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Abstract
Persistent homology is a rigorous mathematical theory that provides a robust descriptor 
of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their 
variable size makes them, however, difficult to combine with typical machine learning 
workflows. In this paper we introduce persistence codebooks, a novel expressive and dis-
criminative fixed-size vectorized representation of PDs that adapts to the inherent sparsity 
of persistence diagrams. To this end, we adapt bag-of-words, vectors of locally aggregated 
descriptors and Fischer vectors for the quantization of PDs. Persistence codebooks repre-
sent PDs in a convenient way for machine learning and statistical analysis and have a num-
ber of favorable practical and theoretical properties including 1-Wasserstein stability. We 
evaluate the presented representations on several heterogeneous datasets and show their 
(high) discriminative power. Our approach yields comparable—and partly even higher—
performance in much less time than alternative approaches.

Keywords  Persistent homology · Machine learning · Persistence diagrams · Bag of words · 
VLAD · Fisher vectors

1  Introduction

Topological data analysis (TDA) provides a powerful framework for the structural 
analysis of high-dimensional data. An important tool in TDA is persistent homology, 
PH (Edelsbrunner et al. 2002). It provides a comprehensive, multiscale summary of the 
underlying data’s shape and currently gains an increasing importance in data science 
(Ferri 2017). Recently, it has been successfully applied to computer vision problems, 
such as shape and texture analysis (Li et al. 2014; Reininghaus et al. 2015), 3D surface 
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analysis (Adams et  al. 2017; Zeppelzauer et  al. 2017), 3D shape matching (Carrière 
et  al. 2015), mesh segmentation (Skraba et  al. 2010), and motion analysis (Vejdemo-
Johansson et al. 2015). Further application areas include time series analysis (Seversky 
et  al. 2016), music tagging (Liu et  al. 2016) and social-network analysis (Hofer et  al. 
2017) as well as applications from the bio-medical domain, e.g. biomolecular analysis 
(Cang and Wei 2017), brain network analysis (Lee et  al. 2012), protein investigation 
(Gameiro et al. 2015) and material science (Nakamura et al. 2015).

Persistent homology can be efficiently computed using various currently available 
tools (Bauer et al. 2017; Chen and Kerber 2011; De Silva et al. 2011; Dey et al. 2016; 
Edelsbrunner and Harer 2010; Maria et al. 2014). A basic introduction to PH is given 
in Sect.  2 and the more detailed one in the “Appendix”. The common representation 
of PH are persistence diagrams (PDs) which are multisets of points in ℝ2 . Due to their 
variable size, which varies depending on the input data, PDs are not easy to integrate 
within common data analysis, statistics and machine learning workflows. To alleviate 
this problem, a number of kernel functions defined on PDs and vectorization methods 
for PDs have been introduced.

Kernel-based approaches have a strong theoretical background but in practice they 
often become inefficient when the number of training samples is large. As typically 
the entire kernel matrix must be computed explicitly (like in case of SVMs), this leads 
to roughly quadratic complexity in computation time and memory with respect to the 
size of the training set. Furthermore, vector-based approaches are limited to kernelized 
methods, such as SVM and kernel PCA. Vectorized representations, in contrast, are 
compatible with a much wider range of methods and do not suffer from complexity con-
straints of kernels. They, however, often lack in representational power, as they require 
the spatial quantization of the PDs, which is unsually non-adaptive and thus does not 
cope well with the sparseness of PDs.

In this work we present a novel adaptive representation of PDs which aims at com-
bining the large representational power of kernel-based approaches with the general 
applicability of vectorized representations. To this end, we adapt the popular bag-of-
words (BoW) encoding (McCallum et  al. 1998; Sivic and Zisserman 2003), as well 
as its more comprehensive extensions, such as VLAD (Jégou et  al. 2010) and Fisher 
vectors (Perronnin and Dance 2007) to cope with the inherent sparsity of PDs. The 
proposed persistent codebooks provide universally applicable fixed-sized feature vec-
tors. They are, under mild assumptions, stable with respect to a standard metric in PDs 
and thus, also theoretically, built upon a solid basis. The presented method is to some 
extend a generalization of persistence images, PI (Adams et al. 2017), which adapts to 
the underlying data distribution. In contrast, PI samples the distribution in a regular 
grid (corresponding to an image), what often results in unnecessary codewords. Experi-
ments show that the new representations achieve peak performance and even outper-
form numerous competitive methods while being more compact and requiring orders of 
magnitude less time.

This paper builds upon previous work of Zieliński et al. (2019). The additional contribu-
tion includes: (1) two new persistence codebook representations (PVLAD and PFV) build-
ing upon vectors of locally aggregated descriptors (VLAD) and Fisher vectors (FV); (2) the 
investigation of their stability; (3) the introduction of stable variant of PVLAD algorithm 
together with the proofs of its stability; (4) a significant number of additional experiments 
on an extended collection of datasets; and (5) an extended discussion of results.

The paper is structured as follows. Section  2 gives a basic introduction to PH and 
reviews related approaches. In Sect. 3 we introduce persistence codebooks and investigate 
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their stability. Sections 4 and 5 present the experimental setup and results. We conclude the 
work in Sect. 6.

2 � Background and related work

2.1 � Background on persistent homology

In this section, we first introduce persistent homology, and then describe related state-of-
the-art approaches, both kernel- and vectorization-based, that aim at making PH compat-
ible with machine learning methods.

Under mild assumptions, persistent homology (PH) can be defined for a continuous 
function f ∶ X → ℝ , where X ⊂ Rn . Typically f is a distance function from a collection of 
points, or a scalar value function defined on a grid of points, but in principle it can be an 
arbitrary function that satisfies a tameness assumption specified below. Focusing on sub-
level sets Lx = f −1((−∞, x]) , we let x grow from −∞ to +∞ . While this happens, we can 
observe a whole hierarchy of events. In dimension zero, connected components of Lx will 
be created and merged together. One dimensional cycles that are not bounded, or higher 
dimensional voids, will appear in Lx at critical points of f. The value of x on which a con-
nected component, cycle or a higher dimensional void appears is refereed to as birth time. 
They will subsequently either become identical (up to a deformation) to other cycles and 
voids (created earlier), or they will be glued-in and become trivial. The value of x on which 
that happens is refereed to as death time. Every connected component, a cycle, or a higher 
dimensional void can, therefore, be characterized by a pair of numbers, b and d, its birth 
and death time. The difference between the death and the birth, p = d − b , is the so-called 
persistence value. In this paper, we will use the birth-persistence pair [b, p] to encode the 
feature. The multi-set of birth-persistence pairs makes up a persistence diagram (PD). The 
set of all persistence diagrams will be denoted as D . Example PDs for three different input 
point clouds are shown in Fig. 1.

The persistence coordinate is often an indicator of whether a cycle is structurally rel-
evant or more likely to be related to noise. This observation is justified by many stability 
theorems for persistence (Cohen-Steiner et al. 2007), which state that a small change in the 
space X, or in a function f, implies only a small change in the resulting persistence diagram. 
Consequently, points in the PD with low persistence can be removed by a small perturba-
tion of the data; and therefore, are not considered stable features. Those stability results 
make PDs a robust tool in data analysis.

Throughout this paper we assume that the given function f is tame, i.e. it induces a finite 
number of birth-persistence points. There are various metrics on finite PDs. To define 
them, the finite diagrams have to be enriched with an infinite collection of points (b, 0), 
which represent features that are born and immediately die. Having the enriched PDs B and 
B′ let us consider all possible matchings � ∶ B → B� . The 1-Wasserstein distance is defined 
as:

In this paper, when considering stability of the representations, we will consider the stabil-
ity with respect to 1-Wasserstein distance. A more in-depth introduction to PH is provided 
in “Appendix”.

W1(B,B
�) = inf�∶B→B�

�
x∈B

‖(x − �(x))‖∞
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2.2 � Kernels and vectorized representations of PDs

Numerous kernel-based and vectorized approaches have been introduced to make PDs 
compatible with statistical analysis and machine learning methods. The goal of kernel-
based approaches is to define dissimilarity measures (also known as kernel functions) 
on PDs to compare them, and thereby make them compatible with kernel-based machine 
learning methods, such as Support Vector Machines (SVMs), and kernel Principal Compo-
nent Analysis (kPCA).

