
Vol.:(0123456789)

Artificial Intelligence Review (2021) 54:1201–1236
https://doi.org/10.1007/s10462-020-09874-x

1 3

Data stream clustering: a review

Alaettin Zubaroğlu1 · Volkan Atalay1

Published online: 21 July 2020
© Springer Nature B.V. 2020

Abstract
Number of connected devices is steadily increasing and these devices continuously gener-
ate data streams. Real-time processing of data streams is arousing interest despite many
challenges. Clustering is one of the most suitable methods for real-time data stream pro-
cessing, because it can be applied with less prior information about the data and it does
not need labeled instances. However, data stream clustering differs from traditional cluster-
ing in many aspects and it has several challenging issues. Here, we provide information
regarding the concepts and common characteristics of data streams, such as concept drift,
data structures for data streams, time window models and outlier detection. We compre-
hensively review recent data stream clustering algorithms and analyze them in terms of the
base clustering technique, computational complexity and clustering accuracy. A compari-
son of these algorithms is given along with still open problems. We indicate popular data
stream repositories and datasets, stream processing tools and platforms. Open problems
about data stream clustering are also discussed.

Keywords Data streams · Data stream clustering · Real-time clustering

1 Introduction

More devices including sensors are becoming interconnected and interconnected devices
continuously generate streams of data at high speed. Offline processing of such huge
amount of data requires growing storage capacity and may cause delayed analyses. Hence,
real-time processing of the data generated by the connected devices has become an active
research area.

A data stream is a potentially unbounded, ordered sequence of instances. A data
stream S may be shown as S = {�1, �2, �3,… , �N} where �i is ith data instance, which is
a d-dimensional feature vector and N goes to infinity. Data stream differs from the tradi-
tional, stored data in many aspects. In most cases, true class labels are not available for

 * Alaettin Zubaroğlu
 alaettin.zubaroglu@metu.edu.tr

 Volkan Atalay
 vatalay@metu.edu.tr

1 Department of Computer Engineering, Middle East Technical University, Dumlupınar Bulvarı
No:1 06800, Çankaya, Ankara, Turkey

http://orcid.org/0000-0001-7198-4439
http://orcid.org/0000-0001-7850-0601
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-020-09874-x&domain=pdf

1202 A. Zubaroğlu, V. Atalay

1 3

stream instances and there is no prior knowledge about the number of classes. Therefore,
clustering, being unsupervised is one of the most suitable data mining and data analysis
methods for data streams. Border security using sensors, auto monitoring of surveillance
cameras, internet of things (IoT) device tracking, real time patient tracking, stock market
analysis, network intrusion detection, and earthquake forecasting systems are among the
applications of data stream clustering.

Data clustering, is the task of grouping instances such that the instances in the same
group are similar to each other and the instances in different groups are dissimilar accord-
ing to the properties of the instances. Hence, the objective of clustering is to minimize
intra-cluster distance and maximize inter-cluster distance. However, data stream clustering
differs from traditional clustering in many aspects and it has several challenging issues.
Data stream instances can be read only once, in a certain order, and must be processed in
a short time interval, before the next instance is received. Data streams can not be stored,
only a synopsis of the stream is stored, if required. Table 1 gives the comparison of stream
clustering with traditional clustering (Mousavi et al. 2015; Gaber et al. 2009).

Data stream instances may evolve over time, and this is called concept drift. Concept
drift is the unforeseen change in the properties of the input data instances. For the case of
the traditional data, the whole dataset is available and properties of the instances do not
change during the processing of the data. This makes the concept drift a data stream spe-
cific challenge. A data stream clustering algorithm should detect and adopt concept drift
for more accurate results. According to the occurrence style, different types of concept drift
exist.

Similar to traditional data, data streams may include outliers. To achieve better perfor-
mance, outliers in the data streams should be detected, interpreted and possibly removed.
In data streams, it is not easy to mark an instance as outlier, because a dissimilar instance
might be the first sample of a new, previously unseen cluster, i.e. it might be a precursor of
a concept drift. Moreover, a dissimilar instance might be marker of an anomaly, which is
very valuable for anomaly detection systems.

