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Abstract
In this paper, the notion of picture fuzzy competition graph along with its few general-

izations such as m-step picture fuzzy competition graphs, picture fuzzy economic com-

petition graphs and picture fuzzy competition hypergraphs are introduced. Some related

picture fuzzy graphs including picture fuzzy m-step neighborhood graph, picture fuzzy m-
step economic competition graph and picture fuzzy k-competition hypergraphs are intro-

duced. Some properties of these graphs have been investigated. Finally, applications of m-
step picture fuzzy competition graphs and picture fuzzy competition hypergraphs are

presented in several fields such as in education system, ecosystem, business market and job

competition.

Keywords Picture fuzzy competition graphs � m-step picture fuzzy competition graphs �
Picture fuzzy economic competition graphs � Picture fuzzy hypergraphs � Picture fuzzy

competition hypergraphs

1 Introduction

1.1 Research background

The notion of competition graph (CG) is formally introduced by Cohen (1968). In ecology,

there are some problems of competition between species of food cycles those are modeled

by the digraph G
!¼ ðV; B!Þ. These models are suitable to specify well defined nature of

objects and especially species-victim relations. Nowadays, besides of ecosystem, CGs have

many applications in other fields, such as coding and energy system, channel assignments,
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social interactions, modeling of complex economic, communications over a noisy channel

etc. Let G
!¼ ðV; B!Þ be a digraph, which corresponds to a food cycle, a vertex r 2 VðG!Þ

represent a species and arc ðr; qÞ 2 B
!ðG!Þ indicate that r kills the species q. If two species

r and s have a common victim q then they will compete for q. The CG CðG!Þ of G
!

is an

undirected graph with V as vertex set and having an edge (r, s) in CðG!Þ iff there is a vertex
q 2 V such that ðr; qÞ; ðs; qÞ 2 B

!ðG!Þ for any r; s 2 V , ðr 6¼ sÞ.
The notion of fuzzy set (FS) was first introduced by Zadeh (1965) to discuss the

uncertainty in several real life problems. It was found that one component is not sufficient

to describe some special types of information. In this situations, a component namely non-

membership value is invited to illustrate the information properly and in addition to this

new component (Atanassov 1986) defined intuitionistic fuzzy set (IFS). Later on, in some

cases, another component namely ‘neutrality’ is needed to represent some information

completely. To recover these scenarios, Cuong (2014) and Cuong and Hai (2015) presented

the idea of picture fuzzy set (PFS) as a generalization of IFS, by incorporating the notion of

truth, abstinence and false membership degree of an element in the set with sum of these

three degrees less than or equal to 1. The structure of fuzzy graph (FG) was introduced by

Rosenfeld (1975), whose first definition was given by Kauffman (1973) and intuitionistic

fuzzy graph (IFG) were discussed by Shannon and Atanassov (1994). Poulik and Ghorai

(2018, 2020a, b) introduced several new concepts of bipolar fuzzy graphs with their

applications. After that, Al-Hawary et al. (2018) provided the new concept of picture fuzzy

graph (PFG) and discussed some operations on it. Recently, Das and Ghorai (2020a)

introduced the notion of picture fuzzy planar graphs and applied it to construct road map

designs. After Cohen’s introduction of CG, its several variations are found in literature,

such as p-CGs of digraphs (Kim et al. 1995), tolerance CGs (Brigham et al. 1995), m-step
CGs of digraphs (Cho et al. 2000), etc. The p-competition indicates that there is a com-

petition between two species if they have at least p common victims. Samanta and Pal

(2013) and Samanta et al. (2014) first utilized FGs in competition in ecosystems. Later,

Samanta et al. (2015) introduced another generalization as m-step fuzzy CGs of digraphs.

Sahoo and Pal (2015) defined intuitionistic fuzzy CGs and its novel properties studied by

Nasir et al. (2017). The study of fuzzy /-tolerance CGs and interval-valued fuzzy /-
tolerance CGs was presented by Pramanik et al. (2016a, b). Al-Shehrie and Akram (2015)

introduced the concept of bipolar fuzzy CGs. On the other hand, some novel concepts of

CGs and a decision making approach based on CGs ware discussed in bipolar fuzzy

environment by Sarwar and Akram (2017) and Sarwar et al. (2018b). Akram and Nasir

(2017) and Akram and Sarwar (2018) studied certain CGs in intuitionistic neutrosophic

environment and m-polar fuzzy CGs with their applications. Many other works on CGs are

found in Borzooei et al. (2016), Das et al. (2020), Habib et al. (2019), and Samanta and

Sarkar (2018). A very recent work, applying the idea of PFSs to CGs, Das and Ghorai

(2020b) introduced the notion of picture fuzzy competition graphs (PFCGs) and applied

this idea in medical science.

Hypergraph theory originally developed by Berge (1973) in 1960, as a generalization of

graph theory. The notion of fuzzy hypergraphs (FHs) was first discussed by Kaufmann

(1975) and then this concept redefined and extended by Lee-Kwang and Lee (1995). After

that, FHs theory increased in different branches, such as interval-valued fuzzy hypergraphs

(Chen 1997), intuitionistic fuzzy hypergraphs (Parvathi et al. 2009), bipolar fuzzy

hypergraphs (Samanta and Pal 2012), etc. In 2004, Sonnatag and Teichert (2004) first gave
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the idea of competition hypergraphs (CHs). Sarwar et al. (2018a) presented the notion of

fuzzy CHs to generalize the concept of CHs and fuzzy CGs.

1.2 Research challenges and gaps

• Some problems in literature can not be modeled by using PFCG but m-step picture

fuzzy competition graphs (m-SPFCG) are used successfully for these problems.

• The crisp CGs do not measure the strength of competitions between common victim

and related species due to uncertainty.

• The crisp CGs are not sufficient to show the degree of dependence about the common

victim and related species due to uncertainty.

• The crisp hypergraphs do not describe all the competitions of real world problems that

contain uncertainty and fuzzy in nature.

• PFCH give clear representation of predator-prey relations than CGs.

1.3 Motivation and contribution of this study

In ecological problem, species may be of several types like lenten, non-lenten, strong,

weak etc. Similarly, victims may be tasteful, digestive, injurious, etc. These terms have no

proper meaning. They are fuzzy in nature. So the species and victims may be assumed as

PFSs and inter-relation between them may be designed with a PFG. Due to uncertainty in

description of species and victims, and to find more than 1-step relationships between

them, it is necessary to design m-SPFCG model. As crisp hypergraphs do not demonstrate

properly all the competitions of such problems, therefore the contribution of this article is

not only restricted to m-SPFCGs but also we have applied the idea of PFS to CHs to handle

the real problems having non-linear uncertainties or haziness.

Here, we have generalized the notion of picture fuzzy hypergraph by assuming picture

fuzzy vertex instead of crisp vertex set and an interrelation between picture fuzzy vertex

and edges. Also, various new concepts including m-SPFCGs, picture fuzzy economic

competition graphs (PFECGs), m-step picture fuzzy neighborhood graphs (m-SPFNGs),
picture fuzzy competition hypergraphs (PFCH), picture fuzzy k-competition hypergraphs

(PFkCH) and picture fuzzy neighborhood hypergraphs (PFNH) are presented with some of

their interesting properties. An applications of m-SPFCG in education system is presented.

The PFCG or m-SPFCG model, usually give only pair-wise competition between

objects. But, when we are interested to find group-wise competition among three or more

objects, then existing models are not fruitful. In such situations, PFCH models plays a

important role to overcome this issue.

1.4 Framework of this study

This work is composed as follows: In Sect. 2, several basic definitions related to PFCGs

are provided. In Sect. 3, the notion of m-SPFCG is presented and studied several properties

of it. In Sect. 4, the notion of PFECG is presented. In Sect. 5, PFCH is introduced. In

Sect. 6, the concept of PFNHs is presented and established the relations between PFkCHs
and picture fuzzy k-neighborhood graphs (PFkNHs). In Sect. 7, an application of m-
SPFCG in education system is given. Finally, a conclusion is drawn in Sect. 8.
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2 Preliminaries

In this section, several basic definitions related to PFCGs are provided. Meantime, we

introduce cardinality, support and height of PFSs that will be used in later sections.

A digraph is usually used to model the relationship between a given set of objects.

Definition 2.1 (Jenson and Gutin 2009) A digraph G
!

consists of a non-empty finite vertex

set V and a finite set B
!

of edges that are ordered pairs of distinct members of V. Let ri 2 V ,

the out-neighborhood and in-neighborhood of ri are the sets @þðriÞ ¼ frj 2 V � ri :

ðri; rjÞ 2 B
!g and @�ðriÞ ¼ frj 2 V � ri : ðrj; riÞ 2 B

!g, respectively. Also the set @þðriÞ [
@�ðriÞ is the open neighborhood of ri in G

!
. A directed walk from a vertex ri to rj in G

!
is

an alternating sequence of vertices and edges begin with ri and end with rj such that each

edge is incident with the vertices preceding and following it. No edge appears more than

once but vertex can. A walk is closed if ri ¼ rj. If all vertices in a walk are distinct, then it

is known as path.

The open and closed neighborhood of vertices help to model neighborhood graphs.

Definition 2.2 (Achary and Vartak 1973) The open neighborhood @ðrÞ of r in an undi-

rected graph G is the set of all vertices adjoining to r and the closed neighborhood of r is
@½r� ¼ @ðrÞ [ frg. The open-neighborhood graph @ðGÞ and closed-neighborhood graph

@½G� of G are the graphs with V as vertex set and having an edge (r, s) in @ðGÞ and @½G� iff
@ðrÞ \ @ðsÞ 6¼ ; and @½r� \ @½s� 6¼ ;, respectively in G.

PFSs, superior to FSs and IFSs, amplify the space of uncertain information.

Definition 2.3 (Cuong 2014) Let X be the universe. Then a PFS A is defined on X as

A ¼ fr; ðlAðrÞ; gAðrÞ; mAðrÞÞ : r 2 Xg, where lAðrÞ; gAðrÞ; mAðrÞ 2 ½0; 1� denote the degree

of truth membership (DTMS), degree of abstinence membership (DAMS), degree of false

membership (DFMS) of r 2 A, respectively with 0�lAðrÞ þ gAðrÞ þ mAðrÞ� 1 8r 2 X.
Also 8r 2 X, DAðrÞ ¼ 1� ðlAðrÞ þ gAðrÞ þ mAðrÞÞ represent denial degree of r 2 A. Here,
lAðrÞ; gAðrÞ; mAðrÞ all are independent.

Definition 2.4 (Das and Ghorai 2020b) Let A ¼ ðr; lA; gA; mAÞ be a PFS. The cardinality of
A is defined as jAj ¼

�
jAjl; jAjg; jAjm

�
, where jAjl; jAjg and jAjm represent the sum of

DTMS, DAMS and DFMS, respectively of all elements of A. The support of A is

supp(A)=fr 2 V : lAðrÞ 6¼ 0; gAðrÞ 6¼ 0 and mAðrÞ 6¼ 0g and the height of A is hðAÞ ¼�
supr2V lAðrÞ; supr2V gAðrÞ; infr2V mAðrÞ

�
¼

�
hlðAÞ; hgðAÞ; hmðAÞ

�
.

