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Abstract
This paper presents a comprehensive survey on vision-based robotic grasping. We con-
clude three key tasks during vision-based robotic grasping, which are object localization, 
object pose estimation and grasp estimation. In detail, the object localization task contains 
object localization without classification, object detection and object instance segmenta-
tion. This task provides the regions of the target object in the input data. The object pose 
estimation task mainly refers to estimating the 6D object pose and includes correspond-
ence-based methods, template-based methods and voting-based methods, which affords 
the generation of grasp poses for known objects. The grasp estimation task includes 2D 
planar grasp methods and 6DoF grasp methods, where the former is constrained to grasp 
from one direction. These three tasks could accomplish the robotic grasping with different 
combinations. Lots of object pose estimation methods need not object localization, and 
they conduct object localization and object pose estimation jointly. Lots of grasp estima-
tion methods need not object localization and object pose estimation, and they conduct 
grasp estimation in an end-to-end manner. Both traditional methods and latest deep learn-
ing-based methods based on the RGB-D image inputs are reviewed elaborately in this sur-
vey. Related datasets and comparisons between state-of-the-art methods are summarized as 
well. In addition, challenges about vision-based robotic grasping and future directions in 
addressing these challenges are also pointed out.

Keywords  Robotic grasping · Object localization · Object pose estimation · Grasp 
estimation

1  Introduction

An intelligent robot is expected to perceive the environment and interact with it. Among 
the essential abilities, the ability to grasp is fundamental and significant in that it will 
bring enormous power to the society  Sanchez et  al. (2018). For example, industrial 

 *	 Guoguang Du 
	 george.du@cloudminds.com

1	 CloudMinds Technologies Inc., Beijing, China

http://orcid.org/0000-0001-7534-2396
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09888-5&domain=pdf


1678	 G. Du et al.

1 3

robots can accomplish the pick-and-place task which is laborious for human labors, and 
domestic robots are able to provide assistance to disabled or elder people in their daily 
grasping tasks. Endowing robots with the ability to perceive has been a long-standing 
goal in computer vision and robotics discipline.

As much as being highly significant, robotic grasping has long been researched. The 
robotic grasping system Kumra and Kanan (2017) is considered as being composed of 
the following sub-systems: the grasp detection system, the grasp planning system and 
the control system. Among them, the grasp detection system is the key entry point, as 
illustrated in Fig. 1. The grasp planning system and the control system are more relevant 
to the motion and automation discipline, and in this survey, we only concentrate on the 
grasp detection system.

The robotic arm and the end effectors are essential components of the grasp detec-
tion system. Various 5-7 DoF robotic arms are produced to ensure enough flexibilities 
and they are equipped on the base or a human-like robot. Different kinds of end effec-
tors, such as grippers and suction disks, can achieve the object picking task, as shown 
in Fig.  2. The majority of methods paid attentions on parallel grippers  (Mahler et  al. 
2017), which is a relatively simple situation. With the struggle of academia, dexterous 
grippers (Liu et al. 2019; Fan and Tomizuka 2019; Akkaya et al. 2019) are researched to 
accomplish complex grasp tasks. In this paper, we only talk about grippers, since suc-
tion-based end effectors are relatively simple and limited in grasping complex objects. 
In addition, we concentrate on methods using parallel grippers, since this is the most 
widely researched.

Fig. 1   The grasp detection system. (Left) The robotic arm, equipped with one RGB-D camera and one par-
allel gripper, is to grasp the target object placed on a planar work surface. (Right) The grasp detection sys-
tem involves target object localization, object pose estimation, and grasp estimation

Fig. 2   Different kinds of end effectors. (Left)Grippers. (Right)Suction-based end effectors. In this paper, we 
mainly consider parallel grippers
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The essential information to grasp the target object is the 6D gripper pose in the cam-
era coordinate, which contains the 3D gripper position and the 3D gripper orientation to 
execute the grasp. The estimation of 6D gripper poses varies aiming at different grasp man-
ners, which can be divided into the 2D planar grasp and the 6DoF grasp.

2D planar grasp means that the target object lies on a planar workspace and the grasp is 
constrained from one direction. In this case, the height of the gripper is fixed and the grip-
per direction is perpendicular to one plane. Therefore, the essential information is simpli-
fied from 6D to 3D, which are the 2D in-plane position and 1D rotation angle. In earlier 
years when the depth information is not easily captured, the 2D planar grasp is mostly 
researched. The mostly used scenario is to grasp machine components in the factory. The 
grasping contact points are evaluated whether they can afford the force closure Chen and 
Burdick (1993). With the development of deep learning, large number of methods treated 
oriented rectangles as the grasp configuration, which could be beneficial from the mature 
2D detection frameworks. Since then, the capabilities of 2D planar grasp are enlarged 
extremely and the target objects to be grasped are extended from known objects to novel 
objects. Large amounts of methods by evaluating the oriented rectangles (Jiang et al. 2011; 
Lenz et al. 2015; Pinto and Gupta 2016; Mahler et al. 2017; Park and Chun 2018; Redmon 
and Angelova 2015; Zhang et  al. 2017; Kumra and Kanan 2017; Chu et  al. 2018; Park 
et al. 2018; Zhou et al. 2018) are proposed. Besides, some deep learning-based methods of 
evaluating grasp contact points (Zeng et al. 2018; Cai et al. 2019; Morrison et al. 2018) are 
also proposed in recent years.

6DoF grasp means that the gripper can grasp the object from various angles in the 3D 
space, and the essential 6D gripper pose could not be simplified. In early years, analytical 
methods were utilized to analyze the geometric structure of the 3D data, and the points 
suitable to grasp were found according to force closure.  Sahbani et al. (2012) presented an 
overview of 3D object grasping algorithms, where most of them deal with complete shapes. 
With the development of sensor devices, such as Microsoft Kinect, Intel RealSense, etc, 
researchers can obtain the depth information of the target objects easily and modern grasp 
systems are equipped with RGB-D sensors, as shown in Fig. 3. The depth image can be 
easily lifted into 3D point cloud with the camera intrinsic parameters and the depth image-
based 6DoF grasp becomes the hot research areas. Among 6DoF grasp methods, most of 
them aim at known objects where the grasps could be precomputed, and the problem is 
thus transformed into a 6D object pose estimation problem (Wang et al. 2019; Zhu et al. 
2020; Yu et al. 2020; He et al. 2020). With the development of deep learning, lots of meth-
ods (ten Pas et al. 2017; Liang et al. 2019; Mousavian et al. 2019; Qin et al. 2020; Zhao 
and Nanning 2020) illustrated powerful capabilities in dealing with novel objects.

Both 2D planar grasp and 6DoF grasp contain common tasks which are object localiza-
tion, object pose estimation and grasp estimation.

Fig. 3   A RGB-D image. The depth image is transformed into 3D point cloud
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In order to compute the 6D gripper pose, the first thing to do is to locate the target 
object. Aiming at object localization, there exist three different situations, which are object 
localization without classification, object detection and object instance segmentation. 
Object localization without classification means obtaining the regions of the target object 
without classifying its category. There exist cases that the target object could be grasped 
without knowing its category. Object detection means detecting the regions of the target 
object and classifying its category. This affords the grasping of specific objects among 
multiple candidate objects. Object instance segmentation refers to detecting the pixel-level 
or point-level instance objects of a certain class. This provides delicate information for 
pose estimation and grasp estimation. Early methods assume that the object to grasp is 
placed in a clean environment with simple background and thus simplifies the object local-
ization task, while in relatively complex environments their capabilities are quite limited. 
Traditional object detection methods utilized machine learning methods to train classifiers 
based on hand-crafted 2D descriptors. However, these classifiers show limited performance 
since the limitations of hand-crafted descriptors. With the deep learning, the 2D detection 
and 2D instance segmentation capabilities improves a lot, which affords object detection in 
more complex environments.

Most of the current robotic grasping methods aim at known objects, and estimating the 
object pose is the most accurate and simplest way to a successful grasp. There exist vari-
ous methods in computing the 6D object poses, which varies from 2D inputs to 3D inputs, 
from traditional methods to deep learning methods, from textured objects to textureless or 
occluded objects. In this paper, we categorize these methods into correspondence-based 
methods, template-based methods and voting-based methods, where only feature points, 
the whole input and each meta unit are involved in computing the 6D object pose. Early 
methods tackled this problem in 3D domain by conducting partial registration. With the 
development of deep learning, methods using RGB image only can provide relatively high 
accurate 6D object poses, which highly improves the grasp capabilities.

Grasp estimation is conducted when we have the localized target object. Aiming at 2D 
planar grasp, the methods are divided into methods of evaluating the grasp contact points 
and methods of evaluating the oriented rectangles. Aiming at 6DoF grasp, the methods are 
categorized into methods based on the partial point cloud and methods based on the com-
plete shape. Methods based on the partial point cloud mean that we do not have the identi-
cal 3D model of the target object. In this case, two kinds of methods exist which are meth-
ods of estimating grasp qualities of candidate grasps and methods of transferring grasps 
from existing ones. Methods based on complete shape means that the grasp estimation is 
conducted on a complete shape. When the target object is known, the 6D object pose could 
be computed. When the target shape is unknown, it can be reconstructed from single-view 
point clouds, and grasp estimation could be conducted on the reconstructed complete 3D 
shape. With the joint development of the above aspects, the kinds of objects that could be 
grasped, the robustness of the grasp and the affordable complexity of the grasp scenario all 
have improved a lot, which affords many more applications in industrial as well as domes-
tic applications.

Aiming at these tasks mentioned above, there have been some works  (Sahbani et  al. 
2012; Bohg et al. 2014; Caldera et  al. 2018) concentrating on one or a few tasks, while 
there is still lack of a comprehensive introduction on these tasks. These tasks are reviewed 
elaborately in this paper, and a taxonomy of these tasks is shown in Fig. 4. To the best of 
our knowledge, this is the first review that broadly summarizes the progress and prom-
ises new directions in vision-based robotic grasping. We believe that this contribution will 
serve as an insightful reference to the robotic community.
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The remainder of the paper is arranged as follows. Section 2 reviews the methods for 
object localization. Section 3 reviews the methods for 6D object pose estimation. Section 4 
reviews the methods for grasp estimation. The related datasets, evaluation metrics and 
comparisons are also reviewed in each section. Finally, challenges and future directions are 
summarized in Sect. 5.

2 � Object localization

Most of the robotic grasping approaches require the target object’s location in the input 
data first. This involves three different situations: object localization without classification, 
object detection and object instance segmentation. Object localization without classifica-
tion only outputs the potential regions of the target objects without knowing their catego-
ries. Object detection provides bounding boxes of the target objects as well as their catego-
ries. Object instance segmentation further provides the pixel-level or point-level regions of 
the target objects along with their categories.

2.1 � Object localization without classification

In this situation, the task is to find potential locations of the target object without knowing 
the category of the target object. There exist two cases: if you known the concrete shapes 
of the target object, you can fit primitives to obtain the locations. If you can not ensure the 
shapes of the target object, salient object detection(SOD) could be conducted to find the 
salient regions of the target object. Based on 2D or 3D inputs, the methods are summarized 
in Table 1.

2.1.1 � 2D localization without classification

This kind of methods deal with 2D image inputs, which are usually RGB images. Accord-
ing to whether the object’s contour shape is known or not, methods can be divided into 
methods of fitting shape primitives and methods of salient object detection. Typical func-
tional flow-chart of 2D object localization without classification is illustrated in Fig. 5.

Fig. 4   A taxonomy of tasks in vision-based robotic grasp detection system
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Table 1   Methods of object localization without classification

Methods Fitting shape primitives Salient object detection

2D localization Fitting ellipse Fitzgibbon and Fisher 
(1996), Fitting polygons Douglas and 
Peucker (1973)

 Jiang et al. (2013),  Zhu 
et al. (2014),  Peng et al. 
(2016),  Cheng et al. 
(2014),  Wei et al. (2012),  Shi 
et al. (2015),  Yang 
et al. (2013),  Wang 
et al. (2016),  Guo et al. 
(2017),  Zhao et al. 
(2015),  Zhang et al. (2016), 
DHSNet Liu and Han 
(2016),  Hou et al. (2017), 
PICANet Liu et al. (2018),  Liu 
et al. (2019),  Qi et al. (2019)

3D localization  Rabbani and Van Den Heuvel 
(2005),  Rusu et al. (2009),  Goron 
et al. (2012),  Jiang and Xiao 
(2013),  Khan et al. (2015),  Zapata-
Impata et al. (2019)

 Peng et al. (2014),  Ren 
et al. (2015),  Qu et al. 
(2017),  Han et al. 
(2018),  Chen et al. (2019); 
Chen and Li (2019),  Chen 
and Li (2018),  Piao 
et al. (2019),  Kim et al. 
(2008),  Bhatia and Chalup 
(2013),  Pang et al. (2020)

Fig. 5   Typical functional flow-chart of 2D object localization without classification
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Fitting 2D shape primitives The shape of the target object could be an eclipse, a 
polygon or a rectangle, and these shapes could be regarded as shape primitives. Through 
fitting methods, the target object could be located. General procedures of this kind of 
methods usually contain enclosed contour extraction and primitive fitting. There exist 
many algorithms integrated in OpenCV Bradski and Kaehler (2008) for primitives fit-
ting, such as fitting ellipse Fitzgibbon and Fisher (1996) and fitting polygons Douglas 
and Peucker (1973). This kind of methods are usually used in 2D planar robotic grasp-
ing tasks, where the object are viewed from a fixed angle, and the target object are con-
strained with some known shapes.

2D salient object detection Compared with shape primitives, salient object regions 
could be represented in arbitrary shapes. 2D salient object detection(SOD) aims to 
locate and segment the most visually distinctive object regions in a given image, which 
is more like a segmentation task without object classification. Non-deep learning SOD 
methods exploit low-level feature representations  (Jiang et  al. 2013; Zhu et  al. 2014; 
Peng et al. 2016) or rely on certain heuristics such as color contrast Cheng et al. (2014), 
background prior Wei et al. (2012). Some other methods conduct an over-segmentation 
process that generates regions Shi et  al. (2015), super-pixels  (Yang et  al. 2013; Wang 
et al. 2016), or object proposals Guo et al. (2017) to assist the above methods.

Deep learning-based SOD methods have shown superior performance over tradi-
tional solutions since 2015. Generally, they can be divided into three main categories, 
which are Multi-Layer Perceptron (MLP)-based methods, Fully Convolutional Net-
work (FCN)-based methods and Capsule-based methods. MLP-based methods typi-
cally extract deep features for each processing unit of an image to train an MLP-clas-
sifier for saliency score prediction.  Zhao et al. (2015) proposed a unified multi-context 
deep learning framework which involves global context and local context, which are 
fed into an MLP for foreground/background classification to model saliency of objects 
in images.  Zhang et  al. (2016) proposed a salient object detection system which out-
puts compact detection windows for unconstrained images, and a maximum a posteriori 
(MAP)-based subset optimization formulation for filtering bounding box proposals. The 
MLP-based SOD methods cannot capture well critical spatial information and are time-
consuming. Inspired by Fully Convolutional Network (FCN) Long et al. (2015), lots of 
methods directly output whole saliency maps.  Liu and Han (2016) proposed an end-
to-end saliency detection model called DHSNet, which can simultaneously refine the 
coarse saliency map.  Hou et al. (2017) introduced short connections to the skip-layer 
structures, which provides rich multi-scale feature maps at each layer.  Liu et al. (2018) 
proposed a pixel-wise contextual attention network called PiCANet, which generates an 
attention map for each pixel and each attention weight corresponds to the contextual rel-
evance at each context location. With the raise of Capsule Network (Hinton et al. 2011; 
Sabour et al. 2017, 2018), some capsule-based methods are proposed.  Liu et al. (2019) 
incorporated the part-object relationships in salient object detection, which is imple-
mented by the Capsule Network.  Qi et al. (2019) proposed CapSalNet, which includes 
a multi-scale capsule attention module and multi-crossed layer connections for salient 
object detection. Readers could refer to some surveys  (Borji et  al. 2019; Wang et  al. 
2019) for comprehensive understandings of 2D salient object detection.

Discussions The 2D object localization without classification are widely used in robotic 
grasping tasks but in a junior level. During industrial scenarios, the mechanical compo-
nents are usually with fixed shapes, and many of them could be localized through fitting 
shape primitives. In some other grasping scenarios, the background priors or color contract 
is utilized to obtain the salient object for grasping. In Dexnet 2.0  Mahler et  al. (2017), 
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the target objects are laid on a workspace with green color, and they are easily segmented 
using color background subtraction.

2.1.2 � 3D localization without classification

This kind of methods deal with 3D point cloud inputs, which are usually partial point 
clouds reconstructed from single-view depth images in robotic grasping tasks. Accord-
ing to whether the object’s 3D shape is known or not, methods can also be divided into 
methods of fitting 3D shape primitives and methods of salient 3D object detection. Typical 
functional flow-chart of 3D object localization without classification is illustrated in Fig. 6.

Fitting 3D shape primitives The shape of the target object could be a sphere, a cylin-
der or a box, and these shapes could be regarded as 3D shape primitives. There exist lots 
of methods aiming at fitting 3D shape primitives, such as RANdom SAmple Consensus 
(RANSAC) Fischler and Bolles (1981)-based methods, Hough-like voting methods Rab-
bani and Van Den Heuvel (2005) and other clustering techniques (Rusu et al. 2009; Goron 
et al. 2012). These methods deal with different kinds of inputs and have been applied in 
areas like modeling, rendering and animation. Aiming at object localization and robotic 
grasping tasks, the input data is a partial point cloud, where the object is incomplete, and 
the ambition is to find the points that can constitute one of the 3D shape primitives. Some 
methods (Jiang and Xiao 2013; Khan et al. 2015) detect planes at object boundaries and 
assemble them.  Jiang and Xiao (2013) and  Khan et al. (2015) explored the 3D structures 
in an indoor scene and estimated their geometry using cuboids.  Rabbani and Van Den Heu-
vel (2005) presented an efficient Hough transform for automatic detection of cylinders in 

Fig. 6   Typical functional flow-chart of 3D object localization without classification
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point clouds. Some methods (Rusu et al. 2009; Goron et al. 2012) conduct primitive fitting 
after segmenting the scene.  Rusu et al. (2009) used a combination of robust shape primi-
tive models with triangular meshes to create a hybrid shape-surface representation optimal 
for robotic grasping.  Goron et al. (2012) presented a method to locate the best parameters 
for cylindrical and box-like objects in a cluttered scene. They increased the robustness of 
RANSAC fits when dealing with clutter through employing a set of inlier filters and the use 
of Hough voting. They provided robust results and models that are relevant for grasp esti-
mation. Readers could refer to the survey Kaiser et al. (2019) for more details.

3D salient object detection Compared with 2D salient object detection, 3D sali-
ent object detection consumes many kinds of 3D data, such as depth image and point 
cloud. Although above 2D salient object detection methods have achieved superior 
performance, they still remain challenging in some complex scenarios, where depth 
information could provide much assistance. RGB-D saliency detection methods usu-
ally utilize hand-crafted or deep learning-based features from RGB-D images and fuse 
them in different ways.   Peng et  al. (2014) proposed a simple fusion strategy which 
extends RGB-based saliency models by incorporating depth-induced saliency.   Ren 
et al. (2015) exploited the normalized depth prior and the global-context surface orien-
tation prior for salient object detection.  Qu et al. (2017) trained a CNN-based model 
which fuses different low level saliency cues into hierarchical features for detecting 
salient objects in RGB-D images. Chen et  al.  (Chen et  al. 2019; Chen and Li 2019) 
utilized two-stream CNNs-based models with different fusion structures.   Chen and 
Li (2018) further proposed a progressively complementarity-aware fusion network for 
RGB-D salient object detection, which is more effective than early-fusion methods Hou 
et al. (2017) and late-fusion methods Han et al. (2018).  Piao et al. (2019) proposed a 
depth-induced multi-scale recurrent attention network (DMRANet) for saliency detec-
tion, which achieves dramatic performance especially in complex scenarios.   Pang 
et al. (2020) proposed a hierarchical dynamic filtering network (HDFNet) and a hybrid 
enhanced loss.  Li et al. (2020) proposed a Cross-Modal Weighting (CMW) strategy to 
encourage comprehensive interactions between RGB and depth channels. These meth-
ods demonstrate remarkable performance of RGB-D SOD.

Aiming at 3D point cloud input, lots of methods are proposed to detect saliency 
maps of a complete object model  Zheng et  al. (2019), whereas, our ambitious is to 
locate the salient object from the 3D scene inputs.  Kim et al. (2008) described a seg-
mentation method for extracting salient regions in outdoor scenes using both 3D point 
clouds and RGB image.  Bhatia and Chalup (2013) proposed a top-down approach for 
extracting salient objects/regions in 3d point clouds of indoor scenes.They first seg-
regates significant planar regions, and extracts isolated objects present in the residual 
point cloud. Each object is then ranked for saliency based on higher curvature com-
plexity of the silhouette.

