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Abstract
The simulation-driven metaheuristic algorithms have been successful in solving numerous 
problems compared to their deterministic counterparts. Despite this advantage, the stochas-
tic nature of such algorithms resulted in a spectrum of solutions by a certain number of 
trials that may lead to the uncertainty of quality solutions. Therefore, it is of utmost impor-
tance to use a correct tool for measuring the performance of the diverse set of metaheuristic 
algorithms to derive an appropriate judgment on the superiority of the algorithms and also 
to validate the claims raised by researchers for their specific objectives. The performance 
of a randomized metaheuristic algorithm can be divided into efficiency and effectiveness 
measures. The efficiency relates to the algorithm’s speed of finding accurate solutions, 
convergence, and computation. On the other hand, effectiveness relates to the algorithm’s 
capability of finding quality solutions. Both scopes are crucial for continuous and discrete 
problems either in single- or multi-objectives. Each problem type has different formulation 
and methods of measurement within the scope of efficiency and effectiveness performance. 
One of the most decisive verdicts for the effectiveness measure is the statistical analysis 
that depends on the data distribution and appropriate tool for correct judgments.
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1  Introduction

The family of stochastic search and optimization algorithms has a unique characteristic 
of randomness, where an algorithm executes different paths towards the best solution by 
the same input. This attributed the applicability of the algorithms to a wide range of opti-
mization problems. The stochastic algorithms can be further divided into two categories: 
heuristic and metaheuristic algorithms. Both methods are based on the same concept, 
which is to find the solution by some kind of guided trial and error (Yang 2010). Heu-
ristics are mostly problem-dependent and for various problems, different heuristics can 
be defined. A metaheuristic method, on the other hand, makes almost no prior assump-
tion about the problem, can integrate several heuristics inside, and is usually described in 
terms of a set (commonly known as a population) of candidate solutions to the problem. 
Thus, metaheuristics can be applied to a wide range of problems that they treat as black-
boxes. Some examples of heuristic algorithms are nearest neighbor search and tabu search, 
whereas some well-known metaheuristic algorithms are Particle Swarm Optimization 
(PSO), Ant Colony Optimization (ACO), Cuckoo Search (CS), and Harmony Search (HS) 
algorithms. The metaheuristic algorithms employ certain trade-offs between randomiza-
tion and local search. Randomization offers a good alternative for the algorithm to escape 
from local optima and explore the search on the global scale, whereas the local search 
mechanism exploits the search towards finer search regions zeroing on an optimum. These 
properties are simplified in a definition of exploration (diversification of the search over a 
large search volume) and exploitation (intensification of the search in a smaller volume) 
mechanisms that favor the metaheuristic algorithms to be suited for most of the global 
optimization problems. However, due to their stochastic nature, metaheuristic algorithms 
do not guarantee the best solution (global optima in terms of optimization problems) and 
every trial may result in a spectrum of approximate or near-optimal solutions. A good 
metaheuristic algorithm is expected to find an acceptably good quality solution within a 
given computational budget on a wide spectrum of problems.

The quality of each metaheuristic algorithm is measured with criteria that reflect the 
exploration and exploitation abilities in finding a global optimum. There are numerous 
measurements of the algorithmic performance for metaheuristics in diverse optimiza-
tion scenarios as can be found in the literature. Some pieces of literature such as Rardin 
and Uzsoy (2018), Ivkovic et  al. (2016) and Memari et  al. (2017) divided the assess-
ments into two main concepts which are the solution quality and computation speed. 
Others include robustness as another criterion (Heliodore et al. 2017; Hamacher 2014). 
Despite these concepts, the performance measure of a metaheuristic algorithm can be 
generalized into two broad categories: efficiency and effectiveness measures. Several 
works also generalized the same concepts (Bartz-Beielstein 2005; Yaghini et al. 2011). 
The efficiency is referred to as the number of resources required by the algorithm to 
solve any specific problem. Some algorithms are more efficient than others for a specific 
problem. The efficiency is generally related to time and space, such as speed and the 
rate of convergence towards a global optimum. As a general example, two algorithms 
(algorithms A and B) performed equally well in terms of the final solution quality. How-
ever, algorithm A has a faster execution time due to a lesser amount of computations 
involved, compared to algorithm B that has more code segments, maybe with nested 
looping. Thus, in the perspective of algorithm complexity, algorithm A has a better per-
formance compared to B. On the other hand, the effectiveness is a measure that relates 
to the solutions returned by an algorithm. The effectiveness reveals the capability of the 
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stochastic algorithm within a given number of trials such as the number of optimal solu-
tions, count of global or local optima, and the comparative statistical analysis to judge 
the significance of the results. In essence, the existing literature related to the quality of 
a metaheuristic algorithm performed various analyses to compare and validate their per-
formance within the scope of efficiency and effectiveness. Nonetheless, numerous dis-
cussions on review papers related to performance metrics are mostly problem-specific 
and limited to specific criteria. Some of the review papers are briefly summarized in 
Table 1.

In addition to the reviews on specific problem type as in Table 1, there also exist sev-
eral discussions and review papers related to the statistical evaluation on the performance 
analysis. Each paper specifies the analytical methodology and some of these proposed new 
approaches in comparison to the alternatives as shown in the following Table 2. 

Despite each scope proposed by others, this paper covers and extends the review 
on important performance measures for each problem type that includes single- and 
multi-objective as well as continuous and discrete optimization problems. Furthermore, 
this paper also discusses the scope of applications as summarized in Table 1 and other 
recent problems discussed in the present literature on single-objective problems con-
cerning the effectiveness and efficiency point of view. For the multi-objective problems, 
effectiveness and efficiency are described in more general terms. To ensure significant 
and qualitative metrics for each problem type, comprehensive surveys from reputed ven-
ues and well-cited publications are carried out, which include various journal articles, 
book chapters, and conferences. The reviewed publications have been selected mostly 
based on their effectiveness in the relevant areas.

This paper is further organized as follows: Sect.  2 discusses the scope of a single 
objective for continuous and discrete problems. Section  3 discusses the performance 
measures for multi-objective problems, followed by future challenges of performance 
measures in Sects. 4 and 5 with the conclusion.

2 � Single‑objective optimization problems

In essence, the goal of single-objective optimization is to find the best solution that 
corresponds to either minimum or maximum value of a single objective function. To 
date, numerous measures on single-objective problems for both continuous and discrete 
search spaces have been proposed in the literature. This section discusses the efficiency 
and effectiveness measures for both domains since some of the measures apply to both. 
Any specific metric related to only continuous or discrete problems is duly remarked 
in the section or discussed in individual sub-sections. The review for continuous prob-
lems is usually related to the constrained and unconstrained (bound-constrained) func-
tion optimization. In discrete domain, most of the algorithm comparisons are applied for 
the combinatorial problems that include such as the Assignment Problem (AP), Quad-
ratic Assignment Problem (QAP), Travelling Salesman Problem (TSP), Travelling Thief 
Problem (TTP) (Bonyandi et al. 2013), Knapsack Problem (KP), Bin-Packing Problem 
(BP), Graph Coloring Problem, Scheduling Problem, and Orienteering Problem (OP). 
The performance measure for these problems may be similar in certain aspects such as 
the time measurement and convergence. Other metrics of relative performance may dif-
fer due to the nature of the objective function of each problem.



2326	 A. H. Halim et al.

1 3

Ta
bl

e 
1  

S
am

pl
es

 o
f p

er
fo

rm
an

ce
 re

vi
ew

 fr
om

 o
th

er
 li

te
ra

tu
re

Re
fe

re
nc

es
Sc

op
e 

of
 re

vi
ew

B
rie

f d
es

cr
ip

tio
n

H
el

lw
ig

 a
nd

 B
ey

er
 (2

01
9)

C
on

str
ai

ne
d 

op
tim

iz
at

io
n 

pr
ob

le
m

Re
vi

ew
 o

n 
th

e 
ex

pe
rim

en
ta

l p
rin

ci
pl

es
 a

nd
 p

er
fo

rm
an

ce
. Q

ua
lit

y 
in

di
ca

to
rs

 a
re

 c
at

eg
or

iz
ed

 in
to

 e
ffi

ci
en

cy
, 

eff
ec

tiv
en

es
s, 

an
d 

va
ria

bi
lit

y 
of

 so
lu

tio
ns

W
hi

tle
y 

et
 a

l. 
(1

99
6)

U
nc

on
str

ai
ne

d 
op

tim
iz

at
io

n
Re

vi
ew

ed
 a

nd
 p

ro
po

se
d 

m
et

ho
do

lo
gi

es
 fo

r c
om

pa
rin

g 
th

e 
eff

ec
tiv

en
es

s o
f e

vo
lu

tio
na

ry
 a

lg
or

ith
m

s o
n 

te
st 

fu
nc

tio
n 

op
tim

iz
at

io
n

N
gu

ye
n 

et
 a

l. 
(2

01
2)

D
yn

am
ic

 o
pt

im
iz

at
io

n 
pr

ob
le

m
C

la
ss

ifi
es

 th
e 

pe
rfo

rm
an

ce
 m

ea
su

re
s i

nt
o 

op
tim

al
ity

-b
as

ed
 (r

ef
er

re
d 

to
 a

s t
he

 a
lg

or
ith

m
’s

 a
bi

lit
y 

to
 fi

nd
 th

e 
cl

os
es

t o
pt

im
um

 so
lu

tio
n)

 a
nd

 b
eh

av
io

r-b
as

ed
 (r

ef
er

re
d 

to
 a

s t
he

 p
er

fo
rm

an
ce

 o
f a

lg
or

ith
m

 b
eh

av
io

r t
ha

t 
is

 u
se

fu
l t

o 
th

e 
dy

na
m

ic
 e

nv
iro

nm
en

ts
)

G
un

an
ta

ra
 (2

01
8)

M
ul

ti-
ob

je
ct

iv
e 

O
pt

im
iz

at
io

n 
Pr

ob
le

m
s (

M
O

Ps
)

Re
vi

ew
ed

 th
e 

M
O

P 
pe

rfo
rm

an
ce

 m
ea

su
re

s b
as

ed
 o

n 
Pa

re
to

 o
pt

im
al

 fr
on

t a
nd

 sc
al

ar
iz

at
io

n 
m

et
ho

d

A
ud

et
 e

t a
l. 

(2
01

8)
A

 c
om

pr
eh

en
si

ve
 re

vi
ew

 o
f 5

7 
M

O
P 

pe
rfo

rm
an

ce
 in

di
ca

to
rs

 a
nd

 p
ar

tit
io

ne
d 

in
to

 c
ar

di
na

lit
y,

 c
on

ve
rg

en
ce

, 
di

str
ib

ut
io

n,
 a

nd
 sp

re
ad

R
iq

ue
lm

e 
et

 a
l. 

(2
01

5)
A

 b
rie

f r
ev

ie
w

 o
f t

he
 a

dv
an

ta
ge

s/
di

sa
dv

an
ta

ge
s o

f 5
4 

pe
rfo

rm
an

ce
 m

et
ric

s r
el

at
ed

 to
 M

O
Ps

. T
he

 m
et

ric
s 

ar
e 

su
m

m
ar

iz
ed

 in
to

 tw
o 

gr
ou

ps
. T

he
 fi

rs
t g

ro
up

 is
 re

la
te

d 
to

 c
ar

di
na

lit
y,

 a
cc

ur
ac

y,
 a

nd
 d

iv
er

si
ty

; w
he

re
as

 
th

e 
se

co
nd

 g
ro

up
 is

 b
as

ed
 o

n 
th

e 
ap

pr
ox

im
at

io
n 

se
t: 

ei
th

er
 u

ni
ta

ry
 o

r b
in

ar
y 

m
et

ric
s. 

Th
e 

pa
pe

r a
ls

o 
ra

nk
s t

he
 1

0 
m

os
t u

se
d 

m
et

ric
s b

as
ed

 o
n 

th
e 

nu
m

be
r o

f c
ita

tio
ns

 fr
om

 2
00

5 
to

 2
01

3
O

ka
be

 e
t a

l. 
(2

00
3)

O
ve

rv
ie

w
 o

f M
O

P 
m

et
ric

s w
ith

 a
dv

an
ta

ge
s/

di
sa

dv
an

ta
ge

s f
or

 c
ar

di
na

lit
y-

ba
se

d,
 d

ist
an

ce
-b

as
ed

 a
cc

ur
ac

y,
 

vo
lu

m
e-

ba
se

d 
ac

cu
ra

cy
, d

ist
rib

ut
io

n,
 a

nd
 sp

re
ad

. T
he

 p
ap

er
 h

ig
hl

ig
ht

ed
 n

ot
 to

 re
ly

 o
n 

a 
si

ng
le

 m
et

ric
 

fo
r c

on
cl

us
io

ns
 a

nd
 a

ls
o 

pr
op

os
ed

 se
ve

ra
l m

et
ric

s t
ha

t c
an

 b
e 

ap
pl

ie
d 

fo
r t

he
 p

ro
bl

em
 o

f m
or

e 
th

an
 th

re
e 

ob
je

ct
iv

es
M

irj
al

ili
 a

nd
 L

ew
is

 (2
01

5)
Ro

bu
st 

M
O

P
Re

vi
ew

 se
ve

ra
l M

O
P 

m
et

ric
s a

nd
 p

ro
po

se
d 

m
et

ric
s r

el
at

ed
 to

 u
nc

er
ta

in
tie

s t
ha

t d
es

cr
ib

e 
co

nv
er

ge
nc

e,
 

un
ifo

rm
ity

, a
nd

 n
um

be
r o

f o
bt

ai
ne

d 
ro

bu
st 

as
 w

el
l a

s n
on

-ro
bu

st 
Pa

re
to

 o
pt

im
al

 so
lu

tio
ns

Y
u 

et
 a

l. 
(2

01
8)

En
se

m
bl

e 
m

et
ho

ds
 o

n 
M

O
P

Re
vi

ew
 fi

ve
 p

op
ul

ar
 M

O
P 

m
et

ric
s a

nd
 tw

o 
en

se
m

bl
e 

m
et

ho
ds

 fo
r a

lg
or

ith
m

 ra
nk

in
g



2327Performance assessment of the metaheuristic optimization…

1 3

Ta
bl

e 
2  

S
am

pl
es

 o
f s

ta
tis

tic
al

 m
et

ho
ds

 fo
r a

lg
or

ith
m

 e
va

lu
at

io
n 

fro
m

 o
th

er
 li

te
ra

tu
re

Re
fe

re
nc

es
Sc

op
e 

of
 re

vi
ew

B
rie

f d
es

cr
ip

tio
n

C
hi

ar
an

di
ni

 e
t a

l. 
(2

00
7)

St
at

ist
ic

al
 e

va
lu

at
io

n 
as

 p
er

fo
rm

an
ce

 m
et

ric
s

Re
vi

ew
 d

iff
er

en
t s

ce
na

rio
s o

f m
et

ah
eu

ris
tic

s a
ss

es
sm

en
t a

nd
 fu

rth
er

 d
iv

id
es

 st
at

ist
ic

al
 a

na
ly

si
s 

in
to

 tw
o 

m
od

el
s:

 th
e 

U
ni

va
ria

te
 m

od
el

 th
at

 c
on

ce
rn

s o
n 

ei
th

er
 so

lu
tio

n-
co

st 
or

 ru
n-

tim
e 

an
al

y-
si

s, 
an

d 
th

e 
m

ul
tiv

ar
ia

te
 m

od
el

 th
at

 c
on

ce
rn

s b
ot

h 
so

lu
tio

n-
co

st 
an

d 
ru

n-
tim

e 
m

ea
su

re
s. 

Th
e 

pa
pe

r d
is

cu
ss

es
 a

 d
et

ai
le

d 
de

sc
rip

tio
n 

of
 th

e 
cu

m
ul

at
iv

e 
di

str
ib

ut
io

n 
an

d 
st

at
ist

ic
al

 c
om

pa
ris

on
 

te
st

B
ei

ra
nv

an
d 

et
 a

l. 
(2

01
7)

Ev
al

ua
tio

n 
an

d 
re

po
rti

ng
 m

et
ho

d 
fo

r a
lg

o-
rit

hm
 c

om
pa

ris
on

Re
vi

ew
 th

e 
pr

ac
tic

al
 m

et
ho

ds
 o

f r
ep

or
tin

g 
th

e 
al

go
rit

hm
 re

su
lts

 in
 ta

bu
la

r, 
gr

ap
hi

ca
l, 

an
d 

pr
ofi

le
 

m
ea

su
re

s. 
Th

re
e 

ty
pe

s o
f p

ro
fil

es
 a

re
 d

is
cu

ss
ed

 in
cl

ud
e 

th
at

 p
er

fo
rm

an
ce

 p
ro

fil
e,

 a
cc

ur
ac

y 
pr

ofi
le

, a
nd

 d
at

a 
pr

ofi
le

. T
he

 p
ap

er
 h

ig
hl

ig
ht

s t
he

 su
ita

bi
lit

y 
as

 w
el

l a
s t

he
 a

dv
an

ta
ge

s/
di

sa
dv

an
-

ta
ge

s o
f e

ac
h 

m
et

ho
d

C
or

an
i a

nd
 B

en
av

ol
i (

20
15

)
B

ay
es

ia
n 

te
st

Th
e 

pa
pe

r r
ev

ie
w

 se
ve

ra
l f

re
qu

en
tis

t a
nd

 B
ay

es
ia

n 
in

fe
re

nt
ia

l t
es

t f
or

 th
e 

ac
cu

ra
cy

 o
f t

w
o 

co
m

pe
t-

in
g 

al
go

rit
hm

s. 
Th

e 
sc

op
e 

of
 th

e 
pa

pe
r i

nc
lu

de
s s

in
gl

e-
 a

nd
 m

ul
tip

le
 d

at
a 

se
ts

. A
m

on
g 

th
e 

di
sc

us
se

d 
te

sts
 a

re
 th

e 
t-t

es
t, 

co
rr

el
at

ed
 t-

te
st,

 si
gn

ed
-r

an
k 

te
st,

 B
ay

es
ia

n 
si

gn
ed

-r
an

k 
te

st,
 a

nd
 

Po
is

so
n-

bi
no

m
ia

l t
es

t. 
Th

e 
pa

pe
r h

ig
hl

ig
ht

ed
 li

m
ita

tio
ns

 e
nc

ou
nt

er
ed

 b
y 

ea
ch

 te
st 

an
d 

fu
rth

er
 

in
tro

du
ce

d 
co

rr
el

at
ed

 B
ay

es
ia

n 
t-t

es
t

C
al

vo
 e

t a
l. 

(2
01

9)
Th

e 
pa

pe
r r

ev
ie

w
 W

ilc
ox

on
-M

an
n–

W
hi

tn
ey

 te
st 

va
ria

nt
s a

nd
 c

om
pa

ris
on

 w
ith

 B
ay

es
ia

n 
co

un
-

te
rp

ar
ts

. T
he

 c
om

pa
ris

on
 is

 fu
rth

er
 a

na
ly

ze
d 

us
in

g 
ev

ol
ut

io
na

ry
 a

lg
or

ith
m

s o
ve

r a
 se

t o
f 2

3 
di

sc
re

te
 o

pt
im

iz
at

io
n 

pr
ob

le
m

s i
n 

se
ve

ra
l d

im
en

si
on

s



2328	 A. H. Halim et al.

1 3

2.1 � Efficiency measure

The efficiency measure is related to the algorithm’s response towards finding the optimal 
solution. It is heavily related to the computational speed, rate of convergence, and the time to 
find accepted optimal solutions. Rardin and Uzsoy (2018) highlighted that this criterion has 
attracted more attention in the literature than the quality of the solution. This has also driven 
more concerns in the field of parallel metaheuristic as the technology of parallel computing 
advanced (Nesmachnow 2014). The typical measurement of algorithmic efficiency is the 
graph representation of fitness convergence. Some other methods being used in the literature 
include the convergence rate (Senning 2015; Dhivyaprabha et al. 2018; Hamacher 2007; Paul 
et al. 2015; He 2016), algorithm complexity (Aspnes 2017) and several statistical measure-
ments, see for example, from Chiarandini et al. (2007), Hoos (1998), Ribeiro et al. (2009), 
Hansen et al. (2016) and Derrac et al. (2014). In what follows, we discuss some basic meas-
ures related to the efficiency of the metaheuristic algorithms.

2.1.1 � Rate of convergence

The rate of convergence is a measure of how fast the algorithm converges towards optimum 
per iteration or sequence. Some of the theoretical studies on convergence of the stochastic 
algorithms are based on the Markov chain process (Yang 2011) by estimating the eigenvalues 
of the state transition matrix or specifically the second largest eigenvalues of the matrix. None-
theless, this method is complicated and difficult to estimate (Ming et al. 2006; Suzuki 1995). 
There is another method of evaluating the convergence, which is using an iterative function. 
In general, the function is equivalent to the rate of fitness change as expressed below (Senning 
2015; Dhivyaprabha et al. 2018):

with fopt as the optimum fitness value, fi as the best value at ith iteration or step of function 
evaluation, and fi−1 as the best value at previous ith iteration or step of function evalua-
tion. Equation (1) is a basic representation of the convergence rate. The convergence rate 
is applicable for both continuous and discrete domains. Based on the review from numer-
ous literature, there are mainly four representations of convergence pattern for test function 
optimization as summarized in Table 3.