Picture fuzzy models provide more legibility, flexibility and suitability to the system as

compared with the models in other fields.

Definition 2.5 (Al-Hawary et al. 2018) A PFG is G ¼ ðV;A;BÞ where A ¼ ðlA; gA; mAÞ,
B ¼ ðlB; gB; mBÞ and
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(i) V ¼ fr1; r2; . . .; rng such that lA; gA; mA : V ! ½0; 1� denote the DTMS, DAMS and

DFMS of ri 2 V , respectively with 0� lAðriÞ þ gAðriÞ þ mAðriÞ� 1 8ri 2 V ,
ði ¼ 1; 2; . . .; nÞ.

(ii) lB; gB; mB : V � V ! ½0; 1� denote the DTMS, DAMS and DFMS of edge ðri; rjÞ,
respectively such that lBðri; rjÞ�minflAðriÞ; lAðrjÞg; gBðri; rjÞ�minfgAðriÞ;
gAðrjÞg and mBðri; rjÞ�maxfmAðriÞ; mAðrjÞg with 0� lBðri; rjÞ þ gBðri; rjÞ þ
mBðri; rjÞ� 1 for every ðri; rjÞ, ði; j ¼ 1; 2; . . .; nÞ.

Like as fuzzy digraph, picture fuzzy digraph (PFD) has the following definition.

Definition 2.6 (Das and Ghorai 2020b) A PFD is of the form G
!¼ ðV;A; B!Þ where

A ¼ ðlA; gA; mAÞ, B
!¼ ð l!B; g

!
B; m
!

BÞ and (i) V ¼ fr1; r2; . . .; rng such that lA; gA; mA :
V ! ½0; 1� denote the DTMS, DAMS and DFMS of ri 2 V , respectively with 0�lAðriÞ þ
gAðriÞ þ mAðriÞ� 1 8ri 2 V , ði ¼ 1; 2; . . .; nÞ.

(ii) l!B; g
!

B; m
!

B : V � V ! ½0; 1� denote the DTMS, DAMS and DFMS of edge ðri; rjÞ,
respectively such that l!Bðri; rjÞ�minflAðriÞ; lAðrjÞg; g!Bðri; rjÞ�minfgAðriÞ; gAðrjÞg
and m!Bðri; rjÞ�maxfmAðriÞ; mAðrjÞg with 0� l!Bðri; rjÞ þ g!Bðri; rjÞ þ m!Bðri; rjÞ� 1 for

every ðri; rjÞ, ði; j ¼ 1; 2; . . .; nÞ.

We illustrate it by giving an example.

Example 2.7 We consider the PFD G
!
, as showing in Fig. 1.

In a PFD, strength of edges characterize the competitions between common feed and

related species. This shows how much the species depend on the common feed.

Definition 2.8 (Mohamedlsmayil and AshaBosely 2019) A PFD G
!¼ ðV;A; B!Þ is com-

plete if l!Bðr; sÞ ¼ lAðrÞ ^ lAðsÞ; g!Bðr; sÞ ¼ gAðrÞ ^ gAðsÞ and m!Bðr; sÞ ¼ mAðrÞ _ mAðsÞ
8 r; s 2 V . An edge (r, s) is independent strong if 1

2
minflAðrÞ; lAðsÞg\ l!Bðr; sÞ,

1
2
minfgAðrÞ; gAðsÞg[ g!Bðr; sÞ and 1

2
maxfmAðrÞ; mAðsÞg[ m!Bðr; sÞ. Otherwise, it is weak

edge. Strength of the edge (r, s) is given by
� l!Bðr;sÞ
lAðrÞ^lAðsÞ

;
g!Bðr;sÞ

gAðrÞ^gAðsÞ
; m!Bðr;sÞ
mAðrÞ_mAðsÞ

�
.

Now, to construct PFCGs it is necessary to define PFON and PFIN of a vertex in the PFD.

Fig. 1 Example of a PFD
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Definition 2.9 (Das and Ghorai 2020b) PFON of a vertex r in G
!

is

@þðrÞ ¼ ðXþ
r ; ðlþr ; gþr ; mþr ÞÞ, where Xþ

r ¼ fs : l!Bðr; sÞ[ 0; g!Bðr; sÞ[ 0 and

m!Bðr; sÞ[ 0g and lþr ; g
þ
r ; m

þ
r : Xþ

r ! ½0; 1� are defined as lþr ðsÞ ¼ l!Bðr; sÞ; gþr ðsÞ ¼
g!Bðr; sÞ and mþr ðsÞ ¼ m!Bðr; sÞ.
PFIN of a vertex r of G

!
is @�ðrÞ ¼ ðX�

r ; ðl�r ; g�r ; m�r ÞÞ, where X�
r ¼ fs :

l!Bðs; rÞ[ 0; g!Bðs; rÞ[ 0 and m!Bðs; rÞ[ 0g and l�r ; g
�
r ; m

�
r : X�

r ! ½0; 1� are defined as

l�r ðsÞ ¼ l!Bðs; rÞ; g�r ðsÞ ¼ g!Bðs; rÞ and m�r ðsÞ ¼ m!Bðs; rÞ.

To cover all the competitions in real world, adding more uncertainty to intuitionistic fuzzy

CGs, PFCGs are introduced.

Definition 2.10 (Das and Ghorai 2020b) The PFCG CðG!Þ of a PFD G
!

is an undirected

graph with V as vertex set and having an edge (r, s) in CðG!Þ iff @þðrÞ \ @þðsÞ 6¼ ; in G
!
.

The DTMS, DAMS and DFMS of (r, s) in CðG!Þ are respectively lBðr; sÞ ¼ ½lAðrÞ ^
lAðsÞ�hl

�
@þðrÞ \ @þðsÞ

�
; gBðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@þðrÞ \ @þðsÞ

�
and mBðr; sÞ ¼

½mAðrÞ _ mAðsÞ�hm
�
@þðrÞ \ @þðsÞ

�
.

3 m-step picture fuzzy competition graph (m-SPFCG)

In this section, we will introduce m-step picture fuzzy digraph and one of the general-

ization of PFCG is considered known as m-SPFCG. The following notations are used in

this work:

Pm
ðr;sÞ: A picture fuzzy path (PFP) between r and s of length m.

P
!m

ðr;sÞ: A directed PFP of length m between r and s.

@þ
mðrÞ: picture fuzzy m-step out neighborhood (PFmSON) of r.

@�
mðrÞ: picture fuzzy m-step in neighborhood (PFmSIN) of r.

@mðrÞ: picture fuzzy m-step neighborhood (PFmSN) of r.
@mðGÞ: picture fuzzy m-step neighborhood graph (PFmSNG)of the PFG G.

CmðG
!Þ: m-step picture fuzzy competition graph (m-SPFCG) of the PFDG G

!
.

Definition 3.1 The m-SPFD of a PFD G
!¼ ðV ;A; B!Þ is denoted by Gm

�! ¼ ðV ;A; B0!Þ with
V as vertex set and having an edge (r, s) in Gm

�!
if there is a directed PFP P

!m

ðr;sÞ in G
!
.

In PFDs if a species r directly attacks a feed s, then their connection is showed by ð r; s�!Þ
edge. But, if such connection made indirectly with the help of m mediators, this can be

showed by a directed PFP of length m. So m-step feed (species) in a PFD is represented by

a vertex which is the PFmSON (or PFmSIN) of some species (feed). Both of them help to

construct m-SPFNGs and m-SPFCGs models. Now, PFmSON and PFmSIN of vertices in a

PFD are defined below.

Definition 3.2 The PFmSON of a vertex r of G
!

is the PFS @þ
mðrÞ ¼ ðXþ

r ; ðlþr ; gþr ; mþr ÞÞ,
where Xþ

r ¼ fs: there is a directed PFP P
!m

ðr;sÞ of length m from r to sg, lþr ; gþr ; mþr : Xþ
r !
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½0; 1� are defined as lþr ðsÞ ¼ minf l!Bða; bÞ : ða; bÞ is an edge of P
!m

ðr;sÞg, gþr ðsÞ ¼
minf g!Bða; bÞ : ða; bÞ is an edge of P

!m

ðr;sÞg and mþr ðsÞ ¼ maxf m!Bða; bÞ : ða; bÞ is an edge of
P
!m

ðr;sÞg.
The PFmSIN of a vertex r of G

!
is the PFS @�

mðrÞ ¼ ðX�
r ; ðl�r ; g�r ; m�r ÞÞ, where X�

r ¼ fs:
there is a directed PFP P

!m

ðs;rÞ of length m from s to rg, l�A ; g�A ; m�A : X�
r ! ½0; 1� are defined

as l�r ðsÞ ¼ minf l!Bða; bÞ : ða; bÞ is an edge of P
!m

ðs;rÞg, g�r ðsÞ ¼ minf g!Bða; bÞ : ða; bÞ is an
edge of P

!m

ðs;rÞg and m�r ðsÞ ¼ maxf m!Bða; bÞ : ða; bÞ is an edge of P
!m

ðs;rÞg.

There are some problems in literature, where the species and feed can not be connected

directly. These problems of feed-species can not be properly modeled by using PFCGs. In

such cases m-SPFCGs are effectively used. The m-SPFCG is the generalization of PFCG

which is defined below.

Definition 3.3 Let G
!¼ ðV;A; B!Þ be a PFD. The m-SPFCG of G

!
is denoted by CmðG

!Þ ¼
ðV ;A;B0Þ with V as vertex set and having an edge (r, s) in CmðG

!Þ iff @þ
mðrÞ \ @þ

mðsÞ 6¼ ; in
G
!
. The DTMS, DAMS and DFMS of an edge (r, s) are given by lB0 ðr; sÞ ¼ ½lAðrÞ ^

lAðsÞ�hl
�
@þ
mðrÞ \ @þ

mðsÞ
�
; gB0 ðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@þ
mðrÞ \ @þ

mðsÞ
�

and mB0 ðr; sÞ ¼
½mAðrÞ _ mAðsÞ�hm

�
@þ
mðrÞ \ @þ

mðsÞ
�
, respectively.

The following example illustrates 2-SPFCG.

Example 3.4 Consider a PFD G
!

(see in Fig.2a). Here, @þ
2 ðrÞ ¼ f

�
y; ð0:4;

0:1; 0:2Þ
�
;
�
w; ð0:7; 0:1; 0:2Þ

�
g and @þ

2 ðsÞ ¼ f
�
y; ð0:4; 0:1; 0:3Þ

�
;
�
w; ð0:4; 0:2; 0:3Þ

�
g.

