
Vol.:(0123456789)

Artificial Intelligence Review (2021) 54:1937–1967
https://doi.org/10.1007/s10462-020-09896-5

1 3

A comparative analysis of gradient boosting algorithms

Candice Bentéjac1 · Anna Csörgő2 · Gonzalo Martínez‑Muñoz3

Published online: 24 August 2020
© Springer Nature B.V. 2020

Abstract
The family of gradient boosting algorithms has been recently extended with several inter-
esting proposals (i.e. XGBoost, LightGBM and CatBoost) that focus on both speed and
accuracy. XGBoost is a scalable ensemble technique that has demonstrated to be a reliable
and efficient machine learning challenge solver. LightGBM is an accurate model focused
on providing extremely fast training performance using selective sampling of high gradient
instances. CatBoost modifies the computation of gradients to avoid the prediction shift in
order to improve the accuracy of the model. This work proposes a practical analysis of how
these novel variants of gradient boosting work in terms of training speed, generalization
performance and hyper-parameter setup. In addition, a comprehensive comparison between
XGBoost, LightGBM, CatBoost, random forests and gradient boosting has been performed
using carefully tuned models as well as using their default settings. The results of this com-
parison indicate that CatBoost obtains the best results in generalization accuracy and AUC
in the studied datasets although the differences are small. LightGBM is the fastest of all
methods but not the most accurate. Finally, XGBoost places second both in accuracy and
in training speed. Finally an extensive analysis of the effect of hyper-parameter tuning in
XGBoost, LightGBM and CatBoost is carried out using two novel proposed tools.

Keywords XGBoost · LightGBM · CatBoost · Gradient boosting · Random forest ·
Ensembles of classifiers

 * Gonzalo Martínez-Muñoz
 gonzalo.martinez@uam.es

 Candice Bentéjac
 candice.bentejac@u-bordeaux.fr; candice.bentejac@gmail.com

 Anna Csörgő
 csorgo.anna.erzsebet@hallgato.ppke.hu

1 College of Science and Technology, University of Bordeaux, Bordeaux, France
2 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest,

Hungary
3 Escuela Politéctica Superior, Universidad Autónoma de Madrid, Madrid, Spain

http://orcid.org/0000-0002-6125-6056
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09896-5&domain=pdf

1938 C. Bentéjac et al.

1 3

1 Introduction

As machine learning is becoming a critical part of the success of more and more applica-
tions—such as credit scoring (Xia et al. 2017), bioactive molecule prediction (Babajide
Mustapha and Saeed 2016), solar and wind energy prediction (Torres-Barrán et al. 2017),
oil price prediction (Gumus and Kiran 2017), classification of galactic unidentified sources
and gravitational lensed quasars (Mirabal et al. 2016; Khramtsov et al. 2019), sentiment
analysis (Valdivia et al. 2018), prediction of dementia using electronic health record data
(Nori et al. 2019)—it is essential to find models that can deal efficiently with complex
data, and with large amounts of it. With that perspective in mind, ensemble methods have
been a very effective tool to improve the performance of multiple existing models (Brei-
man 2001; Friedman 2001; Yoav Freund 1999; Chen and Guestrin 2016). These methods
mainly rely on randomization techniques, which consist in generating many diverse solu-
tions to the problem at hand (Breiman 2001), or on adaptive emphasis procedures (e.g.
boosting Yoav Freund 1999).

In fact, the above mentioned applications have in common that they all use ensemble
methods and, in particular, they use one of the following very recent ensemble methods:
eXtreme Gradient Boosting or XGBoost (Chen and Guestrin 2016), Light Gradient Boost-
ing Machine (LightGBM) (Ke et al. 2017) or Categorical Boosting (CatBoost) (Prok-
horenkova et al. 2018), with very competitive results. These methods, all based on gradi-
ent boosting, propose variants to the original algorithm to improve the training speed and
generalization capability. One of these methods, XGBoost, has been consistently placing
among the top contenders in Kaggle competitions (Chen and Guestrin 2016). The per-
formance of CatBoost and LightGBM is promising specially in generalization accuracy
for the former (Prokhorenkova et al. 2018) and in training speed for the latter (Ke et al.
2017). But these methods are not the only ones to achieve remarkable results over a wide
range of problems. Random forest is also well known as one of the most accurate and as
a fast learning method independently from the nature of the datasets, as shown by various
recent comparative studies (Fernández-Delgado et al. 2014; Caruana and Niculescu-Mizil
2006; Rokach 2016).

This study follows the path of many other previous comparative analysis, such as
Fernández-Delgado et al. (2014), Caruana and Niculescu-Mizil (2006), Dietterich (2000),
with the intent of covering a gap related to gradient boosting and its more recent vari-
ants XGBoost, LightGBM and CatBoost. None of the previous comprehensive analysis
included any machine learning algorithm of the gradient boosting family despite of their
appealing properties. We have found only two comparative studies that included gradient
boosting in their experiments (Zhang et al. 2017; Brown and Mues 2012). In Brown and
Mues (2012), a specific analysis of different algorithms in five imbalance credit scoring
datasets showed that random forest and gradient boosting performed among the best meth-
ods over a wide range of class imbalance percentages. In that study only the number of
trees was optimized for gradient boosting. In a recent extensive experimental comparison
(Zhang et al. 2017), closer to the present study, several algorithms are compared across
multiple datasets. The results of the comparison shows gradient boosting and random for-
est as the best of the analysis. Although the analysis includes XGBoost library, it is ana-
lyzed as a plain gradient boosting algorithm without taking into consideration any of the
specific features of XGBoost. The analysis only optimizes the learning rate and depth of
the trees in a limited grid of 40 points. In this study we perform an extensive hyper-param-
eter analysis of XGBoost in addition to the other variants of gradient boosting (LightGMB

1939A comparative analysis of gradient boosting algorithms

1 3

and CatBoost) focusing on the specific improvements over gradient boosting proposed in
these methods. Specifically, the main improvements of the methods are: the incorporation
of a complexity control term in the loss function for XGBoost, selective subsampling of
high gradient instances in LightGBM and prevention of prediction shift in the computation
of gradients in CatBoost.

The specific objectives of this study are, in the first place, to compare the performance
of the three gradient boosting variants (XGBoost, LightGBM and CatBoost) with respect
to the algorithm on which it is based (i.e. gradient boosting). The comparison is extended
to random forest, which can be considered as a benchmark since many previous compari-
sons demonstrated its remarkable performance (Fernández-Delgado et al. 2014; Caruana
and Niculescu-Mizil 2006; Zhang et al. 2017). The comparison is carried out in terms of
accuracy, AUC and training speed. We believe this analysis can be very helpful to research-
ers and practitioners of various fields. Furthermore, a comprehensive analysis of the pro-
cess of hyper-parameter setting in XGBoost, LightGBM and CatBoost is performed. For
this, we propose two novel methodologies to analyze hyper-parameter tuning. In the first
proposal, the variation of the average rank of a method using different hyper-parametriza-
tions is measured when a hyper-parameter value of any given hyper-parameter is changed
to any other value. The second proposal for hyper-parameter tuning analysis is a visual tool
that analyzes how the performance of a method varies for a set of datasets when any given
hyper-parameter is fixed to any given value, that is, when the hyper-parameter is not tuned.

The paper is organized as follows: Section 2 describes the methods of this study, empha-
sizing the different hyper-parameters that need to be tuned; Sect. 3 presents the results of
the comparison; Finally, the conclusions are summarized in Sect. 4.

2 Methodology

2.1 Random forest

One of the most successful machine learning methods is random forest (Breiman 2001).
Random forest is an ensemble of classifiers composed of decision trees that are generated
using two different sources of randomization. First, each individual decision tree is trained
on a random sample with replacement from the original data with the same size as the
given training set. The generated bootstrap samples are expected to have approximately
≈ 37% of duplicated instances. A second source of randomization applied in random forest
is attribute sampling. For that, at each node split, a subset of the input variables is ran-
domly selected to search for the best split. The value proposed by Breiman to be given to
this hyper-parameter is ⌊log2(#features)+1⌋ . For classification, the final prediction of the
ensemble is given by majority voting.

Based on the Strong Law of Large Numbers, it can be proven that the generalization error
for random forests converges to a limit as the number of trees in the forest becomes large
(Breiman 2001). The implication of this demonstration is that the size of the ensemble is not
a hyper-parameter that really needs to be tuned, as the generalization accuracy of random for-
est does not deteriorate on average when more classifiers are included into the ensemble. The
largest the number of trees in the forest, the most probable the ensemble has converged to its
asymptotic generalization error. Actually, one of the main advantages of random forest is that
it is almost hyper-parameter-free or at least, the default hyper-parameter setting has a remark-
able performance on average (Fernández-Delgado et al. 2014). The best two methods of that

1940 C. Bentéjac et al.

1 3

comparative study are based on random forest, for which only the value of the number of
random attributes that are selected at each split is tuned. The method that placed fifth (out of
179 methods) in the comparison was random forest using the default setting. This could also
be seen as a drawback as it is difficult to further improve random forest by hyper-parameter
tuning.

Anyhow, other hyper-parameters that may be tuned in random forest are those that control
the depth of the decision trees. In general, decision trees in random forest are grown until
all leaves are pure. However, this can lead to very large trees. For such cases, the growth of
the tree can be limited by setting a maximum depth or by requiring a minimum number of
instances per node before or after the split.

Among the set of hyper-parameters that can be tuned for random forest, we evaluate the
following ones in this study:

• The number of features to consider when looking for the best split (max_features).
• The minimum number of samples (min_samples_split) required to split an internal

node. This hyper-parameter limits the size of the trees but, in the worst case, the depth
of the trees can be as large as N − ���_�������_����� , with N the size of the training
data.

• The minimum number of samples (min_samples_leaf) required to create a leaf
node. The effect of this limit is different from the previous hyper-parameter, as it effec-
tively removes split candidates that are on the limits of the data distribution in the parent
node.

• The maximum depth of the tree (max_depth). This hyper-parameter limits the depth of
the tree independently of the number of instances that are in each node.

2.2 Gradient boosting

Boosting algorithms combine weak learners, i.e. learners slightly better than random, into a
strong learner in an iterative way (Yoav Freund 1999). Gradient boosting is a boosting-like
algorithm for regression (Friedman 2001). Given a training dataset D = {�i, yi}

N
1
 , the goal

of gradient boosting is to find an approximation, F̂(�) , of the function F∗(�) , which maps
instances � to their output values y, by minimizing the expected value of a given loss function,
L(y,F(�)) . Gradient boosting builds an additive approximation of F∗(�) as a weighted sum of
functions

where �m is the weight of the mth function, hm(�) . These functions are the models of the
ensemble (e.g. decision trees). The approximation is constructed iteratively. First, a con-
stant approximation of F∗(�) is obtained as

Subsequent models are expected to minimize

(1)Fm(�) = Fm−1(�) + �mhm(�),

(2)F0(�) = argmin
�

N∑

i=1

L(yi, �).

(3)(�m, hm(�)) = argmin
�,h

N∑

i=1

L(yi,Fm−1(�i) + �h(�i))

1941A comparative analysis of gradient boosting algorithms

1 3

However, instead of solving the optimization problem directly, each hm can be seen as a
greedy step in a gradient descent optimization for F∗ . For that, each model, hm , is trained
on a new dataset D = {�i, rmi}

N
i=1

 , where the pseudo-residuals, rmi , are calculated by

The value of �m is subsequently computed by solving a line search optimization problem.
This algorithm can suffer from over-fitting if the iterative process is not properly regular-

ized (Friedman 2001). For some loss functions (e.g. quadratic loss), if the model hm fits the
pseudo-residuals perfectly, then in the next iteration the pseudo-residuals become zero and the
process terminates prematurely. To control the additive process of gradient boosting, several
regularization hyper-parameters are considered. The natural way to regularize gradient boost-
ing is to apply shrinkage to reduce each gradient decent step Fm(�) = Fm−1(�) + ��mhm(�)
with � = (0, 1.0] . The value of � is usually set to 0.1. In addition, further regularization can be
achieved by limiting the complexity of the trained models. For the case of decision trees, we
can limit the depth of the trees or the minimum number of instances necessary to split a node.
Contrary to random forest, the default values for these hyper-parameters in gradient boosting
are set to harshly limit the expressive power of the trees (e.g. the depth is generally limited to
≈ 3 − 5). Finally, another family of hyper-parameters also included in the different versions
of gradient boosting are those that randomize the base learners, which can further improve
the generalization of the ensemble (Friedman 2002), such as random subsampling without
replacement.

The attributes finally tested for gradient boosting are:

• The learning rate (learning_rate) or shrinkage �.
• The maximum depth of the tree (max_depth): the same meaning as in the trees gener-

ated in random forest.
• The subsampling rate (subsample) for the size of the random samples. Contrary to ran-

dom forest, this is generally carried out without replacement (Friedman 2002).
• The number of features to consider when looking for the best split (max_features): as

in random forest.
• The minimum number of samples required to split an internal node (min_samples_

split): as in random forest.

