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Abstract

In this paper, the notion of picture fuzzy competition graph along with its few general-
izations such as m-step picture fuzzy competition graphs, picture fuzzy economic com-
petition graphs and picture fuzzy competition hypergraphs are introduced. Some related
picture fuzzy graphs including picture fuzzy m-step neighborhood graph, picture fuzzy m-
step economic competition graph and picture fuzzy k-competition hypergraphs are intro-
duced. Some properties of these graphs have been investigated. Finally, applications of m-
step picture fuzzy competition graphs and picture fuzzy competition hypergraphs are
presented in several fields such as in education system, ecosystem, business market and job
competition.

Keywords Picture fuzzy competition graphs - m-step picture fuzzy competition graphs -
Picture fuzzy economic competition graphs - Picture fuzzy hypergraphs - Picture fuzzy
competition hypergraphs

1 Introduction
1.1 Research background

The notion of competition graph (CG) is formally introduced by Cohen (1968). In ecology,
there are some problems of competition between species of food cycles those are modeled

by the digraph G = (v, F) These models are suitable to specify well defined nature of
objects and especially species-victim relations. Nowadays, besides of ecosystem, CGs have
many applications in other fields, such as coding and energy system, channel assignments,
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social interactions, modeling of complex economic, communications over a noisy channel
etc. Let G = (v, F) be a digraph, which corresponds to a food cycle, a vertex r € V(E))
represent a species and arc (r,q) € ﬁ(ﬁ) indicate that r kills the species g. If two species
r and s have a common victim g then they will compete for g. The CG C (6) of G is an
undirected graph with V as vertex set and having an edge (r, §) in C(ﬁ) iff there is a vertex

— =
g € V such that (r,q), (s,q) € B(G) for any r,s € V, (r #s).

The notion of fuzzy set (FS) was first introduced by Zadeh (1965) to discuss the
uncertainty in several real life problems. It was found that one component is not sufficient
to describe some special types of information. In this situations, a component namely non-
membership value is invited to illustrate the information properly and in addition to this
new component (Atanassov 1986) defined intuitionistic fuzzy set (IFS). Later on, in some
cases, another component namely ‘neutrality’ is needed to represent some information
completely. To recover these scenarios, Cuong (2014) and Cuong and Hai (2015) presented
the idea of picture fuzzy set (PFS) as a generalization of IFS, by incorporating the notion of
truth, abstinence and false membership degree of an element in the set with sum of these
three degrees less than or equal to 1. The structure of fuzzy graph (FG) was introduced by
Rosenfeld (1975), whose first definition was given by Kauffman (1973) and intuitionistic
fuzzy graph (IFG) were discussed by Shannon and Atanassov (1994). Poulik and Ghorai
(2018, 2020a, b) introduced several new concepts of bipolar fuzzy graphs with their
applications. After that, Al-Hawary et al. (2018) provided the new concept of picture fuzzy
graph (PFG) and discussed some operations on it. Recently, Das and Ghorai (2020a)
introduced the notion of picture fuzzy planar graphs and applied it to construct road map
designs. After Cohen’s introduction of CG, its several variations are found in literature,
such as p-CGs of digraphs (Kim et al. 1995), tolerance CGs (Brigham et al. 1995), m-step
CGs of digraphs (Cho et al. 2000), etc. The p-competition indicates that there is a com-
petition between two species if they have at least p common victims. Samanta and Pal
(2013) and Samanta et al. (2014) first utilized FGs in competition in ecosystems. Later,
Samanta et al. (2015) introduced another generalization as m-step fuzzy CGs of digraphs.
Sahoo and Pal (2015) defined intuitionistic fuzzy CGs and its novel properties studied by
Nasir et al. (2017). The study of fuzzy ¢-tolerance CGs and interval-valued fuzzy ¢-
tolerance CGs was presented by Pramanik et al. (2016a, b). Al-Shehrie and Akram (2015)
introduced the concept of bipolar fuzzy CGs. On the other hand, some novel concepts of
CGs and a decision making approach based on CGs ware discussed in bipolar fuzzy
environment by Sarwar and Akram (2017) and Sarwar et al. (2018b). Akram and Nasir
(2017) and Akram and Sarwar (2018) studied certain CGs in intuitionistic neutrosophic
environment and m-polar fuzzy CGs with their applications. Many other works on CGs are
found in Borzooei et al. (2016), Das et al. (2020), Habib et al. (2019), and Samanta and
Sarkar (2018). A very recent work, applying the idea of PFSs to CGs, Das and Ghorai
(2020b) introduced the notion of picture fuzzy competition graphs (PFCGs) and applied
this idea in medical science.

Hypergraph theory originally developed by Berge (1973) in 1960, as a generalization of
graph theory. The notion of fuzzy hypergraphs (FHs) was first discussed by Kaufmann
(1975) and then this concept redefined and extended by Lee-Kwang and Lee (1995). After
that, FHs theory increased in different branches, such as interval-valued fuzzy hypergraphs
(Chen 1997), intuitionistic fuzzy hypergraphs (Parvathi et al. 2009), bipolar fuzzy
hypergraphs (Samanta and Pal 2012), etc. In 2004, Sonnatag and Teichert (2004) first gave
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the idea of competition hypergraphs (CHs). Sarwar et al. (2018a) presented the notion of
fuzzy CHs to generalize the concept of CHs and fuzzy CGs.

1.2 Research challenges and gaps

e Some problems in literature can not be modeled by using PFCG but m-step picture
fuzzy competition graphs (m-SPFCG) are used successfully for these problems.

e The crisp CGs do not measure the strength of competitions between common victim
and related species due to uncertainty.

e The crisp CGs are not sufficient to show the degree of dependence about the common
victim and related species due to uncertainty.

e The crisp hypergraphs do not describe all the competitions of real world problems that
contain uncertainty and fuzzy in nature.

e PFCH give clear representation of predator-prey relations than CGs.

1.3 Motivation and contribution of this study

In ecological problem, species may be of several types like lenten, non-lenten, strong,
weak etc. Similarly, victims may be tasteful, digestive, injurious, etc. These terms have no
proper meaning. They are fuzzy in nature. So the species and victims may be assumed as
PFSs and inter-relation between them may be designed with a PFG. Due to uncertainty in
description of species and victims, and to find more than 1-step relationships between
them, it is necessary to design m-SPFCG model. As crisp hypergraphs do not demonstrate
properly all the competitions of such problems, therefore the contribution of this article is
not only restricted to m-SPFCGs but also we have applied the idea of PFS to CHs to handle
the real problems having non-linear uncertainties or haziness.

Here, we have generalized the notion of picture fuzzy hypergraph by assuming picture
fuzzy vertex instead of crisp vertex set and an interrelation between picture fuzzy vertex
and edges. Also, various new concepts including m-SPFCGs, picture fuzzy economic
competition graphs (PFECGs), m-step picture fuzzy neighborhood graphs (m-SPFNGs),
picture fuzzy competition hypergraphs (PFCH), picture fuzzy k-competition hypergraphs
(PFkCH) and picture fuzzy neighborhood hypergraphs (PFNH) are presented with some of
their interesting properties. An applications of m-SPFCG in education system is presented.

The PFCG or m-SPFCG model, usually give only pair-wise competition between
objects. But, when we are interested to find group-wise competition among three or more
objects, then existing models are not fruitful. In such situations, PFCH models plays a
important role to overcome this issue.

1.4 Framework of this study

This work is composed as follows: In Sect. 2, several basic definitions related to PFCGs
are provided. In Sect. 3, the notion of m-SPFCG is presented and studied several properties
of it. In Sect. 4, the notion of PFECG is presented. In Sect. 5, PFCH is introduced. In
Sect. 6, the concept of PFNHs is presented and established the relations between PFAKCHs
and picture fuzzy k-neighborhood graphs (PFkNHs). In Sect. 7, an application of m-
SPFCG in education system is given. Finally, a conclusion is drawn in Sect. 8.
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2 Preliminaries

In this section, several basic definitions related to PFCGs are provided. Meantime, we
introduce cardinality, support and height of PFSs that will be used in later sections.
A digraph is usually used to model the relationship between a given set of objects.

Definition 2.1 (Jenson and Gutin 2009) A digraph G consists of a non-empty finite vertex
set Vand a finite set B of edges that are ordered pairs of distinct members of V. Letr; € V,
the out-neighborhood and in-neighborhood of r; are the sets R*(r;) ={r,eV —r:
(ri,rj) € ﬁ} and R~ (r;) ={r,€eV—ri:(rj,n) € ﬁ}, respectively. Also the set X*(r;) U
N~ (r;) is the open neighborhood of r; in 6 A directed walk from a vertex r; to 7; in 6 is
an alternating sequence of vertices and edges begin with r; and end with r; such that each
edge is incident with the vertices preceding and following it. No edge appears more than
once but vertex can. A walk is closed if ; = r;. If all vertices in a walk are distinct, then it
is known as path.

The open and closed neighborhood of vertices help to model neighborhood graphs.

Definition 2.2 (Achary and Vartak 1973) The open neighborhood X(r) of r in an undi-
rected graph G is the set of all vertices adjoining to r and the closed neighborhood of r is
R[r] = R(r) U {r}. The open-neighborhood graph X(G) and closed-neighborhood graph
R[G] of G are the graphs with V as vertex set and having an edge (r, s) in X(G) and R[G] iff
R(r) N R(s) # 0 and R[r] N N[s] # 0, respectively in G.

PFSs, superior to FSs and IFSs, amplify the space of uncertain information.

Definition 2.3 (Cuong 2014) Let X be the universe. Then a PFS A is defined on X as
A={r,(us(r),ns(r),va(r)) : r € X}, where p,(r),n4(r), va(r) € [0,1] denote the degree
of truth membership (DTMS), degree of abstinence membership (DAMS), degree of false
membership (DFMS) of r € A, respectively with 0 <, (r) +1,(r) + va(r) <1 Vr € X.
Also Vr € X, Da(r) = 1 — (us(r) + n4(r) + va(r)) represent denial degree of r € A. Here,
s (r),m4(r), va(r) all are independent.