Data stream clustering algorithms use special data structures to keep synopsis of the
input data, since it is not possible to store the whole data. Storing agglomerative sum or
storing only representative samples of the data are two popular alternative structures.
Moreover, users are often interested in the most recent data instances rather than the previ-
ous ones. This situation creates a requirement of obsolescence for previous data instances.
In data stream clustering, it is solved by time window models.

Most of the data stream clustering algorithms use a two phase approach (Silva et al.
2013). In online phase which is also called as data abstraction phase, a synopsis of the
data stream is generated and stored in specialized data structures. Synopsis of the data
stream is updated when a new instance is received. Therefore the synopsis always remains

Table 1 Comparison of stream
clustering with traditional
clustering

Stream clustering Traditional clustering

Real time processing Offline processing
Data arrives on the fly All data are ready
Only single pass on data is possible Multiple passes are possible
Data are not feasible to be stored Data are suitable to be stored
Only synopsis of the data is stored All raw data are stored
Approximate results are accepted Accurate results are expected

1203Data stream clustering: a review

1 3

up-to-date. Offline phase, called also as clustering phase, runs periodically or whenever
the user requests. In this phase, the final clustering is performed over the generated data
synopsis. There also exist several fully online data stream clustering algorithms, which re-
cluster the data for every new instance and keep an up-to-date clustering result. Among
fully online stream clustering algorithms are DPClust (Xu et al. 2017), CEDAS (Hyde
et al. 2017), DBIECM (Zhang et al. 2017), FEAC-Stream (Andrade Silva et al. 2017) and
Adaptive Stream k-means (Puschmann et al. 2017).

For the evaluation of data stream clustering, traditional techniques are still valid and
they are commonly used. A relatively new concept edge computing (Shi et al. 2016; Shi
and Dustdar 2016; Satyanarayanan 2017) is the technique to process the produced data
on several edge nodes that are close to the connected devices, instead of a single central
system. It is also an interest arousing novel concept, however it is out of scope of this
study. We examine central data stream clustering concept that runs on a single center for
the whole system.

In this manuscript, Sect. 2 is devoted to issues in data stream clustering. We give infor-
mation about some mechanisms of stream clustering, which are data structures, time win-
dow models, concept drift and outlier detection methods. In Sect. 3, we give brief infor-
mation about the categories of stream clustering algorithms. Moreover, we examine seven
most recent data stream clustering algorithms that are not mentioned in the previous sur-
veys in more detail and explain them one by one. We make a comparative review of the
examined algorithms and highlight their advantages and disadvantages against each other
in Sect. 4. We summarize the open problems about data stream clustering in Sect. 5. We
indicate popular stream data repositories and datasets, stream processing tools and stream
processing platforms in Sects. 6, 7 and 8 respectively, before concluding the study in
Sect. 9.

2 Concepts in data stream clustering

The information given here that are the basic concepts used in data stream clustering facili-
tates explaining the recent data clustering algorithms analyzed in Sect. 3.

2.1 Concept drift

Concept drift is the unforeseen change in statistical properties of data stream instances
over time. There are four types of concept drift: sudden, gradual, incremental and recur-
ring (Ramirez-Gallego et al. 2017).

• Sudden concept drift: Between two consecutive instances, the change occurs at once,
and after this time only instances of the new class are received. An instance that has
properties of the previous class never arrives again. A data stream containing sud-
den concept drift might look like as follows, where different colors indicate different
classes.

 S = {… , �
�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

��
, �

��
, �

��
,…}

• Gradual concept drift: The number of instances belonging to the previous class
decreases gradually while the number of instances belonging to the new class increases
over time. During a gradual concept drift, instances of both previous and new classes

1204 A. Zubaroğlu, V. Atalay

1 3

are visible. A data stream containing gradual concept drift might look like as follows,
where different colors indicate different classes.