Therefore, @þ
2 ðrÞ \ @þ

2 ðsÞ ¼ f
�
y; ð0:4; 0:1; 0:3Þ

�
;
�
w; ð0:4; 0:1; 0:3Þ

�
g 6¼ ;. Then there is an

edge (r, s) in C2ðG
!Þ with DTMS, DAMS and DFMS are respectively 0.2, 0.01 and 0.06

shown in Fig. 2b.

Fig. 2 Example of a PFD and b 2-SPFCG
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Definition 3.5 The PFmSN of a vertex r of PFG G ¼ ðV ;A;BÞ is a PFS

@mðrÞ ¼ ðXr; ðlr; gr; mrÞÞ, where Xr ¼ fs: there exits a PFP Pm
ðr;sÞ of length m from r to sg,

lr; gr; mr : Xr ! ½0; 1� are defined by lrðsÞ ¼ minflBða; bÞ : ða; bÞ is an edge of Pm
ðr;sÞg,

grðsÞ ¼ minfgBða; bÞ : ða; bÞ is an edge of Pm
ðr;sÞg and mrðsÞ ¼ maxfmBða; bÞ : ða; bÞ is an

edge of Pm
ðr;sÞg.

Next, we define m-step picture fuzzy neighborhood graph (m-SPFNG). In m-SPFNG the

relation among neighborhoods of any species are modeled.

Definition 3.6 Let G ¼ ðV;A;BÞ be a PFG. The m-SPFNG of G is denoted by

@mðGÞ ¼ ðV;A;BÞ, where A ¼ ðlA; gA; mAÞ, B ¼ ðlB; gB; mBÞ and lA; gA; mA : V ! ½0; 1�
and lB; gB; mB : V � V ! ½0; 1� are such that lBðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl

�
@mðrÞ \ @mðsÞ

�
,

gBðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ� hg
�
@mðrÞ \ @mðsÞ

�
and mBðr; sÞ ¼ ½mAðrÞ _ mAðsÞ�hm

�
@mðrÞ

\@mðsÞ
�
.

The following example illustrates 2-SPFNG.

Example 3.7 Consider a PFG G given in Fig. 3a. Here, @2ðrÞ ¼ f
�
w; ð0:5; 0:1;

0:2Þ
�
g;@2ðsÞ ¼ f

�
u; ð0:4; 0:1; 0:3Þ

�
;
�
w; ð0:4; 0:2; 0:3Þ

�
g;@2ðtÞ ¼ f

�
v; ð0:4; 0:1; 0:3Þ

�
g;@2

ðuÞ ¼ f
�
s; ð0:4; 0:1; 0:3Þ

�
;
�
w; ð0:4; 0:1; 0:3Þ

�
g;@2ðvÞ ¼ f

�
t; ð0:4; 0:1; 0:3Þ

�
g;@2ðwÞ ¼

f
�
r; ð0:5; 0:1; 0:2Þ

�
;
�
s; ð0:4; 0:2; 0:3Þ

�
;
�
u; ð0:4; 0:1; 0:3Þ

�
g. Also, @2ðrÞ \ @2ðsÞ ¼ f

�
w;

ð0:4; 0:1; 0:3Þ
�
g; @2ðrÞ \ @2ðuÞ ¼ f

�
w; ð0:4; 0:1; 0:3Þ

�
g; @2ðsÞ \ @2ðuÞ ¼ f

�
w; ð0:4; 0:1;

0:3Þ
�
g; @2ðsÞ \ @2ðwÞ ¼ f

�
u; ð0:4; 0:1; 0:3Þ

�
g and @2ðuÞ \ @2ðwÞ ¼ f

�
s; ð0:4; 0:1; 0:3Þ

�
g.

So, (r, s), (r, u), (s, u), (s, w) and (u, w) are the edges of @2ðGÞ with DTMS, DAMS and

DFMS are respectively (0.2, 0.01, 0.06), (0.16, 0.01, 0.06), (0.16, 0.03, 0.06), (0.2, 0.02,

0.06) and (0.16, 0.02, 0.06) shown in Fig. 3b.

Theorem 3.8 Let G
!¼ ðV;A; B!Þ be a PFD. If m[ jVj then CmðG

!Þ is a PFG with no
edges.

Fig. 3 Example of a PFG and b 2-SPFNG
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Proof Let CmðG
!Þ ¼ ðV;A;B0Þ be the m-SPFCG corresponding to a PFD G

!¼ ðV ;A; B!Þ,
where, lB0 ðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl

�
@þ
mðrÞ \ @þ

mðsÞ
�
, gB0 ðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@þ
mðrÞ

\@þ
mðsÞ

�
and mB0 ðr; sÞ ¼ ½mAðrÞ _ mAðsÞ�hm

�
@þ
mðrÞ \ @þ

mðsÞ
�
.

If m[ jV j, there does not exists any directed PFP P
!m

ðr;sÞ of length m in G
!
.

So, @þ
mðrÞ \ @þ

mðsÞ ¼ ; 8 r, s in G
!
. Hence, CmðG

!Þ has no edge. h

Example 3.9 Any PFD with n vertices has at most a directed PFP of length ðn� 1Þ
between its two vertices. In Fig. 2a, jVðG!Þj ¼ 6. If we take m ¼ 7, then there does not

exists any directed PFP of length 7 in G
!
. So, @þ

7 ðrÞ \ @þ
7 ðsÞ ¼ ; 8 r, s in G

!
and hence

edge set of C7ðG
!Þ is an empty set.

Here, the underlying PFG of a PFD is defined below.

Definition 3.10 Let G
!¼ ðV;A; B!Þ be a PFD. The underlying PFG of G

!
is the PFG

G ¼ ðV;A;BÞ, where, lBðr; sÞ ¼ minf l!Bðr; sÞ; l!Bðs; rÞg, gBðr; sÞ ¼ minf g!Bðr; sÞ;
g!Bðs; rÞg and mBðr; sÞ ¼ maxf m!Bðr; sÞ; m!Bðs; rÞg 8 r; s 2 V .

Next, we established a relation between m-SPFCG and m-SPFNG.

Theorem 3.11 If a PFD G
!

does not contain any parallel edge, then CmðG
!Þ ¼ @mðGÞ for

m[ 1, where G is the underlying PFG of G
!
.

Proof Let G
!¼ ðV ;A; B!Þ be a PFD having no parallel edges. Let G ¼ ðV;A;BÞ be the

underlying PFG of G
!
. Then lBðr; sÞ ¼ minf l!Bðr; sÞ; l!Bðs; rÞg, gBðr; sÞ ¼

minf g!Bðr; sÞ; g!Bðs; rÞg, mBðr; sÞ ¼ maxf m!Bðr; sÞ; m!Bðs; rÞg 8 r; s 2 V .

Since G
!

contains no parallel edges, then lBðr; sÞ ¼ l!Bðr; sÞ, gBðr; sÞ ¼ g!Bðr; sÞ and
mBðr; sÞ ¼ m!Bðr; sÞ, 8 r; s 2 V . Also, let CmðG

!Þ ¼ ðV;A;B0Þ be the m-SPFCG of G
!

and

@mðGÞ ¼ ðV;A;B00Þ be the m-SPFNG of G. The vertex set of CmðG
!Þ and @mðGÞ are same.

We have to prove that the edges sets of them are also same. Here,

hlð@þ
mðrÞ \ @þ

mðsÞÞ ¼ hl
�
@mðrÞ \ @mðsÞ

�
, hg

�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ hg

�
@mðrÞ \ @mðsÞ

�
and

hm
�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ hm

�
@mðrÞ \ @mðsÞ

�
, 8r; s 2 V . Therefore, lB0 ðr; sÞ ¼ lB00 ðr; sÞ,

gB0 ðr; sÞ ¼ gB00 ðr; sÞ and mB0 ðr; sÞ ¼ mB00 ðr; sÞ. Thus the edges of CmðG
!Þ and @mðGÞ are

same. Hence, CmðG
!Þ ¼ @mðGÞ. h

Now, the strength of the feed in a PFD is defined below.

Definition 3.12 Let G
!

be a PFD. Let q be a common vertex of m-step out neighborhood of
the vertices r1; r2; . . .; rk. Also, let lBðbi; ciÞ; gBðbi; ciÞand mBðbi; ciÞ are the respective

minimum DTMS, minimum DAMS and maximum DFMS of edges of the paths

P
!m

ðri;qÞ; i ¼ 1; 2; . . .; k. The m-step feed q 2 V is independent strong if lBðbi; ciÞ[
0:5; gBðbi; ciÞ\0:5 and mBðbi; ciÞ\0:5; i ¼ 1; 2; . . .; k.

The strength of the feed q is defined by
�
S1ðqÞ; S2ðqÞ; S3ðqÞ

�
, where S1; S2; S3 : V !

123

Certain competition graphs based on picture fuzzy environment… 3149



½0; 1� are such that S1ðqÞ ¼ 1
k

Pk
1 l!Bðbi; ciÞ; S2ðqÞ ¼ 1

k

Pk
1 g!Bðbi; ciÞ; S3ðqÞ ¼ 1

k

Pk
1 m!B

ðbi; ciÞ

Theorem 3.13 If each feed of a PFD G
!¼ ðV;A; B!Þ is independent strong, then each

edge of CmðG
!Þ is independent strong.

Proof Let G
!¼ ðV;A; B!Þ be a PFD with strong feeds and CmðG

!Þ ¼ ðV;A;B0Þ be the

corresponding m-SPFCG.

Case I:When @þ
mðrÞ \ @þ

mðsÞ ¼ ;, then there is nothing to prove, as edges set of CmðG
!Þ

is an empty set.

Case II: When @þ
mðrÞ \ @þ

mðsÞ 6¼ ;, then clearly hl
�
@þ
mðrÞ \ @þ

mðsÞ
�
[ 0:5; hg

�
@þ
mðrÞ \

@þ
mðsÞ

�
\0:5 and hm

�
@þ
mðrÞ \ @þ

mðsÞ
�
\0:5 in G

!
as each feed is independent strong.

Now, lB0 ðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl
�
@þ
mðrÞ \ @þ

mðsÞ
�
or,

lB0 ðr;sÞ
lAðrÞ^lAðsÞ

[ 0:5.

Similarly,
gB0 ðr;sÞ

gAðrÞ^gAðsÞ
\0:5 and

mB0 ðr;sÞ
mAðrÞ_mAðsÞ\0:5.

Then (r, s) is an independent strong edge in CmðG
!Þ. But, (r, s) is an arbitrary edge of

CmðG
!Þ. Thus each edge of CmðG

!Þ is independent strong. h

Example 3.14 Consider a PFD G
!

