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Abstract
Sentiment analysis of short informal texts, such as tweets, remains a challenging task due 
to their particular characteristics. Much effort has been made in the literature of Twitter 
sentiment analysis to achieve an effective and efficient representation of tweets. In this con-
text, distinct types of features have been proposed and employed, from the simple n-gram 
representation to meta-features to word embeddings. Hence, in this work, using a relevant 
set of twenty-two datasets of tweets, we present a thorough evaluation of features by means 
of different supervised learning algorithms. We evaluate not only a rich set of meta-fea-
tures examined in state-of-the-art studies, but also a significant collection of pre-trained 
word embedding models. Also, we evaluate and analyze the effect of combining those dis-
tinct types of features in order to detect which combination may provide core information 
in the polarity detection task in Twitter sentiment analysis. For this purpose, we exploit 
different strategies for combination, such as feature concatenation and ensemble learning 
techniques, and show that the sentiment detection of tweets benefits from combining differ-
ent types of features proposed in the literature.

Keywords Sentiment analysis · Meta-features · Word embeddings · Ensemble learning · 
Twitter

1 Introduction

In recent years, much attention has been given to the content generated by Internet users. 
Since people can express their opinions and emotions about any target, such as products, 
services, and events around the globe, many consumers and companies can make decisions 
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based on this ever-growing opinionated content. However, as a huge amount of opinions 
is published every day, manually seeking for and identifying them as conveying a positive 
or negative sentiment may be impractical. In this context, Sentiment Analysis, or Opin-
ion Mining, is the field of study that analyzes people’s opinions, sentiments, appraisals, 
attitudes, and emotions toward entities and their attributes expressed in written text (Liu 
2015).

One of the key challenges in this field is regarding the automatic identification of opin-
ions and emotions expressed in short informal texts, such as tweets. Tweets, which are 
short texts published on Twitter,1 make the task of sentiment analysis very complex due 
to their inherent characteristics, such as their informal linguistic style, the presence of mis-
spelled words, and the careless use of grammar (Martínez-Cámara et al. 2014). Although 
sentiment analysis has recently been recognized as a suitcase research problem (Cambria 
et al. 2017; Chaturvedi et al. 2018), which involves various Natural Language Processing 
(NLP) tasks, including sarcasm detection, aspect extraction, and subjectivity detection, our 
focus is on the polarity detection task. Regarding supervised machine learning strategies, 
which are also the focus of this work, much effort has been made in the literature of Twitter 
sentiment analysis to achieve an effective representation of tweets. In this context, distinct 
types of features have already been proposed, from the simple n-gram-based representation 
to meta-level features to word embeddings.

N-grams are the most basic feature representation when dealing with text classification 
problems, having motivated early works on Twitter sentiment analysis (Go et al. 2009; Pak 
and Paroubek 2010; Pang et al. 2002). In this scenario, raw sequences of n words extracted 
from tweets constitute a sparse and high-dimensional feature space for the classification 
task. Later, in an attempt to deviate from the sparsity issue, several state-of-the-art studies 
have proposed different sets of features by developing an abstract representation of tweets, 
comprising meta-information extracted from their textual content (Barbosa and Feng 
2010). Those features, also called meta-level features, can capture new, insightful informa-
tion from tweets, taking into account their peculiarities. More recently, distributed repre-
sentations of words generated from deep learning approaches, namely word embeddings, 
have emerged as an efficient feature representation for text documents. They are currently 
the main focus of most works on sentiment detection in tweets. Word embeddings encode 
linguistic patterns of words from a vast corpus of textual data and can represent the textual 
content of tweets in low-dimensional feature vectors.

As far as we know, despite the efforts on designing effective and efficient feature repre-
sentation in the literature of Twitter sentiment analysis, there is a gap regarding the effect 
of combining such distinct types of features proposed in state-of-the-art works. In this 
study, we recognize three main groups of features considering their structural properties 
and how they are engineered, such as the n-gram language model, meta-level features, and 
word embedding-based features. Each of these groups encloses a rich disjoint set of fea-
tures which may boost classification effectiveness if appropriately combined.

Moreover, as for meta-level features, we have observed that only a small and different 
fraction of features are employed on each work in the literature. For that, we propose to fill 
another gap by aggregating meta-level features designed in different works. We believe that 
combining them into a unique set might benefit sentiment detection in tweets, as we shall 
see later. Also, we categorize this aggregated set of meta-level features, putting together 

1 http://www.twitt er.com.

http://www.twitter.com
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features that share similar aspects, so as to examine whether the sentiment classification of 
tweets can benefit from different categories of meta-level features.

In this work, our main goal is to improve classification performance in Twitter senti-
ment analysis. In this context, this study is conducted in order to provide a response to the 
following three main research questions:

RQ1. Which group of features is the most effective in Twitter sentiment analysis? Given 
the large number of features of distinct types designed and employed in the literature, such 
as n-grams, meta-level features, and word embedding-based features, we propose to per-
form a comparative evaluation of their predictive performances, by means of a large col-
lection of datasets of tweets. Our goal is to detect the most powerful feature set in the senti-
ment classification of tweets from various domains.

However, we believe that an improper choice of a learning algorithm to be used with 
a specific feature set may hinder classification performance. As a result, it might prevent 
the classifier from learning how to assign a sentiment label to tweets accurately. With that 
said, in order to take maximum advantage of the features from each feature set, we leverage 
the best classifiers constructed for each feature set, instead of comparing them by merely 
relying on the same learning algorithm. More clearly, we answer the intermediate ques-
tion “Which classification strategies are the most suitable for each group of features?” by 
evaluating distinct supervised learning algorithms for each feature set. After identifying the 
best classifiers under the individual evaluation of each feature set, we then carry out a fair 
comparative assessment of their predictive potential.

As a result of the comparative study among the best classifiers for each feature set, as 
we shall see, a classifier made up of a concise —yet rich—set of meta-level features from 
well-referenced works (Agarwal et al. 2011; Barbosa and Feng 2010; Bravo-Marquez et al. 
2014; Buscaldi and Hernandez-Farias 2015; da Silva et al. 2014; Davidov et al. 2010; Go 
et al. 2009; Hagen et al. 2015; Jiang et al. 2011; Khuc et al. 2012; Kouloumpis et al. 2011; 
Mohammad et al. 2013; Park et al. 2018; Vo and Zhang 2016; Zhang et al. 2011) achieves 
improved results, which may be a piece of evidence that such feature set plays an essential 
role in this task. Going further, we propose to categorize this rich set of meta-level features, 
this being an extension of our previous study (Carvalho and Plastino 2016). In this work, 
the categories proposed in Carvalho and Plastino (2016) are revisited, and we include some 
new meta-level features. In addition to this categorization, we investigate whether the clas-
sification of tweets from different domains can benefit from these distinct categories of 
meta-level features. For this purpose, we evaluate the predictive power of those categories 
in order to give a more general understanding of the relevance of the most common meta-
level features proposed in the literature.

Lastly, regarding the word embedding-based features, we also present an underlying 
evaluation of a significant collection of generic and affective pre-trained embedding mod-
els that we have identified in the literature, in order to acknowledge the most effective one 
for the polarity classification of tweets. Pre-trained models are publicly available embed-
ded representations of words, trained with different deep learning methods. While generic 
pre-trained models comprise word vectors trained for general purpose, the affective ones 
are specifically trained for the sentiment and emotion detection tasks.

RQ2. Can the concatenation of different types of features proposed in the literature 
boost classification performance in Twitter sentiment analysis? We propose to evaluate 
distinct combinations of the feature sets investigated in this work, (i.e., n-grams, meta-level 
features, and word embedding-based features), considering that features from different 
groups might complement one another, leading to an improvement in detecting the polarity 
of tweets. Our goal is to determine which combinations of distinct feature sets may provide 
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the core information in Twitter sentiment analysis. To this end, we adopt a simple feature 
concatenation approach that aims at combining features from distinct groups into a unique 
feature vector. In this work, we investigate whether the concatenation of all feature sets, as 
well as pairs of distinct feature sets, can improve sentiment classification effectiveness.

Furthermore, despite the acknowledged use of SVM due to its robustness on large fea-
ture spaces (Carvalho and Plastino 2016; Hagen et  al. 2015; Jabreel and Moreno 2017; 
Mohammad et al. 2013), to the best of our knowledge, no study in the literature evaluates 
the effectiveness of different learning methods in the presence of the different types of fea-
tures studied in this work. We believe that some learning algorithms may be more effective 
than others when features from distinct natures are put together, depending on their intrin-
sic properties and how the learning algorithms can harness them. In this scenario, we also 
conduct experiments to identify which classification strategies are the most suitable when 
combining features of different types.

RQ3. Can the sentiment classification of tweets benefit from the use of ensemble clas-
sification strategies having the best classifiers for each type of feature as base learners? 
Another approach to combine the discriminative power of different sets of features is 
through ensemble classification methods. Ensemble methods are learning algorithms that 
create a set of classifiers, also called base classifiers or base learners, which are used to 
classify new instances by taking a vote of their predictions (Dietterich 2000).

According to Zhang and Duin (2011), in practice, there exist two main kinds of ensem-
ble strategies. In the first, the predictions of homogeneous classifiers are combined accord-
ing to some rule. The second is marked by the use of heterogeneous classifiers. While 
homogeneous classifiers use the same learning algorithm with different representations of 
the feature space, the heterogeneous ones apply different classification algorithms to the 
same input features. In this work, we exploit a hybrid approach to ensemble learning.

Specifically, given the varied nature of features studied in this work, we use different 
learning algorithms as base classifiers, each one provided with a specific feature repre-
sentation for the same dataset of tweets (i.e., n-grams, meta-level features, or embedding-
based features). For most situations, we show that those classifiers can complement one 
another in the sentiment detection of tweets, properly dealing with the peculiarities of the 
data that might be uncovered by some of them. In addition, we provide an in-depth analy-
sis of the correlation among the base classifiers, showing that there is sufficient diversity 
among them, which is an imperative condition for ensemble strategies to succeed (Diet-
terich 2000)

In summation, the main contributions of this study are: (i) a literature review and analy-
sis of the most common feature representations of tweets for supervised sentiment classifi-
cation, including n-grams, meta-level features, and word embedding-based features; (ii) the 
categorization of a rich set of meta-level features developed in state-of-the-art works and 
the evaluation of each proposed category; (iii) a comparative study of a significant collec-
tion of publicly available pre-trained word embedding models in the sentiment classifica-
tion of tweets; (iv) an assessment of the combination effectiveness of the different sets of 
features studied in this work, by feature concatenation and ensemble learning; and (v) the 
use of twenty-two datasets of tweets in all experiments performed in this work. To the best 
of our knowledge, this is the first study that evaluates different types of features and classi-
fiers for a significant number of tweet datasets.

This article is organized as follows. In Sect. 2, we present the related work, offering a 
description of the distinct types of feature representation, as well as how they have been 
combined in the literature to increase the predictive performance of Twitter sentiment anal-
ysis. Sections 3, 4, and 5 present a literature review of the features exploited in this work, 
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such as n-grams, meta-level features, and word embedding-based features, respectively. 
The computational experiments conducted in this work to answer the research questions 
introduced in this section are described in Sect. 6. Finally, in Sect. 7, we present the con-
clusions of this work and directions for future research.

2  Related work

Sentiment analysis. Over the years, sentiment analysis has been broadly used to summarize 
people’s opinions and sentiments about products, services, organizations, individuals, and 
events (Liu 2012). In the pioneer works in sentiment analysis, Pang et al. (2002) and Tur-
ney (2002) applied distinct machine learning methods in the domain of product reviews.

In Pang et al. (2002), Pang et al. applied three supervised machine learning algorithms to 
determine the polarity of movie reviews. Conversely, using an unsupervised approach, Tur-
ney (2002) presented a simple strategy for classifying reviews of automobiles, banks, mov-
ies, and travel destinations as recommended or not recommended, i.e., whether the reviews 
convey a positive or a negative opinion. Since then, sentiment analysis has been applied in 
various domains to solve distinct types of problems (Cambria et al. 2010; Tumasjan et al. 
2010; Valdivia et al. 2017; Wang et al. 2012a; Yoo et al. 2018).

In past years, sentiment analysis has been used to generate real time insights during 
political debates (Tumasjan et al. 2010; Wang et al. 2012a), detect real-time events (Yoo 
et al. 2018), and in health (Cambria et al. 2010) and tourism applications (Valdivia et al. 
2017). Also, as social media interactions grow, companies can collect customers feedback 
and influence their decisions by designing intelligent marketing systems, as well as using 
public mood to predict the stock market (Bollen et al. 2011). In this scenario, applications 
of sentiment analysis on social media marketing and financial forecasting have received 
attention from the research community in recent years (Li et  al. 2020; Xing et  al. 2018, 
2019).

Xing et  al. (2018) addressed the problem of incorporating public mood to the asset 
allocation problem, which is an investment strategy that aims at balancing the trade-off 
between asset returns and the risk taken by investors. In Xing et al. (2018), they developed 
an ensemble of an evolving clustering method and long short-term memory (LSTM) neural 
network to formalize sentiment information in market views. To this end, they proposed 
to compute sentiment time series from social media by using the sentic computing frame-
work Cambria and Hussain (2015), arguing that it enables sentiment analysis not only at 
document or sentence level but also at concept level.

Recently, Li et al. (2020) studied how to combine technical indicators from stock prices 
and news sentiments from textual news articles, which is considered as an open research 
topic in financial market. To this end, they used different sentiment dictionaries to model 
news sentiment and constructed a two-layer LSTM network to make stock predictions. 
They showed that the LSTM incorporating both technical indicators and news sentiments 
outperformed the baseline models that use only one of these information sources at a time.

Although much effort in the literature of sentiment analysis has been on exploiting only 
English content, Lo et al. (2017) claim that it is no longer sufficient, considering that Asia 
now has the most Internet users (52.2%), followed by Europe (15.1%).2 Thus, dealing with 

2 https ://www.inter netwo rldst ats.com/stats .htm.

https://www.internetworldstats.com/stats.htm


1892 J. Carvalho, A. Plastino 

1 3

multilingual language content represents one of the major challenges in sentiment analysis 
(Araújo et  al. 2020; Dashtipour et  al. 2016; Lo et  al. 2017). For example,  Araújo et  al. 
(2020) investigated how a simple translation strategy can address the problem of senti-
ment analysis in multiple languages. In  Araújo et  al. (2020), they showed that machine 
translation systems such as Google Translate, Microsoft Translator Text API, and Yandex 
Translate, are mature enough to produce reliable translations to English that can be used 
for sentence-level sentiment analysis.

At present, with the explosion of social media networks, semi-supervised strategies have 
also been emerging in the literature of sentiment analysis taking advantage of the massive 
amount of unlabeled data available (Fu et al. 2019; Hussain and Cambria 2018). Hussain 
and Cambria (2018) describe semi-supervised learning as a supervised learning problem 
biased by an unsupervised reference solution. In Hussain and Cambria (2018), they pro-
posed a novel semi-supervised learning model for the task of emotion recognition based on 
the combined use of random projections and support vector machines. Fu et al. (2019) built 
a novel model to perform aspect-level sentiment classification, called AL-SSVAE (Semi-
supervised Aspect Level Sentiment Classification Model based on Variational Autoen-
coder), based on the variational autoencoder framework (Kingma and Welling 2013). The 
proposed model introduces a given aspect of text into the encoder and decoder, and adds an 
aspect level sentiment classifier for semi-supervised learning in the aspect level sentiment 
classification.