Discussions 3D object localization is widely used in robotic grasping tasks but also 
in a junior level. In  Rusu et al. (2009) and Goron et al. (2012), fitting 3D shape primi-
tives has been successfully applied into robotic grasping tasks. In  Zapata-Impata et al. 
(2019), the background is first filtered out using the height constraint, and the table is 
filtered out by fitting a plane using RANSAC Fischler and Bolles (1981). The remained 
point cloud is clustered and K object’s clouds are achieved finally. There also exist 
some other ways to remove the background points through fitting background points 
using existing full 3D point cloud. These methods are successfully applied into robotic 
grasping tasks.
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2.2 � Object detection

The task of object detection is to detect instances of objects of a certain class, which can 
be treated as a localization task plus a classification task. Usually, the shapes of the tar-
get objects are unknown, and accurate salient regions are hardly achieved. Therefore, the 
regularly bounding boxes are used for general object localization and classification tasks, 
and the outputs of object detection are bounding boxes with class labels. Based on whether 
using region proposals or not, the methods can be divided into two-stage methods and one-
stage methods. These methods are summarized respectively in Table 2 aiming at 2D or 3D 
inputs.

2.2.1 � 2D object detection

2D object detection means detecting the target objects in 2D images by computing their 2D 
bounding boxes and categories. The most popular way of 2D detection is to generate object 
proposals and conduct classification, which is the two-stage methods. With the develop-
ment of deep learning networks, especially Convolutional Neural Network (CNN), two-
stage methods are improved extremely. In addition, large number of one-stage methods are 

Table 2   Methods of object detection

Methods Two-stage methods One-stage methods

2D detection SIFT Lowe (1999), FAST Rosten and 
Drummond (2005), SURF Bay et al. 
(2006), ORB Rublee et al. (2011), Over-
Feat Sermanet et al. (2013),  Erhan et al. 
(2014),  Szegedy et al. (2014), RCNN Gir-
shick et al. (2014), Fast R-CNN Girshick 
(2015), Faster RCNN Ren et al. (2015), 
R-FCN Dai et al. (2016), FPN Lin et al. 
(2017)

YOLO Redmon et al. (2016), 
SSD Liu et al. (2016), 
YOLOv2 Redmon and Farhadi 
(2017), RetinaNet Lin et al. 
(2017), YOLOv3 Redmon and 
Farhadi (2018), FCOS Tian et al. 
(2019), CornerNet Law and 
Deng (2018), ExtremeNet Zhou 
et al. (2019), CenterNet Zhou 
et al. (2019); Duan et al. (2019), 
CentripetalNet Dong et al. 
(2020), YOLOv4 Bochkovskiy 
et al. (2020)

3D detection Spin Images Johnson (1997), 3D Shape 
Context Frome et al. (2004), FPFH Rusu 
et al. (2009), CVFH Aldoma et al. 
(2011), SHOT Salti et al. (2014), Sliding 
Shapes Song and Xiao (2014), Frustum 
PointNets Qi et al. (2018), PointFusion Xu 
et al. (2018), FrustumConvNet Wang and 
Jia (2019), Deep Sliding Shapes Song 
and Xiao (2016), MV3D Chen et al. 
(2017), MMF Liang et al. (2019), Part-
A

2 Shi et al. (2020), PV-RCNN Shi et al. 
(2020), PointRCNN Shi et al. (2019), 
STD Yang et al. (2019), VoteNet Qi 
et al. (2019), MLCVNet Xie et al. 
(2020), H3DNet Zhang et al. (2020), 
ImVoteNet Qi et al. (2020)

VoxelNet Zhou and Tuzel 
(2018), SECOND Yan et al. 
(2018), PointPillars Lang 
et al. (2019), TANet Liu et al. 
(2020), HVNet Ye et al. (2020), 
3DSSD Yang et al. (2020), Point-
GNN Shi and Rajkumar (2020), 
DOPS Najibi et al. (2020), 
Associate-3Ddet Du et al. (2020)
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proposed which achieved high accuracies with high speed. Typical functional flow-chart of 
2D object detection is illustrated in Fig. 7.

Two-stage methods The two-stage methods can be referred as region proposal-based 
methods. Most of the traditional methods utilize the sliding window strategy to obtain 
the bounding boxes first, and then utilize feature descriptions of the bounding boxes for 
classification. Large number of hand-crafted global descriptors and local descriptors are 
proposed, such as SIFT Lowe (1999), FAST Rosten and Drummond (2005), SURF Bay 
et al. (2006), ORB Rublee et al. (2011), and so on. Based on these descriptors, researchers 
trained classifiers, such as neural networks, Support Vector Machine (SVM) or Adaboost, 
to conduct 2D detection. There exist some disadvantages of traditional detection methods. 
For example, the sliding windows should be predefined for specific objects, and the hand-
crafted features are not representative enough for a strong classifier.

With the development of deep learning, region proposals could be computed with a 
deep neural network. OverFeat Sermanet et  al. (2013) trained a fully connected layer to 
predict the box coordinates for the localization task that assumes a single object.  Erhan 
et al. (2014) and  Szegedy et al. (2014) generated region proposals from a network whose 
last fully connected layer simultaneously predicts multiple boxes. Besides, deep neural net-
works extract more representative features than hand-crafted features, and training clas-
sifiers using CNN  Krizhevsky et  al. (2012) features highly improved the performance. 
R-CNN Girshick et al. (2014) uses Selective Search (SS) Uijlings et al. (2013) methods to 
generate region proposals, uses CNN to extract features and trains classifiers using SVM. 
This traditional classifier is replaced by directly regressing the bounding boxes using the 
Region of Interest (ROI) feature vector in Fast R-CNN Girshick (2015). Faster R-CNN Ren 
et al. (2015) is further proposed by replacing SS with the Region Proposal Network (RPN), 

Fig. 7   Typical functional flow-chart of 2D object detection
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which is a kind of fully convolutional network (FCN) Long et al. (2015) and can be trained 
end-to-end specifically for the task of generating detection proposals. This design is also 
adopted in other two-stage methods, such as R-FCN  Dai et  al. (2016), FPN  Lin et  al. 
(2017). Generally, two-stage methods achieve a higher accuracy, whereas need more com-
puting resources or computing time.

One-stage methods The one-stage methods can also be referred as regression-based 
methods. Compared to two-stage approaches, the single-stage pipeline skips separate 
object proposal generation and predicts bounding boxes and class scores in one evaluation. 
YOLO Redmon et al. (2016) conducts joint grid regression, which simultaneously predicts 
multiple bounding boxes and class probabilities for those boxes. YOLO is not suitable 
for small objects, since it only regress two bounding boxes for each grid. SSD Liu et al. 
(2016) predicts category scores and box offsets for a fixed set of anchor boxes produced 
by the sliding window. Compared with YOLO, SSD is faster and much more accurate. 
YOLOv2 Redmon and Farhadi (2017) also adopts sliding window anchors for classification 
and spatial location prediction so as to achieve a higher recall than YOLO. RetinaNet Lin 
et al. (2017) proposed the focal loss function by reshaping the standard cross entropy loss 
so that detector will put more focus on hard, misclassified examples during training. Reti-
naNet achieved comparable accuracy of two-stage detectors with high detection speed. 
Compare with YOLOv2, YOLOv3 Redmon and Farhadi (2018) and YOLOv4 Bochkovs-
kiy et al. (2020) are further improved with a bunch of improvements, which shows large 
performance improvements without sacrificing the speed, and is more robust in deal-
ing with small objects. There also exist some anchor-free methods, which doesn’t utilize 
the anchor bounding boxes, such as FCOS Tian et al. (2019), CornerNet Law and Deng 
(2018), ExtremeNet Zhou et al. (2019), CenterNet Zhou et al. (2019); Duan et al. (2019) 
and CentripetalNet Dong et al. (2020). Further reviews of these works can refer to recent 
surveys (Zou et al. 2019; Zhao et al. 2019; Liu et al. 2020; Sultana et al. 2020).

Discussions The 2D object detection methods are widely used in 2D planar robotic 
grasping tasks. This part can refer to Sect. 4.1.2.

2.2.2 � 3D object detection

3D object detection aims at finding the amodel 3D bounding box of the target object, which 
means finding the 3D bounding box that a complete target object occupies. 3D object 
detection is deeply explored in outdoor scenes and indoor scenes. Aiming at robotic grasp-
ing tasks, we can obtain the 2D and 3D information of the scene through RGB-D data, 
and general 3D object detection methods could be used. Similar with 2D object detection 
tasks, two-stage methods and one-stage methods both exist. The two-stage methods refer to 
region proposal-based methods and one-stage methods refer to regression-based methods. 
Typical functional flow-chart of 3D object detection is illustrated in Fig. 8.

Two-stage methods Traditional 3D detection methods usually aim at objects with 
known shapes. The 3D object detection problem is transformed into a detection and 6D 
object pose estimation problem. Many hand-crafted 3D shape descriptors, such as Spin 
Images Johnson (1997), 3D Shape Context Frome et al. (2004), FPFH Rusu et al. (2009), 
CVFH Aldoma et al. (2011), SHOT Salti et al. (2014), are proposed, which can locate the 
object proposals. In addition, the accurate 6D pose of the target object could be achieved 
through local registration. This part is introduced in Sect. 3.1.2. However, these methods 
face difficulties in general 3D object detection tasks. Aiming at general 3D object detec-
tion tasks, the 3D region proposals are widely used. Traditional methods train classifiers, 
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such as SVM, based on the 3D shape descriptors. Sliding Shapes Song and Xiao (2014) is 
proposed which slides a 3D detection window in 3D space and extract features from the 
3D point cloud to train an Exemplar-SVM classifier Malisiewicz et  al. (2011). With the 
development of deep learning, the 3D region proposals could be generated efficiently, and 
the 3D bounding boxes could be regressed using features from deep neural networks rather 
than training traditional classifiers. There exist various methods of generating 3D object 
proposals, which can be roughly divided into three kinds, which are frustum-based meth-
ods  (Qi et  al. 2018; Xu et  al. 2018; Wang and Jia 2019), global regression-based meth-
ods (Song and Xiao 2016; Chen et al. 2017; Liang et al. 2019) and local regression-based 
methods.

Frustum-based methods generate object proposals using mature 2D object detectors, 
which is a straightforward way. Frustum PointNets Qi et al. (2018) leverages a 2D CNN 
object detector to obtain 2D regions, and the lifted frustum-like 3D point clouds become 
3D region proposals. The amodel 3D bounding boxes are regressed from features of the 
segmented points within the proposals based on PointNet Qi et al. (2017). PointFusion Xu 
et al. (2018) utilized Faster R-CNN Ren et al. (2015) to obtain the image crop first, and 
deep features from the corresponding image and the raw point cloud are densely fused to 
regress the 3D bounding boxes. FrustumConvNet Wang and Jia (2019) also utilizes the 3D 
region proposals lifted from the 2D region proposal and generates a sequence of frustums 
for each region proposal.

Global regression-based methods generate 3D region proposals from feature representa-
tions extracted from single or multiple inputs. Deep Sliding Shapes Song and Xiao (2016) 
proposed the first 3D Region Proposal Network (RPN) using 3D convolutional neural net-
works (ConvNets) and the first joint Object Recognition Network (ORN) to extract geo-
metric features in 3D and color features in 2D to regress 3D bounding boxes. MV3D Chen 
et  al. (2017) represents the point cloud using the bird’s-eye view and employs 2D con-
volutions to generate 3D proposals. The region-wise features obtained via ROI pooling 
for multi-view data are fused to jointly predict the 3D bounding boxes. MMF Liang et al. 

Fig. 8   Typical functional flow-chart of 3D object detection
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(2019) proposed a multi-task multi-sensor fusion model for 2D and 3D object detection, 
which generates a small number of high-quality 3D detections using multi-sensor fused 
features, and applies ROI feature fusion to regress more accurate 2D and 3D boxes. Part-
A

2 Shi et al. (2020) predicts intra-object part locations and generates 3D proposals by feed-
ing the point cloud to an encoder-decoder network. A RoI-aware point cloud pooling is 
proposed to aggregate the part information from each 3D proposal, and a part-aggregation 
network is proposed to refine the results. PV-RCNN Shi et al. (2020) utilized voxel CNN 
with 3D sparse convolution (Graham and van der Maaten 2017; Graham et al. 2018) for 
feature encoding and proposals generation, and proposed a voxel-to-keypoint scene encod-
ing via voxel set abstraction and a keypoint-to-grid RoI feature abstraction for proposal 
refinement. PV-RCNN achieved remarkable 3D detection performance on outdoor scene 
datasets.

Local regression-based methods mean generating point-wise 3D region proposals. Poin-
tRCNN  Shi et  al. (2019) extracts point-wise feature vectors from the input point cloud 
and generates 3D proposal from each foreground point computed through segmentation. 
Point cloud region pooling and canonical 3D bounding box refinement are then conducted. 
STD  Yang et  al. (2019) designs spherical anchors and a strategy in assigning labels to 
anchors to generate accurate point-based proposals, and a PointsPool layer is proposed to 
generate dense proposal features for the final box prediction. VoteNet Qi et al. (2019) pro-
posed a deep hough voting strategy to generate 3D vote points from sampled 3D seeds 
points. The 3D vote points are clustered to obtain object proposals which will be further 
refined. MLCVNet Xie et al. (2020) proposed Multi-level Context VoteNet which consid-
ers the contextual information between the objects. H3DNet Zhang et al. (2020) predicts a 
hybrid set of geometric primitives such as centers, face centers and edge centers of the 3d 
bounding boxes, and formulates 3D object detection as regressing and aggregating these 
geometric primitives. A matching and refinement module is then utilized to classify object 
proposals and fine-tune the results. Compared with point cloud input-only VoteNet  Qi 
et al. (2019), ImVoteNet Qi et al. (2020) additionally extracts geometric and semantic fea-
tures from the 2D images, and fuses the 2D features into the 3D detection pipeline, which 
achieved remarkable 3D detection performance on indoor scene datasets.

One-stage methods One-stage methods directly predict class probabilities and regress 
the 3D amodal bounding boxes of the objects using a single-stage network. These meth-
ods do not need region proposal generation or post-processing. VoxelNet Zhou and Tuzel 
(2018) divides a point cloud into equally spaced 3D voxels and transforms a group of 
points within each voxel into a unified feature representation. Through convolutional mid-
dle layers and the region proposal network, the final results are obtained. Compared with 
VoxelNet, SECOND  Yan et  al. (2018) applies sparse convolution layers  Graham et  al. 
(2018) for parsing the compact voxel features. PointPillars Lang et al. (2019) converts a 
point cloud to a sparse pseudo-image, which is processed into a high-level representation 
through a 2D convolutional backbone. The features from the backbone are used by the 
detection head to predict 3D bounding boxes for objects. TANet Liu et al. (2020) proposed 
a Triple Attention (TA) module and a Coarse-to-Fine Regression (CFR) module, which 
focuses on the 3D detection of hard objects and the robustness to noisy points. HVNet Ye 
et al. (2020) proposed a hybrid voxel network which fuses voxel feature encoder (VFE) of 
different scales at point-wise level and projects into multiple pseudo-image feature maps. 
Above methods are mainly voxel-based 3D single stage detectors, and  Yang et al. (2020) 
proposed a point-based 3D single stage object detector called 3DSSD, which contain a 
fusion sampling strategy in the downsampling process, a candidate generation layer, and 
an anchor-free regression head with a 3D center-ness assignment strategy. They achieved a 
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good balance between accuracy and efficiency. Point-GNN Shi and Rajkumar (2020) uti-
lized graph neural network on the point cloud and designed a graph neural network with an 
auto-registration mechanism which detects multiple objects in a single shot. DOPS Najibi 
et al. (2020) proposed an object detection pipeline which utilizes a 3D sparse U-Net Gra-
ham and van der Maaten (2017) and a graph convolution module. Their method can jointly 
predict the 3D shapes of the objects. Associate-3Ddet Du et  al. (2020) learns to associ-
ate feature extracted from the real scene with more discriminative feature from class-wise 
conceptual models. Comprehensive review about 3D object detection could refer to the 
survey Guo et al. (2019).

Discussions 3D object detection only presents the general shape of the target object, 
which is not sufficient to conduct a robotic grasp, and it is mostly used in autonomous driv-
ing areas. However, the estimated 3D bounding boxes could provide approximate grasp 
positions and provide valuable information for the collision detection.

2.3 � Object instance segmentation

Object instance segmentation refers to detecting the pixel-level or point-level instance 
objects of a certain class, which is closely related to object detection and semantic segmen-
tation tasks. Two kinds of methods also exist, which are two-stage methods and one-stage 
methods. The two-stage methods refer to region proposal-based methods and one-stage 
methods refer to regression-based methods. The representative works of the two methods 
are shown in Table 3 aiming at 2D inputs and 3D inputs.

2.3.1 � 2D object instance segmentation

2D object instance segmentation means detecting the pixel-level instance objects of a cer-
tain class from an input image, which is usually represented as masks. Two-stage meth-
ods follow the mature object detection frameworks, while one-stage methods conduct 
regression from the whole input image directly. Typical functional flow-chart of 2D object 
instance segmentation is illustrated in Fig. 9.

Two-stage methods This kind of methods could also be referred as region proposal-
based methods. The mature 2D object detectors are used to generate bounding boxes or 
region proposals, and the object masks are then predicted within the bounding boxes. 
Lots of methods are based on convolutional neural networks (CNN). SDS  Hariharan 
et  al. (2014) uses CNN to classify category-independent region proposals. MNC  Dai 
et al. (2016) conducts instance segmentation via three networks, respectively differenti-
ating instances, estimating masks, and categorizing objects. Path Aggregation Network 
(PANet) Liu et al. (2018) was proposed which boosts the information flow in the pro-
posal-based instance segmentation framework. Mask R-CNN He et  al. (2017) extends 
Faster R-CNN  Ren et  al. (2015) by adding a branch for predicting an object mask in 
parallel with the existing branch for bounding box recognition, which achieved promis-
ing results. MaskLab Chen et al. (2018) also builds on top of Faster R-CNN Ren et al. 
(2015) and additionally produces semantic and instance center direction outputs.  Chen 
et  al. (2019) proposed a framework called Hybrid Task Cascade (HTC), which per-
forms cascaded refinement on object detection and segmentation jointly and adopts a 
fully convolutional branch to provide spatial context. PointRend Kirillov et  al. (2020) 
performs point-based segmentation predictions at adaptively selected locations based 
on an iterative subdivision algorithm. PointRend can be flexibly applied to instance 
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segmentation tasks by building on top of them, and yields significantly more detailed 
results. FGN  Fan et  al. (2020) proposed a Fully Guided Network (FGN) for few-shot 
instance segmentation, which introduces different guidance mechanisms into the vari-
ous key components in Mask R-CNN He et al. (2017).

Single-stage methods This kind of methods could also be referred as regression-based 
methods, where the segmentation masks are predicted as well the objectness score. Deep-
Mask Pinheiro et al. (2015), SharpMask Pinheiro et al. (2016) and InstanceFCN Dai et al. 
(2016) predict segmentation masks for the the object located at the center. FCIS Li et al. 
(2017) was proposed as the fully convolutional instance-aware semantic segmentation 
method, where position-sensitive inside/outside score maps are used to perform object seg-
mentation and detection. TensorMask Chen et al. (2019) uses structured 4D tensors to rep-
resent masks over a spatial domain and presents a framework to predict dense masks. YOL-
ACT Bolya et  al. (2019) breaks instance segmentation into two parallel subtasks, which 
are generating a set of prototype masks and predicting per-instance mask coefficients. 
YOLACT is the first real-time one-stage instance segmentation method and is improved 
by YOLACT++ Bolya et al. (2019). PolarMask Xie et al. (2020) formulates the instance 
segmentation problem as predicting contour of instance through instance center classifica-
tion and dense distance regression in a polar coordinate. SOLO Wang et al. (2019) intro-
duces the notion of instance categories, which assigns categories to each pixel within an 
instance according to the instance’s location and size, and converts instance mask seg-
mentation into a classification-solvable problem. CenterMask  Lee and Park (2020) adds 
a novel spatial attention-guided mask (SAG-Mask) branch to anchor-free one stage object 
detector (FCOS Tian et al. (2019)) in the same vein with Mask R-CNN He et al. (2017). 
BlendMask Chen et al. (2020) also builds upon the FCOS Tian et al. (2019) object detec-
tor, which uses a blender module to effectively predict dense per-pixel position-sensitive 

Fig. 9   Typical functional flow-chart of 2D object instance segmentation
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instance features and learn attention maps for each instance. Detailed reviews refer to the 
survey (Minaee et al. 2020; Sultana et al. 2020; Hafiz and Bhat 2020).

Discussions 2D object instance segmentation is widely used in robotic grasping tasks. 
For example, SegICP  Wong et  al. (2017) utilize RGB-based object segmentation to 
obtain the points belong to the target objects.  Xie et al. (2020) separately leverage RGB 
and Depth for unseen object instance segmentation.   Danielczuk et  al. (2019) segments 
unknown 3d objects from real depth images using Mask R-CNN He et al. (2017) trained on 
synthetic data.