2.3 XGBoost

XGBoost (Chen and Guestrin 2016) is a decision tree ensemble based on gradient boosting
designed to be highly scalable. Similarly to gradient boosting, XGBoost builds an additive
expansion of the objective function by minimizing a loss function. Considering that XGBoost
is focused only on decision trees as base classifiers, a variation of the loss function is used to
control the complexity of the trees

(4)rmi =

[
�L(yi,F(�))

�F(�)

]

F(�)=Fm−1(�)

(5)Lxgb =

N∑

i=1

L(yi,F(�i)) +

M∑

m=1

�(hm)

1942 C. Bentéjac et al.

1 3

where T is the number of leaves of the tree and w are the output scores of the leaves. This
loss function can be integrated into the split criterion of decision trees leading to a pre-
pruning strategy. Higher values of � result in simpler trees. The value of � controls the
minimum loss reduction gain needed to split an internal node. An additional regulariza-
tion hyper-parameter in XGBoost is shrinkage, which reduces the step size in the addi-
tive expansion. Finally, the complexity of the trees can also be limited using other strate-
gies as the depth of the trees, etc. A secondary benefit of tree complexity reduction is that
the models are trained faster and require less storage space. Randomization techniques are
also implemented in XGBoost both to reduce overfitting and to increase training speed.
The randomization techniques included in XGBoost are: random subsamples to train indi-
vidual trees and column subsampling at tree and tree node levels. Furthermore, XGBoost
can be extended to any user-defined loss function by defining a function that outputs the
gradient and the hessian (second order gradient) and passing it through the “objective”
hyper-parameter.

Moreover, XGBoost proposes a sparsity-aware algorithm for finding the best split. The
sparsity of an attribute can be caused by the presence of many zero valued entries and/or
missing values. XGBoost automatically removes these entries from the computation of the
gain for split candidates. In addition, XGBoost trees learn the default child node in which
instances with missing or null values are branched. Other interesting features of XGBoost
include monotonic and feature interaction constraints. These features can be specially use-
ful when domain specific information is known. Monotonic constraints force the output of
XGBoost for regression to be monotonic (increasing or decreasing) with respect to any set
of given input attributes. Feature interaction constraints limit the input attributes that can
be combined in the paths from the root to any leaf node. Both constraints are implemented
by limiting the set of candidate splits to be considered at each node.

In addition, XGBoost implements several methods to increment the training speed of
decision trees not directly related to ensemble accuracy. Specifically, XGBoost focuses on
reducing the computational complexity for finding the best split, which is the most time-
consuming part of decision tree construction algorithms. Split finding algorithms usu-
ally enumerate all possible candidate splits and select the one with the highest gain. This
requires performing a linear scan over each sorted attribute to find the best split for each
node. To avoid sorting the data repeatedly in every node, XGBoost uses a specific com-
pressed column based structure in which the data is stored pre-sorted. In this way, each
attribute needs to be sorted only once. This column based storing structure allows to find
the best split for each considered attributes in parallel. Furthermore, instead of scanning all
possible candidate splits, XGBoost implements a method based on percentiles of the data
where only a subset of candidate splits is tested and their gain is computed using aggre-
gated statistics. This idea resembles the node level data subsampling that is already present
in CART trees (Breiman et al. 1984).

The following hyper-parameters were tuned for XGBoost in this study:

• The learning rate (learning_rate) or shrinkage �.
• The minimum loss reduction (gamma): The higher this value, the shallower the trees.
• The maximum depth of the tree (max_depth)
• The fraction of features to be evaluated at each split (colsample_bylevel).
• The subsampling rate (subsample): sampling is done without replacement.

(6)�(h) = �T +
1

2
�‖w‖2 ,

1943A comparative analysis of gradient boosting algorithms

1 3

2.4 LightGBM

LightGBM (Ke et al. 2017) is an extensive library that implements gradient boosting and
proposes some variants. The implementation of gradient boosting in this library has been
especially focused on creating a computationally efficient algorithm, which is based on the
precomputation of histogram of features, as in XGBoost. The library also includes tens of
learning hyper-parameters that allow this model to work in a wide variety of scenarios:
The implementation works both in GPU and CPU, it can work as the basic gradient boost-
ing and has many types of randomizations (column randomization, bootstrap subsampling,
etc.).

LightGBM implementation also proposes new features (Ke et al. 2017), that mainly
are: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB).
GOSS is a subsample technique used to create the training sets for building the base trees
in the ensemble. As in AdaBoost, this technique aims at incrementing the importance of
those instances with higher uncertainty in their classifications, which are identified as those
instances with higher gradient. When the GOSS option is set, the training sets for the base
learners are composed of the top fraction of the instances with the largest gradients (a)
plus a random sample fraction (b) retrieved from the instances with the lowest gradients.
To compensate for the change of the original distribution, the instances in the low gradient
group are weighted up by (1 − a)∕b when computing the information gain. EFB technique
bundles sparse features into a single feature. This can be done without losing any informa-
tion when those features do not have non-zero values simultaneously. Both GOSS and EFB
provide further training speed gains. EFB can be seen as a feature preprocessing technique
and it will not be analyzed in this study as it is a technique that can be pre-applied to any
dataset. In addition, for this library we will focus on the analysis of LightGBM with GOSS
as the implementation of standard gradient boosting is already covered by Gradient Boost-
ing above.

The following hyper-parameters were tuned for LightGBM GOSS mode (i.e. hyper-
parameter boosting_type is set to ‘goss’) in this study:

• The learning rate (learning_rate).
• The maximum number of leaves of the tree. In LightGBM, the preferred method for

controlling the complexity of the trees is to set a maximum number of leaves. This
method gives more flexibility to the shape the trees can adopt (num_leaves).

• The fraction of instances a to be selected from the ones with the highest gradients
(top_rate).

• The fraction of instances b to be sampled from the ones with the lowest gradients
(other_rate).

• The fraction of features to be evaluated at each split (feature_fraction_byn-
ode).

2.5 CatBoost

CatBoost (Prokhorenkova et al. 2018) is a gradient boosting library that aims at reduc-
ing the prediction shift that occurs during training. This distribution shift is the depart of
F(�

�
)|�

�
 with xi being a training instance, with respect to F(�)|� for a test instance � . This

shift occurs because during training, gradient boosting is using the same instances for the

1944 C. Bentéjac et al.

1 3

estimation of both the gradients and the models that minimize those gradients. The solu-
tion proposed in CatBoost (Prokhorenkova et al. 2018) is to estimate the gradients using
a sequence of base models that do not include that instance in their training set. To do
so, CatBoost first introduces a random permutation in the training instances. The idea in
CatBoost (not its implementation) is to build i = 1,… ,N base models per each of the M
boosting iteration. The i th model of the m th iteration is trained on the first i instances of
the permutation and is used to estimate the gradient of the i + 1 instance for the (m + 1) th
boosting iteration. In order, to be independent of the initial random permutation this pro-
cess is repeated using s different random permutations. Notwithstanding, the implementa-
tion of CatBoost is optimized such that a single model is build per iteration that handles
all permutations and models. The base models are symmetric trees (or decision tables).
These trees are grown by extending level-wise all leaf nodes using the same split condition.
Another important feature of CatBoost is how it handles categorical features. In CatBoost
categorical features are substituted by a numeric feature that measures the expected target
value for each category. In order to avoid over-fitting to the training data, this numeric
feature would ideally need to be computed using a different dataset. However, this is not
generally possible. The procedure proposed in CatBoost to compute this new feature is
similar to the one followed for building the models. That is, for a given random permuta-
tion of the instances, the information of instances < i are used to compute the feature value
of instance i. Then, several permutations are carried out and the obtained feature value
for each instance is averaged. As with EFB in LightGBM, computing target statistics for
categorical features is a preprocessing technique. Hence, it will not be taken into considera-
tion in this study. Also, as LightBGM, CatBoost is an extensive library that includes many
features as GPU training, standard boosting, and includes tens of hyper-parameters to adapt
to many possible learning situations. This library also includes standard gradient boosting.
However, in this analysis, we will focus in the implementation that prevents prediction shift
(named Ordered CatBoost).

The following hyper-parameters were tuned for CatBoost with Ordered mode (i.e.
hyper-parameter boosting_type is set to ‘Ordered’) in this study:

• The learning rate (learning_rate).
• The maximum depth of the tree (depth). Since symmetric trees, the ones preferably

used in CatBoost, are complete trees, the value of this hyper-parameter has a different
effect than similar hyper-parameters in other models. High depth values could lead to
huge trees that could cause memory problems.

• Number of gradient steps to compute the value of the leaves (leaf_estimation_
iterations).

• Regularization for the L2 coefficient (l2_leaf_reg).

3 Experimental results

In this section, an extensive comparative analysis of the efficiency of random forest, gradi-
ent boosting, XGBoost, GOSS LightGBM and Ordered CatBoost models is carried out.
For the experiments, 28 different datasets coming from the UCI repository (Lichman 2013)
were considered. These datasets come from different fields of application, and have differ-
ent number of attributes, classes and instances. The characteristics of the analyzed datasets

1945A comparative analysis of gradient boosting algorithms

1 3

are shown in Table 1, which displays for each dataset its name, number of instances, num-
ber of attributes, if the dataset has missing values and number of classes. For this experi-
ment, the implementation of scikit-learn (version 0.21.2) package (Pedregosa et al.
2011) was used for random forest and gradient boosting. For XGBoost, the XGBoost
package1 was used. LightGBM2 and CatBoost3 libraries were used for those methods. In
addition, for the comparison, the different methods were analyzed tuning the hyper-param-
eters using a grid search as well as using the default hyper-parameters of the corresponding
packages. All packages except CatBoost have a fixed set of default hyper-parameters. In
CatBoost, the default behaviour includes an adaptive selection of some hyper-parameters,
such as the learning rate, on the fly.

Table 1 Characteristics of the
studied datasets

Name Inst. Attrs. Miss. Class.

Australia 690 14 Yes 2
Banknote 1371 5 No 2
Breast Cancer 699 10 Yes 2
Dermatology 366 33 Yes 6
Diabetes 768 20 Yes 2
Echo 74 12 Yes 2
Ecoli 336 8 No 8
German 1000 20 No 2
Heart 270 13 No 2
Heart Cleveland 303 13 Yes 2
Hepatitis 155 19 Yes 2
Ionosphere 351 34 No 2
Iris 150 4 No 3
Liver 583 10 No 2
Magic04 19020 11 No 2
Parkinsons 197 23 No 2
Phishing 1353 10 No 3
Segment 2310 19 No 7
Sonar 208 60 No 2
Soybean 675 35 Yes 18
Spambase 4601 57 Yes 2
Teaching 151 5 No 3
Thyroid 215 21 No 3
Tic-Tac-Toe 958 9 No 2
Vehicle 946 18 No 4
Vowel 990 10 No 11
Waveform 5000 21 No 3
Wine 178 13 No 3

1 https ://githu b.com/dmlc/xgboo st (version 0.6).
2 https ://githu b.com/micro soft/Light GBM/tree/maste r/pytho n-packa ge (version 2.3.0).
3 https ://catbo ost.ai/docs/conce pts/pytho n-insta llati on.html (version 0.16).

https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM/tree/master/python-package
https://catboost.ai/docs/concepts/python-installation.html

1946 C. Bentéjac et al.

1 3

The comparison was carried out using stratified 10-fold cross-validation. For each data-
set and partition of the data into train and test, the following procedure was carried out
for the five tested methods: (1) The optimum hyper-parameters for each method were esti-
mated with stratified 10-fold cross-validation within the training set using a grid search.
A wide range of hyper-parameter values is explored in the grid search. For each of the
five methods, these values are shown in Table 2. (2) The set of hyper-parameters of the
grid search giving the best average prediction accuracy was used to train the correspond-
ing ensemble using the whole training partition. In addition, for binary datasets with class
unbalance higher than ≈ 65% for the majority class, the hyper-parameters giving the best
AUC were also used to build an ensemble on the whole training data; (3) Additionally, for
XGBoost, GOSS LightGBM and Ordered CatBoost, ensembles were trained on the whole
training set for all possible combination of hyper-parameters given in Table 2. This allows
us, in combinations with step (1), to test for different alternative grids (more details down
below); (4) The default sets of hyper-parameters for each method were additionally used to

Table 2 Default values and possible values for every hyper-parameter in the normal grid search for random
forest, gradient boosting, XGBoost, LightGBM (goss) and CatBoost (Ordered)

Hyper-parameter Default value Grid search values

Random forest
max_depth Unlimited 5, 8, 10, unlimited
min_samples_split 2 2, 5, 10, 20
min_samples_leaf 1 1, 25, 50, 70
max_features sqrt log2, 0.25, sqrt, 1.0
Gradient boosting
learning_rate 0.1 0.025, 0.05, 0.1, 0.2, 0.3
max_depth 3 2, 3, 5, 7, 10, unlimited
min_samples_split 2 2, 5, 10, 20
max_features 1.0 log2, sqrt, 0.25, 1.0
subsample 1 0.15, 0.5, 0.75, 1.0
XGBoost
learning_rate 0.1 0.025, 0.05, 0.1, 0.2, 0.3
gamma 0 0, 0.1, 0.2, 0.3, 0.4, 1.0, 1.5, 2.0
max_depth 3 2, 3, 5, 7, 10, 100
colsample_bylevel 1 log2, sqrt, 0.25, 1.0
subsample 1 0.15, 0.5, 0.75, 1.0
LightGBM (boosting type goss)
learning_rate 0.1 0.025, 0.05, 0.1, 0.2, 0.3
num_leaves 31 3, 7, 15, 31, 127, 1024
top_rate 0.2 0.2, 0.4, 0.6, 0.7
other_rate 0.1 0.05, 0.1, 0.3
feature_fraction_bynode 1 log2, sqrt, 0.25, 1.0
CatBoost (boosting type Ordered)
learning_rate Var. 0.025, 0.05, 0.1, 0.2, 0.3
max_depth 6 3, 6, 9
leaf_estimation_iterations 1 or 10 1, 10
l2_leaf_reg 3 1, 3, 6, 9

1947A comparative analysis of gradient boosting algorithms

1 3

train an ensemble of each type (Table 2 shows the default values for each hyper-parameter
and ensemble type); (5) The generalization accuracy of the five ensembles selected in (2)
and of the ensembles with default hyper-parametrization is estimated in the left out test set.
The AUC is measured for the five models with highest AUC in train. (5) In addition, the
accuracy of all the XGBoost, GOSS LightGBM and Ordered CatBoost ensembles trained
in step (3) is computed using the test set.