The first metric is the fitness convergence that refers to the dynamic change of fitness value 
concerning the steps. The convergence is usually represented as a graph showing the variation 
of fitness/cost value with either time unit, the number of iterations, or function evaluations 
(denoted as FEVs). This method shows straightforward information on the algorithm perfor-
mance and most literature added this as one of their performance indicators. Nonetheless, it 
is limited to the scale of a feasible solution to the problem, such as towards 0 for fopt = 0 , or 
towards − 1 for fopt = −1 . An example of fitness convergence is in Fig. 1. For an unknown 
optimum value, which is usually true for practical cases, the convergence rate is characterized 
by the ratios of consecutive errors (Senning 2015) as follows:

(1)Conv.rate =

|||fopt − fi
|||

|||fopt − fi−1
|||
,

(2)Conv.rate unknown optimum =
||fi+1 − fi

||
||fi − fi−1

||
,
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with fi+1, fi, and fi−1 as the fitness of the next, current, and previous ith iteration. The sec-
ond measure is the convergence progressive rate that is equivalent to the absolute differ-
ence |||fi − fopt

||| as implemented by Liu et al. (2017a). Measurement without known fopt can 
be expressed with ||fi − fi−1

|| that represents the relative change of error with respect to the 
iterations or FEVs. This method is suitable for dynamic optimization problems as the 
objective changes over time. An example of such an application is in De Sousa Santos et al. 
(2019) that used this metric as a convergence in the stopping criterion. The third measure is 
the logarithmic convergence rate (Salomon 1998; Mortazavi et al. 2019) that is defined by 
log

|||fi − fopt
||| . The logarithmic convergence measures the dynamic fitness change throughout 

the iteration (He and Lin 2016). The curves of absolute and logarithmic convergence are 
depicted in Fig. 1. The figure compares convergence rate for Accelerated Particle Swarm 
Optimization (APSO) (Yang et  al. 2011), Crow Search Algorithm (CSA) (Askarzadeh 
2016), and Gravitational Search Algorithm (GSA) (Rashedi et al. 2009). As observed in 
the figure, the logarithmic convergence magnifies the absolute convergence pattern. As 
observed for CSA and GSA, both algorithms converged towards an optimum solution 
before 30th FEVs. However, the logarithmic convergence magnifies the pattern and reveals 
that GSA converged to its optimum solution on 86th FEVs, whereas CSA is still fine-tun-
ing its convergence in 100th FEVs. The logarithmic convergence is also proposed by IEEE 
CEC (Liang et al. 2006) as a guideline for optimization algorithm competition by using the 
run-length distribution of log

(
f (x) − fopt

)
 concerning FEVs. For an unknown global opti-

mum, the global optimum fopt is replaced with the best of the run error (Das 2018).
The fourth type of convergence representation is the average convergence rate that 

specifically measures the rate of fitness change as proposed by He and Lin (2016). 
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gence based on relative approximation error (RAE) (lower)
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The formulation is a geometric rate of fitness change between sequences of fi to fopt as 
defined in Eq. (3):

where f0 and f1 is the initial fitness and fitness by i = 1 respectively. The convergence rate 
R(i) = 1 if fi = fopt . This method was also implemented by Dhivyaprabha et  al. (2018). 
An important point needs to be highlighted considering the observations in some papers 
related to convergence curve comparison. Usually, the convergence curves of a specific 
problem with n algorithms are compared and summarized in one chart. However, if the 
experiment is carried out with a huge number of FEVs or iterations, the presentation may 
look tedious and difficult to interpret. For this reason, a representable chart with a shorter 
number of evaluations or a zoomed version of the convergence curve is more appropri-
ate. The objective is to compare and deduce the convergence trend of each algorithm. 
This shorter version chart can be attached at the side of the convergence with full FEVs. 
This applies to both continuous (such as constrained or unconstrained) and discrete such 
as combinatorial problems. An example of such a problem is shown in Fig. 2. The figure 
depicts the optimization comparison of 6 algorithms on berlin52 TSP problem as demon-
strated by Halim and Ismail (2019). As observed in the figure, the highest convergence 
rate for all of the algorithms is in the first 500–700 FEVs, even though the experiments 

(3)R(i) = 1 −

(|||||
fopt − f1

fopt − f0

|||||
…

|||||
fopt − fi

fopt − fi−1

|||||

) 1

i

≡ 1 −

(|||||
fopt − fi

fopt − f0

|||||
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Fig. 2   Convergence curve of TSP (Halim and Ismail 2019). (Full forms of the algorithms used should be 
mentioned in the legend)
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were run for 10,000 FEVs. Thus, the essential part to indicate which algorithms react faster 
towards a better solution is observed in this initial period. The latter period (say from 1000 
to 10,000 FEVs) is for long term response of the algorithm and it is more appropriate to 
be represented in a tabulated solution. Some other examples are from Kiliç and Yüzgeç 
(2019) and Jalili et al. (2016) that superimposed the convergence curve of a shorter number 
of iterations into the original curve. Some examples of convergence curve with long FEVs 
that may need to be improved are from Degertekin et al. (2016) as well as El-Ghandour and 
Elbeltagi (2018).

The graphical representation of convergence is equivalent to the fitness rate of the algo-
rithm and it is problem-dependent. In TSP, fitness is usually demonstrated by distance 
traveled over time that decreased towards an optimum solution. However, in TTP, the profit 
is increased towards the optimum solution. In Bin-packing problems, a graphical cor-
relation between algorithms for initial and final solutions related to the number of items 
required (either in percentage or instance categories) with respect to the number of bins is 
one of the fruitful comparisons for relative efficiency, which is presented partly in Santos 
et  al. (2019). Such graphical comparison can describe the relative performance of each 
algorithm (Grange et al. 2018) and is used for numerous practical Bin-packing problems 
such as the optimization of the last-mile distribution of nano-stores in large cities (Santos 
et al. 2019) and e-commerce logistic cost (Zhang et al. 2018).

Further enhancement of convergence rate comparison in continuous problems is using 
relative error (Hamacher 2007). The similar formulation is defined with a different name 
such as the index of error rate (Ray et al. 2007; Paul et al. 2015), RAE (He 2016) and the 
relative difference between best values as demonstrated by Agrawal and Kaur (2016) and 
Kaur and Murugappan (2008). The formulation at the ith generation is defined as follows.

with Fi being the fitness value of ith generation or FEVs and fopt as the optimum solution. 
The values from RAE pretty much exhibit a similar trend with the absolute convergence 
rate as shown in Fig. 1. Another convergence related index is the percentage of average 
convergence (Paul et al. 2015) as follows:

with f̄x as the average fitness. The index is used to measure the quality of the initial popula-
tion since a good average convergence of the initial population increases the convergence 
speed with better exploration (Kaur and Murugappan 2008).

Apart from the convergence curve, other problem-related convergence measures were 
also proposed for combinatorial problems such as for TTP and TOP (Thief Orienteering 
Problem): the convergence of an algorithm A over algorithm B can be formulated by a frac-
tion of average value found by algorithm A to the best solution found by either algorithm as 
shown in Santos and Chagas (2018) as follows:

(4)E(i) = 1 −
Fi

fopt
,

(5)Average convergence % = 1 −
fx − fopt

fopt
× 100,

(6)Ax =
Ā

max
(
Abest,Bbest

) ,
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with Ā as the average objective value of algorithm A, Abest and Bbest as the best solution 
found by both the algorithms respectively. This average convergence can be categorized by 
the different number of items and item relation types from the knapsack problem. To com-
pare the convergence of algorithms by different problem types, an approximate of conver-
gence relation between current best generation (or FEVs, or iteration) with the total num-
ber of generation calculated as follows:

with CG as the current generation that corresponds to the best solution of an algorithm and 
TG as the total number of generations. Hence, lower Crelation reflects a faster convergence 
of the algorithm. An example of implementation can be found in Zhou et  al. (2019). A 
similar method can be adopted concerning the number of dimensions. A trend of conver-
gence behavior can be observed by plotting the number of succesful evaluation∕dimension 
over the number of dimensions. A higher slope corresponds to faster convergence by each 
dimension (Nishida et al. 2018). Another metric related to the convergence in design opti-
mization is proposed by Mora-Melia et al. (2015). The metric is a combination of two for-
mulations of rates defined as follows:

where ηquality is the effectiveness of success rate equivalent to the fraction of successful 
run over the total run represented as ηquality = (Successful run∕total run) . The second term, 
ηconvergence is equivalent to the speed of convergence that is either time or number of FEVs 
to compute the final solution. An example of the application of this metric is observed in 
El-Ghandour and Elbeltagi (2018) that also used for the water distribution network prob-
lem, relatively similar problem application as Mora-Melia et al. (2015). This metric seems 
to be universal and can be applied to other problem types.

The convergence measure for the dynamic environment has different formulation due 
to the change of objective functions and constraints over time, which also reflects most 
of the real-world problems. These changes influence the optimization process through-
out the measured time (Mavrovouniotis et  al. 2017). There are several convergence 
measures proposed in the literature such as offline error (Yang and Li 2010), modified 
offline error and modified offline performance (Branke 2002), staged accuracy, and 
adaptability (Trojanowski and Michalewicz 1999). The offline error measures the aver-
age of differences between the best solution by an algorithm before the environment 
change and optimum value after the change defined as follows:

with fk as the best solution found by the algorithm before the kth environmental change, hk 
as the changed optimum value at the kth environment and K as the total number of environ-
ments. Examples of applications on this measure can be found in Zhang et al. (2020). The 
staged accuracy measures the difference between the current best of the population ‘before 
change ‘generation and the optimum value and averaged over the entire run, whereas the 
adaptability measure the difference between the current best individual of each generation 

(7)Crelation =
CG

TG

,

(8)E =
ηquality

ηconvergence
,

(9)Offlineerror =
1

K

K∑
k=1

(
hk − fk

)
,
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and the optimum averaged value throughout the run. Both formulations are shown in (10) 
and (11) respectively.

where K is the number of changes, Gk is the number of generations within stage k, f (Gk)
opt  is 

the optimum value of each change or stage, and f (Gk)
i

 is the current best individual value in 
the population of ith generation. Other distinguished measures for dynamic environments 
are the Recovery Rate (RR) and the Absolute Recover Rate (ARR) proposed by Nguyen 
and Yao (2012). RR is denoted as a response speed for an algorithm to recover from an 
environmental change towards converging to a new solution before the next change occurs 
as in Eq. (12):

where fbest(i, j) as the fitness of the best feasible solution since the last change discovered 
by the algorithm until the jth generation of change period i, m is the number of changes and 
p(i), i = 1 ∶ m as the number of generations by every change of period i. RR =1 if the algo-
rithm able to recover and converges towards a solution immediately after the change. On 
the other hand, RR =0 if the algorithm is unable to recover after the environment change. 
Another measure, ARR​ is used to analyze the response speed of an algorithm to converge 
towards global optimum as in Eq. (13):

with fglobal as the global optimum of the respective problem. The rating of ARR is sim-
ilar to RR whereas ARR = 1 if the algorithm able to recover and converges towards the 
global optimum. Both RR and ARR can be further described in a graphical representation 
(RR–ARR diagram in Fig. 3) to understand the convergence/recovery behavior of the algo-
rithm as illustrated by Nguyen and Yao (2012). The RR–ARR diagram consists of a diago-
nal line and points of RR/ARR scores by each algorithm. The score is represented in x and 
y coordination of the point below the diagonal line. Each point’s position corresponds to 
the characteristics of each algorithm. If the point lies on the diagonal line (such as algo-
rithm A), it can recover from dynamic change and converged to a new global optimum. For 
other algorithms, such as algorithm B that lies closer to diagonal in more right side shows 
characteristics of faster recovery towards global optimum, whereas algorithm C is more 
likely converged to the local optimum with faster recovery and algorithm D is more likely 
not converged yet to an optimum solution with slower recovery (Nguyen and Yao 2012). 
In most cases, the RR–ARR measures can be used together to indicate if an algorithm can 
converge to the global optimum within a defined time frame between changes and also 
reveal how fast the algorithm requires to converge (Yang and Yao 2013).

(10)PStageAccr =
1

K

K∑
k=1

||||f
(Gk)
opt − f

(Gk)
i

||||,

(11)Padaptability =
1

K

K∑
k=1

1

Gk

Gk∑
g=1

||||f
(Gk)
opt − f

(Gk)
i

||||,

(12)RR =
1

m

m�
i=1

∑p(i)

j=1

�
fbest(i, j) − fbest(i, 1)

�

p(i)
�
fbest(i, p(i)) − fbest(i, 1)

� ,

(13)ARR =
1

m

m�
i=1

∑p(i)

j=1

�
fbest(i, j) − fbest(i, 1)

�

p(i)
�
fglobal(i, p(i)) − fbest(i, 1)

� ,
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2.1.2 � Diversity

Another measure related to the convergence behavior of an algorithm is the diversity. Diver-
sity is referred to as a distribution of the algorithm’s population in the search space and it 
reflects the information of exploration and exploitation throughout the iteration. Higher diver-
sity shows the ability of exploration, whereas the lower diversity of the population indicates 
an exploitative tendency of the search. Therefore, diversity measure affects the convergence 
behavior of the algorithm significantly and a good diversity will avoid premature convergence. 
The diversity of a population-based algorithm is heavily related to the speed, thus it is an effi-
ciency-related measure. To date, numerous diversity measures are introduced in the literature. 
Cheng et al. (2014) introduced dimension-wise population diversity as formulated in Eq. (14):

with D being the total number of dimensions and Divj as the solution diversity based on the 
L1 norm for the jth dimension. Other measurements are the diversity of population-entropy 
(Yu et  al. 2005), diversity of average distance around swarm center (Krink et  al. 2002), 
diversity of normalized average-distance around swarm center (Tang et al. 2015), and the 
diversity based on average of the average distance around the particles in the swarm (Olo-
runda and Engelbrecht 2008). This method extends the concept of the distance around the 
swarm center, where each swarm particle is denoted as a center and the average over all 
these distances is calculated. The diversity measure based on entropy (Yu et al. 2005; Tang 
et al. 2015) divides the search space into Q areas of equal size with Zi search agents in a 
population of size N. The probability of search agents situated in ith area is then deter-
mined by Zi∕N . The population-entropy diversity for the continuous optimization problem 
is then defined as:

In combinatorial problems such as TSP, the diversity measure based on entropy is for-
mulated based on the number of edges, thus defined as the edge entropy. The edge entropy 
of a population is measured as (Tsai et al. 2003):

(14)Div =
1

D

D∑
j=1

Divj,

(15)E(t) = −

Q∑
j=1

Zi

N
loge

(
Zi

N

)
.

Fig. 3   An example of the RR–
ARR diagram (Nguyen and Yao 
2012)
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where X = E
(
s1
)
∪ E

(
s2
)
∪… ∪ E

(
sn
)
 is the series of edges, F(e) is the number of edges, 

e is the current edge and N is the population size. Higher edge entropy implies higher pop-
ulation diversity. Another related measure is the edge similarity of a population is defined 
as (Tsai et al. 2003):

with Ti,j as the number of edges shared by pairs 
(
si, sj

)
 . Both equations imply a diverse pop-

ulation by larger edge entropy and low edge similarity. Both equations can be represented 
with a curve versus the number of generations or iterations and plotted with the compared 
algorithms. A faster decrease of edge entropy from high value denotes a faster reduction of 
diversity towards the solution. Several examples of the metric application can be observed 
in Tsai et al. (2004) and Nagata (2006).

Another diversity measures for continuous problems highlights the diversity of 
search particles around the swarm center. The measure is based on the average distance 
around the swarm center (Krink et al. 2002) is shown as follows:

where S is the swarm, |S| is the swarm size, D is the dimensionality of the problem, pij is 
the jth value of the ith particle and p̄j is the jth value of the average point of particles p̄ . A 
lower DSwarm center(S) value shows convergence around the swarm center, whereas higher 
values indicate a higher dispersion of search agents away from the center.

Another concept similar to above was defined by Riget and Vesterstrøm (2002), but 
with further normalization concerning the swarm diameter, L. The formulation of the 
normalized average distance around the swarm center is shown in Eq. (19). This method 
is used in most of the literature such as by Mortazavi et  al. (2019) and Aziz et  al. 
(2014). Apart from swarm diameter, this normalization method can also be replaced 
with a swarm radius.

with pij as the jth value of the ith search agent and the dth value of the average point p̄d 
of all search agents. The value p̄d also denotes the center of the swarm in the dth dimen-
sion. N is the population size and L is the longest diagonal length in the search space or the 
swarm diameter. A graphical representation of diversity concerning the FEVs can be used 
for observing the diversity of the search agents during the attraction–repulsion phase as a 
countermeasure to avoid the premature convergence as depicted in (Riget and Vesterstrøm 
(2002). As a definition, the swarm diameter is equal to the maximum distance between any 
two search agents, whereas the swarm radius is defined by the distance between the swarm 
center and the furthest path of the search agent from the swarm center. The swarm diam-
eter is calculated as follows:

(16)edgeentropy = −
∑
e∈X

F(e)

N
log2

(
F(e)

N

)
.

(17)edgesimilarity =
2

n(n − 1)

n∑
i

n∑
j=1,j≠i

|||Ti,j
|||,

(18)DSwarm center(S) =
1

|S|
|S|∑
i=1

√√√√ D∑
j=1

(
pij − p̄j

)2
,

(19)DSwarm center N(t) =
1

|N||L|
N∑
i=1

√√√√ N∑
j=1

(
pij − p̄d

)2
,
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where xik and xjk are the kth dimension of the ith and jth search agent’s position respec-
tively. The swarm radius is defined as shown in Eq.  (21) with x̄k as the average of kth 
dimension from the swarm center. Both swarm diameter and radius can be used in diver-
sity measures. Large values denoting highly dispersed search agents, whereas lower value 
showing convergence.

Another concept of diversity is the average of average distances around the swarm 
center (Olorunda and Engelbrecht 2008) that evaluates the average distance around each 
search agent in the swarm that is using each particle as a center, then calculating the 
average overall distances as formulated in Eq. (22):

where the second term inside the bracket denotes the average distance around search agent 
xi . This method indicates the average dispersion of all search agents in the swarm relative 
to each agent in the swarm. Another recently introduced diversity measurement is O-diver-
sity (Chi et al. 2012). The method calculates the average distance around the global opti-
mum point O without including the outliers that may affect the accuracy judgments of con-
vergence or divergence at each specific state. The O-diversity is defined as follows:

where N0 is the number of outliers, SO is the sum of outliers on dimension k and Ok is the 
optimal point at the kth dimension. The O-diversity DO is also defined as the population 
position diversity (Chi et  al. 2012). Declining value of DO indicates better optimization 
performance as the algorithm reaches the global best value O.

The dynamics of the diversity move of each search agent also has been considered 
in the literature. These measures defined as swarm coherence (Hendtlass and Randall 
2001), which is defined as:

with VS as the speed of swarm center and V̄  as the average agent’s speed. The swarm coher-
ence is a ratio of swarm center speed concerning the average speed of all agents in the 
swarm. The speed of the swarm center is defined as in the following equation (Hendtlass 
2004).

(20)�L� = max
(i≠j)∈[1,�N�]

⎛
⎜⎜⎝

����Dim�
k=1

�
xik − xjk

�2⎞⎟⎟⎠
,

(21)�R� = max
i∈[1,�N�]

⎛⎜⎜⎝

����Dim�
k=1

�
xik − x̄k

�2⎞⎟⎟⎠
.

(22)Dall =
1

�N�
N�
i=1

⎛⎜⎜⎝
1

�N�
�N��
j=1

����Dim�
k=1

�
xik − xjk

�2⎞⎟⎟⎠
,

(23)DO =
1

Dim

Dim∑
k=1

1(
N − N0

)
N∑
i=1

(||xik − Ok
|| − SO

)
,

(24)SC =
VS

V̄
,
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with V⃗i as the velocity of each agent over N number of swarm and x is a distance norm such 
as Euclidean distance. Larger SC shows a higher center velocity and implies a high percent-
age of search agents that traverse with the same velocity vector (in the same direction) in 
high acceleration. Conversely, lower values of swarm center show either a high percentage 
of the search agents are traversing in the opposite direction or still traversing in the same 
direction but with a much slower speed. For the average agent’s speed, larger values show 
that the search agents on average are making large changes compared to current positions, 
which is also denoted with higher exploration. On the contrary, smaller values of average 
speed denote that the search agents are wandering around their relative proximity and the 
neighborhood bests, hence also exploitation. In a perspective of swarm coherence, a lower 
value shows either the agents are highly dispersed in the search space or they are traversing 
in relatively small direction. A higher swarm coherence denoting either the swarm is con-
verging or they are traversing in the same resultant direction.

The diversity measure in discrete optimization shows the capability of an algorithm to 
converge to local optimum at early iterations. An example from Tsai et al. (2014) proposed 
the diversity measure as an average in a search space for TSP as follows:

where n is the number of cities and et
i,j

 as the edge between city i and j. et
i,j
= 1 if an edge 

between both cities exists and et
i,j
= 0 otherwise. The value S̄t represents the average path 

of all cities in t generations. As an overview comparison, a curve of diversity by different 
algorithms can be plotted against the number of generations. Usually, the diversity of an 
effective algorithm increases in the early step of generations, and later become smaller as it 
converging towards the optimum.

2.1.3 � Combinatorial problem‑specific metrics

Some of the efficiency metrics related to the combinatorial problems are discussed in this 
sub-section. The first metric is the sub-optimum solution. The speed of an algorithm to 
reach an optimal solution can be measured by summing up the sub-solution of optimal 
results (such as TSP, TTP, or OP). As an instance, ,� =

{
�1,�2,… ,�n

}
 are the optimal 

sub-solution found by an algorithm at a specific generation. Thus, the rate of edge optimum 
at generation t can be expressed as follows (Tsai et al. 2014):

with n being the number of instances, and Ot
i,j

 as the condition of sub-solution existence; 
Ot

i,j
= 1 refers to the existence of an optimum sub-solution edge between pairs i and j, 

whereas Ot
i,j
= 0 is otherwise. The second metric related to the combinatorial problem is 

tour improvement. The average improvements by an algorithm can be compared with other 
algorithms with Eq. (28) as follows:

(25)VS =

������

∑N

i=1
V⃗i

N

������
,

(26)S̄t =
1

2n

n∑
i=1

n∑
j=1

et
i,j
,

(27)Ot =

n∑
i=1

Ot
i,j
,
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where N is the population size, si as the ith individual in the population, fA as the pro-
posed algorithm and fB as the benchmarked algorithm. The motivation for this measure is 
to observe any improvement of the proposed algorithm against a benchmarked algorithm. 
This comparison can also be made between the older and improved algorithms as used by 
Tsai et al. (2004). For the Bin-packing problem, a convergence of total cost with the num-
ber of bins for compared algorithms can be highlighted as showed by Zhang et al. (2018). 
Any algorithm that converged faster towards lower cost is considered as more efficient.

The efficiency measure related to the Travelling Thief Problem (TTP): TTP con-
sists of the combination between Travelling Salesman Problem (TSP) and Knapsack 
Problem (KP) as proposed by Bonyandi et al. (2014). The optimization for TTP need 
a tradeoff between each sub-problem (TSP and KP) since higher picking item of KP 
resulted in the higher total value of items, but also resulted in reducing speed and 
increases the renting rate. The combination of each sub-problem leads to the variation 
of TTP instances such as TSP related routes and KP-types: uncorrelated, uncorrelated 
with similar weights, and bounded strongly correlated types. Other TTP instances are 
item factor (number of items per city in each TSP-KP combination) and renting rate 
that links between each sub-problem. The performance measures between algorithms 
can be described graphically by plotting the gain of tour time, f with the total value, 
g, and the best solution must be compromised between both gains as demonstrated by 
Bonyandi et al. (2013). Furthermore, the importance of TSP and KP can be dynami-
cally interchanged throughout the process. Reducing the value of the renting rate might 
reduce the contribution of the TSP component to the final objective value, whereas 
increasing the renting rate might lead to less significant of the total profit items to the 
impact of final objective value (Bonyandi et al. 2014).

For Orienteering problem, OP, the significant performance measure is the computa-
tion time between nodes or also defined as service time (Li and Hu 2011), the set of 
visited nodes in a tour, and the score of visiting each node to maximize the fitness as in 
the following equation:

with Si as the associate score of node i, and xij = 1 if the tour visits node j immediately after 
visiting node i, xij = 0 otherwise. The algorithms shall visit each prescribed node within 
a defined maximum time. Thus, an algorithm that fails to score within maximum time is 
considered an underperformer. A unique measure of the Lin-Kernighan (LK) algorithm for 
solving TSP is using the search effort. The LK algorithm and its variants consist of edge 
exchanges in a tour and this procedure consumes more than 98% of the algorithm’s run-
time (Smith-Miles et al. 2010). The search effort of the LK-based algorithms is measured 
based on the count of edge exchange occurs during the search and it is independent of the 
hardware, compiler, and programming language used (Smith-Miles et  al. 2010). Further 
readings on LK-based algorithms and its efficiency measures can be found in Van Hemert 
(2005) and Smith-Miles and Van Hemert (2011).

(28)x̄impr =
1

N

N∑
i=1

[
fA
(
si
)
− fB

(
si
)]
,

(29)max

n∑
i=1

n∑
j=1

Sixij,
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2.1.4 � Computation cost

The computation cost of an algorithm is dependent mainly on the number of iterations and 
population size (Polap et al. 2018). Each algorithm is executed until exceeding the number of 
iterations or until no improvement is achieved (global optimum solution). Based on Rardin 
and Uzsoy (2018), computation time is crucial and increased more attention than the solution 
quality due to different hardware and software technology. Jackson et al. (1991) and Barr et al. 
(1995) discussed several factors that need to be considered to evaluate the computation time. 
The time measurement can be captured in mainly three parts of the algorithm execution: time 
to best-found solution, total computation time, and timing per phase (Barr et al. 1995). The 
time to best solution is referred to as the computation time required by the algorithm to find 
the global optimal solution. The total computation time is referred to as the run time of an 
algorithm until it is terminated due to its stopping criteria. Thus, the time to the best solution 
may be lesser than the total computation time, and this performance can be easily demon-
strated in a classical convergence of fitness versus time curve. The third computation time (the 
time per phase) measurement is another quality option that is referred to as the timing of each 
defined phase such as initial population, improved version, the sequence of a collaborative 
hybrid algorithm, and percentage to the global optimum.