 S = {… , �
�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

��
, �

��
, �

��
,…}

• Incremental concept drift: Data instances belonging to the previous class evolves to a
new class step by step. After the concept drift is completed, the previous class disap-
pears. The instances that arrive during the concept drift are of transitional forms and
they do not have to belong to either of the classes. A data stream containing incremen-
tal concept drift might look like as follows, where different colors indicate different
classes.

 S = {… , �
�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

��
, �

��
, �

��
,…}

• Recurring concept drift : The data instances change between two or more statistical
characteristics several times. Neither of the classes disappears permanently but both of
them arrive in turns. A data stream containing recurring concept drift might look like
as follows, where different colors indicate different classes.

 S = {… , �
�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

��
, �

��
, �

��
,…}

Creation of new clusters, disappearance or evolution of existing clusters are all examples
of concept drift. Concept drift may also affect the cluster boundaries. If the cluster bounda-
ries are modified, it is called real concept drift while in the other case, it is called virtual
concept drift. There exist several studies in the literature for concept drift detection. Gama
et al. (2014) have a comprehensive survey on concept drift detection.

2.2 Data structures for data streams

In data stream processing, it is not possible to store the whole input data because data
streams are infinite and all existing processing systems have main memory constraint.
Therefore, only a synopsis of the input stream is stored and this situation makes it essen-
tial to develop special data structures that enables to incrementally summarize the input
stream. Four most commonly used data structures are feature vectors, prototype arrays,
coreset trees and grids. Feature vectors keep the summary of the data instances, proto-
type arrays keep only a number of representative instances that exemplify the data, coreset
trees keep the summary in a tree structure and grids keep the data density in the feature
space (Silva et al. 2013; Ghesmoune et al. 2016; Mansalis et al. 2018).

2.3 Time window models

In data stream processing, it is more efficient to process recent data instead of the whole
data. Different window models are developed for this purpose. There are three different
window models, which are damped window, landmark window and sliding window mod-
els. These window models are presented in Fig. 1.

2.3.1 Damped window

In damped window model, recent data have more weight than the older data. The most
recent instance has the most weight and the importance of the instances decreases by time.
This method is usually implemented using decay functions which scale down the weight
of the instances, depending on the time passed since the instance is received. One of such
functions is f (t) = 2−�t , where t is the time passed and � is the decay rate. Higher decay

1205Data stream clustering: a review

1 3

rate in the function means a more rapid decrease in the value. Fig. 1a demonstrates the
damped window model.

2.3.2 Landmark window

In landmark window model, the whole data between two landmarks are included in the
processing and all of the instances have equal weight. Amount of data that belong to a
single window is called window length and usually indicated by w. Window length can be
defined as instance count or elapsed time. In landmark window method, consecutive win-
dows do not intersect and the new window just begins from the point the previous window
ends. According to this definition, data instances belong to a window are calculated using
Eq. 1 and window number of a data instance is calculated using Eq. 2 where w is window
length, xi is ith instance and Wm is mth window. Indexes i and m start with zero. Figure 1b
shows the landmark window model.

weight

data stream objects

decay function

time

(a) Damped window model.

time

data stream objects

considered instances

discarded instances

window size (w)

w

landmark
(time t)

landmark
(time t+w)

landmark
(time t+2w)

(b) Landmark window model.

time

data stream objects

w

w

at time t

at time t+1

considered instances

discarded instances

window size (w)

at time t+2

(c) Sliding window model.

Fig. 1 Time window models

1206 A. Zubaroğlu, V. Atalay

1 3

2.3.3 Sliding window

In sliding window model, the window swaps one instance at each step. The older instance
moves out of the window, and the most recent instance moves in to the window by FIFO
style. All instances in the window have equal weight and consecutive windows mostly
overlap. Window length is a user defined parameter and should be decided according to the
input data. Figure 1c describes this window model and data instances belong to a window
are calculated using Eq. 3 where w is window length, xi is ith instance and Wm is m th win-
dow. Indexes i and m start with zero.