Li et  al. (2014) combine the traditional bag-of-features (BoF) approach with PDs by 
using various distance functions between 0-dimensional PDs (bottleneck and Wasserstein 
distances for PDs, Lp distance functions for persistence landscapes of PDs) to generate ker-
nels. On different datasets (SHREC 2010, TOSCA, hand gestures, Outex) they show that 
topological information is complementary to the information of traditional BoF. Reining-
haus et al. (2015) propose a kernel for persistence diagrams by turning PDs into a continu-
ous distribution by appropriate placement of Gaussian distributions in ℝ2 . Subsequently, 
they define a kernel as a scalar product of the two corresponding distributions. They apply 
topological descriptors together with the novel kernel to shape retrieval and texture clas-
sification. Kusano et  al. (2016) propose a persistence weighted Gaussian kernel, which 
employs the framework of kernel embedding of measures into reproducing kernel Hilbert 
spaces. Carrière et al. (2017) propose another kernel based on sliced approximation of the 
Wasserstein distance. The authors show that the kernel is not only stable, but also mimics 
bottleneck distances between PDs. They subsequently develop an approximation technique 
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Fig. 1   The principle behind persistent codebooks on the example of the computational workflow of the 
persistence bag-of-words representation (PBoW): From the input data we compute PDs in dimension 1 
in birth-persistence coordinates and combine them into one consolidated diagram (for the entire dataset). 
Next, a subset of points is obtained from this diagram by either a weighted or unweighted sub-sampling. 
Subsequently, we cluster the sub-sampled consolidated diagram to retrieve the codewords which will form 
our codebook. Finally, the points for each input PD are encoded by the codewords (BoW quantization). 
In this illustration a hard assignment of points to words (PBoW) is performed. The result is a codeword 
histogram for each input PD that represents how many points fall into which cluster of the codebook, i.e. 
codeword cardinalities. These codeword histograms are a compact and fixed-size vectorial representation. It 
is worth mentioning that while the hard assignment presented here gives the idea of the procedure, in prac-
tice we often employ soft assignment for stability reasons. Please, note further that the workflows for other 
persistent codebook encodings (e.g. based on VLAD or Fisher Vectors) are structurally similar, but partly 
use different codeword generation, quantization, and assignment schemes
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to reduce the kernel computation time. They apply it to 3D shape segmentation, texture 
classification, and orbit recognition in dynamical systems. Another approach for the repre-
sentation of PDs are persistence landscapes, PL (Bubenik 2015). PL is a stable functional 
representation of a PD obtained from transforming it into a sequence of real-valued piece-
wise linear functions. To compare two landscapes, the authors use standard Lp distance. 
This distance can be used to define a kernel function. Note that PL can also be transformed 
into a fixed-length vectorized representation by sampling the values of the landscape func-
tion. The authors, however, are not reporting results for vectorized PLs; therefore, we com-
pare to kernels derived from PLs in our experiments. More recently, Le and Yamada (2018) 
proposed persistence Fisher kernel. It is based on a Fisher information distance between 
persistence diagrams and preserves some of the geometrical properties of the persistence 
diagrams space. Another approach, proposed by Som et al. (2018), embeds persistence dia-
grams into a Grassmann manifold, where PDs are compared using a geodesic distance.

Vectorized representations aim at deriving fixed-size encodings of PDs that can be 
used directly as input to current machine learning methods. One of the first attempt to vec-
torize PDs was presented by Aadcock et al. (2014). Given a collection of PDs D1,… ,Dn , 
a vector characterizing Di is obtained by taking the vector of matching distances between 
Di and Dj , for every j ∈ {1,… , n} . A more recent approach, called persistence image, PI 
(Adams et al. 2017) is built upon earlier work on size functions (Donatini et al. 1998; Ferri 
et al. 1998). It maps a PD to a space of functions from ℝ2 to ℝ by taking a weighted sum 
of two dimensional Gaussian kernels placed in the points of PD. Subsequently, a discre-
tization of the obtained function on a fixed grid of points provides the vectorization of 
PDs. Anirudh et al. (2016) propose an alternative approach based on the reconstruction of 
a certain Riemannian manifold (RM) based on PDs and its subsequent representation by a 
fixed-size vector. In Di Fabio and Ferri (2015), PDs are represented as the coefficients of a 
complex polynomial having points of PD as roots. Similarly, using a sequence of weighting 
functions, Wang et al. (2019) transform PDs D1,… ,Dn into vectors V1,… ,Vn and obtain 
a polynomial representation of Di by taking a polynomial system having roots in the cor-
responding Vi . Recently, as a continuation of this idea, the tropical algebra was used to con-
struct a polynomial representation of diagrams (Kališnik 2019; Monod et al. 2019).

Recently, a third type of approach has been introduced, which aims at learning which 
points in the PD are of particular importance for the given task in a supervised manner by 
end-to-end learning (Hofer et al. 2017).

Overall, we can distinguish between approaches that learn the representation in a super-
vised or unsupervised manner. While supervised learned representations may better adapt 
to a specific task, the representations or kernels constructed in an unsupervised fashion 
bear less risk for overfitting because their construction is task agnostic. The proposed 
approach falls in the category of task agnostic representations and can be applied in super-
vised and unsupervised problem settings.

3 � Persistence codebooks

In this section, we adapt the bag-of-words (BoW) model (McCallum et al. 1998; Sivic 
and Zisserman 2003) as well as its more comprehensive extensions, such as VLAD 
(Jégou et  al. 2010) and Fisher vector (Perronnin and Dance 2007), introduced origi-
nally in text and image retrieval, for adaptive quantization of PDs into a fixed length 
vectorial representation. The idea behind BoW is to quantize variable length input data 
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into a fixed-size representation by using a common dictionary, also called codebook of 
constant size. The codebook is generated from the input data in an unsupervised manner 
by extracting centers of clusters obtained from data clustering. The basic assumption 
behind BoW is that the clusters (i.e. codewords) capture the intrinsic structure of the 
data and, thereby represent an efficient vocabulary for the quantization of the data.

The overall approach of bag-of-words for persistence diagrams is visualized in Fig. 1. 
The input is a set of PDs extracted from all instances of a given dataset. First, all PDs 
are merged into one diagram. This consolidated diagram is then sub-sampled to reduce 
the influence of noise. In this paper, we consider two types of sub-sampling. A stand-
ard one which does not consider the persistence of the points, and one where points 
of higher persistence are more likely to be sampled, see Sect.  3.2 (we refer to those 
two types of sub-sampling as without and with weighting, respectively). From the (sub-
sampled) consolidated diagram, the codebook C is generated using clustering. Given 
a codebook C, every input point P is encoded by assigning it to the nearest codeword 
from C. In traditional BoW this encoding leads to a codeword histogram, i.e. a his-
togram for which each codeword from C counts how many points from P are closest 
to this codeword. Further encodings investigated include vector of locally aggregated 
descriptors (VLAD) and Fisher vector (FV), see below.

For the proposed approaches, three important hyperparameters need to be identified: 
(1) the clustering algorithm used to generate the codebook, (2) the size of the codebook, 
i.e., the number of clusters, and (3) the type of proximity encoding which is used to 
obtain the final descriptors, i.e. hard and soft assignment. In this paper, we use k-means 
and Gaussian mixture models (GMM) for clustering. The codebook size is investigated 
empirically. In the following sections, we introduce persistent codebook approaches 
based on different quantizations and encodings, such as standard BoW, VLAD and FV. 
Consult Table  1 for an overview of representations introduced and evaluated in this 
paper.

For all approaches presented in these sections, we show if they are stable with respect 
to 1-Wasserstein distance. We would like to indicate that since the representations pre-
sented here are additive (consider the definition of additivity from Reininghaus et  al. 
2015), they are not stable for a p-Wasserstein distance for any p > 1 as indicated in 
Theorem 3 in Reininghaus et al. (2015).

Table 1   The design space of persistent codebook approaches introduced in this paper together with their 
abbreviations for reference

Each resulting representation can use either weighting of no weighting in codebook generation (see experi-
ments in Sect. 5.1 for a direct comparison). For variants with weighting, we add “-w” to the abbreviation, 
e.g. “PBoW-w” for clarity

Sampling consoli-
dated PD

Codebook genera-
tion

Codebook size Histogram assign-
ment

Abbrev. Equation

No weighting 
weighting

k-means See Tables 4 and 5 Hard PBoW (1)
Hard with weights wPBoW (3)
Hard PVLAD (5)

GMM Soft sPBoW (4)
sPVLAD (6)
sFV (11)
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3.1 � Persistence bag of words (PBoW)

Let us first consider a direct adaptation of BoW (Baeza-Yates et al. 1999; Sivic and Zis-
serman 2003) to PDs. Given a collection of persistence diagrams B1,B2,… ,Bn , they are 
consolidated into D = B1 ∪ B2 ∪… ∪ Bn and a codebook of size N is obtained by using 
k-means clustering on D. Let {�i ∈ ℝ

2, i = 1,… ,N} denote the centers of obtained clusters 
(the codewords). Moreover, for a PD B = {xt ∈ ℝ

2}T
t=1

 , let us denote NN(xt) as the index of 
the codeword nearest to xt , NN(xt) = i| d(xt,�i) ≤ d(xt,�j) for all j ∈ {1,… ,N} . For every 
codeword �i , vPBoWi

(B) = card{xt ∈ B | NN(xt) = i} captures the number of points from B, 
which are closer to �i than to any other �j . Then the persistence bag of words (PBoW) is 
defined as a vector:

Subsequently, �����(B) is normalized by taking the square root of each component (pre-
serving the initial sign) and dividing it by the norm of the whole vector:

This is a standard normalization for BoW (Perronnin et al. 2010), which reduces the influ-
ence of outliers.

Remark  Let B,B� ∈ D be persistence diagrams containing only finitely many off-diagonal 
points. The persistence bag of words, PBoW with N words is not stable with respect to 
1-Wasserstein distance.