Feature representation. One of the most significant challenges when dealing with text 
classification problems is related to feature engineering, especially in short texts such as 
tweets. Among the broad set of features that have emerged in the literature of Twitter senti-
ment analysis, the n-gram features have been widely employed because of their simplicity 
in representing tweets (Agarwal et al. 2011; Araque et al. 2017; Arif et al. 2018; Barbosa 
and Feng 2010; Bermingham and Smeaton 2010; Bifet and Frank 2010; Chikersal et  al. 
2015; Cozza and Petrocchi 2016; da Silva et al. 2016, 2014; Davidov et al. 2010; Emadi 
and Rahgozar 2019; Go et al. 2009; Hagen et al. 2015; Hamdan 2016; Hamdan et al. 2015; 
Jabreel and Moreno 2017; Jiang et al. 2011; Kouloumpis et al. 2011; Lin and Kolcz 2012; 
Lochter et al. 2016; Miranda-Jiménez et al. 2017; Mohammad et al. 2013; Narr et al. 2012; 
Pak and Paroubek 2010; Saif et al. 2012; Siddiqua et al. 2016; Speriosu et al. 2011; Wang 
et al. 2012b; Zhang et al. 2011).

N-gram features are contiguous sequences of n words from a text. Despite their sim-
plicity, it has already been acknowledged that this type of feature may negatively impact 
the predictive performance of the classification because of the large number of uncom-
mon words in Twitter (Saif 2015), and because people tend to use much less characters 
of the 140-character limit for tweets (da Silva et al. 2016). Indeed, analyzing a corpus of 
1.6M tweets, Go et al. (2009) have reported that the average length of a tweet is 14 words, 
or 78 characters. Further, in Saif et al. (2012), it was brought to attention that 93% of the 
words in a corpus of 60,000 tweets are highly infrequent, occurring less than ten times. 
These drawbacks make the data very sparse due to the curse of dimensionality, which can 
sometimes prevent the classifier from correctly learning how to assign a sentiment label to 
unseen tweets.

Beyond the sparsity issue, another factor that makes the sentiment classification even 
harder is related to the challenging nature of tweets, such as their informal linguistic style 
and the careless use of grammar (Martínez-Cámara et al. 2014), resulting in a new form 
of written text, termed microtext (Cambria et al. 2017). In this context, while some stud-
ies propose methods for normalizing tweets to plain English hence improving classifica-
tion accuracy (Satapathy et  al. 2017), other state-of-the-art works have explored feature 
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engineering by designing hand-crafted features or meta-level features. Meta-level features 
are usually extracted from other features and are able to capture insightful new informa-
tion about the data (Canuto et  al. 2016). These features include summations and counts 
of: part-of-speech of words (Agarwal et al. 2011; Barbosa and Feng 2010; Bravo-Marquez 
et al. 2014; Go et al. 2009; Kouloumpis et al. 2011; Mohammad et al. 2013), punctuation 
marks (Agarwal et  al. 2011; Barbosa and Feng 2010; Davidov et  al. 2010; Hagen et  al. 
2015; Jiang et  al. 2011; Mohammad et  al. 2013), specific characteristics of Twitter and 
short messages, such as hashtags, user mentions, retweets (RT), abbreviations, etc. (Agar-
wal et al. 2011; Barbosa and Feng 2010; Hagen et al. 2015; Jiang et al. 2011; Kouloumpis 
et al. 2011; Mohammad et al. 2013; Zhang et al. 2011), emoticons (Agarwal et al. 2011; da 
Silva et al. 2014; Hagen et al. 2015; Mohammad et al. 2013), and lexicon features (Agar-
wal et al. 2011; Bravo-Marquez et al. 2014; da Silva et al. 2014; Hagen et al. 2015; Jiang 
et  al. 2011; Khuc et  al. 2012; Kouloumpis et  al. 2011; Mohammad et  al. 2013; Vo and 
Zhang 2016), which use the prior sentiment information of words annotated in existing 
lexicon resources. For example, Mohammad et al. (2013) have implemented a large set of 
meta-features (referred to as NRC-features), while also emphasizing the importance of a 
set of lexicon-based features. In Mohammad et al. (2013), authors have designed lexicon-
based features such as the total number of positive and negative tokens from a tweet, the 
overall and the maximal score of a tweet, and the score of the last token of a tweet. All 
those features were extracted for each of the five different sentiment lexicons. The results 
of the experiments have shown that the most influential features for the two assessed data-
sets of tweets were the lexicon-based ones, which led to an improvement of 8.5% in terms 
of the macro-averaged F-score of the positive, negative, and neutral classes.

With the revival and success of deep learning techniques in traditional machine learning 
applications, distributed representations of words have emerged as a solution to the curse 
of dimensionality issue (Bengio et al. 2003; Collobert et al. 2011; Mikolov et al. 2013a, b; 
Pennington et al. 2014). In this context, neural networks based on dense vector representa-
tions have been producing superior results in many NLP tasks (Young et al. 2018). Bengio 
et al. (2003) have discussed two main characteristics of the n-gram model that can lead to 
misclassification problems: the context and the similarity between words are not taken into 
consideration. Although some context can be caught by using higher-order n-grams, such 
as 5-grams, it does not consider contexts farther than n words. Besides that, it makes the 
dimensionality even higher. Collobert et al. (2011) introduce a method to overcome these 
limitations, which relies on largely unlabeled data and uses a multilayer neural network 
architecture to learn word representations, namely word embeddings. Word embeddings 
are dense, low-dimensional, and real-valued vectors, each one representing a word in the 
vocabulary, and encode linguistic patterns that can capture context from a massive corpus 
of textual data. This method has been successfully applied in many NLP tasks such as part-
of-speech tagging, named entity recognition and semantic role labeling (Collobert et  al. 
2011).

In the context of sentiment analysis, some works have effectively designed sentiment 
and emotion-specific embedding learning methods (Agarwal et al. 2018; Felbo et al. 2017; 
Tang et al. 2014; Xu et al. 2018). For example, Tang et al. (2014) have observed that tra-
ditional methods for learning word embeddings ignore the sentiment information of text, 
which may become a problem since words that appear in similar contexts but carrying 
opposite polarities are mapped into close vectors (for example, good and bad). In  Tang 
et  al. (2014), this issue is addressed by extending the method proposed in  Collobert 
et  al. (2011). Specifically, Tang et  al. have developed a sentiment-specific word embed-
ding (SSWE) neural network that incorporates the sentiment information of texts into the 
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embedding learning process, using a corpus of 10M tweets with emoticons as a noisy, 
distant-supervised training data. In the experiments conducted to evaluate their approach, 
Tang et al. have shown that the results achieved by the SSWE learning method are com-
petitive with those achieved by the state-of-the-art meta-level features proposed in Moham-
mad et al. (2013) (84.98% and 84.73% in macro-F1, respectively).

Recently, deep learning methods have also been successfully applied to aspect-based 
sentiment analysis (Chen et  al. 2017; Ma et  al. 2018; Wang et  al. 2017), which aims at 
identifying the polarity of specific aspects rather than the document itself in its entirety 
(Poria et al. 2016). For example, Ma et al. (2018) have proposed a long short-term memory 
(LSTM) neural architecture that incorporates the attention mechanism. LSTM is a recur-
rent neural network (RNN) that can handle sequences of data. The attention mechanism 
takes an external memory and representations of a sequence as input and produces a proba-
bility distribution related to each position of the sequence. In Ma et al. (2018), authors have 
modeled attention as a two-step model: target-level attention and sentence-level attention, 
and they have shown that the proposed attention architecture can outperform state-of-the-
art methods in aspect-based sentiment analysis.

Combination strategies. Arguing that the combination of classifiers has not been prop-
erly explored in the literature of Twitter sentiment analysis,  da Silva et  al. (2014) show 
that a classifier ensemble formed by Multinomial Naive Bayes (MNB), Support Vector 
Machines (SVM), Random Forest (RF), and Logistic Regression (LR) can improve the 
classification accuracy on four sentiment datasets used in the investigation, when combined 
in a majority voting strategy. The diversity in the classifier ensemble is addressed by vary-
ing only the base learners, all of which using the same bag-of-words feature representa-
tion. Prusa et al. (2015) have evaluated seven base classifiers combined with either bag-
ging or boosting ensemble strategies on the sentiment classification of tweets, using only 
unigrams as features. In bagging, different training partitions are sampled from the original 
training dataset (with replacement), and a single base learner is trained on each partition. 
Boosting, on the other hand, iteratively creates the base classifiers, where in each iteration 
a classifier is trained based on the misclassified instances from previous iterations. At the 
end of the process, both ensemble techniques aggregate the resulting classifiers by averag-
ing the posterior probabilities of each model in the ensemble. In Prusa et al. (2015), they 
show that using ensemble strategies such as bagging and boosting can benefit the sentiment 
classification of tweets, particularly on high dimensional datasets.

In Fersini et al. (2014), Fersini et al. propose a Bayesian Ensemble Learning approach 
based on Bayesian Model Averaging (BMA), which uses a greedy backward elimination 
strategy to select the optimal set of base classifiers. The base candidate classifiers that 
integrate the search space are a dictionary-based approach (DIC), NB, SVM, Maximum 
Entropy (ME), and Conditional Random Fields (CRF). The feature space used for learn-
ing is the bag-of-words model, except for the DIC approach, which relies on the polarities 
of words in sentiment lexicons. Interestingly, although the dictionary approach presents 
the lower individual performance on the datasets used in the experimental evaluation, the 
optimal ensemble provided by BMA always includes DIC as one of the base classifiers for 
all datasets.

Recently, Fersini et al. (2016) pointed out that not only words are key features in detect-
ing the sentiment polarity of tweets, but also some strong signals can help to discriminate 
the positive messages from the negative ones. In this context, in Fersini et al. (2016), the 
combination of the bag-of-words representation of tweets with adjectives, pragmatic parti-
cles (emoticons, initialisms for emphatic expressions, and onomatopoeic expressions), and 
expressive lengthening are investigated independently and as part of an ensemble learning 
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strategy. More precisely, the bag-of-words vectors representing each tweet are expanded 
with five new features: the number of positive and negative adjectives, the number of pos-
itive and negative pragmatic particles and the expressive lengthening of a tweet. In the 
experimental investigation, they show that using the bag-of-words model expanded with all 
those expressive signals on an ensemble learning framework (BMA Fersini et al. 2014) can 
lead to a significant improvement in terms of accuracy.

The combination of distinct preprocessing techniques with well-established classifica-
tion algorithms has been investigated by  Lochter et  al. (2016). In  Lochter et  al. (2016), 
they propose an ensemble system that performs a grid search to select the best combi-
nation between text processing techniques and different classification methods, such as 
Naive Bayes (NB), SVM, LR, k-Nearest Neighbors (k-NN), and Decision Trees (DT). 
In Lochter et al. (2016), they evaluate the predictive power of the ensemble system on nine 
datasets of tweets. As their goal is to detect the best combination of text preprocessing 
techniques and classifiers, they have used a small fixed set of features for each learning 
method assessed, such as unigrams and the count of positive and negative terms in each 
tweet. Emadi and Rahgozar (2019) have recently proposed a classifier ensemble approach 
which combines supervised and unsupervised methods in Twitter sentiment classification. 
To this end, three supervised machine learning algorithms, such as SVM, NB, and ME are 
used as base classifiers, each of them supplied with unigrams, bigrams, and a combination 
of both. In addition to those classifiers, an unsupervised NLP-based method is used. The 
classifiers are chosen based on diversity measures in order to select methods that com-
plement one another. Once the diverse set of classifiers is identified, i.e., classifiers with 
sufficient diversity, a learning fusion method is applied to assign a polarity orientation for 
each tweet. In Emadi and Rahgozar (2019), the Choquet Fuzzy Integral (CFI) method is 
used as a meta-learning strategy, which combines the decision of each classifier. Araque 
et al. (2017) have investigated different combinations of features via ensemble learning and 
through feature concatenation. They evaluate and compare the predictive performance of 
these combinations against a supervised baseline model fed with word embeddings trained 
on a corpus of 1.28M tweets. For the ensemble model, they use as base classifiers six dif-
ferent sentiment methods, each one trained with various, though rather simple, features 
(e.g., n-grams, POS features, and polarity values for each word), in addition to classifiers 
trained with generic and affective word embeddings, i.e., word vectors trained for general 
purpose and for the sentiment analysis task, respectively.

Different from ensemble learning methods, which combine the strength of classifiers 
and features at prediction time, feature concatenation consists in combining different sets of 
features into a unified set as a preprocessing step prior to the classification process. Aiming 
at evaluating the combination of several types of features, Araque et al. (2017) have pro-
posed three feature concatenation models. The first one, denoted  MSG, combines a small set 
of meta-level features and generic word embedding vectors. The second type,  MGA, com-
bines generic and affective word vectors. Finally, the third,  MSGA, consists in the combina-
tion of the features included in the first and second models, i.e., meta-level features, generic 
and affective word vectors. In the experimental evaluation, both the ensemble model and 
the feature concatenation model  MSG achieved the best results, with no significant statisti-
cal difference between them. Agarwal et al. (2011) have proposed a rich set of meta-level 
features, termed Senti-features, which were divided into three categories: ℕ , ℝ , and � . Fea-
tures from category ℕ are those whose value is a positive integer (e.g., #hashtags, #posi-
tive words, etc.). Features from category ℝ are those whose value is a real number (e.g., 
polarity score of words in some lexicon). Lastly, features whose value is a boolean (e.g., 
presence of capitalized text) make up category � . Besides, they have adopted unigrams 
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as a baseline. In the experimental evaluation of the proposed set of features, features were 
added incrementally to the baseline unigram model and they show that the best result is 
achieved by using all meta-level features in combination with the unigrams, through fea-
ture concatenation. Mansour et al. (2015) examine a large set of features introduced in the 
literature of Twitter sentiment analysis. In Mansour et al. (2015), authors have performed 
an exhaustive combination of features aiming at identifying a compact feature subset that 
can reduce the computational complexity without harming classification accuracy. To this 
end, in addition to unigrams and bigrams, they have also investigated Senti-features (Agar-
wal et  al. 2011), NRC-features (Mohammad et  al. 2013), and SSWE embeddings (Tang 
et al. 2014). In their experimental evaluation, they employed two datasets of tweets and the 
Maximum Entropy classification algorithm. For polarity detection, they identified that the 
best results were achieved by concatenating unigrams, bigrams, NRC-features, and SSWE 
embeddings with macro-F1 of 89%.

