared to classical segmentation 
models. There are three key highlights about deep learning-based segmentation models. 
First, deep learning models demonstrated greater consistency compared to classical seg-
mentation models. Besides, deep learning models were more robust to huge amount of 
image dataset. Tack and Zachow(2019) used 1378 subjects in their knee cartilage segmen-
tation model while Ambellan et al. (2019) used 507 images in their knee bone segmenta-
tion model. Both were the largest sample size to date and it was unprecedented in classi-
cal segmentation models. Third, different research groups used their own groundtruth data 
during training even though their data originated from the OAI or MOST dataset. As a 
result, there was no regularization to assess and control the quality of annotated data. This 
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also explained the varied accuracies among deep learning models, despite using similar 
architecture and amount of training data.

5.2  Biomarkers in computational segmentation models

Biomarker is defined as any anatomic, physiologic, or molecular parameter detachable with 
one or more imaging methods used to help establish the presence and/or severity of disease 
(Smith et al. 2003). In clinical knee OA research, morphological biomarkers are derived 
from cartilage and bone 3D models to replace traditional endpoint clinical trials in assess-
ing and validating the morphology and functionality of cartilage tissue in vivo. Morpholog-
ical biomarkers (see Table 8) were analyzed over a certain range of time point to identify 
the pattern of joint degradation. Notably, cartilage endures greater degradation at weight-
bearing locations. Wluka et al. (2002) investigated cartilage volume loss at weight bearing 
lateral and medial tibial plateau regions in a two time points study. Based on 132 patients 
with symptomatic OA, tibial cartilage reported an annual volumetric loss of approximately 
5% (Wluka et al. 2002). Pelletier et al. (2007) conducted a 24-months follow-up quantita-
tive MRI subregional (different segments of femoral condyle and tibial plateau) study of 
107 patients. Overall, the findings showed that medial region experienced greatest cartilage 

Fig. 10  (Left) Coronal view of DESS knee image showing division of femorotibial subregions i.e. central 
lateral femoral cartilage (cLFC), central tibial cartilage (cLTC), lateral tibia (LTB) and medial tibia (MTB). 
(Right) Cartilage plate maps detailing different subregions on femoral and tibial cartilage where “a” denotes 
anterior, “p” denotes posterior, “i” denotes interior, “e” denotes external and “c” denotes central (Eckstein 
and Peterfy 2016)
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volume loss. Central region of the medial tibial plateau (cartilage loss: − 84.2 ± 72.4 mm/
− 15.0 ± 12.0%) and of the medial femoral condyle (cartilage loss: − 87.9 ± 90.4 mm/− 12.
0 ± 11.5%) (Pelletier et al. 2007). Meanwhile Eckstein et al. (2015) have analyzed cartilage 
thickness loss at tibiofemoral cartilage over 24 months (Eckstein et al. 2015).

5.2.1  Semiautomatic segmentation models

It is standard to test the responsiveness of a knee joint segmentation model by comput-
ing test–retest coefficient of variation (CV) via repeated measurements of biomarkers over 
certain time frame. A number of semiautomatic segmentation models (Akhtar et al. 2007; 
Bae et  al. 2009; Brem et  al. 2009; Carballido-Gamio et  al. 2005; Cashman et  al. 2002; 
Duryea et al. 2014; Duryea et al. 2007; Tang et al. 2006) were analyzed comprehensively 
in this manner. An early semiautomatic segmentation models by Waterton et  al. (2000) 
has repeated the measurement of femoral cartilage volume over a time point range of three 
weeks. The assessment has reported a test–retest CV of 1.6% (Waterton et al. 2000). Brem 
et al. (2009) computed RMS CV of VC, ThC, AC, tAB to quantify test–retest reproduc-
ibility. Based on 12 knees, the paired analyses root mean square CV ranged from 0.9–1.2% 
for VC, 0.3–0.7% for AC, 0.6–2.7% for tAB and 0.8–1.5% for ThC. Duryea et al. (2014) 
tested the responsiveness of their segmentation processing tool by measuring the cartilage 
volume loss at localized fixed region, which reported standardized response mean (SRM) 
of − 0.52 at largest region (Duryea et al. 2014). However, the number of data used in these 
studies were usually small.

Moreover, semiautomatic segmentation results are influenced by experience of opera-
tors. These operators comprise of musculoskeletal experts, radiologists or clinicians with 
musculoskeletal subspecialty. Hence, conventional reproducibility analysis, which involves 
two to three experts, will be divided into inter- and intra-observer reproducibility. Intra-
observer reproducibility measures the agreement of repeated results produced by each 
expert while inter-observer measures the agreement among result produced by experts. For 
example, reliability of graph cuts-based segmentation model (Bae et  al. 2009) was val-
idated on variation error of VC produced by two radiologists. The model reported high 
inter-observer reproducibility of 1.29 ± 1.05% and 1.67 ± 1.14% for radiologist 1 and 2 
and intra-observer reproducibility of 1.31 ± 1.26% and 1.70 ± 1.72% for session 1 and 2, 
respectively. Duryea et al. (2007) measured the CV of their image segmentation software 
based on VC and ThC. The findings showed higher inter-observer variance (VC: 2.5–8.6%) 
(ThC: 1.9–5.2%) than intra-reader variance (VC: 1.6–2.5%) (ThC: 1.2–1.9%).