Proof  Let us assume that we have two clusters with centers �1 = (0, 0),�2 = (1, 0) ∈ ℝ
2 , 

and PD B containing only one point x1 = (
1

2
+ �, 0) , for some small 𝜖 > 0 . Then, 

�����(B) = [0, 1] , because x1 is closer to �2 than �1 . However, a small perturbation in B, 
e.g. by −2� , changes the assignment of x1 from �2 to �1 . In this case B� = {y1 = (

1

2
− �, 0)} 

and �����(B�) = [1, 0] . In order to be stable in 1-Wasserstein sense, PBoW should fulfill 
the following condition:

therefore C > 1∕𝜖 . As 𝜖 > 0 can be arbitrarily small, there does not exist a constant C that 
meets this condition. Hence, the direct adaption of BoW to PDs (PBoW) is not stable. 	
� ◻

3.2 � Weighted subsampling for codebook generation

Aside from being unstable, the straight-forward application of BoW to PD would neglect 
an important property of persistence diagrams, i.e. that points in a PD with higher persis-
tence are typically considered more important than points with lower persistence. It is a 
consequence of a stability theorem, Edelsbrunner and Harer (2010) indicating that points 
with low persistence are more likely to originate from a noise than the points of high 
persistence.

(1)�
����(B) =

(
vPBoW
i

(B)
)
i=1,…,N

.

vPBoW
i

(B) =
sign

(
vPBoW
i

(B)
)√|||vPBoWi

(B)
|||

‖‖�����(B)‖‖
.

2 = |�����(B) − �
����(B�))| < C|x1 − y1| < 2C𝜖,
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In order to integrate this property into the codebook generation procedure, we perform 
k-means clustering on a subset of points obtained by a weighted sampling described below. 
This results in extended procedure of codebook generation which is as follows: 

1.	 Place all the persistence diagrams (or all diagrams of a certain dimension) on to a single 
consolidated persistence diagram D.

2.	 Subsample n points from D in a way that points of higher persistence are more likely to 
be sampled. In the experiments presented in this paper we set it to n = 10,000.1

3.	 Perform k-means clustering on the obtained subset of n points to extract the centers of 
the clusters (the codewords).

For the weighted sampling of points from a persistence diagram we define a piecewise lin-
ear weighting function wa,b ∶ ℝ → ℝ as:

and use it to weight second coordinates (persistence) of points in PD. In our experiments 
we set a and b to the persistence values corresponding to 0.05 and 0.95 quantiles of the 
persistence coordinate of the points in D. In the performed sub-sampling persistence points 
having longer values of the function w are more likely to be sampled.

We want to highlight that in this case we have selected a linear weighting with respect 
to persistence, i.e. the probability of sampling of a point is proportional to its persistence. 
It works well in the cases considered in this paper, however in the case of very noisy data 
with just a few dominant persistent points, the points of high persistence may not be sam-
pled at all. In such case, we suggest to consider the weighting to be a higher degree poly-
nomial or an exponential function to boost the probability of capturing the high persistence 
points.

Please, note further that the sub-sampling does not directly enforce the points of the 
highest persistence to be automatically selected as the centers of clusters, but it makes the 
probability of such an event considerably larger. Examples of birth-persistence distribu-
tions with standard (unweighted) and weighted codebooks obtained with k-means and 
GMM are presented in Fig. 2. The unweighted clustering produces larger clusters, which 
are less adaptive to the strongest topological structures. At the same time, the weighted 
clustering yields a more adaptive codebook with a more uniform sampling of the space.

3.3 � Weighted codeword assignment for persistence bag of words (wPBoW)

The weighting function from Sect.  3.2 can be similarly used to weight the histogram 
assignments to give points with higher persistence more influence in the final representa-
tion. For this purpose, instead of counting the number of points, we sum up the weights of 
their persistent coordinates.

(2)wa,b(t) =

⎧⎪⎨⎪⎩

0 if t < a

(t − a)∕(b − a) if a ≤ t < b

1 if t ≥ b

,

1  Preliminary experiments have shown that this number is insensitive and has little influence on the results 
(evaluated value range: 1000–100,000).
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where B ∈ D . We will refer to this representation as weighted persistence bag of words 
(wPBoW) in the following. Similary to standard PBoW, wPBoW is not stable with respect 
to 1-Wasserstein distance. The couterexample is identical with the one in Sect. 3.1, when 
we assume that function wa,b is identity.

3.4 � Stable persistence bag of words (sPBoW)

After having integrated persistence-based weighting into codebook generation and also 
into histogram assignment, we aim at making the representation stable. To this end we 
adapt soft assignment of points to clusters and prove that such an approach guarantees 
stability of the resulting representation. Stable persistence bag of words (sPBoW) simi-
larly to PBoW (and wPBoW) first consolidates PDs in the initial step of construction, and 
then generates a GMM based on the sub-sampled points (e.g. by expectation maximization 

(3)�
�����(B) =

(
vwPBoW
i

=
∑

(b,p)∈B∶NN((b,p))=i

wa,b(p)

)

i=1..N

,

birth

pe
rs
is
te
nc

e
Consolidated diagram with unweighted codebook

birth

pe
rs
is
te
nc

e

Consolidated diagram with weighted codebook

Fig. 2   Codebook generation based on the consolidated PD with N = 7 codewords (top: k-means, bottom: 
GMM, left: no weighting, right: weighting). Using the language of computational geometry; one may tell 
that the cells in the top diagrams form a Voronoi diagram of the codewords. Equivalently all points in the 
same Voronoi cell have the same closest codeword. Weighting allows to sample more points of higher per-
sistent from the diagram, representing more stable topological structures and yields more balanced cluster 
weights (even though there are many more points on the bottom of consolidated PD). Note that a cluster can 
(but does not have to) be created for a single high persistence point which is well separated from the others, 
as is the case here with the most persistent point (top-left quadrant)
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algorithm Nasrabadi 2007). This approach was originally introduced by Van Gemert et al. 
(2008).

Let the parameters of the fitted GMM be � = {wi,�i,Σi, i = 1,… ,N} , where wi , �i and 
Σi denote the weight, mean vector and covariance matrix of i-th Gaussian, and N denotes 
the number of Gaussians. Given a PD B, the stable PBoW is defined as:

where wi > 0 , 
∑N

i=1
wi = 1 , and pi(xt|�) is the likelihood that observation xt was generated 

by Gaussian i:

The intuition behind this approach is to assign each point to all codewords, but with weight 
inversely proportional to the distance to the codewords.

Theorem  Let B and B′ be persistence diagrams with a finite number of non-diagonal 
points. Stable persistence bag of words, sPBoW with N words is stable with respect to 
1-Wasserstein distance between the diagrams, that is

where C is a constant.

Proof  Let � ∶ B → B� be the optimal matching in the definition of 1-Wasserstein distance. 
For a fixed i ∈ {1,… ,N} we have:

As pi ∶ ℝ
2
→ ℝ are Lipschitz continuous with the Lipschitz constants Li , we get

	�  ◻

3.5 � Persistence VLAD

Persistence VLAD (PVLAD) is based on vector of locally aggregated descriptors (VLAD) 
by Jégou et al. (2010), an extension of the bag-of-words concept, which accumulates the 
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xt∈B

pi(xt|�)
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i
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}

2�|Σi|
1
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residual of each descriptor with respect to its assigned cluster. The first computation step 
is similar to PBoW: a codebook {�i ∈ ℝ

2, i = 1..N} is obtained from a training set using 
k-means clustering. Given a new PD B, each point xt ∈ B is associated with its nearest 
codeword NN(xt) . In the second step, for each codeword �i , we compute a sum of differ-
ences between �i and all xt ∈ B for which NN(xt) = i . This results in:

The dimension of vPVLAD
i

 equals 2 (differences on two coordinates), therefore ������ is of 
size 2N. Intuitively, this vector should capture more information than PBoW alone, because 
it encodes the first order moments of the points assigned to a codeword instead of simply 
counting those points.

Similarly to PBoW, PVLAD is not stable with respect to 1-Wasserstein distance. There-
fore, in Sect. 3.6, we propose to adapt a stable variant of VLAD, called soft VLAD.

Remark  Let B,B� ∈ D be persistence diagrams containing only finite off-diagonal points. 
The persistence vector of locally aggregated descriptors, PVLAD with N words is not sta-
ble with respect to 1-Wasserstein distance.

Proof  Starting from two clusters with centers �1 = (0, 0),�2 = (1, 0) ∈ ℝ
2 and a persistence 

diagram B = {(
1

2
+ �, 0)} , for small 𝜖 > 0 , we get vPVLAD

1
= [0, 0] and vPVLAD

2
= [� −

1

2
, 0] . 

However, similarly to the case of PBoW, a small perturbation of B, e.g. by [−2�, 0] will 
change B to B� = {(

1

2
− �, 0)} and the corresponding components of PVLADs to [ 1

2
− �, 0] 

and [0, 0]. Calculating the difference between ������(B) and ������(B�):

In order to be stable in 1-Wasserstein sense, PVLAD should fulfill the following condition: 
1 = |������(B) − ������(B�))| < C|x1 − y1| < 2C𝜖 , therefore C >

1

2𝜖
 . As 𝜖 > 0 can be 

arbitrarily small, and there does not exist a constant C that meets this condition. Therefore, 
PVLAD is not stable. 	�  ◻

3.6 � Stable persistence VLAD

Similarly to PBoW, the hard association with codewords can be replaced by soft associa-
tion in VLAD (Jégou et al. 2012), to account for instability. To this end, we define stable 
persistence VLAD (sPVLAD) as follows:

where �i(xt) is the soft assignment of descriptor xt to ith Gaussian:

(5)�
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)

i=1..N

,
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In the stability theorem for stable persistence VLAD (presented below) we assume that 
coordinates of the points in the considered persistence diagrams are limited to a certain 
compact subset of ℝ2 . This limitation is crucial to prove the stability and it is a reasonable 
assumption in case of TDA. Moreover, this theorem is true for any ℝn (not only for ℝ2).