Definition 2.4 (Das and Ghorai 2020b) Let A = (r, t4, 14, v4) be a PFS. The cardinality of
A is defined as |A| = (|A|u7|A|n’|A|v)’ where [A],,|A|, and |A|, represent the sum of
DTMS, DAMS and DFMS, respectively of all elements of A. The support of A is
supp(A)={r € V: u,(r) #0,n4(r) #0 and v4(r) # 0} and the height of A is h(A) =

(sup,cy ta(r), sup,cy 14 (r), infrey va(r)) = (hu(A), hy(A), hy(A)).

Picture fuzzy models provide more legibility, flexibility and suitability to the system as
compared with the models in other fields.

Definition 2.5 (Al-Hawary et al. 2018) A PFG is G = (V,A,B) where A = (U, 14, Va)s
B = (,“B”’IB’VB) and
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i) V=A{r,r2...,ry} such that g,,1,,v4 : V— [0, 1] denote the DTMS, DAMS and
DFMS of r; € V, respectively with O <, (r;) +n4(ri) +va(r)) <1 Vr, €V,
(i=1,2,...,n).

(i) wug,ng,ve:V xV —[0,1] denote the DTMS, DAMS and DFMS of edge (r;,r;),
respectively such that  fug(r;. 1) < min{py (), 1a ()}, 11p(ri, ) < min{in, (1),
na(ry)} and  vg(ri,r) <max{va(ri),va(r;)} with 0 <pp(ri, ;) + np(ri,rj) +
vg(ri,rj) <1 for every (ri, 1), (i,j =1,2,...,n).

Like as fuzzy digraph, picture fuzzy digraph (PFD) has the following definition.

Definition 2.6 (Das and Ghorai 2020b) A PFD is of the form G = (V7A,E)) where

A= (g, nasva). B = (Tp g, Vp) and () V= {ri,ra,....ru} such that gy, ns, v :
V — [0, 1] denote the DTMS, DAMS and DFMS of r; € V, respectively with 0 < u, (r;) +
17A(r,-) + VA(I",‘) <1Vrev, (l =1,2,.. .,I’l).

(i) I, Mg, Vi : V x V —[0,1] denote the DTMS, DAMS and DFMS of edge (r;, 7;),
respectively such that p(ri, ;) <min{py(ri), ua(rj) }, 0 g(ri, 15) <min{na(ri), na(ry)}
and V(ri, 1) <max{va(r;),va(r;)} with 0 <Wy(ri, 1) + 7 g(ri,15) + Vp(ri,r;) <1 for
every (r;,r;), (i,j=1,2,...,n).

We illustrate it by giving an example.

Example 2.7 We consider the PFD 6, as showing in Fig. 1.

In a PFD, strength of edges characterize the competitions between common feed and
related species. This shows how much the species depend on the common feed.

Definition 2.8 (Mohamedlsmayil and AshaBosely 2019) A PFD G = (V,A, ﬁ) is com-
plete if TWp(r,s) = pa(r) A pa(s), Wp(r,s) = na(r) Ana(s) and Va(r,s) = va(r) V va(s)
V r,s€V. An edge (r,s) is independent strong if fmin{u,(r), us(s)} <Wp(r,s),
Imin{na(r),ns(s)} > 7g(r,s) and Smax{va(r),va(s)} > Vp(r,s). Otherwise, it is weak

Halrs) W yrs) Vs

edge. Strength of the edge (r, s) is given by (#A

(rs) )

()Atg (s) 2 na (r)Ana(s) 2 va(r)Vva(s)

Now, to construct PFCGs it is necessary to define PFON and PFIN of a vertex in the PFD.

Fig. 1 Example of a PFD 7(0.4,0.3,0.2) 5(0.5,0.1,0.4)

(0.3.0.1,0.35) (9.3,0.1,0.2)

2,0.3,0.25
(0=2410.550:25) (0.2,0.15,0.3) | (0.3,0.1,0.4)
v(0.35,0.2,0.

(0.2,0.2,0.3)

1(0.2,0.5.0.3) t(0.3,0.4.0.3)
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Definition 2.9 (Das and Ghorai 2020b) PFON of a vertex r in 6 is
N+(r) = (X;ra (/lj,ﬂ:r, j))’ where Xj = {S : ﬁ)B(rvS) > 07 WB(V,S) >0 and
Va(r,s) >0} and g nf v i X; — [0,1] are defined as i’ (s) = Hp(r,s),n; (s) =
—_— + I d
1 g(r,s) and vi(s) = Vp(r,s).
PFIN of a vertex r of G is N (r) = (X, (4 ,n,,v,)), where X = {s:
—

Wg(s,r) > 0,7 g(s,r) >0and Vp(s,r) >0} and -, 5 ,v. : X, — [0, 1] are defined as
M, (): #B(&”)vﬂr ()_ 7]3(37’”) and v, (): VB(Svr)'

To cover all the competitions in real world, adding more uncertainty to intuitionistic fuzzy
CGs, PFCGs are introduced.

Definition 2.10 (Das and Ghorai 2020b) The PECG C(G) of a PFD G is an undirected
graph with V as vertex set and having an edge (r, s) in C(a) iff R (r) NN (s) # 0 in G.
The DTMS, DAMS and DEMS of (7, s) in C(E)) are respectively pg(r,s) = [ua(r) A
pa ()] (X5 () OR¥(s)), mp(r,s) = [Ma(r) Ama(s)]y (RT(r) AR (s))  and  vp(r,s) =
[va(r) Vva (s)}h\,(?‘ﬁ(r) N N*(s)).

3 m-step picture fuzzy competition graph (m-SPFCG)

In this section, we will introduce m-step picture fuzzy digraph and one of the general-
ization of PFCG is considered known as m-SPFCG. The following notations are used in
this work:

Py A picture fuzzy path (PFP) between r and s of length m.
*)l

P, 5+ A directed PFP of length m between r and s.

5)°
r): picture fuzzy m-step out neighborhood (PFmSON) of r.
—(r): picture fuzzy m-step in neighborhood (PFmSIN) of r.

N (

X, (

N, (r): picture fuzzy m-step neighborhood (PFmSN) of r.

R, (G): picture fuzzy m-step neighborhood graph (PFmSNG)of the PFG G.
Cm(E)) m-step picture fuzzy competition graph (m-SPFCG) of the PFDG G.

Definition 3.1 The m-SPFD of a PFD G = (V,A, B) is denoted by G,, = (V,A, B') with
V as vertex set and having an edge (r, s) in G—,,; if there is a directed PFP ?Z’_,S) in 6

In PFDs if a species r directly attacks a feed s, then their connection is showed by (7,5)
edge. But, if such connection made indirectly with the help of m mediators, this can be
showed by a directed PFP of length m. So m-step feed (species) in a PFD is represented by
a vertex which is the PFmSON (or PEmSIN) of some species (feed). Both of them help to
construct m-SPFNGs and m-SPFCGs models. Now, PEmSON and PFmSIN of vertices in a
PFD are defined below.

Definition 3.2 The PEmSON of a vertex r of G is the PFS NE(r) = (X1, (it mh,vi),
where X' = {s: there is a directed PFP ??:AS) of length m from r to s}, gt nt, v : X —
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[0,1] are defined as 7 (s) = min{z(a,b) : (a,b) is an edge of ?’(ﬁj)} nh(s) =
min{ 7 g(a,b) : (a,b) is an edge of ?’(ts)} and v/ (s) = max{V'p(a,b) : (a,b) is an edge of
—m

P (r,s)}'
The PFmSIN of a vertex r of G is the PFS R (r) = (X, (1, n,,v,)), where X~ = {s

there is a directed PFP ?“J) of length m from s to r}, iy, 1y, vy : X, — [0, 1] are defined
as i (s) = min{ 7 (a,b) : (a,b) is an edge of P, ,}, 1, (s) = min{7 p(a,b) : (a,b) is an

m

edge of F)Z,)} and v (s) = max{V'g(a,b) : (a,b) is an edge of ?(w)}'

There are some problems in literature, where the species and feed can not be connected
directly. These problems of feed-species can not be properly modeled by using PFCGs. In
such cases m-SPFCGs are effectively used. The m-SPFCG is the generalization of PFCG
which is defined below.

— — — —
Definition 3.3 Let G = (V,A, B) be a PFD. The m-SPFCG of G is denoted by C,,(G) =
(V,A, B') with V as vertex set and having an edge (r, s) in cm(ﬁ) iff N (r) NRE(s) # 0 in
G. The DTMS, DAMS and DFMS of an edge (r, s) are given by ug(r,s) = [us(r) A
pa ()] (85, (r) AR (5)) g (r,5) = (14 (r) Ana ()] (R (r) ARG () and - vg (r,s) =
va(r) V va(s)lhy (R (r) NRS(s)), respectively.

The following example illustrates 2-SPFCG.

Example 3.4 Consider a PFD G (see in Fig.2a). Here, 3 (r)={(y, (0.4,
0.1,0.2)), (w,(0.7,0.1,0.2))} and  Nj(s) = {(,(0.4,0.1,0.3)), (w, (0.4,0.2,0.3))}.
Therefore, X7 (r) N RS (s) = {(y, (0.4,0.1,0.3)), (w, (0.4,0.1,0.3))} # 0. Then there is an

edge (r, s) in cz(ﬁ) with DTMS, DAMS and DFMS are respectively 0.2, 0.01 and 0.06
shown in Fig. 2b.