2.3.2 � 3D object instance segmentation

3D object instance segmentation means detecting the point-level instance objects of a cer-
tain class from an input 3D point cloud. Similar to 2D object instance segmentation, two-
stage methods need region proposals, while one-stage methods are proposal-free. Typical 
functional flow-chart of 3D object instance segmentation is illustrated in Fig. 10.

Two-stage methods This kind of methods could also be referred as proposal-based 
methods. General methods utilize the 2D or 3D detection results and conduct foreground 
or background segmentation in the corresponding frustum or bounding boxes. GSPN Yi 
et  al. (2019) proposed the Generative Shape Proposal Network (GSPN) to generates 3D 
object proposals and the Region-PointNet framework to conduct 3D object instance seg-
mentation. 3D-SIS Hou et al. (2019) leverages joint 2D and 3D end-to-end feature learn-
ing on both geometry and RGB input for 3D object bounding box detection and semantic 
instance segmentation. 3D-MPA  Engelmann et  al. (2020) predicts dense object centers 
based on learned semantic features from a sparse volumetric backbone, employes a graph 
convolutional network to explicitly model higher-order interactions between neighboring 
proposal features, and utilizes a multi proposal aggregation strategy other than NMS to 
obtain the final results.

Single-stage methods This kind of methods could also be referred as regression-based 
methods. Lots of methods learn to group per-point features to segment 3D instances. 
SGPN  Wang et  al. (2018) proposed the Similarity Group Proposal Network (SGPN) to 

Fig. 10   Typical functional flow-chart of 3D object instance segmentation
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predict point grouping proposals and a corresponding semantic class for each proposal, 
from which we can directly extract instance segmentation results. MASC Liu and Furukawa 
(2019) utilizes the sub-manifold sparse convolutions (Graham and van der Maaten 2017; 
Graham et al. 2018) to predict semantic scores for each point as well as the affinity between 
neighboring voxels at different scales. The points are then grouped into instances based 
on the predicted affinity and the mesh topology. ASIS Wang et al. (2019) learns semantic-
aware point-level instance embedding and semantic features of the points belonging to the 
same instance are fused together to make per-point semantic predictions. JSIS3D  Pham 
et  al. (2019) proposed a multi-task point-wise network (MT-PNet) that simultaneously 
predicts the object categories of 3D points and embeds these 3D points into high dimen-
sional feature vectors that allow clustering the points into object instances. JSNet Zhao and 
Tao (2020) also proposed a joint instance and semantic segmentation (JISS) module and 
designed an efficient point cloud feature fusion (PCFF) module to generate more discrimi-
native features. 3D-BoNet Yang et al. (2019) was proposed to directly regress 3D bound-
ing boxes for all instances in a point cloud, while simultaneously predicting a point-level 
mask for each instance. LiDARSeg Zhang et al. (2020) proposed a dense feature encoding 
technique, a solution for single-shot instance prediction and effective strategies for han-
dling severe class imbalances. OccuSeg Han et  al. (2020) proposed an occupancy-aware 
3D instance segmentation scheme, which predicts the number of occupied voxels for each 
instance. The occupancy signal guides the clustering stage of 3D instance segmentation 
and OccuSeg achieves remarkable performance.

Discussions 3D object instance segmentation is quite important in robotic grasping 
tasks. However, current methods mainly leverage 2D instance segmentation methods to 
obtain the 3D point cloud of the target object, which utilizes the advantages of RGB-D 
images. Nowadays 3D object instance segmentation is still a fast developing area, and it 
will be widely used in the future if its performance and speed improve a lot.

3 � Object pose estimation

In some 2D planar grasps, the target objects are constrained in the 2D workspace and are 
not piled up, the 6D object pose can be represented as the 2D position and the in-plane 
rotation angle. This case is relatively simple and is addressed quite well based on match-
ing 2D feature points or 2D contour curves. In other 2D planar grasp and 6DoF grasp sce-
narios, the 6D object pose is mostly needed, which helps a robot to get aware of the 3D 
position and 3D orientation of the target object. The 6D object pose transforms the object 
from the object coordinate into the camera coordinate. We mainly focus on 6D object pose 
estimation in this section and divide 6D object pose estimation into three kinds, which 
are correspondence-based, template-based and voting-based methods. During the review 
of each kind of methods, both traditional methods and deep learning-based methods are 
reviewed.

3.1 � Correspondence‑based methods

Correspondence-based 6D object pose estimation involves methods of finding correspond-
ences between the observed input data and the existing complete 3D object model. When 
we want to solve this problem based on the 2D RGB image, we need to find correspond-
ences between 2D pixels and 3D points of the existing 3D model. The 6D object pose 
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can thus be recovered through Perspective-n-Point (PnP) algorithms Lepetit et al. (2009). 
When we want to solve this problem based on the 3D point cloud lifted from the depth 
image, we need to find correspondences of 3D points between the observed partial-view 
point cloud and the complete 3D model. The 6D object pose can thus recovered through 
least square methods. The methods of correspondence-based methods are summarized in 
Table 4.

3.1.1 � 2D image‑based methods

When using the 2D RGB image, correspondence-based methods mainly target on the 
objects with rich texture through the matching of 2D feature points, as shown in Fig. 11. 
Multiple images are first rendered by projecting the existing 3D models from various 
angles and each object pixel in the rendered images corresponds to a 3D point. Through 
matching 2D feature points on the observed image and the rendered images (Vacchetti et al. 
2004; Lepetit et  al. 2005), the 2D–3D correspondences are established. Other than ren-
dered images, the keyframes in keyframe-based SLAM approaches Mur-Artal et al. (2015) 
could also provide 2D–3D correspondences for 2D keypoints. The common 2D descriptors 
such as SIFT Lowe (1999), FAST Rosten and Drummond (2005), SURF Bay et al. (2006), 
ORB  Rublee et  al. (2011), etc., are usually utilized for the 2D feature matching. Based 
on the 2D–3D correspondences, the 6D object pose can be calculated with Perspective-n-
Point (PnP) algorithms Lepetit et al. (2009). However, these 2D feature-based methods fail 
when the objects do not have rich texture.

With the development of deep neural networks such as CNN, representative features 
could be extracted from the image. A straightforward way is to extract discriminative fea-
ture points  (Yi et al. 2016; Truong et al. 2019) and match them using the representative 
CNN features.   Yi et  al. (2016) presented a SIFT-like feature descriptor.   Truong et  al. 
(2019) presented a method to greedily learn accurate match points. Superpoint  DeTone 
et al. (2018) proposed a self-supervised framework for training interest point detectors and 
descriptors, which shows advantages over a few traditional feature detectors and descrip-
tors. LCD Pham et  al. (2020) particularly learns a local cross-domain descriptor for 2D 
image and 3D point cloud matching, which contains a dual auto-encoder neural network 
that maps 2D and 3D inputs into a shared latent space representation.

There exists another kind of methods (Rad and Lepetit 2017; Tekin et al. 2018; Crivel-
laro et  al. 2017; Hu et  al. 2019), which uses the representative CNN features to predict 
the 2D locations of 3D points, as shown in Fig. 11. Since it’s difficult to selected the 3D 
points to be projected, many methods utilize the eight vertices of the object’s 3D bounding 
box.  Rad and Lepetit (2017) predicts 2D projections of the corners of their 3D bounding 
boxes and obtains the 2D–3D correspondences. Different with them,  Tekin et al. (2018) 
proposed a single-shot deep CNN architecture that directly detects the 2D projections of 
the 3D bounding box vertices without posteriori refinements. Some other methods utilize 
feature points of the 3D object.  Crivellaro et al. (2017) predicts the pose of each part of 
the object in the form of the 2D projections of a few control points with the assistance of 
a Convolutional Neural Network (CNN). KeyPose Liu et al. (2020) predicts object poses 
using 3D keypoints from stereo input, and is suitable for transparent objects.   Hu et  al. 
(2020) further predicts the 6D object pose from a group of candidate 2D–3D correspond-
ences using deep learning networks in a single-stage manner, instead of RANSAC-based 
Perspective-n-Point (PnP) algorithms. HybridPose  Song et  al. (2020) predicts a hybrid 
intermediate representation to express different geometric information in the input image, 
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including keypoints, edge vectors, and symmetry correspondences. Some other methods 
predict 3D positions for all the pixels of the object.  Hu et al. (2019) proposed a segmen-
tation-driven 6D pose estimation framework where each visible part of the object contrib-
utes to a local pose prediction in the form of 2D keypoint locations. The pose candidates 
are them combined into a robust set of 2D–3D correspondences from which the reliable 
pose estimation result is computed. DPOD Zakharov et al. (2019) estimates dense multi-
class 2D–3D correspondence maps between an input image and available 3D models. Pix-
2pose Park et al. (2019) regresses pixel-wise 3D coordinates of objects from RGB images 
using 3D models without textures. EPOS Hodan et al. (2020) represents objects by surface 
fragments which allows to handle symmetries, predicts a data-dependent number of precise 
3D locations at each pixel, which establishes many-to-many 2D–3D correspondences, and 
utilizes an estimator for recovering poses of multiple object instances.

3.1.2 � 3D point cloud‑based methods

Typical functional flow-chart of 3D correspondence-based 6D object pose estimation meth-
ods is illustrated in Fig. 12. When using the 3D point cloud lifted from the depth image, 
3D geometric descriptors could be utilized for matching, which eliminates the influence of 
the texture. The 6D object pose could then be achieved by computing the transformations 
based on 3D-3D correspondences directly. The widely used 3D local shape descriptors, 
such as Spin Images Johnson (1997), 3D Shape Context Frome et al. (2004), FPFH Rusu 
et al. (2009), CVFH Aldoma et al. (2011), SHOT Salti et al. (2014), can be utilized to find 
correspondences between the object’s partial 3D point cloud and full point cloud to obtain 
the 6D object pose. Some other 3D local descriptors could refer to the survey Guo et al. 
(2016). However, this kind of methods require that the target objects have rich geometric 
features.

There also exist deep learning-based 3D descriptors  (Zeng et  al. 2017a; Yew and 
Lee 2018) aiming at matching 3D points, which are representative and discriminative. 

Fig. 11   Typical functional flow-chart of 2D correspondence-based 6D object pose estimation methods. 
Data from the lineMod dataset Hinterstoisser et al. (2012)
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3DMatch Zeng et al. (2017a) is proposed to match 3D feature points using 3D voxel-based 
deep learning networks. 3DFeat-Net Yew and Lee (2018) proposed a weakly supervised 
network that holistically learns a 3D feature detector and descriptor using only GPS/INS 
tagged 3D point clouds.  Gojcic et al. (2019) proposed 3DSmoothNet, which matches 3D 
point clouds with a siamese deep learning architecture and fully convolutional layers using 
a voxelized smoothed density value (SDV) representation.  Yuan et al. (2020) proposed a 
self-supervised learning method for descriptors in point clouds, which requires no manual 
annotation and achieves competitive performance. StickyPillars Simon et  al. (2020) pro-
posed an end-to-end trained 3D feature matching approach based on a graph neural net-
work, and they perform context aggregation with the aid of transformer based multi-head 
self and cross attention.

3.2 � Template‑based methods

Template-based 6D object pose estimation involves methods of finding the most similar 
template from the templates that are labeled with Ground Truth 6D object poses. In 2D 
case, the templates could be projected 2D images from known 3D models, and the objects 
within the templates have corresponding 6D object poses in the camera coordinate. The 
6D object pose estimation problem is thus transformed into an image retrieval problem. In 
3D case, the template could be the full point cloud of the target object. We need to find the 
best 6D pose that aligns the partial point cloud to the template and thus the 6D object pose 
estimation becomes a part-to-whole coarse registration problem. The methods of template-
based methods are summarized in Table 5.

3.2.1 � 2D image‑based methods

Traditional 2D feature-based methods could be used to find the most similar template 
image and 2D correspondence-based methods could be utilized if discriminative feature 
points exist. Therefore, this kind of methods mainly aim at texture-less or non-texture 
objects that correspondence-based methods can hardly deal with. In these methods, the 
gradient information is usually utilized. Typical functional flow-chart of 2D template-
based 6D object pose estimation methods is illustrated in Fig.  13. Multiple images 
which are generated by projecting the existing complete 3D model from various angles 

Fig. 12   Typical functional flow-chart of 3D correspondence-based 6D object pose estimation methods
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are regarded as the templates.  Hinterstoisser et al. (2012) proposed a novel image rep-
resentation by spreading image gradient orientations for template matching and repre-
sented a 3D object with a limited set of templates. The accuracy of the estimated pose 
was improved by taking into account the 3D surface normal orientations which are 
computed from the dense point cloud obtained from a dense depth sensor.  Hodaň et al. 
(2015) proposed a method for the detection and accurate 3D localization of multiple 
texture-less and rigid objects depicted in RGB-D images. The candidate object instances 
are verified by matching feature points in different modalities and the approximate 
object pose associated with each detected template is used as the initial value for fur-
ther optimization. There exist deep learning-based image retrieval methods Gordo et al. 
(2016), which could assist the template matching process. However, seldom of them 
were used in template-based methods and perhaps the number of templates is too small 
for deep learning methods to learn representative and discriminative features.

Above methods find the most similar template explicitly, and there also exist some 
implicitly ways.  Sundermeyer et al. (2018) proposed Augmented Autoencoders (AAE), 
which learns the 3D orientation implicitly. Thousands of template images are rendered 
from a full 3D model and these template images are encoded into a codebook. The input 
image will be encoded into a new code and matched with the codebook to find the most 
similar template image, and the 6D object pose is thus obtained.

Fig. 13   Typical functional flow-chart of 2D template-based 6D object pose estimation methods. Data from 
the lineMod dataset Hinterstoisser et al. (2012)
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There also exist methods (Xiang et al. 2018; Do et al. 2018; Liu et al. 2019) that directly 
estimate the 6D pose of the target object from the input image, which can be regarded as 
finding the most similar image from the pre-trained and labeled images implicitly. Differ-
ent from correspondence-based methods, this kind of method learns the immediate map-
ping from an input image to a parametric representation of the pose, and the 6D object 
pose can thus be estimated combined with object detection Patil and Rabha (2018).  Xiang 
et al. (2018) proposed PoseCNN for direct 6D object pose estimation. The 3D translation 
of an object is estimated by localizing the center in the image and predicting the distance 
from the camera, and the 3D rotation is computed by regressing a quaternion representa-
tion.  Kehl et al. (2017) presented a similar method by making use of the SSD network.  Do 
et al. (2018) proposed an end-to-end deep learning framework named Deep-6DPose, which 
jointly detects, segments, and recovers 6D poses of object instances form a single RGB 
image. They extended the instance segmentation network Mask R-CNN He et al. (2017) 
with a pose estimation branch to directly regress 6D object poses without any post-refine-
ments.  Liu et  al. (2019) proposed a two-stage CNN architecture which directly outputs 
the 6D pose without requiring multiple stages or additional post-processing like PnP. They 
transformed the pose estimation problem into a classification and regression task. CDPN Li 
et al. (2019) proposed the Coordinates-based Disentangled Pose Network (CDPN), which 
disentangles the pose to predict rotation and translation separately.  Tian et al. (2020) also 
proposed a discrete-continuous formulation for rotation regression to resolve this local-
optimum problem. They uniformly sample rotation anchors in SO(3), and predict a con-
strained deviation from each anchor to the target.

There also exist methods that build a latent representation for category-level objects. 
This kind of methods can also be treated as the template-based methods, and the tem-
plate could be implicitly built from multiple images. NOCS Wang et al. (2019), LatentFu-
sion Park et al. (2020) and  Chen et al. (2020) are the representative methods.

3.2.2 � 3D point cloud‑based methods

Typical functional flow-chart of 3D template-based 6D object pose estimation methods is 
illustrated in Fig. 14. Traditional partial registration methods aim at finding the 6D trans-
formation that best aligns the partial point cloud to the full point cloud. Various global 

Fig. 14   Typical functional flow-chart of 3D template-based 6D object pose estimation methods
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registration methods (Mellado et al. 2014; Yang et al. 2015; Zhou et al. 2016) exist which 
afford large variations of initial poses and are robust with large noise. However, this kind of 
method is time-consuming. Most of these methods utilize local registration methods such 
as the iterative closest points(ICP) algorithm Besl and McKay (1992) to refine the results. 
This part can refer to some review papers (Tam et al. 2013; Bellekens et al. 2014).

Some deep learning-based methods also exist, which can accomplish the partial reg-
istration task in an efficient way. These methods consume a pair of point clouds, extract 
representative and discriminative features from 3D deep learning networks, and regress the 
relative 6D transformations between the pair of point clouds. PCRNet Sarode et al. (2019), 
DCP Wang and Solomon (2019), PointNetLK Aoki et al. (2019), PRNet Wang and Solo-
mon (2019), DeepICP Lu et al. (2019),  Sarode et al. (2019), TEASER Yang et al. (2020) 
and DGR Choy et al. (2020) are the representative methods and readers could refer to the 
recent survey Villena-Martinez et al. (2020). There also exist methods (Chen et al. 2020; 
Gao et al. 2020) that directly regress the 6D object pose from the partial point cloud. G2L-
Net Chen et al. (2020) extracts the coarse object point cloud from the RGB-D image by 2D 
detection, and then conducts translation localization and rotation localization.  Gao et al. 
(2020) proposed a method which conduct 6D object pose regression via supervised learn-
ing on point clouds.

3.3 � Voting‑based methods

Voting-based methods mean that each pixel or 3D point contributes to the 6D object pose 
estimation by providing one or more votes. We roughly divide voting methods into two 
kinds, which are indirectly voting methods and directly voting methods. Indirectly vot-
ing methods mean that each pixel or 3D point vote for some feature points, which affords 
2D–3D correspondences or 3D-3D correspondences. Directly voting methods mean that 
each pixel or 3D point vote for a certain 6D object coordinate or pose. These methods are 
summarized in Table 6.

3.3.1 � Indirect voting methods

This kind of methods can be regarded as voting for correspondence-based methods. In 2D 
case, 2D feature points are voted and 2D–3D correspondences could be achieved. In 3D 
case, 3D feature points are voted and 3D-3D correspondences between the observed par-
tial point cloud and the canonical full point cloud could be achieved. Most of this kind of 
methods utilize deep learning methods for their strong feature representation capabilities 
in order to predict better votes. Typical functional flow-chart of indirect voting-based 6D 
object pose estimation methods is illustrated in Fig. 15.

In 2D case, PVNet Peng et al. (2019) votes projected 2D feature points and then finds 
the corresponding 2D–3D correspondences to compute the 6D object pose.   Yu et  al. 
(2020) proposed a method which votes 2D positions of the object keypoints from vector-
fields. They develop a differentiable proxy voting loss (DPVL) which mimics the hypoth-
esis selection in the voting procedure. In 3D case, PVN3D  He et  al. (2020) votes 3D 
keypoints, and can be regarded as a variation of PVNet Peng et al. (2019) in 3D domain. 
YOLOff Gonzalez et al. (2020) utilizes a classification CNN to estimate the object’s 2D 
location in the image from local patches, followed by a regression CNN trained to predict 
the 3D location of a set of keypoints in the camera coordinate system. The 6D object pose 
is then achieved by minimizing a registration error. 6-PACK Wang et al. (2019) predicts 
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a handful of ordered 3D keypoints for an object based on the observation that inter-frame 
motion of an object instance can be estimated through keypoint matching. This method 
achieves category-level 6D object pose tracking on RGB-D data.

3.3.2 � Direct voting methods

This kind of methods can be regarded as voting for template-based methods if we treat 
the voted object pose or object coordinate as the most similar template. Typical func-
tional flow-chart of direct voting-based 6D object pose estimation methods is illustrated in 
Fig. 16.

In 2D case, this kind of methods are mainly used for computing the poses of objects 
with occlusions. For these objects, the local evidence in the image restricts the possible 
outcome of the desired output, and every image patch is thus usually used to cast a vote 

Fig. 15   Typical functional flow-chart of indirect voting-based object pose estimation methods

Fig. 16   Typical functional flow-chart of direct voting-based 6D object pose estimation methods
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about the 6D object pose.  Brachmann et al. (2014) proposed a learned, intermediate rep-
resentation in the form of a dense 3D object coordinate labelling paired with a dense class 
labelling. Each object coordinate prediction defines a 3D-3D correspondence between 
the image and the 3D object model, and the pose hypotheses are generated and refined to 
obtain the final hypothesis.  Tejani et al. (2014) trained a Hough forest for 6D pose estima-
tion from an RGB-D image. Each tree in the forest maps an image patch to a leaf which 
stores a set of 6D pose votes.