Theorem  Let B,B� ∈ D be persistence diagrams, such that B,B� ⊂ [a, b] × [a, b] and let 
� = {wi,�i,Σi, i = 1,… ,N} be a GMM with wi ≠ 0 . The stable persistence VLAD with N 
words is stable with respect to 1-Wasserstein distance, that is:

where C is a constant depending on [a, b] × [a, b].

Proof  Let us first consider the following difference:

where:

�i(xt) = p(i�xt, �) =
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while Mi and Li are the maximal value and Lipschitz constant of i-th Gaussian pi . Note that 
the constant C1 exists because diagrams are supported in a compact subset of ℝ2 . There-
fore, the Gaussians achieve a minimum value, which is bounded away from zero. When it 
comes to assignment (i), we simply put pj(yt) = pj(yt) − pj(xt) + pj(xt).

For a fixed i we can estimate:

where:

In (ii) we used the estimation (7) and the fact that supy �i(y) = 1 . The boundaries of ℝ2 
compact subset allow to determine the maximal distance between diagram points and the 
Gaussian centers, which is used in (iii) to estimate C3 . Note that C4 is independent of i, 
hence:

and

	�  ◻

We would like to point out that in the estimation of C1 and (iii) we use an assump-
tion that diagrams are supported in the compact ℝ2 subset [a, b] × [a, b] . As a result, if 
the support of a persistence diagram sequence diverges to ∞ , then the corresponding 
sequence of C1 also diverges to infinity. Therefore C4 is not a global constant and the 
persistence VLAD is not globally stable. We want to indicate, however, that for any 
practical case, the assumption about compact support of diagrams is always satisfied.
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3.7 � Persistence fisher vector

The idea of persistence Fisher vector (PFV) is based on Fisher vectors introduced by 
Perronnin and Dance (2007) and relies on the gradient of the log-likelihood with respect 
to the parameters of a Gaussian mixture model. Compared to the traditional BoW 
model, it captures first and second order moments. It can be extended to PDs as follows. 
Given a PD B ∈ D we aim a characterizing it with a gradient vector derived from a 
generative probability model (obtained for all PDs used for codebook generation). This 
is similar to sPVLAD, however in case of PFV we compute not only the first order, but 
also the second order moments of the points assigned to a codeword (i.e. not only the 
gradient for �i but also for Σi).

Let L(B|�) = log p(B|�) , where under the independence assumption:

where:

is the likelihood that point xt was generated by the GMM.
Assuming that the covariance matrices are diagonal (for ease of calculation), the der-

ivations �L(B|�)
��d

i

 and �L(B|�)
��d

i

 (where �d
i
= diag(Σi) and superscript d denotes the d-th dimen-

sion of a vector) can be effectively computed as (Perronnin and Dance 2007):

The gradient vector is just a concatenation of the partial derivatives with respect to all the 
parameters.

To normalize the dynamic range of the different dimensions of the gradient vectors, 
the diagonal of the Fisher information matrix F� is computed as:

applied to partial derivatives, resulting in the final definition of Fisher vector:

where f�d
i
 and f�d

i
 are the corresponding terms on the diagonal of F� . Vector ���� is the 

concatenation of N pairs of components containing D = 2 values for every Gaussian com-
ponent, therefore it is of size 4N.
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Theorem  Let B,B� ∈ D be persistence diagrams, such that B,B� ⊂ [a, b] × [a, b] . The per-
sistence Fisher vector with N words is stable with respect to 1-Wasserstein distance, that 
is:

where C is a constant depending on [a, b] × [a, b].

Proof  Persistence Fisher Vector is a concatenation of the two components presented in 
Eqs. (9) and (10). In order to be stable, both components have to be stable with respect to 
1-Wasserstein distance; therefore, we estimate them separately (we skip d superscript from 
the original notation for clarity).

The first FV component (10) can be estimated using the theorem about sPVLAD stabil-
ity (8):

The second component (10) can be estimated as follows:
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Summing up the two estimates above, we conclude that persistence Fisher vector is sta-
ble with respect to 1-Wasserstein distance with a constant D3 +

C4

(�i)
2
 , where D3 is defined 

above and C4 is defined in Sect. 3.6.

4 � Experimental setup

To evaluate the proposed persistence BoW representations (PBoW, sPBoW, wPBoW, 
PVLAD, sPVLAD and PFV), we compare them with a number of state-of-the-art 
approaches including kernel-based methods and vectorized PD representations. The evalu-
ation is performed on classification tasks involving different datasets representing hetero-
geneous data including, among others, 3D shapes, textures, and social media graphs. In 
the following, we describe the datasets used in our experiments, list the state-of-the-art 
approaches we compare with, and discuss the setup of the experiments.

4.1 � Datasets

For the evaluation we incorporate various datasets which cover a wide range of differ-
ent data types. Firstly, to provide a proof-of-concept, we evaluate all the approaches on a 
synthetically generated shape classes from Adams et al. (2017). Next, the approaches are 
evaluated on real-world datasets for 3D shape segmentation (Carrière et al. 2017), activ-
ity recognition in 3D motion capture data (Ali et  al. 2007), geometry-informed material 
recognition (DeGol et al. 2016), classification of social network graphs (Hofer et al. 2017) 
and analysis of 3D surface texture (Zeppelzauer et al. 2017). The datasets are described in 
detail in the following sections. Where possible, we have used pre-computed PDs available 
with the datasets to foster reproducibility and comparability. As the computation times for 
some of the considered methods, especially for kernel-based approaches, do not scale well 
with the sizes of datasets, we have decided to randomly sub-sample some of the datasets 
(see details below).

4.1.1 � Synthetic dataset

The first dataset is a synthetic dataset introduced by Adams et  al. (2017). It consists of 
seven shape classes represented by point clouds in ℝ3 of the following geometrical objects: 
unit cube, circle of diameter one, sphere of diameter one, three clusters with centers ran-
domly chosen from unit cube, hierarchical structure of three minor clusters within three 
major clusters (where the centers of the minor clusters are chosen as small perturbations 
from the major cluster centers), and a torus (see Fig. 3 for example shapes). Each point 
cloud is randomly perturbed by positioning a Gaussian distribution of standard deviation 
0.1 at this point and sampling novel points from the distribution. Overall, this dataset con-
tains 50 point clouds for each of the six classes, each containing 500 3D points. This gives 
300 point clouds in total.
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From each point cloud, we compute the PDs in dimension 1 for a Vietoris-Rips filtration 
for a radius parameter equal to the maximal distance between points in the point cloud.2 
We employ the approximation method proposed by Dey et al. (2016) and the SimBa imple-
mentation based on the work of Dayu Shi.3

4.1.2 � Geometry‑informed material recognition dataset (GeoMat)

The GeoMat dataset provides geometry information (point clouds) as well as visual images 
of 19 different materials, such as “brick”, “grass” and “gravel” (DeGol et al. 2016). The 
GeoMat dataset contains patches sampled from larger photographs of surfaces from build-
ings and grounds. Each patch predominantly represents only one material, while each class 
consists of 600 images, each of size 100 × 100 pixels. Among them, there are pictures of 
different scales, i.e. 100 × 100 , 200 × 200 , 400 × 400 and 800 × 800.

For each patch, the dataset provides a depth image,4 containing the local (fine-grained) 
surface texture and the global surface curvature. To filter out the global curvature, we trans-
form each depth image into a point cloud in 3D space, consisting of 10, 000 points (every 
point represents one of the 100 × 100 pixels). Then, the resulting point cloud is rotated in a 
way that the Z axis represents depth and the global surface curvature is removed by fitting 
a second degree function (paraboloid) to the point cloud and subtracting the approximated 
values from the Z coordinates of the original points. The values of the Z-coordinates are 
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Fig. 3   Example shapes from the six shape classes of the synthetic dataset

2  We use Vietoris-Rips complexes to be consistent with the previous works. However, it should be noted 
that the alpha complex is a more optimal choice to compute persistent homology for a collection of points 
in low dimensional Euclidean space.
3  http://web.cse.ohio-state​.edu/~dey.8/SimBa​/Simba​.html, last visited September, 2019.
4  Source: http://web.engr.illin​ois.edu/~degol​2/pages​/MatRe​c_CVPR1​6.html, last visited September, 2019.

http://web.cse.ohio-state.edu/%7edey.8/SimBa/Simba.html
http://web.engr.illinois.edu/%7edegol2/pages/MatRec_CVPR16.html
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then centered at 0 and the point cloud is projected back into a bitmap (depth map). Ulti-
mately, PDs are computed by gray-scale filtration.

4.1.3 � Social network graph datasets (Reddit)

To extend the range of different data types in our evaluation, we further incorporate graph-
based datasets. To this end we employ the reddit-5k and reddit-12k datasets from Yanardag 
and Vishwanathan (2015), which contain discussion graphs from the reddit platform.5 
Nodes in the graphs correspond to users, and edges between users exist if one user has 
commented a posting of the other user. Different graphs are labeled by subreddits, which 
refer to different topics. The dataset reddit-5k contains overall 4999 graphs for 5 popular 
subreddits. The larger dataset, reddit-12k, contains 11929 graphs for 11 subreddits includ-
ing topics like, e.g. “worldnews”, “videos” and “atheism”. The task for both datasets is to 
predict the subreddit (topic) from the input graph. For both datasets we use the pre-com-
puted PDs available online.6 They are obtained using filtration based on the vertex degree, 
that is, the number of edges incident to a vertex. More precisely, concerning vertices V, 
edges E, and vertex v ∈ V  , deg(v) denote the number of edges in E that contain v. The 
filtration f (v) = deg(v) on vertices can be then extended to edges.That yields nontrivial 
persistent homology in dimension zero and one, where all one-dimensional classes are 
essential.