In  Tang et  al. (2014), Tang et  al. explore the combination of the SSWE embeddings 
and the state-of-the-art NRC-features (Mohammad et al. 2013) through feature concatena-
tion, which improved prediction performance from 84.98% to 86.58%. In order to obtain 
rich sources of information, Vo and Zhang (2015) employed, as features, a combination of 
word vectors trained with two different embedding learning approaches, namely Google’s 
word2vec (Mikolov et  al. 2013b) and SSWE (Tang et  al. 2014). To this end, they have 
trained the embeddings with a large-scale corpus of 5M unlabeled tweets and show that 
the combination of generic and affective word vectors are beneficial to the sentiment clas-
sification of tweets. Xu et al. (2018) investigate the performance of the proposed affective 
embedding learning system, Emo2vec, by combining the word vectors obtained with both 
their approach and Stanford’s GloVe vectors (Pennington et al. 2014), in an attempt to ren-
der feature representation more accurate, since Emo2vec is weak on capturing syntactic 
and semantic meaning. Table 1 presents a summary of the combination methods discussed 
in this section.

Discussion. Diversity is a key point in designing ensemble approaches (Brown et  al. 
2005). Despite the application of combination methods in Twitter sentiment classification, 
most works use the same feature representation varying only the classification algorithms, 
as shown in Table 1, with the exception of Araque et al. (2017), whose base learners are 
state-of-the-art classifiers from the literature. We believe that different classification strate-
gies may benefit from the use of an appropriate set of features. For example, an SVM clas-
sifier fed with n-grams may be successful in this task, but this might not stand true if we 
employ the same feature representation with another inducer, such as Random Forest. We 
investigate this hypothesis by evaluating the predictive power of features of varied types, 
feeding them to different state-of-the-art learning algorithms. Furthermore, we combine 
the best classification strategies for each group of features through feature concatenation, 
as well as using them as base classifiers for ensemble strategies. The features used in this 
investigation are n-grams, meta-level features, and word embeddings, which have been 
widely adopted in the literature as of late.

Though some other relevant studies present the assessment of different Twitter senti-
ment analysis methods (Maynard and Bontcheva 2016; Zimbra et  al. 2018), their pri-
mary focus is on the evaluation of existing systems, treating them as black boxes. Our 
assessment, on the other hand, is more fine-grained in the sense that we analyze the 
performance of distinct classification strategies at feature-level, i.e., we evaluate the 
effect of different kinds of features on the polarity detection task. Also, even though 
some other works sought to examine the combination of different kinds of features, 
such as the one presented in Mansour et al. (2015), we fulfill a more robust evaluation. 
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Specifically, in Mansour et al. (2015), Mansour et al. have only employed a subset of the 
features we have examined in our experiments. For instance, regarding the representa-
tion provided by pre-trained embeddings, Mansour et al. (2015) have only investigated 
the SSWE embeddings (Tang et  al. 2014), whereas we present an extensive analysis 
of ten different pre-trained embeddings from the literature. Lastly, in  Mansour et  al. 
(2015), while authors have only adopted two datasets of tweets and one classification 
algorithm, we present a more robust assessment on 22 datasets and making use of three 
distinct classification algorithms.

Another point we have observed is that works in sentiment classification of tweets do 
not fully exploit the predictive power of meta-level features, especially those in which com-
bination strategies are proposed. Over the years, many researchers have experimented with 
meta-level features in sentiment classification, only a small representation of which hav-
ing been adopted by each work. Hence, in this work, we show that aggregating meta-level 
features from different works into a unique feature set can achieve higher accuracies when 
compared to n-grams and word embeddings. Also, we show that combining meta-level fea-
tures with either n-grams or word embedding vectors can significantly improve the predic-
tive performance of supervised Twitter sentiment analysis. In the following sections, we 
present an overview of each of these feature representations.

3  N‑gram features

Different types of features have been engineered and used in Twitter sentiment analy-
sis, from the most common representation, such as n-grams, to meta-level features and 
word embeddings. N-grams are contiguous sequences of n tokens from a text. The most 
common representation of textual data is the bag-of-words or unigram model ( n = 1 ), 
in which each word of a tweet is considered as a feature. In general, the feature space is 
represented by a binary feature vector indicating whether each word of the vocabulary 
occurs in the tweet or not. In that case, the values 0 and 1 represent the absence and 
presence of each word in the tweet, respectively (Pak and Paroubek 2010).

In the task of sentiment analysis,  Pang et  al. (2002) are the pioneer authors using 
n-grams as features to detect the polarity of movie reviews. In the sentiment classification 
of tweets, Go et al. (2009) have used the same approach as in Pang et al. (2002) to classify 
the sentiment expressed in tweets using a distant supervision method. This method relies 
on positive and negative emoticons as noisy labels in a training dataset of 1.6M tweets. 
Since then, n-grams have been one of the most adopted features in supervised learning 
strategies due to their simplicity in representing tweets (Agarwal et al. 2011; Araque et al. 
2017; Arif et al. 2018; Barbosa and Feng 2010; Bermingham and Smeaton 2010; Bifet and 
Frank 2010; Chikersal et al. 2015; Cozza and Petrocchi 2016; da Silva et al. 2016, 2014; 
Davidov et al. 2010; Emadi and Rahgozar 2019; Go et al. 2009; Hagen et al. 2015; Hamdan 
2016; Hamdan et al. 2015; Jabreel and Moreno 2017; Jiang et al. 2011; Kouloumpis et al. 
2011; Lin and Kolcz 2012; Lochter et al. 2016; Miranda-Jiménez et al. 2017; Mohammad 
et al. 2013; Narr et al. 2012; Pak and Paroubek 2010; Saif et al. 2012; Siddiqua et al. 2016; 
Speriosu et al. 2011; Wang et al. 2012b; Zhang et al. 2011).

Table 2 presents an overview of the n-gram features in the literature of Twitter senti-
ment analysis. As shown in Table 2, most studies in the literature discourage the use of 
higher-order n-grams, such as 4- and 5-grams, trying to minimize the sparsity problem.
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4  Meta‑level features

Meta-level features, also called hand-crafted features, are usually extracted from other 
features and can capture insightful new information about the data (Canuto et al. 2016), 
exploring the content of tweets more efficiently than merely relying on raw sequences 
of words. In this study, we consider as meta-level features those referred to counts and 
summations, which are, in general, secondary information extracted from tweets. Meta-
level features are referred to hereafter as meta-features.

Table 2  Overview of the n-grams features used in the literature of Twitter sentiment classification ordered 
by publication year

Year References n = 1 bag-of-
words

n = 2 n = 3 n = 4 n = 5

2009  Go et al. (2009) ✓ ✓

2010  Barbosa and Feng (2010) ✓

 Bermingham and Smeaton (2010) ✓ ✓ ✓

 Bifet and Frank (2010) ✓

 Davidov et al. (2010) ✓ ✓ ✓ ✓ ✓

 Pak and Paroubek (2010) ✓ ✓ ✓

2011  Agarwal et al. (2011) ✓

 Jiang et al. (2011) ✓ ✓

 Kouloumpis et al. (2011) ✓ ✓

 Speriosu et al. (2011) ✓ ✓

2012  Lin and Kolcz (2012) ✓

 Narr et al. (2012) ✓ ✓

 Saif et al. (2012) ✓

 Wang et al. (2012b) ✓

2013  Mohammad et al. (2013) ✓ ✓ ✓ ✓

2014  da Silva et al. (2014) ✓

2015  Chikersal et al. (2015) ✓ ✓ ✓

 Hagen et al. (2015) ✓ ✓ ✓ ✓

 Hamdan et al. (2015) ✓ ✓

 Mansour et al. (2015) ✓ ✓

 Zhang et al. (2011) ✓

2016  Cozza and Petrocchi (2016) ✓

 da Silva et al. (2016) ✓ ✓ ✓

 Hamdan (2016) ✓ ✓ ✓

 Lochter et al. (2016) ✓

 Siddiqua et al. (2016) ✓

2017  Araque et al. (2017) ✓ ✓

 Jabreel and Moreno (2017) ✓ ✓ ✓ ✓

 Miranda-Jiménez et al. (2017) ✓ ✓ ✓

2018  Arif et al. (2018) ✓ ✓

2019  Emadi and Rahgozar (2019) ✓ ✓



1901On the evaluation and combination of state‑of‑the‑art features…

1 3

In this section, we present and categorize the most common types of meta-features we 
have examined in a set of well-referenced works in supervised sentiment classification of 
tweets (Agarwal et  al. 2011; Barbosa and Feng 2010; Bravo-Marquez et  al. 2014; Bus-
caldi and Hernandez-Farias 2015; da Silva et al. 2014; Davidov et al. 2010; Go et al. 2009; 
Hagen et al. 2015; Jiang et al. 2011; Khuc et al. 2012; Kouloumpis et al. 2011; Mohammad 
et al. 2013; Park et al. 2018; Vo and Zhang 2016; Zhang et al. 2011). This categorization 
is an extension of the study presented in Carvalho and Plastino (2016). In this work, the 
categories proposed in Carvalho and Plastino (2016) are revisited. For this purpose, con-
sidering that features sharing structural aspects should fall into the same group, we have 
categorized them into five categories, namely: Microblog, Part-of-Speech, Surface, Emoti-
con, and Lexicon-based features. An overview of the meta-features and their respective 
categories are presented in Table 3. The number in parentheses right below the name of 

Table 3  Overview of the meta-level features proposed in the literature of Twitter sentiment classification

Category Features

Microblog (10 features) Wheter the tweet has: retweet, hashtag, user mention, URL, repeated letters, 
abbreviation, internet slang

Number of: repeated letters, abbreviation, internet slang
Part-of-Speech (25 features) Number of: common noun, proper noun, personal pronoun, common noun + 

possessive, common noun + verb, proper noun + possessive, proper noun 
+ verb, verb, adjective, adverb, interjection, punctuation, determiner, pre 
or post-position, conjunction, verb particle, predeterminer, predeterminer 
+ verb, hashtag, user mention, discourse marker (“RT” and “:” in retweet), 
URL or email address, numeral, symbol

Surface (15 features) Whether the tweet has: question mark, exclamation mark
Whether last token contains: question mark, exclamation mark
Number of: words, capitalized words, words with all letters capitalized, 

capital letters, punctuation, question mark, exclamation mark, sequence of 
question marks, sequence of exclamation marks, sequence of both question 
and exclamation marks

Average of: char length of words
Emoticon (10 features) Wheter the tweet has: emoticon, positive emoticon, negative emoticon

Whether the last token is: positive emoticon, negative emoticon
Number of: emoticons, positive emoticons, negative emoticons, extremely 

positive emoticons, extremely negative emoticons
Lexicon-based (70 features) Number of: positive adjective, negative adjective, positive noun, nega-

tive noun, positive adverb, negative adverb, positive verb, negative verb, 
negated contexts, negation words, intensifier words, counter factuality 
words, temporal compression words

Sum of the scores of the adjectives, adverbs, verbs, and nouns
For each sentiment lexicon (AFINN Nielsen 2011, Bing Liu’s lexicon Liu 

2012, NRC-emotion Mohammad and Turney 2013, NRC-hashtag Moham-
mad et al. 2013, OpinionFinder Wilson et al. 2005 Sentiment140 lexi-
con Mohammad et al. 2013, and SentiWordNet Baccianella et al. 2010):

− Number of: positive words, negative words
− Total score of: positive words, negative words
− Maximal score of: positive words, negative words
− Balance score of the tweet
− Score of the last token



1902 J. Carvalho, A. Plastino 

1 3

each category corresponds to the total number of features in that category. In the following, 
we describe each category of meta-features.

Microblog features. The Microblog category refers to those features that leverage the 
syntax and the vocabulary used in tweets and microblog messages, as used in  Agarwal 
et  al. (2011),  Barbosa and Feng (2010),  Hagen et  al. (2015),  Jiang et  al. (2011),  Kou-
loumpis et  al. (2011),  Mohammad et  al. (2013),  Zhang et  al. (2011). More specifically, 
some characteristics of how microblog posts are written may be good indicators of senti-
ment, such as the use of repeated letters and internet slang present in the vocabulary of this 
type of text. Furthermore, Twitter-specific tokens, such as user mentions (followed by the 
special character @), retweets (indicated by RT), URLs, and hashtags (followed by the spe-
cial character #) have also been explored in the literature.

Part-of-Speech features. Although some studies have already acknowledged that part-
of-speech (POS) features are not useful for sentiment classification (Go et al. 2009; Pang 
et  al. 2002), this category of features is still used to determine the sentiment of tweets, 
in combination with other features (Agarwal et al. 2011; Barbosa and Feng 2010; Bravo-
Marquez et  al. 2014; Go et  al. 2009; Kouloumpis et  al. 2011; Mohammad et  al. 2013). 
For example, assuming that some adjectives and verbs are good indicators of positive and 
negative sentiment, Barbosa and Feng (2010) map each word in a tweet to its POS, being 
able to identify nouns, verbs, adjectives, adverbs, interjections, and others. Similarly, Agar-
wal et al. (2011) consider the number of adjectives, adverbs, verbs, and nouns as features. 
In order to capture the informal aspects of tweets, some works (Bravo-Marquez et al. 2014; 
Mohammad et al. 2013) use a POS tagset, presented in Gimpel et al. (2011), to identify 
some special characteristics of short and noisy texts, such as misspelling words.

Surface features. Surface features capture superficial stylistic content of the tweet, such 
as the number of words, capitalized words, words with all caps, capital letters, and punc-
tuation (Agarwal et al. 2011; Barbosa and Feng 2010; Davidov et al. 2010; Hagen et al. 
2015; Jiang et al. 2011; Kouloumpis et al. 2011; Mohammad et al. 2013; Park et al. 2018). 
Punctuation may also play an important role in sentiment detection of microblog messages. 
Thus, punctuation features have also been explored in the literature (Agarwal et al. 2011; 
Barbosa and Feng 2010; Davidov et al. 2010; Hagen et al. 2015; Jiang et al. 2011; Moham-
mad et al. 2013; Park et al. 2018). The most usual meta-features in this category are the 
number of exclamation and question marks, as appearing in (Agarwal et al. 2011; Barbosa 
and Feng 2010; Davidov et al. 2010; Hagen et al. 2015; Jiang et al. 2011; Park et al. 2018). 
Some works have already proposed more sophisticated meta-features, such as the number 
of contiguous sequences of exclamation and question marks (Hagen et al. 2015; Moham-
mad et al. 2013), regarding their use in microblog messages to convey intonation.

Emoticon features. The polarity of emoticons may also be another relevant characteris-
tic for Twitter sentiment analysis. Since emoticons are used by microblog users to summa-
rize the sentiment they intend to communicate, some works have also extracted meta-fea-
tures from emoticons, such as the number of positive and negative emoticons in a tweet, as 
employed in Agarwal et al. (2011), da Silva et al. (2014), Hagen et al. (2015), Mohammad 
et al. (2013), Park et al. (2018).