In 3D case,  Drost et al. (2010) proposed the Point Pair Features (PPF) to recover the 
6D pose of objects from a depth image. A point pair feature contains information about the 
distance and normals of two arbitrary 3D points. PPF has been one of the most successful 
6D pose estimation method as an efficient and integrated alternative to the traditional local 
and global pipelines.  Hodan et al. (2018) proposed a benchmark for 6D pose estimation of 
a rigid object from a single RGB-D input image, and a variation of PPF Vidal et al. (2018) 
won the 2018 SIXD challenge.

Deep learning-based methods also assist the directly voting methods. DenseFu-
sion Wang et al. (2019) utilizes a heterogeneous architecture that processes the RGB and 
depth data independently and extracts pixel-wise dense feature embeddings. Each feature 
embedding votes a 6D object pose and the best prediction is adopted. They further pro-
posed an iterative pose refinement procedure to refine the predicted 6D object pose. More-
Fusion Wada et al. (2020) conducts an object-level volumetric fusion and performs point-
wise volumetric pose prediction that exploits volumetric reconstruction and CNN feature 
extraction from the image observation. The object poses are then jointly refined based on 
geometric consistency among objects and impenetrable space.

3.4 � Comparisons and discussions

In this section, we mainly review the methods based on the RGB-D image, since 3D point 
cloud-based 6D object pose estimation could be regarded as a registration or alignment 
problem where some surveys  (Tam et  al. 2013; Bellekens et  al. 2014) exist. The related 
datasets, evaluation metrics and comparisons are presented.

3.4.1 � Datasets and evaluation metrics

There exist various benchmarks  Hodaň et  al. (2018) for 6D pose estimation, such as 
LineMod Hinterstoisser et al. (2012), IC-MI/IC-BIN dataset Tejani et al. (2014), T-LESS 
dataset Hodaň et al. (2017), RU-APC dataset Rennie et al. (2016), and YCB-Video Xiang 
et  al. (2018), etc. Here we only reviewed the most widely used LineMod  Hinterstoisser 
et  al. (2012) dataset and YCB-Video  Xiang et  al. (2018) dataset. LineMod  Hinterstois-
ser et al. (2012) provides manual annotations for around 1,000 images for each of the 15 
objects in the dataset. Occlusion Linemod Brachmann et al. (2014) contains more exam-
ples where the objects are under occlusion. YCB-Video Xiang et al. (2018) contains a sub-
set of 21 objects and comprises 133,827 images. These datasets are widely evaluated aim-
ing at various kinds of methods.

The 6D object pose can be represented by a 4 × 4 matrix P = [R, t;0, 1] , where R is a 
3 × 3 rotation matrix and t is a 3 × 1 translation vector. The rotation matrix could also be 
represented as quaternions or angle-axis representation. Direct comparison of the vari-
ances between the values can not provide intuitive visual understandings. The commonly 
used metrics are the Average Distance of Model Points (ADD) Hinterstoisser et al. (2012) 
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for non-symmetric objects and the average closest point distances (ADD-S) Xiang et  al. 
(2018) for symmetric objects.

Given a 3D model M, the ground truth rotation R and translation T, and the estimated 
rotation R̂ and translation T̂  , ADD means the average distance of all model points x from 
their transformed versions. The 6D object pose is considered to be correct if the average 
distance is smaller than a predefined threshold.

ADD-S Xiang et al. (2018) is an ambiguity-invariant pose error metric which takes both 
symmetric and non-symmetric objects into an overall evaluation. Given the estimated pose 
[R̂|T̂] and the ground truth pose [R|T] , ADD-S calculates the mean distance from each 3D 
model point transformed by [R̂|T̂] to its closest point on the target model transformed by 
[R|T].

Aim at the LineMOD dataset, ADD is used for asymmetric objects and ADD-S is used 
for symmetric objects. The threshold is usually set as 10% of the model diameter. Aiming 
at the YCB-Video dataset, the commonly used evaluation metric is the ADD-S metric. The 
percentage of ADD-S smaller than 2cm ( < 2cm ) is often used, which measures the predic-
tions under the minimum tolerance for robotic manipulation. In addition, the area under 
the ADD-S curve (AUC) following PoseCNN Xiang et al. (2018) is also reported and the 
maximum threshold of AUC is set to be 10cm.

3.4.2 � Comparisons and discussions

6D object pose estimation plays a pivotal role in robotic and augment reality areas. Vari-
ous methods exist with different inputs, precision, speed, advantages and disadvantages. 
Aiming at robotic grasping tasks, the practical environment, the available input data, the 
available hardware setup, the target objects to be grasped, the task requirements should be 
analyzed first to decide which kinds of methods to use. The above mentioned three kinds 
of methods deal with different kinds of objects. Generally, when the target object has rich 
texture or geometric details, the correspondence-based method is a good choice. When the 
target object has weak texture or geometric detail, the template-based method is a good 
choice. When the object is occluded and only partial surface is visible, or the addressed 
object ranges from specific objects to category-level objects, the voting-based method is a 
good choice. Besides, the three kinds of methods all have 2D inputs, 3D inputs or mixed 
inputs. The results of methods with RGB-D images as inputs are summarized in Table 7 
on the YCB-Video dataset, and Table 8 on the LineMOD and Occlusion LineMOD data-
sets. All recent methods on LineMOD achieve high accuracy since there’s little occlusion. 
When there exist occlusions, correspondence-based and voting-based methods perform 
better than template-based methods. The template-based methods are more like a direct 
regression problem, which highly depend on the global feature extracted. Whereas, corre-
spondence-based and voting-based methods utilize the local parts information and consti-
tute local feature representations.

There exist some challenges for nowadays 6D object pose estimation methods. The first 
challenge lies in that current methods show obvious limitations in cluttered scenes in which 
occlusions usually occur. Although the state-of-the-art methods achieve high accuracies on 
the Occlusion LineMOD dataset, they still could not afford severe occluded cases since 
this situation may cause ambiguities even for human beings. The second one is the lack 

(1)eADD = avg
x∈M

‖‖‖(Rx + T) − (R̂x + T̂)
‖‖‖.
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of sufficient training data, as the sizes of the datasets presented above are relatively small. 
Nowadays deep learning methods show poor performance on objects which do not exist in 
the training datasets and perhaps the simulated datasets could be one solution. Although 
some category-level 6D object pose methods  (Wang et  al. 2019; Park et  al. 2020; Chen 
et al. 2020) emerged recently, they still can not handle large number of categories.

4 � Grasp estimation

Grasp estimation means estimating the 6D gripper pose in the camera coordinate. As 
mentioned before, the grasp can be categorized into 2D planar grasp and 6DoF grasp. For 
2D planar grasp, where the grasp is constrained from one direction, the 6D gripper pose 
could be simplified into a 3D representation, which includes the 2D in-plane position and 
1D rotation angle, since the height and the rotations along other axes are fixed. For 6DoF 
grasp, the gripper can grasp the object from various angles and the 6D gripper pose is 
essential to conduct the grasp. In this section, methods of 2D planar grasp and 6DoF grasp 
are presented in detail.

4.1 � 2D planar grasp

Methods of 2D planar grasp can be divided into methods of evaluating grasp contact points 
and methods of evaluating oriented rectangles. In 2D planar grasp, the grasp contact points 
can uniquely define the gripper’s grasp pose, which is not the situation in 6DoF grasp. The 
2D oriented rectangles can also uniquely define the gripper’s grasp pose. These methods 
are summarized in Table 9 and typical functional flow-chart is illustrated in Fig. 17.

4.1.1 � Methods of evaluating grasp contact points

This kind of methods first sample candidate grasp contact points, and use analytical 
methods or deep learning-based methods to evaluate the possibility of a successful 
grasp, which are classification-based methods. Empirical methods of robotic grasping 
are performed based on the premise that certain prior knowledge, such as object geom-
etry, physics models, or force analytic, are known. The grasp database usually covers a 
limited amount of objects, and empirical methods will face difficulties in dealing with 
unknown objects.  Domae et al. (2014) presented a method that estimates graspability 

Table 7   Accuracies of AUC and ADD-S metrics on YCB-video dataset

Category Method AUC​ ADD-S ( < 2cm)

Corre-based Heatmaps Oberweger et al. (2018) 72.8 53.1
Template-based PoseCNN Xiang et al. (2018) + ICP 61.0 73.8

PoseCNN Xiang et al. (2018) + ICP 93.0 93.2
 Castro et al. (2020) 67.52 47.09

PointFusion Xu et al. (2018) 83.9 74.1
MaskedFusion Pereira and Alexandre (2019) 93.3 97.1

Voting-based DenseFusion Wang et al. (2019) (per-pixel) 91.2 95.3
DenseFusion Wang et al. (2019) (iterative) 93.1 96.8
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measures on a single depth map for grasping objects randomly placed in a bin. Can-
didate grasp regions are first extracted and the graspability is computed by convolving 
one contact region mask image and one collision region mask image. Deep learning-
based methods could assists in evaluating the grasp qualities of candidate grasp contact 
points.  Mahler et al. (2017) proposed DexNet 2.0, which plans robust grasps with syn-
thetic point clouds and analytic grasping metrics. They first segment the current points 
of interests from the depth image, and multiple candidate grasps are generated. The 

Table 8   Accuracies of methods using ADD(-S) metric on LineMOD and Occlusion LineMOD dataset

Refine means methods such as ICP or DeepIM Li et al. (2018). IR is short for iterative refinement

Category Method LineMOD Occlusion

Correspondence-based methods BB8 Rad and Lepetit (2017) 43.6 –
BB8 Rad and Lepetit (2017) + Refine 62.7 –
 Tekin et al. (2018) 55.95 6.42

Heatmaps Oberweger et al. (2018) – 25.8
Heatmaps Oberweger et al. (2018) + Refine – 30.4
 Hu et al. (2019) – 26.1

Pix2pose Park et al. (2019) 72.4 32.0
DPOD Zakharov et al. (2019) 82.98 32.79
DPOD Zakharov et al. (2019) + Refine 95.15 47.25
HybridPose Song et al. (2020) 94.5 79.2

Template-based methods SSD-6D Kehl et al. (2017) 2.42 –
SSD-6D Kehl et al. (2017) + Refine 76.7 27.5
AAE Sundermeyer et al. (2018) 31.41 –
AAE Sundermeyer et al. (2018) + Refine 64.7 –
 Castro et al. (2020) 59.32 –

PoseCNN Xiang et al. (2018) 62.7 6.42
PoseCNN Xiang et al. (2018) + Refine 88.6 78.0
CDPN Li et al. (2019) 89.86 –
 Tian et al. (2020) 92.87 –

MaskedFusion Pereira and Alexandre (2019) 97.3 –
Voting-based methods  Brachmann et al. (2016) 32.3 –

 Brachmann et al. (2016) + Refine 50.2 –
PVNet Peng et al. (2019) 86.27 40.8
DenseFusion Wang et al. (2019)(per-pixel) 86.2
DenseFusion Wang et al. (2019)(iterative) 94.3
DPVL Yu et al. (2020) 91.5 43.52
YOLOff Gonzalez et al. (2020) 94.2 –
YOLOff Gonzalez et al. (2020) + Refine 98.1 –
PVN3D He et al. (2020) 95.1 -
P
2
GNet Yu et al. (2019) 96.2 –

P
2
GNet Yu et al. (2019) + Refine 97.4 –

PointPoseNet Hagelskjær and Buch (2019) 96.3 52.6
PointPoseNet Hagelskjær and Buch (2019) + 

Refine
– 75.1
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grasp qualities are then measured using the Grasp Quality-CNN network, and the one 
with the highest quality will be selected as the final grasp. Their database have more 
than 50k grasps, and the grasp quality measurement network achieved relatively satis-
factory performance.

Table 9   Summary of 2D planar grasp estimation methods

Methods Traditional methods Deep learning-based methods

Methods of evaluating grasp 
contact points

 Domae et al. (2014)  Zeng et al. (2018),  Mahler et al. 
(2017),  Cai et al. (2019), 
GG-CNN Morrison et al. 
(2018), MVP Morrison et al. 
(2019),  Wang et al. (2019)

Methods of evaluating oriented 
rectangles

 Jiang et al. (2011),  Vohra et al. 
(2019)

 Lenz et al. (2015),  Pinto and 
Gupta (2016),  Park and 
Chun (2018),  Redmon and 
Angelova (2015),  Zhang 
et al. (2017),  Kumra and 
Kanan (2017),  Kumra 
et al. (2019),  Zhang et al. 
(2018),  Guo et al. (2017),  Chu 
et al. (2018),  Park et al. 
(2018),  Zhou et al. 
(2018),  Depierre et al. (2020)

Fig. 17   Typical functional flow-chart of 2D planar grasp methods. Data from the JACQUARD data-
set Depierre et al. (2018)
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Deep learning-based methods could also assist in estimating the most probable grasp 
contact points through estimating pixel-wise grasp affordances. Robotic affordances  (Do 
et al. 2018; Ardón et al. 2019; Chu et al. 2019) usually aim to predict affordances of the 
object parts for robot manipulation, which are more like a segmentation problem. How-
ever, there exist some methods (Zeng et al. 2018; Cai et al. 2019) that predict pixel-wise 
affordances with respect to the grasping primitive actions. These methods generate grasp 
qualities for each pixel, and the pair of points with the highest affordance value is exe-
cuted.   Zeng et  al. (2018) proposed a method which infers dense pixel-wise probability 
maps of the affordances for four different grasping primitive actions through utilizing fully 
convolutional networks.  Cai et al. (2019) presented a pixel-level affordance interpreter net-
work, which learns antipodal grasp patterns based on a fully convolutional residual net-
work similar with  Zeng et al. (2018). Both of these two methods do not segment the target 
object and predict pixel-wise affordance maps for each pixels. This is a way which directly 
estimate grasp qualities without sampling grasp candidates.  Morrison et  al. (2018) pro-
posed the Generative Grasping Convolutional Neural Network (GG-CNN), which predicts 
the quality and pose of grasps at every pixel. Further,  Morrison et al. (2019) proposed a 
Multi-View Picking (MVP) controller, which uses an active perception approach to choose 
informative viewpoints based on a distribution of grasp pose estimates. They utilized the 
real-time GG-CNN Morrison et al. (2018) for visual grasp detection.  Wang et al. (2019) 
proposed a fully convolution neural network which encodes the origin input images to fea-
tures and decodes these features to generate robotic grasp properties for each pixel. Unlike 
classification-based methods for generating multiple grasp candidates through neural net-
work, their pixel-wise implementation directly predicts multiple grasp candidates through 
one forward propagation.

4.1.2 � Methods of evaluating oriented rectangles

Jiang et al. (2011) first proposed to use an oriented rectangle to represent the gripper con-
figuration and they utilized a two-step procedure, which first prunes the search space using 
certain features that are fast to compute and then uses advanced features to accurately select 
a good grasp. Vohra et al. (2019) proposed a grasp estimation strategy which estimates the 
object contour in the point cloud and predicts the grasp pose along with the object skeleton 
in the image plane. Grasp rectangles at each skeleton point are estimated, and point cloud 
data corresponding to the grasp rectangle part and the centroid of the object is used to 
decide the final grasp rectangle. Their method is simple and needs no grasp configuration 
sampling steps.

Aiming at the oriented rectangle-based grasp configuration, deep learning methods are 
gradually applied in three different ways, which are classification-based methods, regres-
sion-based methods and detection-based methods. Most of these methods utilize a five 
dimensional representation Lenz et al. (2015) for robotic grasps, which are rectangles with 
a position, orientation and size: (x,y,�,h,w).

Classification-based methods train classifiers to evaluate candidate grasps, and the one 
with the highest score will be selected.  Lenz et al. (2015) is the first to apply deep learn-
ing methods to robotic grasping. They presented a two-step cascaded system with two deep 
networks, where the top detection results from the first are re-evaluated by the second. The 
first network produces a small set of oriented rectangles as candidate grasps, which will be 
axis aligned. The second network ranks these candidates using features extracted from the 
color image, the depth image and surface normals. The top-ranked rectangle is selected 
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and the corresponding grasp is executed. Pinto and Gupta (2016) predicted grasping loca-
tions by sampling image patches and predicting the grasping angle. They trained a CNN-
based classifier to estimate the grasp likelihood for different grasp directions given an input 
image patch. Park and Chun (2018) proposed a classification based robotic grasp detection 
method with multiple-stage spatial transformer networks (STN). Their method allows par-
tial observation for intermediate results such as grasp location and orientation for a num-
ber of grasp configuration candidates. The procedure of classification-based methods is 
straightforward, and the accuracy is relatively high. However, these methods tend to be 
quite slow.

Regression-based methods train a model to yield grasp parameters for location and 
orientation directly, since a uniform network would perform better than the two-cascaded 
system  Lenz et  al. (2015). Redmon and Angelova (2015) proposed a larger neural net-
work, which performs a single-stage regression to obtain graspable bounding boxes with-
out using standard sliding window or region proposal techniques. Zhang et al. (2017) uti-
lized a multi-modal fusion architecture which combines RGB features and depth features 
to improve the grasp detection accuracy. Kumra and Kanan (2017) utilized deep neural 
networks like ResNet  He et  al. (2016) and further increased the performances in grasp 
detection. Kumra et al. (2019) proposed a novel Generative Residual Convolutional Neural 
Network (GR-ConvNet) model that can generate robust antipodal grasps from a n-channel 
image input. Rather than regressing the grasp parameters globally, some methods utilized a 
ROI (Region of Interest)-based or pixel-wise way. Zhang et al. (2018) utilized ROIs in the 
input image and regressed the grasp parameters based on ROI features.

Detection-based methods utilize the reference anchor box, which are used in some deep 
learning-based object detection algorithms (Ren et al. 2015; Liu et al. 2016; Redmon et al. 
2016), to assist the generation and evaluation of candidate grasps. With the prior knowl-
edge on the size of the expected grasps, the regression problem is simplified Depierre et al. 
(2020). Guo et al. (2017) presented a hybrid deep architecture combining the visual and 
tactile sensing. They introduced the reference box which is axis aligned. Their network 
produces a quality score and an orientation as classification between discrete angle values. 
Chu et al. (2018) proposed an architecture that predicts multiple candidate grasps instead of 
a single outcome and transforms the orientation regression to a classification task. The ori-
entation classification contains the quality score and therefore their network predicts both 
grasp regression values and discrete orientation classification score. Park et al. (2018) pro-
posed a rotation ensemble module (REM) for robotic grasp detection using convolutions 
that rotates network weights. Zhou et al. (2018) designed an oriented anchor box mecha-
nism to improve the accuracy of grasp detection and employed an end-to-end fully con-
volutional neural network. They utilized only one anchor box with multiple orientations, 
rather than multiple scales or aspect ratios (Guo et al. 2017; Chu et al. 2018) for reference 
grasps, and predicted five regression values and one grasp quality score for each oriented 
reference box. Depierre et al. (2020) further extends Zhou et al. (2018) by adding a direct 
dependency between the regression prediction and the score evaluation. They proposed a 
novel DNN architecture with a scorer which evaluates the graspability of a given position 
and introduced a novel loss function which correlates the regression of grasp parameters 
with the graspability score.

Some other methods are also proposed aiming at cluttered scenes, where a robot need 
to know if an object is on another object in the piles of objects for a successful grasp. Guo 
et al. (2016) presented a shared convolutional neural network to conduct object discovery 
and grasp detection. Zhang et al. (2018) proposed a multi-task convolution robotic grasp-
ing network to address the problem of combining grasp detection and object detection with 
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relationship reasoning in the piles of objects. The method of Zhang et al. (2018) consists of 
several deep neural networks that are responsible for generating local feature maps, grasp 
detection, object detection and relationship reasoning separately. In comparison, Park et al. 
(2019) proposed a single multi-task deep neural networks that yields the information on 
grasp detection, object detection and relationship reasoning among objects with a simple 
post-processing.

4.1.3 � Comparisons and discussions

The methods of 2D planar grasp are evaluated in this section, which contain the datasets, 
evaluation metrics and comparisons of the recent methods.

Datasets and evaluation metrics There exist a few datasets for 2D planar grasp, which 
are presented in Table 10. Among them, the Cornell Grasping dataset Jiang et al. (2011) is 
the most widely used dataset. In addition, the dataset has the image-wise splitting and the 
object-wise splitting. Image-wise splitting splits images randomly and is used to test how 
well the method can generalize to new positions for objects it has seen previously. Object-
wise splitting puts all images of the same object into the same cross-validation split and is 
used to test how well the method can generalize to novel objects.

Aiming at the point-based grasps and the oriented rectangle-based grasps  Jiang et  al. 
(2011), there exist two metrics for evaluating the performance of grasp detection: the point 
metric and the rectangle metric. The former evaluates the distance between predicted grasp 
center and the ground truth grasp center w.r.t. a threshold value. It has difficulties in deter-
mining the distance threshold and does not consider the grasp angle. The latter metric con-
siders a grasp to be correct if the grasp angle is within 30◦ of the ground truth grasp, and 
the Jaccard index J(A,B) = |A ∩ B|

/
|A ∪ B| of the predicted grasp A and the ground truth 

B is greater than 25%.
Comparisons The methods of evaluating oriented rectangles are compared in Table 11 

on the widely used Cornell Grasping dataset Jiang et al. (2011). From the table, we can see 
that the state-of-the-art methods have achieved very high accuracies on this dataset. Recent 
works Depierre et  al. (2020) began to conduct experiments on the Jacquard Grasp data-
set Depierre et al. (2018) since it has more images and the grasps are more diverse.