There are several methods proposed in the literature on capturing the runtime of algo-
rithms in continuous and discrete problems. Some literature (Conn et al. 1996; Benson et al. 
2000) proposed performance calculation based on the average and cumulative sum over all 
the problems. However, this may bias the results for small numbers of difficult problems as it 
may dominate the whole results (Dolan and Moré 2002). Another approach is by comparing 
the medians and quartiles between solver times (Bongartz et al. 1997). This method is supe-
rior to the average method since it did not bias the results, however, the information of trends 
between one quartile to the next may lead to uncertain assumptions (Dolan and Moré 2002). 
Some researchers capture the computation time descriptively. An example of such a method 
is the ratio of computation time to converge towards 5% of the best-found solution (Barr et al. 
1995) as formulated in Eq. (30):

Another method of comparing the ratio of computation time with others is by rating the 
percentage of time consumed by an algorithm to the best runtime (Billups et al. 1997). The 
rating is categorized by competitive or very competitive. The rating is defined as competitive if 
the time consumed by the proposed algorithm is t ≤ 2Tmin and very competitive if t ≤ 4

3
Tmin , 

with Tmin as the minimum time obtained among all the algorithms on a specific problem. 
However the definition of classification limit (competitive or very competitive) is depend-
ing on the researcher’s arbitrary option that may have some tightness or looseness in ques-
tion. Some pieces of literature compare computation cost via a ratio between an unsuccessful 
and a successful run that concerns on the runtime of the algorithm. The proposed method is 
defined with average runtime, aRT (Hansen et al. 2012), which is formulated as in the follow-
ing equation:

(30)Tratio =
Time to converge within 5% global optimum

Time to global optimum
.

(31)aRT =

(
nu + ns

)
ns

,
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with nu as the number of unsuccessful runs and ns as the number of successful runs. The 
runtime did not necessarily refer to the computation time; it can also be correlated with 
the number of Function Evaluations or FEVs. It is not recommended to use the number of 
iterations to benchmark the computation steps. The number of FEVs is usually taken as a 
reliable measure of the computation complexity, provided there is no hidden cost inside 
the algorithm. The number of iterations for different algorithms may perform different 
amounts of computation in their inner loops. Furthermore, comparing using CPU time is 
inappropriate and it is preferable to use the more abstract FEVs for comparing stochastic 
algorithms (Hellwig and Beyer 2019).

In discrete optimization problems, one of the most commonly used for runtime measure 
is the first hitting time (FHT) (Nishida et al. 2018) that is defined as the number of function 
evaluations required by the algorithm to reach the first hit of the optimum solution. Lehre 
and Witt (2011) defined the hitting time measurement by considering the time required to 
reach bound of optimum 𝜀 > 0 for which |||f (x) − f

(
xopt

)||| < 𝜀 that denoted as the expected 
FHT with respect to � . The growth of expected FHT is also bounded by a polynomial in 
1∕� and the number of dimensions of the specific problem (Lehre and Witt 2011). The per-
formance of FHT can be plotted against the number of dimensions, thus a comparison of 
FHT between algorithms with respect to dimensions can be analyzed graphically.

Another useful method of comparing the computation time between algorithms for both 
continuous and discrete domains is using a Box and Whisker plot as illustrated in Fig. 4. 
The Box and Whisker plot summarizes important features of the data and helps to demon-
strate the comparison among the algorithms. The definition of each section (Fig. 4 right) 
on the box-whisker plot is summarized in Table 4. The analysis in the scope of computa-
tion time with the number of dimensions and variables is also another performance meas-
ure for algorithm efficiency. Ideally, the computation time increases with the number of 
algorithmic variables. Saad et al. (2017) demonstrate the relationship between the compu-
tation time in seconds and FEVs with the number of variables in various algorithms. This 
comparison was able to show which algorithm has a better performance for what number 
of variables.

During comparison among different algorithms, computing system between each com-
parison instance must be taken into careful consideration. Precise time measurement for 
algorithm comparison is crucial. Some literature mentioned the method of capturing the 
computation time in high resolution as demonstrated by Shukor et al. (2018), Ngamtawee 
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and Wardkein (2014) and Bahameish (2014), where the elapsed time was captured in 
Nanoseconds using JAVA function code System.nanoTime(). Other literature such as from 
Pan et al. (2019) measured and presented the time in milliseconds.

2.1.5 � Comparing different platforms

The combinatorial NP-hard problems usually consume higher computation cost and 
directly influence the computer CPU. Thus, it is not straightforward to distinguish the com-
putational time of each method that being compared if it is executed from different com-
puter configurations. Numerous researchers compared their algorithm’s computation with 
other published papers especially in the Vehicle Routing Problem and Orienteering Prob-
lem. The benchmarked comparison is the processor efficiency rate or CPU speed. There are 
plentiful benchmark programs available, but it is important to keep in mind that the perfor-
mance of various processors depends on many external factors such as compiler efficiency 
and type of operation used for measurement. However, it is fairly enough to attach as a 
reference in the paper if it meant to indicate a rough estimation of the computational speed 
of different platforms. Some examples of benchmark comparisons are using a million of 
the floating-point operations per second, Mflop/s (Lo et al. 2010; Rouky et al. 2019). Other 
study benchmarked CPU speed using a million instructions per second, MIPS (Attiya et al. 
2020; Jena et al. 2020). Another example is using System Performance Evaluation Cooper-
ative (later is defined as the Standard Performance Evaluation Corporation), SPEC (Fenet 
and Solnon 2003; Crainic et al. 2011; Wu et al. 2018). Both MIPS and Mflop/s are rela-
tively easy to understand and measurable. The MIPS metric measures the number of CPU 
instructions per unit time. It is usually used to compare the speed of different computer 
systems and to derive the execution time. It is mathematically defined as follows (Dawoud 
and Peplow 2010):

where CPU clocks denote the total number of clock cycles for program execu-
tion. The execution time can be derived with a known value of MIPS as follows: 
Execution time = Instruction count∕

(
MIPS ∗ 106

)
 . In contrast, the Mflops metric 

(32)MIPS =
Instruction count * Clock rate

CPU clocks * 106
,

Table 4   Box-plot description

Number Description

1 Whisker represents the smallest value of data: ¼th quadrant of data
2 The minimum range of middle 50% of data
3 Median value and notch. Median notch shows an approximate of 100(1 − α) % of the confidence 

interval for median: ½ quadrant of data
4 Sample mean
5 The maximum range of middle 50% of data: ¾th quadrant of data
6 Whisker represent the biggest value of data: ¼th quadrant of data with bigger values
7 Outlier points that have 1.5 times the inter-quartile range (box width). Any points that lie more 

than three times of interquartile range is denoted as far outside points (Tukey 1977) and repre-
sented with plus signs superimposed on point symbol.
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measures the floating-point operations per million of execution time or mathematically 
defined as follows (Dawoud and Peplow 2010).

The metric signifies floating point operations such as addition, subtraction, multiplica-
tion, and division that applied to numbers represented by single or double precision. The 
data are specified in program language using keywords such as float, real or double. It is 
necessary to keep in mind the drawbacks of these methods. The Mflop/s metric depends 
on the type of floating-point operations present in the processor and it treats the floating-
point operation for addition, subtraction, multiplication, or division equally. Practically, the 
complexity of floating-point division is much higher and time-consuming than the floating-
point addition. Some of the problems for MIPS are its nonlinearity behavior and inconsist-
ent with the correlation of performance (Noergaard 2013). Furthermore, the metric can 
also be inconsistent even comparing processors of the same architecture due to the pos-
sibility of not measuring throughout processor performance for instance I/O or interrupt 
latency (Dawoud and Peplow 2010). The SPEC method is more rigorous than MIPS and 
Mflop/s. The SPEC method evaluates the rate metric by measuring the time required to 
execute each benchmark program on a tested system and normalized the time measured 
for each program by the required execution time. The normalized values are then averaged 
based on the geometric mean. Nonetheless, this method has shortcomings such that the 
geometric mean is not linearly related to the program’s actual execution time and it was 
shown unreliable metric where a given program executes faster on a lower SPEC rating 
(Dawoud and Peplow 2010). Another possible benchmark comparison is CoreMark (Ibra-
him 2019). The method is mostly used to indicate the processor performance in microcon-
troller technology and it is more reliable than Mflop/s and MIPS (Embedded 2011). As far 
as our knowledge goes, there is no literature benchmarked with this method yet.

2.1.6 � Algorithm complexity

The efficiency of the algorithm for the CPU time can also be measured by its complexity. 
The complexity of an algorithm’s performance is related to space and time (Aspnes 2017; 
Dawoud and Peplow 2010). Space and time complexities quantify the amount of memory 
and time taken by an algorithm to run as a function of the length of the input. Numerous 
factors can affect the time and space complexity such as hardware, operating system, pro-
cessor, compiler software, and many more, which may not be included in the algorithm 
performance comparison. The main concern of complexity in algorithm performance is 
how the algorithm is executed. An excellent tool for comparing the asymptotic behavior of 
algorithms’ complexity is the Big-O notation (Brownlee 2011; Cormen et al. 2001). This 
method provides a problem independent way of characterizing an algorithms space and 
time complexity. As an example is a coding of nested-loop as follows.

In the worst case in Fig. 5a, the for loop runs n times, then the counter++ will run 
for 0 + 1 + 2 +⋯ + (n − 1) = n∗(n−1)

2
 . Therefore the time complexity for an asymptotic 

upper bound of the algorithm will be O
(
n2
)
 with O denotes as the Big-O-notation. 

The computation under O-notation will ignore the lower order terms since it is insig-
nificant for larger input. However, in Fig. 5b, the algorithm computes counter++ with 
n + n∕2 + n∕4 +⋯ + 1 = 2 ∗ n . Thus, the time complexity of the algorithm will be 
O(n) since higher order is ‘1’. Therefore the time complexity for the algorithm in Fig. 5b 

(33)MFLOPS =
Number of floating − point operations

Execution time * 106
.
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is more efficient. The simplification of the algorithm is not a recent topic and was dis-
cussed in numerous works of literature such as (McGeoh 1996) and to date such as 
from Zhan and Haslbeck (2018), Rakesh and Suganthan (2017). The complexity experi-
ment shall be tested on a predefined function with several trials and the CPU time for 
each trial. Some standard guidelines of algorithm complexity comparison as presented 
in Hansen et  al. (2012) for Black-Box Optimization Benchmarking (BBOB) and Sug-
anthan et al. (2005), Awad et al. (2016) for the Congress on Evolutionary Computation 
(IEEE CEC). For BBOB competition, the participants shall run the complexity test on 
Rosenbrock function with defined dimensions. The setup, coding language, compiler, 
and computational architecture during experimenting also need to be recorded. For CEC 
competition (CEC17), the complexity analysis is shown in Fig. 6. The time for execut-
ing the program in Fig. 6 is denoted as T0. Then the same procedure is repeated to eval-
uate time T1 with 200,000 evaluations of the same D dimension of specific test function 
(Function 18 from CEC17). The procedure is repeated five times with the same function 
(Function 18 from CEC17) to evaluate time T2. The five values are then averaged to 
evaluate T̂2 . All of the results 

(
T0, T1, T̂2

)
 are tabulated and these procedures are calcu-

lated for 10, 30, and 50 dimensions to observe the algorithm complexity’s relationship 
with dimension.

The complexity measure is also widely used in discrete optimization. Different kinds 
of literature define the time complexity according to the expectation of the algorithm’s 
performance. As an example, Ambati et  al. (1991) proposed time complexity of GA-
based algorithms with O(n log n) , whereas Tseng and Yang (2001) shows the time com-
plexity of GA is O

(
n2ml

)
 and Tsai et  al. (2014) proposed with O(nml) with n as the 

number of cities, m as the number of chromosomes, and l as the number of generations.

(a) (b)

Fig. 5   Pseudocode of for-loop with different algorithm complexity

Fig. 6   Pseudocode for measur-
ing the algorithm’s complexity 
(IEEE CEC 2017)
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2.1.7 � Statistical analysis

There are several statistical analyses proposed in the literature for measuring the efficiency 
of algorithms. These are empirical cumulative distribution functions and ordered alternative 
tests.

2.1.7.1  Empirical cumulative distribution function, ECDF  The performance measure of T run-
time from experiments of metaheuristic algorithms on a specific problem can be described by 
a probability that is equivalent to the cumulative distribution function (Chiarandini et al. 2007; 
Hoos 1998). The cumulative distribution of sampled data T

�
,… ,T

n
 is then characterized by 

empirical cumulative distribution function (ECDF) that is equivalent to Eq. (34). The distribu-
tion is also denoted as a run time distribution.

where n is the number of sampled data and I(·) denotes the indicator function. This general 
formulation hold for both censored (if a time limit is defined before reaching the optimum 
solution) and uncensored data. An example of the ECDF curve of the SA algorithm for 
solving the combinatorial problem is depicted in Fig. 7 (top). The mid-line of ECDF rep-
resents the median of the overall solution. The ECDF also can be used to compare between 
algorithms as shown in Fig. 7 (bottom), where three algorithms (PSO, TPO, and DE) are 
superimposed in one chart and revealed that DE outperformed the other two algorithms, 
whereas TPO performed better than PSO due to the probability,Pr

(
TDE ≤ TTPO ≤ TPSO

)
 . 

(34)Fn(t) =
1

n

n∑
i=1

I
(
Ti ≤ t

)
,

Fig. 7   ECDF as single algorithm 
measurement (top) and compari-
son between algorithms (bottom)
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Some literature benchmarked ECDF as a performance indicator (Ribeiro et  al. 2009; 
Hansen et al. 2016).

2.1.7.2  Ordered alternative test  The ordered alternative test consists of non-parametric multi-
ple tests that assume the null hypothesis of equal trends or medians and the alternative hypoth-
esis of series of treatments of unequal trends or medians. There are three types of ordered alter-
natives used in metaheuristic performance analysis that include Page test, Terpstra-Jonckheere 
test, and Match test as simplified in the following subsections.

(a)	  Page test (Derrac et al. 2014; Page 1963)

Method construct order from k treatments on N samples and ranked from the best (with 1) to 
the worst (with k). The number of k treatments depends on the number of cut-points of N sam-
ples. Then the Page L statistic as in Eq. (35) is computed using the sum of ranks. An alterna-
tive ranks procedure is applied for algorithms that reached an optimum solution before the end 
of total cut-points (either algo1 or algo2 or both) (Derrac et al. 2014). Advantage: two graphi-
cal instances: (1) convergence in a discrete manner based on the cut-points, (2) deviation of 
ranks between two algorithms concerning the cut-points.

with Rj as the rank of jth of k measures from N samples. The sum of ranks values Rj will 
follow an increasing order of measured algorithm convergence. Thus for an increasing 
order, the null hypothesis will be rejected in favor of the alternative. Example of Page test 
from (Derrac et al. 2014) that compares two algorithms in 10 cut-points regular intervals 
on a minimization problem is shown in Fig. 8.

(b)	 Terpstra–Jonckheere test, TF test (Terpstra 1952; Jonckheere 1954)

Method Essentially based on Mann–Whitney U statistic, where U is obtained for each pair 
of samples and added. For k samples, the U statistic is calculated for each of k(k−1)

2
 pairs 

and ordered. Then the test statistic is computed by summing each U statistic as in Eq. (36). 
Advantage: powerful alternative hypothesis with ordered medians of either decreasing or 
increasing pattern.

(35)LPage =

k∑
j=1

jRj = R1 + 2R2 +⋯ + kRk,

Fig. 8   Page test for comparison 
between algorithms (Derrac et al. 
2014)
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where U is the Mann–Whitney U statistic for an individual sample with j = [1, 2,… , k] . 
For large sample sizes, the null distribution of WTJ approaches a normal distribution. Thus, 
calculation of mean (�) and standard deviation (�) is necessary to determine the critical 
value with WTJ ≤ � − z� − 1∕2 . An example of metaheuristic algorithms analysis using the 
TJ test is by Obagbuwa and Adewumi (2014).

(c)	 Match test (Neave and Worthington 1988)

Method Similar to Page and TJ test but the calculation is based on rank-sums. Determined 
by the number of matches of ranks with the expected ranks and half of near matches. Null 
hypothesis similar to other non-parametric methods and alternative hypotheses similar to 
the TJ test. The test is computed by ranking a row from 1 to k and ties are assigned as aver-
age ranks. Each rank is compared with the expected rank, defined as the column index. A 
match is counted if the rank equals the column index. Every non-match that lies between 
0.5 ≤ ||ri|| ≤ 1.5 is counted as a near match, with ri as individual rank. The test statistic is 
calculated as in Eq. (37):

with L1 as the number of matches and nm as the number of near matches. Similar to the TJ 
test, large sample sizes approach a normal distribution, thus the mean and standard devia-
tion is calculated and the critical value is determined with LMatch ≥ � + z� + 1∕2 with z 
as the upper tail critical value from normal distribution and 1∕2 as a continuity correction.

2.2 � Effectiveness measure

2.2.1 � The effectiveness rate of solution

Variants of rate measures to demonstrate the algorithm effectiveness are defined in the lit-
erature such as the successful convergence, feasible rate, FEVs by successful runs, success 
rate, and performance. These methods are clustered as the effectiveness rate of solution 
since they are based on the same foundation of rate measurement.

2.2.1.1  Successful convergence  In essence, the successful convergence can be presented 
by calculating either count or percentage of local or global optimum under a defined number 
of trials and can be represented in tabular or graphical form. The interpretation from this 
analysis is straightforward, which is to show which algorithm has a higher percentage and 
frequency of solutions towards the near optimum. This measure applies to both continuous 
and discrete domains. Some literature defined a threshold for a specific problem and the 
algorithm is accepted as successful if it converges to a lower or equal to the threshold (mini-
mization); defined as a percentage of success rates (Kiran 2017).

Typical function optimization, especially for the benchmark functions in various CEC 
competitions like the CEC 2014 (Liang et al. 2013), requires the measures of error value 
such that 

(
fi(x) − fopt

)
 with fi(x) as the current solution found by algorithm and fopt as the 

(36)WTJ =

k∑
j=1

Uj = U1 + U2 +⋯ + Uk,

(37)LMatch = L1 +
1

2
(nm),
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optimum solution of the respective test function. Most of the papers presented their abso-
lute results after the end of FEVs or after the maximum function of evaluation is elapsed. 
The obtained error values are then stored for n runs and the statistical indices (such as 
mean and standard deviation) are ranked and further analyzed with the statistical infer-
ence method. This process is denoted as the static comparison and some examples are 
in Chen et  al. (2010) and Epitropakis et  al. (2011). The main disadvantage of this type 
of static comparison and ranking is due to the fixed computational budget and the rank-
ing might be different if another computational budget is used for the comparison. A 
superior method is calculated based on several rankings on several cut-points within a 
defined computational budget, which is also referred to as the dynamic comparison and 
ranking (Liu et  al. 2017b). A good example of such a method applies to the CEC com-
petitions (Liang et  al. 2013) that require function values at several cut-points. In the 
CEC 2014 competition, the computational budget is limited to MaxFEV = 10000 ∗ D 
with D as the dimension. The dynamic ranking is calculated in 14 cut-points with 
(0.01, 0.02, 0.03, 0.05, 0.1, 0.2,… , 0.9, 1.0) ∗ MaxFEV  for each run. From this dynamic, 
the algorithm performance can be identified with respect to the path of the cut-points. This 
method applies to both continuous and discrete domains.

In various combinatorial problems, the percentage of improvement is usually defined 
as the rate of differences between the best-known optimum found by algorithms and the 
global optimum solution. Most of the combinatorial problems are already set with the 
global optimum value. Examples for most of the TSPs are defined in http://comop​t.ifi.uni-
heide​lberg​.de/softw​are/TSPLI​B95/tsp/ and for TTPs in https​://cs.adela​ide.edu.au/~ec/resea​
rch/combi​nator​ial.php. Thus, the general algorithm effectiveness can be calculated easily 
by the difference between found solutions for the prescribed objective value as follows:

with AE% as the percentage of algorithm effectiveness, palgorithm as the optimum solutions 
found by algorithm and popt as the prescribed optimum value of the particular problem. It 
is to highlight that some papers presented the effectiveness such as Zhou et al. (2019) with 
the deviation of the best solution found by the algorithm concerning the prescribed opti-
mum value:

where pbest as the best solution found by the algorithm. This expression is straightforward, 
however, it did not represent the true algorithm characteristic as it only shows the best solu-
tion found by the algorithm and maybe the algorithm converges in large standard deviation 
within n number of runs. The absolute calculation of Eq.  (39) is not wrong and can be 
inserted as one of the metrics; however, two other metrics that represent the overall algo-
rithm effectiveness must also be presented. These are the average of converged solutions 
within n number of trials and the variation of solutions generated by the algorithm. Appro-
priate representation is by calculation of the difference between the averages of solution 
within n trials with the optimum result as expressed below:

(38)AE% =
palgorithm − popt

popt
× 100,

(39)Δ% =
pbest − popt

pbest
× 100,

(40)AEaverage% =
paverage − popt

popt
× 100,

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
https://cs.adelaide.edu.au/%7eec/research/combinatorial.php
https://cs.adelaide.edu.au/%7eec/research/combinatorial.php
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with paverage as the average of the solutions of the algorithm in n many trials. Some exam-
ples of recent papers using such metrics are Ali et al. (2020) and Campuzano et al. (2020). 
A similar metric is also used for the Crew Scheduling Problems (CrSPs) that measure the 
percentage gap between solutions found by the algorithm with respect to the best-known 
solution (García et  al. 2018). Most of the literature on combinatorial problems defined 
the difference between the proposed algorithm and the best value or another algorithm of 
the same portfolio as the gap percentage. In the TTP problem, the gap percentage can be 
divided into several categories such as the number of cities, number of picked items, and 
the ratio between numbers of items concerning the cities as demonstrated by Bonyandi 
et al. (2014). With these comparisons, more understanding of algorithm performance over 
each instance can be introduced. The same formulation is also applicable in the QAP prob-
lem, where it is defined as the percentage excess that is equivalent to the average of best-
known solutions over n number of trials (Merz and Freisleben 2000). The second important 
metric is the variation or spread of the solutions, which will be discussed in Sect. 2.2.5. 
Another useful measure for both continuous and discrete problems is the relative effective-
ness with respect to the benchmarked solution in either time or distance relation. The for-
mulation is simplified as the following equation:

with p as either distance or computation time and pA as the solution of the proposed algo-
rithm and pB as the benchmarked algorithm that has a better performing solution. A posi-
tive value of Δp denotes that the benchmarked algorithm is superior to the proposed algo-
rithm. Some examples of literature using this feature are from Skidmore (2006), Tsai et al. 
(2014) and Silva et al. (2020) for TSP optimization and Wu et al. (2020) for QKP.