(see Fig. 4a). Here, y and w both are independent strong

2-step feeds. We have, @þ
2 ðrÞ ¼ f

�
y; ð0:6; 0:1; 0:2Þ

�
;
�
w; ð0:7; 0:1; 0:2Þ

�
g and @þ

2 ðsÞ ¼
f
�
y; ð0:55; 0:1; 0:2Þ

�
;
�
w; ð0:55; 0:1; 0:2Þ

�
g. Therefore, @þ

2 ðrÞ \ @þ
2 ðsÞ ¼ f

�
y; ð0:55;

0:1; 0:2Þ
�
;
�
w; ð0:55; 0:1; 0:2Þ

�
g 6¼ ;. Then there exist an edge (r, s) in C2ðG

!Þ, which is

independent strong with DTMS, DAMS and DFMS are respectively 0.33, 0.01 and 0.05,

shown in Fig. 4b.

Fig. 4 Example of a PFD and b 2-SPFCG
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Theorem 3.15 If a feed q of G
!

is independent strong, then strength of q,
S1ðqÞ[ 0:5; S2ðqÞ\0:5 and S3ðqÞ\0:5:

Proof Let G
!¼ ðV;A; B!Þ be a PFD. Let q be a common vertex of PFmSON of the vertices

r1; r2; . . .; rk. Also, let lBðbi; ciÞ; gBðbi; ciÞ and mBðbi; ciÞ are the respective minimum

DTMS, minimum DAMS and maximum DFMS of edges of the paths P
!m

ðri;qÞ,

i ¼ 1; 2; . . .; k. If q is independent strong, then each edge ðbi; ciÞ, i ¼ 1; 2; . . .; k is inde-

pendent strong. So, lBðbi; ciÞ[ 0:5, gBðbi; ciÞ\0:5 and mBðbi; ciÞ\0:5, i ¼ 1; 2; . . .; k and

also, S1ðqÞ[ 0:5; S2ðqÞ\0:5 and S3ðqÞ\0:5. h

Remark 3.16 The converse of the above theorem is not true. i.e., if

S1ðqÞ[ 0:5; S2ðqÞ\0:5 and S3ðqÞ\0:5, then feed q may not be independent strong. This

can be explain as:

Let S1ðqÞ[ 0:5; S2ðqÞ\0:5 and S3ðqÞ\0:5 for a feed q in G
!
. So,

1
k

Pk
1 l!Bðbi; ciÞ[ 0:5; 1

k

Pk
1 g!Bðbi; ciÞ\0:5 and 1

k

Pk
1 m!Bðbi; ciÞ\0:5: This result does

not necessarily implies that l!Bðbi; ciÞ[ 0:5, g!Bðbi; ciÞ\0:5 and m!Bðbi; ciÞ\0:5 8 i ¼
1; 2; . . .; k and hence, each edge of each directed PFP P

!m

ðri ;qÞ, i ¼ 1; 2; . . .; k may not be

independent strong. So, q may not be independent strong feed.

Example 3.17 In Fig.2(a)), strength of the feed w is
�
S1ðwÞ; S2ðwÞ; S3ðwÞ

�

¼ ð0:7þ0:4
2

; 0:1þ0:2
2

; 0:2þ0:3
2

Þ ¼ ð0:55; 0:15; 0:25Þ. But w is not strong 2-step feed as edges of

the PFP P
!2

ðs;wÞ are not independent strong.

Here, we establish a relation between m-SPFCG of a PFD and PFCG of m-SPFD.

Theorem 3.18 If G
!

be a PFD and G
!

m be its m -SPFD, then CðG!mÞ ¼ CmðG
!Þ.

Proof Let G
!¼ ðV;A; B!Þ be a PFD and G

!
m ¼ ðV ;A;B0Þ is the m-SPFD of G

!
. Then

vertex set of CðG!Þ and CmðG
!Þ are equal. we have to prove that the edges set of them are

also equal.

Let (r, s) be an edge in G
!

m. Then there exists an edges ðr; riÞ; ðs; riÞ in

G
!

m; i ¼ 1; 2; . . .; k.

In G
!

m we have @þðrÞ \ @þðsÞ ¼ fðri; li; gi; miÞji ¼ 1; 2; . . .; kg, where

li ¼ l!B0 ðr; riÞ ^ l!B0 ðs; riÞ; gi ¼ g!B0 ðr; riÞ ^ g!B0 ðs; riÞ; mi ¼ m!B0 ðr; riÞ _ m!B0 ðs; riÞ.
Let P ¼ maxfliji ¼ 1; 2; . . .; kg;Q ¼ minfgiji ¼ 1; 2; . . .; kg and

R ¼ minfmiji ¼ 1; 2; . . .; kg. Then lB0 ðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl
�
@þðrÞ \ @þðsÞ

�

¼ ½lAðrÞ ^ lAðsÞ� � P, gB0 ðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ� � Q and mB0 ðr; sÞ ¼ ½mAðrÞ _ mAðsÞ� � R.

An edge ðr; riÞ exists in G
!

m implies that there is a directed path from r to ri of length m,

P
!m

ðr;riÞ in G
!

and l!B0 ðr; riÞ ¼ minf l!Bðx; yÞ : ðx; yÞ is an edge in P
!m

ðr;riÞg, g!B0 ðr; riÞ ¼
minf g!Bðx; yÞ : ðx; yÞ is an edge in P

!m

ðr;riÞg, m
!

B0 ðr; riÞ ¼ maxf m!Bðx; yÞ : ðx; yÞ is an edge in
P
!m

ðr;riÞg. Thus (r, s) is also an edge of CmðG
!Þ.
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Let hl
�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ P; hg

�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ Q and hl

�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ R in G

!
.

Therefore, lBðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl
�
@þ
mðrÞ \ @þ

mðsÞ
�
¼ ½lAðrÞ ^ lAðsÞ� � P, gBðr; sÞ ¼

½gAðrÞ ^ gAðsÞ� � Q and mBðr; sÞ ¼ ½mAðrÞ _ mAðsÞ� � R. This shows that there is an edge in

CmðG
!Þ for each edge in CðG!mÞ. Similarly, for each edge in CmðG

!Þ there is an edge in

CðG!mÞ. Hence, CðG
!

mÞ ¼ CmðG
!Þ. h

4 Picture fuzzy economic competition graphs (PFECG)

In this section, the definition of PFECG and m-step picture fuzzy economic competition

graphs (m-SPFECG) are given and studied several properties.

Definition 4.1 The PFECG of a PFD G
!¼ ðV ;A; B!Þ is an undirected graph EðG!Þ ¼

ðV ;A;BÞ with V as vertex set and having an edge (r, s) in EðG!Þ iff @�ðrÞ \ @�ðsÞ 6¼ ; in

G
!
. The DTMS, DAMS and DFMS of (r, s) are respectively lBðr; sÞ ¼

½lAðrÞ ^ lAðsÞ�hl
�
@�ðrÞ \ @�ðsÞ

�
, gBðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@�ðrÞ \ @�ðsÞ

�
and

mBðr; sÞ ¼ ½mAðrÞ _ mAðsÞ�hm
�
@�ðrÞ \ @�ðsÞ

�
.

Definition 4.2 The m-SPFECG EmðG
!Þ of a PFD G

!¼ ðV;A; B!Þ is an undirected graph

EmðG
!Þ ¼ ðV ;A;B�Þ with V as vertex set and having an edge (r, s) in EmðG

!Þ iff @�
mðrÞ \

@�
mðsÞ 6¼ ; in G

!
. The DTMS, DAMS and DFMS of (r, s) are respectively

lB� ðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl
�
@�
mðrÞ \ @�

mðsÞ
�
, gB� ðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@�
mðrÞ \

@�
mðsÞ

�
and mB� ðr; sÞ ¼ ½mAðrÞ _ mAðsÞ�hm

�
@�
mðrÞ \ @�

mðsÞ
�
8 r; s 2 V .

The following example illustrates PFECG and m-SPFECG.

Example 4.3 Consider a PFD G
!¼ ðV;A; B!Þ (see in Fig. 5a). Here, @�ðsÞ \ @�ðuÞ ¼

f
�
t; ð0:4; 0:1; 0:2Þ

�
g and @�ðtÞ \ @�ðuÞ ¼ f

�
v; ð0:4; 0:1; 0:3Þ

�
g. So, (s, u) and (t, u) are the

edges of EðG!Þ with DTMS, DAMS and DFMS are (0.2, 0.01, 0.06) and (0.16, 0.01, 0.09),

respectively shown in Fig. 5b. Also, @�
2 ðrÞ \ @�

2 ðsÞ ¼ f
�
v; ð0:4; 0:1; 0:3Þ

�
g, @�

2 ðrÞ\
@�
2 ðuÞ ¼ f

�
r; ð0:4; 0:1; 0:3Þ

�
g, @�

2 ðrÞ \ @�
2 ðvÞ ¼ f

�
t; ð0:4; 0:1; 0:3Þ

�
g, @�

2 ðsÞ \ @�
2 ðuÞ ¼

f
�
v; ð0:4; 0:1; 0:2Þ

�
g and @�

2 ðtÞ \ @�
2 ðuÞ ¼ f

�
s; ð0:4; 0:1; 0:3Þ

�
g. So, (r, s), (r, u), (r, v),

(s, u) and (t, u) are the edges of E2ðG
!Þ with DTMS, DAMS and DFMS are respectively

(0.2, 0.01, 0.03), (0.24, 0.01, 0.09), (0.2, 0.01, 0.09), (0.2, 0.01, 0.06) and (0.16, 0.01,

0.09) shown in Fig. 6 (Table 1).

Theorem 4.4 The PFCGs and PFECGs of any complete PFD are same.

Proof Let G
!¼ ðV;A; B!Þ be a PFD and CðG!Þ ¼ ðV ;A;BÞ be the corresponding PFCG.

Also, corresponding PFECG is EmðG
!Þ ¼ ðV ;A;B�Þ.
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The vertex sets of CðG!Þ and EmðG
!Þ are same with the vertex set of G

!
. We have to

prove that lBðr; sÞ ¼ lB� ðr; sÞ, gBðr; sÞ ¼ gB� ðr; sÞ, mBðr; sÞ ¼ mB� ðr; sÞ, 8 r; s 2 V . The

DTMS, DAMS and DFMS of the edge (r, s) in CðG!Þ are respectively

lBðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl
�
@þðrÞ \ @þðsÞ

�
, gBðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg

�
@þðrÞ \ @þðsÞ

�

and mBðr; sÞ ¼ ½mAðrÞ _ mAðsÞ�hm
�
@þðrÞ \ @þðsÞ

�
. Also, the DTMS, DAMS and DFMS of

the edge (r, s) in EmðG
!Þ are respectively lB� ðr; sÞ ¼ ½lAðrÞ ^ lAðsÞ�hl

�
@�
mðrÞ \ @�

mðsÞ
�
,

gB� ðr; sÞ ¼ ½gAðrÞ ^ gAðsÞ�hg
�
@�
mðrÞ \ @�

mðsÞ
�

and mB� ðr; sÞ ¼ ½mAðrÞ _ mAðsÞ� hm
�
@�
mðrÞ\

Fig. 5 Example of a PFD and b PFECG

Fig. 6 Example of m-SPFECG

Table 1 PFON and 2-step PFON

x 2 V @�ðxÞ @�
2 ðxÞ

r f
�
u,(0.5,0.1,0.3)

�
g f

�
v,(0.4,0.1,0.3)

�
;
�
t,(0.4,0.1,0.3)

�
g

s f
�
r,(0.5,0.1,0.1)

�
;
�
t,(0.4,0.3,0.1)

�
g f

�
u,(0.5,0.1,0.3)

�
;
�
v,(0.4,0.2,0.2)

�
g

t f
�
v,(0.4,0.2,0.2)

�
g f

�
s,(0.4,0.2,0.2)

�
g

u f
�
t,(0.4,0.1,0.2)

�
;
�
v,(0.4,0.1,0.3)

�
g f

�
t,(0.4,0.1,0.2)

�
;
�
s,(0.4,0.1,0.3)

�
g

v f
�
s,(0.5,0.3,0.1)

�
g f

�
r,(0.5,0.1,0.2)

�
;
�
t,(0.4,0.3,0.2)

�
g
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@�
mðsÞ

�
. Since G

!
is complete PFD, then @þðrÞ \ @þðsÞ ¼ @�

mðrÞ \ @�
mðsÞ. Hence, PFCGs

and PFECGs of any complete PFD are same. h

Theorem 4.5 If G1
�!

be the picture fuzzy sub-digraph of a PFD G
!
, then (i) CmðG1

�!Þ �
CmðG

!Þ (ii) EmðG1
�!Þ � EmðG

!Þ (ii) @mðG1
�!Þ � @mðG

!Þ.