#(0.8.0.1,0.1) $(0.5,0.3,0.2) 7(0.8,0.1,0.1) $(0.5.0.3,0.2)
® 3 ° °®
(0.2.0.01,0.06)
¥(0.4.0.3.0.2) 0.4.0.3,0.3
(0.6.0.1.0.2) ¢ ( )
® ,(0.4.03,02)
- . 2 °
2(0.7,0.1,0.2 2(0.4,0.3,0.3)
( ) ° 2(0.4,0.3,0.3)
2(0.7,0.1,0.2)
(0.7.0.1.0.2) (0.4,0.2,0.3)
°
w(0.7,0.2,0.1) w(0.7,0.2,0.1)
(a) (b)

Fig. 2 Example of a PFD and b 2-SPFCG

@ Springer



3148 S. Das et al.

Definition 3.5 The PFmSN of a vertex r of PFG G=(V,A,B) is a PFS
R, (r) = (Xr, (14, 1, vr)), Where X, = {s: there exits a PFP P{ ;) of length m from r to s},
Ups My Vr 2 X, — [0, 1] are defined by p,.(s) = min{ug(a,b) : (a,b) is an edge of PEV;M}’
n,(s) = min{ng(a,b) : (a,b) is an edge of P, ,} and v,(s) = max{vp(a,b) : (a,b) is an
edge of PE’;J)}.

Next, we define m-step picture fuzzy neighborhood graph (m-SPFNG). In m-SPFNG the
relation among neighborhoods of any species are modeled.

Definition 3.6 Let G = (V,A,B) be a PFG. The m-SPENG of G is denoted by
Nm(G) = (VvAvB)’ where A = (:uAvrlAva)’ B = (.“37’737"3) and HasMas VA e V- [07 1]
and pig,ng,vg 1 V x V — [0, 1] are such that pug(r,s) = [ty (r) A pa ()] (R (r) N Ry (s)),
Ms(ras) = [1a(P) Ana(S)] By (Nu(r) N8 (s)) and () = [ua(r) V va(5)]y (R (r)
MRy (5)).

The following example illustrates 2-SPFNG.

Example 3.7 Consider a PFG G given in Fig. 3a. Here, N,(r) = {(w, (0.5,0.1,
0.2))}, X (s) = {(u, (0.4,0.1,0.3)), (w, (0.4,0.2,0.3)) }, X (1) = {(v, (0.4,0.1,0.3)) }, X
(u) = {(s,(0.4,0.1,0.3)), (w, (0.4,0.1,0.3)) }, Ro(v) = {(¢,(0.4,0.1,0.3)) }, R (w) =
{(r,(0.5,0.1,0.2)), (s, (0.4,0.2,0.3)), (1, (0.4,0.1,0.3)) }.  Also, Ro(r) NNRy(s) = {(w,
(0.4,0.1,03))}, No(r) NRo(u) = {(w,(0.4,0.1,0.3))}, Ry(s) N Ry () = {(w, (0.4,0.1,
0.3))}, Ra(s) N Ro(w) = {(u, (0.4,0.1,0.3))} and Ry (u) N R (w) = {(s,(0.4,0.1,0.3))}.
So, (r, s), (r, u), (s, u), (s, w) and (u, w) are the edges of N,(G) with DTMS, DAMS and
DEMS are respectively (0.2, 0.01, 0.06), (0.16, 0.01, 0.06), (0.16, 0.03, 0.06), (0.2, 0.02,
0.06) and (0.16, 0.02, 0.06) shown in Fig. 3b.

— — —
Theorem 3.8 Let G = (V,A, B) be a PFD. If m > |V| then C,,(G) is a PFG with no
edges.

7(0.0.8,0.1,0.2) 5(0.5,0.3,0.2) 7(0.0.8,0.1,0.2)

. . 5(0.5,0.3.0.2
0 (0.2.0.01,0.06) )

(0.16,0.03. 0.06)

(0.16,0.01,0.06 (0.2.0.02.0.06)

(0.6.0.1,0.2) (0.4,0.3,0.3)

v(0.6,0.2,0.2), 1‘(().(5.(;24 0.2)

t(0.4,0.3,0.3)
(0.16,0.02.0.06)

(0.5.0.1,0.2) (0.4,0.2,0.3)

w(0.7,0.2,0.1)

w(0.7,0.2.0.1)
(a) (b)

Fig. 3 Example of a PFG and b 2-SPFNG
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Proof Let Cm(ﬁ) = (V,A,B’) be the m-SPFCG corresponding to a PFD G = (V,A, F),
where, 1 (r, 5) = (14 (r) A g ()] (R, (r) ORE()) e (r,8) = [a(r) A g ()] (R} (r)
NN (s)) and v (r,s) = [va(r) V va(s)]h, (R (r) N RS (s)).
If m > |V|, there does not exists any directed PFP F)Z‘s) of length m in G.
— —
So, XE(r)NRt(s) =0V r,sin G. Hence, C,,(G) has no edge. O

Example 3.9 Any PFD with n vertices has at most a directed PFP of length (n — 1)
between its two vertices. In Fig. 2a, |V(6)| = 6. If we take m = 7, then there does not
exists any directed PFP of length 7 in G. So, RI(NNRF(s) =0V r,sin G and hence
edge set of C7(6) is an empty set.

Here, the underlying PFG of a PFD is defined below.

Definition 3.10 Let G = (V,A, B) be a PFD. The underlying PFG of G is the PFG
G= (VaAvB)’ where, .uB(r75) :min{ﬁB(ns)aﬁB(& }")}, I1B(V,S) :min{ﬁB(r’S)a
Wp(s,r)} and vg(r,s) = max{Vp(r,s), Vg(s,r)} Y r,s € V.

Next, we established a relation between m-SPFCG and m-SPFNG.

Theorem 3.11 Ifa PFD G does not contain any parallel edge, then Cm(a) = N, (G) for
m > 1, where G is the underlying PFG of G.

— —
Proof Let G = (V,A, B) be a PFD having no parallel edges. Let G = (V,A, B) be the
. = . — —
underlying PFG of G. Then ug(r,s)=min{fgz(r,s), wg(s,r)}, ng(r,s)=
min{ 7 5(r,s), W p(s,r)}, vg(r,s) = max{Vp(r,s), V(s,r)} Vr,s € V.
: Vel . — —
Since G contains no parallel edges, then up(r,s) = wg(r,s), ng(r,s) = 7'g(r,s) and
N — —

vg(r,s) = Vg(r,s), ¥V r,s € V. Also, let C,,(G) = (V,A,B’) be the m-SPFCG of G and

R,,(G) = (V,A, B") be the m-SPFNG of G. The vertex set of Cm(E)) and X,,(G) are same.
We have to prove that the edges sets of them are also same. Here,
R (R (r) AR (5)) = By (R (r) R (5)), Ay (R (r) AR (5)) = Ay (R (r) MR, (s))  and

(N*(r) NRf(s)) = (N,,,(r) NR,(s)), Vr,s€V. Therefore, ,uB,(r ) = pign(r,s),
ng(r,s) =ngi(r,s) and vg(r,s) = vp:(r,s). Thus the edges of C,(G ) and N,,(G) are
same. Hence, C, (6) Nm(G) d

Now, the strength of the feed in a PFD is defined below.

Definition 3.12 Let G be a PFD. Let g be a common vertex of m-step out neighborhood of
the vertices ri,ra, ..., r. Also, let pg(b;,c;),ng(bi,c;)and vg(b;,c;) are the respective
minimum DTMS, minimum DAMS and maximum DFMS of edges of the paths
_P)?;_’q),i =1,2,...,k. The m-step feed ¢ € V is independent strong if puz(b;, c;) >
0.5, 1’]B(b,', C;) <0.5 and VB(b;, C,‘) <0.5,i=1,2,... k.

The strength of the feed g is defined by (Si(q),S2(q),S3(g)), where S1,85,83: V —
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#(0.7,0.1,0.2) 5(0.6,0.1,0.25) r(0.7.0.1,0.2) 5(0.6.0.1,0.25)
] p e ®
(0.33.0.01,0.05)

) (0.55,0.1,0.2)
(0.7.0.1,0.2)

® (0.6.02.0.2)

o
° 2(0.65,0.1,0.2)
2(0.75,0.1,0.15)

2(0.75.0.1.0.1 L,:(().(i.’:.(].L().Q)

(0.7,0.1,0.15) 0.6,0.1,0.2)
°

w(0.8,0.1,0.1)
w(0.8,0.1,0.1)

(a) (b)

Fig. 4 Example of a PFD and b 2-SPFCG

[0,1] are such that Si(q) = 13) Wy(bi,ci), S2(q) = L3} Tp(biyci), S3(q) =13 Vg
(bi»Ci)

Theorem 3.13 If each feed of a PFD G = (V,A, ﬁ) is independent strong, then each
edge of Cm(a) is independent strong.

— — —
Proof Let G = (V,A, B) be a PFD with strong feeds and C,(G) = (V,A,B’) be the
corresponding m-SPFCG.

Case I: When X (r) N R (s) = 0, then there is nothing to prove, as edges set of cm(ﬁ)
is an empty set.

Case II: When XN} (r) NN} (s) # 0, then clearly h, (N} (r) AR/ (s)) > 0.5, hy (R} (r) N
N} (s)) <0.5 and Ay (N} (r) NN} (s)) <0.5 in G as each feed is independent strong.

Now, g (r,s) = [y (r) A pa ()] (R (r) R (s)) Or,m’l‘f’& >0.5.

» < ()i (s)
P v (r,s v (r,8)
Slmllar]y, m'(]f)w <0.5 and VA‘(%W <0.5.

Then (r, s) is an independent strong edge in Cm(ﬁ) But, (r, s) is an arbitrary edge of
C,,,(ﬁ). Thus each edge of Cm(ﬁ) is independent strong. O

Example 3.14 Consider a PFD G (see Fig. 4a). Here, y and w both are independent strong
2-step feeds. We have, Nj(r) = {(y,(0.6,0.1,0.2)), (w,(0.7,0.1,0.2))} and Rj(s) =
{(»,(0.55,0.1,0.2)), (w,(0.55,0.1,0.2))}.  Therefore, N3 (r) N N3 (s) = {(y,(0.55,
0.1,0.2)), (w, (0.55,0.1,0.2)) } # 0. Then there exist an edge (r, ) in C>(G), which is
independent strong with DTMS, DAMS and DFMS are respectively 0.33, 0.01 and 0.05,
shown in Fig. 4b.
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Theorem 3.15 If a feed q of G s independent strong, then strength of q,
S1(q) > 0.5,8,(q) <0.5 and S3(q) <0.5.