4.1.4 � 3D surface texture dataset (PetroSurf3D)

A further dataset in our experiments is the recently released PetroSurf3D dataset, which 
contains high-resolution 3D surface reconstructions from the archaeological domain with 
a resolution of approximately 0.1 mm (Poier et  al. 2017). The reconstructions represent 
26 natural rock surfaces that exhibit human-made engravings (so-called rock art), and 
thereby exhibit complex 3D surface textures. The classification task for PetroSurf3D is to 
automatically predict which areas of the surface have been manipulated by tools (engrav-
ings) and which have not, i.e. there are two classes of surface topographies: engraved areas 
and the natural rock surface. Engraved areas represent approximately 19% of the data. For 
each surface, a precise pixel-accurate ground truth exists together with a depth map of the 
surface. The depth maps are analyzed in a patch-wise manner. Overall, there are 754.386 
square patches to classify from 26 surfaces. In order to keep the number of training sam-
ples in a practical range, we randomly subsampled each surface. Overall, a balanced set 
(equal class cardinalities) of 600 patches per surface ( 26 ∗ 600 = 15,600 samples) is used 
in each repetition of an experiment.

For each patch, a PD is computed by grayscale filtration over the surface depth ranges 
(depth maps) as a basis for our experiments. To normalize the values for different shaped 
surfaces, the depth value range is z-standardized before filtration.

5  Reddit is a content-aggregation website: http://reddi​t.com.
6  Source: https​://githu​b.com/c-hofer​/nips2​017, last visited September, 2019.

http://reddit.com
https://github.com/c-hofer/nips2017
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4.1.5 � 3D shape segmentation dataset

We further employ the 3D shape dataset from Chen et al. (2009) which was preprocessed 
by Carrière et al. (2015) for topological data analysis. The preprocessed dataset contains 
PDs for 5700 3D points from airplane models. Each point is assigned to one sub-part (seg-
ment) of an airplane, e.g., ’wing’, ’vertical stabilizer’ and ’horizontal stabilizer’. For our 
experiments we use the PDs computed by Carrière et al. (2015), available in their reposi-
tory.7 The PDs were generated by tracking topology evolution of a geodesic ball centered 
at the individual points of the input 3D model. Thereby, the radius grows from 0 to infinity. 
We focus on PDs of dimension 1 as the considered 3D shapes are connected. The task is to 
classify each point according to the segment it belongs to.

4.1.6 � Motion capture dataset

Another real-world dataset represents 3-dimensional motion capture sequences of body 
joints (Ali et al. 2007). The dataset describes the following five activities: dancing, jump-
ing, running, sitting and walking with 31, 14, 30, 35 and 48 instances, respectively. For 
each activity, a set of 19 3D motion trajectories (each corresponding to the motion of one 
tracked joint) is extracted. This corresponds to 3 ⋅ 19 = 57 curves of individual (x, y, and z) 
components for which 57 separate PDs are computed by Ali et al. (2007). For our experi-
ments we employ the original pre-computed PDs.8

Experiments with this dataset are performed only on the vectorized representations. For 
kernel-based approaches we would have to compute 57 full kernel matrices, which is com-
putationally expensive and would further require an adequate method for the combination 
of the kernels. For vectorized representations, the proceedure is much more efficient and 
straight-forward. We simply compute one vector per PD and concatenate them into a final 
feature vector for classification. For the BoW approaches, we compute 57 codebooks, one 
for each 3D motion component, and concatenate the corresponding codeword histograms. 
In case of the Riemannian manifold representation, RM Anirudh et al. (2016), we generate 
vectorial features by PCA and concatenate them as proposed by the authors. We also use 
original procedure for PI (Adams et al. 2017).

4.2 � Compared approaches

We compare our bag-of-word approaches with both kernel-based techniques and vector-
ized representations. Kernel-based approaches include: 2-Wasserstein distance,9 2Wd 
(Kerber et  al. 2017.), the multi-scale kernel,10 MK (Reininghaus et al. 2015), and sliced 
Wasserstein kernel,11 SWK (Carrière et al. 2017). Furthermore, we employ the persistence 
landscape12 ,13 (PL) representation and generate a kernel matrix by the distance metric 

7  Source: https​://githu​b.com/Mathi​euCar​riere​/sklea​rn_tda, last visited September, 2019.
8  Source: https​://githu​b.com/rushi​lanir​udh/pdsph​ere, last visited September, 2019.
9  Source: https​://bitbu​cket.org/grey_narn/hera, last visited September, 2019
10  Source: https​://githu​b.com/rkwit​t/persi​stenc​e-learn​ing, last visited September, 2019.
11  Code obtained from Mathieu Carrière.
12  Source: https​://www.math.upenn​.edu/~dlotk​o/persi​stenc​eLand​scape​.html, last visited September, 2019.
13  Source: https​://githu​b.com/queen​BNE/Persi​stent​-Lands​cape-Wrapp​er, last visited September, 2019.

https://github.com/MathieuCarriere/sklearn_tda
https://github.com/rushilanirudh/pdsphere
https://bitbucket.org/grey_narn/hera
https://github.com/rkwitt/persistence-learning
https://www.math.upenn.edu/%7edlotko/persistenceLandscape.html
https://github.com/queenBNE/Persistent-Landscape-Wrapper
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defined in Bubenik (2015). Vectorized PD representations include: persistence image14, PI 
Adams et al. (2017) and the Riemannian manifold approach,15 RM Anirudh et al. (2016). 
The original PI implementation is rather inefficient since it takes into account the exact 
location of all birth-persistence points when calculating the values of PI. Therefore, we 
additionally perform experiments with an approximated unstable version of PI (referred to 
as approxPI in the following), which applies the Gaussian filter to 2D histogram of birth-
persistence points.16

We refrained from incorporating descriptors composed of simple topological statis-
tics (such as minimum, maximum, and average of birth, death, and persistence) because, 
according to our previous research (Zeppelzauer et al. 2017), they lack sensitivity and are 
easily outperformed by more sophisticated approaches like persistence images.

4.3 � Setup

For all datasets, except Reddit, in Sect. 4.1 we consider the PDs of dimension 1 as a com-
mon input (cycles) since they best express the internal structure in the data and yielded the 
most promising results in related works (Adams et al. 2017; Carrière et al. 2015). In case of 
Reddit database we use PDs of dimension 0 (connected components), since graphs are con-
sidered as 1-complex; thus, first dimensional homology generators never die. In the consid-
ered datasets no infinite intervals of dimension 1 occur. In cases where infinite intervals are 
present, there are different ways to proceed: (1) ignoring them, (2) substituting infinity with 
some (large) number or (3) building separate representations for finite and infinite inter-
vals. In the general case, we recommend to compute persistence codebooks for PDs of all 
available dimensions separately and to combine them before classification.

The classification pipeline is as follows. For the kernel-based approaches, we take the 
PDs as input and compute the explicit kernel matrices for the training and test samples. 
Next, we train an SVM from the explicitly computed kernel-matrix and evaluate it on the 
test set. For the vectorized representations we compute the respective feature vectors from 
the PDs and feed them into a linear SVM for training. This procedure allows direct com-
parison between kernel-based approaches and vectorized representations.

For all datasets, we aim at solving a supervised classification task. In order to enhance 
the comparability with results obtained in original experiments, if available, we employ 
train/test divisions of samples based on the original procedures. To find optimal parameters 
for each evaluated approach, we run a grid search over their respective hyperparameters. 
The hyperparameters and their evaluated values for each approach are listed in Table 4 (for 
the kernel-based approaches) and in Table 5 (for the vectorized representations). The opti-
mal parameters are highlighted in bold. For each parameter combination, we run a com-
plete experiment including cross-validation on the training set to evaluate its performance. 
The number of repetitions for each parameter combination in the grid search depends on 
the dataset and is provided in Tables 2 and 3.

Our evaluation is partitioned into two sets of experiments. EXP-A uses all related 
approaches on a sub-sampled version of the datasets, while EXP-B operates only on the 
vectorized representations and uses larger datasets. The reason for this is that for the larger 

14  Source: https​://githu​b.com/CSU-TDA/Persi​stenc​eImag​es, last visited September, 2019.
15  Source: https​://githu​b.com/rushi​lanir​udh/pdsph​ere, last visited September, 2019.
16  Code available at: https​://githu​b.com/bziiu​j/pcode​books​.

https://github.com/CSU-TDA/PersistenceImages
https://github.com/rushilanirudh/pdsphere
https://github.com/bziiuj/pcodebooks
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datasets in our study it is inconvenient to compute the explicit kernel matrices for the ker-
nel-based approaches for computational reasons. Nevertheless, to still enable a fair com-
parison of all approaches, we sub-sample the datasets in EXP-A to reduce their size, i.e. by 
randomly selecting 30 (GeoMat), 100 (reddit-5k), 50 (reddit-12k) and 390 (PetroSurf3D) 
samples for each class. In EXP-B we solely evaluate the vectorized representations on the 
datasets as described in Sect. 4.1.