Proof Let G
!¼ ðV;A; B!Þ and G1

�! ¼ ðV1;A1; B1
�!Þ, where V1 � V and lA1

ðrÞ� lAðrÞ,
gA1

ðrÞ� gAðrÞ, mA1
ðrÞ	 mAðrÞ 8 r 2 V1. Also, l!B1

ðr; sÞ� l!Bðr; sÞ, g!B1
ðr; sÞ� g!Bðr; sÞ,

m!B1
ðr; sÞ	 m!Bðr; sÞ 8 r; s 2 V1. (i) Since, V1 � V , the vertex set of CmðG1

�!Þ is a subset of
CmðG

!Þ. Also, for any edge (r, s) in CmðG1
�!Þ, @þ

mðrÞ \ @þ
mðsÞ is picture fuzzy subset of the

same in CmðG
!Þ. Then l!B1

ðr; sÞ� l!Bðr; sÞ, g!B1
ðr; sÞ� g!Bðr; sÞ, m!B1

ðr; sÞ	 m!Bðr; sÞ
8r; s 2 V1. This proves that CmðG1

�!Þ � CmðG
!Þ. The proofs of (ii) and (iii) are similar to

(i) h

5 Picture fuzzy competition hypergraphs (PFCHs)

Hypergraph theory is the most blooming tool for demonstrating several practical problems

in different domains of science and technology. Moreover, crisp hypergraphs do not

describe all the competitions of real world problems. Here, we introduce definitions and

terminologies of picture fuzzy hypergraph (PFH) and PFCH.

Definition 5.1 The picture fuzzy hypergraph (PFH) is of the form H ¼ ðV;A;BÞ, V is the

vertex set and B is the family of picture fuzzy hyperedges of H, where

(i) V ¼ fa1; a2; . . .; ang is a finite set,

(ii) A ¼ f
�
ai; ðlAðaiÞ; gAðaiÞ; mAðaiÞÞ

�
: i ¼ 1; 2; . . .; n},

(iii) B ¼ fE1;E2; . . .;Emg is a family of picture fuzzy subsets of V,

(iv) Ej ¼ f
�
ai; ðljðaiÞ; gjðaiÞ; mjðaiÞÞ

�
: ljðaiÞ; gjðaiÞ; mjðaiÞ	 0 and 0� ljðaiÞ þ

gjðaiÞþ mjðaiÞ� 1g, j ¼ 1; 2; . . .;m,

(v) Ej 6¼ ;, j ¼ 1; 2; . . .;m,

(vi)
Sm

j¼1 suppðEjÞ ¼ V . The hyperedges Ej are PFSs of vertices, ljðaiÞ; gjðaiÞ and

mjðaiÞ are respectively the DTMS, DAMS and DFMS of ai corresponding to Ej.

We illustrate it by giving an example.

Example 5.2 Consider a PFH G ¼ ðV ;A;BÞ such that V ¼ fa1; a2; a3g and B ¼
fE1;E2;E3g as shown in Fig. 7. Here, E1 ¼ f

�
a1; ð0:5; 0:3; 0:15Þ

�
;
�
a2; ð0:6; 0:35; 0:1Þ

�
g,

E2 ¼ f
�
a2; ð0:6; 0:25; 0:1Þ

�
;
�
a3; ð0:3; 0:2; 0:35Þ

�
g and E3 ¼ f

�
a1; ð0:5; 0:3; 0:15Þ

�
;�

a3; ð0:3; 0:2; 0:35Þ
�
g.

Now, we define picture fuzzy competition hypergraph (PFCH) and picture fuzzy double

competition hypergraph (PFDCH) as follows:
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Definition 5.3 The PFCH CHðG
!Þ ¼ ðV;A;BcÞ of a PFD G

!¼ ðV;A; B!Þ is an undirected

graph with V as vertex set and has a hyperedge E consisting of vertices a1; a2; . . .; ar if

@þða1Þ \ @þða2Þ \ � � � \ @þðarÞ 6¼ ;. The DTMS, DAMS and DFMS of the hyperedge

E ¼ fa1; a2; . . .; arg are define as lBc
ðEÞ ¼ ½lAða1Þ ^lAða2Þ^ � � � ^ lA ðarÞ�

hl
�
@þða1Þ \ @þða2Þ \ � � � \ @þðarÞ

�
, gBc

ðEÞ ¼ ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg
�
@þða1Þ

\@þða2Þ \ � � � \ @þðarÞ
�

and mBc
ðEÞ ¼ ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm

�
@þða1Þ \

@þða2Þ \ � � � \ @þðarÞ
�
, respectively.

Definition 5.4 Let G
!¼ ðV;A; B!Þ be a PFD. The PFDCH CDH ¼ ðV;A;BdÞ is an undi-

rected graph having same vertex set as in G
!

and there is a hyperedge E consisting of

vertices a1; a2; . . .; ar if @þða1Þ \ @þða2Þ \ � � � \ @þðarÞ 6¼ ; and @�ða1Þ \ @�ða2Þ
\ � � � \ @�ðarÞ 6¼ ;. The DTMS, DAMS and DFMS of the hyperedge E ¼ fa1; a2; . . .;
arg are defined as lBd

ðEÞ ¼ ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl
�
@þða1Þ \ @þða2Þ\

� � � \ @þðarÞÞ _ hlð@�ða1Þ \ @�ða2Þ \ � � � \ @�ðarÞ
�
, gBd

ðEÞ ¼ ½gAða1Þ ^ gAða2Þ ^ � � � ^
gAðarÞ�hg

�
@þða1Þ \ @þða2Þ \ � � � \ @þðarÞÞ _ hgð@�ða1Þ \ @�ða2Þ \ � � � \ @�ðarÞ

�
and

mBd
ðEÞ ¼ ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hl

�
@þða1Þ \ @þða2Þ \ � � � \ NþðarÞÞ ^ hmð@�ða1Þ

\@�ða2Þ \ � � � \ @�ðarÞ
�
, respectively.

The following example illustrates PFCH and PFDCH.

Example 5.5 Consider a PFD G
!

shown in Fig. 8a. Here, @þða1Þ \ @þða6Þ
¼ f

�
a2; ð0:3; 0:2; 0:3Þ

�
g, @þða2Þ \ @þða5Þ ¼ f

�
a3; ð0:4; 0:2; 0:3Þ

�
g and @þða3Þ \

@þða5Þ ¼ f
�
a4; ð0:4; 0:2; 0:1Þ

�
g. Therefore, hyperedges of the PFCH are E2 ¼ fa1; a6g,

E3 ¼ fa2; a5g and E4 ¼ fa3; a5g. The DTMS, DAMS and DFMS of E2;E3 and E4 are

respectively (0.09, 0.06, 0.12), (0.16, 0.04, 0.09) and (0.16, 0.04, 0.02) (see Fig. 8b;

Table 2).

Again, @þða2Þ \ @þða5Þ ¼ f
�
a3; ð0:4; 0:2; 0:3Þ

�
g 6¼ ; and @�ða2Þ \ @�ða5Þ ¼

f
�
a6; ð0:3; 0:2; 0:3Þ

�
g 6¼ ;. So, there is only one hyperedge E ¼ fa2; a5g in PFDCH with

DTMS, DAMS and DFMS are (0.16, 0.04, 0.09) shown in Fig. 8(c).

Fig. 7 Example of PFH
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Definition 5.6 Let G ¼ ðV;A;BÞ be a PFH. A hyperedge Ei ¼ fa1; a2; . . .; arg 
 V is

independent strong if 1
2
minflAða1Þ; lAða2Þ; . . .; lAðarÞg\lBðEiÞ, 1

2
minfgAða1Þ;

gAða2Þ; . . .; gAðarÞg[ gBðEiÞ and 1
2
maxfmAða1Þ; mAða2Þ; . . .; mAðarÞg[ mBðEiÞ. Otherwise, it

is called weak edge.

Theorem 5.7 Let G
!¼ ðV;A; B!Þ be a PFD. If @þða1Þ \ @þða2Þ \ . . . \ @þðarÞ contains

only one vertex of G
!
. Then the hyperedge fa1; a2; . . .; arg of CHðG

!Þ is independent strong
iff j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ 0:5, j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjg\0:5, and

j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm\0:5.

Proof Let G
!

be a PFD. If @þða1Þ \ @þða2Þ \ . . . \ @þðarÞ ¼ fðx; ðh;/;wÞÞg, where h;/
and w are the DTMS, DAMS and DFMS of either edge ða1; xÞ or ða2; xÞ or ðar; xÞ. Here,

j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl ¼ h ¼ hl
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjg ¼ / ¼ hg
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm ¼ w ¼ hm
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
.

So that, lBðfa1; a2; . . .; argÞ ¼ ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ� � h; gBðfa1; a2; . . .;

Fig. 8 Example of PFD and corresponding competition hypergraphs

Table 2 PFON and PFIN of the vertices

a 2 V @þðaÞ @�ðaÞ

a1 f
�
a2; ð0:4; 0:2; 0:2Þ

�
;
�
a6; ð0:3; 0:25; 0:4Þ

�
g ;

a2 f
�
a3; ð0:4; 0:2; 0:3Þ

�
g f

�
a1; ð0:4; 0:2; 0:2Þ

�
;
�
a5; ð0:4; 0:2; 0:3Þ

�
;�

a6; ð0:3; 0:2; 0:3Þ
�
g

a3 f
�
a4; ð0:5; 0:2; 0:1Þ

�
g f

�
a5; ð0:4; 0:2; 0:15Þ

�
g

a4 ; f
�
a3; ð0:5; 0:2; 0:1Þ

�
;
�
a5; ð0:4; 0:2; 0:1Þ

�
g

a5 f
�
a3; ð0:4; 0:2; 0:15Þ

�
;
�
a4; ð0:4; 0:2; 0:1Þ

�
g f

�
a6; ð0:3; 0:3; 0:25Þ

�
g

a6 f
�
a2; ð0:3; 0:2; 0:3Þ

�
;
�
a5; ð0:3; 0:3; 0:25Þ

�
g f

�
a1; ð0:3; 0:25; 0:4Þ

�
g
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argÞ ¼ ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ� � /; mBðfa1; a2; . . .; argÞ ¼ ½mAða1Þ _ mAða2Þ _ � � �
_mAðarÞ� � w.