Proof Let G = (V,A, ?) be a PFD. Let g be a common vertex of PFmSON of the vertices
Fi,72, .. re. Also, let pg(bi,ci),ng(bi,ci) and vg(bi,c;) are the respective minimum

m

DTMS, minimum DAMS and maximum DFMS of edges of the paths ?(rpq)’
i=1,2,...,k. If g is independent strong, then each edge (b;,¢;), i =1,2,...,k is inde-
pendent strong. So, ug(b;,c¢;) > 0.5, ny(b;, ¢;) <0.5 and vg(b;, ¢;) <0.5,i =1,2,...,k and
also, Si(g) > 0.5,52(¢) <0.5 and S3(¢) <0.5. O

Remark 3.16 The converse of the above theorem 1is not true. i.e., if
Si(g) > 0.5,5,(¢) <0.5 and S3(g) <0.5, then feed ¢ may not be independent strong. This
can be explain as:

Let Si(g) >0.5,5(q)<0.5 and S3(¢)<0.5 for a feed ¢ in G. So,
IS Wg(biyci) > 0.5, L3375 (biye;) <0.5 and 1Y% Vp(bi, ¢;) <0.5. This result does
not necessarily implies that 70 (b;, c;) > 0.5, 7' g(bi, ¢;) <0.5 and V'p(bi,c;)<0.5 V i =

1,2,...,k and hence, each edge of each directed PFP ?(;,q),
independent strong. So, ¢ may not be independent strong feed.

i=1,2,...,k may not be

Example 3.17 In Fig2(a)), strength of the feed w is (Si(w),S2(w),S3(w))
= (07404 01402 02103) — (0.55,0.15,0.25). But w is not strong 2-step feed as edges of

2
the PFP ?@w) are not independent strong.

Here, we establish a relation between m-SPFCG of a PFD and PFCG of m-SPFD.

— — — —
Theorem 3.18 If G be a PFD and G, be its m -SPFD, then C(G,,) = Cy,(G).

— — — . —
Proof Let G = (V,A,B) be a PFD and G,, = (V,A,B’) is the m-SPFD of G. Then
vertex set of C (6) and Cm(g) are equal. we have to prove that the edges set of them are

also equal.

Let (r,s) be an edge in G,. Then there exists an edges (r,r;),(s,r;) in
Goi=12,.. .k

In G, we have R (r) N RT(s) = {(ri, i, i, vi)li = 1,2,.. .k}, where
= Wp(rr) Ndp(s,n)n = Ng(rn) A g(s,r),vi=Ve(rn)V Vesn).

Let P =max{pli =1,2,... .k}, =min{n,|i = 1,2,... .k} and
R =min{vi|li =1,2,...,k}. Then tg (r,8) = [a(r) A pa ()] (RT(r) NRT(s))
= [ua(r) A pa ()] X P, i (ry5) = [na(r) Ama(s)] x Q and vp (r,s) = [va(r) V va(s)] x R.
An edge (r,r;) exists in 6,,, implies that there is a directed path from r to r; of length m,
F)Z‘,‘_) in G and Wy(r,r) =min{®Kp(x,y) : (x,y) is an edge in Fﬂ(:n)}’ Nyr,r) =
min{ 7 (x,y) : (x,y) is an edge in F)Z’r’)}, Vi (r,r;) = max{Vg(x,y) : (x,y) is an edge in

—m . —
P, .} Thus (r, s) is also an edge of C,,(G).
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Let /1, (N5 (r) NN (5)) = P,y (N5 (r) RS (5)) = Q@ and y, (N (1) AR (s)) = Rin G

Therefore, p5(r,s) = [ty (r) A pa () (N5 (r) VR (9)) = [ (1) A g (9)] < Py mg(rys) =
[1a(r) Anu(s)] x Q and vg(r,s) = [va(r) V va(s)] x R. This shows that there is an edge in

Cm(a) for each edge in C(am) Similarly, for each edge in cm(ﬁ) there is an edge in
— = _
C(G,,). Hence, C(G,,) = Cu(G). O

4 Picture fuzzy economic competition graphs (PFECG)

In this section, the definition of PFECG and m-step picture fuzzy economic competition
graphs (m-SPFECG) are given and studied several properties.

Definition 4.1 The PFECG of a PFD G = (V,A, §>) is an undirected graph E(ﬁ) =
(V,A, B) with V as vertex set and having an edge (r, s) in E(a) iff XN=(r) NN (s) # () in
G. The DTMS, DAMS and DEMS of (r,s) are respectively  ug(r,s) =
14 (r) A pa ()] (R™(r) AR (5)), mg(r,s) = [1a(r) Ama(s)lhy(R™(r) NR™(s))  and
vp(r,s) = [va(r) V va (s)]hv(N’(r) N N’(s)).

Definition 4.2 The m-SPFECG Em(a) of a PFD G = (V,A, F) is an undirected graph
E,,,(E’) = (V,A,B*) with V as vertex set and having an edge (r, s) in E,,,(a) iff N (r) N
No(s)#0 in G. The DTMS, DAMS and DFMS of (r, s) are respectively
fge (r,8) = [a (r) A pa ()]l (R, (r) R (), N (ry5) = [a(r) A na(s)]hy (R, (r) N
N, (s)) and vg: (r,5) = [va(r) V va()]h (R, (1) AR, (s)) ¥V r,s € V.

The following example illustrates PFECG and m-SPFECG.

Example 4.3 Consider a PFD G = (V,A,?) (see in Fig. 5a). Here, X~ (s) NN~ (u) =
{(2,(0.4,0.1,0.2)) } and X~ (r) "R~ (u) = {(v,(0.4,0.1,0.3))}. So, (s, u) and (7, u) are the
edges of E(ﬁ) with DTMS, DAMS and DFMS are (0.2, 0.01, 0.06) and (0.16, 0.01, 0.09),
respectively shown in Fig. 5b. Also, R (r) NR;(s) = {(v,(0.4,0.1,0.3))}, R (r)N
N5 (u) = {(r,(0.4,0.1,0.3))}, N5 (r) N5 (v) = {(1,(0.4,0.1,0.3))}, R;(s) N5 (u) =
{(v,(0.4,0.1,0.2))} and X5 (1) N X5 (u) = {(s,(0.4,0.1,0.3))}. So, (1, s), (r, w), (r,v),
(s, u) and (t, u) are the edges of Ez(a) with DTMS, DAMS and DFMS are respectively

(0.2, 0.01, 0.03), (0.24, 0.01, 0.09), (0.2, 0.01, 0.09), (0.2, 0.01, 0.06) and (0.16, 0.01,
0.09) shown in Fig. 6 (Table 1).

Theorem 4.4 The PFCGs and PFECGs of any complete PFD are same.

Proof Let G = (V,A, B) be a PED and C(G) = (V, A, B) be the corresponding PFCG.

. . -
Also, corresponding PFECG is E,,(G) = (V,A, B¥).
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5(0.5,0.3,0.1) 5(0.5,0.3,0.1)

(0.2,0.1,0.06)

#(08.0.1,0.1) £(0.4,0.4,0.1)
[ [}

v(0.5,0.2,0.3)

1(0.4,0.4,0.1)

0.4,0.1,0.2)
(0.16.0.01,0.09)

u(0.6,0.1,0.3) u(0.6,0.1,0.3)
(a) (b)

Fig. 5 Example of a PFD and b PFECG

Fig. 6 Example of m-SPFECG 5(0.5,0.3,0.1)

2,0.01,0.0¢
(0.2,0.01,0.09) #(0.4,0.4,0.1)

(0.24,0.01,0.09)
(0.16,0.01,0.09)

u(0.6,0.1,0.3)

Table 1 PFON and 2-step PFON

xev R~ (x) Ny (x)

r 1,(0.5,0.1,0.3)) }
r,(0.5,0.1,0.1)), (£,(0.4,03,0.1)) }

{( {(v,(0.4,0.1,0.3)), (£,(0.4,0.1,0.3)) }
{( {
t {(v.(04,02,02))} {
{( {
{( {

(1,(0.5,0.1,0.3)), (v,(0.4,02,0.2)) }
(5,(0.4,02,02))}

(6(0.4,0.1,0.2)), (5,(0.4,0.1,0.3)) }
(r(0.5,0.1,0.2)), (1,(0.4,0.3,0.2)) }

S

£(0.4,0.1,0.2)), (v.(0.4,0.1,0.3)) }
5,(0.5,0.3,0.1))}

The vertex sets of c(ﬁ) and Em(a) are same with the vertex set of G. We have to
prove that ug(r,s) = ug (r,s), ng(r,s) = ng(r,s), vg(r,s) =vp(r,s), V r,s € V. The
DTMS, DAMS and DFMS of the edge (r,s) in C(E)) are respectively
pg(r;8) = g (r) A pg ()]l (R (r) O (s)), mp(r,s) = [0a(r) Ama ()]l (RT(r) NRT (s))
and vp(r,s) = [va(r) V va(s)]h, (X" (r) N X7 (5)). Also, the DTMS, DAMS and DFMS of
the edge (r, 5) in En(G) are respectively pp. (r,s) = [, (r) A 1A ()] (R, (r) NR, (s)),
Mg (r,8) = (M4 (r) Ana(9)]iy (R, (r) AR, (5)) and vg (r,5) = [va(r) Va(s)] Ay(R,, (1N
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—
X, (s)). Since G is complete PFD, then R*(r) N X" (s) = X (r) R, (s). Hence, PFCGs
and PFECGs of any complete PFD are same. (I

Theorem 4.5 If?l> be the picture fuzzy sub-digraph of a PFD 6, then (i) Cm(?{) -
Cu(G) (i) E,( Gy ) CEL(G) (i) N, (Gr) CX,(G).