5.2.2  Fully automatic segmentation models

Only a few automatic knee segmentation models evaluated the longitudinal reproducibility 
of morphological biomarkers. Tamez-Pena et  al. (2012) conducted comprehensive accu-
racy (in terms of mean difference) and test–retest precision evaluation of cartilage volume, 
thickness, and curvature biomarkers by using healthy and OA knees. Dam et  al. (2015) 
evaluated the precision of cartilage volumes by using the OAI, CCBR and SKI10 data-
set. Both models were tested against manual segmentation. In Tamez-Pena et al. (2012), 
the accuracy evaluation was localized into subregional areas: femur (F), femoral trochlea 
(FT), the central medial femur (cMF), the posterior medial femur (pMF), the central lateral 
femur (cLF), the posterior lateral femur (pLF), the medial tibia (MT), and the lateral tibia 
(LT). The mean accuracy for volume ranged from − 0.2% for the pLF to 4.1$ for the femur, 
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the thickness accuracies ranged from − 2.2% for the cMF to 10.4% for the MT, the curva-
ture accuracies ranged from − 5.2% for the MT to − 2.1% for the cMF. The large variance 
in thickness biomarker indicated that some degree of atlas bias were introduced into the 
segmentation process.

Since neural networks models have greater extraction power through hidden layers, 
some (Hafezi-Nejad et al. 2017; Shah et al. 2019) have trained the model as a longitudi-
nal clinical tool to obtain insight about the progression of knee OA. Hafezi-Nejad et  al. 
(2017) used a multilayer perceptron (MLP) model to predict the medial joint space loss 
(JSL) progression by using 24-months changes of cartilage volume loss in five knee plates 
and anthropometric parameters. The last layer would produce the prediction (importance 
value) of JSL progression based on association with cartilage degradation at different knee 
plates. Base on the findings, lateral femoral cartilage was the most predictive of medial JSL 
progression (average importance value: 0.191; range 0.177–0.204). By using a population 
of 3910 MR images, Shah et al. (2019) investigated the cartilage thickness change at four 
different knee points according to three demographic variables i.e. age, sex and body mass 
index. For instance, the use of neural network enables researchers to investigate the physio-
logical variation of cartilage with respect to various anthropometric variables, and analyze 
their relationships through multivariate analysis.

6  Discussion and conclusion

Advancement of AI technology has spurred the rise of new machine learning techniques. 
Inspired by promising accuracy outcomes demonstrated by deep learning-based segmenta-
tion models, deep learning has been extended to a wide range of computer-aided diagno-
sis applications such as classification (Antony et al. 2017; Chang et al. 2018; Górriz et al. 
2019; Norman et al. 2018b; Pedoia et al. 2019; Thomas et al. 2020; Tiulpin et al. 2019, 
2018) and detection (Lim et al. 2019; Liu et al. 2018b) in radiographs and MRI-based knee 
OA studies. The ultimate goal is to detect and halt the progression of knee OA at early 
stage, where the cartilage degeneration remains reversible.

Classification is the process where an algorithm outputs the probability of a label for a 
given input image. Related knee OA-specific applications include grading of OA by radi-
ography (Antony et al. 2017; Górriz et al. 2019; Norman et al. 2018b; Thomas et al. 2020; 
Tiulpin and Saarakkala 2019; Tiulpin et al. 2018), grading of OA by MRI (Pedoia et al. 
2019), predicting the progression of OA by radiography (Tiulpin et al. 2019), and predict-
ing knee pain by MRI (Chang et al. 2018). Based on the literature, quantification of OA 
severity via end-to-end deep neural network is vital to provide more precise computer-
aided diagnosis to support clinicians in grading the severity of OA patients. Prior to deep 
learning, Ashinsky et  al. (2015) has implemented Weighted Neighbour Distance using 
Compound Hierarchy of Algorithm Representing Morphology (WND-CHRM) algorithm 
(Shamir et al. 2008), an open source classical machine learning software dedicated to bio-
logical image analysis, to classify normal and pathological knee images.