Lexicon-based features. A different manner of exploring the content of tweets in order 
to determine the sentiment expressed in them is from using existing sentiment lexical 
resources or dictionaries in the literature. These lexicons consist of lists of words with 
positive and negative terms, such as Bing Liu’s opinion lexicon (Liu 2012), NRC-emo-
tion (Mohammad and Turney 2013), and OpinionFinder lexicon (Wilson et al. 2005), as 
well as lexical resources containing words and phrases that are scored on a range of real 
values, such as AFINN (Nielsen 2011), SentiWordNet (SWN) (Baccianella et  al. 2010), 
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NRC-hashtag (Mohammad et al. 2013), and Sentiment140 lexicon (Sent140) (Mohammad 
et al. 2013). Meta-features of this category have been widely explored in sentiment clas-
sification of tweets (Agarwal et al. 2011; Bravo-Marquez et al. 2014; Buscaldi and Hernan-
dez-Farias 2015; da Silva et al. 2014; Hagen et al. 2015; Jiang et al. 2011; Khuc et al. 2012; 
Kouloumpis et al. 2011; Mohammad et al. 2013; Vo and Zhang 2016), especially the total 
count of positive and negative words.

It has already been acknowledged that negation can affect the polarity of an expression 
(Wiegand et al. 2010). Indeed, the expression not good is the opposite of good. In this con-
text, an interesting meta-feature proposed in the literature to handle negation is the num-
ber of negated contexts (Mohammad et al. 2013). Mohammad et al. (2013) have defined a 
negated context as a segment of a tweet that starts with a negation word, such as shouldn’t, 
and ends on the first punctuation mark after the negation word.

Regarding irony, Reyes et al. (2013) argue that it represents a meaningful obstacle for 
determining the polarity of texts accurately. For example, in domains like politics, health 
campaigns, and natural disasters, Twitter users post ironic messages criticizing and blam-
ing the government, and most sentiment analysis models cannot deal properly with them. 
To this end, in Reyes et al. (2013), they have proposed features to help capture irony in text, 
such as the number of counter-factuality words (e.g., nonetheless, nevertheless) and tem-
poral compression words (e.g., suddenly, now), which have been used in Twitter sentiment 
analysis (Buscaldi and Hernandez-Farias 2015). As described in Reyes et al. (2013), while 
counter-factuality words are discursive terms that hint at contradiction in a text, temporal 
compression words are focused on identifying elements related to the opposition in time, 
i.e., words that indicate an abrupt change in a narrative.

5  Word embedding‑based features

Although the well-known bag-of-words and n-gram representations have been extensively 
used regarding their simplicity, they make the feature space highly dimensional leading to 
the curse of dimensionality, as discussed in Sect. 2. Also, hand-crafted features are time-
consuming, often incomplete, and requires significant human effort (Pouyanfar et al. 2018; 
Young et al. 2018). On the other hand, deep learning approaches perform feature extrac-
tion in an automated way, which allows researchers to extract discriminative features with 
minimal domain knowledge (Pouyanfar et al. 2018). In recent research, with the increasing 
interest in deep learning approaches for NLP applications, distributed representations of 
words in a vector space, or word embeddings, have received much attention due to their 
ability to achieve high performance in many text classification tasks.

Word embeddings can capture the semantic and syntactic relations between words from 
a large amount of unlabeled text data, representing them in dense real-valued vectors that 
can be used as features in supervised machine learning frameworks. As described in Ben-
gio et al. (2003), the feature vectors associated with each word are learned from large cor-
pora, and each value represents a different aspect, or dimension, of the word. The main 
idea is that words that frequently occur together in the same contexts are mapped to similar 
regions of the vector space (Agarwal et al. 2018).

In Mikolov et al. (2013a), Mikolov et al. have designed the word2vec tool (w2v), com-
prising the CBOW and the Skip-gram models, which are neural architectures to train word 
embeddings. More specifically, given a massive text corpus, these architectures learn vector 
representation of words based on its vocabulary. As described in Mikolov et al. (2013a), the 
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CBOW method predicts the source word based on its context, while the Skip-gram predicts 
nearby words given a source word. Later, in Mikolov et al. (2013b), they have improved 
the Skip-gram model, making it much more computationally efficient. In  Mikolov et  al. 
(2013b), they have used an internal dataset of news articles from Google with one bil-
lion words to train the model, generating a 300-dimensional word vector. Pennington et al. 
(2014) argue that the statistics of the words in a given training corpus are sub utilized by 
the Skip-gram model (Mikolov et al. 2013b) since it does not take into account global co-
occurrence counts of words. For that reason, they propose a weighted least squares model, 
namely GloVe (Global Vectors), that leverages global word-word co-occurrence counts in 
the word embedding training phase. They have trained a 300-dimensional word vector and 
evaluated the proposed model on the word analogy, word similarity, and named entity rec-
ognition tasks, proving that GloVe outperforms the w2v models (CBOW and Skip-gram) 
by a significant margin.

Most techniques to train word vectors ignore the internal structure of words, making 
it difficult to learn good representations for morphologically rich languages, which have 
many different inflected forms for the same word. Thus, Bojanowski et al. (2016) have pro-
posed the fastText model, which learn representations for character n-grams as an exten-
sion of the Skip-gram model (Mikolov et  al. 2013b). Later,  Mikolov et  al. (2018) have 
combined some pre-processing strategies rarely used together to improve the standard fast-
Text model and achieved state-of-the-art results on several tasks.

Arguing the inefficiency of traditional approaches to train word embeddings for sen-
timent analysis, some authors have designed solutions to train word vectors specifically 
for the sentiment analysis task (Agarwal et al. 2018; Felbo et al. 2017; Tang et al. 2014; 
Xu et al. 2018). Tang et al. (2014) developed a neural network to learn sentiment-specific 
word embeddings (SSWE) on a massive corpus of tweets. They used the SSWE word 
vectors as features in a supervised machine learning strategy and reported comparable 
results with those achieved by applying the meta-level features proposed in  Mohammad 
et al. (2013). Felbo et al. (2017) took advantage of the vast amount of emoji occurrences 
on tweets to train models with rich emotional representations by using a transfer learning 
approach, namely DeepMoji. They have evaluated the DeepMoji model on eight bench-
mark datasets for the emotion, sarcasm, and sentiment classification tasks and their results 
outperformed state-of-the-art results for all assessed datasets, including the results achieved 
with the SSWE (Tang et al. 2014) method.

In Xu et al. (2018), Xu et al. proposed Emo2Vec, which is a multi-task training frame-
work that incorporates six different emotion-related tasks in the training process, such as 
sentiment analysis, emotion classification, sarcasm detection, abusive language classifi-
cation, stress detection, insult classification, and personality recognition. They argue that 
including the affective information from all those domains may benefit the learning pro-
cess, thus enabling the creation of a more general embedding emotional space. Compared 
with the SSWE and DeepMoji models, the Emo2Vec word vectors achieved competitive 
results. Also, claiming that Emo2Vec is weak on capturing the syntactic and semantic 
meaning of words, they concatenated Emo2Vec with the pre-trained GloVe (Pennington 
et al. 2014) vectors for comparison with state-of-the-art results on 14 datasets from distinct 
domains. In the experimental evaluation, the combination of Emo2Vec with GloVe vectors 
fed to an LR classifier achieved comparable performance for some datasets.

Discussing the challenges of the emotion classification problem, Agarwal et al. (2018) 
address some limitations of this task by leveraging noisy training data with a large range of 
emotions to learn emotion-enriched word representations, namely Emotion Word Embed-
dings (EWE). Instead of tweets, they have explored product reviews, as this type of text 
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may generalize better for other domains. They have evaluated the predictive performance 
of EWE against state-of-the-art pre-trained word vectors (Felbo et al. 2017; Mikolov et al. 
2013b; Pennington et al. 2014; Tang et al. 2014) on four datasets from various domains, 
such as fairy tales, blogs, experiences, and tweets. To this end, they have used LR and 
SVM as the learning strategies showing that the proposed method outperforms all the other 
methods with a statistically significant difference.

Recent advances in language modeling using neural networks have made it viable to 
model language as distributions over characters (Akbik et  al. 2018). Akbik et  al. (2018) 
have proposed a method that passes sentences as sequences of characters into a character-
level language model to form word-level embeddings. The character-level language model 
can capture syntactic-semantic word features and disambiguate words in context, result-
ing in state-of-the-art performance in NLP sequence labeling tasks. The method proposed 
in Akbik et al. (2018) can produce different embeddings for the same word depending on 
its context. Later, in  Akbik et  al. (2019), Akbik et  al. have developed FLAIR,3 an NLP 
framework which facilitates the training and distribution of state-of-the-art language mod-
els, thus reducing architectural complexity.

Recently, Peters et al. (2018) introduced ELMo (Embeddings from Language Models), 
a deep contextualized word representation that models not only complex characteristics of 
word usage, such as syntax and semantics, but also how these uses vary across linguistic 
contexts. ELMo is a feature-based approach for applying pre-trained language representa-
tions to downstream tasks, which extracts and concatenates independently context-sensi-
tive features from a left-to-right and a right-to-left language model.

In contrast to ELMo (Peters et al. 2018), which is not deeply bidirectional since it sim-
ply concatenates left-to-right and right-to-left representations,  Devlin et  al. (2019) pre-
sented a strategy called BERT (Bidirectional Encoder Representations from Transformers), 
which is a fine-tuning approach that alleviates the unidirectionality constraint by apply-
ing masked language models to enable pre-trained deep bidirectional representations. This 
model randomly masks some percentage of the input tokens, and the objective is to predict 
those masked tokens based on their context (Devlin et al. 2019). In addition, they also use 
a next sentence prediction (NSP) task for predicting whether two text segments follow each 
other in the original text. In Devlin et al. (2019), Devlin et al. showed that BERT outper-
forms many task-specific architectures and achieved state-of-the-art performance for eleven 
NLP tasks.

Later, in Liu et al. (2019), Liu et al. proposed modifications for training BERT models, 
which they called RoBERTa (Robustly optimized BERT approach). For example, regard-
ing the masked language model, while BERT performs masking once during data preproc-
essing, resulting in a single static mask, RoBERTa applies dynamic masking where the 
masking pattern is generated every time a sequence is fed to the model. Also, Liu et al. 
questioned the necessity of the NSP loss and trained RoBERTa without it. In  Liu et  al. 
(2019), Liu et al. combined these improvements and evaluated their combined impact on 
downstream tasks using three benchmarks datasets, achieving state-of-the-art results.

Another point recently investigated in the literature is the application of capsule net-
works in NLP tasks (Yang et  al. 2018; Zhao et  al. 2019). Capsule networks (Sabour 
et  al. 2017) are neural network architectures proposed in the domain of image classi-
fication which tackle some problems with convolutional neural networks (CNN). For 

3 https ://githu b.com/zalan dores earch /flair .

https://github.com/zalandoresearch/flair
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example, Zhao et al. (2019) argue that pooling operations in CNNs wrongly discard posi-
tional information and do not consider hierarchical relationships between local features, 
thus requiring massive amounts of training samples for generalization. On the other hand, 
capsule networks have the ability to learn hierarchical relationships between consecutive 
layers by using routing processes (Zhao et  al. 2019). In  Zhao et  al. (2019), Zhao et  al. 
extended existing capsule networks regarding NLP tasks, and achieved state-of-the-art 
results on question answering and multi-label text classification.

It has already been acknowledged that achieving suitable and sufficient representations 
of words depends on the volume of data used to train the word embedding models. Much 
effort in recent research is mainly focused on scalability issues of existing methods. For 
that reason, many researchers make the word vectors trained with their architectures avail-
able for public use. Those publicly available word vectors are referred to as pre-trained 
word embeddings.

Table 4 presents the characteristics of the pre-trained word embeddings generated by 
some methods discussed in this section. The |D| and |V| columns refer to the dimension and 
vocabulary size of each pre-trained embedding, respectively. The Type column separates 
the word embeddings trained for general purpose (generic) from those specially trained for 
the sentiment analysis and emotion detection tasks (affective). Additionally, under the Cor-
pus column, we present information about the textual corpora used to train the embeddings.

As described in Table  4, the GloVe-TWT and GloVe-WP word vectors (Pennington 
et al. 2014) were trained on massive text corpora from Twitter and Wikipedia+Gigaword, 
respectively. The fastText vectors (Mikolov et  al. 2018) were trained on rich and vast 
sources of data, including Wikipedia, news from statmt.org, and the UMBC text corpus.

Regarding the word vectors trained with the word2vec tool, w2v-GN is the former one 
whose construction is detailed in  Mikolov et  al. (2013b).  Bravo-Marquez et  al. (2016) 
have used the Skip-gram method implemented in the word2vec tool to train word vectors 
on a vast corpus of ten million tweets from the Edinburgh Twitter corpus (Petrović et al. 
2010). In Bravo-Marquez et al. (2016), they have optimized the parameters for classifying 
words into emotions and made the pre-trained vectors publicly available (w2v-Edin). More 
recently, Araque et al. (2017) developed a supervised learning system using word vectors 
as features. The w2v-Araque vectors were trained on a corpus of 1,280,000 tweets with the 
word2vec tool, and the system was used as a baseline to compare it to other approaches.

Table 4  Characteristics of the pre-trained word embeddings separated by type and ordered by the number 
of dimensions ( |D| column)

Type Embedding |D| |V| Corpus

Generic GloVe-TWT (Pennington et al. 2014) 200 1.2 M Twitter (27B tokens)
GloVe-WP (Pennington et al. 2014) 300 400 K Wikipedia/Gigaword (6B tokens)
fastText (Mikolov et al. 2018) 300 1 M Wikipedia/web pages/news (16B tokens)
w2v-GN (Mikolov et al. 2013b) 300 3 M Google news (100B tokens)
w2v-Edin (Bravo-Marquez et al. 2016) 400 259 K Twitter (10M tweets)
w2v-Araque (Araque et al. 2017) 500 57 K Twitter (1.28M tweets)

Affective SSWE (Tang et al. 2014) 50 137 K Twitter (10M tweets)
Emo2Vec (Xu et al. 2018) 100 1.2 M Twitter (1.9M tweets)
DeepMoji (Felbo et al. 2017) 256 50 K Twitter (1B tweets)
EWE (Agarwal et al. 2018) 300 183 K Amazon reviews (200K reviews)
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Regarding the affective pre-trained vectors, which leverage the sentiment or emotion 
information during the training phase, the SSWE (Tang et al. 2014), Emo2Vec (Xu et al. 
2018), and DeepMoji (Felbo et al. 2017) word vectors were trained on tweets, while the 
EWE (Agarwal et al. 2018) representations were trained on product reviews from Amazon. 
All of them were generated using specific methods for creating word representations to 
incorporate the sentiment information of texts during the training process.

6  Experimental evaluation

This section presents the computational results obtained by evaluating the different feature 
representations presented in Sects. 3, 4, and 5, namely n-grams, meta-level features, and 
word embeddings, respectively. Next, we present the results achieved by combining those 
distinct types of features through combination strategies, such as feature concatenation and 
classifier ensembles, as discussed in Sect. 2.

We begin by describing the experimental protocol we followed in Sect. 6.1. Then, in 
Sects. 6.2 and 6.3, we report and discuss the results of a set of experiments so as to arrive 
at answers to research questions RQ1 through RQ3, introduced in Sect. 1.