Proof Let G = (V,A,?) and G, = (Vl,Al,E)), where Vi CV and py, (r) < pa(r),
Ma, (r) S04 (r). va, (r) 2va(r) ¥ r € V1o Also, W, (r,8) <l p(r,s). g, (r,8) <77 p(r,5),
Vg, (r,s) > Vp(r,s) ¥V r,s € V. (i) Since, V| C V, the vertex set of Cm(a)) is a subset of
Cu(G). Also, f d in C,,(G1), N, (r) NN (s) is picture fi bset of th
(G ). Also, for any edge (r, s) in C,,( Gy ), X (r) N R (s) is picture fuzzy subset of the
—
same in C,(G). Then Wy (r,s) < Wp(r,s), W (r,s) < s(r,s), Vi (r,s)> Vg(r,s)

— —
Vr,s € Vy. This proves that C,,( G; ) C C,,(G). The proofs of (ii) and (iii) are similar to
() O

5 Picture fuzzy competition hypergraphs (PFCHs)

Hypergraph theory is the most blooming tool for demonstrating several practical problems
in different domains of science and technology. Moreover, crisp hypergraphs do not
describe all the competitions of real world problems. Here, we introduce definitions and
terminologies of picture fuzzy hypergraph (PFH) and PFCH.

Definition 5.1 The picture fuzzy hypergraph (PFH) is of the form H = (V,A, B), V is the
vertex set and B is the family of picture fuzzy hyperedges of H, where

(i) V={aa,...,a,} is a finite set,

(i) A= {(Cl,', (‘LLA(CZ,'), nA(ai)7 VA(ai))) ri=1,2,...,n},

(iii) B ={E\,E,,...,E,} is a family of picture fuzzy subsets of V,

(V) E = {(ai, (@), nj(a),vi(@))) : p(ai),mi(ai),vi(@;) >0  and  0<p;(a;) +
nj(ai)—i— vj(a,-) < 1},] = 1,27 ce.,m,

V) E#0.j=12..m

(vi) U]m:1 supp(E;) = V. The hyperedges E; are PFSs of vertices, ;(a;),;(a;) and
v;(a;) are respectively the DTMS, DAMS and DFMS of g; corresponding to E;.

We illustrate it by giving an example.

Example 5.2 Consider a PFH G = (V,A,B) such that V = {a;,a;,a3} and B =
{E\,E>,E;} as shown in Fig. 7. Here, E; = {(ay,(0.5,0.3,0.15)), (a2, (0.6,0.35,0.1)) },
E; = {(a2,(0.6,0.25,0.1)), (a3,(0.3,0.2,0.35))}  and  E3 = {(a1,(0.5,0.3,0.15)),
(a3,(0.3,0.2,0.35))}.

Now, we define picture fuzzy competition hypergraph (PFCH) and picture fuzzy double
competition hypergraph (PFDCH) as follows:
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Fig. 7 Example of PFH a1(0.5,0.3,0.15)

a20.6,025,01) g a5(0.3,0.2,0.35)

. el e - — —. . .
Definition 5.3 The PFCH Cyx(G) = (V,A,B.) of a PFD G = (V,A, B) is an undirected

graph with V as vertex set and has a hyperedge E consisting of vertices aj,ay, .. .,a, if
R*(a)) "R (@) N---NRT(a,) # 0. The DTMS, DAMS and DFMS of the hyperedge
E= {a), a,..., a;} are define as g (E) = [ug(ar) Apgla)A Ay (ar)]

hy(RT(ar) NRF (az2) 0= NR¥(ar)), 1, (E) = [a(ar) Amglaz) A= Amglar)]hy (R (ar)
NRT (az) n---N N*(ar)) and VB. (E) = [vA(al) V vy ((lz) Ve Voyy (llr)}hv (N+(a1) n
N*(a2) N--- NN (a,)), respectively.

Definition 5.4 Let G = (V,A, ?) be a PFD. The PFDCH Cpy = (V,A, By) is an undi-
rected graph having same vertex set as in G and there is a hyperedge E consisting of
vertices aj,da,...,a, if V' (a))NNT(a)N---NNT(a,) #O and R (a;) NN (az)
N---NN"(a,) # 0. The DTMS, DAMS and DFMS of the hyperedge E = {a;,as,. ..,
a,} are defined as g (E) = [uy(ar) A pp(a) A= A py(ar) by (RT (ar) NRT (az)N
N (@) VI (Y (@) N8 (a2) A N (@), 15, (E) = [alar) Analaz) A+ A
nalar)lhy (R (ar) "R (a) N -+~ NRY(q,)) V hy(R™ (@) "R (@) N---N R (a,))  and
v, (E) = [va(ar) Vva(az) V- - -V vaar) b (R (ar) N RT (@) N--- N NT(a,)) A by (R (ay)
MR~ (az) N -+~ NN (a,)), respectively.

The following example illustrates PECH and PFDCH.

Example 5.5 Consider a PFD G shown in Fig. 8a. Here, ' (a;)NN"(ag)
={(a2,(0.3,0.2,03))}, N"(a2) NN"(as) = {(a3,(0.4,0.2,03))} and N¥(a3)N
N*(as) = {(as,(0.4,0.2,0.1))}. Therefore, hyperedges of the PFCH are E, = {ai,ac},
E; = {ay,as} and E4 = {az,as}. The DTMS, DAMS and DFMS of E,,E; and E4 are
respectively (0.09, 0.06, 0.12), (0.16, 0.04, 0.09) and (0.16, 0.04, 0.02) (see Fig. 8b;
Table 2).

Again, N(a) NN (as) = {(a3,(0.4,0.2,03))} #0 and R (a) "R (as) =
{(as,(0.3,0.2,0.3))} # 0. So, there is only one hyperedge E = {a,as} in PFDCH with
DTMS, DAMS and DFMS are (0.16, 0.04, 0.09) shown in Fig. 8(c).
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5(0.4,0.2,0.3) a3(0.7,0.2,0.1)
(0.16,0.04,0.09)

@(04,02,03)  (04,02,03)  a3(0.7,02,0.1)

2,0.2) (0.5,0.2,0.1)
L (0.4,0.2,0.15)

(0.16,0.04,0.02)

41(0.5,0.3,0.1)

(03,0.2,0.3) T0.6,03,0.1) (0.09,0.06,0.12)
(0:3,0.25,04) (0.4,02,01)
S E— a(0.3,0.3,0.4)
a(0.3,03,04)  (0:3,03,025) gy 3 9

(a) rro (b) rren

a(0.4,0.2,0.3) a3(0.7,0.2,0.1)
[ ]

L]
4(0.6,0.3,0.1)

a5(0.4,0.3,0.2)

(0.16, 0.04,0.09)

[ ]
a1(0.5,0.3,0.1)

[ ]
a4(0.6,0.3,0.1)

°
a6(0.3,0.3,0.4) T(0.4,03,02)
(¢) rrocu
Fig. 8 Example of PFD and corresponding competition hypergraphs

Table 2 PFON and PFIN of the vertices

acV Nt (a) R~ (a)

a {(a2,(0.4,0.2,0.2)), (as, (0.3,0.25,0.4)) } 0

a {(a3,(0.4,0.2,0.3)) } {(a1,(0.4,0.2,0.2)), (as, (0.4,0.2,0.3)),
(as,(0.3,0.2,0.3))}

a3 {(as,(0.5,0.2,0.1))} {(as,(0.4,0.2,0.15))}

ay 0 {(a3,(0.5,0.2,0.1)), (as, (0.4,0.2,0.1)) }

as {(a3,(0.4,0.2,0.15)), (as, (0.4,0.2,0.1)) } {(as,(0.3,0.3,0.25))}

as {(a2,(0.3,0.2,0.3)), (as, (0.3,0.3,0.25)) } {(a1,(0.3,0.25,0.4))}

Definition 5.6 Let G = (V,A,B) be a PFH. A hyperedge E; = {ai,a2,...,a,} CV is
independent  strong  if  Imin{uy(ar), pu(az), ..., pua(ar)} <pp(E;),  tmin{n,(a),
(@), . nalar)} > np(E;) and smax{va(ai),va(a2), .. .,va(a,)} > v(E;). Otherwise, it
is called weak edge.

Theorem 5.7 Let G = (V,A, E)) be a PFD. If X" (a;) NN (az) N... NN (a,) contains
only one vertex of G. Then the hyperedge {ay,a,,...,a,} of Cy(g) is independent strong
iff R*(a) NRF(a2) N...NRT(a,)], > 0.5, [N (ar1) N RT(az) N...NRF(a,)|, <0.5, and
[R*(a;) "R (a2) N...NNRT(a,)],<0.5.

Proof Let G be a PFD. If R*(a;) N X+ (a2) N... N R*(a,) = {(x, (0, p, )}, where 0, ¢
and y are the DTMS, DAMS and DFMS of either edge (ay,x) or (az,x) or (a,,x). Here,
[N (a1) NRT(a2) N...NARF(a,)|, = 0= hy (R (a1) NRF(a2) N...NRT(a,)),
RF (@) MR (a2) 0. NRF ()], = & = by (R (a1) NRT (a2) N... AR (a,)),
N (a1) NRT(a2) N...NART(a,)|, = = hy(RT(a1) NRT (@) N...NRT(a,)).
So that, pz({ar,az,...,ar}) = [ua(ar) A pglaz) Ao A pplar)] x 0,np({ar, az, ..
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ar}) = [nalar) Amg(az) A== Aglar)] x @, vs({ar, az, .. ar}) = [valar) Vva(az) V-
Vva(a,)] x .

Therefore, the hyperedge {aj,as,...,a,} in cH(ﬁ) is independent strong iff
0> 0.5,¢<0.5 and Y <0.5, ie., iff [R*(a1) R (a2) N... AR (a,)], > 0.5, [N*(ar) N

¥ (a2) N... AR (a,)], <0.5 and [R*(a1) AR (a2) N... A RF(a,)], <O.5. O

Next, we define one of the extension of PFCH known as picture fuzzy k- competition
hypergraph (PFkCH), k is a non-negative real number.