All ensembles were composed of 200 decision trees. Note that the size of the ensem-
ble is not a hyper-parameter that needs to be tuned in ensembles of classifiers (Friedman
2001; Breiman 2001). For random forest like ensembles, as more trees are combined into
the ensemble, the generalization error tends to an asymptotic value (Breiman 2001). For
gradient boosting like ensembles, the generalization performance can deteriorate with the
number of elements in the ensemble especially for high learning rate values. However, this
effect can not only be neutralized with the use of lower learning rates (or shrinkage) but
reverted (Friedman 2001). The conclusion of Friedman (2001) is that the best option to
regularize gradient boosting is to fix the number of models to the highest computationally
feasible value and to tune the learning rate. Although XGBoost has its own mechanism
to handle missing values, we decided not to use it in order to perform a fairer comparison
with respect to random forest and gradient boosting, as the implementation of decision
trees in scikit-learn does not handle missing values. Instead, we used a class pro-
vided by scikit-learn to impute missing values by the mean of the whole attribute.
Similarly, EFB features and target statistic for categorical features were not used in Light-
GBM and CatBoost respectively.

3.1 Results

Table 3 displays the average accuracy and standard deviation (after the ± sign) for:
XGBoost with default hyper-parameters (shown with label D. XGB), tuned XGBoost (as
T. XGB in the table), random forest with default hyper-parametrization (with D. RF), tuned
random forest (T. RF), default gradient boosting (D. GB), tuned gradient boosting (T. GB),
tuned GOSS LightGBM (T. LGB goss), default GOSS LightGBM (D. LGB goss), tuned
Ordered CatBoost (T. Cat ord) and default ordered CatBoost (D. Cat ord). The best accu-
racy for each dataset is highlighted using a bold font.

From Table 3, it can be observed that the method that obtains the best performance
in relation to the number of datasets with the highest accuracy is tuned gradient boost-
ing (in 7 out of 28 datasets). After that, the methods in order are: tuned XGBoost and
default CatBoost, that achieves the best results in 6 datasets; tuned CatBoost and default
LightGBM in 4; default gradient boosting, tuned and default random forest and tuned
LightGBM in 3; and default XGBoost in 1. As it can be observed, the default perfor-
mances of the five tested algorithms are quite different. Default random forest and
default Ordered CatBoost are the methods that perform more evenly with respect to
their tuned counterparts. Except for a few datasets, the differences in performance are
very small for both configurations of random forest. In fact, the difference between the
tuned and the default hyper-parametrizations of random forest is below 0.5% in 18 out
of 28 datasets. For Catboost, the default parametrization works very well except for a
few exceptions (Teaching and Vowel). This occurs because CatBoost has an inner tun-
ing of the learning rate in its default mode. Default LightGBM obtains a good number
of best results, but its performance is uneven across datasets. Although the difference in
average rank is not statistically significant between Default and Tuned LightGBM, the

1948 C. Bentéjac et al.

1 3

Ta
bl

e
3

 A
ve

ra
ge

 a
cc

ur
ac

y
an

d
st

an
da

rd
 d

ev
ia

tio
n

fo
r X

G
B

oo
st,

 ra
nd

om
 fo

re
st,

 g
ra

di
en

t b
oo

sti
ng

, L
ig

ht
G

B
M

 w
ith

 G
O

SS
 a

nd
 O

rd
er

ed
 C

at
B

oo
st,

 a
ll

us
in

g
de

fa
ul

t a
nd

 tu
ne

d
hy

pe
r-p

ar
am

et
er

 se
tti

ng
s

D
at

as
et

D
. X

G
B

T.
 X

G
B

D
. R

F
T.

 R
F

D
. G

B
T.

 G
B

D
. L

G
B

 g
os

s
T.

 L
G

B
 g

os
s

D
. C

at
 o

rd
T.

 C
at

 o
rd

A
us

tra
l-

ia
n

86
.9

4%
 ±

 2
.7

3
87

.5
3%

 ±
 3

.4
7

87
.2

6%
 ±

 3
.8

3
86

.0
8%

 ±
 3

.4
2

86
.2

3%
 ±

 3
.4

1
86

.3
8%

 ±
 3

.3
9

87
.5
4%

 ±
 3

.3
1

86
.8

1%
 ±

 3
.3

4
87

.5
4%

 ±
 2

.4
1

86
.9

6%
 ±

 3
.0

9

B
an

k-
no

te
99

.6
4%

 ±
 0

.5
9

99
.6

4%
 ±

 0
.4

9
99

.3
4%

 ±
 0

.6
0

99
.1

3%
 ±

 0
.7

1
99

.7
1%

 ±
 0

.4
8

99
.7

8%
 ±

 0
.3

3
99

.7
1%

 ±
 0

.5
8

99
.7

1%
 ±

 0
.4

8
99

.8
6%

 ±
 0

.4
3

99
.7

1%
 ±

 0
.4

8

B
re

as
t

96
.2

8%
 ±

 1
.1

5
95

.9
9%

 ±
 1

.6
8

96
.9
9%

 ±
 1

.3
6

96
.8

5%
 ±

 1
.2

6
96

.7
1%

 ±
 1

.5
8

96
.4

2%
 ±

 1
.6

1
95

.7
1%

 ±
 2

.4
0

96
.5

7%
 ±

 1
.9

5
96

.9
9%

 ±
 2

.0
8

96
.9
9%

 ±
 2

.0
8

C
le

ve
-

la
nd

81
.1

4%
 ±

 7
.2

5
83

.1
6%

 ±
 7

.9
4

82
.4

6%
 ±

 6
.7

7
82

.4
6%

 ±
 8

.0
3

83
.7

8%
 ±

 6
.4

8
82

.1
6%

 ±
 8

.3
5

81
.4

8%
 ±

 4
.6

4
84

.5
0%

 ±
 5

.0
6

84
.1

3%
 ±

 3
.9

5
82

.8
0%

 ±
 5

.1
6

D
er

m
a-

to
lo

gy
96

.7
4%

 ±
 3

.2
1

97
.2

7%
 ±

 3
.2

4
97

.2
7%

 ±
 3

.2
9

97
.3

0%
 ±

 3
.2

4
96

.4
7%

 ±
 3

.2
8

96
.1

8%
 ±

 2
.8

1
96

.4
7%

 ±
 2

.1
1

96
.7

8%
 ±

 2
.2

4
97

.5
3%

 ±
 2

.3
3

98
.0
8%

 ±
 1

.7
7

D
ia

be
te

s
75

.6
5%

 ±
 5

.1
1

76
.5

6%
 ±

 4
.5

0
76

.6
9%

 ±
 3

.4
5

76
.6

9%
 ±

 4
.8

9
76

.8
1%

 ±
 4

.4
3

76
.3

0%
 ±

 3
.7

4
74

.2
2%

 ±
 3

.7
4

75
.7

9%
 ±

 2
.8

2
76

.7
0%

 ±
 3

.5
9

75
.7

8%
 ±

 2
.8

0
Ec

ho
94

.4
6%

 ±
 6

.8
0

98
.7
5%

 ±
 3

.7
5

98
.7
5%

 ±
 3

.7
5

97
.3

2%
 ±

 5
.3

7
97

.3
2%

 ±
 5

.3
7

95
.8

9%
 ±

 6
.2

9
95

.7
1%

 ±
 6

.5
5

97
.1

4%
 ±

 5
.7

1
98

.5
7%

 ±
 4

.2
9

98
.5

7%
 ±

 4
.2

9
Ec

ol
i

86
.8

7%
 ±

 5
.3

1
89

.0
5%

 ±
 4

.1
2

89
.0

7%
 ±

 5
.0

0
89

.1
1%

 ±
 4

.7
1

87
.2

5%
 ±

 6
.8

8
87

.8
1%

 ±
 4

.7
7

83
.3

5%
 ±

 5
.5

0
86

.1
4%

 ±
 6

.9
2

88
.5

7%
 ±

 5
.4

5
88

.9
0%

 ±
 6

.2
7

G
er

m
an

79
.0
0%

 ±
 4

.2
2

77
.4

0%
 ±

 4
.1

3
76

.4
0%

 ±
 4

.4
8

75
.8

0%
 ±

 4
.1

7
76

.7
0%

 ±
 5

.1
2

77
.2

0%
 ±

 3
.9

9
77

.0
0%

 ±
 4

.7
1

77
.2

0%
 ±

 4
.6

4
77

.3
0%

 ±
 4

.5
4

76
.2

0%
 ±

 4
.6

9
H

ea
rt

79
.2

6%
 ±

 5
.2

9
84

.0
7%

 ±
 5

.9
8

83
.3

3%
 ±

 5
.5

6
84

.4
4%

 ±
 5

.1
9

81
.8

5%
 ±

 7
.6

7
83

.7
0%

 ±
 5

.2
9

81
.4

8%
 ±

 5
.7

4
84

.0
7%

 ±
 4

.0
7

83
.3

3%
 ±

 5
.0

4
84

.4
4%

 ±
 5

.6
9

H
ep

at
iti

s
59

.2
1%

 ±
 8

.2
8

67
.0
0%

 ±
 6

.5
6

65
.5

4%
 ±

 1
2.

35
61

.8
3%

 ±
 1

2.
68

56
.5

8%
 ±

 1
1.

90
64

.9
6%

 ±
 1

3.
08

59
.9

6%
 ±

 5
.8

3
64

.4
6%

 ±
 1

0.
96

63
.2

5%
 ±

 7
.9

2
65

.7
9%

 ±
 7

.5
8

Io
no

-
sp

he
re

92
.5

6%
 ±

 2
.6

9
92

.5
9%

 ±
 3

.1
7

93
.4

4%
 ±

 2
.8

8
93

.1
6%

 ±
 2

.9
1

93
.7
2%

 ±
 2

.5
1

92
.8

5%
 ±

 3
.0

2
91

.7
6%

 ±
 5

.8
6

93
.2

1%
 ±

 4
.5

5
93

.1
8%

 ±
 4

.5
5

92
.9

0%
 ±

 4
.7

3

Ir
is

92
.6

7%
 ±

 6
.2

9
94

.0
0%

 ±
 4

.6
7

94
.6

7%
 ±

 4
.9

9
92

.6
7%

 ±
 6

.2
9

94
.6

7%
 ±

 4
.9

9
94

.6
7%

 ±
 4

.9
9

92
.6

7%
 ±

 6
.9

6
94

.6
7%

 ±
 4

.9
9

95
.3
3%

 ±
 4

.2
7

94
.6

7%
 ±

 4
.9

9
Li

ve
r

68
.6

5%
 ±

 4
.6

9
68

.1
1%

 ±
 6

.1
2

67
.7

6%
 ±

 5
.0

3
67

.5
8%

 ±
 4

.0
7

69
.3

3%
 ±

 5
.2

6
70

.1
6%

 ±
 4

.4
2

70
.4
5%

 ±
 6

.1
7

69
.2

4%
 ±

 5
.9

8
68

.9
9%

 ±
 4

.7
4

69
.4

7%
 ±

 3
.5

1
M

ag
ic

04
87

.4
7%

 ±
 0

.5
7

88
.6

3%
 ±

 0
.4

8
88

.1
9%

 ±
 0

.4
2

88
.1

8%
 ±

 0
.4

6
86

.8
5%

 ±
 0

.3
7

88
.8
3%

 ±
 0

.4
5

88
.4

8%
 ±

 0
.5

6
88

.4
2%

 ±
 0

.4
4

88
.4

3%
 ±

 0
.6

2
88

.7
6%

 ±
 0

.4
8

N
ew

-
th

y-
ro

id

95
.8

0%
 ±

 3
.2

6
95

.8
0%

 ±
 3

.2
6

96
.7
5%

 ±
 2

.9
4

96
.2

8%
 ±

 3
.4

8
96

.7
5%

 ±
 2

.9
4

96
.2

8%
 ±

 3
.4

8
96

.2
1%

 ±
 3

.5
6

94
.8

3%
 ±

 4
.5

0
96

.2
6%

 ±
 2

.8
4

96
.7

1%
 ±

 3
.0

3

Pa
rk

in
-

so
ns

92
.1

4%
 ±

 5
.7

2
90

.1
4%

 ±
 4

.0
1

90
.7

0%
 ±

 5
.6

0
90

.7
0%

 ±
 4

.6
2

91
.1

4%
 ±

 6
.0

0
91

.2
0%

 ±
 4

.2
3

90
.1

7%
 ±

 5
.1

3
92

.6
4%

 ±
 5

.1
6

92
.7
2%

 ±
 5

.4
5

92
.2

2%
 ±

 5
.8

8

Ph
is

hi
ng

89
.6

5%
 ±

 2
.4

4
91

.1
3%

 ±
 1

.3
0

88
.6

3%
 ±

 3
.3

8
89

.5
1%

 ±
 2

.4
2

90
.6

2%
 ±

 1
.7

6
90

.2
5%

 ±
 2

.1
9

90
.0

2%
 ±

 1
.9

6
90

.9
8%

 ±
 2

.4
5

89
.8

7%
 ±

 2
.2

0
90

.6
8%

 ±
 1

.9
6

Se
gm

en
t

98
.4

8%
 ±

 0
.7

0
98

.7
0%

 ±
 0

.7
7

98
.0

1%
 ±

 0
.8

0
98

.1
8%

 ±
 0

.6
7

97
.7

5%
 ±

 0
.7

4
98

.3
5%

 ±
 0

.6
4

98
.7
9%

 ±
 0

.7
9

98
.5

3%
 ±

 0
.6

2
96

.9
7%

 ±
 0

.5
8

98
.6

1%
 ±

 0
.6

1
So

na
r

85
.5

9%
 ±

 6
.4

4
86

.9
7%

 ±
 4

.8
4

83
.6

4%
 ±

 3
.8

7
85

.5
9%

 ±
 4

.8
3

84
.6

6%
 ±

 4
.6

1
88

.9
5%

 ±
 4

.3
2

83
.6

6%
 ±

 7
.0

9
86

.9
7%

 ±
 5

.0
3

85
.1

6%
 ±

 7
.1

6
83

.6
1%

 ±
 6

.2
5

So
yb

ea
n

94
.8

0%
 ±

 3
.3

5
95

.2
2%

 ±
 2

.9
6

94
.0

6%
 ±

 2
.2

7
94

.6
5%

 ±
 2

.5
7

93
.6

3%
 ±

 2
.8

6
93

.5
8%

 ±
 3

.4
5

93
.9

2%
 ±

 3
.8

8
93

.7
8%

 ±
 2

.4
0

94
.5

6%
 ±

 3
.3

6
94

.8
2%

 ±
 2

.7
0

1949A comparative analysis of gradient boosting algorithms

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

D
at

as
et

D
. X

G
B

T.
 X

G
B

D
. R

F
T.