Therefore, the hyperedge fa1; a2; . . .; arg in CHðG
!Þ is independent strong iff

h[ 0:5;/\0:5 and w\0:5, i.e., iff j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ 0:5, j@þða1Þ \
@þða2Þ \ . . . \ @þðarÞjg\0:5 and j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm\0:5. h

Next, we define one of the extension of PFCH known as picture fuzzy k- competition

hypergraph (PFkCH), k is a non-negative real number.

Definition 5.8 Let k	 0 be a real number. The PFkCH CHk
ðG!Þ of a PFD G

!¼ ðV;A; B!Þ
is a PFH CHk

ðG!Þ ¼ ðV;A;BkÞ whose vertex set is same as in G
!

and there is a hyperedge

E ¼ fa1; a2; . . .; arg in CHk
ðG!Þ if j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ k, j@þða1Þ \

@þða2Þ \ . . . \ @þðarÞjg [ k and j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm [ k. Then the DTMS,

DAMS and DFMS of E are respectively lBk
ðEÞ ¼ k1�k

k1
½lAða1Þ ^ lAða2Þ ^ � � � ^

lAðarÞ�hl
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
; gBðEÞ ¼ k2�k

k2
½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�

hg
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
and mBðEÞ ¼ k3�k

k3
½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm�

@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ
�
,

where k1 ¼ j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl, k2 ¼ j@þða1Þ \ @þða2Þ \ . . . \
@þðarÞjg and k3 ¼ j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm. A PFkCH is simply a PFCH if

k ¼ 0.

Here, we provide the following example of a PF.1CH

Example 5.9 In Example 5.5, for the hyperedge E2; k1 ¼ 0:3; k2 ¼ 0:2; k3 ¼ 0:2. For E3;

k1 ¼ 0:4; k2 ¼ 0:2, k3 ¼ 0:15. For E4; k1 ¼ 0:4; k2 ¼ 0:2; k3 ¼ 0:1. If we choose k ¼ 0:1,

there exists hyperedges E2 and E3 in CH0:1
ðG!Þ with DTMS, DAMS and DFMS are

(0.06, 0.03, 0.08) and (0.12, 0.02, 0.06), respectively as shown in Fig. 9.

Theorem 5.10 Let G
!

be a PFD. If hl
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
¼ 1; hg

�
@þða1Þ \

@þða2Þ \ . . . \ @þðarÞ
�
¼ 1; hm

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
¼ 1 and if j@þða1Þ\

@þða2Þ \ . . . \ @þðarÞjl [ 2k; j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjg\2k; j@þða1Þ \ @þða2Þ\
. . . \ @þðarÞjm\2k, then the hyperedge E ¼ fa1; a2; . . .; arg is independent strong in

CHk
ðG!Þ.

Proof Let CHk
ðG!Þ ¼ ðV;A;BkÞ be a PFkCH of a PFD G

!¼ ðV;A; B!Þ. If hl
�
@þða1Þ \

@þða2Þ \ . . . \ @þðarÞ
�
¼ 1 and j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ 2k, then k1 [ 2k.

Therefore, lBk
ðEÞ ¼ k1�k

k1
½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hlð@þða1Þ \ @þða2Þ \ . . . \

@þðarÞÞ
or,

lBk ðEÞVr

1
lAðaiÞ

¼ k1�k
k1

[ 0:5.
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Similarly,
gBk ðEÞVr

1
gAðaiÞ

¼ k1�k
k1

\0:5 and
mBk ðEÞWr

1
mAðaiÞ

¼ k1�k
k1

\0:5.

Then E is independent strong in CHk
ðG!Þ. h

6 Picture fuzzy neighborhood hypergraphs (PFNHs)

To design different types of PFCHs from a PFG the concepts of picture fuzzy open

neighborhood (PFON) and picture fuzzy closed neighborhood (PFCN) are given below.

The picture fuzzy neighborhoods (PFNs) of any species with their relations are describe in

the PFNHs.

Definition 6.1 The PFON of a vertex r of a PFG G ¼ ðV ;A;BÞ is @ðrÞ ¼ ðXr; ðlr; gr; mrÞÞ,
where Xr ¼ fs : lBðr; sÞ[ 0; gBðr; sÞ[ 0 and mBðr; sÞ[ 0g, lr; gr; mr : Xr ! ½0; 1� are

defined as lrðsÞ ¼ lBðr; sÞ; grðsÞ ¼ gBðr; sÞ and mrðsÞ ¼ mBðr; sÞ. The PFCN of a vertex r is
@½r� ¼ @ðrÞ [ fðr; ðlðrÞ; gðrÞ; mðrÞÞÞg.

Now, we define picture fuzzy open neighborhood hypergraphs (PFONH) and picture fuzzy

closed neighborhood graphs (PFCNH).

Definition 6.2 Let G ¼ ðV;A;BÞ be a PFG. The PFONH of G is NðGÞ ¼ ðV;A;B0Þ, with
V as vertex set and there is a hyperedge E ¼ fa1; a2; . . .; arg in N(G) if @ða1Þ \ @ða2Þ \
. . . \ @ðarÞ 6¼ ; in G. The DTMS, DAMS and DFMS of the hyperedge E are respectively

lB0 ðEÞ ¼ ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
; gB0 ðEÞ ¼ ½gA

ða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
and mB0 ðEÞ ¼ ½mAða1Þ_

mAða2Þ _ � � � _ mAðarÞ�hm
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
.

Definition 6.3 Let G ¼ ðV;A;BÞ be a PFG. The PFCNH of G is N½G� ¼ ðV;A;B00Þ, with
V as vertex set and there is a hyperedge E ¼ fa1; a2; . . .; arg in @½G� if @½a1� \ @½a2� \
. . . \ @½ar� 6¼ ; in G. The DTMS, DAMS and DFMS of the hyperedge E in @½G� are
respectively lB00 ðEÞ ¼ ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl

�
@½a1� \ @½a2� \ . . . \ @½ar�

�
;

gB00 ðEÞ ¼ ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
and mB00 ðEÞ ¼

½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
.

To illustrate the preceding definitions, we provide the following example.

Fig. 9 Example of PF.1CH
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Example 6.4 Consider a PFG G given in Fig. 10a. Here, @ða1Þ \ @ða2Þ
\@ða4Þ ¼ f

�
a3; ð0:3; 0:1; 0:3Þ

�
g, @ða2Þ \ @ða3Þ ¼ f

�
a4; ð0:3; 0:1; 0:2Þ

�
g and @ða3Þ\

@ða4Þ ¼ f
�
a2; ð0:3; 0:1; 0:3Þ

�
g. Therefore, E2 ¼ fa3; a4g, E3 ¼ fa1; a2; a4g, E4 ¼ fa2; a3g

are hyperedges of N(G) with DTMS, DAMS and DFMS are (0.12, 0.01, 0.06),

(0.09, 0.02, 0.12) and (0.09, 0.01, 0.08), respectively shown in Fig. 10b. Also,

@½a1� \ @½a2� \ @½a3� \ @½a4� ¼ f
�
a3; ð0:3; 0:1; 0:3Þ

�
g. Therefore, E ¼ fa1; a2; a3; a4g is a

hyperedge of N[G] with DTMS, DAMS and DFMS (0.09, 0.01, 0.12) shown in Fig. 10c

(Table 3).

Some other types of PFHs such as open picture fuzzy k-competition hypergraph (OPFkCH)
and closed picture fuzzy k-competition hypergraph (CPFkCH) are defined here, using

different types of PFN of the vertices.

Definition 6.5 Let k	 0 be a real number. The OPFkCH of a PFG G is

@Hk
ðGÞ ¼ ðV;A;B0

kÞ, with V as vertex set and there is a hyperedge E ¼ fa1; a2; . . .; arg in

NHk
ðGÞ if j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjl [ k, j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjg [ k and

j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjm [ k in G.
Then the DTMS, DAMS and DFMS of the hyperedge E are respectively

lB0
k
ðEÞ ¼ k0

1
�k

k0
1

½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl
�
Nða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
,

gB0
k
ðEÞ ¼ k0

2
�k

k0
2

½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
and

mB0
k
ðEÞ ¼ k03�k

k0
3

½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
,

where k01 ¼ j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjl, k02 ¼ j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjg and

k03 ¼ j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjm.

Definition 6.6 Let k	 0 be a real number. The CPFkCH of a PFG G is

@Hk
½G� ¼ ðV ;A;B00

k Þ, with V as vertex set and there is a hyperedge E ¼ fa1; a2; . . .; arg in

@Hk
½G� if j@½a1� \ @½a2Þ� \ . . . \ @½ar�jl [ k, j@½a1� \ @½a2� \ . . . \ @½ar�jg [ k and j@½a1� \

@½a2� \ . . . \ @½ar�jm [ k in G.

Then the DTMS, DAMS and DFMS of the hyperedge E are respectively

lB00
k
ðEÞ ¼ k00

1
�k

k00
1

½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
,

gB00
k
ðEÞ ¼ k00

2
�k

k00
2

½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
and

mB00
k
ðEÞ ¼ k00

3
�k

k00
3

½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
, where

k001 ¼ j@½a1� \ @½a2� \ . . . \ @½ar�jl, k002 ¼ j@½a1� \ @½a2� \ . . . \ @½ar�jg and k003 ¼ j@½a1�\
@½a2� \ . . . \ @½ar�jm.

Next, we established the relations between PFCHs and PFNHs in the following theorems.

Theorem 6.7 Let G
!¼ ðV;A; B!Þ be a symmetric PFD without any loop. Then

CHk
ðG!Þ ¼ NHk

ðUðG!ÞÞ, where UðG!Þ is the underlying PFG of G
!
.

Proof Let G
!¼ ðV ;A; B!Þ be a PFD and the corresponding underlying PFG

UðGÞ ¼ ðV;A;BÞ.
Let CHk

ðG!Þ ¼ ðV;A;B0Þ and @Hk
ðUðGÞÞ ¼ ðV;A;B00Þ. The vertex sets of CHk

ðG!Þ and

123

Certain competition graphs based on picture fuzzy environment… 3159



@Hk
ðUðGÞÞ are same with the vertex set of G

!
. We have to prove that

lB0 ðfa1; a2; . . .; argÞ ¼ lB00 ðfa1; a2; . . .; argÞ, gB0 ðfa1; a2; . . .; argÞ ¼ gB00 ðfa1; a2; . . .; argÞ,
mB0 ðfa1; a2; . . .; argÞ ¼ mB00 ðfa1; a2; . . .; argÞ, 8 a1; a2; . . .; ar 2 V .