Definition 5.8 Let k >0 be a real number. The PFkCH CHk(ﬁ) of a PFD G = (V,A, F)
is a PFH CHk(g) = (V,A, By) whose vertex set is same as in G and there is a hyperedge
E={aj,ay....a;} in Cu(G) if R (a) R (@) N...OR (a,)], >k [NF(a)) N
R*(a2) N...NR"(a,)|, > kand [R*(a1) NRF(az) N... AR (a,)|, > k. Then the DTMS,
DAMS and DFMS of E are respectively up (E)= % [ua(ar) A pg(a) A+ A
pa(a) (R (ar) NR* (a2) N AR (ay), mp(E) = 5 [na(ar) Amg(az) A= Ay (ar)]
hy(RT(a1) NRT(@2) N...NRT(a,)) and vg(E) = k3k:k a(ar) Vva(as) V-V va(a,)|h,
(X" (a1) NRF (@) N...N R (a,)),

where ki = [N (a;) N X" (a2) N...NART(a,)|,, ky = [RY(a)) NRT(ax) N...N
N*(a,)], and k3 = [R¥(ar;) NRF(az) N...NN"(a,)[,. A PFKCH is simply a PFCH if
k=0.

Here, we provide the following example of a PF.1CH

Example 5.9 In Example 5.5, for the hyperedge E;; k; = 0.3,k, = 0.2,k3 = 0.2. For Ej;
ki =04,k =0.2, k3 = 0.15. For E4; ki =0.4,k; = 0.2,k3 = 0.1. If we choose k = 0.1,

there exists hyperedges E, and E3 in CHOvl(ﬁ) with DTMS, DAMS and DFMS are
(0.06, 0.03, 0.08) and (0.12, 0.02, 0.06), respectively as shown in Fig. 9.

Theorem 5.10 Let G be a PFD. If b, (R*(a)) N (a2) N ... AR (a,)) = 1,/ (R* (1) N

Nt(a)N...NRT(a,)) = 1A (R (a1) NN (a) N...NRT(a,)) =1 and if [RF(a;)N

R*(a2) N...NRY(a,)], > 2k, [R* (@) NRT (a2) N ... ARF (a,)], <2k, [RT(a1) "R (a2)N

...NN"(a,)|, <2k, then the hyperedge E = {ay,ay,...,a,} is independent strong in
—

Cy,(G).

— — —

Proof Let Cy,(G) = (V,A,Bi) be a PFKCH of a PFD G = (V,A, B). If h,(R*(a) N

RF(a2) N...NRY(a,)) = 1 and [R*(a;) NRT(a2) N ... A RF(a,)|, > 2k, then k; > 2k.
Therefore, g (E) = % [aar) A palaz) A A py(an)h, (R (a) "R () NN

N*(ar))

tg (E) ik
or, —/\:uA(a,') =" > 0.5.
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Fig. 9 Example of PF.1CH a9(0.4,0.2,0.3)

a3(0.7,0.2,0.1)

.75
[ ]

41(0.5,0.3,0.1) (0.12,0.02,0.06)

°
(0.6,0.3,0.1)
(0.6,0.3,0.08) 70(0.3,0.3,0.4) a5(0.4,0.3,0.2)
o E _ 5, (E _
Similarly, nfk< ) _ k‘k—]‘ <05 and 2B _ k‘k—k <0.5.
/\l 14 (ai) 1 \/l va(a;) 1
. . . —
Then E is independent strong in Cp, (G). O

6 Picture fuzzy neighborhood hypergraphs (PFNHs)

To design different types of PFCHs from a PFG the concepts of picture fuzzy open
neighborhood (PFON) and picture fuzzy closed neighborhood (PFCN) are given below.
The picture fuzzy neighborhoods (PFNs) of any species with their relations are describe in
the PFNHs.

Definition 6.1 The PFON of a vertex r of a PFG G = (V,A,B) is X(r) = (X, (4, 1, Vr))s
where X, = {s: ug(r,s) > 0,ng(r,s) >0 and vg(r,s) >0}, w.,n,.,v:X, — [0,1] are
defined as . (s) = pg(r,s),n.(s) = ng(r,s) and v.(s) = vg(r,s). The PFCN of a vertex r is
R[r] = R(r) U{(r, (u(r),n(r), v(r)))}.

Now, we define picture fuzzy open neighborhood hypergraphs (PFONH) and picture fuzzy
closed neighborhood graphs (PFCNH).

Definition 6.2 Let G = (V,A, B) be a PFG. The PFONH of G is N(G) = (V,A, B'), with
V as vertex set and there is a hyperedge E = {ay,as,...,a,} in N(G) if R(a;) N R(az) N
...NNX(a,) # 0 in G. The DTMS, DAMS and DFMS of the hyperedge E are respectively
1y (E) = [malar) A palaz) Ao A pa(an)h,(R(ar) NR(a2) NN R(a,)), np (E) = [na
(ar) Anglaz) A== Anala)lhy(R(a) NR(az) N...NR(a,))  and  vg(E) = [va(ar)V
valag) V-V vA(a,)}h\,(N(al) NR(a)N...N N(a,)).

Definition 6.3 Let G = (V, A, B) be a PFG. The PFCNH of G is N[G] = (V,A, B"), with
V as vertex set and there is a hyperedge E = {aj,az,...,a,} in R[G] if R[a;] N R[ax] N
...NN[ag,] # 0 in G. The DTMS, DAMS and DFMS of the hyperedge E in RN[G] are
respectively i (E) = [uy(ar) A paaz) A+ A py(ar) by (R[ar] N R[a2] 0. .. N R[a,]),
N (E) = [naar) Amalaa) A+ Ang(an)hy(Rla] NR[a2] NN R[a,])  and v (E) =
alar) Vva(a) V-V va(ar)]hy (R[] N R[ax] N ... N R[a,]).

To illustrate the preceding definitions, we provide the following example.
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Example 6.4 Consider a PFG G given in Fig. 10a. Here, N(a;)NN(ay)
MN(ay) = {(a3, (0.3,0.1,0.3))}, R(az) NR(a3) = {(a4, (0.3,0.1,0.2))} and N(a3)N
N(a4) = {(a27 (03,01703))} Therefore, E2 = {ag,a4}, E3 = {01,02,04}, E4 = {az,a3}
are hyperedges of N(G) with DTMS, DAMS and DFMS are (0.12, 0.01, 0.06),
(0.09, 0.02, 0.12) and (0.09, 0.01, 0.08), respectively shown in Fig. 10b. Also,
N[a1] N N[az] N R[az] N R[as] = {(a3,(0.3,0.1,0.3))}. Therefore, E = {a1,az,a3,a4} is a
hyperedge of N[G] with DTMS, DAMS and DFMS (0.09, 0.01, 0.12) shown in Fig. 10c
(Table 3).

Some other types of PFHs such as open picture fuzzy k-competition hypergraph (OPFkCH)
and closed picture fuzzy k-competition hypergraph (CPFkCH) are defined here, using
different types of PFN of the vertices.

Definition 6.5 Let k>0 be a real number. The OPFkCH of a PFG G is
Ry, (G) = (V,A,B,), with V as vertex set and there is a hyperedge E = {a;,a,...,a,} in
Ny, (G) if [N(a1) NR(az) N...NR(a,)[, >k, [N(ar1) NR(az) N...NR(a,)|, >k and
[R(a1) NR(az) N...NR(a,)|, >k in G.
Then the DTMS, DAMS and DFMS of the hyperedge E are respectively
K —k
Hp, (E) = lk_/l [a(ar) A pgaz) A= A pglar)lhy (N(al) NR(az)N...N N(a,)),
K,k
ng (E) === [nalar) Amg(az) A= Ay (@), (R(a1) NR(a2) N ... NR(a,)) and

)
vg (E) = k [vA(al) Vva(a) Vo Voa(a,)hy(R(ar) NR(az) N NR( a,)),
where k/ \N a)) MN(az) N...NR(a,)|,, kb =R(a1) N N(az) NR(a,)],
= |N(a;) NR(az) N...NN(a,)|,.

w

Definition 6.6 Let k>0 be a real number. The CPFkCH of a PFG G is
Ry, [G] = (V,A, B]), with V as vertex set and there is a hyperedge E = {a;,a,...,a,} in
Ry, [G]if [R]ar ] N R[az)] NN R[a,]|, > &, [R[a] N R[ax] NN R[a,]|, > kand [R[a] N
R[ax] N...NN[a,]|, >k in G.

Then the DTMS, DAMS and DFMS of the hyperedge E are respectively

iy (E) = k";:k (g (@) A al@z) A+ A g (@)l (Rlar] O R[a] 0. ARy,

ﬂB”(E) kH [”A(“l) Ang(@) A Analar)lhy (N[al] NR[a]N...N N[ar]) and

vBrk/(E):kk,,k[vA(al)VVA(az)\/ Vva(a))h (Rla] N Ra2] N...AR[a,]),  where

k= [Rlai] N R[az] N ... NR[a,]],, K = Rla] N R[ax] N... N R[a,]], and k5 = [R[a]N
Rlaz] N ... N R[a,]|,.

Next, we established the relations between PFCHs and PFNHs in the following theorems.

Theorem 6.7 Let 6:(V,A,E>) be a symmetric PFD without any loop. Then
—

— — —
Cy,(G) =Ny, (U(G)), where U(G) is the underlying PFG of G.
— —
Proof Let G = (V,A,B) be a PFD and the corresponding underlying PFG
U(G) = (V,A,B).
Let CHk(B) = (V,A,B’) and Xy, (U(G)) = (V,A,B"). The vertex sets of CHk(é) and
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,(0.3,0.2,0.4
a1(.5,0.3,0.2) ax( )

(0.3,0.1,0.3)
(0.3,0.2,0.2)
(0.5.0.1,0.2)

44(0.4,0.3,0.2)

(0.4,0.1,0.2)

(a)

a3(0.7.0.1,0.1)

(0.9.0.01,0.12)

(0.09,0.02,0.12) a2(0.3,0.2,0.4) °

a(.5,0.3,0.2) a5(0.3,0.2,0.4)

0.09,0.01, 0.08)

4(0.4.0.3.0.2) (0.12,0.01., 0.06) 5(0.7,0.1,0.1) 5(0.7.0.1,0.1)

a4(0.4,0.3,0.2)
(b) ()

Fig. 10 Example of a PFG, b PFONH and ¢ PFCNH

Ry (U(G)) are same with the vertex set of G. We have to prove that
#B’({alaab .- -7ar}) = uB”({alaa% .- '7ar})’ WB’({alaaZa .- '7ar}) = ’13'/({“17“% . ~7ar})’
vp({a1,a2,..,a,}) =ve({ar,a2,...,a,}), ¥V ar,az,...,a, € V.