4.2 � 6DoF Grasp

Methods of 6DoF grasp can be divided into methods based on the partial point cloud and 
methods based on the complete shape. These methods are summarized in Table 12.

Table 10   Summaries of publicly available 2D planar grasp datasets

Dataset Objects num Num of RGB-D images Num of grasps

Stanford Grasping (Saxena et al. 2008a, b) 10 13747 13747
Cornell Grasping Jiang et al. (2011) 240 885 8019
CMU dataset Pinto and Gupta (2016) Over 150 50567 No
Dex-Net 2.0 Mahler et al. (2017) Over 150 6.7 M(Depth only) 6.7 M
JACQUARD Depierre et al. (2018) 11619 54485 1.1 M
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4.2.1 � Methods based on the partial point cloud

This kind of methods can be divided into two kinds. The first kind of methods estimate 
grasp qualities of candidate grasps and the second kind of methods transfer grasps from 
existing ones. Typical functional flow-chart of methods based on the partial point cloud is 
illustrated in Fig. 18.

Methods of estimating grasp qualities of candidate grasps This kind of methods mean 
that the 6DoF grasping pose is estimated through analyzing the input partial point cloud 
merely. Most of this kind of methods (Bohg and Kragic 2010; Pas and Platt 2015; Zapata-
Impata et al. 2019; ten Pas et al. 2017; Liang et al. 2019) sample large number of candi-
date grasps first, and then utilize various methods to evaluate grasp qualities, which is a 
classification-based manner. While some novel methods (Qin et al. 2020; Zhao and Nan-
ning 2020; Ni et al. 2020; Mousavian et al. 2019) estimate the grasp qualities implicitly 
and directly predict the 6DoF grasp pose in a single-shot way, which is a regression-based 
manner.

Bohg and Kragic (2010) applied the concept of shape context Belongie et al. (2002) to 
improve the performance of grasping point classification. They used a supervised learning 
approach and the classifier is trained with labelled synthetic images. Pas and Platt (2015) 
first used a geometrically necessary condition to sample a large set of high quality grasp 
hypotheses, which will be classified using the notion of an antipodal grasp. Zapata-Impata 
et  al. (2019) proposed a method to find the best pair of grasping points given a partial 
single-view point cloud of an unknown object. They defined an improved version of the 
ranking metric Zapata-Impata et al. (2017) for evaluating a pair of contact points, which is 
parameterized by the morphology of the robotic hand in use.

3D data has different representations such as multi-view images, voxel grids or point 
cloud, and each representation can be processed with corresponding deep neural net-
works. These different kinds of neural networks have already been applied into robotic 
grasping tasks. GPD  ten Pas et  al. (2017) generates candidate grasps on the a region of 
interest (ROI) first. These candidate grasps are then encoded into a stacked multi-channel 

Table 11   Accuracies of grasp prediction on the Cornell Grasp dataset

Method Input size Accuracy(%) Time

Image split Object split

Jiang et al. (2011) 227 × 227 60.50 58.30 50 s
Lenz et al. (2015) 227 × 227 73.90 75.60 13.5 s
Morrison et al. (2018) 300 × 300 78.56 – 7 ms
Redmon and Angelova (2015) 224 × 224 88.00 87.1 76 ms
Zhang et al. (2017) 224 × 224 88.90 88.20 117 ms
Kumra and Kanan (2017) 224 × 224 89.21 88.96 103 ms
Park and Chun (2018) 400 × 400 89.60 – 23 ms
Asif et al. (2018) 224 × 224 90.60 90.20 24 ms
Wang et al. (2019) 400 × 400 94.42 91.02 8 ms
Chu et al. (2018) 227 × 227 96.00 96.10 120 ms
Park et al. (2018) 360 × 360 96.60 95.40 20 ms
Zhou et al. (2018) 320 × 320 97.74 96.61 118 ms
Park et al. (2019) 360 × 360 98.6 97.2 16 ms
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image. Each candidate is evaluated to obtain a score using a four-layer convolutional neu-
ral network finally. Lou et al. (2019) proposed an algorithm that uniformly samples over 
the entire 3D space first to generate candidate grasps, predicts the grasp stability using 
3D CNN together with a grasping reachability using the candidate grasp pose, and obtains 
the final grasping success probability. PointnetGPD Liang et al. (2019) randomly samples 
candidate grasps, and evaluates the grasp quality by direct point cloud analysis with the 3D 
deep neural network PointNet Qi et al. (2017). During the generation of training datasets, 
the grasp quality is evaluated through combining the force-closure metric and the Grasp 
Wrench Space (GWS) analysis Kirkpatrick et al. (1992). Mousavian et al. (2019) proposed 
an algorithm called 6-DoF GraspNet, which samples grasp proposals using a variational 
auto-encoder and refines the sampled grasps using a grasp evaluator model. Pointnet++ Qi 
et al. (2017) is used to generate and evaluate grasps.  Murali et al. (2019) further improved 
6-DoF GraspNet by introducing a learned collision checker conditioned on the gripper 
information and on the raw point cloud of the scene, which affords a higher success rate in 
cluttered scenes.

Qin et al. (2020) presented an algorithm called S4G , which utilizes a single-shot grasp 
proposal network trained with synthetic data using Pointnet++ Qi et al. (2017) and predicts 
amodal grasp proposals efficiently and effectively. Each grasp proposal is further evaluated 
with a robustness score. The core novel insight of S4G is that they learn to propose possible 
grasps by regression, rather than using a sliding windows-like style. S4G generates grasp 
proposals directly, while 6-DoF GraspNet uses an encode and decode way. Ni et al. (2020) 
proposed Pointnet++Grasping, which is also an end-to-end approach to directly predict 
the poses, categories and scores of all the grasps. Further,  Zhao et al. (2020) proposed an 
end-to-end single-shot grasp detection network called REGNet, which takes one single-
view point cloud as input for parallel grippers. There network contains three stages, which 
are the Score Network (SN) to select positive points with high grasp confidence, the Grasp 
Region Network (GRN) to generate a set of grasp proposals on selected positive points, 
and the Refine Network (RN) to refine the detected grasps based on local grasp features. 
REGNet is the state-of-the-art method for grasp detection in 3D space and outperforms 

Fig. 18   Typical functional flow-chart of 6DoF grasp methods based on the partial point cloud
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several methods including GPD ten Pas et al. (2017), PointnetGPD Liang et al. (2019) and 
S
4
G Qin et al. (2020). Fang et al. (2020) proposed a large-scale grasp pose detection data-

set called GraspNet-1Billion, which contains 97,280 RGB-D image with over one billion 
grasp poses. They also proposed an end-to-end grasp pose prediction network that learns 
approaching direction and operation parameters in a decoupled manner.

Methods of transferring grasps from existing ones This kind of methods transfer grasps 
from existing ones, which means finding correspondences from the observed single-view 
point cloud to the existing complete one if we know that they come from one category. In 
most cases, target objects are not totally the same with the objects in the existing database. 
If an object comes from a class that is involved in the database, it is regarded as a similar 
object. After the localization of the target object, correspondence-based methods can be 
utilized to transfer the grasp points from the similar and complete 3D object to the current 
partial-view object. These methods learn grasps by observing the object without estimating 
its 6D pose, since the current target object is not totally the same with the objects in the 
database.

Different kinds of methods are utilized to find the correspondences based on taxonomy, 
segmentation, and so on. Miller et al. (2003) proposed a taxonomy-based approach, which 
classified objects into categories that should be grasped by each canonical grasp. Nikan-
drova and Kyrki (2015) presented a probabilistic approach for task-specific stable grasping 
of objects with shape variations inside the category. An optimal grasp is found as a grasp 
that is maximally likely to be task compatible and stable taking into account shape uncer-
tainty in a probabilistic context. Their method requires partial models of new objects, and 
few models and example grasps are used during the training. Vahrenkamp et al. (2016) pre-
sented a part-based grasp planning approach to generate grasps that are applicable to mul-
tiple familiar objects. The object models are segmented according to their shape and volu-
metric information, and the objet parts are labeled with semantic and grasping information. 
A grasp transferability measure is proposed to evaluate how successful planned grasps 
are applied to novel object instances of the same object category. Tian et al. (2019) pro-
posed a method to transfer grasp configurations from prior example objects to novel objets, 
which assumes that the novel and example objects have the same topology and similar 
shapes. They perform 3D segmentation on the objects considering geometric and seman-
tic shape characteristics, compute a grasp space for each part of the example object using 
active learning, and build bijective contact mappings between the model parts and the cor-
responding grasps for novel objects. Florence et al. (2018) proposed Dense Object Nets, 
which is built on self-supervised dense descriptor learning and takes dense descriptors as a 
representation for robotic manipulation. They could grasp specific points on objects across 
potentially deformed configurations, grasp objects with instance-specificity in clutter, or 
transfer specific grasps across objects in class. Patten et al. (2020) presented DGCM-Net, 
a dense geometrical correspondence matching network for incremental experience-based 
robotic grasping. They apply metric learning to encode objects with similar geometry 
nearby in feature space, and retrieve relevant experience for an unseen object through a 
nearest neighbour search. DGCM-Net also reconstructs 3D-3D correspondences using the 
view-dependent normalized object coordinate space to transform grasp configurations from 
retrieved samples to unseen objects. Their method could be extended for semantic grasping 
by guiding grasp selection to the parts of objects that are relevant to the object’s functional 
use.

Comparisons and discussions Methods of estimating grasp qualities of candidate grasps 
gain much attentions since this is the direct manner to obtain the 6D grasp pose. Aiming 
at 6DoF grasp, the evaluation metrics for 2D planar grasp are not suitable. The commonly 
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used metric is the Valid Grasp Ratio (VGR) proposed by REGNet  Zhao and Nanning 
(2020). VGR is defined as the quotient of antipodal and collision-free grasps and all grasps. 
The usually used grasp dataset for evaluation is the YCB-Video Xiang et al. (2018) dataset. 
Comparisons with recent methods are shown in Table 13.

Methods of transferring grasps from existing ones have potential usages in high-level 
robotic manipulation tasks. Not only the grasps could be transferred, the manipulation 
skills could also be transferred. Lots of methods (Berscheid et al. 2019; Yang et al. 2019) 
that learn grasps from demonstration usually utilize this kind of methods.

4.2.2 � Methods based on the complete shape

Methods based on the partial point cloud are suitable for unknown objects, since these 
methods have no identical 3D models to use. Aiming at known objects, their 6D poses 
can be estimated and the 6DoF grasp poses estimated on the complete 3D shape could be 
transformed from the object coordinate to the camera coordinate. In another perspective, 
the 3D complete object shape under the camera coordinate could also be completed from 
the observed single-view point cloud. And the 6DoF grasp poses could be estimated based 
on the completed 3D object shape in the camera coordinate. We consider these two kinds 
of methods as complete shape-based methods since 6DoF grasp poses are estimated based 
on complete object shapes. Typical functional flow-chart of 6DoF grasp methods based on 
the complete shape is illustrated in Fig. 19.

Methods of estimating the 6D object pose The 6D object pose could be accurately esti-
mated from the RGB-D data if the target object in known as mentioned in Sect.  3, and 
6DoF grasp poses can be obtained via offline pre-computation or online generation. This 
is the most popular method used for the grasping systems. If the 6DoF grasp poses exist 
in the database, the current 6DoF grasp pose could be retrieved from the knowledge base, 
or obtained by sampling and ranking them through comparisons with existing grasps. 
If the 6DoF grasp poses do not exist in the database, analytical methods are utilized to 
compute the grasp poses. Analytical methods consider kinematics and dynamics formula-
tion in determining grasps Sahbani et al. (2012). Force-closure is one of the main condi-
tions in completing the grasping tasks and there exist many force-closure grasp synthe-
sis methods for 3D objects. Among them, the polyhedral objects are first dealt with, as 
they are composed of a finite number of flat faces. The force-closure condition is reduced 
into the test of the angles between the faces normals Nguyen (1987) or using the linear 
model to derive analytical formulation for grasp characterization Ponce et al. (1993). To 
handle the commonly used objects which usually have more complicated shapes, methods 
of observing different contact points are proposed Ding et al. (2001). These methods try to 
find contact points on a 3D object surface to ensure force-closure and compute the optimal 
grasp by minimizing an objective energy function according to a predefined grasp quality 

Table 13   Accuracies of grasp 
prediction on the Cornell Grasp 
dataset

Method VGR (%) Time (ms)

GPD ten Pas et al. (2017) (3 channels) 79.34 2077.12
GPD ten Pas et al. (2017) (12 channels) 80.22 2702.38
PointNetGPD Liang et al. (2019) 81.48 1965.60
S
4
G Qin et al. (2020) 77.63 679.04

REGNet Zhao and Nanning (2020) 92.47 686.31
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criterion Mirtich and Canny (1994). However, searching the grasp solution space is a com-
plex problem which is quite time-consuming. Some heuristical techniques were then pro-
posed to reduce the search space by generating a set of grasp candidates according to a pre-
defined procedure Borst et al. (2003), or by defining a set of rules to generate the starting 
positions Miller et al. (2003). A few robotic grasping simulators, such as GraspIt! Miller 
and Allen (2004), assist the generation of the best gripper pose to conduct a successful 
grasp. Miller and Allen (2004) proposed GraspIt!, which is a versatile simulator for robotic 
grasping. GraspIt! supports the loading of objects and obstacles of arbitrary geometry to 
populate a complete simulation world. It allows a user to interactively manipulate a robot 
or an object and create contacts between them. Xue et al. (2009) implemented a grasping 
planning system based on GraspIt! to plan high-quality grasps. León et al. (2010) presented 
OpenGRASP, a toolkit for simulating grasping and dexterous manipulation. It provides a 
holistic environment that can deal with a variety of factors associated with robotic grasp-
ing. These methods produce successful grasps and detailed reviews could be found in the 
survey Sahbani et al. (2012).

Both traditional and deep learning-based 6D object pose estimation algorithms are 
utilized to assist the robotic grasping tasks. Most of the methods Zeng et  al. (2017b) 
presented in the Amazon picking challenge utilize the 6D poses estimated through par-
tial registration first. Zeng et  al. (2017b) proposed an approach which segments and 
labels multiple views of a scene with a fully convolutional neural network, and then 
fits pre-scanned 3D object models to the segmentation results to obtain the 6D object 
poses. Besides, Billings and Johnson-Roberson (2018) proposed a method which jointly 
accomplish object pose estimation and grasp point selection using a Convolutional Neu-
ral Network (CNN) pipeline. Wong et  al. (2017) proposed a method which integrated 
RGB-based object segmentation and depth image-based partial registration to obtain the 
pose of the target object. They presented a novel metric for scoring model registration 
quality, and conducted multi-hypothesis registration, which achieved accurate pose esti-
mation with 1cm position error and < 5

◦ angle error. Using this accurate 6D object pose, 
grasps are conducted with a high success rate. A few deep learning-based 6D object 

Fig. 19   Typical functional flow-chart of 6DoF grasp methods based on the complete shape
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pose estimation approaches such as DenseFusion Wang et al. (2019) also illustrate high 
successful rates in conducting practical robotic grasping tasks.

Methods of conducting shape completion There also exist one kind of methods, which 
conduct 3D shape completion for the partial point cloud, and then estimate grasps. 3D 
shape completion provides the complete geometry of objects from partial observations, 
and estimating 6DoF grasp poses on the completed shape is more precise. Most of this 
kind of methods estimate the object geometry from partial point cloud  (Varley et  al. 
2017; Lundell et al. 2019; Van der Merwe et al. 2019; Watkins-Valls et al. 2019; Tosun 
et al. 2020), and some other methods (Wang et al. 2018; Yan et al. 2018, 2019; Gao and 
Tedrake 2019; Sajjan et al. 2019) utilize the RGB-D images. Many of them (Wang et al. 
2018; Watkins-Valls et al. 2019) also combine tactile information for better prediction.

Varley et  al. (2017) proposed an architecture to enable robotic grasp planning via 
shape completion. They utilized a 3D convolutional neural network (CNN) to complete 
the shape, and created a fast mesh for objects not to be grasped, a detailed mesh for 
objects to be grasped. The grasps are finally estimated on the reconstructed mesh in 
GraspIt!  Miller and Allen (2004) and the grasp with the highest quality is executed. 
Lundell et al. (2019) proposed a shape completion DNN architecture to capture shape 
uncertainties, and a probabilistic grasp planning method which utilizes the shape uncer-
tainty to propose robust grasps. Van der Merwe et  al. (2019) proposed PointSDF to 
learn a signed distance function implicit surface for a partially viewed object, and pro-
posed a grasp success prediction learning architecture which implicitly learns geometri-
cally aware point cloud encodings. Watkins-Valls et al. (2019) also incorporated depth 
and tactile information to create rich and accurate 3D models useful for robotic manipu-
lation tasks. They utilized both the depth and tactile as input and fed them directly into 
the model rather than using the tactile information to refine the results. Tosun et  al. 
(2020) utilized a grasp proposal network and a learned 3D shape reconstruction net-
work, where candidate grasps generated from the first network are refined using the 3D 
reconstruction result of the second network. These above methods mainly utilize depth 
data or point cloud as inputs.

Wang et al. (2018) perceived accurate 3D object shape by incorporating visual and tac-
tile observations, as well as prior knowledge of common object shapes learned from large-
scale shape repositories. They first applied neural networks with learned shape priors to 
predict an object’s 3D shape from a single-view color image and the tactile sensing was 
used to refine the shape. Yan et al. (2018) proposed a deep geometry-aware grasping net-
work (DGGN), which first learn a 6DoF grasp from RGB-D input. DGGN has a shape 
generation network and an outcome prediction network. Yan et al. (2019) further presented 
a self-supervised shape prediction framework that reconstructs full 3D point clouds as rep-
resentation for robotic applications. They first used an object detection network to obtain 
object-centric color, depth and mask images, which will be used to generate a 3D point 
cloud of the detected object. A grasping critic network is then used to predict a grasp. Gao 
and Tedrake (2019) proposed a new hybrid object representation consisting of semantic 
keypoints and dense geometry (a point cloud or mesh) as the interface between the percep-
tion module and motion planner. Leveraging advances in learning-based keypoint detection 
and shape completion, both dense geometry and keypoints can be perceived from raw sen-
sor input. Sajjan et al. (2019) presented ClearGrasp, a deep learning approach for estimat-
ing accurate 3D geometry of transparent objects from a single RGB-D image for robotic 
manipulation. ClearGrasp uses deep convolutional networks to infer surface normals, 
masks of transparent surfaces, and occlusion boundaries, which will refine the initial depth 
estimates for all transparent surfaces in the scene.
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Comparisons and Discussions When accurate 3D models are available, the 6D object 
pose could be achieved, which affords the generation of grasps for the target object. How-
ever, when existing 3D models are different from the target one, the 6D poses will have a 
large deviation, and this will lead to the failure of the grasp. In this case, we can complete 
the partial-view point cloud and triangulate it to obtain the complete shape. The grasps 
could be generated on the reconstructed and complete 3D shape. Various grasp simulation 
toolkits are developed to facilitate the grasps generation.

Aiming at methods of estimating the 6D object pose, there exist some challenges. 
Firstly, this kind of methods highly rely on the accuracy of object segmentation. However, 
training a network which supports a wide range of objects is not easy. Meanwhile, these 
methods require the 3D object to grasp be similar enough to those of the annotated models 
such that correspondences can be found. It is also challenging to compute grasp points 
with high qualities for objects in cluttered environments where occlusion usually occurs. 
Aiming at methods of conducting shape completion, there also exist some challenges. The 
lack of information, especially the geometry on the opposite direction from the camera, 
extremely affect the completion accuracy. However, using multi-source data would be a 
future direction.

5 � Challenges and future directions

In this survey, we review related works on vision-based robotic grasping from three key 
aspects: object localization, object pose estimation and grasp estimation. The purpose of 
this survey is to allow readers to get a comprehensive map about how to detect a successful 
grasp given the initial raw data. Various subdivided methods are introduced in each sec-
tion, as well as the related datasets and comparisons. Comparing with existing literatures, 
we present an end-to-end review about how to conduct a vision-based robotic grasp detec-
tion system.

Although so many intelligent algorithms are proposed to assist the robotic grasping 
tasks, challenges still exist in practical applications, such as the insufficient information in 
data acquisition, the insufficient amounts of training data, the generalities in grasping novel 
objects and the difficulties in grasping transparent objects.