 R
F

D
. G

B
T.

 G
B

D
. L

G
B

 g
os

s
T.

 L
G

B
 g

os
s

D
. C

at
 o

rd
T.

 C
at

 o
rd

Sp
am

-
ba

se
95

.1
7%

 ±
 1

.2
9

95
.5

7%
 ±

 1
.2

8
95

.4
6%

 ±
 1

.3
8

95
.4

8%
 ±

 1
.2

6
94

.5
9%

 ±
 1

.4
3

96
.1
1%

 ±
 1

.2
0

95
.6

5%
 ±

 0
.5

1
95

.6
5%

 ±
 0

.9
3

95
.4

6%
 ±

 0
.7

7
95

.7
0%

 ±
 0

.5
9

Te
ac

hi
ng

63
.5

5%
 ±

 8
.0

0
64

.2
6%

 ±
 1

4.
15

65
.5

1%
 ±

 8
.9

5
63

.4
1%

 ±
 1

1.
13

62
.7

6%
 ±

 7
.3

8
68

.7
5%

 ±
 1
4.
65

51
.5

8%
 ±

 1
2.

81
61

.6
8%

 ±
 8

.3
7

56
.8

3%
 ±

 6
.6

8
63

.7
7%

 ±
 7

.5
9

Ti
c-

ta
c-

to
e

96
.5

6%
 ±

 1
.6

3
10
0.
00

%
 ±

 0
.0
0

95
.5

2%
 ±

 1
.6

8
95

.6
2%

 ±
 1

.3
8

90
.0

9%
 ±

 2
.7

7
10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

Ve
hi

cl
e

78
.7

4%
 ±

 3
.2

9
77

.1
8%

 ±
 2

.3
1

74
.5

0%
 ±

 3
.5

5
74

.1
3%

 ±
 3

.9
8

78
.1

5%
 ±

 1
.8

9
77

.7
9%

 ±
 2

.0
4

77
.4

3%
 ±

 3
.5

0
78

.8
5%

 ±
 2

.3
9

75
.0

4%
 ±

 2
.1

7
77

.5
4%

 ±
 3

.3
6

Vo
w

el
92

.6
3%

 ±
 3

.5
3

95
.8

6%
 ±

 2
.1

4
97

.4
7%

 ±
 1

.3
7

97
.7
8%

 ±
 1

.6
8

93
.2

3%
 ±

 3
.3

2
96

.7
7%

 ±
 2

.0
1

95
.2

5%
 ±

 2
.4

8
95

.8
6%

 ±
 2

.9
1

89
.0

9%
 ±

 1
.9

6
96

.8
7%

 ±
 2

.1
4

W
av

e-
fo

rm
85

.7
2%

 ±
 1

.0
5

85
.7

2%
 ±

 1
.7

7
85

.4
2%

 ±
 1

.7
3

85
.6

2%
 ±

 1
.4

6
85

.3
2%

 ±
 0

.8
5

85
.8
6%

 ±
 1

.1
8

84
.7

8%
 ±

 1
.4

1
85

.8
4%

 ±
 1

.7
2

85
.4

0%
 ±

 1
.9

3
85

.7
4%

 ±
 1

.7
5

W
in

e
97

.1
8%

 ±
 2

.8
3

98
.8
2%

 ±
 2

.3
7

98
.2

6%
 ±

 2
.6

6
98

.2
6%

 ±
 2

.6
6

97
.7

4%
 ±

 2
.7

8
98

.8
2%

 ±
 2

.3
7

96
.1

3%
 ±

 5
.4

1
97

.1
8%

 ±
 3

.7
6

97
.8

1%
 ±

 3
.6

6
97

.2
1%

 ±
 3

.6
6

1950 C. Bentéjac et al.

1 3

latter is better than its default version in 75% of the datasets. More importantly when the
default version is better, the differences in accuracy are small (1.7% in the most favora-
ble case, Liver) but when the default is worse, the differences can be huge (as large
as 17%, in Teaching). Default XGBoost and gradient boosting perform generally worse
than their tuned versions. However, this is not always the case. This is especially evident
in three cases for XGBoost (German, Parkinson and Vehicle), where the default hyper-
parametrization for XGBoost achieves a better performance than the tuned XGBoost.
These cases are a combination of two factors: noisy datasets and good default settings.
The hyper-parameter estimation process, even though it is performed within-train cross-
validation, may overfit the training set specially in noisy datasets. In fact, it has been
shown that reusing the training data multiple times can lead to overfitting (Dwork et al.
2015). On the other hand, in these datasets, the default setting is one of the hyper-par-
ametrizations that obtains the best results both in train and test (among the best ≈ 5%).

In order to summarize the figures shown in Table 3, we applied the methodology
proposed in Demšar (2006). This methodology compares the performance of several
models across multiple datasets. The comparison is carried out in terms of average rank
of the performance of each method in the tested datasets. The results of this methodol-
ogy are shown graphically in Fig. 1. In this plot, a higher rank indicates a better per-
formance. Statistical differences among average ranks are determined using a Nemenyi
test. There are no statistical significant differences in average ranks between methods
that are connected with a horizontal solid line. The critical distance over which the dif-
ferences are considered significant is shown in the plot for reference (CD = 2.56 for 10
methods, 28 datasets and p-value < 0.05).

From Fig. 1, it can be observed that there are not many statistically significant dif-
ferences among the average ranks of the ten tested methods. The best methods in terms
of average rank are first tuned Ordered CatBoost and then tuned XGBoost. These two
methods present statistically significant differences with respect to default XGBoost and
LightGBM. The next best methods are in order: tuned GB, default Ordered CatBoost,
tuned GOSS LightGBM and default random forest.

In order to study the performance of these methods using other metrics, we obtained
the average AUC for a selection of binary datasets with unbalanced classes. Datasets
with a majority class above ≈65% were selected. The results are shown in Table 4. We
only show the result for the best of each model, that is, the tuned models except for ran-
dom forest, for which we use the default version. In the last row of the table the average
rank is shown (higher is better). The results are similar to those of average accuracy

3 4 5 6 7 8

Cat−Tun
XGB−Tun
GB−Tun
Cat−Def
LGB−Tun

XGB−Def
LGB−Def
GB−Def
RF−Tun
RF−Def

CD

Fig. 1 Average ranks (a higher rank is better) for the tested methods across 28 datasets (Critical difference
CD= 2.56)

1951A comparative analysis of gradient boosting algorithms

1 3

in the sense that the ordering of the methods is similar. The best method is Ordered
CatBoost followed by XGBoost and Gradient Boosting, then random forest and finally
LightGBM.

In Table 5, the average training execution time (in seconds) for the analyzed datasets
is shown. For the methods using the default settings, the table shows the training time.
For the methods that have been tuned using grid search, two numbers are shown sepa-
rated with a ‘+’ sign. The first number corresponds to the time spent in the within-train
10-fold cross-validated grid search. The second figure corresponds to the training time of
each method, once the optimum hyper-parameters have been estimated. The last row of the
table reports the average ratio of each execution time with respect to the execution time of
XGBoost using the default setting. All experiments were run using an eight-core Intel®
Core™ i7-4790K CPU@4.00GHz processor. The reported times are sequential times in
order to have a real measure of the needed computational resources, even though the grid
search was performed in parallel using all available cores. This comparison is fair inde-
pendently of whether the learning algorithms include internal multi-thread optimizations
or not. For instance random forest and XGBoost include multi-thread optimizations in
their code to compute the splits in XGBoost and to train each single tree in random forest
whereas gradient boosting does not. LightGBM and CatBoost include also multithreaded
implementations for both CPU and GPU. Only single-thread CPU implementations were
used. Notwithstanding, given that the grid search procedure is fully parallelizable, the
within-training CPU parallelization optimizations of the different methods do not reduce
the end-to-end time required to perform a grid search in a real setting.

As it can be observed from Table 5, finding the best hyper-parameters to tune the classi-
fiers through the grid search is a rather costly process. In fact, the end-to-end training time
of the tuned models is clearly dominated by the grid search process, which contributes with
a percentage over 99.9% to the training time. Since the size of the grid is different for dif-
ferent classifiers (i.e. 3840, 256, 1920, 1440 and 120 for XGB, RF, GB, GOSS LGB and
Ordered CatBoost respectively), the time dedicated to finding the best hyper-parameters is
not directly comparable between classifiers. Anyhow, when measuring the training time of
a model it is important to consider how complex is to find a reasonable set of hyper-param-
eters and not only the time needed to built the last model.

However, when it comes to fitting a single ensemble to the training data without tak-
ing into account the grid search time, GOSS LightGBM shows the fastest performance on
average followed by XGBoost. The time necessary to train XGBoost given a set of hyper-
parameters is about 1.6 times slower that training a GOSS LightGBM ensemble, 3.5 times

Table 4 Average AUC and standard deviation for unbalanced datasets

Dataset T. XGB D. RF T. GB T. LGB goss T. Cat ord

Breast 99.09% ± 0.73 99.25% ± 0.60 99.25% ± 0.65 99.26% ± 0.55 99.38% ± 0.60
Diabetes 83.69% ± 4.83 82.59% ± 4.62 84.22% ± 4.17 83.28% ± 4.73 83.62% ± 3.97
Echo 99.00% ± 3.00 99.00% ± 3.00 99.00% ± 3.00 99.00% ± 3.00 99.00% ± 3.00
German 79.62% ± 7.27 80.04% ± 6.48 79.45% ± 6.67 79.01% ± 6.90 80.00% ± 6.19
Liver 71.44% ± 6.78 74.55% ± 4.49 72.40% ± 5.81 71.23% ± 6.07 72.57% ± 6.27
Parkinsons 97.42% ± 1.93 96.98% ± 2.52 96.49% ± 2.44 97.42% ± 3.01 97.95% ± 1.51
Tic-tac-toe 100.00% ± 0.00 99.87% ± 0.12 100.00% ± 0.01 100.00% ± 0.01 100.00% ± 0.00
Ave. rank 2.86 2.79 2.86 2.57 3.93

1952 C. Bentéjac et al.

1 3

Ta
bl

e
5

 A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(in

 se
co

nd
s)

 fo
r t

ra
in

in
g

th
e

te
ste

d
m

et
ho

ds
 (m

or
e

de
ta

ils
 in

 th
e

te
xt

)

D
at

as
et

D
. X

G
B

T.
 X

G
B

D
. R

F
T.

 R
F

D
. G

B
T.

 G
B

D
. L

G
B

 g
os

s
T.

 L
G

B
 g

os
s

D
. C

at
 o

rd
T.

 C
at

 o
rd

A
us

tra
lia

n
0.

10
27

75
 +

 0
.0

8
0.

32
76

6
+

 0
.3

0
0.

12
60

53
 +

 0
.6

1
0.

06
11

81
 +

 0
.0

5
4.

78
82

50
 +

 6
.2

3
B

an
kn

ot
e

0.
10

28
74

 +
 0

.0
6

0.
40

99
1

+
 0

.3
9

0.
23

54
10

 +
 0

.1
5

0.
10

16
83

 +
 0

.1
1

5.
87

11
77

1
+

 3
.3

4
B

re
as

t
0.

06
17

33
 +

 0
.0

4
0.

28
74

4
+

 0
.2

8
0.

16
40

71
 +

 0
.3

5
0.

05
78

0
+

 0
.0

5
3.

54
37

23
 +

 2
.4

2
C

le
ve

la
nd

0.
05

13
57

 +
 0

.0
2

0.
28

70
0

+
 0

.2
6

0.
10

36
76

 +
 0

.1
0

0.
03

58
1

+
 0

.0
3

3.
86

49
41

 +
 2

.7
5

D
er

m
at

ol
og

y
0.

46
11

01
4

+
 0

.2
7

0.
27

72
7

+
 0

.2
7

0.
76

17
84

0
+

 0
.9

3
0.

15
30

16
 +

 0
.2

1
3.

24
14

31
5

+
 1

4.
11

D
ia

be
te

s
0.

08
29

82
 +

 0
.0

6
0.

35
79

8
+

 0
.3

4
0.

13
66

12
 +

 0
.5

0
0.

06
12

46
 +

 0
.0

8
4.

78
99

78
 +

 1
2.

51
Ec

ho
0.

02
53

2
+

 0
.0

1
0.

25
67

1
+

 0
.2

5
0.

05
16

08
 +

 0
.0

8
0.

01
23

2
+

 0
.0

1
1.