The evaluation procedure for each dataset is as follows. For the synthetic dataset, we sub-
sample 80% of the samples as training data and use the remaining samples for testing. For 
GeoMat dataset, we use the original train/test partition with 400/200 samples per class. For 
Reddit experiments, we employ the original ratio of 90% graphs in the training set and the 
remaining 10% in the test set. For the 3D shape segmentation dataset, we employ the original 
50/50 split. The train/test split ratio of the motion capture dataset is 80/20. For all datasets, we 
average the achieved performance of grid search over 5 repetitions of random selected training 
and test partitions. The only exception is PetroSurf3D, where we divided the set of all surfaces 
into 4 folds (resulting in four repetitions) according to original work of Poier et al. (2017).

Ultimately, we run a Wilcoxon signed-rank test (with p value of 0.1) on the results to 
identify which results significantly differ from the best obtained result, and which ones 
do not, and can thus be considered equally good. The comparison is performed between 
the best method (the one with the best mean accuracy) and all the other methods, for each 
experiment separately. The mean accuracy is obtained as an average over 5 runs with the 
same train/test divisions used by all compared methods. The number of repetitions is rela-
tively small for statistical tests, therefore we set p value to 0.1.

The entire code of all experiments (implemented in Matlab) is available at https​://githu​
b.com/bziiu​j/pcode​books​. For external approaches, we use the publicly available imple-
mentations of the original authors. For clustering and bag-of-words encoding, we employ 
the VLFeat library (Vedaldi and Fulkerson 2008).

5 � Results

Table 2 summarizes the results obtained in our experiments for EXP-A and EXP-B. For 
each combination of dataset and approach, we provide the obtained classification accu-
racy (including the standard deviation) and the processing time needed to construct the 
representations (excluding the time for classification). Note that for the synthetic dataset 
and the 3D shape segmentation dataset, results of EXP-A and EXP-B are equal, as no sub-
sampling was needed to perform EXP-A.

In all experiments, codebook representations of persistence diagrams can compete with 
or even outperform the compared approaches. From EXP-A we further observe that vector-
ized representations (including the proposed ones), in general, perform better than kernel-
based approaches. In case of the PetroSurf3D dataset, it is impossible to unambiguously 
determine the best method, since all approaches work equally well. For all other datasets, 
only the 2-Wasserstein distance and the sliced Wasserstein kernel attain accuracy compara-
ble to vectorized approaches. Among the compared vectorized representations, PI in most 
cases outperforms RM and will thus serve as the primary approach for comparison with 
our approaches in subsequent sections. When comparing the stable vs. unstable variants of 
PBoW and PVLAD, we observe that PBoW in most cases outperforms its stable equiva-
lent, especially for motion capture database in EXP-B, where sPBoW is ∼ 5% worse than 

https://github.com/bziiuj/pcodebooks
https://github.com/bziiuj/pcodebooks
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the other methods. Opposite is the case for PVLAD, where sPVLAD in most cases yields 
a higher performance. Nevertheless, sPVLAD, for almost all datasets, is still significantly 
worse than any other codebook variant. The wPBoW works almost as well as non-weighted 
PBoW. Only in GeoMat and Reddit12K in EXP-B there exist visible differences in perfor-
mance; however, even these results are very close ( ∼ 1% and ∼1.5%). PFV variant seems 
to be the best approach, since in all experiments we can find it among the best performing 
methods. Overall, however, PBoW versus PFV, there is no clear winner.

Large differences exist in the processing times of the different approaches. The high-
est runtimes are obtained for the kernel-based approaches going up to 63k seconds for the 
PetroSurf3D dataset. The slowest kernel is 2Wd followed by MK, and approximately one 
order of magnitude faster PL and SWK. Note that computation complexity depends not 
only on a number of persistence diagrams, but is also highly affected by the average num-
ber of points per diagram. For the vectorized approaches, PI takes longest to compute. The 
runtimes, however, vary strongly, depending on the resolution of the employed PI (note 
that we have estimated the optimal parameters for each dataset by a grid search over all 
hyperparameters, see Tables 4 and 5). The RM representation is one to two magnitudes 
faster than PI.17 The proposed approaches outperform almost all evaluated approaches in 
runtime for all datasets, both for EXP-A and EXP-B. The gain in runtime efficiency ranges 
from one to up to four orders of magnitude. For the largest dataset in the experiments (Petr-
Surf3D in EXP-B), the fastest (PBoW) and the slowest (sPBoW) codebook approaches are 
still 3 and 2 magnitudes faster than PI, while reaching comparable accuracy. Competitive 
runtimes can be achieved by the approximated version of PI (approxPI). However, this 
leads to a slight drop in performance for most datasets compared to the exact (and stable) 
implementation of PI. Moreover, we observed that approxPI performs much worse than 
our approaches in the case of 3D Shape Segm., the largest database of EXP-A. Detailed 
investigation on this performance revealed that it is primarily dominated by kernel compu-
tations (reported in EXP-A due to comparison with kernel methods). It is expected, as the 
size of approxPI in the experiment mentioned above is 4900, while the size of sPBoW is 
only 70. Concerning EXP-A, the codebook approaches are comparable in computing time, 
which is due to the small size of the datasets. EXP-B demonstrates well how the different 
approaches scale to larger data. It shows that PBoW scales best (is fastest) and still obtains 
optimal results in all but one case. It thus represents the best tradeoff between time effi-
ciency and classification accuracy. See Sect. 5.2 for further discussion.

From our experiments we conclude that persistence codebooks are significantly faster than 
most approaches while achieving similar or even better performance level. This shows that 
the codebooks capture well the essential information contained in the PDs and important for 
the respective classification tasks. The variablity of runtimes between the different codebook 
variants is low compared to the other approaches. Thus, for the selection of the appropriate 
codebook approach for a given problem in practice, the runtime plays a secondary role.

In the following sections, we analyze selected aspects of the novel representations 
in greater detail, such as runtime, dependency on parameters and the scalability of the 
approach to large number of input PDs.

5.1 � Accuracy versus codebook size and weighted sub‑sampling

The most important parameter for codebook-based representations is the codebook size N, 
i.e. the number of clusters. There is no commonly agreed analytic method to estimate the 

17  Note that for both representations we use the implementations provided by the original authors.
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optimal codebook size; thus, the estimation is usually performed empirically. To investi-
gate the sensitivity of codebook approaches and their performance on the codebook size, 
each approach was evaluated for a sequence of N values (see Tables 4, 5). The results are 
presented in Fig. 4, both without (left column) and with weighted sub-sampling (right col-
umn) of the consolidated PD.

Fig. 4   Accuracy vs. size of a codebook for datasets from EXP-A without (left column) and with codebook 
weighting (right column) in codebook generation
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We can observe that all three variants of PBoW (PBoW, wPBoW and sPBoW) reach 
optimal performance at the level of about 50 words in a codebook (or earlier), a further 
increase of codebook size does not necessarily further improve its efficiency. In some 
cases, there is a slight improvement (synthetic data), in other cases performance goes down 
slightly (GeoMat) or remains a the same level. This shows that the codebook size is not 
rather insensitive parameter, once a certain minimum size is surpassed.

The remaining approaches (PVLAD, sPVLAD and PFV) show a general tendency to 
achieve their best performance early, with codebooks containing less than 40 words, and 
after that the accuracy drops substantially. The most prominent example of this behavior 
is depicted by the PVLAD method. It is caused by the fact that in cases where there is just 
a few clusters, it is simpler to capture well both the zeroth and the first moments, because 
clusters occupy large regions. However, once the number of clusters gets larger, cluster size 
shrinks and the assignment gets unstable.

Figure 4 further shows the effect of weighting during sub-sampling for codebook gen-
eration. This can be best observed from the performance curves of sPBoW, where the 
effect is largest. For 3D shapes, weighting leads to a dramatic improvement in accuracy. 
For for synthetic data, GeoMat and PetroSurf3D, there is also a moderate improvement in 
performance. Only for Reddit5K, weighted subsampling degrades performance. For other 
methods, however, the introduction of weighted subsampling does yield an improvement 
on the Reddit5K experiment (see e.g. PBoW, wPBoW and sPVLAD). In the majority of 
cases, weighted subsampling has a positive impact on performance. For PVLAD, weighted 
subsampling even seems to compensate for weaknesses of the representation in situations 
where codebook sizes are large.

Overall, we conclude, that optimal and universal choice for codebook size is about 50 
in case of PBoW, wPBoW and sPBoW; while for the remaining methods, 20 words seems 
to be sufficient. These values are thus good starting points for hyperparameter optimization 
on other datasets. The choice of weighted vs. non-weighted subsampling seems to be data-
set dependent. For 3D shapes, for example, strong performance gains are achieved. For the 
other datasets the trend is not so clear.

5.2 � Accuracy versus time

Tables 2 and 3 show that our approaches achieve comparable performance on almost all of 
the evaluated datasets and partly even outperform the compared approaches. Additionally, 
they beat all methods in speed. While the above tables show results for the optimal param-
eters (from the classification accuracy point of view), we decided to analyze the relation-
ship between accuracy and computation time. For this purpose, we use PI and approxPI as 
references for comparison, because they represent the strongest competitors (in the sense of 
accuracy) of the proposed representations.