Case I: If lB0 ðfa1; a2; . . .; argÞ ¼ 0, gB0 ðfa1; a2; . . .; argÞ ¼ 0, mB0 ðfa1; a2; . . .; argÞ ¼ 0

in CHk
ðG!Þ, then there is no hyperedge in CHk

ðG!Þ. So, j@þða1Þ \ @þða2Þ\
. . . \ @þðarÞjl � k, j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjg � k, j@þða1Þ \ @þða2Þ \ . . .\
@þðarÞjm � k.

Since G
!

is symmetric, j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjl � k, j@ða1Þ \ @ða2Þ
\. . . \ @ðarÞjg � k, j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjm � k in U(G). Hence,

lB00 ðfa1; a2; . . .; argÞ ¼ 0, gB00 ðfa1; a2; . . .; argÞ ¼ 0, mB00 ðfa1; a2; . . .; argÞ ¼ 0 in

NHk
ðUðG!ÞÞ.
Case II: If j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ k, j@þða1Þ \ @þða2Þ \ . . .

\@þðarÞjg [ k, j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm [ k. Then lB0 ðfa1; a2; . . .; argÞ[ 0,

gB0 ðfa1; a2; . . .; argÞ[ 0, mB0 ðfa1; a2; . . .; argÞ[ 0 in CHk
ðG!Þ and there is an hyperedge

E ¼ fa1; a2; . . .; arg in CHk
ðG!Þ with DTMS, DAMS and DFMS are respectively

lB0 ðEÞ ¼ k0�k
k0 ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

gB0 ðEÞ ¼ k0�k
k0 ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
and

mB0 ðEÞ ¼ k0�k
k0 ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

where k0 ¼ j
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
j.

Since G
!

is symmetric j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjl [ k, j@ða1Þ \ @ða2Þ \ . . .\
@ðarÞjg [ k, j@ða1Þ \ @ða2Þ \ . . . \ @ðarÞjm [ k in UðGÞ. So,

lB00 ðEÞ ¼ k00�k
k00 ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl

�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
,

gB00 ðEÞ ¼ k00�k
k00 ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg

�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
and

mB00 ðEÞ ¼ k00�k
k00 ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm

�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
,

where k00 ¼ j
�
@ða1Þ \ @ða2Þ \ . . . \ @ðarÞ

�
j. Here, k0 ¼ k00 as G

!
is symmetric PFD.

Fig. 10 Example of a PFG, b PFONH and c PFCNH
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Thus, lB0 ðfa1; a2; . . .; argÞ ¼ lB00 ðfa1; a2; . . .; argÞ, gB0 ðfa1; a2; . . .; argÞ ¼
gB00 ðfa1; a2; . . .; argÞ and mB0 ðfa1; a2; . . .; argÞ ¼ mB00 ðfa1; a2; . . .; argÞ 8 a1; a2; . . .; ar 2 V .

h

Theorem 6.8 Let G
!¼ ðV;A; B!Þ be a PFD having loops at every vertex. Then

CHk
ðG!Þ ¼ @Hk

½UðG!Þ�, where UðG!Þ is the loop less underlying PFG of G
!
.

Proof Let UðGÞ ¼ ðV;A;BÞ be an underlying loop less PFG corresponding to a PFD

G
!¼ ðV;A; B!Þ. Let CHk

ðG!Þ ¼ ðV ;A;B0Þ and @Hk
½UðGÞ� ¼ ðV;A;B00Þ. The vertex sets of

CHk
ðG!Þ and @Hk

½UðGÞ� are same with the vertex set of G
!
. We have to prove that

lB0 ðfa1; a2; . . .; argÞ ¼ lB00 ðfa1; a2; . . .; argÞ, gB0 ðfa1; a2; . . .; argÞ ¼ gB00 ðfa1; a2; . . .; argÞ,
mB0 ðfa1; a2; . . .; argÞ ¼ mB00 ðfa1; a2; . . .; argÞ, 8 a1; a2; . . .; ar 2 V . Since G

!
has a loop at

each vertex, the PFON of every vertex contains the vertex itself.

Case I: If lB0 ðfa1; a2; . . .; argÞ ¼ 0, gB0 ðfa1; a2; . . .; argÞ ¼ 0, mB0 ðfa1; a2; . . .; argÞ ¼ 0

in CHk
ðG!Þ, then there is no hyperedge in CHk

ðG!Þ. So, j@þða1Þ\
@þða2Þ \ . . . \ @þðarÞjl � k, j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjg � k, j@þða1Þ \ @þða2Þ\
. . . \ @þðarÞjm � k.

Since G
!

is symmetric, j@½a1� \ @½a2� \ . . . \ @½ar�jl � k, j@½a1� \ @½a2�\
. . . \ @½ar�jg � k, j@½a1� \ @½a2� \ . . . \ @½ar�jm � k in U(G). Hence, lB00 ðfa1; a2;
. . .; argÞ ¼ 0, gB00 ðfa1; a2; . . .; argÞ ¼ 0, mB00 ðfa1; a2; . . .; argÞ ¼ 0 in NHk

½UðG!Þ�.
Case II: If j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjl [ k, j@þða1Þ \ @þða2Þ \ . . .

\@þðarÞjg [ k, j@þða1Þ \ @þða2Þ \ . . . \ @þðarÞjm [ k in UðGÞ. Then lB0 ðfa1; a2;
. . .; argÞ[ 0, gB0 ðfa1; a2; . . .; argÞ[ 0, mB0 ðfa1; a2; . . .; argÞ[ 0 in CHk

ðG!Þ and there is an

hyperedge E ¼ fa1; a2; . . .; arg in CHk
ðG!Þ with DTMS, DAMS and DFMS are respectively

lB0 ðEÞ ¼ k0�k
k0 ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

gB0 ðEÞ ¼ k0�k
k0 ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
and

mB0 ðEÞ ¼ k0�k
k0 ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm

�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
,

where k0 ¼ j
�
@þða1Þ \ @þða2Þ \ . . . \ @þðarÞ

�
j.

Since G
!

is symmetric and has a loop at every vertex, then

j@½a1� \ @½a2� \ . . . \ @½ar�jl [ k, j@½a1� \ @½a2� \ . . . \ @½ar�jg [ k, j@½a1� \ @½a2� \ . . . \
@½ar�jm [ k in UðGÞ. So,

lB00 ðEÞ ¼ k00�k
k00 ½lAða1Þ ^ lAða2Þ ^ � � � ^ lAðarÞ�hl

�
@½a1� \ @½a2� \ . . . \ @½ar�

�
,

gB00 ðEÞ ¼ k00�k
k00 ½gAða1Þ ^ gAða2Þ ^ � � � ^ gAðarÞ�hg

�
@½a1� \ @½a2� \ . . . \ @½ar�

�
and

mB00 ðEÞ ¼ k00�k
k00 ½mAða1Þ _ mAða2Þ _ � � � _ mAðarÞ�hm

�
@½a1� \ @½a2� \ . . . \ @½ar�

�
,

where k00 ¼ j
�
@½a1� \ @½a2� \ . . . \ @½ar�

�
j. Here, k0 ¼ k00 as G

!
is symmetric PFD.

Thus, lB0 ðfa1; a2; . . .; argÞ ¼ lB00 ðfa1; a2; . . .; argÞ, gB0 ðfa1; a2; . . .; argÞ ¼
gB00 ðfa1; a2; . . .; argÞ and mB0 ðfa1; a2; . . .; argÞ ¼ mB00 ðfa1; a2; . . .; argÞ 8 a1; a2; . . .; ar 2 V .

h
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7 Applications

7.1 An application of m-SPFCG in education system

7.1.1 Construction of model

The application of m-SPFCG is very useful in our real life. One of the application is in our

education system. Consider a PFD shown in Fig. 11 representing the competition between

government and non-government Primary Schools and also between Bengali Medium and

English Medium high Schools in India. Let us consider the academic institutions as ver-

tices of the digraph. Suppose in the Nursery Schools (NS), the degree of good infras-

tructure is 50 percent, indeterminacy of infrastructure is 10 percent and inadequate of

infrastructure is 25 percent, i.e., the DTMS, DAMS and DFMS of the infrastructure of

Nursery Schools is (0.5, 0.1, 0.25) and similarly for the other institutions. Initially, the

students started their education in Nursery Schools and they complete their child education

from either govt.(GPS) or non-govt. Primary Schools (NGPS). Then they clear school

education from either Bengali Medium (BMHS) or English Medium high Schools

(EMHS). After that they either admitted into General degree Colleges (GDC) or Engi-

neering Colleges (EC) or Medical Colleges (MC) and lastly admitted into their respective

Universities Institutions. The directed edges between institutions represents the rate of

selection of institutions by the students. Suppose the degree of choosing govt. Primary

School is 50 percent, indeterminacy of choosing is 15 percent and not choosing is 20

percent, i.e., the DTMS, DAMS and DFMS of choosing of the govt. Primary Schools is

(0.5, 0.15, 0.2) and similarly for the other institutions as shown in Fig. 11. It is seen that if

primary (or high) schools are removed from the education system, then higher education

will be highly effected and also nursery students will be deprived for their next educations.

Here, we evaluate the competition between institutions with the help of 2-SPFCG.

7.1.2 Decision making

We have, @þ
2 (GPS)\ @þ

2 (NGPS)=f
�
GDC; ð0:4; 0:05; 0:2Þ

�
;
�
EC; ð0:3; 0:05; 0:2Þ

�
;�

MC; ð0:2; 0:05; 0:2Þ
�
g, @þ

2 (BMHS)\ @þ
2 (EMHS)=f

�
Univ; ð0:3; 0:1; 0:25Þ

�
;
�
WBUHS;

ð0:2; 0:05; 0:2Þ
�
g (see Table 4). Thus there is an edge between GPS and NGPS; BMHS and

EMHS in the 2-SPFCG, which indicates the 2-step competition in PFCG. The DTMS,

DAMS and DFMS of this edges are respectively (0.26, 0.0075, 0.05) and

(0.18, 0.01, 0.04) in Fig. 12. Hence there is a 2-step competition between GPS and NGPS,

BMHS and EMHS on the basis of infrastructure in our education system.