81
18

96
 +

 1
.1

5
Ec

ol
i

0.
17

45
18

 +
 0

.1
1

0.
27

71
5

+
 0

.2
8

0.
67

15
44

8
+

 1
.2

5
0.

09
20

01
 +

 0
.1

2
4.

25
17

99
2

+
 1

4.
28

G
er

m
an

0.
17

54
53

 +
 0

.1
6

0.
37

79
0

+
 0

.3
7

0.
13

85
89

 +
 0

.4
8

0.
08

13
98

 +
 0

.0
9

4.
34

78
37

 +
 6

.9
4

H
ea

rt
0.

05
12

68
 +

 0
.0

3
0.

27
71

6
+

 0
.2

7
0.

12
35

79
 +

 0
.1

0
0.

03
53

7
+

 0
.0

3
2.

93
46

92
 +

 2
.3

9
H

ep
at

iti
s

0.
04

10
71

 +
 0

.0
2

0.
26

68
6

+
 0

.2
6

0.
11

27
56

 +
 0

.1
1

0.
02

37
1

+
 0

.0
2

2.
86

33
32

 +
 2

.9
3

Io
no

sp
he

re
0.

14
24

87
 +

 0
.0

5
0.

34
89

3
+

 0
.3

5
0.

27
39

82
 +

 0
.2

2
0.

07
14

89
 +

 0
.0

9
20

.6
7

23
10

3
+

 1
1.

95
Ir

is
0.

04
13

08
 +

 0
.0

3
0.

25
67

8
+

 0
.2

5
0.

29
65

55
 +

 0
.3

9
0.

02
63

3
+

 0
.0

5
1.

08
36

22
 +

 2
.6

7
Li

ve
r

0.
07

23
08

 +
 0

.0
5

0.
35

80
4

+
 0

.3
1

0.
16

55
59

 +
 0

.2
8

0.
05

94
7

+
 0

.0
5

4.
29

12
39

7
+

 6
.6

8
M

ag
ic

04
3.

32
12

37
64

 +
 7

.8
6

11
.3

9
11

86
0

+
 9

.4
4

1.
50

16
08

31
 +

 4
8.

07
1.

09
27

08
5

+
 2

.0
2

18
.4

3
39

78
7

+
 6

4.
67

N
ew

-th
yr

oi
d

0.
05

17
28

 +
 0

.0
4

0.
26

68
6

+
 0

.2
6

0.
30

74
26

 +
 0

.4
2

0.
04

91
4

+
 0

.0
6

2.
11

85
24

 +
 9

.5
0

Pa
rk

in
so

ns
0.

05
11

69
 +

 0
.0

3
0.

27
69

7
+

 0
.2

8
0.

10
25

39
 +

 0
.1

1
0.

02
57

1
+

 0
.0

4
9.

80
26

29
1

+
 1

1.
25

Ph
is

hi
ng

0.
36

12
46

4
+

 0
.7

5
0.

33
81

6
+

 0
.3

7
0.

80
31

50
4

+
 1

.0
7

0.
21

39
90

 +
 0

.1
9

1.
29

48
95

 +
 5

.3
0

Se
gm

en
t

3.
22

73
30

9
+

 2
.2

1
0.

77
14

51
 +

 0
.7

9
2.

25
62

64
7

+
 2

.7
1

2.
89

39
97

4
+

 2
.6

0
49

.9
7

82
07

5
+

 1
28

.7
8

So
na

r
0.

15
24

42
 +

 0
.0

5
0.

31
82

8
+

 0
.3

3
0.

32
37

29
 +

 0
.2

8
0.

04
11

36
 +

 0
.1

1
23

.1
0

34
17

4
+

 8
.8

5
So

yb
ea

n
3.

73
10

48
73

 +
 2

.6
9

0.
31

76
2

+
 0

.3
1

3.
14

75
66

0
+

 5
.5

1
0.

97
16

13
3

+
 1

.0
7

10
.7

7
61

74
8

+
 4

1.
22

Sp
am

ba
se

1.
83

47
41

2
+

 1
.4

6
1.

40
20

16
 +

 0
.7

3
0.

32
33

08
8

+
 4

.7
9

1.
27

19
17

9
+

 2
.7

8
22

.2
0

32
84

0
+

 5
9.

34
Te

ac
hi

ng
0.

05
18

79
 +

 0
.0

6
0.

26
67

6
+

 0
.2

6
0.

35
89

55
 +

 0
.3

5
0.

02
65

1
+

 0
.0

5
0.

90
32

17
 +

 2
.9

4
Ti

c-
ta

c-
to

e
0.

08
28

42
 +

 0
.0

8
0.

32
74

6
+

 0
.3

2
0.

13
81

84
 +

 0
.4

5
0.

05
96

5
+

 0
.0

7
3.

18
29

51
 +

 2
.5

7
Ve

hi
cl

e
0.

60
17

21
7

+
 0

.3
8

0.
43

84
3

+
 0

.4
2

0.
70

24
98

7
+

 0
.8

8
0.

30
64

25
 +

 0
.3

4
8.

47
33

31
3

+
 3

4.
09

1953A comparative analysis of gradient boosting algorithms

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

D
at

as
et

D
. X

G
B

T.
 X

G
B

D
. R

F
T.

 R
F

D
. G

B
T.

 G
B

D
. L

G
B

 g
os

s
T.

 L
G

B
 g

os
s

D
. C

at
 o

rd
T.

 C
at

 o
rd

Vo
w

el
1.

96
48

72
6

+
 1

.2
4

0.
57

97
7

+
 0

.5
0

2.
31

61
08

5
+

 7
.6

7
1.

93
30

56
7

+
 2

.2
5

48
.9

9
83

07
6

+
 1

37
.0

4
W

av
ef

or
m

3.
34

11
15

62
 +

 1
.7

4
2.

46
32

68
 +

 1
.5

8
1.

66
96

19
7

+
 1

1.
44

3.
14

55
33

3
+

 1
.1

0
32

.1
5

59
94

0
+

 5
2.

92
W

in
e

0.
07

21
04

 +
 0

.0
5

0.
26

70
0

+
 0

.2
6

0.
28

71
97

 +
 0

.3
3

0.
04

88
7

+
 0

.0
5

6.
75

26
09

7
+

 2
2.

14
A

ve
. r

at
io

1.
0

29
04

3.
7

+
 0

.8
3.

6
89

53
.4

 +
 3

.5
2.

4
69

23
8.

2
+

 4
.3

0.
6

11
92

2.
6

+
 0

.8
52

.4
10

62
34

.9
 +

 7
3.

9

1954 C. Bentéjac et al.

1 3

faster than training a random forest, 2.4-4.3 times faster than training a gradient boosting
model and 52 times faster than training an Ordered CatBoost ensemble. However, the dif-
ferences are uneven across datasets. Ordered CatBoost is clearly the slowest method taking
the longest time to compute the tested grid in spite of being the smallest grid. Despite the
inner optimizations implemented, the process for reducing the prediction shift is costly.
However, Ordered CatBoost performs, relatively to other models, better the larger the data-
set is. For instance, in Magic04 (19020 instances, 10 attributes) the time needed for the
computation of the XGBoost grid search is about 3 times slower than that for Ordered Cat-
Boost and in Sonar (208 instances, 60 attributes) computing the Ordered CatBoost grid is
about 14 slower than the time needed for XGBoost grid. The difference between XGBoost
and Gradient Boosting can be observed in the time employed in the grid search by those
methods. XGBoost takes less than half of the time to look for the best hyper-parameter set-
ting than gradient boosting, despite the fact that its grid size is twice the size of the grid of
gradient boosting. Finally, for some multiclass problems, as Segment, Soybean or Vowel,
the execution time of XGBoost, gradient boosting, LightGBM and CatBoost deteriorates
in relation to random forest since for multi-class problems, gradient boosting based models
train one base tree per class and iteration.

3.2 Analysis of hyper‑parametrization

In order to further analyze and understand the hyper-parametrization of XGBoost, GOSS
LightGBM and Ordered CatBoost, we propose two novel analyses of the hyper-parametri-
zations. Firstly, we propose an analysis to measure how the model performance is affected
when one hyper-parameter value is changed to another value. This analysis was carried out
for XGBoost only. Secondly, we analyze the effect of having a hyper-parameter value fixed
instead of doing a grid search over it on a method’s performance.

These further experiments are carried out with two objectives for XGBoost. The first
objective is to try to select a better default hyper-parametrization for XGBoost. The sec-
ond is to explore alternative grids for XGBoost. For the first objective, we have analyzed,
for each hyper-parameter, the relation among single value assignments. To do so, we have
computed the average rank (in test error) across all datasets for the ensembles trained
using all hyper-parameter configurations as given in Table 2 for XGBoost. Recall that we
have analyzed 3840 possible hyper-parameter configurations. Then, for each given hyper-
parameter, say HParamX, and hyper-parameter value, say HParamX_valueA, we compute
the percentage of times that the average rank improves when HParamX=HParamX_valueA
is changed to another value HParamX_valueB and no other hyper-parameter is modified.
These results are shown in Tables 6, 7, 8, 9 and 10. The tables are to be read as follows:
each cell of the table indicates the % of times the average rank improves when modifying
the value on the corresponding top row by the value on the corresponding first column of

Table 6 Percentage of times
the average rank of XGBoost
improves when changing the
learning_rate from the
value in the top row to the value
in the first column

% 0.025 0.05 0.1 0.2 0.3

0.025 0.0 5.1 15.9 52.5 69.0
0.05 94.9 0.0 52.5 77.0 86.5
0.1 84.1 47.5 0.0 85.2 95.2
0.2 47.5 22.9 14.8 0.0 87.0
0.3 31.0 13.5 4.8 13.0 0.0

1955A comparative analysis of gradient boosting algorithms

1 3

the table. Values above 50% are highlighted in bold. For instance, as shown by Table 6,
94.9% of the times that the learning rate hyper-parameter goes from 0.025 to 0.05, while
keeping the rest of the hyper-parameters fixed, the average rank across all the analyzed
datasets improves.

From these tables, we can see what the most favorable hyper-parameter values in gen-
eral are. In Table 6, it can be observed that the best values for the learning rate are interme-
diate values. Both 0.05 and 0.1 clearly improve the performance of XGBoost with respect

Table 7 Percentage of times
the average rank of XGBoost
improves when changing the
gamma from the value in the
top row to the value in the first
column

% 0.0 0.1 0.2 0.3 0.4 1.0 1.5 2.0

0 0.0 51.7 40.0 43.1 45.4 69.2 85.2 93.8
0.1 48.3 0.0 37.5 43.1 45.0 66.9 83.8 93.3
0.2 60.0 62.5 0.0 51.0 57.9 76.3 90.2 96.7
0.3 56.9 56.9 49.0 0.0 49.6 73.5 91.5 96.7
0.4 54.6 55.0 42.1 50.4 0.0 74.8 91.5 95.8
1 30.8 33.1 23.8 26.5 25.2 0.0 80.8 94.2
1.5 14.8 16.3 9.8 8.5 8.5 19.2 0.0 82.7
2 6.3 6.7 3.3 3.3 4.2 5.8 17.3 0.0

Table 8 Percentage of times
the average rank of XGBoost
improves when changing the
depth from the value in the
top row to the value in the first
column

% 2 3 5 7 10 100

2 0.0 12.8 9.8 7.2 8.1 8.9
3 87.2 0.0 28.1 25.9 23.9 25.0
5 90.2 71.9 0.0 38.1 34.2 33.3
7 92.8 74.1 61.9 0.0 45.6 44.2
10 91.9 76.1 65.8 54.4 0.0 47.0
100 91.1 75.0 66.7 55.8 53.0 0.0

Table 9 Percentage of times
the average rank of XGBoost
improves when changing the
colsample_bylevel from
the value in the top row to the
value in the first column

% 0.25 sqrt log2 1.0

0.25 0.0 44.4 44.9 67.2
sqrt 55.6 0.0 52.0 72.3
log2 55.1 48.0 0.0 70.9
1 32.8 27.7 29.1 0.0

Table 10 Percentage of times
the average rank of XGBoost
improves when changing the
subsample from the value in
the top row to the value in the
first column

% 0.25 0.5 0.75 1.0

0.25 0.0 5.3 7.8 22.4
0.5 94.7 0.0 30.5 47.7
0.75 92.2 69.5 0.0 75.4
1 77.6 52.3 24.6 0.0

1956 C. Bentéjac et al.

1 3

to the rest of the hyper-parameters on average. The best values for gamma (see Table 7)
are also in the mid-range of the analyzed values. In this table, we can observe that the
default gamma value, which is 0, is definitely not the best choice in general. A value of
gamma ∈ [0.2, 0.3] seems to be a reasonable choice. An interesting aspect related to the
tree depth values, as shown in Table 8, is that the higher the depth, the better the perfor-
mance on average. This is not necessarily in contradiction with the common use of shallow
trees in gradient boosting algorithms since the depth hyper-parameter value is simply a
maximum. Furthermore, the actual depth of the trees is also selected through the gamma
hyper-parameter (that controls the complexity of the trees). Regarding the percentage of
selected features when building the tree, it can be observed in Table 9 that values 0.25, sqrt
and log2 perform very similarly on average. As for subsampling, the best value is 0.75 (see
Table 10). In summary, we propose to use as the default XGBoost hyper-parameters: 0.05,
0.2, 100 (unlimited), sqrt and 0.75 for learning rate, gamma, depth, features and subsam-
pling rate respectively.