In Fig. 5, we plot accuracy vs. time for the proposed approaches and PI for all datasets 
from EXP-B. We decided to focus on EXP-B here, because it operates on larger datasets 
than EXP-A and is thus better suited to study runtime efficienty. We vary the parameters 
with most influence placed on runtime (codebook size for persistent codebooks as well 
as the resolution of PI and approxPI) according to the values provided in Table 5. This 
directly influences the output dimension of the representation and is reflected by the area 
of the circles in Fig. 5, i.e. larger diameter means higher dimension. Note that experiments 
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with codebooks and approxPI were performed on 1 CPU, while experiments on PI were 
performed in parallel on 8 CPUs. Therefore, the total runtime differences are in fact even 
larger than depicted. For more compact visualization (and avoiding a logarithmic scale 
which would compress too much), we decided not to take the number of CPUs into account 
for plotting. We can see clearly that the runtime of PI is always significally larger than any 

Fig. 5   Accuracy vs. time for codebook approaches compared with PI and approxPI (the strongest related 
representations) applied to all datasets from EXP-B. The size of colored points represents the size N of 
codebooks or the resolution r of PI and approxPI (evaluated values for N and r are those listed in Table 5). 
Note that the actual times of computation for the construction of the representations are presented. Code-
books and approxPI were computed on 1 CPU, while PI was constructed by using 8 CPUs in parallel. 
Moreover, SVM training and prediction time was not taken into consideration. This would further increase 
computational times, especially for PI and approxPI due to their larger dimension. The bottom-right plot 
shows results for codebook approaches and approxPI (but skipping PI) in the case of GeoMat dataset for a 
narrower range of x-axis (for better visibility)
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codebook representation. The accuracy obtained varies. For all datasets the performance 
level of PI is reached (or even superseeded) much quicker. In the case of GeoMat dataset, 
codebooks clearly outperform PI (while consuming much less time); and in case of the 
other experiments, they quickly achieve a similar performance level. The computational 
cost of achieving a higher performance with PI is over-proportionally high, while the per-
formance gain is actually rather limited (approx. +1% ). Interestingly, approxPI strongly 
outperforms PI and can compete well with our representations in terms of runtime. The 
computation time of approxPI is in the same order of magnitude as that of the persistence 
codebook representation. However, the performance is in most cases lower as can be seen 
in Fig. 5 where pink dots represent approxPI. Note that for better visibility, we provide a 
wider and a narrower range of x-axis for the performance comparison of GeoMat data-
set (last row of Fig. 5) because the latter allows easier comparison between the codebook 
approaches. Among our methods, PBoW is the fastest. We observe that runtimes of PBoW, 
wPBoW and PVLAD are almost not affected by codebook size. The other approaches, i.e. 
sPBoW, sPVLAD and PFV, that involve the computation of Gaussians, clearly require 
much more time when codebook size is increased. However, as observed before, larger 
codebook sizes are not necessarily required to obtain good accuracy, which mitigates the 
situation. approxPI is equally fast as PBoW but is not able to achieve the same level of 
performance.

5.3 � Time versus dataset size

To investigate the runtime behavior of the proposed approaches in more detail, we evaluate 
how they scale to increasing dataset sizes (i.e. increasing numbers of input PDs). To this 
end, we employ the largest dataset in our experiments (PetroSurf3D) and randomly sample 
different numbers of PDs, starting from 1000 to 10, 000 in steps of 1000. To get a detailed 
breakdown of computation time, we separately measure the time needed for codebook gen-
eration, histogram assignment, and classification. The computation of the PDs is the same 
for all approaches, and thus is not included in this breakdown.

From the results presented in Fig. 6, we conclude that runtime grows almost linearly 
with dataset size. For the approaches without weighted subsampling (upper part in Fig. 6), 
most of the computation time is spent on histogram assignment and classification. Histo-
gram assignment takes more time for more complex encoding methods, such as PVLAD 
and PFV. In case of PBoW, histogram assignment is particularly fast because of k-d trees 
being used (Bentley 1975). For sPBoW, Gaussian likelihood has to be computed, which 
slows down the computation. Assignment time, however, grows linearly with dataset size. 
Classification time takes the major part for PVLAD and PFV. This is due to the fact that 
the computational complexity of both, primal and dual SVM optimization, depends on 
dimensionality (Chapelle 2007), which is higher in case of PVLAD and PFV. The distribu-
tion of computation times is similar for the persistence codebook approaches with weighted 
subsampling (lower part in Fig. 6).
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5.4 � Qualitative analysis

In this section, we investigate PBoW with a special focus on its discriminative abilities. 
For this purpose, we employ the synthetic dataset as a proof-of-concept and GeoMat (for 
which we outperform other representations by a large margin) to investigate how this per-
formance increase is achieved by PBoW compared to related approaches.

Fig. 6   Time versus dataset size for all proposed persistent bag-of-words approaches (all with codebook 
size N = 50 ). We measure the time needed for codebook generation (blue, bottom), histogram assignment 
(orange, middle), and classification (green, top), separately. Every consecutive bar represents an increas-
ingly growing number of samples, from 1000, 2000, ..., 10000. Upper figure shows results for unweighted 
methods, while those for the weighted versions are presented in the bottom. (Color figure online)
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5.4.1 � Synthetic dataset

We compute PBoW with N = 20 clusters for the synthetic dataset and visually analyze 
the codeword histograms obtained by (hard) assignment. To this end, for each of the six 
shape classes, we compute the average codebook histogram (over all samples of each class) 
to obtain one representative PBoW vector per class. The averaged PBoW histograms for 
all classes are presented in Fig.  7. Instead of only providing the histograms themselves, 
for each codeword of the histogram we plot the corresponding cluster center as a circle in 
the original birth-persistence domain and encode the number of assigned codeworks (the 
actual values of the histograms) in the area of the circles, i.e. the larger the count for a clus-
ter, the larger the circle. The advantage of this representation is that the spatial distribution 
of the codewords in the PD is preserved.

From Fig. 7 we can see that, except for the classes “random cloud” and “sphere” (which 
are difficult to differentiate), all classes generate strongly different cluster distributions. 
Class “circle”, for example, uniquely activates four clusters with strong persistence (top-
left corner) and the “torus” class distributes its corresponding code words across a large 
number of clusters representing less persistent components.

Figure 7 further illustrates an important property of persistence bag-of-words, namely 
its sparse nature. More specifically, areas with no points in the consolidated persistence 
diagram will contain no codewords (clusters). In Fig.  7, for example, no codeword is 

Fig. 7   Average codebook histograms computed for each of the six shape classes of the synthetic dataset. 
The cluster center of each codeword is presented as a circle in the birth-persistence domain. The area of the 
circles reflects the histogram values of the specific class. For all classes, the same codebook (same cluster-
ing) is employed; thus, dot locations are the same on all plots. The differences between the circles reflect 
the class differences
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obtained in the upper-right quadrant of the diagram, since no components are located there 
for the underlying data. Therefore, these unimportant areas are neglected and not encoded 
into the final representation. This not only reduces the dimension of the final represen-
tation, but further makes the representation adaptive to the underlying data. This in turn 
increases the information density in the obtained representation.

5.4.2 � GeoMat dataset

We further investigate the performance on the GeoMat dataset to explain why (s)PBoW 
outperforms PI, approxPI and RM by such a large margin (see Table 2). To this end, we 
generate confusion matrices for PI and PBoW (see Fig.  8) to investigate their discrimi-
native abilities. The matrices show that PBoW, for example, achieves better discrimina-
tion between classes “cement smooth” and “concrete cast-in-place” (i.e. classes 4 and 5). 
Average PBoW histograms for those classes are shown in Fig. 9. The histograms are on 
the first sight similar (upper row in Fig.  9). However, by zooming-in towards the birth-
persistence plane in Fig. 9 (bottom row), differences become better visible. The plots in the 
center illustrate the difference between the class distributions (red color means left class 
is stronger, blue means right class is stronger for this cluster). The classes differ by fine-
grained spatial differences. The set of three blue points around birth time of 0 (which are 
characteristic for class “concrete cast-in-place”) surrounded by red points (which are char-
acteristic for class “cement smooth”) illustrates this well (see lower central plot). For the 

Fig. 8   Confusion matrix for PI (left) and PBoW (right) on the GeoMat dataset from EXP-A. From the diag-
onal of the matrices we can see that PBoW outperforms PI for many classes (e.g. classes 2–5, 9 and 12). 
Furthermore, there are less confusions (off-diagonal values) for PBoW
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discrimination of these two classes, a particularly fine-grained codebook with many clus-
ters is needed. PI (and approxPI) have problems with such fine-grained structures, because 
due to its limited resolution, all topological components in the most discriminative area 
would most likely fall into one PI-pixel. Therefore, an extraordinary high resolution would 
be necessary to capture the discriminative patterns between those two classes. The bag-of-
words model makes our approaches independent of the resolution and enables to capture 
even fine differences adaptively and in an unsupervised way. In Fig. 10 we show a similar 
comparison for classes “brick” and “concrete cast-in-place” (i.e. classes 2 and 5).