Case It If pp({a1,a2,...,a,}) =0, ng({ar,a2,...,a,}) =0, vg({a1,a2,...,a,}) =0
. - . . =4
in Cp/(G), then there is no hyperedge in Cp(G). So, |NT(a;)NRT(a)N
L NRY(a)], <k R (@) NRY (@) N NIRRT (a)], <k [RF(a) NRF(az) N0
Rt (a,)|, <k.

Since G is symmetric, [N(a1) NR(az) N ... NAN(a,)], <k, [R(ar) N R(az)
N...NN(a,)[, <k, [R(a1) NR(az) N...NR(a,)|, <k in U(G). Hence,
up({ar,az,..,a,3) =0,  np({a,a,...,a,}) =0, vp({a,a,..,a,})=0 in

—
N (U(G)).

Case 1L If [N'(a))NR"(a)N...OR(a,)|, >k  [NF(a1) "R (a2) ...
MR (a,)], >k, [NF(a1) NRT(a2) N...NART(a,)|, > k. Then pp({ai,a,...,a}) >0,
ng({ar,a2,...,a,}) >0, vg({a1,az,...,a,}) >0 in CHk(g) and there is an hyperedge
E={a,a,...,a,} in CHk(E)) with DTMS, DAMS and DFMS are respectively

1 (E) = ](,1(_71( [alar) A palaz) Ao A pa(ar)]hy (N+(al) NR*(a2) N... AR (a,)),

ng(E) = kk_7k Malar) Angla) A--- A ﬂA(“r)]hn (N+(al) NR*(a) N...N N*(a,)) and

v (E) = 5K [va(a)) V va(az) V -+ Vva(a,)]hy (R (a) "R (a2) N ... N RF(a,)),

where k' = |(X"(a;) NR"(a2) N...NRT(a,))].

. - . .

Since G is symmetric [N(a;) N R(az) N...NR(a,)|, >k, [N(a1) NR(az) N...N
N(a,)|, >k, [N(a1) N R(az2) N... N R(a,)|, > k in U(G). So,

b (E) = £ [y (an) A sia(a2) A -+ A a0,V (Rlar) MN(a) ... AN (a,)),

N (E) =55 na(ar) Ama(az) A -+ Anglar)hy(R(ar) N R(a2) N...NR(a,)) and

ver (E) = 575 [va(ar) V va(az) V -+ Vva(a,)]hy (R(ar) NR(a2) N... N R(a,)),

where k" = |(R(ar) NR(az) N...NN(a,))|. Here, k' = k" as G is symmetric PFD.
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Thus, ug({ay,az,...,a,}) = up({ay, az, . . .,a,}), ng({ay,az,...,a,}) =
ng({ai,az,...,a,}) and vg ({ay, az, . ..,a,}) = vp({ar,az,...,a,}) ¥ ar,az,...,a, € V.
O

— —
Theorem 6.8 Ler G = (V,A, B

) be a PFD having loops at every vertex. Then
— — —
Cy,(G) =Ry, [U(G)], where U(G

) is the loop less underlying PFG of G.

Proof Let U(G) = (V,A,B) be an underlying loop less PFG corresponding to a PFD
— — —
G = (V,A, B). Let Cy,(G) = (V,A,B') and Ry, [U(G)] = (V,A,B”). The vertex sets of
CHk(a) and Ry, [U(G)] are same with the vertex set of G. We have to prove that
,UB/({Lll,az, .- -7ar}) = .uB”({alvaL . '7ar})’ 113/({(11,02, .- '7ar}) = ’73"({“17“27 . '7ar})’
—
vg({ai,az,...,a,}) =vg({ar,az,...,a:}), ¥ a1,az,...,a, € V. Since G has a loop at
each vertex, the PFON of every vertex contains the vertex itself.
Case It If pp({a1,a2,...,a,}) =0, ng({ar,a2,...,a,}) =0, vg({a1,a2,...,a,}) =0
— —
in Cp(G), then there is no hyperedge in Cg(G). So, [NT(a;)N
R*(a2) N...NRT(a,)], <k, [RT(ar) NRF(a2) N... AR (a,)], <k, [RT(a1) NRF(a2)N
NN (a,)|, <k.
—
Since G is  symmetric, [N[a;]N N[az} ...N N[a,.]\y <k, |Nai] N Rlaz]N
- NR[a]], <k, [Rlai] N R[ax]N...NN[a,]|, <k in U(G). Hence, pg({a,a,

y =

cwar}) =0, ng({ar,az,.. ,,a,}) =0, va({al,az, ..a,})=01in NHk[U(a)}.
Case I If [N"(a))NR"(a2)N...ORT(a,)|, >k  [NF(a) NRT(a2) ...

MRF(a,)], >k, [XF(ar) NRT(a2) N...NRF(a,)|, >k in U(G). Then uy({ar,az,
a}) > 0,ng({ar,a,...,a,}) >0, vg({ai,as,...,a,}) > 0in ch(E’) and there is an
hyperedge E {a 1,d2, ..., a,}in Cy, (6) with DTMS, DAMS and DFMS are respectively

s (E) = £ [y (an) A ia(a2) A+ A sy (a) (R (@) R (a2) 0. AN @),

Ny (E) =75 a(ar) Ana(az) A Ang(an)lhy (R (ar) AR (a2) N...NR¥(a,)) and

v (E) =5 valar) Vva(az) V- - Vva(a,)]hy (R (a1) NRT (@) N ... NRT(a,)),

where k' = \(N*(al) N N*(az) AR (a,))].

Since G s symmetric and has a loop at every vertex, then
[N[a1] N R[az] NN R[a]], > &, [Rla] N R[aa] N NR[a,]], > &, [Rla] N R[ax] N0
N[a,]|, > k in U(G) So,

b () = 52 () A iaz) A A g (Rl AN ... 1)

e (E) = £ [y () A na(a )A - Aa(ar) g (Rlen] O Rfaz] .. (1 Rla,]) and

v (E) = £ [va(ar) Vvalaz) V-V va(a,) hy (Rlar] N R[aa] N ... N R[a,]),

where k" = |(R[ai] N R[az] N ... N R[a,])|. Here, k' = k" as G is symmetric PFD.

ThUS, ﬂB’({alvaZa"war}) :I'I’B”({alva2a"'7a"})7 nB’({a17a27"'7ar}) =
ng({a1,a2,...,a,}) and vg ({a,az, .. .,a,}) = vg({ai,az,...,a:}) ¥V ai,az,...,a, € V.
O
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7 Applications
7.1 An application of m-SPFCG in education system
7.1.1 Construction of model

The application of m-SPFCG is very useful in our real life. One of the application is in our
education system. Consider a PFD shown in Fig. 11 representing the competition between
government and non-government Primary Schools and also between Bengali Medium and
English Medium high Schools in India. Let us consider the academic institutions as ver-
tices of the digraph. Suppose in the Nursery Schools (NS), the degree of good infras-
tructure is 50 percent, indeterminacy of infrastructure is 10 percent and inadequate of
infrastructure is 25 percent, i.e., the DTMS, DAMS and DFMS of the infrastructure of
Nursery Schools is (0.5, 0.1, 0.25) and similarly for the other institutions. Initially, the
students started their education in Nursery Schools and they complete their child education
from either govt.(GPS) or non-govt. Primary Schools (NGPS). Then they clear school
education from either Bengali Medium (BMHS) or English Medium high Schools
(EMHS). After that they either admitted into General degree Colleges (GDC) or Engi-
neering Colleges (EC) or Medical Colleges (MC) and lastly admitted into their respective
Universities Institutions. The directed edges between institutions represents the rate of
selection of institutions by the students. Suppose the degree of choosing govt. Primary
School is 50 percent, indeterminacy of choosing is 15 percent and not choosing is 20
percent, i.e., the DTMS, DAMS and DFMS of choosing of the govt. Primary Schools is
(0.5, 0.15, 0.2) and similarly for the other institutions as shown in Fig. 11. It is seen that if
primary (or high) schools are removed from the education system, then higher education
will be highly effected and also nursery students will be deprived for their next educations.
Here, we evaluate the competition between institutions with the help of 2-SPFCG.

7.1.2 Decision making

We have, RJ(GPS)N RJ(NGPS)={(GDC, (0.4,0.05,0.2)), (EC, (0.3,0.05,0.2)),
(MC,(0.2,0.05,0.2))}, Ny (BMHS)N R} (EMHS)={(Univ, (0.3,0.1,0.25)), (WBUHS,
(0.2,0.05,0.2))} (see Table 4). Thus there is an edge between GPS and NGPS; BMHS and
EMHS in the 2-SPFCG, which indicates the 2-step competition in PFCG. The DTMS,
DAMS and DFMS of this edges are respectively (0.26, 0.0075, 0.05) and
(0.18, 0.01, 0.04) in Fig. 12. Hence there is a 2-step competition between GPS and NGPS,
BMHS and EMHS on the basis of infrastructure in our education system.

7.2 An application of m-SPFCG in ecosystem

7.2.1 Construction of model

The m-SPFCG is also applicable in our ecosystem. We consider a ecosystem with eight
species, all of these are taken as vertices of the digraph as shown in Fig. 13a. Here fox eats
goat and bird, goat eats grain and grass, owl eats bird and mouse, bird eats grain and

grasshopper, mouse eats grain, grasshopper eats grain and grass. Suppose the degree of
existence in the environment of the species fox is 40 percent, indeterminacy of existence is
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1(0.6,0.1,0.3
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(0.6,0.1,0.25)

(0.3,0.15,0.2)

Fig. 11 PFD of the institutions on the basis of infrastructure

5 percent and non existence is 30 percent, i.e., the DTMS, DAMS and DFMS of the species
fox is (0.4, 0.05, 0.3). Similarly we can consider for the other species. The DTMS of each
directed edge between species and feed represents the likeliness to eat, DAMS represents
indeterminacy of likeliness to eat and DFMS represents unlikeliness to eat of feed for
predators (see Fig. 13a). It is seen that if goat and bird are removed from this food cycle,
then fox must be extinct. As a result, the count of grass, grain and grasshopper will be
increased. Thus, we evaluate the food cycle with the help of 2-SPFCG.