Fig. 2 Hyper-parametrization analysis of XGBoost. Each boxplot represents the performance ratio variation
of the tested dataset if the grid search for the given hyper-parameter was to be held fixed at the given value

1957A comparative analysis of gradient boosting algorithms

1 3

The second hyper-parametrization analysis consists in analyzing how the performance
of the models vary if a given hyper-parameter HParamX is not optimized and its value
is fixed to HParamX=HParamX_valueA. We propose a tool for visualizing the effect for
a given set of tested datasets. To analyze this, we use the fact that we recorded for each
train-test partition and for all possible grid combinations the within-train cross-validation
error and the generalization test error. Hence, we can estimate the generalization error for
any sub-grid within the tested hyper-parameter grid. The results of this experiments are
shown in Fig. 2. This figure shows a plot for each tested hyper-parameter in XGBoost. For
each plot, a boxplot is shown for each possible value assignment that indicates how the test
performance ratio of the model on the tested datasets changes with respect to the use of the
full grid (that is, with respect to the performance shown in Table 3 for tuned XGBoost),
when the given hyper-parameter is not optimized and its value is set to the value shown in
the x-axis. In addition to the boxplot, the mean ratio variation and deviation are shown with

Fig. 3 Hyper-parametrization analysis of GOSS LightGBM. Each boxplot represents the performance ratio
variation of the tested dataset if the grid search for the given hyper-parameter was to be held fixed at the
given value

1958 C. Bentéjac et al.

1 3

a blue line and a blue shadowed area respectively. The reference performance for the full
grid is shown with a dotted line. Note that the plots are all set to the range [0.94, 1.04] for
easier comparison and that a few outlier points (datasets) may fall outside the plots. If this
is the case an annotation arrow is shown with the number of outliers and their minimum
value (for below limit points) or maximum value (for above limits points) between paren-
thesis. One would expect, for important hyper-parameter at least, that the performance
would drop below 1.0 for most datasets. However, this is not always the case since not
tuning one hyper-parameter can be compensated by setting another hyper-parameter to a
different value. To analyze this, we show, in the last plot of Fig. 2, how the results change
with respect to the full grid for learning_rate given that subsample is already fixed to 0.75
and colsample_bylevel to ‘sqrt’. In this plot the dotted line corresponds to the reference
average ratio when sumsample = 0.75 and colsample_bylevel = ‘sqrt’.

These pictures provide a visual tool for analyzing the effect of the different hyper-
parameters. From these pictures, we can extract conclusions similar to the previous anal-
ysis although they provide further insights about the importance of the different hyper-
parameters as they also show the variability of the performance across datasets. From
these plots we can observe that fixing a hyper-parameter to a certain value does not in
general produce severe drops in performance with some exceptions for extreme values. For
instance, if setting gamma = 2 , for ≈ 3∕4 of datasets the performance drops. In some cases,
as for subsample = 0.75 a slight improvement in performance can be observed. In addition,
optimizing column subsampling does not seem to provide big gains and fixing its value
either to ‘sqrt’ or ‘log2’ produces results similar to those of the full grid. Hence, fixing
those hyper-parameters instead of optimizing them may seem a reasonable idea. In order
to further analyze this idea, in the last plot of Fig. 2 the variation of learning_rate is shown
given subsample = 0.75 and colsample_bylevel = ‘sqrt’. From this plot, the importance of
optimizing the learning rate becomes clearer: setting the learning rate to any of the studied
values would produce a drop in performance in more than 75% of the datasets (except for
0.05 in which case the drop is in 19 out of 28 datasets, 68%).

The plots for the hyper-parametrization of GOSS LightGBM and Ordered CatBoost are
shown in Figs. 3 and 4 respectively. From these plots, it can be observed that for both
GOSS LightGBM and Ordered CatBoost the most important hyper-parameter is the learn-
ing rate since fixing it to any of the studied values would result in a drop in the overall
performance. This is especially evident for GOSS LightGBM. In addition, for this method,
there is a tendency to prefer higher values for hyper-parameter top_rate and other_rate. For
these hyper-parameters the default values (top_rate = 0.1 and other_rate = 0.2) are subop-
timal in the analyzed datasets. Ordered CatBoost seems to be quite stable independently of
the hyper-parametrization, except for the learning_rate. Note that for l2_leaf_reg the best
value for the studied datasets seems to be 1 instead of 3 as proposed in the default settings.

3.3 Selected hyper‑parametrizations

In Table 11, we show the results for a selection of subgrids deduced from the previ-
ous hyper-parametrization analysis for the different libraries. First, Table 11 shows the
average error for the proposed default hyper-parameters for XGBoost in column “D.P.
XGB”. For reference, the default hyper-parametrization is also shown in the first column
(as D. XGB). In addition, we explore two different hyper-parameter grids for XGBoost.
On one hand, we would like to analyze the differences between gradient boosting and

1959A comparative analysis of gradient boosting algorithms

1 3

Ta
bl

e
11

A

ve
ra

ge
 a

cc
ur

ac
y

an
d

st
an

da
rd

 d
ev

ia
tio

n
of

 X
G

B
oo

st
w

ith
 d

iff
er

en
t c

on
fig

ur
at

io
ns

: d
ef

au
lt,

 p
ro

po
se

d,
 tu

ne
d,

 n
o

ga
m

m
a

tu
ni

ng
 a

nd
 n

o
ra

nd
om

iz
at

io
ns

 h
yp

er
-p

ar
am

-
et

er
 tu

ni
ng

D
at

as
et

D
. X

G
B

D
P.

 X
G

B
T.

 X
G

B
T.

 N
R

 X
G

B
T.

 N
G

 X
G

B
T.

 L
G

B
 g

os
s

T.
 N

R
 L

G
B

 g
os

s
T.

 C
at

 o
rd

T.
 R

ed
 C

at
 o

rd

A
us

tra
lia

n
86

.9
4%

 ±
 2

.7
3

86
.9

5%
 ±

 3
.4

1
87

.5
3%

 ±
 3

.4
7

87
.5

4%
 ±

 3
.0

0
86

.9
5%

 ±
 3

.6
2

86
.8

1%
 ±

 3
.3

4
86

.0
8%

 ±
 4

.1
3

86
.9

6%
 ±

 3
.0

9
87

.8
4%

 ±
 3

.3
6

B
an

kn
ot

e
99

.6
4%

 ±
 0

.5
9

99
.4

9%
 ±

 0
.5

7
99

.6
4%

 ±
 0

.4
9

99
.5

6%
 ±

 0
.5

8
99

.7
1%

 ±
 0

.4
8

99
.7

1%
 ±

 0
.4

8
99

.7
1%

 ±
 0

.4
8

99
.7

1%
 ±

 0
.4

8
99

.9
3%

 ±
 0

.2
2

B
re

as
t

96
.2

8%
 ±

 1
.1

5
96

.1
3%

 ±
 1

.2
9

95
.9

9%
 ±

 1
.6

8
96

.9
9%

 ±
 1

.5
0

95
.9

9%
 ±

 1
.5

5
96

.5
7%

 ±
 1

.9
5

96
.7

1%
 ±

 2
.1

3
96

.9
9%

 ±
 2

.0
8

96
.8

5%
 ±

 2
.3

0
C

le
ve

la
nd

81
.1

4%
 ±

 7
.2

5
81

.1
6%

 ±
 5

.2
6

83
.1

6%
 ±

 7
.9

4
82

.1
2%

 ±
 6

.6
9

83
.0

9%
 ±

 8
.5

3
84

.5
0%

 ±
 5

.0
6

82
.1

5%
 ±

 5
.8

2
82

.8
0%

 ±
 5

.1
6

83
.4

5%
 ±

 5
.8

5
D

er
m

at
ol

og
y

96
.7

4%
 ±

 3
.2

1
97

.8
3%

 ±
 3

.4
2

97
.2

7%
 ±

 3
.2

4
98

.3
9%

 ±
 3

.5
0

98
.0

8%
 ±

 3
.2

9
96

.7
8%

 ±
 2

.2
4

96
.4

8%
 ±

 2
.9

7
98

.0
8%

 ±
 1

.7
7

98
.6
4%

 ±
 1

.8
4

D
ia

be
te

s
75

.6
5%

 ±
 5

.1
1

75
.2

5%
 ±

 3
.9

5
76

.5
6%

 ±
 4

.5
0

76
.1

7%
 ±

 4
.4

3
77

.0
8%

 ±
 4

.5
1

75
.7

9%
 ±

 2
.8

2
77

.2
2%

 ±
 2

.6
0

75
.7

8%
 ±

 2
.8

0
76

.8
2%

 ±
 2

.8
5

Ec
ho

94
.4

6%
 ±

 6
.8

0
98

.7
5%

 ±
 3

.7
5

98
.7
5%

 ±
 3

.7
5

98
.7
5%

 ±
 3

.7
5

98
.7
5%

 ±
 3

.7
5

97
.1

4%
 ±

 5
.7

1
98

.5
7%

 ±
 4

.2
9

98
.5

7%
 ±

 4
.2

9
98

.5
7%

 ±
 4

.2
9

Ec
ol

i
86

.8
7%

 ±
 5

.3
1

86
.9

1%
 ±

 6
.3

8
89

.0
5%

 ±
 4

.1
2

87
.5

0%
 ±

 5
.8

8
87

.8
1%

 ±
 5

.4
8

86
.1

4%
 ±

 6
.9

2
86

.7
6%

 ±
 5

.6
1

88
.9

0%
 ±

 6
.2

7
89

.7
7%

 ±
 6

.2
6

G
er

m
an

79
.0
0%

 ±
 4

.2
2

76
.0

0%
 ±

 3
.9

7
77

.4
0%

 ±
 4

.1
3

77
.3

0%
 ±

 4
.2

2
77

.2
0%

 ±
 3

.2
8

77
.2

0%
 ±

 4
.6

4
77

.3
0%

 ±
 4

.2
9

76
.2

0%
 ±

 4
.6

9
78

.0
0%

 ±
 3

.8
5

H
ea

rt
79

.2
6%

 ±
 5

.2
9

80
.7

4%
 ±

 6
.5

8
84

.0
7%

 ±
 5

.9
8

84
.4

4%
 ±

 6
.1

5
84

.8
1%

 ±
 4

.8
1

84
.0

7%
 ±

 4
.0

7
84

.0
7%

 ±
 4

.4
0

84
.4

4%
 ±

 5
.6

9
84

.4
4%

 ±
 4

.9
1

H
ep

at
iti

s
59

.2
1%

 ±
 8

.2
8

59
.9

2%
 ±

 7
.3

7
67

.0
0%

 ±
 6

.5
6

67
.5
0%

 ±
 1
1.
82

66
.9

2%
 ±

 1
1.