2.4 Outlier detection

Outlier is a data instance that seems to be different from the remaining of the data. Either
it does not belong to any of the clusters, or it belongs to a cluster whose cardinality is
far less than other clusters. Let Ci be i th cluster, |Ci| be cardinality of Ci and k be cluster
count, if �Cj� <<

1

k

∑k

i=1
�Ci� , then Cj is treated as outlier. There exist several definitions

for the outliers in the literature (Modi and Oza 2017). An outlier can occur because of
malicious activities, instrumental errors, transmission problems, data collection problems
or similar (Merino 2015). In data mining, outliers negatively affect the processing accu-
racy, because of that, outlier detection has a crucial importance in data mining. It is pos-
sible to benefit from several existing surveys (Modi and Oza 2017; Chauhan and Shukla
2015; Souiden et al. 2016; Thakkar et al. 2016; Bhosale 2014; Sadik and Gruenwald 2014)
about outlier detection in data streams. Thakkar et al. (2016) have classified outlier detec-
tion techniques in four main groups in their survey.

• Statistical outlier detection methods make an assumption about the data distribution.
Taking the distribution into account, data instances that have a low probability to be
generated, are marked as outliers. Statistical outlier detection methods are divided
into two categories: parametric methods and non-parametric methods. In parametric
methods, a distribution model of the data is assumed before starting, according to the
parameters. This method is not suitable for data streams, since the entire dataset is not
available in streams and the distribution model may change over time. In non-paramet-
ric methods, no distribution model is assumed a priori; instead, the distribution model
is learned from the original data instances. This property makes non-parametric statisti-
cal outlier detection methods adoptable for data streams.

• Distance based outlier detection methods (Chauhan and Shukla 2015) use neighbor
count of the instance to decide whether it is an outlier or not. Two parameters R and
k play the main role. If the data instance has less than k neighbors in a distance of
R, then it is marked as an outlier. A distance measure (or a similarity measure) must

(1)Wm =[xm∗w,… , x(m+1)∗w−1]

(2)m =

⌊
i

w

⌋

(3)Wm = [xm,… , x(m+w−1)]

1207Data stream clustering: a review

1 3

be defined. No domain knowledge is required and no distribution model assumption is
done. Therefore, distance based outlier detection methods are suitable for data streams.
However, they are not effective for high dimensional data streams.

• Density based outlier detection methods compare the density around the data instance
to the density around its neighbors. If the instance has a density around it similar to
its neighbors, then it is not an outlier. Otherwise it is considered as an outlier. This
group of methods, are more effective than distance based methods, however they have a
higher computational complexity.

• In Clustering based outlier detection methods (Bhosale 2014) data instances that do not
belong to any clusters, or far away from their cluster centroids, are potential outliers.
Moreover, outliers may belong to a sparse or small cluster that is not close to other clus-
ters. Ordinary data instances are expected to belong to large, dense clusters and they are
relatively close to cluster centroids.

Although real-time analysis of data streams is a more recent research subject, it has many
similarities with the analysis of time series data which has been studied for longer time and
more abundant in the literature. Especially outlier detection in data streams is very similar
to anomaly detection in time series data analysis (Kong et al. 2019; Christodoulou et al.
2018; Keogh et al. 2005).

3 Stream clustering algorithms

There exist several data stream clustering algorithms in the literature (Silva et al. 2013;
Mousavi et al. 2015; Alam et al. 2016; Kumar 2016; Ding et al. 2015; Ghesmoune et al.
2016; Ramirez-Gallego et al. 2017; Carnein et al. 2017; Yasumoto et al. 2016; Nguyen
et al. 2015; Fahy et al. 2018; Mahdiraji 2009; Aggarwal 2013). Data stream clustering algo-
rithms can be categorized following the classification that is used for traditional (batch)
clustering algorithms. This categorization is given in Fig. 2 and it consists of five main
classes: hierarchical based, partitioning based, density based, grid based and model based
clustering. We first give brief information about these categories and related algorithms
and we then examine seven most recent data stream clustering algorithms in more detail.