2.2.1.2  Asymptotic performance ratio  In combinatorial problems especially for Bin packing 
problem, such as Balogh et al. (2015) presented an asymptotic performance ratio denoted as the 
ratio of an optimal number of bins converge by an algorithm to the optimum solution as defined 
in the following equation:

where L as input number of bins used by algorithm A to pack and Opt(L) as the number 
of bins in an optimal solution. Zehmakan (2015) presented a graphical comparison of this 
ratio between algorithms over a defined number of problem instances. Thus, a better algo-
rithm shows a lower ratio over the problem instances.

2.2.1.3  Feasible rate  The feasible rate is an independent run that generates at least one feasible 
solution. This metric applies to both continuous and discrete problems, where it is equivalent to 
the number of feasible trials divided by the total number of trials as shown in Eq. (43). A higher 
feasible rate shows that more solutions reached the feasible region of the search space, thus 
denoting a better performance. This metric is one of the standard procedures for CEC competi-
tion (Suganthan et al. 2005; Liang et al. 2006). Other literature defined this term as feasibility 
probability (Mezura-Montes et al. 2010).

(41)Δp =
pA − pB

pB
× 100,

(42)RAsymp(A) = lim
n→∞

sup

{
max

L∶Opt(L)=n

{
A(L)

n

}}
,
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2.2.1.4  Average number of function evaluation for optimality (AFESO)  AFESO is determined 
based on the average of FEV of each successful trial that reaches close to the neighborhood of 
f
(
xopt

)
 (Das 2018) with the formulation as:

with SuR as the number of successful runs and FEVsi as the function evaluation at the ith 
run. A lower AFESO has better performance since it denotes a lower average cost required 
by the algorithms to reach the near-optimum solution.

2.2.1.5  Success rate and performance  A successful run is an independent run with absolute 
difference between the best solutions f (x) and optimum f

(
xopt

)
 that less than a defined thresh-

old value. Liang et al. (2006) suggests a success condition with f (x) − f
(
xopt

)
≤ 0.0001 . 

The success rate and success performance are defined as in (45) and (46). Note that FEV is 
the number of function evaluations. Both measures are standard procedure for CEC compe-
tition (Suganthan et al. 2005; Liang et al. 2006).

Note that SR is also used in the formulation of an efficiency metric (Mora-Melia et al. 
2015) as defined in Eq. (8) that represents the effectiveness rate of SR over FEVs. The SP 
metric from Eq.  (46) can also be evaluated with the combination of the probabilities of 
convergence with AFESO. The metric estimates the speed and reliability of the algorithm 
(Mezura-Montes et al. 2010), a lower SP denotes a better combination of speed and con-
sistency, thus reliability of the algorithm as shown in the following equation.

with P as the probability of convergence, this is calculated by the ratio of the number of 
successful runs to the total number of runs.

2.2.1.6  Scoring rate of  best to  worst solution  A relatively similar measure as the suc-
cess rate is the score of the best concerning the worst converged solution or simply 
best solution∕worst solution . This metric describes the improvement ratio of the algorithm 
and generally indicates the coverage of solutions generated by the algorithm in its specific 
problem space. Such a metric can be usually applied in the design and combinatorial opti-
mization problems in order to compare the potential capability of the algorithm in solving 
the problem. The algorithm with a higher score is denoted as poorer compared to the lower 
ratio. Examples such as Adekanmbi and Green (2015) and Lee et al. (2019a) utilize a ratio 

(43)Feasible rate =
Number of feasible runs

Number of total run
.

(44)AFESO =
1

SuR

SuR∑
i=1

FEVsi,

(45)SR =
Number of succesfull runs

Number of total run
,

(46)SP =
(Mean FEV of succesfull run)(number of total run)

Number of succesfull run
.

(47)SP =
AFESO

P
,
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of best to worst solution as an indicator of algorithm improvement in engineering optimiza-
tion and water distribution problems. Another example is Santos et al. (2019) in the combi-
natorial Bin-packing problem that evaluates the ratio between the best and worst solutions 
of total bins. The average and variation of this ratio may also indicate the effectiveness of 
the algorithm over the others for n trials of solutions.

Another related quality indicator is the scaled median and scaled average performance 
as described by Wagner et al. (2018). In this method, the best and worst objective scores 
are defined as boundaries of solutions interval and the actual scores are mapped within [0, 
1] with 1 associated as the highest score. The scaled performance is quite similar to the 
median plot that normalized within [0, 1]. This metric has a better overview when the com-
parison is carried out with many algorithms.

2.2.2 � Measures of profile

This section discusses several performance metrics based on the profile of an algorithm. 
There are mainly six performance metrics based on characteristics or profiles proposed in 
the literature. Each method has an essentially similar perception of indicator but with slight 
differences.

2.2.2.1  Performance profile (Dolan and  Moré 2002)  The performance profile is defined 
with computational cost tp,s that obtained in each pair of problems and algorithms. The 
method illustrates a percentage of problems solved by computation cost that can be referred 
to as time, FEVs, or other cost-related units. Thus, larger tp,s reflects the worst performance. 
Then a performance ratio that is proportional to the computation cost is defined as:

with s as the solver (or algorithm) and S as the set of algorithms. In other words, the perfor-
mance ratio is identified by dividing the computation time of an algorithm by the minimum 
computation time returned from all algorithms. Then the performance profile of solver s is 
defined as:

with |P| as the number of elements of the test set P and �s(�) as the portion of time that 
corresponds to the performance ratio rp,s of algorithm s ∈ S within � ∈ ℝ . Note that �s(�) 
is the cumulative distribution function of the performance ratio. The best algorithm s ∈ S 
is represented by a higher value of �s(�) . The performance profile �s(�) compares different 
algorithm versus the best algorithm that has the highest �s(�) . Some examples of perfor-
mance profiles can be observed in Beiranvand et  al. (2017), Monteiro et  al. (2016) and 
Vaz and Vicente (2009). To derive the second best algorithm, a chart of performance pro-
file needs to be drawn without the first best performer. Some drawbacks are that the cri-
teria for passing and failing of convergence are flexible that may change the profile itself. 
Furthermore, the performance profile did not provide sufficient information for expensive 
optimization problems (Moré and Wild 2009). The main advantage of this method is it 
combines speed and success rate in one graphical form. The main information gained from 
the performance profiles is to show how the proportion of solved solution increases by 

(48)rp,s =
tp,s

min
{
tp,s ∶ s ∈ S

} ,

(49)�s(�) =
1

|P| size
{
p ∈ P ∶ rp,s ≤ �

}
,
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increasing of performance ratio. Liu et al. (2017b) improved the profile with the confidence 
interval by adding the upper and lower bound of the confidence interval in the profile chart 
to observe the variances generated by the algorithms.

2.2.2.2  Operational characteristic and operational zones (Sergeyev et al. 2017)  The oper-
ational zone is a further development of performance profile. The number of successful 
solutions within several trials can be represented graphically using the operational zone 
(Sergeyev et al. 2017). The method was originated from the idea of operational character-
istic for comparing deterministic algorithms introduced by Grishagin (1978). The opera-
tional characteristic is a non-decreasing function that indicates the number of problems 
solved after each FEV within the total number of trials. The operational zone consists of 
n operational characteristics performed by the metaheuristic algorithm with n as the total 
number of trials since a set of n operational characteristics resulted in n patterns or zone 
of the metaheuristic solutions. The zone is then extracted with upper- and lower bounds, 
representing the worst- and best case solutions and an average of operational characteristic 
for all runs can be estimated. The graphical construction of operational characteristics and 
the operational zone is shown in Fig. 9 (inspired by Sergeyev et al. 2018). The operational 
zone with average characteristics can be used to compare several algorithms in each chart. 
The example of operational zones in Fig. 9 consists of n number of trials from an algorithm 
that shaded between two red curves, these red curves represent the best (upper boundary) 
and the worst (lower boundary) trial of the measure algorithm. Then an average of the 
algorithm performance that relates the number of solved problems concerning the number 
of trials can be estimated as a middle line (represented in the blue curve). The quality of 
compared metaheuristic algorithms can be compared based on the average line and the size 
of the shaded area, which represents the total n trials of that particular algorithm. The lower 
the size denotes the lesser variance of solutions and better reliability of the algorithm. As an 
example, if the lower bound of algorithm b is higher than the operational zone of algorithm 
a, then it can be concluded that algorithm b outperformed algorithm a. The measurement of 
this method also shows no significant difference if the algorithms are executed with a differ-
ent number of trials (Sergeyev et al. 2018).

2.2.2.3  Data profile (Moré and Wild 2009)  It is a modified version of the performance pro-
file for a comparison of derivative-free algorithms (Moré and Wild 2009). The information 
from the data profile shows the percentage of problems solved in a given tolerance of τ time 
within the budget of k FEVs. It is assumed that the numbers of FEVs are increased by a 

Fig. 9   Operational characteristics 
and operational zone
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higher number of variables to satisfy the convergence criteria. The data profile is suitable 
for optimization problems particularly with a high computational burden and is defined as 
follows:

where tp,s as the number of FEVs required to satisfy the convergence test, np is the number 
of variables in the problem p ∈ P , and ds as the percentage of solved problems in k

(
np + 1

)
 

FEVs. The data profile approximates the operational characteristic if the term tp,s

np+1
 is 

replaced by the number of iterations. Some examples of a data profile can be observed in 
Beiranvand et  al. (2017) and Hellwig and Beyer (2019). In a nutshell, the data profile 
shows how the proportion of solved solution increases by increasing the relative measure 
of the computational budget. Liu et al. (2017b) improved the data profile with a confidence 
interval to observe the variances generated by the algorithms.

2.2.2.4  Accuracy profile (Hare and  Sagastizábal 2006)  The accuracy profile (Hare and 
Sagastizábal 2006) is designed for a fixed cost dataset. Fixed-cost is referred as a final opti-
mization error f (x) − f

(
xopt

)
 that is fixed after running the algorithm for a certain period, 

the number of FEVs, or iterations. The accuracy profile is based on the accuracy measure of 
fixed-cost datasets as follows:

with �p,s as the accuracy measure, f p,s
acc

= log10
(
f
(
x̄p,s

)
− f

(
xpopt

))
− log10

(
f
(
x0
p

)
− f

(
xpopt

))
 , 

x̄p,s is the solution obtained by algorithm s on problem p, xpopt is the optimum solution and 
x0
p
 is the initial point of problem p. The term f p,sacc in the equation above is interpreted as 

negative since the improvements from starting f
(
x0
p

)
 towards global optimum shall be dec-

remented. The performance of the accuracy profile is then calculated as in Eq. (52).

The accuracy profile Rs(�) is a proportion of problems that algorithm s ∈ S able to solve 
within an accuracy of � of the best solution. Some examples of an accuracy profile can be 
observed in Beiranvand et al. (2017).

2.2.2.5  Function profile (Vaz and Vicente 2009)  It is a modified version of the data profile 
that shows the number of FEVs required to achieve some level of global optimum (Vaz and 
Vicente 2009). The reason for the modification is due to the characteristic of stochastic algo-
rithms that did not necessarily produce a sequence monotonically decreasing towards best 
value (Vaz and Vicente 2009). The function profile is formulated as follows:

(50)ds(k) =
1

|P| size
{
p ∈ P ∶

tp,s

np + 1
≤ k

}
,

(51)𝛾p,s =

{
−f

p,s
acc, −f

p,s
acc ≤ M,

M, −f
p,s
acc > M,

(52)Rs(�) =
1

|P| size
{
�p,s|�p,s ≥ �, p ∈ P

}
,

(53)𝜌s(Υ) =
1

|P| size
{
p ∈ P ∶ rp,s < 𝛶

}
,
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with rp,s as the average number of FEVs taken by algorithm s to solve problem p for p ∈ P 
and s ∈ S . The value of rp,s is condition-based, rp,s = +∞ (denote as failure) if the algo-
rithm is unable to find a feasible solution of problem p within a defined relative error ε 
with 

(
fp,s − fp,L

)
∕
|||fp,L

||| > 𝜀 . The value fp,s is the objective function obtained by algorithm s 
on problem p and fp,L represents the best objective function obtained by all algorithms for 
problem p. The value �s(Υ) is equal to the function profile of algorithm or solver s ∈ S as a 
fraction of problems where the number of the objective function is lower than Υ.

2.2.2.6  Performance metric based on  stochastic dominance (Chicco and  Mazza 2019)  This 
metric is generally defined as the Optimization Performance Indicator based on Stochastic 
Dominance, OPISD. The method is based on the first-order stochastic dominance of CDF 
between two algorithms. The first-order stochastic dominance is defined as follows: the solu-
tions obtained by an algorithm A has the first-order stochastic dominance over the solutions 
obtained by algorithm B if and only if the CDF of any solutions obtained by algorithm B lie on 
the right side of CDF from solutions of algorithm A as shown in Fig. 10 and expressed math-
ematically as follows:

with H as the number of solutions from each algorithm and F as the CDF constructed for 
each algorithm A and B sorted in ascending order of variable y.

The OPISD metric modifies the dominance formulation with F(H)
ref

(y) ≥ F
(H)
algo

(y) with 
F
(H)
ref

(y) as a reference CDF and F(H)
algo

(y) as the CDF of the algorithm. The reference CDF is 
constructed differently based on either with known or unknown global optimum. With known 
global optimum, the reference CDF is fixed and calculated in absolute term, whereas in 
unknown cases, the entry of reference CDF may vary depending on H number of solutions 
and on the context of calculation such as computation time limit. The metric OPISD is then 
defined by firstly calculating the area between the reference CDF and the algorithm CDF as 
follows:

(54)F
(H)
A

(y) ≥ F
(H)
B

(y),

(55)A
(H)
A,G

(y) =
1

H

H

∫
z=0

(
y
(H)
A

(z) − yG

)
,

Fig. 10   First-order stochastic 
dominance

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6

C
D

F

Objective function

Algorithm A

Algorithm B



2355Performance assessment of the metaheuristic optimization…

1 3

with A(H)
A,G

(y) referred to as the area calculation for known global optimum, where it 
depends on the absolute yG and A(H)

A,R
(y) for unknown optimum that depends on the rela-

tive change of reference,y(H)
ref,R

(z) . The OPISD metric is then determined by each absolute 
(known optimum) or relative (unknown optimum) as in Eqs. (57) and (58) respectively.

The OPISD value is then ranked by the different algorithms and higher value denotes better 
performance as the metric is inversely proportional to the area between the algorithm’s CDF 
and the reference CDF.

2.2.3 � Scalability

The algorithm efficiency reduces as the dimensionality of search space increases. The main 
reason for this reduction is due to the rapid growth of the search space hyper-volume by a 
higher number of dimensions, which then reduces the convergence speed of most of the 
algorithms. Some literature presents the scalability measure that plots the average error and 
standard deviation of the algorithm’s solutions over the dimensions with a fixed limit of FEVs 
(Kim et al. 2016). Others present the algorithmic performance with the number of dimensions 
individually. A more comprehensive and simplified method is presented by Das et al. (2009). 
The number of FEVs required by algorithms to reach the optimum solution within a defined 
threshold is plotted with respect to the number of dimensions as shown in Fig. 11 (inspired 
by Das et al. 2009). The plot shows an increasing trend of required FEV by higher dimen-
sion, thus a lower inclined curve shows better robustness of algorithm against dimensionality. 

(56)A
(H)
A,R

(y) =
1

H

H

∫
z=0

(
y
(H)
A

(z) − y
(H)
ref,R

(z)
)
,

(57)OPISD
(H)
G

=
1

1 + A
(H)
A,G

,

(58)OPISD
(H)
R

=
1

1 + A
(H)
A,R

.

Fig. 11   Scalability measure of 
algorithms (adopted from Das 
et al. 2009)
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Based on the figure, it is clear to indicate that DEGL/SAW has the best performance against 
the dimensionality range of [10; 50; 75; 100] compared to other algorithms.

The dimensionality can also be compared against the population size particularly related to 
the large scale global optimization (LSGO) problem (Li et al. 2013). The performance com-
parison can be measured in either constant or with dynamic size such as (n = 2d) as demon-
strated by Bolufé et al. (2015) in multiple dimensions d = 5, 10, 50, 100, and usually tabulated 
in increasing order of dimensions by each problem. Inspired from the idea of fitness differ-
ence as demonstrated by Bolufé et al. (2015) that measure the average relative performance 
between two algorithms as follows:

with f̄algorithma
 and f̄algorithma

 as the average fitness of algorithms a and b respectively and 
divided by the maximum fitness difference between both. A negative value denotes that 
algorithm a performed better than the others. Using this formulation, a database of fitness 
differences with respect to dimensionality can be measured by calculating the Eq. (47) over 
multiple dimensions. Then a relationship curve of relative performance with the number of 
dimensions can be plotted.

2.2.4 � The 100‑digits accuracy

It is a unique performance evaluation based on the digits of the solution. The method was 
proposed by Trefethen (2002) in conjunction with the Society for Industrial and Applied 
Mathematics (SIAM) with the idea to test high accuracy computing of optimization algo-
rithms. The evaluation is denoted as the 100-Digits challenge designed to solve 10 hard 
problems to 10 digits of accuracy. Each correct digit is awarded one point making the max-
imum score of 100. A similar 100-Digit challenge is also proposed currently in CEC 2019 
(Price et  al. 2018) with the same concept of 10 test functions to compute each function 
minimization to 10 digits of accuracy without being limited by time. The 10 problems shall 
be solved with one algorithm with a limited tuning of the control parameter for each func-
tion. The criteria for 10-digits accuracy is defined as follows: suppose the optimum solu-
tion is 1.000000000, thus a solution of 1.924235666 denotes a one-digit accuracy (‘1’) and 
solution of 1.003243567 denotes a solution accuracy of 3 correct digits (‘1.00’). Each test 
function is limited to predefined dimensions and range by the CEC organization. The score 
for each function is the average number of correct digits in the best of 25 out of 50 trials. 
The results for each test function optimization shall be recorded in a standard requirement 
by CEC 2019 with: the number of FEVs that each trial utilized to reach 1, 2,…, 10-digit 
level of accuracy, a table with the number of trials in a total of 50 that found n correct 
digits, an average number of correct digits in the best 25 runs and the total score (the sum 
of scores of all 10 functions) also need to be included along with the values of two control 
parameters that are used for tuning for each function.

2.2.5 � Statistical analysis

Another crucial measure of algorithm performance is statistical analysis. It is essen-
tial to include a comprehensive statistical comparison among the algorithms to general-
ize the effectiveness of exploration and exploitation and to deduce a conclusion on which 

(59)Diff% =

(
f̄algorithma

− f̄algorithmb

)

max
(
falgorithma

, falgorithmb

) ,
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algorithm performed better in a specific problem. This method is highly recommended 
to ensure that conclusions obtained from the corresponding tests are not biased by the 
researcher’s intention or by chance. Thus, correct descriptive and inferential statistics are 
important to ensure that the conclusion been made are correct.

2.2.5.1  Descriptive statistic  The descriptive statistic describes the raw data in a more 
meaningful way with simple interpretation and can be divided into four clusters that include 
the measure of frequency, distribution, central tendency, and spread of the data. Several 
numerical statistical indices usually used for each cluster is summarized in Fig.  12 that 
divides the type of data into normal and non-normal type The indices can be represented 
in a graphical form such as simple bar-chart or tabular form, which most of the literature 
usually highlight the best value of each statistical index among the algorithms. A standard 
procedure defined by IEEE Congress on Evolutionary Competition, CEC (Suganthan et al. 
2005) include termination algorithm by error f (x) − foptimum = 10−8 with descriptive of best 
value, mean, median, worst, and standard deviation.

Most of the literature presented their algorithms’ capability through univariate statis-
tics that cover at least some or all of the measures summarized in Fig. 12. The frequency 
measure describes the number of global optimum or the frequency of optimum solutions 
within a defined threshold found by the algorithm. In combinatorial problems, the count of 
the optimum solution is a type of frequency measure that can be presented in tabular form 
or simple graphical form. Some examples from literature such as Zhou et  al. (2019) for 
comparing four algorithms on six TSP instances, Cubukcuoglu et al. (2019) for compari-
son of 10 instances QAP with various island-based algorithms and Fomeni et al. (2020) 

Fig. 12   Univariate descriptive statistics
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summarized the number of solved instances for Quadratic Knapsack Problem. In a Bin 
packing problem, general information of performance is shown by the number of instances 
for which optimal solutions are found over the total bins, as presented by Santos et  al. 
(2019). The total bins are referred to as the total number of required bins for each algo-
rithm. Other examples such as the number of solved TSP instances in minimum time or 
gap as presented by Campuzano et  al. (2020) and the frequency of solved TSP instance 
within n number of trials (Silva et al. 2020) are also considered as a piece of good informa-
tion for the algorithm effectiveness.

The distribution measure is essential for understanding the data type represented by the 
algorithm solutions, which then lead to the decision of selecting the appropriate method 
of measuring central tendency and spread of the solutions. For normally distributed data, 
the average of solutions can be calculated using the arithmetic mean with x̄ =

∑n

i=1
xi∕n , 

whereas for non-normal data is calculated with median instead. The median is the middle 
value of an ordered statistics, which is referred to as the sequence of data in non-decreasing 
order x1 ≤ x2 ≤ ⋯ ≤ xn with x1 and xn as the smallest and largest value respectively. In 
mathematical formulation, the median is defined as:

The median also corresponds to the 0.5 percentiles of data and is more resistant 
against outliers as compared to mean. The quantiles or percentiles divide the data into 
100 equally scale, while deciles divide the data into 10 equally scaling such that 10% 
of the data represents D1 , 20% of data for D2 and so forth. Another data fraction index 
for location is the quartiles that divide data into four equal divisions, such that 25% 
of the data represents Q1 , 50% for Q2 , 75% of data for Q3 and the last quartile with 
Q4 . These data fraction indicator is an alternative of location measure that gives the 
researcher more insights on the percentage of data concerning the location associated 
with the probability of finding the solution. For random variable x from a population, 
the quantiles qp is defined as P

(
x ≤ qp

)
≥ p and P

(
x ≥ qp

)
≤ 1 − p . In other words, the 

probability of achieving a solution that equals or outperforms qp is greater than or equal 
to p (Ivkovic et al. 2016). Unlike the arithmetic mean, the quantiles also can be used to 
find out the percentage of quality for an algorithm if it is unable to solve a solution with 
probability r with the condition p < 1 − r . The quantiles measure for location has the 
advantage of interpreting the solutions over a range of algorithm executions. Some ref-
erences on using these measures can be found in Ivkovic et al. (2016) and Woolway and 
Majozi (2019) as well as Pierezan et al. (2019). The measure of the spread of normally 
distributed data by using the standard deviation is the most widely accepted method 
among the researchers. The standard deviation is defined as the root mean square of 
deviation as shown in the following equation:

where xi as the observed individual value of sample data,x̄ as the mean of sample data for n 
number of samples. The variance is equal to the square of standard deviation. The standard 
deviation is an appropriate variability measure for comparison of different algorithms that 

(60)x̃ =

⎧⎪⎨⎪⎩

x� (n+1)

2

�, if n = odd,
�
x( n

2 )
+x( n

2
+1)

�

2
, if n = even.

(61)s =

√√√√ 1

n − 1

n∑
i=1

(
xi − x̄

)2
,
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are defined in the same units and with nearly equal means. However, it is not appropriate 
to benchmark standard deviation if the means between the algorithms are relatively large 
or each algorithm is defined with different units. The suitable method for such comparison 
is by measuring the coefficient of variation, COV that determines the relative dispersion of 
algorithms that expressed as follows:

The COV is a unit-free measure and usually presented as a percentage since it measures 
the ratio of dispersion, s over mean. This measure is suitable if one to compare the variabil-
ity of the proposed algorithm with other algorithm’s solution presented in other literature. 
An example is from Boryczka and Szwarc (2019) that used COV as an additional indica-
tor of algorithm effectiveness for Asymmetric TSP. For non-normal data, the spread can 
be determined based on the inter-quartile range, IQR that corresponds to the middle half 
of the data between Q3 and the Q1 as shown in Eq. (63). This is also equivalent to the box 
range of the box plot as illustrated in Fig. 13. IQR is a robust estimate of data spread.