04
64

.4
6%

 ±
 1

0.
96

62
.4

6%
 ±

 6
.1

8
65

.7
9%

 ±
 7

.5
8

63
.2

1%
 ±

 9
.1

9
Io

no
sp

he
re

92
.5

6%
 ±

 2
.6

9
93

.1
5%

 ±
 3

.2
6

92
.5

9%
 ±

 3
.1

7
92

.8
7%

 ±
 3

.4
3

91
.9

9%
 ±

 3
.3

7
93

.2
1%

 ±
 4

.5
5

93
.1

6%
 ±

 4
.6

3
92

.9
0%

 ±
 4

.7
3

93
.2
1%

 ±
 5

.4
6

Ir
is

92
.6

7%
 ±

 6
.2

9
94

.6
7%

 ±
 4

.9
9

94
.0

0%
 ±

 4
.6

7
95

.3
3%

 ±
 4

.2
7

94
.0

0%
 ±

 5
.5

4
94

.6
7%

 ±
 4

.9
9

95
.3
3%

 ±
 4

.2
7

94
.6

7%
 ±

 4
.9

9
93

.3
3%

 ±
 5

.1
6

Li
ve

r
68

.6
5%

 ±
 4

.6
9

68
.9

5%
 ±

 6
.0

0
68

.1
1%

 ±
 6

.1
2

69
.9

7%
 ±

 6
.1

3
69

.3
1%

 ±
 5

.6
0

69
.2

4%
 ±

 5
.9

8
68

.7
5%

 ±
 6

.0
2

69
.4

7%
 ±

 3
.5

1
71

.8
6%

 ±
 3

.4
7

M
ag

ic
04

87
.4

7%
 ±

 0
.5

7
88

.5
8%

 ±
 0

.5
1

88
.6

3%
 ±

 0
.4

8
88

.6
2%

 ±
 0

.3
1

88
.4

6%
 ±

 0
.4

7
88

.4
2%

 ±
 0

.4
4

88
.4

1%
 ±

 0
.6

2
88

.7
6%

 ±
 0

.4
8

88
.5

2%
 ±

 0
.5

4
N

ew
-th

yr
oi

d
95

.8
0%

 ±
 3

.2
6

95
.3

5%
 ±

 3
.5

8
95

.8
0%

 ±
 3

.2
6

95
.3

0%
 ±

 3
.0

1
94

.8
5%

 ±
 3

.2
9

94
.8

3%
 ±

 4
.5

0
94

.8
5%

 ±
 3

.3
5

96
.7

1%
 ±

 3
.0

3
96

.7
3%

 ±
 2

.1
4

Pa
rk

in
so

ns
92

.1
4%

 ±
 5

.7
2

90
.6

4%
 ±

 4
.8

2
90

.1
4%

 ±
 4

.0
1

90
.7

0%
 ±

 3
.3

7
90

.1
4%

 ±
 4

.7
2

92
.6

4%
 ±

 5
.1

6
93

.7
2%

 ±
 4

.8
2

92
.2

2%
 ±

 5
.8

8
93

.3
3%

 ±
 5

.5
7

Ph
is

hi
ng

89
.6

5%
 ±

 2
.4

4
88

.8
5%

 ±
 2

.7
8

91
.1
3%

 ±
 1

.3
0

90
.6

9%
 ±

 1
.9

9
90

.0
3%

 ±
 2

.2
2

90
.9

8%
 ±

 2
.4

5
90

.4
6%

 ±
 2

.3
7

90
.6

8%
 ±

 1
.9

6
90

.7
5%

 ±
 2

.4
4

Se
gm

en
t

98
.4

8%
 ±

 0
.7

0
98

.5
7%

 ±
 0

.8
7

98
.7
0%

 ±
 0

.7
7

98
.6

6%
 ±

 0
.8

1
98

.6
6%

 ±
 0

.7
9

98
.5

3%
 ±

 0
.6

2
98

.6
1%

 ±
 0

.6
7

98
.6

1%
 ±

 0
.6

1
98

.1
8%

 ±
 0

.6
9

So
na

r
85

.5
9%

 ±
 6

.4
4

88
.3
8%

 ±
 8

.8
5

86
.9

7%
 ±

 4
.8

4
87

.5
0%

 ±
 6

.2
9

87
.0

2%
 ±

 7
.4

5
86

.9
7%

 ±
 5

.0
3

87
.0

2%
 ±

 5
.7

3
83

.6
1%

 ±
 6

.2
5

84
.5

6%
 ±

 6
.5

2
So

yb
ea

n
94

.8
0%

 ±
 3

.3
5

94
.6

7%
 ±

 3
.4

0
95

.2
2%

 ±
 2

.9
6

94
.6

5%
 ±

 3
.0

5
95

.5
3%

 ±
 3

.1
2

93
.7

8%
 ±

 2
.4

0
94

.3
9%

 ±
 2

.4
5

94
.8

2%
 ±

 2
.7

0
95

.1
3%

 ±
 2

.8
3

Sp
am

ba
se

95
.1

7%
 ±

 1
.2

9
95

.7
6%

 ±
 0

.8
5

95
.5

7%
 ±

 1
.2

8
95

.6
5%

 ±
 1

.2
0

95
.7

6%
 ±

 1
.2

7
95

.6
5%

 ±
 0

.9
3

95
.8
1%

 ±
 0

.7
3

95
.7

0%
 ±

 0
.5

9
95

.7
8%

 ±
 0

.9
2

Te
ac

hi
ng

63
.5

5%
 ±

 8
.0

0
66

.2
1%

 ±
 1

0.
06

64
.2

6%
 ±

 1
4.

15
66

.8
4%

 ±
 1
0.
86

63
.5

5%
 ±

 1
1.

86
61

.6
8%

 ±
 8

.3
7

63
.5

6%
 ±

 9
.0

2
63

.7
7%

 ±
 7

.5
9

66
.3

2%
 ±

 5
.8

3
Ti

c-
ta

c-
to

e
96

.5
6%

 ±
 1

.6
3

99
.8

9%
 ±

 0
.3

2
10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

10
0.
00

%
 ±

 0
.0
0

Ve
hi

cl
e

78
.7

4%
 ±

 3
.2

9
77

.2
0%

 ±
 2

.7
5

77
.1

8%
 ±

 2
.3

1
79

.2
1%

 ±
 2

.8
0

77
.7

9%
 ±

 2
.8

3
78

.8
5%

 ±
 2

.3
9

77
.5

4%
 ±

 2
.3

7
77

.5
4%

 ±
 3

.3
6

78
.9

5%
 ±

 2
.8

2
Vo

w
el

92
.6

3%
 ±

 3
.5

3
94

.6
5%

 ±
 2

.3
9

95
.8

6%
 ±

 2
.1

4
94

.9
5%

 ±
 2

.1
2

95
.5

6%
 ±

 2
.3

1
95

.8
6%

 ±
 2

.9
1

94
.9

5%
 ±

 3
.8

1
96

.8
7%

 ±
 2

.1
4

97
.1
7%

 ±
 2

.2
0

1960 C. Bentéjac et al.

1 3

Ta
bl

e
11

(c

on
tin

ue
d)

D
at

as
et

D
. X

G
B

D
P.

 X
G

B
T.

 X
G

B
T.

 N
R

 X
G

B
T.

 N
G

 X
G

B
T.

 L
G

B
 g

os
s

T.
 N

R
 L

G
B

 g
os

s
T.

 C
at

 o
rd

T.
 R

ed
 C

at
 o

rd

W
av

ef
or

m
85

.7
2%

 ±
 1

.0
5

85
.3

8%
 ±

 1
.2

1
85

.7
2%

 ±
 1

.7
7

85
.7

8%
 ±

 1
.2

3
85

.5
6%

 ±
 1

.8
0

85
.8
4%

 ±
 1

.7
2

85
.7

8%
 ±

 1
.7

1
85

.7
4%

 ±
 1

.7
5

85
.2

4%
 ±

 1
.6

5
W

in
e

97
.1

8%
 ±

 2
.8

3
98

.2
6%

 ±
 2

.6
6

98
.8
2%

 ±
 2

.3
7

98
.8
2%

 ±
 2

.3
7

98
.8
2%

 ±
 2

.3
7

97
.1

8%
 ±

 3
.7

6
97

.7
4%

 ±
 2

.7
8

97
.2

1%
 ±

 3
.6

6
97

.7
4%

 ±
 2

.7
8

1961A comparative analysis of gradient boosting algorithms

1 3

XGBoost in more details. There are little differences between both algorithms except
that XGBoost is optimized for speed. The main difference, from a machine learning
point of view, is that XGBoost incorporates into the loss function a hyper-parameter to
explicitly control the complexity of the decision trees (i.e. gamma). In order to analyze
whether this hyper-parameter provides any advantage in the classification performance
of XGBoost, a grid with the same hyper-parameter values as the ones given by Table 2 is
used except for gamma, which is always set to 0.0. On the other hand, we have observed
that, in the case of random forest, tuning the randomization hyper-parameters is not very
productive in general. As shown in Fig. 1, the average rank of default random forest is
better than the rank of the forests for which the randomization hyper-parameters are
tuned. Hence, the second proposed grid is to tune the optimization hyper-parameters of
XGBoost (i.e. learning rate, gamma and depth) keeping the randomization hyper-param-
eters (i.e. random features and subsampling) fixed. The randomization hyper-parameters
will be fixed to 0.75 for the subsampling ratio and to sqrt for the number of features as
suggested by Tables 9 and 10 respectively and Fig. 2. The average generalization errors
for XGBoost when using these two grids are shown in Table 11. Column “T. NG XGB”
shows the results for the grid that does not tune gamma (i.e. gamma=0), and column
“T. NR XGB” shows the results for the grid that does not tune the randomization hyper-
parameters. For LightGBM, as observed from Fig. 3 for the studied datasets, the rand-
omization hyper-parameters top_rate and other_rate seem to perform better for higher
values, 0.7 and 0.3 respectively. Hence, a grid fixing those hyper-parameter is proposed
(column “T. NR LGB” in the table). For CatBoost, we propose to fix l2_leaf_reg to 1
and leaf_estimation_iterations to 10 and to optimize the other hyper-parameters. The
results of this reduced grid are shown in column “T. R Cat”. The tested full grids for

Fig. 4 Hyper-parametrization analysis of Ordered CatBoost. Each boxplot represents the performance ratio
variation of the tested dataset if the grid search for the given hyper-parameter was to be held fixed at the
given value

1962 C. Bentéjac et al.

1 3

XGBoost, GOSS LightGBM, and Ordered CatBoost are also shown in Table 11 for ref-
erence. The best average test error for each dataset is highlighted in boldface. Addition-
ally, the average ranks for this table are shown in Fig. 5 following the methodology
proposed in Demšar (2006). In this figure, differences among methods connected with a
horizontal solid line are not statistically significant.

As it can be observed from Table 11, the proposed fixed hyper-parametrization for
XGBoost (D.P. XGB) improves over the results of the default setting (D. XGB). With
the proposed default setting, better results can be obtained in 17 out of 28 datasets
with notable differences in datasets as Echo, Sonar or Tic-tac-toe. In addition, when
the default setting is better than the proposed hyper-parameters, the differences are in
general small, except for German, Parkinson and Vehicle. In spite of the improvements
on average achieved by the proposed hyper-parameter setting, it seems clear that hyper-
parameter optimization is necessary to further improve the performance of XGBoost
and to adapt the model to the characteristics of each specific dataset.

The results shown in Table 11 and Fig. 5 are quite interesting. The number of best
results are 9 and 8 for Ordered CatBoost with the reduced grid and for XGBoost for
the grid without randomization hyper-parameter tuning. Both grids improve over their
respective full tested grid search of Ordered CatBoost and XGBoost. For GOSS Light-
GBM the variations in performance are small between the two grids. The same occurs
for XGBoost between the full grid and the grid in which gamma is not optimized. Simi-
lar observations can be made from the average ranks for the different tested grids shown
in Fig. 5. From this plot the reduced grid for Ordered CatBoost obtains the best average
rank closely followed by XGBoost with the grid without randomization hyper-parameter
tuning. Then, the full grid version of these methods, no gamma optimization and Light-
GBM grids follow in the plot. One tendency that is observed from these results is that it
seems that including a complexity term to control the size of the trees can have a small
edge over not using it in XGBoost, although the differences are not statistically signifi-
cant. A conclusion that may be clearer is that it seems unnecessary to tune the number
of random features and the subsampling rate provided that those techniques are applied
with reasonable values (in our case subsampling to 0.75 and feature sampling to sqrt).

Finally, the time required to perform the grid search and to train the single models
is shown in Table 12 in the same manner as Table 5. As shown in the last row of this
table for the tested settings, performing the grid search without tuning the randomiza-
tion hyper-parameters for XGBoost and LightGBM is approximately 16 and 10 times
faster the tuning the full grid on average. These results reinforce the idea that tuning
the randomization hyper-parameter is unnecessary. For Ordered CatBoost, there is a

2 3 4 5 6 7 8

Cat−Red
XGB−NoRand
Cat−Tun
XGB−Tun

XGB−Def
XGB−Prop
LGB−Tun

LGB−NoRand
XGB−NoGam

CD

Fig. 5 Average ranks (higher rank is better) for different XGBoost configurations (Critical difference CD=
1.15)

1963A comparative analysis of gradient boosting algorithms

1 3

Ta
bl

e
12

A

ve
ra

ge
 e

xe
cu

tio
n

tim
e

(in
 se

co
nd

s)
 fo

r t
ra

in
in

g
di

ffe
re

nt
 v

ar
ia

nt
 o

f X
G

B
oo

st,
 L

ig
ht

G
B

M
 G

O
SS

 a
nd

 C
at

B
oo

st
O

rd
er

ed
 (m

or
e

de
ta

ils
 in

 th
e

te
xt

)

D
at

as
et

D
. X

G
B

D
P.

 X
G

B
T.

 X
G

B
T.

 N
R

 X
G

B
T.

 N
G

 X
G

B
T.

 L
G

B
 g

os
s

T.
 N

R
 L

G
B

 g
os

s
T.

 C
at

 o
rd

T.
 R

ed
 C

at
 o

rd

A
us

tra
lia

n
0.

10
0.

09
27

75
 +

 0
.0

8
14

9
+

 0
.0

8
34

0
+

 0
.1

1
11

81
 +

 0
.0

5
12

4
+

 0
.1

0
82

50
 +

 6
.2

3
13

13
 +

 1
0.

36
B

an
kn

ot
e

0.
10

0.
09

28
74

 +
 0

.0
6

37
7

+
 0

.0
6

34
0

+
 0

.0
6

16
83

 +
 0

.1
1

16
2

+
 0

.1
1

11
77

1
+

 3
.3

4
18

38
 +

 5
.3

2
B

re
as

t
0.

06
0.

05
17

33
 +

 0
.0

4
10

8
+

 0
.0

5
21

2
+

 0
.0

4
78

0
+

 0
.0

5
72

 +
 0

.0
6

37
23

 +
 2

.4
2

74
6

+
 3

.5
4

C
le

ve
la

nd
0.

05
0.

04
13

57
 +

 0
.0

2
78

 +
 0

.0
3

16
5

+
 0

.0
2

58
1

+
 0

.0
3

60
 +

 0
.0

3
49

41
 +

 2
.7

5
85

3
+

 3
.2

8
D

er
m

at
ol

og
y

0.
46

0.
26

11
01

4
+

 0
.2

7
57

2
+

 0
.2

7
12

81
 +

 0
.2

7
30

16
 +

 0
.2

1
33

2
+

 0
.2

7
14

31
5

+
 1

4.
11

24
98

 +
 1

0.
13

D
ia

be
te

s
0.

08
0.

10
29

82
 +

 0
.0

6
16

3
+

 0
.0

8
36

5
+

 0
.0

5
12

46
 +

 0
.0

8
13

1
+

 0
.0

7
99

78
 +

 1
2.

51
16

37
 +

 9
.8

5
Ec

ho
0.

02
0.

01
53

2
+

 0
.0

1
33

 +
 0

.0
1

65
 +

 0
.0

1
23

2
+

 0
.0

1
25

 +
 0

.0
2

18
96

 +
 1

.1
5

31
1

+
 1

.3
5

Ec
ol

i
0.

17
0.

14
45

18
 +

 0
.1

1
28

4
+

 0
.1

3
53

8
+

 0
.1

1
20

01
 +

 0
.1

2
23

2
+

 0
.1

4
17

99
2

+
 1

4.
28

27
49

 +
 8

.6
8

G
er

m
an

0.
17

0.
17

54
53

 +
 0

.1
6

25
1

+
 0

.1
3

67
0

+
 0

.1
9

13
98

 +
 0

.0
9

14
1

+
 0

.0
8

78
37

 +
 6

.9
4

14
25

 +
 5

.4
2

H
ea

rt
0.

05
0.