• Hierarchical algorithms use the dendrogram data structure. Dendrogram is binary tree
based, and it is useful to summarize and visualize the data. Hierarchical algorithms are
divided in two: agglomerative and divisive. Agglomerative algorithms start with the
assumption every instance is a cluster itself, and merge the instances to create clusters
step by step. On the other hand, divisive algorithms start assuming a single cluster con-
tains whole data, and divide the clusters into smaller clusters in each step. Hierarchical
algorithms have an informative output, which is the dendrogram. However, they have
high complexity and they are sensitive to the outliers. Among hierarchical algorithms
are BIRCH (Zhang et al. 1996), CHAMELEON (Karypis et al. 1999), ODAC (Rodri-
gues et al. 2006), E-Stream (Udommanetanakit et al. 2007) and HUE-Stream (Meesuk-
sabai et al. 2011) (Mousavi et al. 2015; Kumar 2016).

• Partitioning based algorithms split the data instances into a predefined number of
clusters, based on similarity (or distance) to the cluster centroids. Number of clusters
should be predefined in these algorithms, and only hyper-spherical clusters can be
determined. Partitioning based algorithms have an easy implementation in general.

1208 A. Zubaroğlu, V. Atalay

1 3

StreamLSearch (O’Callaghan et al. 2002), incremental k-means (Ordonez 2003), CluS-
tream (Aggarwal et al. 2003), HPStream (Aggarwal et al. 2004), SWClustering (Zhou
et al. 2008), StreamKM++ (Ackermann et al. 2012), strAP (Zhang et al. 2014) and
CLARA (Kaufman and Rousseeuw 1990) are partitioning based algorithms (Mousavi
et al. 2015; Kumar 2016; Ghesmoune et al. 2016).

• Grid based algorithms use grid data structure. The workspace is divided into a num-
ber of cells, in a grid structure, and each instance is assigned to a cell. Then, the grid
cells are clustered, according to their density. In grid based algorithms, the run time
does not depend on input data count. Therefore, grid based algorithms are fast algo-
rithms. Moreover, they are robust to noise and are able to find arbitrary shaped clusters.
However, since their complexity depends on the number of the dimensions of the data,
grid based algorithms are more suitable for low dimensional data. Furthermore, they
need a predefined grid size. GCHDS (Lu et al. 2005), GSCDS (Sun and Lu 2006),
DGClust (Gama et al. 2011), CLIQUE (Agrawal et al. 1998), WaveCluster (Sheikhole-
slami et al. 2000) and STING (Wang et al. 1997) are all grid based algorithms (Mousavi
et al. 2015). D-Stream (Chen and Tu 2007) and MR-Stream (Wan et al. 2009) are clas-
sified as grid based by Ghesmoune et al. (2016), despite being classified as density
based by Mousavi et al. (2015).

• Density based algorithms keep summary of input data in large number of micro-clus-
ters. Micro-cluster is a set of data instances that are very close to each other. Synopsis
of a micro-cluster is kept with a feature vector. Then these micro-clusters are merged
and formed final clusters according to density reachability and density connectiv-
ity concepts. These terms are defined as follows. If the distance between two micro-
clusters is less than or equal to the sum of their radii, then they are directly density