Another useful dispersion measure for non-normal data is the median absolute devia-
tion, MAD (Hampel 1974) defined as follows:

where n is the number of population, xi is the individual value and m is the median. If the 
underlying distribution is approximately normal with large data, then the formulation can 
be simplified by multiplication of a constant 1.483 as given as in the following equation 
and denoted as scaled MAD or MADe (Ellison et al. 2009).

(62)COV =
s

Mean
× 100.

(63)IQR = Q3 − Q1.

(64)MAD =
1

n

n∑
i=1

||xi − m||,

Fig. 13   IQR representation
IQR

Q3

Q1

Q2, median

IQR
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The constant 1.483 is a correction factor to make MAD unbiased to the normal distribu-
tion. The MADe method is a robust estimator and not unduly affected by extreme values 
even though few data points make the distribution to be skewed (Olewuezi 2011).

2.2.5.2  Inferential statistic  The inferential statistic is another scope of statistical measure 
where it is important to make generalizations about the relationship of sample data from 
each algorithm and to observe the differences between them. In regard of modern perfor-
mance comparison between optimization algorithms, this branch is mainly divided into two 
categories, which are the frequentist and Bayesian tests (Carrasco et al. 2017, 2020) The fre-
quentist is considered as a ‘classical approach’ that further divided into parametric and non-
parametric tests with decision scope of hypothesis tests, whereas the Bayesian test concerns 
on prior and posterior distributions based on the probability of both conditions. Figure 14 
summarizes the suitable method for frequentist statistical analysis that depends on the type 
of data (parametric and nonparametric) and the number of comparisons (two or multiple sets 
or ordered alternative).

There are three main attributes for parametric tests: independence of data, normality, 
and Heteroscedasticity (Sheskin 2006). Under theoretical analysis, if one or more of the 
assumptions are not met, a non-parametric test is the appropriate alternative for the com-
parison analysis. The selection of tests under both parametric and non-parametric meth-
ods is depending on the number of n algorithms being compared; multiple comparisons 
are the option for n > 2 and two-sample comparisons otherwise. As shown in Fig. 14, the 
parametric two samples comparison (also denoted as t test) are further divided into paired 
t-test and independent t-test. The paired t-test (Nakib and Siarry 2013) is appropriate if the 
variables are dependent on each other. Examples of using this condition are by comparing 
the same algorithm on two problem instances or comparison of previous and an improved 
version of the same algorithm. The selection of independent t-test is also divided into two 
criteria that depend on the homogeneity of variance between both samples (Snedecor and 
Cochran 1989). The t-test determines the differences between the two population means 
by comparing sample standard deviations and means. Even though this test requires nor-
mality conditions, it is fairly robust to violation of assumption when the sample sizes of 
both samples are equal or greater than 30. Another mostly implemented parametric mul-
tiple comparison test is the analysis of variance or ANOVA that compares the number of 
variables and determines whether significant differences between variances and means are 
observed. Generally, ANOVA is suitable if three main conditions of parametric are met. 
However, findings from Blanca et al. (2017) suggest that ANOVA is still suitable for the 
non-parametric type of data due to the robustness of the F-test that control Type I error if 
the distributions have values of skewness and kurtosis ranging from − 1 to + 1. The Type 
I error is referred to as the error committed if the null hypothesis,h0 is rejected when it is 
true for acceptance. ANOVA determines the differences by computing the F-ratio, a ratio 
of variation between and within data with a posthoc test. Among the popular posthoc tests 
are LSD, Tukey-HSD, Scheffe, Bonferroni, SNK, and Duncan.

On the non-parametric counterparts, the selections of two sample comparisons rely on 
the type of comparison. The first option is whether to compare the distribution of the data, 
such as comparing the ECDF of two algorithms. This is can be done by using the Kol-
mogorov–Smirnov test (Chiarandini et al. 2007). This method considers the maximal dif-
ference between each cumulative distribution and the distribution statistic is determined 

(65)MADe = 1.483MAD.
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by permutation methods (Conover 1980). Also, this test can show whether there exists a 
statistical dominance between two distributions and able to determine general differences 
instead of the location differences such as mean or median (Chiarandini et al. 2007). The 
second selection is whether to compare the algorithm against its benchmark solution, 
which can be analyzed using a sign test (Dixon and Mood 1946). In essence, the sign test 
is a one-sample test of median that can be used to compare: (1) the algorithm solution 
against the known global optimum value (hypothesized value), (2) previous and improved 
version of the algorithm, and (3) for ordered categorical data of rank that is not based on 
a numerical scale such as non-numeric quality measure comparison of an algorithm to the 
reference. Further non-parametric two-sample comparisons are the Wilcoxon rank-sum test 
(or also defined as Mann–Whitney U test) and the Wilcoxon signed-rank test (also defined 
as Wilcoxon t-test). The former method is suitable for independent samples, whereas the 
second variant is otherwise. The Wilcoxon signed-rank test (Rey and Neuhäuser 2011) is a 
pair-wise test to detect significant differences between the two samples, which are reflected 
in two algorithms. The method is more powerful even under the appropriately paired t-test 
(García et  al. 2009) and the advantage of this test is no dependency of Type I error on 
the assumption of population normality (Fahoome 2002). This test is suitable to compare 
the previous and improved versions of the same algorithm. The Wilcoxon rank-sum test 
compares two sample medians that correspond to unpaired t-test (MacFarland and Yates 
2016). This method is more powerful compared to the sign test for comparison of ordered 
categorical data.

The non-parametric multiple comparisons in Fig. 14 comprises two methods of com-
parisons: ordered variables and comparison between samples. For ordered variables com-
parison, three methods have been introduced and implemented in algorithm comparisons, 
which are the Page test, Terpstra–Jonkheere test, and Match test. These methods are appro-
priate for comparing the convergence performance between algorithms by evaluating the 
differences among each algorithm’s best value at several points of the search. In contrast 
to the multiple sample comparisons such as Mood’s median (MM), Kruskal–Wallis (KW), 
Friedman and Quade tests, the ordered alternatives compare several populations with an 
ordered hypothesis as an extension of the one-sided test. The multiple sample comparisons 
are appropriate for a general alternative where at least two independent populations dif-
fer in averages (either mean or median depending on parametric or non-parametric tests). 
This test did not identify the pairwise group differences or the trend of these differences, 
whereas the ordered alternative specifies the order of differences or trends among groups 
(Fahoome 2002).

The non-parametric multiple sample comparisons are further divided into either with 
or without block design or repeated measures. Under this condition, the MM and KW 
are appropriate for independent samples, and especially KW is analogous to the one-way 
ANOVA of the parametric test. The MM test is used to determine whether the medians 
of all n algorithms are equal. It is more robust against outliers than KW-test and is appro-
priate for the preliminary stage of analysis but is less powerful (due to wider confidence 
interval) for analyzing data from several distributions including normal distribution and 
data should only include one categorical factor. Other options such as the Friedman test, 
Friedman aligned test, and Quade test are suitable for k related samples and analogous 
to the two-way ANOVA. The Friedman test is quite similar to KW-test except it is for 
randomized block design or repeated measure. The observed values within each block 
are replaced by the equivalent ranks. The Friedman test differentiates the algorithms by 
its sum of ranks, whereas KW-test differentiates between algorithms by the average rank. 
The Aligned Friedman Ranks is based on an aligned performance by firstly evaluating the 
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average performance that is denoted as the value of location. Then the differences between 
each algorithm’s performances with the value of the location are obtained and repeated in 
each combination of algorithms and problems: referred to as aligned observation or score. 
Another possible option for multiple samples is the Quade test. This method is unique due 
to the ranking method that based on the weightage such as different difficulty or differences 
registered in the algorithm performance, while other methods (discussed before) are based 
on similar ranking size. It is to be noted that most of the recent combinatorial optimization 
problems reasoning their comparison in the non-parametric comparisons such as the Sign 
test (Dahmani et al. 2020) and Wilcoxon test (Akhand et al. 2020; Ali et al. 2020; Zhong 
et al. 2019).

2.2.6 � Bayesian test

The alternative to hypothesis testing is the Bayesian test. The application of the Bayesian sta-
tistical method in algorithm performance analysis is relatively small compared to traditional 
hypothesis test or frequentist test. Some of the applied Bayesian methods in the literature are 
(1) correlated Bayesian t-test, (2) Bayesian sign test, (3) Bayesian Wilcoxon signed-rank test 
and (4) Bayesian Friedman test. The correlated Bayesian t-test can be implemented to compare 
two algorithms on multiple data sets (Corani and Benavoli 2015). The test considers the corre-
lation among data of both algorithms with a covariance matrix and assumes a normal-Gamma 
distribution as prior distribution of the difference between algorithms and Student distribu-
tion as the posterior distribution of the parameter. The possibility of no significant difference 
between algorithms is determined by a region of practical equivalence (denoted as rope) and 
it is defined with bounds of 

[
rmin, rmax

]
 . The probabilities of the algorithms’ relationships are 

derived based on rope. An example of a relationship is P
(
algoA = algoB

)
= P(� ∈ rope) or 

P
(
algoA << algoB

)
= P

(
𝜇 < rmin

)
 . The analysis of probabilities is straightforward and the 

limits can be varied according to the circumstances.
The Bayesian sign test is a non-parametric comparison based on the Dirichlet process 

(Benavoli et al. 2014). The inference for Bayesian sign test is constructed by firstly, develop 
the posterior probability density function as a linear combination of Dirac’s delta centered on 
the observation with weights (derived from Dirichlet distribution), then the posterior prob-
ability function is approximated as a posterior probability of the belonging parameter to each 
region of interest (Carrasco et al. 2017, 2020).

The Bayesian Wilcoxon signed-rank test consider two independent observations Z and Z′, 
where Z is the difference between paired data (or two algorithms solution) and Z ≥ Z′ (Bena-
voli et al. 2014). Assuming that both observations come from F cumulative distribution, then 
the Bayesian Wilcoxon signed-rank test is approximated with prior and posterior distribution 
F ∼ DP

(
�,G0

)
 and F ∼ DP

(
�n,Gn

)
 respectively with n as the number of observations Z fall 

in a defined area. The posterior distribution is obtained by sampling the weights of DP (Car-
rasco et al. 2017).

3 � Multi‑objective optimization algorithms

Unlike single-objective, the goal of multi-objective optimization is to find the best solutions 
that comprehend good feasible solutions of n objective functions, with n ≥ 2 . Mathematically 
speaking, the multi-objective problem, MOP can be formulated as follows (Ehrgott 2005):
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with x as the solution, n as the number of objective functions, U as the feasible solutions, 
fn(x) as the nth objective function and min/max as the combination of objectives. Gen-
erally, different objectives contradict each other and a compromised solution needs to be 
accepted. This also resulted in an infinite number of optimal compromises solutions, which 
is denoted as Pareto set. The corresponding points that performed the best solution among 
Pareto set are defined as the Pareto front. Two known options can be used for analyzing 
MOP, the first method is based on scalarization and the second method is Pareto-optimality 
(Weck 2004; Gunantara and Hendrantoro 2013; Peitz and Dellnitz 2018).

The scalarization method aggregates all MOPs into a scalar function incorporated with the 
fitness function (Gunantara and Hendrantoro 2013) and the function is formulated into a sin-
gle solution using weights. A typical formulation of the scalarization method is based on the 
weighted sum approach as follows (Murata et al. 1996):

with wn as the weight and fn(x) the objective function of the nth objective respectively. 
The weights are defined before the optimization process and determine the solution of the 
fitness function. The assignment of weight is also dependent on the performance priority; 
larger weight value is denoted as a higher priority compared to the smaller value (Gunan-
tara 2018). There are many types of weights formulation for scalarization methods such as 
equal weight, rank order centroid weight, rank-sum weight, є-constraint method, Cheby-
chev method, and boundary intersection method (Gunantara 2018; Emmerich and Deutz 
2018). The performance of the scalarization method of multiple runs can be analyzed 
using cumulative distribution function, CDF as applied in practical example by Gunantara 
(2018). However the scalarization method usually suffers from shortcomings that include 
information relating to the original problem such as dominance relationship might be lost, 
and difficulty of choosing the right weighting scheme (Hale et  al. 2020). Generally, all 
scalarization methods have in common that the Pareto set is approximated by a finite set 
of Pareto optimal points. The Pareto optimal points are computed by solving scalar sub-
problems. The second MOP options are the Pareto-optimality that aims to obtain the whole 
Pareto front without a combination of objective functions. Comparing both methods, the 
Pareto methods require a much longer time compared to the scalarization method. Gunan-
tara and Hendrantoro (2013) found that the Pareto method takes 4.4 times more compu-
tation compared to the scalarization method. The main reason is that the Pareto method 
evaluates all the possible pairs in the optimization evaluation, whereas the optimization 
evaluation via the scalarization method is done randomly based on the number of popula-
tions and iterations.

The multi-objective problems consist of sets of solutions that need to be optimized con-
cerning the constraints. This conception of optimality is closely related to the notion of 
dominance. A solution x dominates another solution vectors x′ , 

[
x, x′ ∈ �

]
 with � contains 

all feasible solutions if it is at least as good as the latter for each objective and strictly better 
for at least one objective. Mathematically speaking, the vector x dominate x′ is described 
as x ≻ x

′ . Thus, a set of non-dominated solutions with respect to � is defined as Pareto 
optimal set,P∗ . The corresponding Pareto optimal set of the objective function then reveals 
the Pareto front of a problem.

The Pareto front is the result of mapping Pareto optimal set P∗ to the objective space, 
Γ as shown in Eq.  (68). A non-dominated solution set obtained by the algorithm should 

(66)min∕maxf1(x), f2(x),… , fn(x), x ∈ U,

(67)F(x) = w1f1(x) + w2f2(x) +⋯ + wnfn(x),
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approximate the true Pareto front and able to cover the true Pareto front as widely as 
possible.

Generalization using PF is generally applicable in both continuous and discrete multi-
objective problems. For discrete problems such as the Knapsack problem, the Pareto front 
is determined by plotting the non-dominated solutions of each knapsack in each axis, and 
the algorithm located to the furthest stretch is the best compared to others. The Pareto front 
can be plotted by different problem instances and item sizes. The notions of dominated, 
non-dominated solutions, and Pareto front, PF are shown in Fig. 15a. The set of dominated 
solutions are indicated with red points and the set of non-dominated solutions are indicated 
with blue points, PF is then derived with the blue curve.

Based on the figure, two important terms need to be noted, which are the anchor point 
and utopia point. The anchor point represents the best point of each objective function (dis-
played with light blue points), whereas the utopia point, f0 (also denoted as an ideal point) 
signifies the intersection of the minimum of both objective functions (if both objectives 
aim at minimization) as shown in black point on the figure. Generally, the utopia point 
is not attainable in the Pareto set since it lies beyond the attainable area of both objec-
tives. The next best-compromised candidate is the corresponding Pareto solution that lies 
as close as possible to the utopia point (denoted with an arrow in Fig. 15a. The closeness is 
implying with the minimum Euclidean distance from the utopia point to the corresponding 
PF as defined in the equation below (Chang 2015):

with f 0
j
 as the component of the utopia point in the criterion space and fj(x) as the closest 

point on the Pareto front.

(68)PF = {F(x) ∈ Γ|x ∈ P∗}.

(69)D(x) =
‖‖‖f (x) − f 0

‖‖‖ =

√√√√ q∑
j=1

[
fj(x) − f 0

j

]2
,

(a) Dominated and non-dominated solutions (b) Two objectives with different goals

Fig. 15   Pareto optimal set representation
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The pattern of PF varies by the different combinations of objective functions as depicted 
in Fig. 15b. The figure illustrates PF of four different combinations of bi-objective prob-
lems with “Max” as a maximization problem and “Min” as a minimization problem 
respectively. There are numerous multi-objective measures proposed in the literature. 
Nonetheless, no single measure can entirely capture the total MOP performance as some 
of the metrics reveals the effectiveness and others related to the efficiency performance. 
Thus, appropriate measures must be selected upon MOP claims to ensure useful analysis 
and findings. Hansen and Jaskiewicz (1998) introduced quality aspects of MOP based on 
the approximation to the true Pareto front that defined as outperformance relations. This 
method shows a relationship between two sets of internally non-dominated objective vec-
tors A and B as summarized in Table  5. The complete outperformance is the strongest, 
whereas the weak outperformance is the weakest of the relations.

Table 5   Outperformance relations

Weak outperformance A weakly outperforms B if all points in B are equal to or dominated by A 
with at least one point in A that not contained in B

Strong outperformance A strongly outperforms B if all points in B are dominated by A and some 
points in B are dominated by point in A

Complete outperformance A completely outperforms B if each point in B is dominated by point in A
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Fig. 17   The main categorization of performance metrics for MOP
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The MOP metrics can be categorized in numerous ways. Earlier literature such as Zitzler 
et al. (2000) proposed three measurable goals: (1) minimization of the distance between 
non-dominated front to PF, (2) good distribution of solutions in objective space, and (3) 
maximization of the non-dominated front with a wide range of values by each objective. 
Later literature such as Okabe et al. (2003) categorized MOP measures in terms of cardi-
nality, distance, volume, distribution, and spread. Coello et  al. (2010) divide the perfor-
mance measures into convergence, diversity, and hybrids indicators. Jiang et al. (2014) and 
Cardona and Coello (2020) categorized the metrics into capacity, convergence, diversity, 
and convergence-diversity measures. Riquelme et  al. (2015) divide the metrics into (1) 
quality measure that includes cardinality, accuracy, and diversity metrics or (2) the number 
of approximation sets involved: unary and binary metrics. Audet et al. (2018) divide the 
categories into cardinality, convergence, distribution-spread, and convergence-distribution 
base metrics. All of the categories above cover mainly on the effectiveness of the algorithm 
in MOP with the objective of better diversity and proximity of solutions towards PF as 
shown in Fig. 16.

As a general conception and based on literature as discussed previously such as Audet 
et al. (2018), Cardona and Coello (2020). Requilme et al. (2015) and Jiang et al. (2014), the 
main categories of MOP metrics can be defined briefly as in Fig. 17.

The CDF based metric is referred to as the algorithm performance based on its cumula-
tive distribution of solutions. The cardinality metrics are referred to as the number of the 
solution found by the algorithm. A higher number of solutions denote better performance. 
The convergence metric reflects the distance of solution sets towards PF. The diversity met-
ric measures the distribution and the spread of the solutions. The convergence and distri-
bution metric covers both performance indicators of distance and spread of the solutions 
towards PF. Since the general goal for MOP measures is the quality of solutions concern-
ing the PF, there is no specific cluster for the effectiveness and efficiency category. Some 
of the metrics from the category in Fig. 17 did reflect the efficiency and mostly effective-
ness of the algorithm’s solution. The most applied performance metrics in MOP are sum-
marized as the following sub-sections in chronological order, however, they should not be 
considered as a complete list. Each measure is clustered according to the category defined 
in Fig. 17.

3.1 � Cumulative distribution for MOP

The cumulative distribution is one of the good measures for MOP performance due to the 
stochasticity of the algorithms and variation of solutions that may dominate or weakly 
dominate PF approximation in more than one objective. Two main measures under this 
category are the Empirical Attainment Function, EAF, and average Runtime Attainment 
Function, aRTA as described in the following sub-section.

3.1.1 � Empirical attainment function, EAF (Fonseca and Fleming 1996)

The attainment function is a generalization of ECDF that is used for analyzing and compar-
ing stochastic algorithms performance in MOP. Unlike most of the MOP performance indi-
cators, this method illustrates the algorithm performance in graphical form. The attainment 
function describes the location of algorithm solution in objective space and it is estimated 
empirically, thus denoted as empirical attainment function, EAF. Mathematically, the EAF 
is defined as in the following equation:
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with Xi as the ith non-dominated set approximated Pareto front or the frequency of attain-
ing z by its respective approximation set X1,… ,Xn of an algorithm in n runs with ≼ denotes 
as the weak Pareto dominance relation between sets and I(x) as an indicator function that 
maps the objective space to [0, 1] with I(x) ∶ ℝ

d
↦ {0, 1} or Eq. (71).

In general, the EAF is a function α that estimate the probability of being dominated 
by the approximated PF within the objective space ℝd . The attainment surface method 
separates the boundary of objective space into two regions. The first region is attained 
or dominated objective function by the algorithm and the second is the region that is not 
attained by the algorithm. This measure is formalized in the concept of k%-attainment 
surface that corresponds to k/100 percentiles of empirical frequency distribution, which 
corresponds to k = i ∗ 100∕n with i = 1,… , n runs of the algorithm (Ibánez et al. 2010). 
An example, median attainment is referred to as region attained by 50% of the runs, 
whereas 25%, as well as 75%, correspond to 25th and 75th percentiles of attainment or 
the first- and third quartile fronts respectively. Besides, the region between both per-
centiles also corresponds to the inter-quartile region that analogous to the inter-quartile 
range for the single-objective problem (Ferrer et al. 2012). An example of EAF on the 
bi-objective problem is shown in Fig. 18. EAF plot can also be used for comparing algo-
rithms by plotting each EAF for each algorithm side by side and the location of objec-
tive vectors for each algorithm can be compared.

The attainment function of each algorithm can also be compared by its differences, 
denoted as Differential Empirical Attainment Function, Diff-EAF. The method is rela-
tively simple and easy to understand based on its graphical description that plots the 
EAF differences in a single chart. As an example, two algorithms are measured on solv-
ing the same bi-objective problems with n runs. Then the Diff-EAF can be calculated as 
in the following equation (Ibánez et al. 2010).

(70)𝛼(z) =
1

n

n∑
i=1

I
(
Xi≼{z}

)
,

(71)I(x) =

{
1, if x is true,

0. otherwise.

(72)�A−B
n

(z) = �A
n
(z) − �B

n
(z).

Fig. 18   EAF with 25%, 50% 
(median) and 75% attainment
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A positive difference in the corresponded area shows that algorithm A is better com-
pared to B and otherwise for a negative difference. Thus, the graphical representation 
of Diff-EAF can point out which algorithm is better to which part of the solution space. 
Visualizing the EAF chart for 2-D problems is straightforward using simple line plots 
or heat maps. However, for 3-D problems, the visualization is challenging due to the 
rectangular cuboid facets and areas. There are several approaches for the picture the 3-D 
attainment surfaces such as grid-based sampling, slicing, maximum intensity projection, 
and direct volume rendering (Filipič and Tušar 2018). Refer to Ibánez et  al. (2010), 
Minella et al. (2011) and Tušar and Filipič (2014) for further description and calculation 
of EAF difference in 2-dimensional problems and 3-dimensional problems (Tušar and 
Filipič 2014).