05
12

68
 +

 0
.0

3
74

 +
 0

.0
3

15
5

+
 0

.0
2

53
7

+
 0

.0
3

55
 +

 0
.0

3
46

92
 +

 2
.3

9
81

2
+

 2
.8

9
H

ep
at

iti
s

0.
04

0.
03

10
71

 +
 0

.0
2

61
 +

 0
.0

2
13

1
+

 0
.0

2
37

1
+

 0
.0

2
39

 +
 0

.0
2

33
32

 +
 2

.9
3

53
3

+
 5

.1
4

Io
no

sp
he

re
0.

14
0.

05
24

87
 +

 0
.0

5
11

2
+

 0
.0

4
28

9
+

 0
.0

4
14

89
 +

 0
.0

9
16

1
+

 0
.1

1
23

10
3

+
 1

1.
95

25
98

 +
 7

.8
2

Ir
is

0.
04

0.
04

13
08

 +
 0

.0
3

17
1

+
 0

.0
4

15
4

+
 0

.0
3

63
3

+
 0

.0
5

65
 +

 0
.0

5
36

22
 +

 2
.6

7
62

7
+

 1
.4

2
Li

ve
r

0.
07

0.
08

23
08

 +
 0

.0
5

12
9

+
 0

.0
5

28
3

+
 0

.0
6

94
7

+
 0

.0
5

10
1

+
 0

.0
7

12
39

7
+

 6
.6

8
19

76
 +

 6
.8

7
M

ag
ic

04
3.

32
7.

60
12

37
64

 +
 7

.8
6

66
18

 +
 7

.3
8

14
97

4
+

 8
.1

1
27

08
5

+
 2

.0
2

26
38

 +
 1

.7
1

39
78

7
+

 6
4.

67
64

15
 +

 7
9.

63
N

ew
-th

yr
oi

d
0.

05
0.

05
17

28
 +

 0
.0

4
11

2
+

 0
.0

5
19

8
+

 0
.0

4
91

4
+

 0
.0

6
91

 +
 0

.0
6

85
24

 +
 9

.5
0

13
06

 +
 6

.0
8

Pa
rk

in
so

ns
0.

05
0.

03
11

69
 +

 0
.0

3
64

 +
 0

.0
2

13
8

+
 0

.0
3

57
1

+
 0

.0
4

63
 +

 0
.0

4
26

29
1

+
 1

1.
25

35
25

 +
 1

6.
79

Ph
is

hi
ng

0.
36

0.
44

12
46

4
+

 0
.7

5
74

6
+

 0
.4

0
15

51
 +

 0
.5

3
39

90
 +

 0
.1

9
40

8
+

 0
.1

8
48

95
 +

 5
.3

0
10

32
 +

 7
.7

7
Se

gm
en

t
3.

22
1.

88
73

30
9

+
 2

.2
1

38
78

 +
 1

.4
8

84
47

 +
 2

.2
5

39
97

4
+

 2
.6

0
41

49
 +

 2
.9

4
82

07
5

+
 1

28
.7

8
10

26
9

+
 1

36
.1

4
So

na
r

0.
15

0.
05

24
42

 +
 0

.0
5

10
3

+
 0

.0
4

28
0

+
 0

.0
6

11
36

 +
 0

.1
1

13
3

+
 0

.1
2

34
17

4
+

 8
.8

5
38

38
 +

 1
9.

21
So

yb
ea

n
3.

73
2.

67
10

48
73

 +
 2

.6
9

58
92

 +
 2

.6
5

12
73

0
+

 3
.4

9
16

13
3

+
 1

.0
7

17
12

 +
 1

.0
7

61
74

8
+

 4
1.

22
12

29
5

+
 1

01
.1

4
Sp

am
ba

se
1.

83
1.

32
47

41
2

+
 1

.4
6

16
21

 +
 1

.2
0

57
88

 +
 1

.5
4

19
17

9
+

 2
.7

8
19

94
 +

 3
.8

8
32

84
0

+
 5

9.
34

42
10

 +
 4

9.
01

Te
ac

hi
ng

0.
05

0.
07

18
79

 +
 0

.0
6

12
4

+
 0

.0
6

22
8

+
 0

.0
5

65
1

+
 0

.0
5

71
 +

 0
.0

5
32

17
 +

 2
.9

4
56

4
+

 2
.3

8
Ti

c-
ta

c-
to

e
0.

08
0.

09
28

42
 +

 0
.0

8
17

1
+

 0
.0

8
34

7
+

 0
.0

9
96

5
+

 0
.0

7
96

 +
 0

.0
8

29
51

 +
 2

.5
7

54
2

+
 2

.8
4

Ve
hi

cl
e

0.
60

0.
54

17
21

7
+

 0
.3

8
89

9
+

 0
.2

8
19

93
 +

 0
.3

5
64

25
 +

 0
.3

4
69

8
+

 0
.3

7
33

31
3

+
 3

4.
09

46
04

 +
 2

4.
17

1964 C. Bentéjac et al.

1 3

Ta
bl

e
12

 (
co

nt
in

ue
d)

D
at

as
et

D
. X

G
B

D
P.

 X
G

B
T.

 X
G

B
T.

 N
R

 X
G

B
T.

 N
G

 X
G

B
T.

 L
G

B
 g

os
s

T.
 N

R
 L

G
B

 g
os

s
T.

 C
at

 o
rd

T.
 R

ed
 C

at
 o

rd

Vo
w

el
1.

96
1.

41
48

72
6

+
 1

.2
4

28
87

 +
 1

.4
0

55
77

 +
 1

.2
4

30
56

7
+

 2
.2

5
31

83
 +

 2
.1

0
83

07
6

+
 1

37
.0

4
10

68
5

+
 1

25
.9

3
W

av
ef

or
m

3.
34

3.
83

11
15

62
 +

 1
.7

4
50

28
 +

 1
.7

3
13

07
3

+
 2

.1
5

55
33

3
+

 1
.1

0
57

92
 +

 1
.9

8
59

94
0

+
 5

2.
92

66
22

 +
 5

5.
10

W
in

e
0.

07
0.

05
21

04
 +

 0
.0

5
12

2
+

 0
.0

5
23

1
+

 0
.0

5
88

7
+

 0
.0

5
94

 +
 0

.0
8

26
09

7
+

 2
2.

14
34

83
 +

 1
1.

19
A

ve
. r

at
io

1.
00

0.
90

29
04

3.
7

+
 0

.7
9

17
82

.3
 +

 0
.7

7
34

72
.0

 +
 0

.8
0

11
92

2.
6

+
 0

.7
6

12
44

.3
 +

 0
.8

8
10

62
34

.9
 +

 7
3.

9
15

67
6.

1
+

 7
3.

1

1965A comparative analysis of gradient boosting algorithms

1 3

reduction of approximately 7 times with respect to the full grid although the grid search
time remains rather high.

4 Conclusion

In this study we present an empirical analysis of recent variants of gradient boosting:
XGBoost, LightGBM and CatBoost, that have proven to be efficient and accurate models.
Specifically, the performance of XGBoost, LightGBM and CatBoost in terms of training
speed, AUC and accuracy is compared with the performance of gradient boosting and ran-
dom forest under a wide range of classification tasks. The study focuses on specific char-
acteristics of these methods with respect to gradient boosting: introduction of a complexity
term in XGBoost, selective subsampling of high gradient instances in LightGBM and a
computation of gradients that avoids prediction shift in CatBoost. In addition, the hyper-
parameter tuning process of these methods is thoroughly analyzed.

The results of this study show that the most accurate classifier, in terms of average rank
is CatBoost. Nevertheless, the differences with respect to XGBoost, gradient boosting, ran-
dom forest (using the default hyper-parameters) and LightGBM are not statistically signifi-
cant in terms of average ranks. XGBoost and LightGBM trained using the default hyper-
parameters of the packages were the least successful methods (statistically worse than the
tuned versions of XGBoost and CatBoost). The difference between the default settings of
CatBoost and the tuned version are small. This is because the default version of CatBoost
performs a internal adjustments of the learning rate. The performance of the different
methods in terms of AUC is also consistent with their performance in terms of accuracy. In
consequence, we conclude that a meticulous hyper-parameter search is necessary to create
accurate models based on gradient boosting. This is not the case for random forest, whose
generalization performance was slightly better on average when the default hyper-param-
eter values were used (those originally proposed by Breiman). In fact, tuning in XGBoost
the randomization hyper-parameters subsampling rate and the number of features selected
at each split was found to be unnecessary as long as some randomization is used. In our
experiments, we fixed the values of the subsampling rate to 0.75 without replacement and
the number of features to sqrt, reducing the size of the hyper-parameter grid search 16 fold
and improving the average performance of XGBoost. For LightGBM, we found that, for
the studied datasets, tuning the top and lower rate hyper-parameters produced results very
similar to not tuning them. For CatBoost, we found that tuning the learning rate and the
depth of the trees was sufficient to get the best results of the analysis.

Finally, from the experiments of this study, which are based on grid search hyper-
parameter tuning using within-train 10-fold cross-validation, the tuning phase contributed
to over 99.9% of the computational effort necessary to train any of the methods. However,
the grid search time can be significantly reduced when the smaller proposed grids are used
for XGBoost, LightGBM and CatBoost. The fastest algorithm was LightGBM. XGBoost
has also very competitive speed results. Finally, Ordered CatBoost is much slower than the
other methods in general. Anyhow, the time for selecting the model hyper-parameters has
to be taken into consideration when choosing any given method and not only its speed for
training the final model. In this sense, the default versions of random forest and Ordered
CatBoost provide competitive results without the computational burden of hyper-parameter
tuning.

1966 C. Bentéjac et al.

1 3

Acknowledgement The authors acknowledge financial support from the European Regional Develop-
ment Fund and from the Spanish Ministry of Economy, Industry, and Competitiveness-State Research
Agency, project TIN2016-76406-P (AEI/FEDER, UE) and project PID2019-106827GB-I00 / AEI /
10.13039/501100011033. The authors thank the Centro de Computación Científica (CCC) at Universi-
dad Autónoma de Madrid (UAM) for the use of their facilities.

References

Babajide Mustapha I, Saeed F (2016) Bioactive molecule prediction using extreme gradient boosting.
Molecules 21(8):983

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman &

Hall, New York
Brown I, Mues C (2012) An experimental comparison of classification algorithms for imbalanced credit

scoring data sets. Expert Syst Appl 39(3):3446–3453
Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In:

Proceedings of the 23rd international conference on machine learning, ICML’06. ACM Press, New
York, pp 161–168

Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, KDD’16. ACM, New
York, pp 785–794

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of deci-

sion trees: bagging, boosting, and randomization. Maxh Learn 40(2):139–157
Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A (2015) Generalization in adaptive data

analysis and holdout reuse. Adv Neural Inf Process Syst 28:2350–2358
Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to

solve real world classification problems? J Mach Learn Res 15:3133–3181
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat

29(5):1189–1232
Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378 Nonlinear

Methods and Data Mining
Gumus M, Kiran MS (2017) Crude oil price forecasting using xgboost. In: 2017 International confer-

ence on computer science and engineering (UBMK), pp 1100–1103
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: a highly effi-

cient gradient boosting decision tree. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R,
Vishwanathan S, Garnett R (eds) Advances in neural information processing systems, vol 30, pp
3146–3154

Khramtsov V, Sergeyev A, Spiniello C, Tortora C, Napolitano N, Agnello A, Getman F, De Jong J,
Kuijken K, Radovich M, Shan H, Shulga V (2019) KiDS-SQuaD: II machine learning selection
of bright extragalactic objects to search for new gravitationally lensed quasars. Astron Astrophys
632:A56

Lichman M (2013) UCI machine learning repository. http://archi ve.ics.uci.edu/ml
Mirabal N, Charles E, Ferrara EC, Gonthier PL, Harding AK, Sánchez-Conde MA, Thompson DJ (2016)

3FGL demographics outside the galactic plane using supervised machine learning: pulsar and dark
matter subhalo interpretations. Astrophys J 825(1):69

Nori V, Hane C, Crown W, Au R, Burke W, Sanghavi D, Bleicher P (2019) Machine learning models to
predict onset of dementia: a label learning approach. Alzheimer’s Dementia Transl Res Clin Inter-
ven 5:918–925

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) Catboost: unbiased boosting with
categorical features. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett
R (eds) Advances in neural information processing systems, vol 31, pp 6638–6648

Rokach L (2016) Decision forest: twenty years of research. Inf Fusion 27:111–125
Torres-Barrán A, Alonso A, Dorronsoro JR (2017) Regression tree ensembles for wind energy and solar

radiation prediction. Neurocomputing. https ://doi.org/10.1016/j.neuco m.2017.05.104

http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.neucom.2017.05.104

1967A comparative analysis of gradient boosting algorithms

1 3

Valdivia A, Luzón MV, Cambria E, Herrera F (2018) Consensus vote models for detecting and filtering
neutrality in sentiment analysis. Inf Fusion 44:126–135

Xia Y, Liu C, Li Y, Liu N (2017) A boosted decision tree approach using bayesian hyper-parameter opti-
mization for credit scoring. Expert Syst Appl 78:225–241

Yoav Freund RES (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(5):771–780
Zhang C, Liu C, Zhang X, Almpanidis G (2017) An up-to-date comparison of state-of-the-art classification

algorithms. Expert Syst Appl 82:128–150

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A comparative analysis of gradient boosting algorithms
	Abstract
	1 Introduction
	2 Methodology
	2.1 Random forest
	2.2 Gradient boosting
	2.3 XGBoost
	2.4 LightGBM
	2.5 CatBoost

	3 Experimental results
	3.1 Results
	3.2 Analysis of hyper-parametrization
	3.3 Selected hyper-parametrizations

	4 Conclusion
	Acknowledgement
	References