Stream Clustering Algorithms

Hierarchical Density
Based

Grid
Based

Partitioning
Based

Model
Based

BIRCH

ODAC

E-Stream

HUE-Stream

CHAMELEON

incremental
k-means

CluStream

HPStream

SWClustering

StreamKM++

StrAP

CLARA

DGClust

GSCDS

GCHDS

CLIQUE

STING

DenStream

WaveCluster

DSCLU

I-DBSCAN

LDBSCAN

OPTICS-Stream

SOStream

OPCluStream

D-Stream

MR-Stream

COBWEB

CluDistream

SWEM

Fig. 2 Classification of data stream clustering algorithms

1209Data stream clustering: a review

1 3

reachable. If any adjacent two clusters in a set of micro-clusters are directly density
reachable, then the set of micro-clusters is density reachable. All micro-clusters that are
density reachable to each other, are density connected (Yin et al. 2017). Density based
algorithms are able to find arbitrary shaped clusters and detect number of clusters.
They are robust to noise as well. However, several parameters have to be selected and
there are problems in finding multi-density clusters. Incremental-DBSCAN (Ester et al.
1998), LDBSCAN (Duan et al. 2006), DenStream (Cao et al. 2006), rDenStream (Liu
et al. 2009), DSCLU (Namadchian and Esfandani 2012), OPCluStream (Wang et al.
2012), SOStream (Isaksson et al. 2012), OPTICS-Stream (Tasoulis et al. 2007),
D-Stream (Chen and Tu 2007) and MR-Stream (Wan et al. 2009) are classified as den-
sity based (Mousavi et al. 2015; Ghesmoune et al. 2016).

• Model based algorithms find the data distribution model that fit best to the input data.
One of the important advantages of model based algorithms is their property of noise
robustness. However, their performance strongly depends on the selected model. COB-
WEB (Fisher 1996), CluDistream (Zhou et al. 2007) and SWEM (Dang et al. 2009) are
examples of model based algorithms (Mousavi et al. 2015).

Advantages and disadvantages of clustering algorithms are summarized in Table 2 (
Mousavi et al. (2015); Mansalis et al. (2018); Ghesmoune et al. (2016)).

The aforementioned data stream clustering algorithms have already been reviewed in
the previous surveys. On the other hand, the algorithms given below have not been ana-
lyzed elsewhere, to the best of our knowledge. We give the main flow of the algorithms,
show their evaluation results and present the complexity analysis. During the complexity
analysis, we ignore the Euclidean distance calculation complexity, which is O(d), because
this is the common practice in the literature. Moreover, this calculation is done in every
data stream clustering algorithm, thus ignoring it does not change the comparison. How-
ever, any other data dimension related complexity is included in the analysis. Not surpris-
ingly, complexity of partitioning based algorithms is a function of k and complexity of
density based algorithms is a function of micro cluster count.

We start with Adaptive Streaming k-Means and FEAC-Stream both of which are par-
titioning based online algorithms. We then examine MuDi-Stream, which is a density
based, online–offline algorithm. CEDAS is a density based online algorithm. Improved
Data Stream Clustering Algorithm is a density based, online–offline algorithm.

Table 2 Advantages and disadvantages of clustering algorithms based on traditional categorization

Algorithm Advantages Disadvantages

Hierarchical Informative output
(dendrogram)

High complexity
Outlier sensitivity

Partitioning Easy implementation Predefined number of clusters
Only hyper-spherical clusters

Grid-based Arbitrary shaped clusters
Fast execution time
Noise robustness

Predefined grid size
Only low dimensional data

Density-based Arbitrary shaped clusters
Noise robustness

Multidensity cluster difficulties
Many predefined parameters

Model-based Noise robustness Strong dependency on the model

1210 A. Zubaroğlu, V. Atalay

1 3

DBIECM, the only distance based algorithm is fully online. Note that the previous, clas-
sical classification does not include the distance based algorithms, probably, because
there are not many examples of distance based algorithms. Finally, we examine I-HAS-
TREAM, a density based hierarchical, online–offline algorithm. Figure 3 shows the
main characteristics of the examined algorithms. Although, ant colony optimization
methods are also being used by a number of data stream clustering algorithms (Fahy
et al. 2018), they are not evaluated at this time. Moreover, being an active research area,
there also exist several recent data stream clustering algorithms that are not evaluated in
this manuscript (Din et al. 2020; Bezerra et al. 2020; Kim and Park 2020).

3.1 Adaptive streaming k‑means (2017)

Adaptive streaming k-means is an online, partitioning based data stream clustering algo-
rithm proposed by Puschmann et al. (2017). In general, partitioning based clustering
algorithms need k as an input parameter, and these algorithms have difficulties to adapt
concept drift in the input data. In this algorithm, Puschmann et al. claim to overcome
these two main problems.