6.1  Experimental setting

Attempting to answer the research questions presented in Sect. 1, we adopted Weka’s (Hall 
et  al. 2009) implementation of machine learning algorithms Support Vector Machines 
(SVM), L2-regularized Logistic Regression (LR), and Random Forests (RF). For SVM and 
LR, we used the LIBSVM4 (Chang and Lin 2011) and LIBLINEAR5 (Fan et  al. 2008) 
implementations, respectively. Also, we set the regularization parameter to its default 
value (C = 1.0), and we employed the linear kernel for LIBSVM. Table 5 shows a sum-
mary of the classification algorithms adopted in this work, remarking their advantages and 
disadvantages.

We used a set of twenty-two datasets for the computational experiments reported in 
this section. These datasets have been extensively used in the literature of Twitter senti-
ment analysis. To the best of our knowledge, this is the first study using a significant 
number of Twitter datasets in the evaluation of different types of features employed in 
the literature over the years. The datasets are: irony (Gonçalves et  al. 2015), sarcasm 
(Gonçalves et al. 2015), aisopos,6 SemEval-Fig (Ghosh et al. 2015), sentiment140 (Go 
et al. 2009), person (Chen et al. 2012), hobbit (Lochter et al. 2016), iphone6 (Lochter 
et  al. 2016), movie (Chen et  al. 2012), sanders,7 Narr (Narr et  al. 2012), archeage 
(Lochter et  al. 2016), SemEval18 (Mohammad et  al. 2018), OMD (Diakopoulos and 
Shamma 2010), HCR (Speriosu et al. 2011), STS-Gold (Saif et al. 2013), SentiStrength 
(Thelwall et al. 2012), Target-dependent (Dong et al. 2014), Vader (Hutto and Gilbert 
2014), SemEval13 (Nakov et al. 2013), SemEval16 (Nakov et al. 2016), and SemEval17 

4 Available at http://www.csie.ntu.edu.tw/~cjlin /libsv m.
5 Available at http://www.csie.ntu.edu.tw/~cjlin /libli near.
6 http://grid.ece.ntua.gr.
7 http://www.sanan alyti cs.com/lab/twitt er-senti ment.

http://www.csie.ntu.edu.tw/%7ecjlin/libsvm
http://www.csie.ntu.edu.tw/%7ecjlin/liblinear
http://grid.ece.ntua.gr
http://www.sananalytics.com/lab/twitter-sentiment
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(Rosenthal et al. 2017). Some characteristics of these datasets are presented in Table 6, 
namely their total number of tweets, positive, and negative tweets.

It is worth mentioning that the original sentiment140 dataset, as described in  Go 
et  al. (2009), contains 1.6 million training tweets, which were annotated using a dis-
tant supervision approach, meaning that emoticons from such tweets were used as noisy 
labels. However, in our experiments, we have only used the test partition, which con-
tains 177 negative and 182 positive tweets manually labeled by a set of human annota-
tors. Although the test partition is relatively small, it has been widely used in Twitter 
sentiment analysis (Bakliwal et  al. 2012; Bravo-Marquez et al. 2013; Saif et  al. 2013, 
2012; Speriosu et al. 2011).

In the experimental evaluation, the predictive performance of the sentiment classifica-
tion is measured in terms of classification accuracy. For each evaluated dataset, the accu-
racy of the classification was computed as the ratio between the number of correctly clas-
sified tweets and the total number of tweets, following a stratified tenfold cross-validation.

Moreover, as suggested by Demšar (2006), we ran the Friedman test followed by the 
Nemenyi post-hoc test to determine whether the differences among the accuracies are 
statistically significant at a 0.05 significance level. Whenever applicable, we present the 
results of the statistical tests immediately below each results table. For this purpose, we 
use the symbol ≻ to show that some classifier x is significantly better than some classi-
fier y, so that {x} ≻ {y}.

Table 6  Characteristics of the Twitter sentiment datasets ordered by size (#tweets column)

Dataset #tweets #positive #negative

Irony (Gonçalves et al. 2015) 65 22 43
Sarcasm (Gonçalves et al. 2015) 71 33 38
Aisopos 278 159 119
SemEval-Fig (Ghosh et al. 2015) 321 47 274
Sentiment140 (Go et al. 2009) 359 182 177
Person (Chen et al. 2012) 439 312 127
Hobbit (Lochter et al. 2016) 522 354 168
Iphone6 (Lochter et al. 2016) 532 371 161
Movie (Chen et al. 2012) 561 460 101
Sanders 1224 570 654
Narr (Narr et al. 2012) 1227 739 488
Archeage (Lochter et al. 2016) 1718 724 994
SemEval18 (Mohammad et al. 2018) 1859 865 994
OMD (Diakopoulos and Shamma 2010) 1906 710 1196
HCR (Speriosu et al. 2011) 1908 539 1369
STS-gold (Saif et al. 2013) 2034 632 1402
SentiStrength (Thelwall et al. 2012) 2289 1340 949
Target-dependent (Dong et al. 2014) 3467 1734 1733
Vader (Hutto and Gilbert 2014) 4196 2897 1299
SemEval13 (Nakov et al. 2013) 4378 3183 1195
SemEval17 (Rosenthal et al. 2017) 6347 2375 3972
SemEval16 (Nakov et al. 2016) 12,216 8893 3323
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6.2  Answering research question RQ1

The experiments conducted in this section aim at answering research question RQ1, as 
follows:

RQ1. Which group of features is the most effective in Twitter sentiment analysis?
We answer this question throughout Sects. 6.2.1, 6.2.2, and 6.2.3, by assessing the dis-

tinct groups of features we have identified in the literature. Those features include n-grams, 
meta-features, and word embeddings. Then, after determining the best classifiers for each 
group of features, we perform a comparison between them to determine the most repre-
sentative one for Twitter sentiment analysis. The discussion on this comparison is pre-
sented in Sect. 6.2.4.

Besides the comparative evaluation of the feature sets, we present an analysis of the cat-
egories of the meta-features introduced in Sect. 4, as well as an assessment study of a sig-
nificant collection of pre-trained embedding models in Sects. 6.2.2 and 6.2.3, respectively.

6.2.1  Effectiveness of n‑gram features

The n-gram features used in the computational experiments reported in this section are 
unigrams, bigrams, and trigrams. We do not explore higher-order n-grams so as to try 
and minimize the negative effect of high dimensionality. Besides, unigrams, bigrams, and 
trigrams are the most adopted n-gram features in the literature of sentiment detection in 
tweets, as previously seen in Table 2.

As a preprocessing step, we used the same strategy as done in Mohammad et al. (2013). 
Each tweet was tokenized and labeled according to their part-of-speech tag, using the Twit-
ter-specific part-of-speech tag set tool (Gimpel et al. 2011). This tag set consists of twenty-
five POS tags, specifically designed for tweets, that takes into account the different aspects 
that tweets have as compared to regular text. Then, for each tweet in a given dataset, we 
replaced URLs by the token “http://someurl” and user mentions by the token “@someuser”. 
Regarding stopwords removal, we discarded stopwords only as unigrams, since it has been 
acknowledged that stopwords can affect the polarity of some expressions in higher-order 
n-grams (Speriosu et al. 2011). Finally, considering that negation words8 (“shouldn’t”, for 
example) can affect the n-gram-based features, we handle negation by employing the same 
approach used by Mohammad et al. (2013). In Mohammad et al. (2013), negated contexts 
change n-gram-based features. Specifically, they add the tag _NEG on each token within 
a negated context. More precisely, in a negated context, Mohammad et al. concatenate the 
tag _NEG to every token between the negation word and the first punctuation mark after 
it. For example, in the sentence “He isn’t a great book writer, but I read his books.”, the 
unigrams “great”, “book”, and “writer” become “great_NEG”, “book_NEG”, and “writer_
NEG”, respectively.

After preprocessing all tweets and extracting the n-gram features, the feature space 
is represented by a binary feature vector indicating whether each n-gram existing in the 
vocabulary occurs in the tweet or not. In that case, the values 0 and 1 represent the absence 
and presence of each n-gram in the tweet, respectively.

Table 7 shows the results of the evaluation of the n-gram features in terms of classifica-
tion accuracy (%), as well as the number of features extracted for each dataset (#features 

8 We used the negation words available at http://senti ment.chris tophe rpott s.net/lings truc.html#negat ion.

http://sentiment.christopherpotts.net/lingstruc.html#negation
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column). The boldfaced values indicate the best results, and the total number of wins for 
each classifier is presented in the #wins row. Also, we compute a ranking to make a fair 
comparison between the results. Precisely, for each dataset, we assign scores from 1.0 to 
3.0 for each tested situation (each column), in ascending order of accuracy, where the score 
1.0 is assigned to the situation with the highest accuracy. Thus, low score values indicate 
better results. Finally, we sum up the assigned scores for each classifier, as shown in the 
rank sums row.

As we can observe in Table 7, the best results were achieved by SVM in 12 out of the 
22 datasets. Indeed, SVM has proven its robustness on large feature spaces in Twitter sen-
timent analysis (Mohammad et al. 2013). The LR classifier achieved comparable perfor-
mance to SVM. Conversely, the worse performance was achieved by the RF classifier. The 
poor performance of RF may be due to the sparse nature of the data, in which most fea-
ture values are zero, increasing the risk of selecting a subset of irrelevant or noisy features 
when splitting the data at an internal node in the tree.

Another point worth highlighting is that the n-gram model does not seem to be a good 
choice for representing tweets from datasets irony and sarcasm. This can be justified by the 
rather small numbers of tweets these datasets contain, that is, 65 and 71, respectively. It 
appears that the n-gram-based features may not be representative enough in the sentiment 
classification of the tweets from these datasets, since classification is performed based on 

Table 7  Accuracies (%) achieved 
by evaluating the n-gram 
features using SVM, LR, and RF 
classifiers, respectively

{SVM,LR} ≻ {RF}

Dataset #features SVM LR RF

Irony 1.8K 66.2 66.2 66.2
Sarcasm 1.8K 50.7 52.1 46.5
Aisopos 6.5K 87.8 87.4 72.7
SemEval-Fig 8.8K 91.0 90.0 85.4
Sentiment140 7.6K 84.1 84.4 83.0
Person 10.0K 79.0 79.5 71.8
Hobbit 8.5K 92.9 93.3 87.5
Iphone6 9.4K 77.6 78.0 77.4
Movie 10.2K 84.1 83.2 82.0
Sanders 23.6K 83.0 81.6 73.1
Narr 24.2K 83.7 82.6 73.7
Archeage 28.2K 86.3 85.9 82.8
SemEval18 42.0K 80.2 79.2 71.9
OMD 32.1K 81.2 82.4 77.5
HCR 40.5K 79.1 79.5 76.7
STS-gold 37.4K 84.0 83.6 74.6
SentiStrength 49.4K 73.2 72.4 64.1
Target-dependent 66.6K 81.4 82.0 78.8
Vader 68.4K 84.8 83.3 75.5
SemEval13 105.0K 81.0 79.9 74.1
SemEval17 127.6K 86.9 87.1 84.5
SemEval16 252.1K 85.8 85.0 74.0
#wins 12 9 0
Rank sums 31.5 34.5 64.5
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the vocabulary extracted from the training set, that is, the n-grams themselves. Finally, the 
Friedman test followed by the Nemenyi post-hoc test detected that both SVM and LR are 
significantly better than RF for this particular type of feature, but there is no significant dif-
ference between them.

6.2.2  Effectiveness of meta‑level features

In this section, we present an assessment study of the meta-features in two parts. First, we 
show and compare the predictive performance of SVM, LR, and RF by using the full set 
of meta-features, in order to isolate the most appropriate one when this type of feature is 
exploited. Then, we evaluate each category of meta-features to identify the most effective 
one in the sentiment classification of tweets.

The meta-features evaluated in this section are those described and categorized in 
Sect. 4 (see Table 3 for details). To determine the polarity of adjectives, nouns, adverbs, 
and verbs, we used the SentiWordNet sentiment lexicon (Baccianella et al. 2010). In addi-
tion, we made use of the internet slang and emoticon lists introduced in  Agarwal et  al. 
(2011) in order to identify such language in the tweets. For abbreviations, we adopted the 
Internet Lingo Dictionary (Wasden 2010), as employed in Kouloumpis et al. (2011).

Table 8  Accuracies (%) achieved 
by evaluating the meta-features 
using SVM, LR, and RF 
classifiers, respectively

{RF} ≻ {SVM,LR}

Dataset SVM LR RF

Irony 76.9 78.5 81.5
Sarcasm 71.8 69.0 80.3
Aisopos 94.2 93.5 92.8
SemEval-Fig 88.5 90.0 90.3
Sentiment140 85.2 85.5 85.0
Person 82.2 82.5 83.6
Hobbit 88.9 89.5 91.6
Iphone6 80.5 81.4 82.5
Movie 85.6 86.5 87.0
Sanders 81.0 80.9 84.8
Narr 89.6 89.5 90.3
Archeage 84.6 85.4 85.4
SemEval18 85.6 85.2 86.0
OMD 78.1 78.2 79.8
HCR 75.8 76.0 77.5
STS-gold 92.2 91.8 93.1
SentiStrength 83.2 83.6 83.3
Target-dependent 83.3 82.9 83.1
Vader 93.3 93.2 93.0
SemEval13 86.4 86.7 86.9
SemEval17 86.4 86.3 86.5
SemEval16 85.6 85.3 85.4
#wins 4 3 16
Rank sums 51.0 49.5 31.5
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The results of the first experiment are reported in Table 8. The RF classifier performed 
significantly better than SVM and LR, achieving the highest accuracies in 16 out of the 
22 datasets. Although RF may not be a good choice on sparse feature spaces, it is robust 
to outliers, noise, and can handle class imbalance (Breiman 2001). Those characteristics 
may have allowed for an improvement in classification accuracy, as compared to SVM and 
LR. In general, SVM and LR achieved comparable performances. However, in spite of LR 
performing slightly better than SVM, as shown in the rank sums row, there is no significant 
difference between the results achieved.

Categories of meta-level features. The second part of the experiments reported in this 
section consists of determining the most predictive categories of meta-features, following 
the categorization proposed in Sect. 4.