3.1.2 � Average runtime attainment function, aRTA (Brockhoff et al. 2017)

An alternative to the EAF method, Brockhoff et al. (2017) proposed the average runt-
ime attainment function, aRTA to measure the expected runtime of solution that weakly 
dominates PF. This method is a generalization of attainment function that based on a 
target vector z ∈ ℝ

d to collect the runtime,T(z) as the minimum number of function 
evaluations to obtain the solution that weakly dominates z. The function aRTA​ is then 
evaluated over n trials of the algorithm with n runtimes:T1(z),… , Tn(z) and with ns suc-
cesses with the following equation:

The notion of aRTA​ is relatively similar to the calculation of average runtime, aRT of 
single problem optimization as proposed by Hansen et al. (2012) in Eq.  (31). The aRTA​ 
function maps ℝd to positive real numbers,ℝ+ with a color map as demonstrated in Brock-
hoff et al. (2017). The advantage of this method compared to EAF is that aRTA​ can capture 
the algorithm’s performance over multiple runs and over time, whereas EAF captures only 
on n defined times. Further information can be referred to in the respective paper. To com-
pare aRTA​ of two algorithms, a ratio function of both aRTA​ values need to be calculated 
and plotted over the search space z. This is analogous to the Diff-EAF on comparing two 
algorithms via subtraction. Suppose a comparison between algorithm A and algorithm B, 
the ratio is calculated as follows:

3.2 � Cardinality measure

Cardinality quantifies the number of non-dominated solutions returned by an algorithm. 
In general, larger cardinality that sufficiently describes the set is desired; too many num-
bers of solutions might overwhelm the decision process. The cardinality based measure is 
appropriate if there is a high probability to find a significant percentage of non-dominated 

(73)aRTA(z) =
1

ns

n∑
i=1

Ti(z).

(74)aRTAratio(z) =
aRTAB(z)

aRTAA(z)
.
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solutions (Hansen and Jaskiewicz 1998). Some of the cardinality based measures are 
briefly described in the following sub-sections.

3.2.1 � C‑Metric (Zitzler and Thiele 1998)

The C-metric (also denoted as Coverage of Two Sets) is proposed by Zitzler and Thiele 
(1998) that referred to as the coverage of two sets of decision vectors such that A and B as 
A,B ⊆ X . The function C maps the ordered pair (A,B) to the interval [0, 1] with the follow-
ing equation.

The notion C(A,B) = 1 is referred to as all points in B dominated by or equal to or 
weakly dominated (Knowles and Corne 2002) points in A. In the opposite, C(A,B) = 0 
shows that none of the points in B are covered by set A. The measure using C-metric can 
be represented using box-plot for n number of runs with m different algorithms. A higher 
C-values denotes a higher coverage of an algorithm on a non-dominated solution and this 
can be represented in the percentage of coverage or C-metric (Zitzler and Thiele, 1999). 
The C-metric can give information on the quality between approximation sets A and B 
and is a widely accepted binary metric. Nonetheless, the usage of this metric decreased in 
recent years as the implementation of hypervolume and ε-measure reflects more aspects 
of quality between sets A and B at lower computational cost (Riquelme et al. 2015). Also, 
C-values are often difficult to interpret if the solution set of A and B are not comparable.

3.2.2 � C1R‑Metric (Hansen and Jaskiewicz 1998)

This metric measures the ratio of points found in the reference set, R over the cardinality 
of the Pareto set approximation. In other words, this metric indicates the ratio of found 
solutions in R. The metric is defined with A as approximation sets and R as the reference 
set as follows.

3.2.3 � C2R‑Metric (Hansen and Jaskiewicz 1998)

The metric defines the ratio of non-dominated points by reference set R. It is quite simi-
lar to C-metric but based on R, where the metric estimates the number of solutions that 
are non-dominated by R. The formulation of C2R measure is as follows:

with x as individual points that has elements of A and r elements of R. This metric suffers 
similar drawbacks as C-metric (Audet et al. 2018).

(75)C(A,B) =
|{b ∈ B; ∃a ∈ A ∶ a≽b}|

B
.

(76)C1R(A) =
|A ∩ R|
|R| .

(77)C2R(A,R) =
||x ∈ A∄r ∈ R ∶ r ≺ x||

|A| ,
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3.2.4 � Error ratio, ER (Van Veldhuizen and Lamont 1999)

This metric is quite similar to C1R but measures the proportions of non-true Pareto 
points or the solution intersections between approximation set A with PF as the follow-
ing formulation:

where A ∩ PF is the solutions in both A and PF, xi as the individual in the approximation 
set A and n as the number of individuals in A. ER(A,F) = 0 if xi ∈ PF and ER(A,F) ≈ 1 if 
the non-dominated solutions are further from PF. Audet et al. (2018) proposed a threshold 
that quantifies elements belonging to the PF. The metric typically depends on the cardinal-
ity of Pareto set approximation that possible to misguide the interpretation as highlighted 
by Knowles and Corne (2002).

3.2.5 � ONVG, ONVGR (Van Veldhuizen and Lamont 1999)

The Overall non-dominated vector generation, ONVG simply represents the counts of 
non-dominated solutions found in an approximation front as the following expression:

where A is the number of non-dominated solutions in the optimal solution set (A) and |⋅| 
is the number of components in the set. The other variant is denoted as Overall non-dom-
inated vector generation ratio, ONVGR, and mathematically defined as the division of the 
number of points of approximation set to the cardinality of Pareto optimal solution set:

This formulation describes the cardinality of the optimal solution set (A) with respect 
to the PF. However, both measures are not reliable as both do not necessarily imply that 
an algorithm is better than the other as demonstrated by Knowles and Corne (2002), Van 
Veldhuizen and Lamont (2000) and Audet et al. (2018).

3.2.6 � GNVG, GNVGR and NVA (Van Veldhuizen and Lamont 2000)

These metrics are proposed to capture the cardinality measures by search stages 
of the algorithm. The first metric is the Generational Non-dominated Vector Gen-
eration GNVG = |A(t)| and Generational Non-dominated Vector Generation, 
GNVGR(A,PF) = |A(t)|∕|PF| that similar to ONVG and ONVGR respectively but with 
consideration of the search progress. The third metric is defined as Non-dominated Vec-
tor Additional, NVA(A, t) = GNVG(A, t) − GNVG(A, t − 1), which measures the cardinality 
change of solution set A during the algorithm search within t many generations.

(78)ER(A,PF) = 1 −
�A ∩ PF�
�PF� =

∑n

i=1
e
�
xi
�

n
,

(79)ONVG(A) = |A|,

(80)ONVGR(A,PF) =
|A|
|PF| .
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3.2.7 � Pareto dominance indicator, NR (Goh and Tan 2009)

This n-ary metric measure the ratio of non-dominated solutions contributed by solution 
A to the non-dominated solutions found by all compared algorithms with the following 
formulation:

with B =
{
bi|∀bi,∃aj ∈

(
A1 ∪ A2 ∪… ∪ An

)
≺ bi

}
 and aj ≺ bi denotes aj dominates bi and 

A1 as the evaluated set.

3.2.8 � Mutual domination rate, MDR (Martí et al. 2016)

This measure was initially proposed as stopping criteria for the evolutionary algorithm. 
The metric is then listed as a cardinality based measure for monitoring the algorithm pro-
gress during the iteration search (Audet et al. 2018). The formulation of MDR is shown as 
follows:

with A(k) as the Pareto set approximation generated at kth iteration. In general, MDR 
describes the number of non-dominated solutions at k − 1th iteration being dominated by 
non-dominated points at kth iteration. The set of non-dominated solutions at kth itera-
tion completely dominates the solutions at k − 1th iteration by MDR(A, k) = 1 . Other-
wise if MDR(A, k) = 0 , No significant progress is occurred and even more worst, by 
MDR(A, k) = −1 resembled the total loss of domination at the current iteration.

3.3 � Convergence measure

The indicator of this metric is related to the distance of solutions set to PF. For prob-
lems with unknown PF, a reference set R needs to be considered. This usually took place 
for real-world problems, when it is complicated and difficult to determine PF. The ref-
erence set is an approximation of PF that contains all known non-dominated solutions 
(Riquelme et al. 2015).

3.3.1 � Seven points average distance, SPAD (Schott 1995)

This metric is designed especially for the bi-objective optimization problems that use 
a reference set composed of seven points. This metric did not require the knowledge of 
PF. Due to its low resolution of seven points estimation, there is a possibility of points 
in the reference set that fails to capture the whole form of PF, and the limitation only for 
bi-objective is also inconvenient.

3.3.2 � Progress metric, Pg (Back 1996)

This metric measures the progression of algorithm approximation towards PF with 
respect to the number of iterations, defined by the following equation:

(81)NR
(
A1,A2,… ,An

)
=

||A1 ∩ B||
|B| ,

(82)MDR(A, k) =
|Δ(A(k − 1), A(k))|

|A(k − 1)|10 −
|Δ(A(k), A(k − 1))|

|A(k)| ,
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with f best
i

(k) as the best value of objective i in iteration k. Pg metric estimate the speed of 
convergence. However, this metric is not defined if f best

i
(0) or f best

i
(k) has a negative or zero 

value (Audet et al. 2018).

3.3.3 � Distance metric, D
1R and D

2R (Czyzak and Jaskiewicz 1998)

It is a distance measure based on reference set R. Czyzak and Jaskiewicz (1998) pro-
posed two types of distance measures, the first measure is defined as D1R that measures 
average distance from a reference set and the second measure is D2R that measure the 
worst distance from the reference set. D1R is slightly similar to IGD, but based on the 
weighted average over the points of Pareto optimal set or reference set. This metric is 
also used in numerous MOP comparisons (Riquelme et  al. 2015). On the other hand, 
D2R gives the information of the biggest distance from r ∈ R to the closest solution in A 
as shown in the formulation below.

where for D1R , c
(
ri, a = maxj=1,2,…,m

{
0,wj

(
fj(a) − fj

(
ri
))})

 with wj as the reciprocal of 
fj in the reference set R. However the measures are weakly compatible with the outper-
formance relation (Hansen and Jaskiewicz 1998).

3.3.4 � Generational distance, GD (Van Veldhuizen and Lamont 1999)

GD is a unary metric that measures the average distance that obtained by metaheuristic 
algorithm to the true PF of the problem with the following formulation:

with PF as the Pareto front, A as the approximation set obtained by metaheuristic and d as 
the Euclidian distance in the objective space between solution i ∈ A and the nearest PF . 
GD measure determines the accuracy of the solution (Riquelme et al. 2015). The method 
is easy to compute but very sensitive to the number of points found by an algorithm if the 
algorithm misses a big portion of PF without being penalized by this metric. This metric 
requires normalization and replace the quadratic mean with the arithmetic mean. Appli-
cable when the compared sets are non-dominated to each other and no PF range can be 
properly estimated.

(83)Pg = ln

√√√√ f best
i

(0)

f best
i

(k)
,

(84)D1R(A,R) =
1

|R|
|R|∑
i=1

{
min
a∈A

{
c
(
ri, a

)}}
,

(85)D2R(A,R) = max
r∈R

{
min
a∈A

{c(a, r)}
}
,

(86)
GD(A, PF) =

�∑�A�
i=1

dP
i

�1∕p

�A� ,
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3.3.5 � Standard deviation from the generational distance, STDGD (Van Veldhuizen 
and Lamont 1999)

This metric measures the deformation of the Pareto set according to a Pareto optimal set. 
With the following definition:

with di as the Euclidean distance and GD as the Generational Distance measure. This met-
ric is sensitive to the number of points found by an algorithm.

3.3.6 � M1 Metric (Zitzler et al. 2000)

It is referred to as the average distance to the Pareto optimal set with the formulation as 
shown in the following equation:

with |A| as the number of non-dominated solutions in front A and ‖p − p̄‖ represents the 
distance metric. The formulation of this metric is almost similar to GD with p = 1 . Com-
puting this metric alone is insufficient to provide the overall performance evaluation since 
extremely distributed fronts may have the same distance to PF.

3.3.7 � Hausdorff distance, dH (Heinonen 2001)

The metric is used to measure the proximity of different sets. The dH measure between 
sets A and B is defined as follows:

with A and B being the solution sets. This metric is however not practical for metaheuris-
tic algorithms since it penalizes single outliers of the candidate set. (Bogoya et al. 2018; 
Schutze et al. 2012).

3.3.8 � Distance metric, ϒ (Deb et al. 2002)

This metric measures the extent of convergence to a known Pareto optimal solution. The 
method is firstly evaluated by defining a set of H uniformly spaced solutions that lie on 
PF and N number of Pareto optimal obtained. Then the minimum Euclidean distance 
between each generated solution of an algorithm with H chosen points is evaluated. The 
ϒ-metric is then determined by averaging these distances as the following equation:

(87)STGD =

∑n

i=1

�
di − GD

�2
n

,

(88)M1 =
1

�A�
�
p∈A

min
�‖p − p̄‖;p̄ ∈ Ā

�
,

(89)dH(A,B) = max{d(A,B), d(B,A)},

(90)Υ =

∑N

i=1

∑H

j=1
di,j

NH
,
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with di,j as the Euclidean distance from the ith solution obtained to the jth PF or reference 
point. The spread of each minimum distance can also be used as a performance indicator 
by evaluating standard deviation �Υ . The formulation of this metric is almost similar to GD 
with p = 1 . Smaller value denotes better convergence. This metric is appropriate to present 
in terms of average and variance for comparison between algorithms.

3.3.9 � є‑Indicator, I" (Zitzler et al. 2003)

This metric measure the minimum factor to scale the optimal solution set such that A 
dominates B as follows:

If I𝜀(A,B) < 1, all solutions in B are dominated by solution in A. Otherwise 
if I𝜀(A,B) > 1 and I𝜀(B,A) > 1, then A and B are incomparable. However if both 
I�(A,B) = I�(B,A) = 1, then A and B hold similar Pareto front approximation. The met-
ric is suitable for both continuous and discontinuous approximation of PF. The major 
drawback is the metric only considers one objective, which may lead to information loss 
(Audet et al. 2018).

3.3.10 � Wave metric (Collette and Siarry 2005)

The wave metric is used to compute the depth of solutions in the numbers of PF. The cal-
culation of wave is based on the condition as in the following code (Fig. 19).

A good algorithm may result in a lower wave, wave = 1 denotes that all solutions set 
are equal to PF. Some drawbacks of wave metrics are: unable to differentiate between two 
solutions sets and it is impossible to compare the same result of wave metric on two differ-
ent solution sets (Collette and Siarry 2005).

3.3.11 � Pareto ratio, PR (Collette and Siarry 2005)

The PR metric is the ratio between numbers of solution points of set A in PF with the total 
number of points of set A at a given iteration as the following equation:

(91)I𝜀(A,B) = min{𝜀 ∈ ℝ|∀b ∈ B∃a ∈ A ∶ a ≻ b}.

(92)PR =
|PF(A)|
|A| .

Fig. 19   Computation of wave metric
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3.3.12 � Speed metric, SM (Collette and Siarry 2005)

This metric compares the iterations or function evaluations required of an algorithm to 
evaluate solutions that lie within a threshold of PF. This method applies to all MOPs with 
defined PF. The comparison is carried out by counting the number of points that fall below 
the threshold of PF.

3.3.13 � Run‑time metric, 3(t) (Zhou et al. 2006)

The run-time metric measures the convergence dynamic of the algorithm with the follow-
ing formulation:

where A(t) as the non-dominated solution in generation t and A∗ represents the Pareto 
optimal solutions. The term Υ is referred to as the distance metric (Deb et al. 2002). The 
metric can be plotted over t number of generations and can be compared against different 
algorithms. The metric only represents convergence if Υ(A(t),A∗) >> d̄(A∗,A∗) such that 
d̄(A∗,A∗) equal to the average distance between the Pareto optimal set. The metric Λ(t) rep-
resents both convergence and diversity if Υ(A(t),A∗) = .d̄(A∗,A∗) (Zhou et al. 2006).

3.3.14 � Average Hausdorff distance, ∆p (Schutze et al. 2012)

This metric is referred to as the Hausdorff distance of the modified version of GD and IGD:

with GDp(A,B) and IGDp(A,B) as the modified version of GD and IGD respectively 
with the formulation as below. Notice that the Eq. (94) is similar to the dH measure as in 
Eq. (89).

The ∆p metric requires the knowledge of PF and can be used to compare continuous and 
discontinuous approximations of PF (Audet et al. 2018). Disadvantage: only defines an infra-
metric instead of metric and applicable for finite approximations of Pareto set (Bogoya et al. 
2018).

3.3.15 � Degree of approximation, DOA (Dilettoso et al. 2017)

The indicator encompasses the distribution, extension, and the cardinality of a Pareto front 
approximation with the formulation as follows:

(93)Λ(t) =
1

2

[
Υ(A(t),A∗) + Υ(A∗,A(t))

]
,

(94)Δp(A,B) = max
{
GDp(A,B), IGDp(A,B)

}
,

(95)GDp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p

) 1

p

,

(96)IGDp(A,B) =

(
1

|B|
∑
b∈B

d(b,A)p

) 1

p

.
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with d(y,A) as the Euclidean distance between y ∈ A that belong to Dy,s , where:

Similarly,r(y, s) is referred to as values for y ∈ A that not belong to Dy,s as follows:

Next, rf (y, x) is defined as in the following equation:

The DOA metric can be used to compare algorithms if the PFs are known. The value of 
this metric is not dependent on the number of points and the metric partitions into the subset 
element. DOA is computationally low and this method can be applied in the continuous and 
discontinuous approximation of PF.

3.3.16 � (p,q)‑Averaged Hausdorff distance, ∆p,q (Vargas and Bogoya 2018)

This metric is a generalization of ∆p and dH . It is a modification of ∆p with p describes the 
closeness to PF and q reflects the dispersion of the solution set. The formulation of this 
metric is as follows:

where GDp,q represents the (p, q)-average Hausdorff distance between A and B and

The parameters p and q can be modified independently, which is to evaluate a custom-
ized spread that depending on q in customized closeness location that depends on p to the 
PF. This metric is limited to finite sets.

3.3.17 � H‑Indicator (Santos and Xavier 2018)

The H-indicator is a convergence measure inspired by Shannon entropy formulation. The 
metric is defined as in the following equation:

(97)DOA(A,B) =
1

|B|
∑
y∈B

min{d(y,A), r(y,A)},

(98)d(y,A) =

⎧
⎪⎨⎪⎩

min
s∈Dy,s

df (y, s) if
���Dy,s

��� > 0,

∞ if
���Dy,s

��� = 0.

(99)r(y,A) =

⎧⎪⎨⎪⎩

min
x∈s∕Dy,s

rf (y, x) if
���s∕Dy,s

��� > 0,

∞ if
���s∕Dy,s

��� = 0.

(100)rf (y, x) =

√√√√ m∑
i=1

max
{
0, fi(x) − fi(y)

}2
.

(101)Δp,p(A,B) = max
{
GDp,q(A,B�A),GDp,q(B,A�B)

}
,

(102)GDp,q(A,B) =
⎛⎜⎜⎝
1

�A�
�
a∈A

�
1

�B�
�
b∈B

d(a, b)q

� p

q ⎞⎟⎟⎠

1

p

.
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with A =
{
x1, x2,… xn

}
 and qi = min

{
1∕exp(1),

‖‖‖q
(
xi
)‖‖‖

2
}

 . The metric did not require 

the knowledge of PF. H ≈ 0 for good convergence towards Pareto set and H ≈ 0.26537 
otherwise.

3.3.18 � Variants of convergence speed measures

In the measurement of MOP convergence speed, some authors such as Durillo et al. (2010) 
defined three criteria to obtain this metric, which is by determining the number of non-dom-
inated solutions generated by each algorithm, convergence of approximation to Pareto front 
using epsilon indicator and both convergence plus diversity of Pareto front based on hypervol-
ume indicator. Other literature, such as Liu and Zhang (2019) proposed a convergence index 
that is equivalent to the approaching degree of algorithm based on the minimum distance from 
the solution set to reference or Pareto front. Smaller distance showing a higher approaching 
degree of the solution set. The convergence index is calculated as CI =

∑NDsett

i=1
Pd∕NDsett 

with Pd as the shortest distance from i to the reference set and NDsett as the non-dominated 
set of the tth generation. Other literature (Nebro et al. 2009) described convergence speed with 
the median and IQR (inter-quartile range) of the number of FEVs required by the algorithm to 
reach 98% of HV value, which is a good measure for determining dispersions within third and 
first quartiles. The performance related to the number of function evaluations, FEVs required 
by the algorithm for solving MOP is also another variant of speed measurement. Sun et al. 
(2018) plotted the number of FEVs required by three algorithms on various sizes of objec-
tives. The criteria on counting the number of FEVs are based on either the maximum FEV 
(100,000) is met or upon reaching the metric E ≤ 0.01 with E formulated as follows:

with zi as the ith element of the estimated nadir point derived from the extreme points, 
znadir
i

 as the nadir point and z∗
i
 as the ideal point.

3.4 � Diversity measures

The diversity measure is referred to as the distribution and the spread of the computed solu-
tions in PF approximation. This group of metrics is not suitable for measuring the convergence 
criteria, rather it demonstrates the scatterings of points along with PF approximation. Thus, 
this metric is sensible for the Pareto set that consists of several solutions. Some literature dis-
tinguishes this section into distribution, spread, and distribution-spread characteristics (Jiang 
et al. 2014, Requilme et al. 2015). For general understanding, this paper summarizes each sub-
characteristic into diversity-related metrics.

(103)H(A) =
1

2n

n∑
i=1

−qi log2
(
qi
)
,

(104)E =

√√√√√
m∑
i=1

(
znadir
i

− zi
)2

(
znadir
i

− z∗
i

)2 ,
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3.4.1 � Spacing metric, SP (Schott 1995)

SP or also denoted as Diversity Spacing is designed to measure the distribution evenness of 
the members of the approximation set or the diversity of Pareto front gained by algorithms. 
The method is a unary metric that is determined by calculating the relative distance between 
consecutive solutions A . The equation, however, depends on the scale of the objective func-
tions with the following formulation:

with di as the l1 distance between each point Ai ∈ A with the closest point of PF approxi-
mation executed by an algorithm, di = mink∈Λ≠i

∑M

m=1
��f im − f k

m
�� and d̄ as the average of di . 

SP = 0 denotes that all members of the approximation set are equidistantly spaced. The 
computation is straightforward, however, the metric provides limited information if the 
points are separated into multiple groups. Furthermore, the results of SP depends on the 
scale of objective functions.

3.4.2 � Maximum spread, MS (Zitzler 1999)

This metric defines the maximum distance between ai as the maximum value in the ith objec-
tive with bi as the minimum value of ith objective with m number of objectives as shown 
below:

3.4.3 � M∗
2
 and M∗

3
 metrics (Zitzler et al. 2000)

The M∗
2
 the metric is designed with user-specified parameters that equipped with a niche 

radius, σ with the following formulation:

with σ as the niche radius. This metric measures how many solutions of q ∈ A are in the 
local vicinity ‖p − q‖ > 𝜎 for a solution of p ∈ A . This metric considers both distribution 
and the number of non-dominated solutions. Another diversity measure proposed by Zit-
zler et al. (2000) is the M∗

3
 metric that considers the maximum extent in dimension space 

to estimate the range of fronts spread out. For two-dimensional problems, this metric is 
equivalent to the distance of outer solutions between both objectives. The formulation of 
this metric is calculated as follows:

(105)SP(A) =

√
1

|A| − 1

|A|∑
i=1

(
d̄ − di

)2
,

(106)MS =

√√√√ m∑
i=1

max
(
d
(
ai, bi

))
.

(107)M∗
2
(A) =

1

�A − 1�
�
p∈A

�{q ∈ A;‖p − q‖ > 𝜎}�,

(108)M∗
3
(A) =

√√√√ n∑
i=1

max
{‖‖pi − qi

‖‖;p, q ∈ A
}
,
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3.4.4 � Laumann’s metric, IL (Laumanns et al. 2000)

The IL metric is defined as a ratio of the Lebesgue measure between the intersection of 
dominated space by a set A (as the PF approximation A) and hypercube, H(A) as follows:

with � as the Lebesgue measure,D(A) as the dominated set A. This metric has high com-
plexity and increased by a higher number of dimensions.