The first challenge is the insufficient information in data acquisition. Currently, the 
mostly used input to decide a grasp is one RGB-D image from one fixed position, which 
lacks the information backwards. It’s really hard to decide the grasp when we do not have 
the full object geometry. Aiming at this challenge, some strategies could be adopted. The 
first strategy is to utilize multi-view data. A more widely perspective data is much bet-
ter since the partial views are not enough to get a comprehensive knowledge of the target 
object. Methods based on poses of the robotic arms  (Blomqvist et  al. 2020) or the slam 
methods  Dai et  al. (2017) can be adopted to merge the multi-view data. Instead of fus-
ing multi-view data, the best grasping view could also be chosen explicitly  Morrison 
et al. (2019). The second one is to involve multi-sensor data such as the haptic informa-
tion. There exist some works (Lee et al. 2019; Falco et al. 2019; Hogan et al. 2020) which 
already involve the tactile data to assist the robotic grasping tasks.

The second challenge is the insufficient amounts of training data. The requirements for 
the training data is extremely large if we want to build an intelligent enough grasp detec-
tion system. The amount of open grasp datasets is really small and the involved objects 
are mostly instance-level, which is too small compared with the objects in our daily life. 
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Aiming at this challenges, some strategies could be adopted. The first strategy is to utilize 
simulated environments to generate virtual data Tremblay et al. (2018). Once the virtual 
grasp environments are built, large amounts of virtual data could be generated by simulat-
ing the sensors from various angles. Since there exists gaps from the simulation data to the 
practical one, many domain adaptation methods (Bousmalis et al. 2018; Fang et al. 2018; 
Zhao et al. 2020) have been proposed. The second strategy is to utilize the semi-supervised 
learning approaches (Mahajan et al. 2020; Yokota et al. 2020) to learn to grasp with incor-
porate unlabeled data. The third strategy is to utilize self-supervised learning methods to 
generate the labeled data for 6D object pose estimation Deng et al. (2020) or grasp detec-
tion Suzuki et al. (2020).

The third challenge is the generalities in grasping novel objects. The mentioned grasp 
estimation methods, except for methods of evaluating the 6D object pose, all have certain 
generalities in dealing with novel objects. But these methods mostly work well on trained 
dataset and show reduced performance for novel objects. Other than improving the per-
formance of the mentioned algorithms, some strategies could be adopted. The first strat-
egy is to utilize the category-level 6D object pose estimation. Lots of works (Wang et al. 
2019; Park et al. 2020; Wang et al. 2019; Chen et al. 2020) start to deal with the 6D object 
pose estimation of category-level objects, since high performance have been achieved on 
instance-level objects. The second strategy is to involve more semantic information in the 
grasp detection system. With the help of various shape segmentation methods  (Yu et al. 
2019; Luo et al. 2020), parts of the object instead of the complete shape can be used to 
decrease the range of candidate grasping points. The surface material and the weight infor-
mation could also be estimated to obtain more precise grasping detection results.

The fourth challenge lies in grasping transparent objects. Transparent objects are preva-
lent in our daily life, but capturing their 3D information is rather difficult for nowadays 
depth sensors. There exist some pioneering works that tackle this problem in different 
ways. GlassLoc Zhou et al. (2019) was proposed for grasp pose detection of transparent 
objects in transparent clutter using plenoptic sensing. KeyPose Liu et al. (2020) conducted 
multi-view 3D labeling and keypoint estimation for transparent objects in order to estimate 
their 6D poses. ClearGrasp Sajjan et al. (2019) estimates accurate 3D geometry of trans-
parent objects from a single RGB-D image for robotic manipulation. This area will be fur-
ther researched in order to make grasps much accurate and robust in daily life.

References

Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plappert M, Powell G, 
Ribas R, et al (2019) Solving rubik’s cube with a robot hand. Preprint arXiv​:1910.07113​

Aldoma A, Vincze M, Blodow N, Gossow D, Gedikli S, Rusu RB, Bradski G (2011) Cad-model recognition 
and 6dof pose estimation using 3d cues. In: 2011 IEEE international conference on computer vision 
workshops (ICCV workshops), IEEE, pp 585–592

Aoki Y, Goforth H, Srivatsan RA, Lucey S (2019) Pointnetlk: robust & efficient point cloud registration 
using pointnet. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp 7163–7172

Ardón P, Pairet È, Petrick RP, Ramamoorthy S, Lohan KS (2019) Learning grasp affordance reasoning 
through semantic relations. IEEE Robot Autom Lett 4(4):4571–4578

Asif U, Tang J, Harrer S (2018) Graspnet: an efficient convolutional neural network for real-time grasp 
detection for low-powered devices. In: IJCAI, pp 4875–4882

Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: European conference on com-
puter vision, Springer, pp 404–417

http://arxiv.org/abs/1910.07113


1723Vision‑based robotic grasping from object localization, object…

1 3

Bellekens B, Spruyt V, Berkvens R, Weyn M (2014) A survey of rigid 3d pointcloud registration algorithms. 
In: AMBIENT 2014: the fourth international conference on ambient computing, applications, ser-
vices and technologies, August 24–28, 2014, Rome, Italy, pp 8–13

Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE 
Trans Pattern Anal Mach Intell 24(4):509–522

Berscheid L, Meißner P, Kröger T (2019) Robot learning of shifting objects for grasping in cluttered envi-
ronments. Preprint arXiv​:1907.11035​

Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 
14(2):239–256

Bhatia S, Chalup SK et al (2013) Segmenting salient objects in 3d point clouds of indoor scenes using geo-
desic distances. J Signal Inf Process 4(03):102

Billings G, Johnson-Roberson M (2018) Silhonet: An RGB method for 3d object pose estimation and grasp 
planning. CoRR abs/1809.06893

Blomqvist K, Breyer M, Cramariuc A, Förster J, Grinvald M, Tschopp F, Chung JJ, Ott L, Nieto J, Siegwart 
R (2020) Go fetch: mobile manipulation in unstructured environments. Preprint arXiv​:2004.00899​

Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. Pre-
print arXiv​:2004.10934​

Bohg J, Kragic D (2010) Learning grasping points with shape context. Robot Auton Syst 58(4):362–377
Bohg J, Morales A, Asfour T, Kragic D (2014) Data-driven grasp synthesis: a survey. IEEE Trans Robot 

30(2):289–309
Bolya D, Zhou C, Xiao F, Lee YJ (2019) Yolact++: better real-time instance segmentation. Preprint arXiv​

:1912.06218​
Bolya D, Zhou C, Xiao F, Lee YJ (2019) Yolact: real-time instance segmentation. In: Proceedings of the 

IEEE international conference on computer vision, pp 9157–9166
Borji A, Cheng MM, Hou Q, Jiang H, Li J (2019) Salient object detection: A survey. Computational visual 

media 5(2):117–150
Borst C, Fischer M, Hirzinger G (2003) Grasping the dice by dicing the grasp. In: IEEE/RSJ international 

conference on intelligent robots and systems, IEEE, vol 4, pp 3692–3697
Bousmalis K, Irpan A, Wohlhart P, Bai Y, Kelcey M, Kalakrishnan M, Downs L, Ibarz J, Pastor P, Konolige 

K et al (2018) Using simulation and domain adaptation to improve efficiency of deep robotic grasp-
ing. In: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, pp 4243–4250

Brachmann E, Krull A, Michel F, Gumhold S, Shotton J, Rother C (2014) Learning 6d object pose estima-
tion using 3d object coordinates. In: European conference on computer vision, Springer, pp 536–551

Brachmann E, Michel F, Krull A, Ying Yang M, Gumhold S et al (2016) Uncertainty-driven 6d pose estima-
tion of objects and scenes from a single rgb image. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 3364–3372

Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. “ O’Reilly 
Media, Inc.”

Cai J, Cheng H, Zhang Z, Su J (2019) Metagrasp: data efficient grasping by affordance interpreter network. 
In: 2019 international conference on robotics and automation (ICRA), IEEE, pp 4960–4966

Caldera S, Rassau A, Chai D (2018) Review of deep learning methods in robotic grasp detection. Multi-
modal Technol Interact 2(3):57

Castro P, Armagan A, Kim TK (2020) Accurate 6d object pose estimation by pose conditioned mesh recon-
struction. In: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal pro-
cessing (ICASSP), IEEE, pp 4147–4151

Chen D, Li J, Wang Z, Xu K (2020) Learning canonical shape space for category-level 6d object pose and 
size estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 11973–11982

Chen H, Li Y (2018) Progressively complementarity-aware fusion network for rgb-d salient object detection. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3051–3060

Chen H, Li Y (2019) Cnn-based rgb-d salient object detection: learn, select and fuse. Preprint arXiv​
:1909.09309​

Chen H, Li Y, Su D (2019) Multi-modal fusion network with multi-scale multi-path and cross-modal inter-
actions for rgb-d salient object detection. Pattern Recogn 86:376–385

Chen H, Sun K, Tian Z, Shen C, Huang Y, Yan Y (2020) Blendmask: top-down meets bottom-up for 
instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp 8573–8581

Chen IM, Burdick JW (1993) Finding antipodal point grasps on irregularly shaped objects. IEEE Trans 
Robot Autom 9(4):507–512

http://arxiv.org/abs/1907.11035
http://arxiv.org/abs/2004.00899
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1912.06218
http://arxiv.org/abs/1912.06218
http://arxiv.org/abs/1909.09309
http://arxiv.org/abs/1909.09309


1724	 G. Du et al.

1 3

Chen K, Pang J, Wang J, Xiong Y, Li X, Sun S, Feng W, Liu Z, Shi J, Ouyang W, et al (2019) Hybrid 
task cascade for instance segmentation. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp 4974–4983

Chen LC, Hermans A, Papandreou G, Schroff F, Wang P, Adam H (2018) Masklab: instance segmenta-
tion by refining object detection with semantic and direction features. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp 4013–4022

Chen W, Jia X, Chang HJ, Duan J, Leonardis A (2020) G2l-net: global to local network for real-time 6d 
pose estimation with embedding vector features. In: Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, pp 4233–4242

Chen X, Girshick R, He K, Dollár P (2019) Tensormask: a foundation for dense object segmentation. In: 
Proceedings of the IEEE international conference on computer vision, pp 2061–2069

Chen X, Ma H, Wan J, Li B, Xia T (2017) Multi-view 3d object detection network for autonomous 
driving. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 
1907–1915

Cheng MM, Mitra NJ, Huang X, Torr PH, Hu SM (2014) Global contrast based salient region detection. 
IEEE Trans Pattern Anal Mach Intell 37(3):569–582

Choy C, Dong W, Koltun V (2020) Deep global registration. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp 2514–2523

Chu FJ, Xu R, Vela PA (2018) Real-world multiobject, multigrasp detection. IEEE Robot Autom Lett 
3(4):3355–3362

Chu FJ, Xu R, Vela PA (2019) Detecting robotic affordances on novel objects with regional attention and 
attributes. Preprint arXiv​:1909.05770​

Crivellaro A, Rad M, Verdie Y, Yi KM, Fua P, Lepetit V (2017) Robust 3d object tracking from monoc-
ular images using stable parts. IEEE Trans Pattern Anal Mach Intell 40(6):1465–1479

Dai A, Nießner M, Zollhöfer M, Izadi S, Theobalt C (2017) Bundlefusion: real-time globally consistent 
3d reconstruction using on-the-fly surface reintegration. ACM Trans Graph (ToG) 36(4):1

Dai J, He K, Li Y, Ren S, Sun J (2016) Instance-sensitive fully convolutional networks. In: European 
conference on computer vision, Springer, pp 534–549

Dai J, He K, Sun J (2016) Instance-aware semantic segmentation via multi-task network cascades. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3150–3158

Dai J, Li Y, He K, Sun J (2016) R-fcn: object detection via region-based fully convolutional networks. 
In: Advances in neural information processing systems, pp 379–387

Danielczuk M, Matl M, Gupta S, Li A, Lee A, Mahler J, Goldberg K (2019) Segmenting unknown 3d 
objects from real depth images using mask r-cnn trained on synthetic data. In: 2019 international 
conference on robotics and automation (ICRA), IEEE, pp 7283–7290

Deng X, Xiang Y, Mousavian A, Eppner C, Bretl T, Fox D (2020) Self-supervised 6d object pose esti-
mation for robot manipulation. In: International conference on robotics and automation (ICRA)

Depierre A, Dellandréa E, Chen L (2018) Jacquard: a large scale dataset for robotic grasp detection. In: 2018 
IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 3511–3516

Depierre A, Dellandréa E, Chen L (2020) Optimizing correlated graspability score and grasp regression 
for better grasp prediction. Preprint arXiv​:2002.00872​

DeTone D, Malisiewicz T, Rabinovich A (2018) Superpoint: self-supervised interest point detection and 
description. In: Proceedings of the IEEE conference on computer vision and pattern recognition 
workshops, pp 224–236

Ding D, Liu YH, Wang MY (2001) On computing immobilizing grasps of 3-d curved objects. In: IEEE 
international symposium on computational intelligence in robotics and automation, IEEE, pp 11–16

Do TT, Cai M, Pham T, Reid I (2018) Deep-6dpose: recovering 6d object pose from a single rgb image. 
Preprint arXiv​:1802.10367​

Do TT, Nguyen A, Reid I (2018) Affordancenet: an end-to-end deep learning approach for object affordance 
detection. In: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1–5

Domae Y, Okuda H, Taguchi Y, Sumi K, Hirai T (2014) Fast graspability evaluation on single depth 
maps for bin picking with general grippers. In: 2014 IEEE international conference on robotics 
and automation (ICRA), IEEE, pp. 1997–2004

Dong Z, Li G, Liao Y, Wang F, Ren P, Qian C (2020) Centripetalnet: pursuing high-quality keypoint 
pairs for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition, pp 10519–10528

Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to repre-
sent a digitized line or its caricature. Cartogr Int J Geogr Inf Geovis 10(2):112–122

Drost B, Ilic S (2012) 3d object detection and localization using multimodal point pair features. In: Interna-
tional conference on 3D imaging, modeling, processing, visualization transmission, pp 9–16

http://arxiv.org/abs/1909.05770
http://arxiv.org/abs/2002.00872
http://arxiv.org/abs/1802.10367


1725Vision‑based robotic grasping from object localization, object…

1 3

Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: efficient and robust 3d object 
recognition. In: 2010 IEEE computer society conference on computer vision and pattern recognition, 
pp 998–1005

Du L, Ye X, Tan X, Feng J, Xu Z, Ding E, Wen S (2020) Associate-3ddet: perceptual-to-conceptual associa-
tion for 3d point cloud object detection. In: Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition, pp 13329–13338

Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019) Centernet: keypoint triplets for object detection. In: 
Proceedings of the IEEE international conference on computer vision, pp 6569–6578

Engelmann F, Bokeloh M, Fathi A, Leibe B, Nießner M (2020) 3d-mpa: multi-proposal aggregation for 3d 
semantic instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, pp 9031–9040

Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2147–2154

Falco P, Lu S, Natale C, Pirozzi S, Lee D (2019) A transfer learning approach to cross-modal object recog-
nition: from visual observation to robotic haptic exploration. IEEE Trans Robot 35(4):987–998

Fan Y, Tomizuka M (2019) Efficient grasp planning and execution with multifingered hands by surface fit-
ting. IEEE Robot Autom Lett 4(4):3995–4002

Fan Z, Yu JG, Liang Z, Ou J, Gao C, Xia GS, Li Y (2020) Fgn: fully guided network for few-shot instance 
segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 9172–9181

Fang HS, Wang C, Gou M, Lu C (2020) Graspnet-1billion: a large-scale benchmark for general object 
grasping. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 
pp 11444–11453

Fang K, Bai Y, Hinterstoisser S, Savarese S, Kalakrishnan M (2018) Multi-task domain adaptation for deep 
learning of instance grasping from simulation. In: 2018 IEEE international conference on robotics 
and automation (ICRA), IEEE, pp 3516–3523

Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications 
to image analysis and automated cartography. Commun ACM 24(6):381–395

Fitzgibbon AW, Fisher RB et  al (1996) A buyer’s guide to conic fitting. Department of Artificial Intelli-
gence, University of Edinburgh, Edinburgh

Florence PR, Manuelli L, Tedrake R (2018) Dense object nets: learning dense visual object descriptors by 
and for robotic manipulation. Preprint arXiv​:1806.08756​

Frome A, Huber D, Kolluri R, Bülow T, Malik J (2004) Recognizing objects in range data using regional 
point descriptors. In: European conference on computer vision, Springer, pp 224–237

Gao G, Lauri M, Wang Y, Hu X, Zhang J, Frintrop S (2020) 6d object pose regression via supervised learn-
ing on point clouds. Preprint arXiv​:2001.08942​

Gao W, Tedrake R (2019) kpam-sc: generalizable manipulation planning using keypoint affordance and 
shape completion. Preprint arXiv​:1909.06980​

Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 
1440–1448

Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and 
semantic segmentation. In: IEEE conference on computer vision and pattern recognition, CVPR ’14, 
pp 580–587

Gojcic Z, Zhou C, Wegner JD, Wieser A (2019) The perfect match: 3d point cloud matching with smoothed 
densities. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 
5545–5554

Gonzalez M, Kacete A, Murienne A, Marchand E (2020) Yoloff: you only learn offsets for robust 6dof 
object pose estimation. Preprint arXiv​:2002.00911​

Gordo A, Almazán J, Revaud J, Larlus D (2016) Deep image retrieval: learning global representations for 
image search. In: European conference on computer vision, Springer, pp 241–257

Goron LC, Marton ZC, Lazea G, Beetz M (2012) Robustly segmenting cylindrical and box-like objects in 
cluttered scenes using depth cameras. In: ROBOTIK 2012; 7th German conference on robotics, VDE, 
pp 1–6

Graham B, Engelcke M, van der Maaten L (2018) 3d semantic segmentation with submanifold sparse con-
volutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp 9224–9232

Graham B, van  der Maaten L (2017) Submanifold sparse convolutional networks. Preprint arXiv​
:1706.01307​

http://arxiv.org/abs/1806.08756
http://arxiv.org/abs/2001.08942
http://arxiv.org/abs/1909.06980
http://arxiv.org/abs/2002.00911
http://arxiv.org/abs/1706.01307
http://arxiv.org/abs/1706.01307


1726	 G. Du et al.

1 3

Guo D, Kong T, Sun F, Liu H (2016) Object discovery and grasp detection with a shared convolutional 
neural network. In: IEEE international conference on robotics and automation (ICRA), IEEE, pp 
2038–2043

Guo D, Sun F, Liu H, Kong T, Fang B, Xi N (2017) A hybrid deep architecture for robotic grasp detec-
tion. In: 2017 IEEE international conference on robotics and automation (ICRA), IEEE, pp 
1609–1614

Guo F, Wang W, Shen J, Shao L, Yang J, Tao D, Tang YY (2017) Video saliency detection using object 
proposals. IEEE Trans Cybern 48(11):3159–3170

Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok NM (2016) A comprehensive performance evalua-
tion of 3d local feature descriptors. Int J Comput Vis 116(1):66–89

Guo Y, Wang H, Hu Q, Liu H, Liu L, Bennamoun M (2019) Deep learning for 3d point clouds: a survey. 
Preprint arXiv​:1912.12033​

Hafiz AM, Bhat GM (2020) A survey on instance segmentation: state of the art. Int J Multimed Inf Retr 
9(3):171–189

Hagelskjær F, Buch AG (2019) Pointposenet: accurate object detection and 6 dof pose estimation in 
point clouds. Preprint arXiv​:1912.09057​

Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient and cate-
gory-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100

Han L, Zheng T, Xu L, Fang L (2020) Occuseg: occupancy-aware 3d instance segmentation. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2940–2949

Hariharan B, Arbeláez P, Girshick R, Malik J (2014) Simultaneous detection and segmentation. In: 
European conference on computer vision, Springer, pp 297–312

He K, Gkioxari G, Dollár P, Girshick RB (2017) Mask r-cnn. IEEE International conference on com-
puter vision (ICCV), pp 2980–2988

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, pp 770–778

He Y, Sun W, Huang H, Liu J, Fan H, Sun J (2020) Pvn3d: a deep point-wise 3d keypoints voting net-
work for 6dof pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, pp 11632–11641

Hinterstoisser S, Lepetit V, Ilic S, Holzer S, Bradski G, Konolige K, Navab N (2012) Model based train-
ing, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Asian 
conference on computer vision, Springer, pp 548–562

Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: International conference 
on artificial neural networks, Springer, pp 44–51

Hodan T, Barath D, Matas J (2020) Epos: estimating 6d pose of objects with symmetries. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11703–11712

Hodaň T, Haluza P, Obdržálek Š, Matas J, Lourakis M, Zabulis X (2017) T-LESS: an RGB-D dataset 
for 6D pose estimation of texture-less objects. In: IEEE winter conference on applications of com-
puter vision (WACV)

Hodan T, Kouskouridas R, Kim T, Tombari F, Bekris KE, Drost B, Groueix T, Walas K, Lepetit V, 
Leonardis A, Steger C, Michel F, Sahin C, Rother C, Matas J (2018) A summary of the 4th inter-
national workshop on recovering 6d object pose. CoRR abs/1810.03758