7.2 An application of m-SPFCG in ecosystem

7.2.1 Construction of model

The m-SPFCG is also applicable in our ecosystem. We consider a ecosystem with eight

species, all of these are taken as vertices of the digraph as shown in Fig. 13a. Here fox eats

goat and bird, goat eats grain and grass, owl eats bird and mouse, bird eats grain and

grasshopper, mouse eats grain, grasshopper eats grain and grass. Suppose the degree of

existence in the environment of the species fox is 40 percent, indeterminacy of existence is
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5 percent and non existence is 30 percent, i.e., the DTMS, DAMS and DFMS of the species

fox is (0.4, 0.05, 0.3). Similarly we can consider for the other species. The DTMS of each

directed edge between species and feed represents the likeliness to eat, DAMS represents

indeterminacy of likeliness to eat and DFMS represents unlikeliness to eat of feed for

predators (see Fig. 13a). It is seen that if goat and bird are removed from this food cycle,

then fox must be extinct. As a result, the count of grass, grain and grasshopper will be

increased. Thus, we evaluate the food cycle with the help of 2-SPFCG.

7.2.2 Decision making

We have, @þðfoxÞ \ @þðowlÞ=f
�
grain; ð0:35; 0:05; 0:25Þ

�
;
�
grasshopper; ð0:35; 0:05;

0:2Þ
�
g, @þðfoxÞ \ @þðbirdÞ=f

�
grass; ð0:4; 0:05; 0:2Þ

�
;
�
grain; ð0:4; 0:05; 0:2Þ

�
g, @þðowlÞ\

@þðbirdÞ=f
�
grain; ð0:35; 0:05; 0:2Þ

�
g (see Table 5). Therefore, there is an edge between

fox and owl; fox and bird; owl and bird in the 2-SPFCG. This indicates there is a 2-step

competition in the PFCG. The DTMS, DAMS and DFMS of this edges are respectively

(0.14, 0.0025, 0.06), (0.16, 0.0025, 0.06) and (0.35, 0.005, 0.05) in Fig. 13b. Hence there

is a 2-step competition between Fox and owl, fox and bird, owl and bird on the basis of

feeds in ecosystem.

Fig. 11 PFD of the institutions on the basis of infrastructure
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7.3 An application of PFCH in business market

7.3.1 Construction of model

The concept of PFCHs can be used successfully in different domains of applications. One

of its application is in business market. Consider a PFD as shown in Fig. 14a representing

the competition among seven brand automobile companies—Tata Motors (C1), Hero Moto

Corp. Ltd (C2), Bajaj Auto Ltd (C3), Honda Moto Co. Ltd (C4), Tayota Motor Corp. (C5),
Maruti Suzuki (C6), Mahindra Ltd (C7) in the global industry. Due to globalization,

companies strive to manufacture their products with some facilities such as unique designs

using modern technology, sophisticated electronic functions, safety features, comfort, low

fuel consumption and lower prices. In the business market there always arise a competitive

situation as several companies manufacture identical products. So all companies want to

attract consumer’s attention with their product facilities. Let us consider all companies as

Fig. 12 Corresponding 2-SPFCG

Fig. 13 a PFD of ecosystem and b Corresponding PFCG
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vertices of the digraph. Suppose the degree of product of C1 maintaining above facilities is

80 percent, indeterminacy of facilities is 10 percent and less facilities is 10 percent, i.e., the

DTMS, DAMS and DFMS of C1 is (0.8, 0.1, 0.1). Similarly we can consider for the other

vertices. The directed edges ðC1;C2Þ
�����!

indicates that the products of C1 have extra facilities

than C2. Suppose the degree of products of C1 having more facilities is 70%, indeter-

minacy of facilities is 10 percent and less facilities is 10 percent than the products of C2,

i.e., the DTMS, DAMS and DFMS of this edge is (0.7, 0.1, 0.1) and similarly for the other

edges as shown in Fig. 14a. Here, we evaluate the competition among companies with the

help of PFCH.

7.3.2 Decision making

We have, @þ(C1)\ @þ(C2)\ @þ(C4)=f
�
C3; ð0:3; 0:1; 0:25Þ

�
g, @þ(C1)\ @þ(C7)=f

�
C2;

ð0:6; 0:1; 0:1Þ
�
g and @þ(C5)\ @þ(C6)=f

�
C1; ð0:5; 0:1; 0:1Þ

�
g (see Table 6). Therefore,

hyperedges of the PFCH are E1 ¼ fC5;C6g, E2 ¼ fC1;C7g and E3 ¼ fC1;C2;C4g. The
DTMS, DAMS and DFMS of E1, E2 and E3 are respectively (0.25, 0.01, 0.06),

(0.36, 0.01, 0.02) and (0.21, 0.01, 0.05) showing in Fig. 14b. Hence there are competitions

between pair of companies (C5, C6), (C1, C7) and also competition among group of

companies (C1, C2, C4) on the basis of products with facilities in business market.

7.4 An application of PFCH in job competition

7.4.1 Construction of model

Let us consider a PFD (see Fig. 15a) representing the competition among applicants for a

railway-job. Let the set of five applicants fA1;A2;A3;A4;A5g applying against the set of

four job-vacancies fStationManagerðJ1Þ;DriverðJ2Þ; TechnicianðJ3Þ; TTEðJ4Þg. All of

these are aching as vertices of the digraph. Suppose the DTMS, DAMS and DFMS of each

applicant represents his/her degree of good qualification, indeterminacy of qualification

and poor qualification, respectively. Let the degree of good qualification of A1 is 60

percent, indeterminacy of qualification is 20 percent and poor qualification is 10 percent,

Table 5 2-step picture fuzzy out neighborhood of Fig. 13

v 2 V @þ
2 ðvÞ

Fox f
�
grass,(0.4,0.05,0.2)

�
;
�
grain,(0.4,0.05,0.2)

�
;
�
grain,(0.4,0.05,0.1)

�
;

�
grasshopper,(0.4,0.05,0.15)

�
g

Owl f
�
grain,(0.4,0.05,0.25)

�
;
�
grain,(0.35,0.05,0.2)

�
;
�
grasshopper,(0.35,0.05,0.2)

�
g

Bird f
�
grass,(0.5,0.05,0.15)

�
;
�
grain,(0.5,0.05,0.15)

�
g

Goat ;
Mouse ;
Grasshopper ;
Grain ;
Grass ;

123

Certain competition graphs based on picture fuzzy environment… 3167



i.e., the DTMS, DAMS and DFMS of A1 is (0.6, 0.2, 0.1) and similarly for the other

applicants. Again, suppose the DTMS, DAMS and DFMS of each vacancy represents its

degree of strong criteria, indeterminacy of criteria and weak criteria, respectively. Let the

degree of strong criteria for J1 is 70 percent, indeterminacy of the criteria is 10 percent and

weak criteria is 20 percent, i.e., the DTMS, DAMS and DFMS of J1 is (0.7, 0.1, 0.2) and
similarly for the other vacancies. The DTMS, DAMS and DFMS of each directed edge

between an applicant and vacancy represents the candidate’s eligibility, indeterminacy of

eligibility and non-eligibility for a particular vacancy as shown in Fig. 15a.

7.4.2 Decision making

Here @þðA1Þ \ @þðA2Þ=f
�
J4; ð0:5; 0:1; 0:3Þ

�
g, @þðA1Þ \ @þðA3Þ \ @þðA5Þ= f

�
J2; ð0:4;

0:1; 0:25Þ
�
g, @þðA3Þ \ @þðA4Þ \ @þðA5Þ=f

�
J1; ð0:5; 0:1; 0:2Þ

�
g (see Table 7). Therefore,

hyperedges of the PFCH are E1 ¼ fA1;A2g, E2 ¼ fA1;A3;A5g and E3 ¼ fA3;A4;A5g. The
DTMS, DAMS and DFMS of E1, E2 and E3 are respectively (0.25, 0.02, 0.09),

(0.24, 0.01, 0.05) and (0.3, 0.01, 0.04) showing in Fig. 15b. Hence there are competitions

among the applicants ðA1;A3;A5Þ, ðA3;A4;A5Þ and ðA1;A2Þ on the basis of their eligibility

for the vacancies.

Fig. 14 a PFD in business market and b corresponding PFCH

Table 6 Picture fuzzy out
neighborhood of Fig. 14

v 2 V @þðvÞ

C1 f
�
C2,(0.7,0.1,0.1)

�
;
�
C3,(0.3,0.1,0.25)

�
;
�
C4,(0.6,0.1,0.2)

�
g

C2 f
�
C3,(0.3,0.1,0.2)

�
g

C3 ;
C4 f

�
C3,(0.3,0.1,0.25)

�
;
�
C5,(0.5,0.1,0.2)

�
g

C5 f
�
C1,(0.5,0.1,0.2)

�
;
�
C6,(0.5,0.1,0.3)

�
g

C6 f
�
C1,(0.6,0.1,0.1)

�
;
�
C7,(0.6,0.1,0.3)

�
g

C7 f
�
C2,(0.6,0.1,0.1)

�
g
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8 Comparative study with existing papers

In existing papers on fuzzy CGs, all information are collected in fuzzy sense. But, when

information are in picture fuzzy sense, the existing models are not suitable to handle such

information. In these scenario, our currently developed models play an important role.

Samanta and Pal (2013), Samanta et al. (2014, 2015), and Samanta and Sarkar (2018)

studied many variations of CGs with fuzzy information for the first time. Sahoo and Pal

(2015) proposed a model by considering each vertex and edge with IF information and

determined competition among the species in food cycle. But, all problems of feed-

predator can not be modeled using these CGs as the measurement of competitions was

taken as IF sense in that paper. In IFSs, the membership and non-membership values are

considered only. So these models are not applicable when the model is considered in other

environment like in picture fuzzy environment. In our present work, we consider another

parameter called neutral membership value and it will be effectively useful to model many

more real-world problems. So, our study is the extension of the study of the above works.

9 Limitations of m-SPFCG model

Some limitations of this study are listed below:

• m-SPFCG models are only applicable to those problems with picture fuzzy information.

• m-SPFCG models do not demonstrate all the competitions of real-world problems.

• In a PFD, if the number of vertices is less than the value of m, then we can not find any

competition between objects through m-SPFCG models.

• m-SPFCG models are unable to find any group-wise competition among three or more

objects.

Fig. 15 a PFD of job competition and b corresponding PFCH
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10 Conclusion

In this study, the powerful tool of fuzziness is applied to generalize the notion of CGs

under the picture fuzzy environment. Our proposed picture fuzzy models provided more

legibility, flexibility and suitability to the system as compared with the models in other

fields. The methods of construction of several types of PFCGs, and PFHs using PFON and

PFCN are studied here. A formula is suggested for the strength of feeds and established

few results over strong feeds. Also strong relations between PFkCHs and PFkNHs are

established. This study will help to measure the strength of competitions in real-world

problems. Our proposed models have been applied in real field competitions for repre-

sentation of fuzziness in different domains including identification of species-feed relations

in ecosystem, competitions between institutions in education system, competition in

business market and job competition between applicants, which motivates the idea intro-

duced in this study. In future, we will extend this work to (1) Picture fuzzy tolerance

competition graphs (2) m-Step Picture fuzzy tolerance competition graphs and (3) Pic-

ture fuzzy tolerance competition hypergraphs, etc.
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