Table 9 presents the accuracies achieved by assessing each category of meta-features 
using an RF classifier (MICRO, POS, SUR, EMO, and LEX columns), and their compari-
son with the results achieved by using the set of all meta-features (ALL column). We used 
an RF classifier since it achieved significantly better results than SVM and LR in the previ-
ous experiment. The best overall results are in boldface type, and the best results among 

Table 9  Accuracies (%) achieved 
by evaluating each category 
of meta-features using a RF 
classifier

{LEX} ≻ {MICRO, POS, SUR, EMO}

{POS} ≻ {MICRO, SUR}

Dataset MICRO POS SUR EMO LEX ALL
10 25 15 10 70 130

Irony 64.6 61.5 60.0 66.2 76.9 81.5
Sarcasm 59.2 54.9 47.9 53.5 81.7 80.3
Aisopos 61.2 68.7 54.0 91.4 82.4 92.8
SemEval-Fig 87.5 87.2 83.5 85.0 87.5 90.3
Sentiment140 59.1 49.9 53.5 54.9 84.1 85.0
Person 66.3 69.2 67.4 71.1 83.1 83.6
Hobbit 66.5 74.7 67.4 70.1 91.8 91.6
Iphone6 65.4 77.3 73.1 69.5 82.3 82.5
Movie 80.9 81.6 79.3 82.2 86.6 87.0
Sanders 60.2 68.2 66.3 57.0 83.6 84.8
Narr 62.3 65.5 62.9 62.8 90.0 90.3
Archeage 71.1 75.7 72.0 65.6 84.1 85.4
SemEval18 54.8 59.7 56.4 57.2 85.8 86.0
OMD 62.1 65.2 64.8 63.0 77.6 79.8
HCR 69.9 73.2 69.3 71.9 76.2 77.5
STS-gold 68.0 69.7 66.8 69.1 93.5 93.1
SentiStrength 60.6 60.9 59.0 60.2 82.6 83.3
Target-dependent 52.1 59.4 56.2 51.1 83.0 83.1
Vader 68.7 71.4 66.7 71.0 92.1 93.0
SemEval13 71.7 73.5 70.5 73.8 86.1 86.9
SemEval17 66.0 70.0 67.5 64.4 86.3 86.5
SemEval16 72.6 72.9 70.4 73.1 85.3 85.4
#wins (categories) 1 0 0 1 21 −
Rank sums (categories) 85.5 56.0 92.0 73.0 23.5 −
#wins (overall) 0 0 0 0 3 19
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the categories are underlined. The values immediately below each category name refer to 
the number of features in that particular category.

As we can see in Table  9, the category Lexicon-based (LEX column) achieved the 
best results among all the categories, with the highest number of wins in 21 out of the 22 
datasets. In the overall evaluation, this category outperformed the set of all meta-features 
in three datasets (sarcasm, hobbit, and STS-gold). None of the other categories, namely 
Microblog (MICRO column), Part-of-speech (POS column), Surface (SUR column), and 
Emoticon (EMO column) achieved meaningful results. The Friedman and the Nemenyi 
tests detected that category Lexicon-based is significantly better than all other categories, 
while category Part-of-speech is only better than the categories Microblog and Surface.

Although category Emoticon does not seem to be useful in the sentiment classification 
of tweets, it is worth pointing out that it achieved the best accuracy for the dataset aisopos. 
Analyzing the tweets from this dataset, we note that about 80% of them contain emoticons. 
Since the polarity of emoticons are taken into account in this category’s features, the senti-
ment detection of tweets may benefit from this information. As a matter of fact, analyzing 
the most informative meta-features for this dataset by ranking all of them with the Infor-
mation Gain (IG) relevance measure, four out of the top five most relevant features are 
whether the tweet has negative emoticon, number of negative emoticons, whether the last 
token is negative emoticon, and whether the tweet has positive emoticon, all of them from 
category Emoticon.

Still, regarding the rank generated by the IG measure, the meta-features belonging to 
category Surface appear at the bottom of the rank for most datasets. This is reasonable, 
taking into account that this category achieved the worst performance across all catego-
ries assessed, as shown in Table 9. Interestingly, for datasets irony and OMD, surface fea-
tures referring to punctuation, such as whether the tweet has exclamation mark, number of 
exclamation mark, whether the tweet has question mark, and number of question mark are 
ranked among the top 25 most significant features. This fact is in agreement with recent 
findings on the irony detection task, which acknowledged that punctuation marks are useful 
to identify irony, especially in tweets (Farias and Rosso 2017). Also, it is worth mentioning 
that dataset OMD, whose tweets are related to a political debate, may contain ironic con-
tent due to its nature.

In addition to the individual assessment of each category, we also investigate the reverse 
situation. We analyze how each category of meta-features contributes to the set of all fea-
tures. Table  10 shows the results of this investigation. The Loss column shows the loss 
(or gain) in accuracy when one category is removed, as compared to the set of all meta-
features (ALL column). As we can see in the #gains and #losses rows, removing one cat-
egory at a time from the full set of meta-features is not beneficial, especially considering 
the categories Emoticon and Lexicon-based (losses in 20 and 22 datasets, respectively). In 
general, all gains achieved by removing the meta-features from some category do not seem 
to be significant, except for dataset aisopos, whose accuracy increased by up to 1.1% by 
removing the meta-features from the category Part-of-Speech (ALL−POS column).

6.2.3  Effectiveness of word embedding‑based features

In this section, we present the evaluation of the word embedding-based features. We used 
the ten different pre-trained embedding models summarized in Table 4, aiming at deter-
mining the most discriminative one in distinguishing the sentiment expressed in tweets.
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We adopted Weka’s AffectiveTweets package (Bravo-Marquez et al. 2019) for calculat-
ing the features from the pre-trained word embeddings. More precisely, for each dataset, 
we applied the default configuration of the TweetToEmbeddingFeatureVector filter to create 
a representation for each tweet by aggregating the embedding values of the words. In the 
default configuration of the filter, the aggregation is done by averaging the word vectors. 
Also, as a preprocessing step, we replaced URLs with the token “someurl”, user mentions 
with the token “someuser”, and removed stopwords.

We evaluate the word embedding representations in two steps. Initially, to determine 
which classification strategy is the most suitable for this type of feature, we evaluate the 
predictive performance of SVM, LR, and RF by using the features extracted from each of 
the ten pre-trained word vectors, one at a time, and for each algorithm. For space reasons, 
we only report a summary of the results (refer to Online Resource 1 for the detailed evalu-
ation). Then, after determining the best classification strategy, we compare and analyze the 
predictive power of the features extracted from each pre-trained word vector, to identify the 
most appropriate one for Twitter sentiment analysis.

Table 11 shows a summary of the results achieved by evaluating each strategy (SVM, 
LR, and RF columns) on the 22 datasets, and by using as features those calculated from 

Table 10  Accuracies (%) achieved by evaluating different subsets of meta-features

Dataset ALL ALL-MICRO ALL- POS ALL- SUR ALL- EMO ALL- LEX

Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss

Irony 81.5 75.4 − 6.1 76.9 − 4.6 80.0 − 1.5 76.9 − 4.6 66.2 − 15.3
Sarcasm 80.3 73.2 − 7.1 76.1 − 4.2 78.9 − 1.4 74.6 − 5.7 53.5 − 26.8
Aisopos 92.8 93.5 + 0.7 93.9 + 1.1 93.2 + 0.4 81.7 − 11.1 91.0 − 1.8
SemEval-Fig 90.3 89.7 − 0.6 89.4 − 0.9 90.0 − 0.3 90.0 − 0.3 87.9 − 2.4
Sentiment140 85.0 84.7 − 0.3 83.0 − 2.0 84.4 − 0.6 84.4 − 0.6 63.8 − 21.2
Person 83.6 83.6 −  83.1 − 0.5 82.9 − 0.7 83.4 − 0.2 72.4 − 11.2
Hobbit 91.6 91.8 + 0.2 91.8 + 0.2 92.0 + 0.4 91.0 − 0.6 75.3 − 16.3
Iphone6 82.5 83.3 + 0.8 83.1 + 0.6 82.1 − 0.4 81.8 − 0.7 79.1 − 3.4
Movie 87.0 86.6 − 0.4 86.5 − 0.5 87.0 −  86.6 − 0.4 81.3 − 5.7
Sanders 84.8 84.9 + 0.1 84.2 − 0.6 84.1 − 0.7 83.3 − 1.5 71.5 − 13.3
Narr 90.3 90.4 + 0.1 90.1 − 0.2 90.1 − 0.2 90.1 − 0.2 74.2 − 16.1
Archeage 85.4 84.5 − 0.9 84.9 − 0.5 84.5 − 0.9 84.8 − 0.6 80.0 − 5.4
SemEval18 86.0 85.6 − 0.4 85.7 − 0.3 85.4 − 0.6 85.4 − 0.6 64.2 − 21.8
OMD 79.8 79.2 − 0.6 79.3 − 0.5 78.4 − 1.4 79.3 − 0.5 68.2 − 11.6
HCR 77.5 75.9 − 1.6 77.7 + 0.2 77.1 − 0.4 77.4 − 0.1 73.5 − 4.0
STS-gold 93.1 92.7 − 0.4 92.8 − 0.3 93.2 + 0.1 92.8 − 0.3 71.5 − 21.6
SentiStrength 83.3 82.7 − 0.6 82.9 − 0.4 83.0 − 0.3 82.4 − 0.9 66.1 − 17.2
Target-dependent 83.1 83.1 −  82.8 − 0.3 82.9 − 0.2 82.9 − 0.2 61.6 − 21.5
Vader 93.0 92.7 − 0.3 93.1 + 0.1 93.2 + 0.2 92.1 − 0.9 74.5 − 18.5
SemEval13 86.9 86.9 −  86.9 −  86.6 − 0.3 86.6 − 0.3 75.1 − 11.8
SemEval17 86.5 86.5 −  86.5 −  86.5 −  86.6 + 0.1 72.8 − 13.7
SemEval16 85.4 85.4 −  85.5 + 0.1 85.3 − 0.1 85.7 + 0.3 74.3 − 11.1
#gains −  5 6 4 2 0
#losses −  12 14 16 20 22



1916 J. Carvalho, A. Plastino 

1 3

one embedding model at a time (Embedding column). For each scenario assessed, we pre-
sent the number of wins achieved by each classifier as well as the rank sums, in parenthe-
sis. We also show whether the differences between the results are statistically significant 
(Friedman and Nemenyi post-hoc test columns).

From Table 11, we can observe that LR presented the best results in nine out of the ten 
pre-trained models tested, while SVM performed slightly better merely by using SSWE 
embeddings. Moreover, LR outperformed SVM with a statistical difference between them 
in seven out of the nine wins. Conversely, RF did not achieve meaningful results, with the 
lowest number of wins. Based on this evaluation, we chose LR as the most suitable classi-
fier for the embedding-based features.

Next, we analyze the performance of an LR classifier fed with the embedding-based 
features from each pre-trained model, so as to identify which one is better-suited for the 
tweet polarity detection. The results are presented in Table 12. The number of dimensions 
immediately below each embedding name refers to the number of features calculated from 
each pre-trained model.

As we can see in Table 12, the w2v-Edin model achieved the best performance in eight 
out of the 22 datasets and was ranked first in the overall evaluation (rank position row). 
Although this model did not leverage any sentiment information during its construction, 
as enlightened by its authors in Bravo-Marquez et al. (2016), its training parameters were 
optimized for the emotion detection task on tweets, which may have benefited the senti-
ment classification of tweets. The fastText model had the second best results, followed by 
GloVe-TWT, DeepMoji, and w2v-GN, respectively.

Among the affective embeddings, the SSWE model featured the worse performance, 
which is in agreement with other works (Agarwal et al. 2018; Felbo et al. 2017; Xu et al. 
2018). Surprisingly, the generic embeddings w2v-Edin, fastText, and GloVe-TWT outper-
formed all the affective embeddings (DeepMoji, Emo2Vec, SSWE, and EWE). Although 
unexpected, Agarwal et al. (2018) have reported similar results. One possible reason is the 
number of words embedded in the models, i.e., the vocabulary size of each pre-trained 

Table 11  Overview of the results achieved by evaluating SVM, RF, and LR classifiers on the 22 datasets of 
tweets, and by using as features those calculated from each pre-trained word embedding model

Embedding SVM #wins LR #wins RF #wins Friedman 
statistical test

Nemenyi post-hoc test

w2v-GN 5 (41.5) 19 (26.5) 1 (64.0) ✓ {SVM,LR} ≻ {RF}

GloVe-WP 3 (46.0) 18 (26.0) 1 (60.0) ✓ {LR} ≻ {SVM,RF}

fastText 0 (48.0) 20 (24.0) 2 (60.0) ✓ {LR} ≻ {SVM,RF}

EWE 4 (46.0) 17 (28.0) 1 (58.0) ✓ {LR} ≻ {SVM,RF}

GloVe-TWT 4 (44.5) 20 (25.5) 1 (62.0) ✓ {SVM} ≻ {RF}

{LR} ≻ {SVM,RF}

w2v-Araque 2 (49.0) 18 (26.5) 3 (56.5) ✓ {SVM} ≻ {RF}

{LR} ≻ {SVM,RF}

w2v-Edin 5 (42.5) 19 (26.5) 1 (63.0) ✓ {SVM} ≻ {RF}

{LR} ≻ {SVM,RF}

SSWE 9 (40.5) 5 (45.5) 8 (46.0) ✗ Not applicable
Emo2Vec 11 (39.5) 8 (38.0) 5 (54.5) ✓ {SVM,LR} ≻ {RF}

DeepMoji 5 (42.0) 16 (28.0) 1 (62.0) ✓ {SVM} ≻ {RF}

{LR} ≻ {SVM,RF}
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Table 12  Comparison among the results achieved with each pre-trained embedding model by using an LR 
classifier

Dataset w2v-GN GloVe-WP fastText EWE GloVe-TWT 
300d 300d 300d 300d 200d

Irony 70.8 76.9 73.8 69.2 66.2
Sarcasm 67.6 63.4 64.8 69.0 69.0
Aisopos 90.6 86.3 76.6 73.7 76.6
SemEval-Fig 88.2 86.3 88.2 86.9 87.2
Sentiment140 84.1 85.5 82.5 83.8 83.6
Person 81.3 80.4 83.1 84.1 83.1
Hobbit 91.0 90.4 91.0 92.5 90.0
Iphone6 78.8 77.8 81.2 78.4 82.1
Movie 87.9 87.3 88.2 87.2 86.6
Sanders 80.6 77.4 80.1 79.0 80.6
Narr 88.0 84.9 86.1 84.5 88.6
Archeage 83.1 82.5 83.9 83.5 85.2
SemEval18 79.0 79.2 81.2 79.5 81.4
OMD 81.2 81.9 80.1 78.6 77.2
HCR 78.8 76.0 77.3 76.9 79.0
STS-gold 84.6 83.3 85.3 85.1 85.3
SentiStrength 77.0 75.9 78.2 77.9 78.0
Target-dependent 81.9 80.5 82.5 82.6 83.1
Vader 87.7 87.1 88.5 88.0 87.4
SemEval13 83.1 81.8 83.2 82.5 83.1
SemEval17 86.4 86.6 88.5 87.2 87.7
SemEval16 84.8 85.2 86.2 85.6 86.4
#wins 0 1 1 1 4
Rank sums 122.0 152.5 97.0 129.5 105.5
Rank position 5 9 2 7 3

Dataset w2v-Araque w2v-Edin SSWE Emo2Vec DeepMoji
500d 400d 50d 100d 256d

Irony 69.2 75.4 73.8 76.9 73.8
Sarcasm 70.4 56.3 73.2 62.0 59.2
Aisopos 74.8 92.8 91.7 79.9 94.6
SemEval-Fig 86.0 89.1 87.5 87.5 89.4
Sentiment140 80.2 87.7 84.1 84.7 80.8
Person 78.6 81.3 78.6 79.3 80.4
Hobbit 92.3 92.5 83.1 88.7 92.7
Iphone6 78.4 81.6 74.8 78.8 79.7
Movie 87.0 88.6 88.4 89.3 86.5
Sanders 77.9 82.9 77.8 79.1 82.1
Narr 85.3 89.6 89.5 88.6 89.1
Archeage 83.2 87.0 79.5 81.9 83.5
SemEval18 75.3 82.8 80.8 80.4 80.0
OMD 77.1 83.3 77.2 76.4 75.9
HCR 74.1 78.5 73.6 75.3 75.4
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Table 12  (continued)