3.4.5 � Overall Pareto spread, OS and the kth objective Pareto spread, OSK (Wu 
and Azarm 2001)

The OS metric is conceptually similar to M∗
3
 metric that quantifies the extended spread of 

Pareto solution set over the objective space. The metric is defined as the volume ratio of 
two hyper-rectangles between extreme points concerning the good and bad points, simpli-
fied by Okabe et al. (2003) as follows:

with Pg and Pb as the ideal point and nadir point respectively,OSk
(
A,Pg,Pb

)
 is the kth 

objective Pareto Spread with the following formulation:

Both OSK and OS method has similarity except that the OSK metric able to quantify the 
solution range concerning the individual objective.

3.4.6 � Accuracy of Pareto frontier, AC (Wu and Azarm 2001)

The goodness of observed Pareto set can be measured with this metric. The metric is 
equivalent to the reciprocal of AP(P) value; the AP(P) is defined as the front approxima-
tion of the observed Pareto solution set P. Higher value of AC is preferable by comparing 
two observed Pareto solution sets. Detail formulation can be observed in Wu and Azarm 
(2001).

3.4.7 � Number of distinct choices, NDCμ and cluster, CLμ (Wu and Azarm 2001)

The NDC metric represents the number of distinct choices for a pre-specified value of μ is 
defined as the following equation:

(109)IL(A) =
�(D(A) ∩ H(A))

�(H(A))
,

(110)OS
(
A,Pg,Pb

)
=

m∏
i=1

OSk
(
A,Pg,Pb

)
,

(111)OSK
(
A,Pg,Pb

)
=

||maxs∈Afk(s) − mins∈Afk(s)
||

|||fK
(
Pb

)
− fK

(
Pg

)|||
,

(112)NDC�(A) =

v−1∑
lm=0

…

v−1∑
l2=0

v−1∑
l1=0

NT�(q,A),
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with q =
(
q1, q2,… , qm

)
 where qi = li∕v and v = 1∕� . The metric divides the objective 

space into (1∕�)m grids with � ∈ [0, 1] . The Pareto solution set with higher NDC�(A) value 
is preferred over the lower counterpart. Another measure proposed by Wu and Azarm 
(2001) is the CLμ metric. The metric evaluates the average number of indistinct solutions 
on a grid-scale specified by 1∕�. The formulation for CLµ is equal to the ratio of the num-
ber of observed Pareto solutions,N(A) to the NDC�(A) value as follows.

Ideally, CL�(A) = 1 , which shows that each obtained Pareto solution is distinct. Higher 
value of CL� denotes a more clustered of the solution set, which is less preferred.

3.4.8 � Entropy‑based metric (Farhang‑Mehr and Azarm 2002)

The Entropy metric measures the uniformity and coverage of solution sets by employing 
influence functions to estimate the solution densities. The formulation is based on Shannon 
entropy of discrete domain as follows:

with a1, a2,… , am as the number of grids that represents the size of cells and its corre-
sponding normalized density function between k1, k2,… , km . A solution set with a higher 
entropy metric is referred to as more evenly spread throughout the feasible region and thus 
provides better coverage of the space. Some of the main disadvantages for this metric are 
(Deb and Jain 2002): (1) the variance of normal entropy function affects the distribution 
being either peaky or flat, (2) the method resulted in erroneous by disconnected Pareto 
optimal fronts due to the characteristic of continuous entropy function.

3.4.9 � Diversity metric, ∆ (Deb et al. 2002)

This metric measures the extent of spread attained by the obtained solutions. It compares all of 
the solution’s consecutive distances with the average distance as follows:

with di as the Euclidean distance between consecutive solutions, d̄ as the average dis-
tance,df  and dl as the minimum Euclidean distances from solution A to the extreme solu-
tions of PF. This metric is however limited to only two objectives. The metric is further 
improved by Zhou et  al. (2006) by calculating the distance from a point to its nearest 
neighbor instead of only two consecutive solutions.

3.4.10 � Integrated preference function, IPF (Carlyle et al. 2003)

This metric measures the volume of polytopes resolved by non-dominated solutions in a 
set with utility function over the corresponding optimal weights. It represents the expected 

(113)CL�(A) =
N(A)

NDC�(A)
.

(114)H = −

a1∑
k1=1

a2∑
k2=1

…

am∑
km=1

�k1,k2,…km
ln
(
�k1,k2,…km

)
,

(115)Δ(A,PF) =
df + dl +

∑�A�−1
i=1

��di − d̄��
df + dl + (�A� − 1)d̄

,
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utility of a diversity measure. The IPF is firstly derived by finding the optimal weight interval 
for each non-dominated solutions. Then the utility functions are integrated over the optimal 
weights interval as follows:

with h(w) as the weight density function, u∗(A,w) as the best utility function value of the 
solution in A and weight w. A lower IPF value denotes a better metric. The main drawback 
of this metric is its computation complexity that increases by the number of objectives 
(Bozkurt et al. 2010).

3.4.11 � U‑measure (Leung and Wang 2003)

The U-measure is denoted as a uniformity measure given by the following formulation:

with d′

i
 as the distance between ith point to the closest neighbor in the objective space and 

translated into the extreme points of PF to the nearest neighbor.dideal = 1∕�A�∑i∈A d
�

i
 . This 

method quantifies the uniformity of the found PF approximation, smaller U reflects a better 
uniformity of solutions.

3.4.12 � Evenness ξ (Messac and Mattson 2004)

The measure denotes the uniformity of the solution set and also considered as the coefficient 
of variation, COV since the formulation is similar to COV as expressed in the following 
equation:

with �D as the standard deviation and D̄ as the mean of set D, where D =
{
du
a
, dl

a
∶ a ∈ A

}
 

of a given point F(a), a ∈ A in PF approximation. The parameters du
a
 and dl

a
 represent the 

largest sphere of diameter and closest neighbor distance respectively. The uniformity of 
solutions is better by ξ ≈ 0 . For continuous PF, the method did not consider holes in the 
PF approximation as it only considers the closest distance between two points of objective 
space.

3.4.13 � Modified spacing metric, MSP (Collette and Siarry 2005)

This metric is a further improvement of the Spacing metric, SP by removing the objective 
function scale and computing the distance,di by sorting PF in ascending order. The modi-
fied formulation is given as follows:

(116)IPF(A) = ∫ h(w)u∗(A,w)dw,

(117)U(A) =
1

A

∑
i∈A

d
�

i

dideal
− 1,

(118)ξ(A) =
𝜎D

D̄
,

(119)MSP(A) =

√
1

|A| − 1

|A|∑
i=1

(
1 −

di

d̄

)2

.
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3.4.14 � Extension measure, EX (Meng et al. 2005)

This measure defines the extent of PF approximation given by the following formulation:

with d
(
f ∗
i
,A

)2 as the minimal distance between the solution to the ith single objective 
problem of total m single objectives. The method is straightforward to compute and penal-
ize well distributed PF approximation that neglecting the extreme values.

3.4.15 � Generalized spread 1∗ (Zhou et al. 2006)

The metric is a further improvement of diversity metric, ∆ that extends for more than two 
objectives as follows:

where d
(
ek,A

)
= minx∈A

‖‖‖F
(
ek
)
− F(x)

‖‖‖ with ek ∈ PF as the solution of extreme solutions 
on the kth objective. The parameter di = min(Ai,Aj)∈A,Ai≠Aj

‖‖‖F
(
Ai

)
− F

(
Aj

)‖‖‖ referred to as 
the minimal Euclidean distance between two points of PF approximation. This metric suf-
fers similar drawbacks as the Spacing metric due to the scope of the shortest distance 
between elements of PF approximation. Also, this measure requires the information of 
extreme solutions of PF.

3.4.16 � Sphere counting, SC (Wanner et al. 2006)

The metric compares the spread uniformity of Pareto set A and B with the following seven 
steps:

Steps Activity

1 Define a radius, r on the objective space
2 Locate a sphere with radius r centered at any point of A
3 Define a sphere counter equal to one
4 Eliminate all points located in the sphere
5 Place another sphere at the remaining points that closest to the previous center and 

increment the sphere count
6 Go to step 2 until no remaining points observed in the estimate set
7 Sphere counting for set A is completed. Do the same procedure (step 1–6) for set B

(120)EX(A) =
1

m

√√√√ m∑
i=1

d
(
f ∗
i
,A

)2
,

(121)Δ∗(A,PF) =

∑m

k=1
d
�
ek,A

�
+
∑�A�

i=1
��di − d̄��∑m

k=1
d
�
ek,A

�
+ �A�d̄ ,

Fig. 20   Computation of the ISC 
metric
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This set with more spheres is identified as the front with greater spread, thus indicating a 
better description of Pareto set. The advantage of this method is due to its simple and straight-
forward steps; however, the number of spheres is heavily dependent on the radius value.

3.4.17 � Integrated sphere counting, ISC (Silva et al. 2007)

This metric is a further development of SC with the interpretation of signal processing. In con-
trast to SC, The ISC metric defines an interval of radius variation to cope with the scale dif-
ference that is appropriate for the quality measure by removing the effect of under- and over-
sampling. The range of r is set with a maximum 10% of maximum distance R and minimum 
with 1% of R, with R =

√
m and m is the number of objectives. Then the sphere counting is 

integrated within the minimum–maximum interval. A higher integral value denotes a better 
spread of PF. The procedure of ISC metric is summarized in the ISC algorithm as shown in 
the following figure (Fig. 20)

3.4.18 � Radial coverage metric, ψ (Lewis et al. 2009)

This metric divides the objective space into radial sectors originating from the Utopia point. 
The value of this measure is given as the ratio of the sectors that contain at least one member 
of non-dominated solutions to the total number of sectors. The idea behind this metric is to 
emphasize that the solutions from the metaheuristic algorithm may not adequately or evenly 
cover the entire range of objective values, which may give a misleading estimate of the quality 
of the approximate PF. The mathematical formulation is shown as follows:

with Ψ = 1 if ifPi ∈ PF and �i−1 ≤ tan
f1(x)

f2(x)
≤ �m;Ψ = 0 otherwise.

3.4.19 � Diversity comparison indicator, DCI (Li et al. 2014)

This metric is a k-ary spread indicator that divides the zone in the objective space into sev-
eral hyper-boxes. The coordinate of grids environment is constructed based on Nadir point, 
Ideal point as well as lower and upper bounds as follows:

with ubk as the lower bound,npk is the Nadir point,ipk is the Ideal point and div as a con-
stant referred to as the number of divisions with k as the number of objectives. The hyper-
box size dk of the kth objective is formalized as in (124).

(122)Ψ =
1

N

m∑
i=1

Ψi,

(123)ubk = npk +
npk − ipk

2 ∗ div
,

(124)dk =
ubk − lbk

div
.



2385Performance assessment of the metaheuristic optimization…

1 3

Further description of grids calculation can be observed in Li et  al. (2014). For each 
hyper-box, a contribution coefficient is computed that represents the number of non-domi-
nated solutions in each PF approximation as below:

with D(P, h) as the shortest Euclidean distance from the hyper-box in the grid, h to the 
hyper-boxes in the approximation set P. The contribution factor is computed for all other 
hyper-boxes with respect to the reference set. The DCI metric is then evaluated by calculat-
ing the average of contribution coefficient relatively to all hyper-boxes as in the following 
equation:

3.4.20 � Modified diversity indicator, M‑DI (Asafuddoula et al. 2015)

As the name implies, the metric is a modification of DCI that computes the diversity with 
respect to the reference PF. In this method, the number of reference-points on reference PF 
is associated with the population size used during the optimization. The evaluation of the 
contributing factor remains the same as DCI method in Eq. (125) with h as the set of hyper-
boxes from reference PF. The formulation of M-DI metric is as follows:

where hrPF is the hyper-boxes from reference PF. A Higher M-DI value is preferable as it 
shows a better diversity of solution concerning PF. The unique improvement of M-DI over 
DCI is the modified version can demonstrate the uniformity of solutions concerning the 
reference PF point of view.

3.4.21 � d
2
 and dhyp Metric (Asafuddoula et al. 2015)

The d2 metric is referred to as the perpendicular distance of solution to the reference 
directions with a set of solution P =

{
p1, p2,… , pn

}
 . The metric is defined by firstly 

evaluating the distance d1 that represents the reference kth direction of W  number of 
reference points and d2 is evaluated based on the trigonometric formulation as shown in 
Eqs. (128) and (129) respectively.

(125)CD(P, h) =

�
1 − D(P, h)2∕(m + 1), if D(P, h) <

√
m + 1,

0, if D(P, h) ≥
√
m + 1,

(126)DCI =
1

|h|
|h|∑
i=1

CD
(
P, hi

)
.

(127)M − DI =
1

||hrPF||

|hrPF|∑
i=1

CD
(
P, hrPFi

)
,

(128)dk
1,i

= pi
Wk

‖‖Wk‖‖
,

(129)d2
(
Wk,P

)
= min

i=1

(√
‖‖pi‖‖2 −

(
dk
1,i

)2

)
.
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The dhyp metric is referred to as the normal (or the shortest) distance of solutions to 
the hyperplane. This metric is useful to identify the nature of reference Pareto front, 
which may either convex, concave, or lie on the hyperplane itself with hyperplane, L as 
in the following equation:

with a1f1 + a2f2 +⋯ + anfn = 1 as the generic formulation of the plane in objective space 
and f1, f2,… , fn as well as a1, a2,… , an as the objectives and normal vector to the plane 
respectively. A positive value of dhyp denotes a non-convex region, whereas negative dhyp 
indicates a convex region and dhyp = 0 shows that the point lies on the hyperplane.

3.4.22 � Distribution metric, DM (Zheng et al. 2017)

This metric was proposed to improve the Spacing metric with additional information on 
the extent of PF. The Spacing metric did not normalize the measured distance, which 
may lead to a biased conclusion. Furthermore, the method also considers the closest 
neighbors and did not capture the holes in the PF. These drawbacks are improved by 
DM metric with the following formulation:

with 𝜎i = 1∕(�A� − 2)
∑�A�−1

e=1

�
di
e
− d̄i

�2
;𝜇i = 1∕(�A� − 1)

∑�A�−1
e=1

di
e
; and Ri = maxa∈A fi(a)

−mina∈A fi(a) . The parameter |A| is the number of non-dominated solutions, fi
(
PG

)
 and 

fi
(
PB

)
 are the function values of ideal and nadir points respectively,di

e
 as the distance of eth 

interval between two adjacent solutions that correspond to the ith objective, �i and �i rep-
resent the standard deviation and mean of the distances of the ith objective. Better distribu-
tion is denoted with a smaller DM value. This metric requires high computation time and it 
is more relevant for the continuous PF approximation.

3.4.23 � Diversity vector based on reference vectors, DIR (Cai et al. 2018)

As the name indicated, this diversity metric is measured based on reference vectors with 
V =

{
�1, �2,… , �m

}
 that uniformly generated. Then for each approximation set s ∈ S , the 

distance between s and reference vector �i for i = 1,2,…,m is defined as in Eq. (132):

The closest reference vector �i to an element s of S is denoted as “s covers the reference 
vector �i ” (Cai et al. 2018). Then a coverage vector c is defined by the number of reference 
vector that s covers for each s ∈ S and the normalized standard deviation of the coverage 
vector, c is defined as follows:

(130)dhyp
(
p1, L

)
=

a1p11 + a2p12 +⋯ + anp1n − 1√
a2
1
+ a2

2
+⋯ + a2

n

,

(131)DM(A) =
1

�A�
m�
i=1

�
�i

�i

�⎛⎜⎜⎝

���fi
�
PG

�
− fi

�
PB

����
Ri

⎞⎟⎟⎠
,

(132)angle
(
�i,F(s)

)
= cos−1

(
�i
)T(

F(s) − FI
)

�iF(s) − FI
.
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with c̄ as the average of coverage vectors ci with i = 1, 2,… , |S| . This measure captures 
the distribution and spread of solutions, thus lower value denotes better performance. DIR 
metric is computationally cheap, but it requires the information of ideal points and the 
number of reference vectors needs to be properly selected. The method might be biased if 
PF is continuous (Audet et al. 2018).

3.5 � Convergence and distribution measure

3.5.1 � R‑Metrics (Hansen and Jaskiewicz 1998)

The R-metrics is a binary metric. There are three R indicators (R1,R2,R3) used in this 
measure based on a set of utility functions u. R1 calculates the probability of approximation 
A that is better than B over the set of utility functions. The measurement of the R1 metric is 
calculated as follows:

with U as the utility functions, A and B as two approximations of Pareto set. u is a value 
that maps each point in the objective space into the measure of utility. p(u) is an inten-
sity function that shows the probability density of the utility u ∈ U . C is determined as in 
Eq. (135).

Several advantages of R1 is lower computation cost and is independent of scal-
ing (Knowles and Corne 2002). Other R-metrics: R2 and R3 are defined as the following 
equations:

R2 metric includes the expected values of the utility function by calculating the expected 
difference in the utility of an approximation A with B. The R2 metric is compatible with 
all outperformance relations and able to differentiate between different levels of complete 
outperformance (refer to Table 5). The third R-metric,R3 compares the ratio of the best util-
ity values instead of difference as calculated in R2 . Knowles and Corne (2002) recommend 
R-metrics for evolutionary multi-objective researchers since it is compatible with outper-
formance relations and able to differentiate between levels of complete outperformance. 

(133)DIR =

�
1

�S�
∑�S�

i=1

�
ci − c̄

�2
M

�S�
√�S� − 1

,

(134)R1(A,B,U, p) = ∫
u∈U

C(A,R, u)p(u)du,

(135)C(A,R, u) =

⎧⎪⎨⎪⎩

1, if u ∗ (A) > u ∗ (B),
1∕2, if u ∗ (A) = u ∗ (B),
0, if u ∗ (A) < u ∗ (B).

(136)R2(A,B) =

∑
�∈Λ u(�,A) − u(�,B)

�Λ� ,

(137)R3(A,B) =

∑
�∈Λ [u(�,B) − u(�,A)]∕u(�,B)

�Λ� .
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Furthermore, the R-metrics have less computational power even by increasing the number 
of objectives (Audet et al. 2018).

3.5.2 � Hypervolume, HV (Zitzler and Thiele 1998), and hyperarea ratio, HR (Van 
Veldhuizen and Lamont 1999)

The hypervolume indicator is among the most used measures for MOP. It is defined as a 
volume in the objective function space that covered by pi(1 = 1,… ,N) of non-dominated 
set solutions. HV is a unary metric and is a union of hypercuboids that bounded by PF in 
the Lebesgue measure with the following notation:

with �m as the Lebesgue measure in m-dimension, r as reference point such that for all 
z ∈ A, z ≺ r . A larger hypervolume shows a wider range of Pareto optimal solutions. 
Therefore maximization of HV is preferred. The notation of HV is also known as S-metric, 
Lebesgue measure (Riquelme et al. 2015), and Hyperarea. HV covers both accuracy and 
diversity of performance (Coello et al. 2010). Some of the drawbacks of this metric are the 
computation complexity that exponentially increased by the number of objectives (Bring-
mann and Friedrich 2010) and inconsistent of HV value by choosing a different reference 
point (Li and Yao 2019). For a known PF, a ratio of HV with respect to the known PF can 
be calculated and denoted as Hyperarea Ratio (Van Veldhuizen and Lamont 1999).

This ratio demonstrates the approximation quality, a lower ratio denotes a better 
approximation. The characteristic of HV that guarantees strict compliance of Pareto domi-
nance made this indicator preferable compared to other metrics and is widely been used 
for measuring the performance of algorithms in MOPs. Yet, numerous improvements for 
HV measures were proposed. One of the improvements is by using a weight distribu-
tion function that serves to emphasize certain regions of the objective space (Zitzler et al. 
2007). The author generalized the HV indicator as the integration of attainment function, 
�A as HV(A) = ∫

(1,…,1)

(0,…,0)
�A(z)dz ; with A as objective vector and A is weakly Pareto domi-

nance,A≽{z} . The attainment function described here is a binary function that defines all 
weakly dominated objective vectors as 1 and other remaining objective vectors as 0. The 
proposed metric is then defined as the integral over the product of weight distribution func-
tion and the attainment function with HVw = ∫

(1,…,1)

(0,…,0)
w(z) ⋅ �A(z)dz with w as the weight 

function. Other HV variant is proposed by Friedrich et al. (2011) that introduced a loga-
rithmic version of HV as follows:

with logP ∶= {(log x, log y)(x, y) ∈ A} and log r ∶=
(
log rx, log ry

)
 . The reason for the 

logarithmic modification is to get a good multiplicative approximation, refer to Friedrich 
et al. (2011) for further readings. Another generalization of HV measure is defined as cone-
based HV, defined as CHI (Emmerich et al., 2013). The method is formulated as follows:

(138)HV(A, r) = �m

(
∪
z∈A

[z;r]

)
,

(139)HR(A,PF, r) =
HV(A, r)

HV(P, r)
.

(140)logHV(A, r) = �m

(
∪
z∈A

[
logA; log r

])
,
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with A as finite set, r as a reference point, and C as the pointed convex cone. The operators 
⊕ and ⊖ are referred to as the Minkowski sum that defined as in Eq. (142).

Another improvement is by projecting the solutions of an approximation onto a linear 
PF defined by a reference point and computes the HV metric to assess the diversity of the 
projections (Jiang et al. 2016). The proposed metric is defined as HVd since it measures a 
better estimate of the diversity of the points along with the PF.

3.5.3 � The Hyperarea difference, HD (Wu and Azarm 2001)

This metric evaluates the difference between the sizes of objective space dominated by an 
observed Pareto solution set with the size of the true Pareto set. The true Pareto set domi-
nates the entire solution set, whereas the observed Pareto set might only dominate a por-
tion of solution space. In other words, HD is a normalization of the dominated space of an 
approximated PF over a given rectangle.

3.5.4 � Inverted generational distance, IGD (Coello and Sierra 2004)

IGD is an inverted variation of GD and exhibits a significantly different measure compared 
to GD. This metric has been used in numerous MOPs due to its lower computation cost 
and ability to show convergence, spread, and distribution of solutions. Thus, it reflects both 
efficiency and effectiveness. Among the important feature of IGD are: (1) distance meas-
ured are the minimum Euclidian distance, whereas GD measures the average distance, (2) 
distance calculation between two sets are based on reference solution in Pareto front and 
not the solution in A, (3) IGD can measure diversity and convergence of the algorithm. The 
formulation of IGD is shown as follows:

where p∗ is a set of reference points or uniformly distributed solutions in Pareto front, A is 
the non-dominated solutions from an algorithm, dist(p,A) is the nearest distance from p to 
the solutions in A that is calculated with dist(p, y) =

�∑m

j=1

�
pj − yj

�2 . Nonetheless, IGD 
is not able to differentiate the quality of generated solutions when it is not dominated to the 
solutions in p∗ . Furthermore, IGD requires a large number of reference points for reliable 
performance comparison and the number of required reference points exponentially 
increases with the number of objectives (Ishibuchi et al. 2015). This metric is also unable 
to detect poor distribution that depends on the value of p (Bezerra et al. 2017).

3.5.5 � Modified inverted generational distance, IGD+ (Ishibuchi et al. 2015)

The IGD+ is proposed as to counter the problem of IGD by changing the calculation of 
d(p, y) as shown in the following equation.

(141)CHI(A) = 𝜆m((A⊕ C) ∩ ({r}⊖C)),

(142)
a⊕ b = {a + b|a ∈ A and b ∈ B},

a⊖b = {a − b|a ∈ A and b ∈ B}.