Hodaň T, Michel F, Brachmann E, Kehl W, GlentBuch A, Kraft D, Drost B, Vidal J, Ihrke S, Zabulis X 
et al (2018) Bop: benchmark for 6d object pose estimation. In: Proceedings of the European con-
ference on computer vision (ECCV), pp 19–34

Hodaň T, Zabulis X, Lourakis M, Obdržálek Š, Matas J (2015) Detection and fine 3d pose estimation 
of texture-less objects in rgb-d images. In: 2015 IEEE/RSJ international conference on intelligent 
robots and systems (IROS), IEEE, pp 4421–4428

Hogan FR, Ballester J, Dong S, Rodriguez A (2020) Tactile dexterity: manipulation primitives with tac-
tile feedback. Preprint arXiv​:2002.03236​

Hou J, Dai A, Nießner M (2019) 3d-sis: 3d semantic instance segmentation of rgb-d scans. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp 4421–4430

Hou Q, Cheng MM, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection 
with short connections. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 3203–3212

Hu Y, Fua P, Wang W, Salzmann M (2020) Single-stage 6d object pose estimation. In: Proceedings of 
the IEEE/CVF conference on computer vision and pattern recognition, pp 2930–2939

Hu Y, Hugonot J, Fua P, Salzmann M (2019) Segmentation-driven 6d object pose estimation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 3385–3394

http://arxiv.org/abs/1912.12033
http://arxiv.org/abs/1912.09057
http://arxiv.org/abs/2002.03236


1727Vision‑based robotic grasping from object localization, object…

1 3

Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional 
feature integration approach. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 2083–2090

Jiang H, Xiao J (2013) A linear approach to matching cuboids in rgbd images. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp 2171–2178

Jiang Y, Moseson S, Saxena A (2011) Efficient grasping from rgbd images: learning using a new rectangle 
representation. In: IEEE international conference on robotics and automation, IEEE, pp 3304–3311

Johnson AE (1997) Spin-images: a representation for 3-d surface matching
Kaiser A, Ybanez Zepeda JA, Boubekeur T (2019) A survey of simple geometric primitives detection meth-

ods for captured 3d data. In: Computer graphics forum, Wiley Online Library, vol 38, pp 167–196
Kehl W, Manhardt F, Tombari F, Ilic S, Navab N (2017) Ssd-6d: making rgb-based 3d detection and 6d pose 

estimation great again. In: Proceedings of the IEEE international conference on computer vision, pp 
1521–1529

Khan SH, He X, Bennamoun M, Sohel F, Togneri R (2015) Separating objects and clutter in indoor scenes. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4603–4611

Kim G, Huber D, Hebert M (2008) Segmentation of salient regions in outdoor scenes using imagery and 3-d 
data. In: 2008 IEEE workshop on applications of computer vision, IEEE, pp 1–8

Kirillov A, Wu Y, He K, Girshick R (2020) Pointrend: image segmentation as rendering. In: Proceedings of 
the IEEE/CVF conference on computer vision and pattern recognition, pp 9799–9808

Kirkpatrick D, Mishra B, Yap CK (1992) Quantitative steinitz’s theorems with applications to multifingered 
grasping. Discrete Comput Geom 7(3):295–318

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural net-
works. In: Proceedings of the 25th international conference on neural information processing sys-
tems—volume 1, NIPS’12, pp 1097–1105

Kumra S, Joshi S, Sahin F (2019) Antipodal robotic grasping using generative residual convolutional neural 
network. Preprint arXiv​:1909.04810​

Kumra S, Kanan C (2017) Robotic grasp detection using deep convolutional neural networks. In: IEEE/RSJ 
international conference on intelligent robots and systems (IROS), IEEE, pp 769–776

Lang AH, Vora S, Caesar H, Zhou L, Yang J, Beijbom O (2019) Pointpillars: fast encoders for object detec-
tion from point clouds. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp 12697–12705

Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the European 
conference on computer vision (ECCV), pp 734–750

Lee MA, Zhu Y, Srinivasan K, Shah P, Savarese S, Fei-Fei L, Garg A, Bohg J (2019) Making sense of 
vision and touch: self-supervised learning of multimodal representations for contact-rich tasks. In: 
2019 international conference on robotics and automation (ICRA), IEEE, pp 8943–8950

Lee Y, Park J (2020) Centermask: real-time anchor-free instance segmentation. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, pp 13906–13915

Lenz I, Lee H, Saxena A (2015) Deep learning for detecting robotic grasps. Int J Robot Res 34(4–5):705–724
León B, Ulbrich S, Diankov R, Puche G, Przybylski M, Morales A, Asfour T, Moisio S, Bohg J, Kuffner 

J, Dillmann R (2010) Opengrasp: a toolkit for robot grasping simulation. In: Ando N, Balakirsky S, 
Hemker T, Reggiani M, von Stryk O (eds) Simulation, modeling, and programming for autonomous 
robots. Springer, Berlin, pp 109–120

Lepetit V, Fua P et al (2005) Monocular model-based 3d tracking of rigid objects: a survey. Found Trends® 
Comput Graph Vis 1(1):1–89

Lepetit V, Moreno-Noguer F, Fua P (2009) Epnp: an accurate o(n) solution to the pnp problem. IJCV 
81(2):155–166

Li G, Liu Z, Ye L, Wang Y, Ling H (2020) Cross-modal weighting network for rgb-d salient object detection
Li Y, Qi H, Dai J, Ji X, Wei Y (2017) Fully convolutional instance-aware semantic segmentation. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp 2359–2367
Li Y, Wang G, Ji X, Xiang Y, Fox D (2018) Deepim: deep iterative matching for 6d pose estimation. Lecture 

notes in computer science, pp 695–711
Li Z, Wang G, Ji X (2019) Cdpn: coordinates-based disentangled pose network for real-time rgb-based 6-dof 

object pose estimation. In: Proceedings of the IEEE international conference on computer vision, pp 
7678–7687

Liang H, Ma X, Li S, Görner M, Tang S, Fang B, Sun F, Zhang J (2019) Pointnetgpd: detecting grasp con-
figurations from point sets. In: 2019 international conference on robotics and automation (ICRA), 
IEEE, pp 3629–3635

Liang M, Yang B, Chen Y, Hu R, Urtasun R (2019) Multi-task multi-sensor fusion for 3d object detection. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7345–7353

http://arxiv.org/abs/1909.04810


1728	 G. Du et al.

1 3

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for 
object detection. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp 2117–2125

Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceed-
ings of the IEEE international conference on computer vision, pp 2980–2988

Liu C, Furukawa Y (2019) Masc: multi-scale affinity with sparse convolution for 3d instance segmenta-
tion. Preprint arXiv​:1902.04478​

Liu F, Fang P, Yao Z, Fan R, Pan Z, Sheng W, Yang H (2019) Recovering 6d object pose from rgb indoor 
image based on two-stage detection network withmulti-task loss. Neurocomputing 337:15–23

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020) Deep learning for generic 
object detection: a survey. Int J Comput Vis 128(2):261–318

Liu M, Pan Z, Xu K, Ganguly K, Manocha D (2019) Generating grasp poses for a high-dof gripper using 
neural networks. Preprint arXiv​:1903.00425​

Liu N, Han J (2016) Dhsnet: deep hierarchical saliency network for salient object detection. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp 678–686

Liu N, Han J, Yang MH (2018) Picanet: learning pixel-wise contextual attention for saliency detection. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3089–3098

Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp 8759–8768

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox 
detector. In: European conference on computer vision, Springer, pp 21–37

Liu X, Jonschkowski R, Angelova A, Konolige K (2020) Keypose: multi-view 3d labeling and keypoint 
estimation for transparent objects. In: Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition, pp 11602–11610

Liu Y, Zhang Q, Zhang D, Han J (2019) Employing deep part-object relationships for salient object 
detection. In: Proceedings of the IEEE international conference on computer vision, pp 1232–1241

Liu Z, Zhao X, Huang T, Hu R, Zhou Y, Bai X (2020) Tanet: robust 3d object detection from point 
clouds with triple attention. In: AAAI, pp 11677–11684

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

Lou X, Yang Y, Choi C (2019) Learning to generate 6-dof grasp poses with reachability awareness. Pre-
print arXiv​:1910.06404​

Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the interna-
tional conference on computer vision-Volume 2, ICCV ’99, p 1150

Lu W, Wan G, Zhou Y, Fu X, Yuan P, Song S (2019) Deepicp: an end-to-end deep neural network for 3d 
point cloud registration. Preprint arXiv​:1905.04153​

Lundell J, Verdoja F, Kyrki V (2019) Robust grasp planning over uncertain shape completions. Preprint 
arXiv​:1903.00645​

Luo T, Mo K, Huang Z, Xu J, Hu S, Wang L, Su H (2020) Learning to group: a bottom-up framework 
for 3d part discovery in unseen categories. In: International conference on learning representations

Mahajan M, Bhattacharjee T, Krishnan A, Shukla P, Nandi G (2020) Semi-supervised grasp detection by 
representation learning in a vector quantized latent space. Preprint arXiv​:2001.08477​

Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, Ojea JA, Goldberg K (2017) Dex-net 2.0: seep 
learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR arXiv​
:1703.09312​

Malisiewicz T, Gupta A, Efros AA (2011) Ensemble of exemplar-svms for object detection and beyond. 
In: 2011 International conference on computer vision, IEEE, pp 89–96

Mellado N, Aiger D, Mitra NJ (2014) Super 4pcs fast global pointcloud registration via smart indexing. 
In: Computer graphics forum, Wiley Online Library, vol 33, pp 205–215

Van der Merwe M, Lu Q, Sundaralingam B, Matak M, Hermans T (2019) Learning continuous 3d recon-
structions for geometrically aware grasping. Preprint arXiv​:1910.00983​

Miller AT, Allen PK (2004) Graspit! a versatile simulator for robotic grasping. IEEE Robot Autom Mag 
11(4):110–122

Miller AT, Knoop S, Christensen HI, Allen PK (2003) Automatic grasp planning using shape primitives. 
ICRA 2:1824–1829

Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D (2020) Image segmentation 
using deep learning: a survey. Preprint arXiv​:2001.05566​

Mirtich B, Canny J (1994) Easily computable optimum grasps in 2-d and 3-d. In: IEEE international 
conference on robotics and automation, IEEE, pp 739–747

http://arxiv.org/abs/1902.04478
http://arxiv.org/abs/1903.00425
http://arxiv.org/abs/1910.06404
http://arxiv.org/abs/1905.04153
http://arxiv.org/abs/1903.00645
http://arxiv.org/abs/2001.08477
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1910.00983
http://arxiv.org/abs/2001.05566


1729Vision‑based robotic grasping from object localization, object…

1 3

Morrison D, Corke P, Leitner J (2018) Closing the loop for robotic grasping: a real-time, generative grasp 
synthesis approach. Preprint arXiv​:1804.05172​

Morrison D, Corke P, Leitner J (2019) Multi-view picking: next-best-view reaching for improved grasping 
in clutter. In: 2019 international conference on robotics and automation (ICRA), IEEE, pp 8762–8768

Mousavian A, Eppner C, Fox D (2019) 6-dof graspnet: variational grasp generation for object manipulation. 
In: Proceedings of the IEEE international conference on computer vision, pp 2901–2910

Mur-Artal R, Montiel JMM, Tardos JD (2015) Orb-slam: a versatile and accurate monocular slam system. 
IEEE Trans Robot 31(5):1147–1163

Murali A, Mousavian A, Eppner C, Paxton C, Fox D (2019) 6-dof grasping for target-driven object manipu-
lation in clutter. Preprint arXiv​:1912.03628​

Najibi M, Lai G, Kundu A, Lu Z, Rathod V, Funkhouser T, Pantofaru C, Ross D, Davis LS, Fathi A (2020) 
Dops: learning to detect 3d objects and predict their 3d shapes. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, pp 11913–11922

Nguyen VD (1987) Constructing stable grasps in 3d. In: IEEE international conference on robotics and 
automation, IEEE, vol 4, pp 234–239

Ni P, Zhang W, Zhu X, Cao Q (2020) Pointnet++ grasping: learning an end-to-end spatial grasp generation 
algorithm from sparse point clouds. Preprint arXiv​:2003.09644​

Nikandrova E, Kyrki V (2015) Category-based task specific grasping. Robot Auton Syst 70:25–35
Oberweger M, Rad M, Lepetit V (2018) Making deep heatmaps robust to partial occlusions for 3d object 

pose estimation. In: Proceedings of the European conference on computer vision (ECCV), pp 
119–134

Pang Y, Zhang L, Zhao X, Lu H (2020) Hierarchical dynamic filtering network for rgb-d salient object 
detection. In: Proceedings of the European conference on computer vision (ECCV)

Park D, Chun SY (2018) Classification based grasp detection using spatial transformer network. Preprint 
arXiv​:1803.01356​

Park D, Seo Y, Chun SY (2018) Real-time, highly accurate robotic grasp detection using fully convolutional 
neural network with rotation ensemble module. Preprint arXiv​:1812.07762​

Park D, Seo Y, Shin D, Choi J, Chun SY (2019) A single multi-task deep neural network with post-process-
ing for object detection with reasoning and robotic grasp detection. Preprint arXiv​:1909.07050​

Park K, Mousavian A, Xiang Y, Fox D (2020) Latentfusion: end-to-end differentiable reconstruction and 
rendering for unseen object pose estimation. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp 10710–10719

Park K, Patten T, Vincze M (2019) Pix2pose: pixel-wise coordinate regression of objects for 6d pose esti-
mation. In: Proceedings of the IEEE international conference on computer vision, pp 7668–7677

ten Pas A, Gualtieri M, Saenko K, Platt R (2017) Grasp pose detection in point clouds. Int J Rob Res 
36(13–14):1455–1473

Pas At, Platt R (2015) Using geometry to detect grasps in 3d point clouds. Preprint arXiv​:1501.03100​
Patil AV, Rabha P (2018) A survey on joint object detection and pose estimation using monocular vision. 

Preprint arXiv​:1811.10216​
Patten T, Park K, Vincze M (2020) Dgcm-net: dense geometrical correspondence matching network for 

incremental experience-based robotic grasping. Preprint arXiv​:2001.05279​
Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2016) Salient object detection via structured matrix 

decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832
Peng H, Li B, Xiong W, Hu W, Ji R (2014) Rgbd salient object detection: a benchmark and algorithms. In: 

European conference on computer vision, Springer, pp 92–109
Peng S, Liu Y, Huang Q, Zhou X, Bao H (2019) Pvnet: pixel-wise voting network for 6dof pose estimation. 

In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4561–4570
Pereira N, Alexandre LA (2019) Maskedfusion: mask-based 6d object pose estimation. Preprint arXiv​

:1911.07771​
Pham QH, Nguyen T, Hua BS, Roig G, Yeung SK (2019) Jsis3d: joint semantic-instance segmentation of 3d 

point clouds with multi-task pointwise networks and multi-value conditional random fields. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 8827–8836

Pham QH, Uy MA, Hua BS, Nguyen DT, Roig G, Yeung SK (2020) Lcd: learned cross-domain descriptors 
for 2d–3d matching. In: AAAI, pp 11856–11864

Piao Y, Ji W, Li J, Zhang M, Lu H (2019) Depth-induced multi-scale recurrent attention network for saliency 
detection. In: Proceedings of the IEEE international conference on computer vision, pp 7254–7263

Pinheiro PO, Collobert R, Dollár P (2015) Learning to segment object candidates. In: Advances in neural 
information processing systems, pp 1990–1998

Pinheiro PO, Lin TY, Collobert R, Dollár P (2016) Learning to refine object segments. In: European confer-
ence on computer vision, Springer, pp 75–91

http://arxiv.org/abs/1804.05172
http://arxiv.org/abs/1912.03628
http://arxiv.org/abs/2003.09644
http://arxiv.org/abs/1803.01356
http://arxiv.org/abs/1812.07762
http://arxiv.org/abs/1909.07050
http://arxiv.org/abs/1501.03100
http://arxiv.org/abs/1811.10216
http://arxiv.org/abs/2001.05279
http://arxiv.org/abs/1911.07771
http://arxiv.org/abs/1911.07771


1730	 G. Du et al.

1 3

Pinto L, Gupta A (2016) Supersizing self-supervision: learning to grasp from 50k tries and 700 robot hours. 
In: IEEE International conference on robotics and automation (ICRA), IEEE, pp 3406–3413

Ponce J, Sullivan S, Boissonnat JD, Merlet JP (1993) On characterizing and computing three-and four-finger 
force-closure grasps of polyhedral objects. In: IEEE international conference on robotics and automa-
tion, IEEE, pp 821–827

Qi CR, Chen X, Litany O, Guibas LJ (2020) Imvotenet: boosting 3d object detection in point clouds with 
image votes. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 4404–4413

Qi CR, Litany O, He K, Guibas LJ (2019) Deep hough voting for 3d object detection in point clouds. In: 
Proceedings of the IEEE international conference on computer vision, pp 9277–9286

Qi CR, Liu W, Wu C, Su H, Guibas LJ (2018) Frustum pointnets for 3d object detection from rgb-d data. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 918–927

Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and seg-
mentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 
652–660

Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: deep hierarchical feature learning on point sets in a met-
ric space. In: Advances in neural information processing systems, pp 5099–5108

Qi Q, Zhao S, Shen J, Lam KM (2019) Multi-scale capsule attention-based salient object detection with 
multi-crossed layer connections. In: 2019 IEEE international conference on multimedia and expo 
(ICME), IEEE, pp 1762–1767

Qin Y, Chen R, Zhu H, Song M, Xu J, Su H (2020) S4g: Amodal single-view single-shot se (3) grasp detec-
tion in cluttered scenes. In: Conference on robot learning, pp 53–65

Qu L, He S, Zhang J, Tian J, Tang Y, Yang Q (2017) Rgbd salient object detection via deep fusion. IEEE 
Trans Image Process 26(5):2274–2285

Rabbani T, Van Den Heuvel F (2005) Efficient hough transform for automatic detection of cylinders in point 
clouds. Isprs Wg Iii/3, Iii/4 3:60–65

Rad M, Lepetit V (2017) Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 
3d poses of challenging objects without using depth. In: IEEE international conference on computer 
vision, pp 3828–3836

Redmon J, Angelova A (2015) Real-time grasp detection using convolutional neural networks. In: 2015 
IEEE international conference on robotics and automation (ICRA), IEEE, pp 1316–1322

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. 
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788

Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp 7263–7271

Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. Preprint arXiv​:1804.02767​
Ren J, Gong X, Yu L, Zhou W, Ying Yang M (2015) Exploiting global priors for rgb-d saliency detection. 