7.2.2 Decision making

We have, Rt(fox)N N*(owl):{(gmin, (0.35,0.05,0.25)), (grasshopper, (0.35,0.05,
0.2))}, X (fox) N R (bird)={ (grass, (0.4,0.05,0.2)), (grain, (0.4,0.05,0.2)) }, R* (owl)N
N*(bird)={(grain, (0.35,0.05,0.2))} (see Table 5). Therefore, there is an edge between
fox and owl; fox and bird; owl and bird in the 2-SPFCG. This indicates there is a 2-step
competition in the PFCG. The DTMS, DAMS and DFMS of this edges are respectively
(0.14, 0.0025, 0.06), (0.16, 0.0025, 0.06) and (0.35, 0.005, 0.05) in Fig. 13b. Hence there
is a 2-step competition between Fox and owl, fox and bird, owl and bird on the basis of
feeds in ecosystem.
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Fig. 13 a PFD of ecosystem and b Corresponding PFCG
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7.3 An application of PFCH in business market

7.3.1 Construction of model

The concept of PFCHs can be used successfully in different domains of applications. One
of its application is in business market. Consider a PFD as shown in Fig. 14a representing
the competition among seven brand automobile companies—Tata Motors (C1), Hero Moto
Corp. Ltd (C2), Bajaj Auto Ltd (C3), Honda Moto Co. Ltd (C4), Tayota Motor Corp. (C5),
Maruti Suzuki (C6), Mahindra Ltd (C7) in the global industry. Due to globalization,
companies strive to manufacture their products with some facilities such as unique designs
using modern technology, sophisticated electronic functions, safety features, comfort, low
fuel consumption and lower prices. In the business market there always arise a competitive
situation as several companies manufacture identical products. So all companies want to
attract consumer’s attention with their product facilities. Let us consider all companies as
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Table 5 2-step picture fuzzy out neighborhood of Fig. 13

vev R (v)

Fox {(grass,(0.4,0.05,0.2)), (grain,(0.4,0.05,0.2)), (grain,(0.4,0.05,0.1)),
(grasshopper,(0.4,0.05,0.15)) }

owl {(grain,(0.4,0.05,0.25)), (grain,(0.35,0.05,0.2)), (grasshopper,(0.35,0.05,0.2)) }

Bird {(grass,(0.5,0.05,0.15)), (grain,(0.5,0.05,0.15)) }

Goat 0

Mouse 0

Grasshopper 0

Grain 0

Grass 0

vertices of the digraph. Suppose the degree of product of C1 maintaining above facilities is
80 percent, indeterminacy of facilities is 10 percent and less facilities is 10 percent, i.e., the
DTMS, DAMS and DEMS of C1 is (0.8, 0.1, 0.1). Similarly we can consider for the other

vertices. The directed edges (C1, C2) indicates that the products of C1 have extra facilities
than C2. Suppose the degree of products of C1 having more facilities is 70%, indeter-
minacy of facilities is 10 percent and less facilities is 10 percent than the products of C2,
i.e., the DTMS, DAMS and DFMS of this edge is (0.7, 0.1, 0.1) and similarly for the other
edges as shown in Fig. 14a. Here, we evaluate the competition among companies with the
help of PFCH.

7.3.2 Decision making

We have, RT(CDHN RT(C2)N R (C4={(C3,(0.3,0.1,0.25))}, R (CDHN R (CT)={(C2,
(0.6,0.1,0.1))} and R*(C5)N RF(C6)={(C1,(0.5,0.1,0.1))} (see Table 6). Therefore,
hyperedges of the PFCH are £, = {C5,C6}, E; = {C1,C7} and E5 = {C1,C2,C4}. The
DTMS, DAMS and DFMS of E;, E, and E; are respectively (0.25, 0.01, 0.06),
(0.36, 0.01, 0.02) and (0.21, 0.01, 0.05) showing in Fig. 14b. Hence there are competitions
between pair of companies (C5, C6), (C1, C7) and also competition among group of
companies (C1, C2, C4) on the basis of products with facilities in business market.

7.4 An application of PFCH in job competition
7.4.1 Construction of model

Let us consider a PFD (see Fig. 15a) representing the competition among applicants for a
railway-job. Let the set of five applicants {A;,A>,A3,A4,As} applying against the set of
four job-vacancies {StationManager(Jy),Driver(J,), Technician(J3), TTE(J4)}. All of
these are aching as vertices of the digraph. Suppose the DTMS, DAMS and DFMS of each
applicant represents his/her degree of good qualification, indeterminacy of qualification
and poor qualification, respectively. Let the degree of good qualification of A; is 60
percent, indeterminacy of qualification is 20 percent and poor qualification is 10 percent,
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Fig. 14 a PFD in business market and b corresponding PFCH

Table 6 Picture fuzzy out

+
neighborhood of Fig. 14 vev R (v)

Cl {(€2,(0.7,0.1,0.1)), (C3,(0.3,0.1,0.25)), (C4,(0.6,0.1,0.2)) }
2 {(C3,00.3,0.1,0.2))}

a3 0

c4 {(C3,(0.3,0.1,0.25)), (€5,(0.5,0.1,0.2)) }

c5 {(C1,(0.5,0.1,0.2)), (C6,(0.5,0.1,0.3)) }

c6 {(C1,00.6,0.1,0.1)), (C7,(0.6,0.1,0.3)) }

c7 {(C2,0.6,0.1,0.1))}

i.e., the DTMS, DAMS and DFMS of A; is (0.6, 0.2, 0.1) and similarly for the other
applicants. Again, suppose the DTMS, DAMS and DFMS of each vacancy represents its
degree of strong criteria, indeterminacy of criteria and weak criteria, respectively. Let the
degree of strong criteria for J; is 70 percent, indeterminacy of the criteria is 10 percent and
weak criteria is 20 percent, i.e., the DTMS, DAMS and DFMS of J; is (0.7, 0.1, 0.2) and
similarly for the other vacancies. The DTMS, DAMS and DFMS of each directed edge
between an applicant and vacancy represents the candidate’s eligibility, indeterminacy of
eligibility and non-eligibility for a particular vacancy as shown in Fig. 15a.

7.4.2 Decision making

Here RF(A;) NRT(A;)={(J4,(0.5,0.1,0.3))}, R"(A;) NRT(A3) NRT(As)= {(/2, (0.4,
0.1,0.25))}, RF(A3) N RT(A4) NRF(As5)={(J1,(0.5,0.1,0.2))} (see Table 7). Therefore,
hyperedges of the PFCH are E| = {A,,Ax}, E; = {A1,A3,As} and E5 = {A3,A4,As}. The
DTMS, DAMS and DFMS of E;, E, and E; are respectively (0.25, 0.02, 0.09),
(0.24, 0.01, 0.05) and (0.3, 0.01, 0.04) showing in Fig. 15b. Hence there are competitions
among the applicants (A;,A3,As), (A3,A4,As) and (A;,A>) on the basis of their eligibility
for the vacancies.
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Fig. 15 a PFD of job competition and b corresponding PFCH
8 Comparative study with existing papers

In existing papers on fuzzy CGs, all information are collected in fuzzy sense. But, when
information are in picture fuzzy sense, the existing models are not suitable to handle such
information. In these scenario, our currently developed models play an important role.
Samanta and Pal (2013), Samanta et al. (2014, 2015), and Samanta and Sarkar (2018)
studied many variations of CGs with fuzzy information for the first time. Sahoo and Pal
(2015) proposed a model by considering each vertex and edge with IF information and
determined competition among the species in food cycle. But, all problems of feed-
predator can not be modeled using these CGs as the measurement of competitions was
taken as IF sense in that paper. In IFSs, the membership and non-membership values are
considered only. So these models are not applicable when the model is considered in other
environment like in picture fuzzy environment. In our present work, we consider another
parameter called neutral membership value and it will be effectively useful to model many
more real-world problems. So, our study is the extension of the study of the above works.

9 Limitations of m-SPFCG model

Some limitations of this study are listed below:

m-SPFCG models are only applicable to those problems with picture fuzzy information.
m-SPFCG models do not demonstrate all the competitions of real-world problems.

e In a PFD, if the number of vertices is less than the value of m, then we can not find any
competition between objects through m-SPFCG models.

e m-SPFCG models are unable to find any group-wise competition among three or more
objects.
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Table 7 Picture fuzzy out neighborhood of Fig. 15

vev N*(v)

A {(42,(0.4,0.1,0.2)), (44, (0.6,0.1,0.15)) }

Ay {(J4,(05,02,0.3))}

A; {(J1,(0.5,0.1,0.2)), (J2, (0.5,0.2,0.25)) }

As {(41,(0.6,0.1,0.2))}

As {(/1,(0.7,0.1,0.1)), (J2,(0.5,0.1,0.25)), (J3, (0.75,0.1,0.1)) }

10 Conclusion

In this study, the powerful tool of fuzziness is applied to generalize the notion of CGs
under the picture fuzzy environment. Our proposed picture fuzzy models provided more
legibility, flexibility and suitability to the system as compared with the models in other
fields. The methods of construction of several types of PFCGs, and PFHs using PFON and
PFCN are studied here. A formula is suggested for the strength of feeds and established
few results over strong feeds. Also strong relations between PFkCHs and PFkNHs are
established. This study will help to measure the strength of competitions in real-world
problems. Our proposed models have been applied in real field competitions for repre-
sentation of fuzziness in different domains including identification of species-feed relations
in ecosystem, competitions between institutions in education system, competition in
business market and job competition between applicants, which motivates the idea intro-
duced in this study. In future, we will extend this work to (1) Picture fuzzy tolerance
competition graphs (2) m-Step Picture fuzzy tolerance competition graphs and (3) Pic-
ture fuzzy tolerance competition hypergraphs, etc.
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