Antony et al. (2017) utilized a FCN to localize the knee joint and trained a CNN model 
to classify the OA severity grade. The CNN model has apparently outperformed classical 
WND-CHRM, producing classification results of 60.3% and 29.3–34.8%, respectively. On 
a test set of 3,146 training images and 1,300 testing images from the OAI, and 2020 train-
ing images and 900 testing images, the jointly trained model has attained precision score 
of 0.68 for KL grade 0, 0.32 for KL grade 1, 0.53 for KL grade 2, 0.78 for KL grade 3 
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and 0.81 for KL grade 4. The essence of this work consolidated the baseline state-of-art 
for the application of deep learning models in this field, and opened up rooms for further 
enhancement to the model. Noteworthy, attention mechanism was implemented in sub-
sequent classification-orientated deep learning models (Górriz et al. 2019; Norman et al. 
2018b; Thomas et al. 2020; Tiulpin et al. 2018) to refine the weights of feature and improve 
the prediction. A latest attention-mechanism related model has achieved precision score of 
0.73 for KL grade 0, 0.38 for KL grade 1, 0.71 for KL grade 2, 0. 82 for KL grade 3 and 
0.87 for KL grade 4 (Thomas et al. 2020).

In addition to classification, an early detection model was developed by Lim et  al. 
(2019) to predict the occurrence of OA in patients aged 50 years and above. The archi-
tecture consisted of a deep neural network with eight hidden layers and trained along with 
lifestyle- and health status-associated risk factors. Based on a sample size of 5479 subjects, 
the proposed model showed an Area Under Curve (AUC) of 76.8%. Nonetheless, the accu-
racy of this predictive model was limited to patients with determined OA disease, while 
patients under OA treatment were excluded from the model training. Hence, future mod-
els shall consider this limitation as well as other detail decision parameter such as physi-
ological signals. On the other hand, a cartilage lesion detection model was developed by 
using two CNN models i.e. the former for cartilage segmentation and the latter to detect 
structural abnormalities on the segmented cartilage. To train the classification model, a 
total of 17,395 cartilage image patches were extracted from knee cartilage of 175 patients 
by a musculoskeletal radiologist; in which 2642 image patches were classified as cartilage 
lesions and the remaining 14,753 image patches were classified as normal cartilage. The 
model has reported a high AUC of 0.917 and 0.914 in two rounds of evaluations (Liu et al. 
2018b).

Along with abovementioned deep learning-based classification and detection models, 
simulation of cartilage degeneration signifies another future direction of computer-aided 
diagnosis of knee OA. Herewith, we have presented important publications related to the 
development of knee cartilage degeneration simulation model (Liukkonen et  al. 2017a; 
Mononen et al. 2019, 2016). Initial simulation algorithm (Mononen et al. 2016) was built 
on a computational finite element model, which took into account the stress distribution 
across the cartilage and change of collagen stiffness in cartilage, to estimate the alterna-
tions in cartilage tissue properties with time. Fibril reinforced poroviscoelastic (FRPVE) 
material was chosen to mimic the cartilage tissue. Patient-specific gait cycle experiment 
would provide the biomechanical stress loading information across different time points. 
The collagen fibril damage would happen at cartilage region where the tensile tissue stress 
exceeded a threshold limit of 5 MPa. The initial degeneration algorithm, however, was lim-
ited to tibiofemoral compartment and two subject groups i.e. normal weight and obese.

Since, a follow-up study was conducted to validate the performance of this carti-
lage degeneration stimulation algorithm by separating clinically healthy but obese sub-
jects, diagnosed frim the baseline radiographs, into KL grade 2 and 3 based on the pre-
dicted level of cartilage degeneration (Liukkonen et  al. 2017a). Twenty one subjects 
were involved in this study. In femoral cartilage model, an AUC of 0.94 and 0.84 was 
reported in predicting the cartilage KL grade 3 and 2, respectively. Meanwhile, in tibial 
cartilage model, AUC of 0.90 and 0.80 were reported in predicting the cartilage KL 
grade 3 and 2, respectively. In Mononen et al. (2019), a template-based approach was 
introduced to substitute the previous patient-specific approach. Anatomical dimensions 
were measured from 21 subjects to create templates from these subjects. Then, matching 
of template were conducted via minimum RMSE of anatomical dimension between the 
subject of interest and templates (multiple templates) or minimum RMSE of anatomical 
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dimension between each subject and all templates (one template). An optimal template 
model was scaled to match anatomical dimension for the subject of interest and eventu-
ally, the scaled templated model was simulated along with the simplified gait loading. 
Interestingly, the approach with one template and the average meniscus support was sta-
tistically able to separate all KL grade groups to each other.

Existing research direction focuses on biomarkers to quantify the pattern of knee OA 
progression wherein nee segmentation serves as the cornerstone in knee OA research 
pipeline. Early segmentation models applied interaction from human expert for guid-
ance but led to inter- and intra-observer ambiguity and heavy reliance on manual inter-
vention. Then, substantial amount of attention has shifted to fully automatic segmen-
tation models. Learning power of fully automatic segmentation models was limited 
to subjective feature selection, optimization and knowledge prior information. Con-
sequently, these models failed to generalize to bigger dataset size. Nowadays, AI has 
transformed knee OA research direction toward prediction and early detection, given 
that deep learning has demonstrated great potential in terms of generalizability, robust-
ness and versatility. Besides, it is noteworthy that advanced diagnostic applications are 
gradually becoming the future state-of-art. To embrace future challenges, more investi-
gations are needed to validate the clinical applicability of deep learning models.
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