Dataset w2v-Araque w2v-Edin SSWE Emo2Vec DeepMoji
500d 400d 50d 100d 256d

STS-gold 86.2 87.5 87.8 85.8 87.8
SentiStrength 76.8 81.2 79.2 85.4 79.9
Target-dependent 81.5 82.5 77.5 81.3 82.0
Vader 86.7 89.3 87.7 87.1 88.6
SemEval13 81.0 83.6 83.2 88.7 83.4
SemEval17 83.1 87.6 80.8 85.3 84.9
SemEval16 82.7 86.4 81.5 84.5 84.3
#wins 0 8 2 4 4
Rank sums 175.5 53.0 138.0 126.5 109.0
Rank position 10 1 8 6 4

{fastText, GloVe-TWT,Deepmoji} ≻ {w2v-Araque}

{w2v-Edin} ≻ {w2v-GN,GloVe-WP, EWE,w2v-Araque, SSWE, Emo2Vec}

Table 13  Coverage analysis (%) of the pre-trained word vectors vocabulary for the five best ranked embed-
dings

Dataset w2v-GN fastText GloVe-TWT w2v-Edin DeepMoji
|V| = 3M |V| = 1M |V| = 1.2M |V| = 259K |V| = 50K

Irony 71.33 (5.0) 78.05 (3.0) 78.23 (2.0) 82.48 (1.0) 75.40 (4.0)
Sarcasm 72.27 (5.0) 76.76 (2.0) 75.98 (3.0) 81.64 (1.0) 74.22 (4.0)
Aisopos 71.12 (5.0) 76.31 (3.0) 77.81 (2.0) 82.67 (1.0) 75.02 (4.0)
SemEval-Fig 70.31 (5.0) 74.24 (4.0) 74.40 (2.0) 81.17 (1.0) 74.34 (3.0)
Sentiment140 75.69 (5.0) 80.80 (2.0) 80.45 (3.0) 86.49 (1.0) 76.92 (4.0)
Person 74.81 (5.0) 81.53 (2.0) 80.66 (3.0) 86.65 (1.0) 77.51 (4.0)
Hobbit 67.33 (5.0) 74.29 (2.0) 73.29 (3.0) 77.27 (1.0) 69.25 (4.0)
Iphone6 63.88 (5.0) 66.29 (3.0) 67.04 (2.0) 73.27 (1.0) 65.16 (4.0)
Movie 80.52 (5.0) 84.25 (3.0) 85.26 (2.0) 91.59 (1.0) 82.36 (4.0)
Sanders 61.77 (5.0) 66.01 (2.0) 65.99 (3.0) 75.04 (1.0) 62.18 (4.0)
Narr 72.76 (5.0) 79.60 (3.0) 81.76 (2.0) 88.43 (1.0) 78.73 (4.0)
Archeage 61.71 (5.0) 70.45 (2.0) 69.12 (3.0) 74.51 (1.0) 63.41 (4.0)
SemEval18 51.99 (5.0) 60.76 (3.0) 61.74 (2.0) 68.15 (1.0) 59.24 (4.0)
OMD 72.15 (5.0) 85.04 (2.0) 82.84 (3.0) 86.95 (1.0) 75.94 (4.0)
HCR 52.13 (5.0) 63.82 (2.0) 62.19 (3.0) 70.26 (1.0) 55.47 (4.0)
STS-gold 63.64 (5.0) 73.36 (3.0) 73.82 (2.0) 79.53 (1.0) 69.30 (4.0)
SentiStrength 54.31 (5.0) 64.04 (3.0) 66.01 (2.0) 71.81 (1.0) 60.50 (4.0)
Target-dependent 65.57 (5.0) 79.81 (3.0) 82.98 (2.0) 84.75 (1.0) 73.85 (4.0)
Vader 66.79 (5.0) 82.07 (3.0) 83.26 (2.0) 88.93 (1.0) 75.32 (4.0)
SemEval13 80.60 (1.0) 62.01 (4.0) 65.58 (3.0) 70.81 (2.0) 57.70 (5.0)
SemEval17 38.13 (5.0) 50.23 (2.0) 49.80 (3.0) 54.19 (1.0) 42.85 (4.0)
SemEval16 38.67 (5.0) 51.92 (3.0) 53.23 (2.0) 57.40 (1.0) 45.52 (4.0)
Rank sums 106.0 59.0 54.0 23.0 88.0
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word vector, as shown in Table 4 ( |V| column). Indeed, the vocabulary sizes of the fastText 
and GloVe-TWT embeddings (1M and 1.2M, respectively) are much larger than the Deep-
Moji, EWE, and SSWE ones (50K, 183K, and 137K, respectively). Although the number 
of words embedded in the Emo2Vec model is as large as in the GloVe-TWT one (1.2M), 
Emo2Vec may have performed poorly considering that it is weak on capturing the syntactic 
and semantic meaning of words, as reported in Agarwal et al. (2018).

Table 13 presents a coverage analysis of the pre-trained models for the five best-ranked 
embeddings (w2v-Edin, fastText, GloVe-TWT, DeepMoji, and w2v-GN, respectively). 
More specifically, for each dataset, we show the fraction of words in the dataset that 
appear in a given pre-trained model. The information below each model name refers to 
their vocabulary size. We also show, in parenthesis, the rank assigned for each model. We 
can observe that the w2v-Edin model, which achieved the best overall accuracies, has the 
highest coverage for all datasets, except for Semeval13. Also, fastText and GloVe-TWT, 
whose vocabulary sizes are much larger than DeepMoji’s, have the second and third high-
est coverage, followed by DeepMoji. The w2v-GN model presents the lowest coverage, 
even though it has the largest vocabulary size (3M). Since this model was trained on a cor-
pus of Google news articles, its predictive power might not have generalized well to short, 
noisy texts, as tweets.

Lastly, the Friedman test detected a significant difference between the results. The 
Nemenyi test showed that the accuracies achieved by the w2v-Edin embeddings are sig-
nificantly better than those by w2v-GN, GloVe-WP, EWE, w2v-Araque, SSWE, and 
Emo2Vec. Furthermore, fastText, GloVe-TWT, and DeepMoji results are significantly bet-
ter than those of w2v-Araque’s, which presented the worst overall performance.

6.2.4  Overall analysis of features

In previous Sects. 6.2.1, 6.2.2, and 6.2.3, we have identified the best classifiers for each 
group of features proposed in state-of-the-art research on Twitter sentiment analysis, i.e., 
n-grams, meta-features, and word embedding-based features. Here, we present an overall 
analysis of these different feature sets. More specifically, we aim at effectively responding 
to research question RQ1 (“Which group of features is the most effective in Twitter senti-
ment analysis?”), by performing a comparison between the following classifiers: RF with 
meta-features, SVM with n-grams, and LR with embedding-based features from the w2v-
Edin model.

Table 14 presents the comparison made between the aforementioned classifiers (meta-
features, n-grams, and w2v-Edin columns). We can see that the RF classifier fed with 
meta-features achieved the highest accuracies in 13 out of the 22 datasets, followed by 
the embedding-based representation provided by w2v-Edin word vectors. In general, the 
n-gram features achieved worse predictive performance. The Friedman test followed by 
the Nemenyi post-hoc test detected a significant difference between the results achieved by 
the meta-features and n-grams classifiers. The Nemenyi test evidenced that the accuracies 
achieved by the meta-features classifier are significantly better than those presented by the 
n-grams approach.

Note that the n-gram features outperformed meta-features and w2v-Edin only for data-
sets SemEval-Fig, hobbit, and HCR. The tweets from SemEval-Fig and HCR are consid-
ered to belong to challenging domains, namely metaphorical language and health cam-
paigns, respectively. For that reason, the n-grams may have succeeded in capturing more 
context from the specific language used in these datasets. Indeed, by analyzing the most 
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relevant amongst all features for dataset HCR, we observed that the unigram “#tcot”, which 
means “top conservatives on Twitter”, appears at the top of the ranking as the most impor-
tant feature. Since this term is very context-sensitive, the n-gram classifier may have ben-
efited from this particular information.

Regarding meta-features, we can observe that applying them on tweets from datasets 
irony and sarcasm led to a significant gain in accuracy as compared to n-grams and embed-
ding-based features. As previously mentioned, ironic and sarcastic tweets usually con-
tain signals, such as punctuation marks, that may help determine the sentiment expressed 
through them.

It is worth mentioning that the number of meta-features is much smaller than the num-
ber of n-grams. As shown in Table 7 (#features column), the number of n-grams varies 
from 1.8 to 252.1 K (datasets irony and SemEval16, respectively), while an increased pre-
dictive performance was achieved by using only a small set of 130 meta-features. Similarly, 
the number of meta-features is smaller than the number of the features extracted from the 
w2v-Edin pre-trained model, i.e., 400 features, as shown in Table 4 ( |D| column).

Another advantage of meta-features over word embedding representations is the fact 
that meta-features can be easily interpreted. For example, by applying relevance measures, 
such as IG, to determine the most predictive meta-features, we are able to determine the 

Table 14  Comparison among the 
best classifiers for each group of 
features

{Meta-features} ≻ {n-grams}

Dataset Meta-features n-grams w2v-Edin
RF SVM LR

Irony 81.5 66.2 75.4
Sarcasm 80.3 50.7 56.3
Aisopos 92.8 87.8 92.8
SemEval-Fig 90.3 91.0 89.1
Sentiment140 85.0 84.1 87.7
Person 83.6 79.0 81.3
Hobbit 91.6 92.9 92.5
Iphone6 82.5 77.6 81.6
Movie 87.0 84.1 88.6
Sanders 84.8 83.0 82.9
Narr 90.3 83.7 89.6
Archeage 85.4 86.3 87.0
SemEval18 86.0 80.2 82.8
OMD 79.8 81.2 83.3
HCR 77.5 79.1 78.5
STS-gold 93.1 84.0 87.5
SentiStrength 83.3 73.2 81.2
Target-dependent 83.1 81.4 82.5
Vader 93.0 84.8 89.3
SemEval13 86.9 81.0 83.6
SemEval17 86.5 86.9 87.6
SemEval16 85.4 85.8 86.4
#wins 13 3 7
Rank sums 37.5 55.0 39.5
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type of information that may be useful in distinguishing the positive tweets from the nega-
tive ones, given some specific domain. On the other hand, the features calculated from pre-
trained embedding models, i.e., real values corresponding to distinct aspects of words, are 
complex to explain.

Also, unlike meta-features, pre-trained embedding models are language-dependent. In 
general, the word vectors are trained on huge text corpora containing documents from the 
same language. Otherwise, it is not possible to capture semantic and syntactic relationships 
between words. Meta-features, in turn, can be employed regardless of language limita-
tions, with the exception of lexicon-based meta-features, which rely on sentiment lexicons 
from specific languages. Nevertheless, it is possible to use lexicons generated for any lan-
guage, if available. With that being said, it is not necessarily a limitation of meta-features. 
In fact,  Sousa et  al. (2018) successfully used a subset of meta-features, which we have 
examined and categorized in our previous work (Carvalho and Plastino 2016), to identify 
relevant tweets in preventing mosquito-borne diseases, such as the Zika virus, in tweets in 
Portuguese. Therefore, meta-features are not only language-independent but can also be 
easily employed in cross-domain problems.

6.3  Answering research questions RQ2 and RQ3

In this section, we explore the combinations of the feature sets evaluated in the previous 
sections. Specifically, we address research questions RQ2 and RQ3, as follows:

RQ2. Can the concatenation of different types of features proposed in the literature 
boost classification performance in Twitter sentiment analysis?

After evaluating the individual performance of each feature set (Sect. 6.2), we examine 
how they complement one another in the polarity detection task on Twitter by using a sim-
ple feature concatenation approach. We address this question in Sect. 6.3.1.

RQ3. Can the sentiment classification of tweets benefit from the use of ensemble clas-
sification strategies having the best classifiers for each type of feature as base learners?

In Sect. 6.3.2, we use and evaluate the best individual classifiers as base learners of two 
distinct ensemble learning strategies, one of which being majority vote, doing so by aver-
aging the probability distributions of base learners, and also via stacking (Wolpert 1992), 
which is a meta-learning technique that uses the probability distributions of base learners 
as meta-features for a new learning problem.

6.3.1  Combining features through feature concatenation (RQ2)

Here, we present the results achieved by combining n-grams, meta-features, and embed-
ding-based features through feature concatenation, i.e., by concatenating each feature 
set into a unique feature vector. We evaluated each possible combination of feature sets 
(n-grams, meta-features, and word embeddings) with one classification algorithm at a time 
(SVM, RF, and LR). For space constraints, we only show the best results for each com-
bined feature vector, as shown in Table 15 (feature concatenation column).

The best results when combining n-grams with any other feature set, that is, meta-fea-
tures or embedding-based features, were achieved by using SVM (fifth and seventh col-
umns). This may be due to the higher number of n-grams, since SVM performed better 
under the individual evaluation of the n-gram features, as seen in Table 7. Regarding the 
combination of meta-features with word embedding features (sixth column), LR outper-
formed SVM and RF. Finally, the combination of all feature sets into one unique feature 
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vector was most benefited by using LR (last column). Indeed, the LR algorithm achieved 
comparable performance to SVM for the n-gram features (Table  7) and the second best 
results in the meta-features evaluation (Table 8). In both assessments, LR was ranked as 
the second best classifier. Therefore, combining all feature vectors may have caused LR to 
excel on SVM and RF.

We can observe that the sentiment classification of tweets benefits from the concatena-
tion of all feature sets, i.e., meta-features + n-grams + w2v-Edin (last column), achieving 
the best overall results in 15 out of the 22 datasets. The second best results were achieved 
by meta-features + n-grams (fifth column), followed by meta-features + w2v-Edin (sixth 
column). The least accurate results were yielded by n-grams + w2v-Edin (seventh column).

Interestingly, concerning the combinations of pairs of feature sets (fifth, sixth and sev-
enth columns), only the concatenation provided by meta-features + n-grams performed sta-
tistically better than all individual classifiers (MF, n-grams, and w2v-Edin columns). This 
may be evidence that combining meta-features with n-grams is beneficial in detecting the 
sentiment expressed in tweets.

It is also noteworthy that the combination of all feature sets is significantly better than all 
individual classifiers and also n-grams + w2v-Edin. On the other hand, the results achieved 
by concatenating all feature sets are not statistically more significant than the meta-features 
+ n-grams and the meta-features + w2v-Edin classifiers. Moreover, the meta-features clas-
sifier (MF column) achieved an overall performance comparable to that of n-grams + w2v-
Edin, as we can see in the rank sums (overall) row (100.0 and 94.0, respectively). These 
results emphasize the predictive power of meta-features and their importance in the context 
of Twitter sentiment analysis.