(143)IGD =

∑
p∈p∗ dist(p,A)

�p∗� ,
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The modified distance is then used in the formulation of IGD+ as follows:

with P as the dominated solution. This metric is applicable for both continuous and dis-
crete domains.

3.5.6 � Domination move, DoM (Li and Yao 2017)

This metric quantifies the minimum sum of move distance required such that the set B is 
weakly dominated. The metric is Pareto compliant and does not require additional problem 
knowledge and parameters. The formulation of dominance move for A to B is as follows:

where A =
{
a1,… , an

}
,A� =

{
a

�

1
,… , a

�

n

}
,aj

i
 as the value of the solution ai in the jth objec-

tive and m as the number of objectives. The DoM measure is applicable for bi-objective 
problems and more cases of more than two objectives are yet to be explored.

3.6 � Knee points

Knee points is another criteria for the optimal solution of MOPs. The knee points are 
mainly divided into three categories: knees in convex regions, knees in concave regions, 
and edge knees. Further readings on knee points can be accessed in Bhattacharjee et  al. 
(2016), Deb and Gupta (2011) and Yu et  al. (2019). Some measures for knee points Yu 
et al. (2019) are the knee-driven GD (KGD), knee-driven IGD (KIGD), and knee-driven 
dissimilarity (KD). The KGD metric evaluates the convergence of obtained solutions to the 
reference points in the knee regions as shown in Eq. (148):

with d
(
pi, Z

)
 as the Euclidian distance between the reference point pi in A to closest refer-

ence point in Z. A smaller value of KGD denotes a better convergence to the knee region. 
This metric demonstrates the algorithm’s capability of identifying solutions within the 
knee regions since outside of the knee regions will degrade the performance with increased 
KGD value The KIGD measure evaluates the diversity of achieved solutions in the knee 
region as in (149).

(144)d(p, y) =

√√√√ m∑
j=1

max
(
yj − pj, 0

)2
.

(145)IGD+ =

∑
z∈P min

s∈S
d(p, y)

�P� ,

(146)DoM(A,B) = min
A�≼B

n∑
i=1

d
(
ai, a

�

i

)
,

(147)d
(
ai, a

�

i

)
=

m∑
j=1

|||a
j

i
− a

�j

i

|||,

(148)KGD =
1

|A|
|A|∑
i=1

d
(
pi, Z

)
,
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The formulation of KIGD is similar to KGD but with swapping the reference set and A. 
The term d

(
pi,A

)
 refers to the Euclidean distance between the reference point pi in Z and 

the solution closest to this reference point in A. Smaller KIGD shows the knee region is 
covered more evenly by the solutions. The third metric, KD evaluates the algorithm’s abil-
ity to finding all knee points as follows:

with d
(
pi,A

)
 as the Euclidian distance between true knee point pi from K to its closest 

solution from A. KD indicate whether the solution set contains at least one solution close to 
the knee point.

More and more measures for multi-objective problems being proposed to improve the 
measurement criteria for these problems. Some examples are from Mirjalili and Lewis 
(2015) proposed three metrics (robust convergence, robust coverage metric, and robust suc-
cess ratio) for robust multi-objective algorithms. Abouhawwash and Jameel (2019) pro-
posed Benson’s Karush–Kuhn–Tucker proximity measure (B-KKTPM) that determines a 
distance of solution from Pareto optimal in MOPs, However, this method has high compu-
tation cost. Another recently proposed metric is defined as the Domination Measure, DM 
(Hale et al. 2020). The method is integrated into an algorithmic search to measure the qual-
ity of MOP solutions by transforming the original problem into a stochastic single-objec-
tive problem with the goal of optimal solutions of DM = 0. DM is a unary performance 
indicator that measures the region in a solution space that dominates that solution with 
respect to a predefined probability measure. The formulation of DM is depicted as follows:

with v(⋅) as a Radon measure,Dx as the set of solutions that dominates x and x ∈ X , u is the 
uniform probability measure on X induced by v(⋅) and y ≺d x indicates that y dominates x 
with ≺d is referred to as the dominance relationship.

3.7 � Data representation for MOPs metrics

All the data analyzed using the above metrics can be presented with statistical analysis as 
shown in Fig. 14. These indeed depend on the data distribution among the algorithms and 
metrics. Obviously, non-parametric analysis is appropriate for MOP (Coello et al. 2008) that is 
constructed with sets of solutions and unknown distribution of population metric. García and 
Herrera (2008) highlighted that for single-problem analysis, the parametric test usually obtains 
similar findings as a non-parametric test without proper fulfillment of parametric conditions. 
However, for multiple-problem analysis, a parametric test may reach an erroneous conclusion!

For comparison of a single metric with a defined number of algorithms, the Mann–Whit-
ney rank-sum test can be adopted, whereas a comparison on a set of metrics is suitable using 
the Wilcoxon test (Coello et  al. 2010). A recent performance indicator development with 
statistical analysis is the DSCTool (Eftimov et al. 2020). The tool provides Deep Statistical 
comparison, DSC for single and multiple problems by ranking the algorithms based on the 

(149)KIGD =
1

|Z|
|Z|∑
i=1

d
(
pi,A

)
.

(150)KD =
1

|K|
|K|∑
i=1

d
(
pi,A

)
,

(151)D(x) =
v(Dx)

v(X)
=
∫

{
y ≺d x

}
u(dy),
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distribution of obtained solutions. One of the insights of this application is the accessibility 
with any programming language using REST web services

Another method to compare the evaluated metrics among algorithms is the performance 
score (Bader and Zitzler 2011) with the formulation: P

�
Algi

�
=
∑k

j=1,j≠i
δi,j . δi,j = 1 if Algj 

is significantly better than Algi in the evaluated metric. δi,j = 1 otherwise. The value P
(
Algi

)
 

represents the number of algorithms that significantly better than the corresponding algorithm. 
Thus, a smaller index shows better performance and if P

(
Algi

)
= 0 , it means that no other 

algorithms are significantly better than Algi . An example of this ranking method is shown in 
Gong et al. (2017) on the optimization of the communication system and Wang et al. (2019) 
on the performance comparison of the new proposed algorithm. Another unique approach is 
by designing the Pareto front with a defined confidence interval (Bassi et al. 2018), which is 
appropriate for the metaheuristic algorithms due to its stochastic nature, thus a Pareto front 
with a% confidence level and median Pareto front (drawn in the middle) may give good judg-
ments on the metaheuristic algorithm quality.

3.8 � Other specific metrics

Other performance metrics (as discussed in Sect.  2.2) can be evaluated statistically with 
either parametric or non-parametric depending on the analyzed data. For the Multi-objective 
Knapsack Problem (MKP), works of literature such as Chih et al. (2014) presented several 
MOPs measures such as Mean Absolute Deviation (MAD), Mean Average Percentage Error 
(MAPE), the average error of profit and Success Ratio (SR). Each of the instances is defined 
in the following equations:

with n as the number of test problems,pi as the final solution of each run, and opt is the 
optimum solution of each test problem. The mean average percentage error is then calcu-
lated by deviating MAD with the optimum solution as follows:

The average error of profit used to evaluate the algorithms are as per the following 
equation:

with zi as the optimal profit and pi as the profit calculated from the algorithm’s best or 
mean. Another measure; success ratio (SR) is determined based on the optimal solution 
through the experimental runs.

3.9 � Ensemble of metrics

As described in the previous sections, numerous performance indicators cover vari-
ous characteristics of algorithm behavior such as cardinality, diversity, and convergence. 

(152)MAD =
1

n

i=1∑
n

||pi − opt||,

(153)MAPE =
MAD

opt
.

(154)MKPerror =
1

n

n∑
i=1

zi − pi

zi
× 100,
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Assigning each performance indicator often may not result in a straightforward conclu-
sion on which algorithm performs the best among the compared ones. Some researchers 
provide an ensemble technique or multicriteria analysis to consider a set of performance 
indicators, which then summarizes multiple quality of solutions together by the compared 
algorithms. There are many ensemble techniques proposed in the literature such as sta-
tistical-based ensembling, regression-based and voting-based methods. An example of 
the metrics ensembling method is from Yen and He (2014) that proposed an algorithm 
of ensembling method over n algorithms with a combination of five metrics: NR, IGD, 
SP, MS, and HV indicators. The ensemble algorithm ranks the n algorithms comprehen-
sively through the collection of quality indicators and identifies an algorithm that resulted 
in the best approximation front through a double-elimination tournament selection. The 
winning algorithm is then removed from the list and the remaining approximation fronts 
are then compared through another round of double-elimination tournament with the n − 1 
algorithms. Another example of the ensemble method is the multi-criteria analysis based 
on cardinality, HV, SP, and set coverage metric by Janssens and Pangilinan (2010). Some 
recent approaches are such as from Yu et al. (2018) that designed a framework to compare 
6 multi-objective algorithms with 5 performance measures and two variants of decision 
methods denoted as Multiple Criteria Decision Making, MCDM. The performance indica-
tors for the framework include two convergence indicators: GD and MPFE, one diversity 
indicator: SP and two convergence and distribution indicators: IGD and HV. The MCDM 
or ensemble methods applied for framework decision making denoted as The Technique 
for Order of Preference by Similarity to Ideal Solution, TOPSIS (Hwang and Yoon 1981), 
and VIKOR (Opricovic 1998). As a side note, the name VIKOR was defined in Serbian 
and the English equivalent is defined as Multicriteria Optimization and Compromise Solu-
tion. The ranking system of the compared algorithm is based on the requirement of steps 
for each ensemble mode. Detailed information on both ensemble modes can be referred to 
in Yu et al. (2018). Other ensembles or MCDM schemes proposed in the works of litera-
ture are such as VTOPES, an abbreviation for ‘VIKOR, TOPSIS Entropy, Standard devia-
tion’ (Deepa et al. 2019), AHP (Analytical Hierarchy Process) by Saaty (2004), ELECTRE 
(ELimmination and Choice Expressing REality) by Roy (1991) and Delphi method (Khor-
ramshahgol and Moustakis 1988). Another recent ensemble method applied for perfor-
mance criteria analysis is based on Deep Statistical Comparison, DSC (Eftimov and Kovec 
2019, Eftimov et al. 2020). With this method, each algorithm obtains its ranking based on 
DSC analysis of the quality indicator by each problem. Then the ranking of algorithms 
is calculated using the ensemble combiner of the acquired rankings of each performance 
indicator. The ranking system is based on a standard competition ranking scheme as the 
following equation:

with Rank as the 1 × m vector of DSC rankings based on the quality indicator of a given 
problem, and RankT as the 1 × m vector of transformed DSC rankings using standard com-
petition scheme (Eftimov and Kovec 2019). Eftimov et al. (2020) put forth the DSC rank-
ing scheme is based on non-parametric distribution comparisons such as Anderson–Dar-
ling and Kolmogorov–Smirnov test. The author proposed two ensemble combiners. The 
first ensemble method based on the average of transformed ranking by each quality indica-
tor of a problem. The lowest ranking is selected as the best performer. For data that contain 
outliers, the median can be used instead of average. The second ensemble method is based 
on the hierarchy of the majority vote. This method checks which algorithm wins in the 

(155)RankT = Standard competition ranking(Rank),
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most quality indicator with the highest number of transformed DSC rankings. For the qual-
ity indicators, the author ensemble based on HV, I� , r2 and GD indicators.

4 � Future challenges

The complexity of either single- or multi-objective problems in both continuous and dis-
crete domains increases as the advances of science and technology. Furthermore, the real-
world problems often deal with unknown cost functions and uncertainty of constraints. A 
similar issue is also faced by a large number of feasible solutions or problems with a large 
scale, where the global optimum can’t be found within a reasonable time due to the com-
binatorial explosion of the number of possible solutions. As a consequence, the findings 
for the correct solution of an algorithm with respect to the others are also challenging and 
require a proper justification as well as decisive performance assessments. To this extent, 
there are already numerous performance measures proposed in each problem type and yet, 
it is important for the researchers to understand the type of pertinent measures that may 
be selected as their analysis and to conclude on their findings. As discussed in the previ-
ous section, the scope of the performance evaluation must comprehend the efficiency and 
effectiveness aspect of the algorithms. Thus, regardless of problem types, both features of 
assessments need to be considered in the study. For the unknown global optimum prob-
lems, the best method is to compare the obtained solutions with the best-known solution 
found during the search by the respective algorithm or by other compared algorithms, even 
though it is unsure whether the best-known solution is globally optimum (Chopard and 
Tomassini 2018). The best known optimum or pseudo-optimal solution can be identified 
only in a relative measure of the best solution found by the current number of trials or 
FEVs concerning the previous solution. In a single objective problem, some of the relevant 
efficiency measures that suitable for the pseudo-optimal solution cover the convergence 
rate, and diversity of the algorithm solution. These are summarized as in the following 
points:

•	 The convergence rate as proposed by Senning (2015) in Eq. (2) is a typical application 
for unknown optimum as it measures the rate of convergence between current and pre-
vious FEVs. This method applies to both continuous and discrete domains.

•	 The relative difference of convergence between algorithms that measures the fraction 
of average value found in algorithm A to the best solution found in algorithm A and B 
as indicated in Eq. (6). Another metric for convergence difference between algorithm 
for discrete problems such as TSP is defined as the tour improvement as demonstrated 
by Tsai et al. (2004) in Eq. (28).

•	 The convergence speed for unknown global optimum can also be measured as a rela-
tionship with the number of steps such as FEVs, number of generations, and iteration. 
By calculating the fraction of the number of steps or FEVs that correspond to the best-
known solution and divided by the total number of FEVs as shown in Eq.  (7). The 
method applies to both continuous and discrete problems. Lower value denotes faster 
convergence.

•	 Another convergence related measure is the relative convergence between best values 
during the algorithm search. This measure was originally proposed for the known opti-
mum solution as Eq. (4). Instead of measuring the difference between current best to 
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the known global optimum, the relative measures can also be defined between the cur-
rent best of the current generation or FEVs concerning the best optimum found so far 
as follows: Eunknown optimum(i) = 1 −

Fbesti

fbest
 with Fbesti as the best solution by ith FEVs and 

fbest as the best-found solution so far. This may indicate the sensitivity of the algorithm 
towards converging to a better solution.

•	 The diversity measures that are usually applied to continuous problems can be used for 
unknown global optimum since it did not require the information of the predetermined 
optimum value, rather it concerns the spread of search agents in the problem space, and 
a good diversity may avoid premature convergence. Variants of the diversity measures 
from Eq. (14), (15), (18)–(25) are adaptable depending on the objective of the study. 
For discrete problems, such as TSP, diversity measures from Eq.  (16), (17)–(26) are 
also applicable for unknown global optimum.

•	 The dynamic optimization problems, DOP are more or less suitable for the problem of 
unknown global optimum since the environment of objective space changes dynami-
cally over time. This is contributed mainly by the frequency and the magnitude of envi-
ronment changes (Mavrovouniotis et al. 2017; Herring et al. 2020) and measuring the 
algorithm performance concerning these factors are related to the speed of the algo-
rithm to adapt the changes and how the algorithm behaves by the degree of changes that 
relates the diversity, accuracy and the distance of solution with respect to the changing 
objectives. Several metrics for DOP have been proposed in the literature such as offline 
error (Yang and Li 2010), modified offline error and modified offline performance 
(Branke 2002), staged accuracy and adaptability (Trojanowski and Michalewicz 1999), 
recovery rate, and absolute recover rate (Nguyen and Yao 2012) as discussed in the last 
segment of Sect. 2.1.1.

In the effectiveness measures of single optimization problems, the main question to 
solve is how close the converged solutions to the best value are.

Fig. 21   Flow chart for comparing the effectiveness of two algorithms
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•	 The effectiveness measures usually concentrated on the algorithm’s ability to find the 
known global optimum. To the best of our knowledge, there are not many direct meas-
ures on the algorithm’s effectiveness of locating global optimum for the case of the 
unknown cost function. However, the relative effectiveness between algorithms within 
a defined time frame or budget of evaluations can be compared using non-parametric 
statistical analyses such as Sign test, Wilcoxon test, or other multiple sample tests as 
summarized in Fig.  14. An example is a comparison using Wilcoxon’s test between 
algorithms A and B as shown in Fig. 21. There are generally two tests to carry out: the 
first test is to check whether the median of A and B is the same with H0 ∶ A = B . The 
second test is a single-sided test used to find out which algorithm is more effective 
under a condition that if the first test is not met. Based on the hypothesis test, a conclu-
sion can be made either B outperformed A or A outperformed B depending on the H0 
formulation.

•	 In some problems, the comparison of the current solution to the best-known solution 
can be approximated based on the theoretical lower bounds of the solution quality by 
using Lagrangian relaxation or integer programming relaxation. The converged solu-
tions found by metaheuristic algorithms can be compared with these bounds (Chopard 
and Tomassini 2018). Generally, the Lagrangian relaxation is popularly been applied 
for solving numerous optimization problems such as in mixed-integer linear program-
ming and combinatorial problems. The main idea behind this concept is to relax the 
hard constraints and unknown global optimum to solve the relaxed problems easily. 
The goal is to bound the unknown optimum value with lower and upper limit such 
that fLB ≤ fopt ≤ fUB with fLB and fUB as the lower and upper bounds respectively 
and fopt as the unknown global optimum value. The distance between these bounds 
is defined as the optimality or duality gap that can be defined in percentage as 
Optimality gap =

(
fUB − fLB

)
∕fUB × 100 . Therefore, the desired condition is to find the 

lowest optimality gap to find an optimal or near-optimal solution fopt . One of the best 
methods is by applying a Lagrangian heuristic at each iteration to determine the feasi-
ble solution. Some examples of this concept are by Araya-Sassi et al. (2018) in opti-
mizing the inventory location problem as well as Yu and Zhang (2014) in the NP-hard 
unit commitment problem.

•	 Another measurement is based on CDF such as relative stochastic dominance (Chicco 
and Mazza 2019). As a brief description, the method compares the CDF of the algo-
rithm with respect to a reference CDF within H number of solutions and defined time 
frame. Then the area between algorithm CDF and reference CDF is determined and the 
metric OPISD is calculated as in Eq. (58). The OPISD value is then ranked in descend-
ing order that corresponds to the most effective to the least effective algorithm. The 
metric formulation is discussed in Sect. 2.2.2 and Eq. (58). A higher value of this met-
ric denotes a better performance metric is inversely proportional to the area between 
the algorithm’s CDF and the reference CDF. Other CDF based measures such as per-
formance profile and data profile require the information of tolerance from the global 
optimum. The profile then displays a graphical chart of the number of solved prob-
lems with respect to the number of FEVs. Slight modification for the unknown opti-
mum problem is by defining a tolerance using the best-known solution found by any 
compared algorithms. This best-known solution is then defined as superior to the ones 
found by other algorithms under study. This method is somehow applicable but it may 
bias towards the defined global optimum value.

•	 A comparison between the pseudo-optimal and the worst gained solution is another 
option for effectiveness measure. Lee et al. (2019b) proposed a ratio of optimum cost 
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obtained by an algorithm to the known worst solution defined as the improvement ratio 
in the constrained optimization problem. The average and standard deviation of this 
measure over n number of trials are used to compare with other algorithms. This metric 
is generally applicable to other optimization problems and higher average value reflects 
a better performance as the algorithm improves its search towards a better solution.

In MOP cases, the Pareto optimal front or PF usually cannot be calculated for real-world 
problems. For this reason, a reference set R is considered as an approximation of PF con-
taining all non-dominated solutions. Not all MOP performance indicators are applicable 
when the knowledge of PF is not known. Some of the cardinality based measures require 
the knowledge of PF such as ONVG, ONVGR, and NVA metrics, whereas metrics such as 
C1R and C2R are applicable for unknown PF. The convergence based metrics usually also 
require the knowledge of PF but also can be based on the reference in the case of unknown 
PF (Riquelme et al. 2015). Several metrics that necessary to obtain the knowledge of PF 
are such as ∆p, Pg, and Δ*. Besides, Δ* requires the knowledge of extreme solutions of PF 
(Audet et al. 2018).

5 � Conclusion

It is well understood in the field of metaheuristic algorithms that a single run is not suf-
ficient for a performance measure, rather it is necessary to analyze the algorithm’ solution 
in n trials of runs. The performance of the algorithm is then analyzed in the scope of effi-
ciency and effectiveness and it applies to numerous problem types that include single- and 
multiple-objectives as well as continuous and discrete problems. For single-objective prob-
lems, the main concern in the efficiency measure relates the rate of problem-solving that 
includes the convergence rate, search agents diversity, computational cost, complexity, and 
statistical measures such as cumulative distribution and ordered alternatives. Similar scope 
applies to the discrete single-objective problems. Some additional measures especially for 
combinatorial problems include runtime measures using FHT, sub-solution optimum rate, 
and tour improvement. In the effectiveness perspective, the overall measures for both single 
objective domains can be divided mainly into effectiveness rate, profile measures, scalabil-
ity, 100-digit accuracy, and statistical measures that include descriptive and inferential. The 
option for statistical inference is further divided into frequentist and Bayesian tests.

Among the significant metrics implemented in various works of literature are the per-
centages of successful convergence either by the best solution as in Eq. (39) or the average 
of solutions in Eq. (40). It is also highlighted that using only the best solution as a perfor-
mance indicator is not sufficient. The author should also include the average measures as 
well as the variability of the solution to describe the algorithm’s effectiveness concerning 
the overall converged solutions. Comparing to other benchmarked algorithm as in Eq. (41) 
is also another supporting metric to understand the quality of the proposed algorithm 
with respect to other established algorithms. For the profiling measure, it is sufficient to 
select either one of the proposed methods (depending on the problem type) as discussed in 
Sect. 2. The profile measures enable the researcher to understand and compare the cumula-
tive distribution of performance metric from a set of algorithms. For continuous problems 
with multiple dimensions, the scalability metric can be used to describe the relationship 
of the algorithm’s performance concerning the number of dimensions. With this measure, 
the algorithm’s ability (such as FEVs) on solving each dimension can be plotted against 
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the number of dimensions and can be compared between algorithms. On the other hand, 
the accuracy of converged solutions can be compared using 100-digits accuracy. One of 
the most crucial verification for the effectiveness measure is the statistical analysis and it 
is important to select the correct measurement for both descriptive and inferential anal-
ysis. In multi-objective optimization problems, the scope of efficiency and effectiveness 
are blended together in mainly five clusters of metrics: cumulative distribution based met-
ric, cardinality, convergence, diversity, and convergence plus distribution. All of the met-
rics describe the solution distance, distribution, and accuracy with respect to the Pareto 
front or reference set. This measure is valid for both continuous and discrete problems and 
numerous metrics were introduced to measure the quality of solutions against Pareto front. 
However for multi-objective problems, one metric is not sufficient to resemble the algo-
rithm performance. The comparison for multi-objective shall cover at least all five clusters 
of metrics to gain distinctive differences between algorithms. Some papers proposed an 
ensemble of metrics to combine the set of performance indicators, which then summarizes 
multiple quality of solutions together by the compared algorithms. Based on the review 
from each problem types, the analysis and reporting the results of algorithm solutions and 
comparisons are solely focused on tabular methods (such as statistical indices and per-
centage of improvements), trajectory plots (such as convergence and diversity curves) and 
ratio-based plots (such as performance, data, and other suitable profiles). Besides the com-
prehensive assessments of single- and multi-objective for continuous and discrete prob-
lems, this paper also reviews and proposed suitable measures for problems with unknown 
optimum or quasi-optimal solutions, which is practically significant in recent optimization 
problems with the advance of science and technology.
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