Fig. 9   Comparison of averaged PBoW histograms for class “cement smooth” (left, red) and “concrete cast-
in-place” (right, blue) from GeoMat dataset (top row: total view; bottom row is zoomed in). The plot in 
the center shows the difference between the classes, where red color means that the left class has stronger 
support for this cluster and blue means that the right class has stronger support. The classes differ by fine-
grained spatial differences, which are not distinguishable in other vectorized representations. (Color figure 
online)
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6 � Conclusion

We have introduced the concept of persistence codebooks, a novel fixed-length vec-
torial representation for persistence diagrams. Persistence codebooks employ bag-of-
words encodings to quantize the persistence diagram into a vectorized representation. 
We propose different types of encodings (based on traditional bag-of-words, VLAD 
and Fisher Vectors), investigate their theoretic properties, such as their stability with 
respect to 1-Wasserstein, and introduce robust variants of the representations. Experi-
ments on seven heterogeneous datasets show that they consistently achieve comparable 
performance to related methods, and partly even outperform them, with significantly 
shorter computation time. Though there is no overall winner among the introduced rep-
resentations, we conclude that PFV is a powerful representation, as it achieves peak 

Fig. 10   Comparison of averaged PBoW histograms for classes “brick” (left, red) and “concrete cast-in-
place” (right, blue) from GeoMat dataset (top row: total view; 2nd row: zoomed in view; 3rd row: even 
further zoomed in view). The plot in the center shows the difference between the classes, where red color 
means that the left class has stronger support for this cluster and blue means that the right class has stronger 
support. The classes differ by fine-grained spatial differences, which are not distinguishable in other vector-
ized representations. (Color figure online)
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performance over all evaluated datasets. It is followed by the PBoW variants, which also 
consistently achieve peak performance (but not for all datasets). PVLAD cannot com-
pete with the other representations in our experiments and is thus less recommended. 
Moreover, we observe a certain tradeoff between computation time and accuracy when 
comparing stable and non-stable representations. Unstable representations like approxPI 
and PBoW are particularly fast. However, in general, they cannot compete with stable 
descriptors like PFV in terms of accuracy.

The novel representations have both attractive theoretic properties as well as practical 
properties, i.e. compactness, expressiveness, as well as the ability to adapt to the inher-
ent sparsity of persistence diagrams. They can be constructed in a completely unsu-
pervised fashion and achieve a high discriminativity compared to related approaches. 
The high computational efficiency of persistence codebooks could in future facilitate 
the application of TDA to larger datasets than possible today and enable real-time 
applications.
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Appendix: Background on persistent homology

In this section we present basic introduction to persistent homology. Please consult 
(Edelsbrunner and Harer 2010; Edelsbrunner et  al. 2002; Zomorodian and Carlsson 
2005) for more information.

Topological spaces are typically infinite objects and, for the sake of data analysis, they 
have to be finitely represented by simplified objects called cell complexes. Cell complexes 
are build from cells: topologically simple objects having the property that an intersection 
of every pair of cells is either empty, or contains yet another cell in the cell complex.

A simplicial complex is a particular instance of a general cell complex. It is a natural 
tool in the study of multi-dimensional point cloud data. Cells of simplicial complex are 
called simplices and, in this particular case, are formed with convex hulls of collections of 
nearby points in the point cloud. Simplices are uniquely characterized by a collection of 
points involved in their convex hulls. A simplicial complex X  needs to satisfy the following 
property: for every pair of simplices �, � ∈ X  , � ∩ � is either empty or a simplex in X .

Given a point cloud X with a distance or a similarity measure d and a parameter 
r > 0 , one can define a Vietoris-Rips complex VR(X, r). It is a simplicial complex whose 
every simpliex � = {v0, v1,… , vk} satisfies d(vi, vj) ≤ r for every i, j ∈ {0,… , k} . For 
every simplex � ∈ VR(X, r) , one can define a diameter of � being the largest distance 

http://creativecommons.org/licenses/by/4.0/
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between the points in � . This gives a natural ordering of simplices in VR(X, r): primar-
ily by diameter of simplices and secondarily (when diameters of two simplices are the 
same) by inverse of the number of points in simplices18. It is easy to see that every prefix 
of such an ordering forms a simplicial complex, and therefore any increasing sequence 
of numbers 0 < r1 < r2 < … < rn yields a nested sequence of simplicial complexes:

Another typical scenario when such a nested sequence of cell complexes arises is the case 
of values of a function f discretized on a grid G. The function f ∶ G → ℝ is typically an 
output of some numerical method. The grid G naturally corresponds to cubical complex 
G , and the function f provides an ordering of maximal cubes in the complex. This order-
ing induces a nested sequence of cubical complex, very much like a nested sequence of 
Vietoris-Rips complexes discussed above.

To cover those and other possible cases, later in this section we will focus on a general 
case of filtered cell complex:

keeping in mind that most typically it will come from a point cloud, or numerical simula-
tions on a grid.

Having a complex Ci in the filtration, one can define its homology, H(Ci) . Rather than 
providing a formal definition, which can be found in Edelsbrunner and Harer (2010), 
we will focus on the intuitive understanding of the concept. Homology in dimension 
0 measures number of connected components. In dimension 1 it measures the cycles, 
which do not bound to a (deformed) surface. In dimension 2 it corresponds to voids, 
i.e. regions of space totally bounded by a collection of triangles (very much like a ball 
bounds the void inside it). The idea of a cycle bounding a hole in the complex can be 
formalized using homology theory for arbitrary dimension.

Persistent homology measures the evolution of homology for the constitutive com-
plexes in filtration. Once more and more cells are being added to a complex Ci , new con-
nected components or cycles may appear, old ones may become trivial or become iden-
tical (homologous) to others created earlier. For every connected component or a cycle, 

� ⊂ X = VR(X, 0) ⊂ VR(X, r1) ⊂

VR(X, r2) ⊂ ⋯ ⊂ VR(X, rn)

� = C0 ⊂ C1 ⊂ ⋯ ⊂ Cn = C,

Fig. 11   Various stages of a construction of a Vietoris-Rips complex for eight points sampled from a circle. 
Initially, for sufficiently small radius, only vertices are present in the complex. Gradually, more and more 
edges along with higher dimensional simplices of an increasing diameter are added. In all but the initial and 
final stage of the construction the topology of a circle is visible, and therefore will be recovered by PH in 
dimension one (depicted by the long bar below the picture)

18  A number of points involved in the simplex minus one is a dimension of the simplex.
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there are two important characteristics we will store: the first moment b, referred to as a 
birth time, when it appears in the filtration, and the last moment d, referred to as death 
time, when it either becomes trivial or becomes identical to other cycle created earlier. 
In this paper, instead of a standard birth-death summaries of persistent homology, we 
use birth-persistence coordinates, which can be obtained by the [b, d] → [b, d − b] trans-
formation. The basic geometrical idea behind PH is presented in Fig. 11.

A couple of assumptions about PDs are made. Firstly, as our aim is to perform 
computations, we assume that persistence diagrams consist of finitely many points of 
nonzero persistence. Secondly, PDs may also contain infinite intervals that correspond 
to the so-called essential classes, i.e. the cycles that are born but never die. Those infi-
nite intervals need to be processed prior to the computations. There are at least three 
strategies one can apply: 

1.	 to ignore infinite intervals and use only the finite ones for consideration;
2.	 to substitute +∞ in the death coordinates of the essential classes with a number N chosen 

by the user (a logical choice would be a number which is larger than a filtration value 
of any cell in the considered complex);

3.	 to build a pair of descriptors: one for finite, and one for infinite intervals and use them 
together as a final descriptor.

Given the available options, in the numerical experiments presented in this paper, we 
have chosen the simplest one, i.e. to ignore the infinite intervals. There are various clas-
sical metrics used to compare persistence diagrams (Edelsbrunner and Harer 2010). We 
will review them here, as they are essential in the study of stability of the presented rep-
resentations. Note that the presentation is a bit non standard, as we are working on 
birth-peristence coordinates. Given two diagrams B and B′ , we construct a matching 
� ∶ B → B� assuming that points can also be matched to y = 0 axis. Putting B and B′ in 
the same diagram, one can visualize a matching � by drawing a line segment between 
x ∈ B and �(x) (note that �(x) is either in B′ , or is a projection of x to its first coordinate). 
Given all the line segments, for each matching we can store the longest one, or a sum of 
lengths of all of them (raised to power q). Taking the minimum over all possible match-
ings of the obtained numbers will yield the bottleneck distance in the first case, and the 
Wasserstein distance (raised to power 1

q
 ) in the second case. More formally:

Definition  q-Wasserstein distance between two persistence diagrams B,B� ∈ D is defined 
as:

In particular:

An important feature of persistent homology is its stability. Intuitively, it indicates that 
small changes in the filtration imply small changes (for instance in Wasserstein metric) in 
the resulting persistence diagrams. Formally:

Wq(B,B
�) ∶=

�
inf

�∶B→B�

�
x∈B

‖x − �(x)‖q
∞

� 1

q

.

W1(B,B
�) ∶= inf

�∶B→B�

�
x∈B

‖x − �(x)‖∞.
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Theorem  Edelsbrunner and Harer (2010) Let � be a finite cell complex and f , g ∶ 𝕏 → ℝ 
filtering Lipshitz functions. Let B and B′ be the PDs of � with filtration induced by f and g 
respectively. Then there exist constants C and k such that W1(B,B

�) ≤ C||f − g||1−k
∞

In this paper, we show stability with respect to 1-Wasserstein distance. Combined with 
the stability result described above, this indicates stability of bag-of-words representations 
with respect to the perturbation of initial data.
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