6.3.2  Combining features via ensemble learning (RQ3)

In this section, we present the predictive performance achieved by combining all individual 
classifiers as base learners of two distinct ensemble strategies. More precisely, we use the 
best individual classifiers for each type of feature, i.e., RF with meta-features, SVM with 
n-grams, and LR with embedding-based features from the w2v-Edin model, as base learn-
ers of two ensemble classification strategies, namely majority vote and stacking (Wolpert 
1992).

An ensemble of classifiers combines the decisions of a set of classifiers according to 
some rule. In the majority voting ensemble, we used the average of probabilities combi-
nation rule, which averages the posterior probability distributions for each class value. 
Thus, the class value with the highest averaged probability is chosen as the final prediction. 
Stacking, or stacked generalization (Wolpert 1992), is an ensemble technique that uses the 
predictions made by the base learners as inputs for a meta-learning task. First, the base 
classifiers, also referred to as level-0 models, are trained on the original feature space, or 
level-0 data, and their predictions are used as new data (level-1 data) for another learning 
problem. Next, in the second stage, a meta-learning algorithm, or level-1 generalizer, is 
trained on the level-1 data to solve this new learning problem (Ting and Witten 1999). In 
this work, we used LR as the level-1 generalizer.

Table 16 summarizes the results. As we can see, both ensemble strategies (ensemble 
column) effectively outperformed all individual classifiers, except for datasets irony and 
sarcasm. This may be due to the poor performance of the n-gram features on both data-
sets (66.2% and 50.7%, respectively). For dataset sarcasm, not only the n-grams performed 
poorly, but also the embedding-based features (56.3%). In general, the stacking technique 



1925On the evaluation and combination of state‑of‑the‑art features…

1 3

(stacking column) achieved the best results in 13 out of the 22 datasets. Notwithstanding, 
the ensemble by the average of probabilities rule (avg. prob. column) achieved a perfor-
mance comparable to that of stacking. Regarding the Friedman and Nemenyi tests, both 
ensemble strategies are statistically better than all individual classifiers, though there is no 
significant difference between them.

As stated by Dietterich (2000), for the predictive performance of an ensemble of clas-
sifiers to be better than its base learners, they must be accurate and diverse, meaning that 
they should make good but different decisions. In this context, we present an analysis of the 
correlation between the predictions made by each classifier comprising the ensembles. Pre-
cisely, we computed the Pearson correlation coefficient between the outputs (predictions) 
of each pair of classifiers. The Pearson coefficient ranges from −1 to +1, where a value less 
(greater) than zero indicates a negative (positive) association between the outputs. In that 
case, for any pair of classifiers, the closer to zero the Pearson coefficient, the more different 
the decisions made by them. Table 17 shows the Pearson correlation matrices for selected 
datasets considering the predictions made by each classifier.

We can note that, in general, the predictions made by the base classifiers are suffi-
ciently uncorrelated, leading to improved predictive performance of the ensemble strate-
gies for most datasets. For example, analyzing the correlation matrix for dataset HCR, we 
see that the correlations between the predictions of each pair of classifiers are sufficiently 
low. Besides, as shown in Table  16, each classifier has achieved competitive accuracies 
for this dataset (77.5, 79.1, and 78.5%). As a result, the predictive performance achieved 
by ensembling them (i.e., 81.5%) effectively surpassed the best individual classifier by up 
to 2.4%. Similarly, for dataset OMD, we can observe that the low correlations between 
the predictions made by the base learners, along with their fair accuracies (79.8, 81.2, and 
83.3%), may lead to improved ensemble performance, i.e., 86.5% for the average prob-
ability ensemble (avg. prob.), and 85.9% for stacking. As compared to the best base model 
(83.3%), this represents a gain in accuracy of up to 3.2 and 2.6%, respectively. We can see 
an analogous effect on datasets person, iphone6, SemEval18, and SemEval13.

Interestingly, for dataset STS-gold, it is evident that although the correlation coefficients 
between meta-features and n-grams, and between n-grams and w2v-Edin base classifiers 
are moderately low (0.6193 and 0.5638, respectively), the n-gram classifier does not seem 
to be as accurate as the meta-features one. More specifically, while the meta-features clas-
sifier achieved a classification accuracy of 93.1%, the n-gram classifier achieved 84.0% 
only. It is possible that, for this reason, the ensemble strategies did not achieve meaningful 
results for dataset STS-gold. As can be observed in Table 16, the accuracy achieved by the 
best ensemble classifier is 93.2% (stacking), which represents a gain of only 0.1% over the 
best base classifier (meta-features).

For dataset hobbit, even though all individual classifiers have achieved very high and 
competitive accuracies (91.6, 92.9, and 92.5%), the correlation coefficients between any 
pair of classifiers are greater than 0.8, which means that their predictions are very simi-
lar to one another. Hence, there is no sufficient diversity among the base classifiers in the 
ensembles. This may have caused the ensemble strategies to achieve rather comparable 
performances to the best individual base learner, i.e., 93.1% (avg. prob.) and 92.7% (stack-
ing), against 92.9% (n-gram classifier), respectively.

In order to illustrate how diversity is relevant when choosing the base learners of 
an ensemble model, we show that the predictive performance of the ensemble can be 
improved if we select different base classifiers by leveraging the Pearson coefficients 
between their predictions. For example, regarding dataset hobbit, Table 18 shows that the 
predictive performance of the ensemble is improved by up to 1.0%, by switching from the 
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w2v-Edin classifier to the fastText one. Indeed, as shown in Table 19, analyzing the corre-
lation coefficients among the base classifiers of this new ensemble model (0.8580, 0.7464, 
and 0.7661), we note that they are lower than the coefficients of the original base models, 
i.e., the meta-features, n-grams, and w2v-Edin classifiers (0.8580, 0.8127, and 0.8796). 
However, though the fastText classifier is less accurate than the w2v-Edin one, it is still a 
good choice as compared to a simple classifier that classifies each instance into the major-
ity class (majority class column).

The result of the previous experiment gives us evidence that selecting the most accu-
rate classifiers as members of an ensemble model does not ensure higher predictive perfor-
mances. To verify this hypothesis, we performed an experiment to test whether the predic-
tive performance of an ensemble improves when replacing the least accurate base classifier 
for a more accurate counterpart. The result is presented in Table 20.

As we can observe in Table 20, regarding dataset SemEval18, switching the least accu-
rate classifier for this dataset (the n-gram classifier) to the fastText one, which is the second 
best embedding-based classifier, the classification accuracy of the stacking ensemble drops 
from 87.3 to 86.6%. Analyzing the correlation coefficients across the base classifiers of this 
new ensemble, as shown in Table 21, we can see that their predictions are much more cor-
related than the predictions of the base classifiers from the original ensemble (i.e., 0.5725, 
0.6847, 0.5371). Lastly, although the n-gram classifier is less accurate than the fastText 
one, it can still be regarded as a good and accurate classifier as compared to the majority 
class one (majority class column).

6.3.3  Comparing combination methods

In this section, we perform a comparison between the combination methods exploited in 
this study, such as feature concatenation and ensemble of classifiers.

Table  22 presents the comparison between the feature concatenation and stacking 
ensemble methods, both of which performed better than the avg. prob. ensemble. We can 
see that the ensemble learning approach outperformed the concatenation of feature vectors 
with an LR classifier in 12 out of the 22 datasets. Nevertheless, the feature concatenation 
technique achieved a comparable performance to the stacking ensemble.

Disregarding datasets irony and sarcasm, for which the best performances were 
achieved by using the RF with meta-features classifier (classification accuracies of 
81.5 and 80.3%, respectively), it appears as though smaller datasets, such as aisopos, 
SemEval-Fig, sentiment140, person, and hobbit, have benefited from the feature con-
catenation approach. On the other hand, larger datasets, such as STS-gold, Target-
dependent, Vader, SemEval13, SemEval17, and SemEval16, achieved higher predic-
tive performances by using the ensemble learning technique.

With regards to the differences between the results achieved by the combination 
methods, the Friedman test did not attest any significant statistical difference.

7  Conclusions and future work

In this article, we presented a thoughtful evaluation of the distinct types of features 
employed in state-of-the-art research on Twitter sentiment analysis. The rich feature space 
exploited in this work includes features extracted from the basic n-gram language model 
to more sophisticated features such as meta-features and word embeddings. Besides the 
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individual evaluation of each feature set, we also investigated the effect of combining them 
through feature concatenation and via ensemble learning strategies, considering that fea-
tures from different sets can complement one another.

The meta-features examined in this work were collected from a wide range of studies in 
the literature of Twitter sentiment analysis. Although these studies have proposed different 
meta-features, we filled the existing gap of aggregating and evaluating the predictive power 
of those meta-features proposed in the literature over the years. Further, as an extension of 
our previous study (Carvalho and Plastino 2016), we categorized this rich set of meta-fea-
tures to examine the effectiveness of different types of meta-features in the discernment of 
positive tweets from negative ones. Moreover, regarding the vast number of publicly avail-
able pre-trained word embeddings, we conducted experiments to identify the most suitable 
ones for detecting the sentiment expressed in tweets.

Based on the experimental results of this study, we can draw the following conclusions:

Table 16  Accuracies (%) achieved by combining different feature sets as base classifiers of an ensemble 
strategy

{ensemble − avg. prob.} ≻ {meta-features, n-grams, w2v-Edin}

{ensemble − stacking} ≻ {meta-features, n-grams, w2v-Edin}

Dataset Meta-features n-grams w2v-Edin Ensemble

Avg. prob. Stacking

RF SVM LR LR

Irony 81.5 66.2 75.4 75.4 76.9
Sarcasm 80.3 50.7 56.3 73.2 78.9
Aisopos 92.8 87.8 92.8 93.5 93.2
SemEval-Fig 90.3 91.0 89.1 91.9 91.9
Sentiment140 85.0 84.1 87.7 90.8 89.4
Person 83.6 79.0 81.3 84.3 85.4
Hobbit 91.6 92.9 92.5 93.1 92.7
Iphone6 82.5 77.6 81.6 83.5 86.1
Movie 87.0 84.1 88.6 87.5 89.8
Sanders 84.8 83.0 82.9 86.8 87.2
Narr 90.3 83.7 89.6 90.5 91.0
Archeage 85.4 86.3 87.0 90.0 89.7
SemEval18 86.0 80.2 82.8 87.4 87.3
OMD 79.8 81.2 83.3 86.5 85.9
HCR 77.5 79.1 78.5 81.5 81.5
STS-gold 93.1 84.0 87.5 91.9 93.2
SentiStrength 83.3 73.2 81.2 83.5 84.2
Target-dependent 83.1 81.4 82.5 85.7 85.7
Vader 93.0 84.8 89.3 93.2 94.2
SemEval13 86.9 81.0 83.6 87.7 88.7
SemEval17 86.5 86.9 87.6 91.1 91.0
SemEval16 85.4 85.8 86.4 88.5 89.1
#wins 2 0 0 10 13
Rank sums 76.5 98.0 82.0 40.0 33.5
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• Regarding the categories of meta-features, we could observe that the features from 
the Lexicon-based category presented themselves to be the most relevant ones. In this 
work, we employed seven different lexicons and word lists. Since each lexicon com-
prises different words, we believe that they can effectively complement one another 
in representing the tweets. Nevertheless, we encourage the use of the set of all meta-
features, as they are able to achieve even further improved results.

• For each feature set studied in this work, we could see that an appropriate choice of a 
supervised learning algorithm can boost classification effectiveness on a large collec-
tion of 22 datasets of tweets. Specifically, for most situations, we showed that n-grams, 
meta-features, and embedding-based features could achieve significantly better results 
when fed to SVM, RF, and LR, respectively.

• We showed that the rich set of meta-features exploited in this study outperformed 
n-grams and word embedding-based features. Nevertheless, the sentiment classification 
of tweets benefits from the combination of all feature sets through feature concatena-
tion. Despite that, we could see that only the combination provided by meta-features 
+ n-grams performed statistically better than all individual classifiers. For that reason, 
we believe that meta-features and n-grams can effectively complement each other in the 
sentiment classification of tweets.

• Finally, we showed that the combination of n-grams, meta-features, and word embed-
ding-based features via an ensemble technique can achieve overall best performances 
than a simple feature concatenation approach. Furthermore, we could see that the clas-
sification effectiveness of an ensemble of classifiers can be improved provided that the 
diversity among them is leveraged.

Table 17  Pearson correlation matrices regarding the predictions made on distinct datasets by using the 
meta-features (RF), n-grams (SVM), and w2v-Edin (LR) classifiers

Person Hobbit iphone6

n-grams w2v-Edin n-grams w2v-Edin n-grams w2v-Edin

Meta-features 0.3817 0.5815 0.8580 0.8127 0.4577 0.5926
n-grams − 0.5233 − 0.8796 − 0.4690

Sanders SemEval18 OMD

n-grams w2v-Edin n-grams w2v-Edin n-grams w2v-Edin

Meta-features 0.5967 0.6614 0.5725 0.6847 0.4479 0.5506
n-grams − 0.6118 − 0.5371 − 0.6204

HCR STS-gold SemEval13

n-grams w2v-Edin n-grams w2v-Edin n-grams w2v-Edin

Meta-features 0.4235 0.4065 0.6193 0.7404 0.4360 0.5951
n-grams − 0.4650 − 0.5638 − 0.3978
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For future work, we plan to investigate more specific types of embedding models, such 
as Tweet2Vec (Vosoughi et al. 2016), which is a method for generating a general-purpose 
representation of tweets, using a character-level neural architecture. We also intend to 
reproduce the experiments conducted in this work on different types of text data, such as 
Facebook and YouTube comments, in order to attest whether the results would carry over 
to those domains.

Table 18  Accuracies (%) achieved by combining different feature sets as base classifiers of an ensemble 
strategy

Major-
ity class

Meta-
features

n-grams w2v-Edin fastText Stacking

▪ ◻ ● ○ ▪ ◻● ▪ ◻○

RF SVM LR LR LR LR

67.8 91.6 92.9 92.5 91.0 92.7 93.7

Table 19  Pearson correlation 
matrix regarding the predictions 
made on the dataset hobbit by 
using the meta-features (RF), 
n-grams (SVM), and fastText 
(LR) classifiers

Meta-features n-grams fastText

Meta-features − 0.8580 0.7464
n-grams − − 0.7661
fastText − − −

Table 20  Accuracies (%) achieved by combining different feature sets as base classifiers of an ensemble 
strategy

Majority 
class

Meta-
features

n-grams w2v-Edin FastText Stacking

▪ ◻ ● ○ ▪ ◻● ▪○

RF SVM LR LR LR LR

53.5 86.0 80.2 82.8 81.2 87.3 86.6

Table 21  Pearson Correlation 
matrix regarding the predictions 
made on the dataset SemEval18 
by using the meta-features (RF), 
w2v-Edin (LR), and fastText 
(LR) classifiers

Meta-features w2v-Edin fastText

Meta-features − 0.6847 0.6397
w2v-Edin − − 0.6796
fastText − − −
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