In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 
25–32

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal 
networks. In: Advances in neural information processing systems, pp 91–99

Rennie C, Shome R, Bekris KE, De Souza AF (2016) A dataset for improved rgbd-based object detection 
and pose estimation for warehouse pick-and-place. IEEE Robot Autom Lett 1(2):1179–1185

Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: Tenth IEEE inter-
national conference on computer vision (ICCV’05) Volume 1, IEEE, vol 2, pp 1508–1515

Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: 2011 
International conference on computer vision, IEEE, pp 2564–2571

Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: IEEE inter-
national conference on robotics and automation, pp 3212–3217

Rusu RB, Blodow N, Marton ZC, Beetz M (2009) Close-range scene segmentation and reconstruction of 
3d point cloud maps for mobile manipulation in domestic environments. In: 2009 IEEE/RSJ interna-
tional conference on intelligent robots and systems, IEEE, pp 1–6

Sabour S, Frosst N, Hinton G (2018) Matrix capsules with em routing. In: 6th international conference on 
learning representations, ICLR, pp 1–15

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Advances in neural informa-
tion processing systems, pp 3856–3866

Sahbani A, El-Khoury S, Bidaud P (2012) An overview of 3d object grasp synthesis algorithms. Robot 
Auton Syst 60(3):326–336 Autonomous Grasping

Sajjan SS, Moore M, Pan M, Nagaraja G, Lee J, Zeng A, Song S (2019) Cleargrasp: 3d shape estimation of 
transparent objects for manipulation. Preprint arXiv​:1910.02550​

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1910.02550


1731Vision‑based robotic grasping from object localization, object…

1 3

Salti S, Tombari F, Stefano LD (2014) Shot: Unique signatures of histograms for surface and texture 
description. Comput Vis Image Underst 125:251–264

Sanchez J, Corrales JA, Bouzgarrou BC, Mezouar Y (2018) Robotic manipulation and sensing of deform-
able objects in domestic and industrial applications: a survey. Int J Robot Res 37(7):688–716

Sarode V, Li X, Goforth H, Aoki Y, Dhagat A, Srivatsan RA, Lucey S, Choset H (2019) One framework to 
register them all: pointnet encoding for point cloud alignment. Preprint arXiv​:1912.05766​

Sarode V, Li X, Goforth H, Aoki Y, Srivatsan RA, Lucey S, Choset H (2019) Pcrnet: point cloud registra-
tion network using pointnet encoding. Preprint arXiv​:1908.07906​

Saxena A, Driemeyer J, Kearns J, Osondu C, Ng AY (2008a) Learning to grasp novel objects using vision. 
In: Experimental robotics, Springer, pp 33–42

Saxena A, Driemeyer J, Ng AY (2008b) Robotic grasping of novel objects using vision. Int J Robot Res 
27(2):157–173

Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, 
localization and detection using convolutional networks. Preprint arXiv​:1312.6229

Shi J, Yan Q, Xu L, Jia J (2015) Hierarchical image saliency detection on extended cssd. IEEE Trans Pattern 
Anal Mach Intell 38(4):717–729

Shi S, Wang X, Li H (2019) Pointrcnn: 3d object proposal generation and detection from point cloud. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–779

Shi S, Wang Z, Shi J, Wang X, Li H (2020) From points to parts: 3d object detection from point cloud with 
part-aware and part-aggregation network. Preprint arXiv​:1907.03670​

Shi W, Rajkumar R (2020) Point-gnn: graph neural network for 3d object detection in a point cloud. In: 
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1711–1719

Simon M, Fischer K, Milz S, Witt CT, Gross HM (2020) Stickypillars: robust feature matching on point 
clouds using graph neural networks. Preprint arXiv​:2002.03983​

Song C, Song J, Huang Q (2020) Hybridpose: 6d object pose estimation under hybrid representations. In: 
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 431–440

Song S, Xiao J (2014) Sliding shapes for 3d object detection in depth images. In: European conference on 
computer vision, Springer, pp 634–651

Song S, Xiao J (2016) Deep sliding shapes for amodal 3d object detection in rgb-d images. In: Proceedings 
of the IEEE conference on computer vision and pattern recognition, pp 808–816

Sultana F, Sufian A, Dutta P (2020) Evolution of image segmentation using deep convolutional neural net-
work: a survey. Preprint arXiv​:2001.04074​

Sultana F, Sufian A, Dutta P (2020) A review of object detection models based on convolutional neural net-
work. In: Intelligent computing: image processing based applications, Springer, pp 1–16

Sundermeyer M, Marton ZC, Durner M, Brucker M, Triebel R (2018) Implicit 3d orientation learning for 
6d object detection from rgb images. In: European conference on computer vision, Springer Interna-
tional Publishing, pp 712–729

Suzuki K, Yokota Y, Kanazawa Y, Takebayashi T (2020) Online self-supervised learning for object picking: 
detecting optimum grasping position using a metric learning approach. In: 2020 IEEE/SICE interna-
tional symposium on system integration (SII), IEEE, pp 205–212

Szegedy C, Reed S, Erhan D, Anguelov D, Ioffe S (2014) Scalable, high-quality object detection. Preprint 
arXiv​:1412.1441

Tam GK, Cheng ZQ, Lai YK, Langbein FC, Liu Y, Marshall D, Martin RR, Sun XF, Rosin PL (2013) 
Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput 
Graph 19(7):1199–1217

Tejani A, Tang D, Kouskouridas R, Kim TK (2014) Latent-class hough forests for 3d object detection and 
pose estimation. In: European conference on computer vision, Springer, pp 462–477

Tekin B, Sinha SN, Fua P (2018) Real-time seamless single shot 6d object pose prediction. In: IEEE confer-
ence on computer vision and pattern recognition, pp 292–301

Tian H, Wang C, Manocha D, Zhang X (2019) Transferring grasp configurations using active learning and 
local replanning. In: 2019 international conference on robotics and automation (ICRA), IEEE, pp 
1622–1628

Tian M, Pan L, Ang Jr MH, Lee G.H (2020) Robust 6d object pose estimation by learning rgb-d features. 
Preprint arXiv​:2003.00188​

Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Proceedings 
of the IEEE international conference on computer vision, pp 9627–9636

Tosun T, Yang D, Eisner B, Isler V, Lee D (2020) Robotic grasping through combined image-based grasp 
proposal and 3d reconstruction. Preprint arXiv​:2003.01649​

Tremblay J, To T, Sundaralingam B, Xiang Y, Fox D, Birchfield S (2018) Deep object pose estimation for 
semantic robotic grasping of household objects. Preprint arXiv​:1809.10790​

http://arxiv.org/abs/1912.05766
http://arxiv.org/abs/1908.07906
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1907.03670
http://arxiv.org/abs/2002.03983
http://arxiv.org/abs/2001.04074
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/2003.00188
http://arxiv.org/abs/2003.01649
http://arxiv.org/abs/1809.10790


1732	 G. Du et al.

1 3

Truong P, Apostolopoulos S, Mosinska A, Stucky S, Ciller C, Zanet SD (2019) Glampoints: greedily 
learned accurate match points. In: Proceedings of the IEEE international conference on computer 
vision, pp 10732–10741

Uijlings JR, Van De Sande KE, Gevers T, Smeulders AW (2013) Selective search for object recognition. Int 
J Comput Vis 104(2):154–171

Vacchetti L, Lepetit V, Fua P (2004) Stable real-time 3d tracking using online and offline information. IEEE 
Trans Pattern Anal Mach Intell 26(10):1385–1391

Vahrenkamp N, Westkamp L, Yamanobe N, Aksoy EE, Asfour T (2016) Part-based grasp planning for 
familiar objects. In: IEEE-RAS 16th international conference on humanoid robots (Humanoids), 
IEEE, pp 919–925

Varley J, DeChant C, Richardson A, Ruales J, Allen P (2017) Shape completion enabled robotic grasp-
ing. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 
2442–2447

Vidal J, Lin C, Martí R (2018) 6d pose estimation using an improved method based on point pair features. 
In: 4th international conference on control, automation and robotics (ICCAR), pp 405–409

Villena-Martinez V, Oprea S, Saval-Calvo M, Azorin-Lopez J, Fuster-Guillo A, Fisher RB (2020) When 
deep learning meets data alignment: a review on deep registration networks (drns). Preprint arXiv​
:2003.03167​

Vohra M, Prakash R, Behera L (2019) Real-time grasp pose estimation for novel objects in densely cluttered 
environment. In: 2019 28th IEEE international conference on robot and human interactive communi-
cation (RO-MAN), IEEE, pp 1–6

Wada K, Sucar E, James S, Lenton D, Davison AJ (2020) Morefusion: multi-object reasoning for 6d pose 
estimation from volumetric fusion. In: Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, pp 14540–14549

Wang C, Martín-Martín R, Xu D, Lv J, Lu C, Fei-Fei L, Savarese S, Zhu Y (2019) 6-pack: category-level 6d 
pose tracker with anchor-based keypoints. Preprint arXiv​:1910.10750​

Wang C, Xu D, Zhu Y, Martín-Martín R, Lu C, Fei-Fei L, Savarese S (2019) Densefusion: 6d object pose 
estimation by iterative dense fusion. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 3343–3352

Wang H, Sridhar S, Huang J, Valentin J, Song S, Guibas LJ (2019) Normalized object coordinate space for 
category-level 6d object pose and size estimation. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 2642–2651

Wang S, Jiang X, Zhao J, Wang X, Zhou W, Liu Y (2019) Efficient fully convolution neural network for 
generating pixel wise robotic grasps with high resolution images. In: 2019 IEEE international confer-
ence on robotics and biomimetics (ROBIO), IEEE, pp 474–480

Wang S, Wu J, Sun X, Yuan W, Freeman WT, Tenenbaum JB, Adelson EH (2018) 3d shape perception from 
monocular vision, touch, and shape priors. In: 2018 IEEE/RSJ international conference on intelligent 
robots and systems (IROS), IEEE, pp 1606–1613

Wang W, Lai Q, Fu H, Shen J, Ling H (2019) Salient object detection in the deep learning era: an in-depth 
survey. Preprint arXiv​:1904.09146​

Wang W, Shen J, Shao L, Porikli F (2016) Correspondence driven saliency transfer. IEEE Trans Image Pro-
cess 25(11):5025–5034

Wang W, Yu R, Huang Q, Neumann U (2018) Sgpn: similarity group proposal network for 3d point cloud 
instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp 2569–2578

Wang X, Kong T, Shen C, Jiang Y, Li L (2019) Solo: segmenting objects by locations. Preprint arXiv​
:1912.04488​

Wang X, Liu S, Shen X, Shen C, Jia J (2019) Associatively segmenting instances and semantics in point 
clouds. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 
4096–4105

Wang Y, Solomon JM (2019) Deep closest point: learning representations for point cloud registration. In: 
Proceedings of the IEEE international conference on computer vision, pp 3523–3532

Wang Y, Solomon JM (2019) Prnet: self-supervised learning for partial-to-partial registration. In: Advances 
in neural information processing systems, pp 8812–8824

Wang Z, Jia K (2019) Frustum convnet: sliding frustums to aggregate local point-wise features for amodal 
3d object detection. In: 2019 IEEE/RSJ international conference on intelligent robots and systems 
(IROS), IEEE, pp 1742–1749

Watkins-Valls D, Varley J, Allen P (2019) Multi-modal geometric learning for grasping and manipulation. In: 
2019 international conference on robotics and automation (ICRA), IEEE, pp 7339–7345

http://arxiv.org/abs/2003.03167
http://arxiv.org/abs/2003.03167
http://arxiv.org/abs/1910.10750
http://arxiv.org/abs/1904.09146
http://arxiv.org/abs/1912.04488
http://arxiv.org/abs/1912.04488


1733Vision‑based robotic grasping from object localization, object…

1 3

Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using background priors. In: European conference on 
computer vision, Springer, pp 29–42

Wong JM, Kee V, Le T, Wagner S, Mariottini GL, Schneider A, Hamilton L, Chipalkatty R, Hebert M, John-
son DM, et al (2017) Segicp: integrated deep semantic segmentation and pose estimation. In: IEEE/RSJ 
international conference on intelligent robots and systems (IROS), IEEE, pp 5784–5789

Xiang Y, Schmidt T, Narayanan V, Fox D (2018) Posecnn: a convolutional neural network for 6d object pose 
estimation in cluttered scenes. PreprintarXiv​:1711.00199​

Xie C, Xiang Y, Mousavian A, Fox D (2020) The best of both modes: separately leveraging rgb and depth for 
unseen object instance segmentation. In: Conference on robot learning, pp 1369–1378

Xie E, Sun P, Song X, Wang W, Liu X, Liang D, Shen C, Luo P (2020) Polarmask: single shot instance seg-
mentation with polar representation. In: Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, pp 12193–12202

Xie Q, Lai YK, Wu J, Wang Z, Zhang Y, Xu K, Wang J (2020) Mlcvnet: multi-level context votenet for 3d 
object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 10447–10456

Xu D, Anguelov D, Jain A (2018) Pointfusion: deep sensor fusion for 3d bounding box estimation. In: 2018 
IEEE/CVF conference on computer vision and pattern recognition

Xue Z, Kasper A, Zoellner JM, Dillmann R (2009) An automatic grasp planning system for service robots. In: 
2009 international conference on advanced robotics, IEEE, pp 1–6

Yan X, Hsu J, Khansari M, Bai Y, Pathak A, Gupta A, Davidson J, Lee H (2018) Learning 6-dof grasping inter-
action via deep geometry-aware 3d representations. In: 2018 IEEE international conference on robotics 
and automation (ICRA), IEEE, pp 1–9

Yan X, Khansari M, Hsu J, Gong Y, Bai Y, Pirk S, Lee H (2019) Data-efficient learning for sim-to-real robotic 
grasping using deep point cloud prediction networks. Preprint arXiv​:1906.08989​

Yan Y, Mao Y, Li B (2018) Second: sparsely embedded convolutional detection. Sensors 18(10):3337
Yang B, Wang J, Clark R, Hu Q, Wang S, Markham A, Trigoni N (2019) Learning object bounding boxes for 

3d instance segmentation on point clouds. In: Advances in neural information processing systems, pp 
6737–6746

Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3166–3173

Yang H, Shi J, Carlone L (2020) Teaser: fast and certifiable point cloud registration. Preprint arXiv​:2001.07715​
Yang J, Li H, Campbell D, Jia Y (2015) Go-icp: a globally optimal solution to 3d icp point-set registration. 

IEEE Trans Pattern Anal Mach Intell 38(11):2241–2254
Yang S, Zhang W, Lu W, Wang H, Li Y (2019) Learning actions from human demonstration video for robotic 

manipulation. Preprint arXiv​:1909.04312​
Yang Z, Sun Y, Liu S, Jia J (2020) 3dssd: point-based 3d single stage object detector. In: Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition, pp 11040–11048
Yang Z, Sun Y, Liu S, Shen X, Jia J (2019) Std: sparse-to-dense 3d object detector for point cloud. In: Proceed-

ings of the IEEE international conference on computer vision, pp 1951–1960
Ye M, Xu S, Cao T (2020) Hvnet: hybrid voxel network for lidar based 3d object detection. In: Proceedings of 

the IEEE/CVF conference on computer vision and pattern recognition, pp 1631–1640
Yew ZJ, Lee GH (2018) 3dfeat-net: weakly supervised local 3d features for point cloud registration. In: Euro-

pean conference on computer vision, Springer, pp 630–646
Yi KM, Trulls E, Lepetit V, Fua P (2016) Lift: learned invariant feature transform. In: European conference on 

computer vision, Springer, pp 467–483
Yi L, Zhao W, Wang H, Sung M, Guibas LJ (2019) Gspn: generative shape proposal network for 3d instance 

segmentation in point cloud. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 3947–3956

Yokota Y, Suzuki K, Kanazawa Y, Takebayashi T (2020) A multi-task learning framework for grasping-position 
detection and few-shot classification. In: 2020 IEEE/SICE international symposium on system integra-
tion (SII), IEEE, pp 1033–1039

Yu F, Liu K, Zhang Y, Zhu C, Xu K (2019) Partnet: a recursive part decomposition network for fine-grained and 
hierarchical shape segmentation. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp 9491–9500

Yu P, Rao Y, Lu J, Zhou J (2019) P 2gnet: pose-guided point cloud generating networks for 6-dof object pose 
estimation. Preprint arXiv​:1912.09316​ (2019)

Yu X, Zhuang Z, Koniusz P, Li H (2020) 6dof object pose estimation via differentiable proxy voting loss. Pre-
print arXiv​:2002.03923​

Yuan Y, Hou J, Nüchter A, Schwertfeger S (2020) Self-supervised point set local descriptors for point cloud 
registration. Preprint arXiv​:2003.05199​

Zakharov S, Shugurov I, Ilic S (2019) Dpod: 6d pose object detector and refiner. In: Proceedings of the IEEE 
international conference on computer vision, pp 1941–1950

http://arxiv.org/abs/1711.00199
http://arxiv.org/abs/1906.08989
http://arxiv.org/abs/2001.07715
http://arxiv.org/abs/1909.04312
http://arxiv.org/abs/1912.09316
http://arxiv.org/abs/2002.03923
http://arxiv.org/abs/2003.05199


1734	 G. Du et al.

1 3

Zapata-Impata BS, Gil P, Pomares J, Torres F (2019) Fast geometry-based computation of grasping points on 
three-dimensional point clouds. Int J Adv Robot Syst 16(1):1729881419831846

Zapata-Impata BS, Mateo Agulló C, Gil P, Pomares J (2017) Using geometry to detect grasping points on 3d 
unknown point cloud

Zeng A, Song S, Nießner M, Fisher M, Xiao J, Funkhouser T (2017a) 3dmatch: learning local geometric 
descriptors from rgb-d reconstructions. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 1802–1811

Zeng A, Yu KT, Song S, Suo D, Walker E, Rodriguez A, Xiao J (2017b) Multi-view self-supervised deep learn-
ing for 6d pose estimation in the amazon picking challenge. In: IEEE international conference on robotics 
and automation (ICRA), IEEE, pp 1386–1383

Zeng A, Song S, Yu KT, Donlon E, Hogan FR, Bauza M, Ma D, Taylor O, Liu M, Romo E, et al (2018) Robotic 
pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image match-
ing. In: IEEE international conference on robotics and automation (ICRA), IEEE, pp 1–8

Zhang F, Guan C, Fang J, Bai S, Yang R, Torr P, Prisacariu V (2020) Instance segmentation of lidar point 
clouds. ICRA, Cited by 4(1)

Zhang H, Lan X, Bai S, Wan L, Yang C, Zheng N (2018) A multi-task convolutional neural network for autono-
mous robotic grasping in object stacking scenes. Preprint arXiv​:1809.07081​

Zhang H, Lan X, Bai S, Zhou X, Tian Z, Zheng N (2018) Roi-based robotic grasp detection for object overlap-
ping scenes. Preprint arXiv​:1808.10313​

Zhang J, Sclaroff S, Lin Z, Shen X, Price B, Mech R (2016) Unconstrained salient object detection via proposal 
subset optimization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp 5733–5742

Zhang Q, Qu D, Xu F, Zou F (2017) Robust robot grasp detection in multimodal fusion. In: MATEC web of 
conferences, EDP Sciences, vol 139, p 00060

Zhang Z, Sun B, Yang H, Huang Q (2020) H3dnet: 3d object detection using hybrid geometric primitives. In: 
Proceedings of the European conference on computer vision (ECCV)

Zhao L, Tao W (2020) Jsnet: Joint instance and semantic segmentation of 3d point clouds. In: Thirty-Fourth 
AAAI conference on artificial intelligence

Zhao R, Ouyang W, Li H, Wang X (2015) Saliency detection by multi-context deep learning. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, pp 1265–1274

Zhao S, Li B, Xu P, Keutzer K (2020) Multi-source domain adaptation in the deep learning era: a systematic 
survey. Preprint arXiv​:2002.12169​

Zhao ZQ, Zheng P, Xu S, Wu X (2019) Object detection with deep learning: a review. IEEE Trans Neural Netw 
Learn Syst 30(11):3212–3232

Zhao B, Zhang H, Lan X, Wang H, Tian Z, Zheng N (2020) Regnet: region-based grasp network for single-shot 
grasp detection in point clouds. Preprint arXiv​:2002.12647​

Zheng T, Chen C, Yuan J, Li B, Ren K (2019) Pointcloud saliency maps. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 1598–1606

Zhou QY, Park J, Koltun V (2016) Fast global registration. In: European conference on computer vision, 
Springer, pp 766–782

Zhou X, Lan X, Zhang H, Tian Z, Zhang Y, Zheng N (2018) Fully convolutional grasp detection network 
with oriented anchor box. In: 2018 IEEE/RSJ international conference on intelligent robots and systems 
(IROS), IEEE, pp 7223–7230

Zhou X, Wang D, Krähenbühl P (2019) Objects as points. Preprint arXiv​:1904.07850​
Zhou X, Zhuo J, Krahenbuhl P (2019) Bottom-up object detection by grouping extreme and center points. In: 

Proceedings of the IEEE conference on computer vision and pattern recognition, pp 850–859
Zhou Y, Tuzel O (2018) Voxelnet: end-to-end learning for point cloud based 3d object detection. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pp 4490–4499
Zhou Z, Pan T, Wu S, Chang H, Jenkins OC (2019) Glassloc: plenoptic grasp pose detection in transparent clut-

ter. Preprint arXiv​:1909.04269​
Zhu A, Yang J, Zhao C, Xian K, Cao Z, Li X (2020) Lrf-net: learning local reference frames for 3d local shape 

description and matching. Preprint arXiv​:2001.07832​
Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Proceedings 

of the IEEE conference on computer vision and pattern recognition, pp 2814–2821
Zou Z, Shi Z, Guo Y, Ye J (2019) Object detection in 20 years: a survey. Preprint arXiv​:1905.05055​

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1809.07081
http://arxiv.org/abs/1808.10313
http://arxiv.org/abs/2002.12169
http://arxiv.org/abs/2002.12647
http://arxiv.org/abs/1904.07850
http://arxiv.org/abs/1909.04269
http://arxiv.org/abs/2001.07832
http://arxiv.org/abs/1905.05055

	Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review
	Abstract
	1 Introduction
	2 Object localization
	2.1 Object localization without classification
	2.1.1 2D localization without classification
	2.1.2 3D localization without classification

	2.2 Object detection
	2.2.1 2D object detection
	2.2.2 3D object detection

	2.3 Object instance segmentation
	2.3.1 2D object instance segmentation
	2.3.2 3D object instance segmentation


	3 Object pose estimation
	3.1 Correspondence-based methods
	3.1.1 2D image-based methods
	3.1.2 3D point cloud-based methods

	3.2 Template-based methods
	3.2.1 2D image-based methods
	3.2.2 3D point cloud-based methods

	3.3 Voting-based methods
	3.3.1 Indirect voting methods
	3.3.2 Direct voting methods

	3.4 Comparisons and discussions
	3.4.1 Datasets and evaluation metrics
	3.4.2 Comparisons and discussions


	4 Grasp estimation
	4.1 2D planar grasp
	4.1.1 Methods of evaluating grasp contact points
	4.1.2 Methods of evaluating oriented rectangles
	4.1.3 Comparisons and discussions

	4.2 6DoF Grasp
	4.2.1 Methods based on the partial point cloud
	4.2.2 Methods based on the complete shape


	5 Challenges and future directions
	References