Stream Clustering Algorithms

Partitioning
Based

Density
Based

Distance
Based

MuDi-Stream*

Improved Data
Stream Clustering

I-HASTREAMAdaptive
Stream

k-means

FEAC-Stream

CEDAS*

DBIECM*

* : Requires expert knowledge

Online-offline methods

Online methods

Hyper-spherical Clusters Arbitrary Shaped Clusters

Can find multi-density clusters

Can not find multi-density clusters

Fig. 3 Recent data stream clustering algorithms

1211Data stream clustering: a review

1 3

Algorithm 1 streamingKMeans (S, l)
Input: S : the input data stream
Input: l : length of data sequence used for initialization
1: % Initialization phase
2: for candidateCentroids in determineCentroids(l number of data instances) do
3: run kmeans with candidateCentroids
4: calculate silhouette coefficient of the kmeans result
5: end for
6: keep centroids of the best clustering
7: % Continuous clustering phase
8: loop
9: if changeDetected on the input stream then
10: re-initialize the algorithm by running again the initialization phase
11: end if
12: run kmeans with last found, best centroids
13: end loop

Algorithm 1 shows the main flow of adaptive streaming k-means algorithm. k-means
algorithm and silhouette coefficient calculation function are assumed to be already
implemented. The algorithm is composed of two main phases, which are initialization
phase and continuous clustering phase. In the initialization phase, l number of data
instances are accumulated. Then groups of candidate centroids are determined at line
2. In function determineCentroids, in order to find k and determine candidate centroids,
probability density function (PDF) of the data is calculated using kernel density esti-
mation (KDE) (Parzen 1962; Rosenblatt 1956). All directional changes in the shape of
PDF curve, are accepted as signs of beginning of a new region. Here the region can
be defined as the area between two consecutive directional changes of the PDF curve.
Number of regions is considered as a candidate k and centers of these regions are con-
sidered as candidate initial centroids. This process is pursued for each feature of the
data separately. Because different features generally show different distributions, more
than one k values, and different candidate centroids are found.

After finding candidate k values, clustering is performed for a set of k values where
k ∈ [kmin, kmin + kmax] . The for loop at lines 2–5 is executed for these values of k and
candidate centroids. Clustering results of different k values are compared according to
silhouette coefficient, and best k is selected with its corresponding centroids.

The loop at lines 8–13 runs for continuous clustering phase. Checking for a concept
drift (see Sect. 2.1) is performed at line 9. If no concept drift occurs, clustering of the
input data proceeds, at line 12. However if a concept drift exists, k and centroids are
recalculated (the algorithm is re-initialized) at line 10, and then clustering continues at
line 12 with new k and centroids.

For concept drift detection, standard deviation and mean of the input data are stored
during the execution. The algorithm tracks how these two values change over time and
predicts a concept drift according to the change. When a concept drift is predicted, cur-
rent cluster centroids are no longer valid. In such a case the concept drift is realized at
line 9 and a reinitialization is triggered at line 10. Using this mechanism, the algorithm
captures the concept drift and adapts itself to the input stream.

A limitation of this algorithm, being k-means based, only hyper-spherical clusters
can be detected. Indeed, the authors indicate that k-means is used as the underlying
clustering technique to clarify the approach, and the concepts of the approach can be
applied to different clustering techniques.

1212 A. Zubaroğlu, V. Atalay

1 3

Evaluation: Adaptive streaming k-means algorithm is evaluated against CluStream and
DenStream algorithms, according to silhouette coefficient. Artificial datasets with three to
five dimensions, that include concept drift, are used as input data streams. Clustering qual-
ity improvement of the adaptive streaming k-means algorithm is 13–40% with respect to
CluStream. DenStream gives a better clustering quality for one of the datasets, for short
time intervals during the execution. However, for the other datasets, clustering quality
improvement of the adaptive streaming k-means algorithm is up to 280% with respect
to DenStream. Furthermore, the algorithm is evaluated with real traffic data, against the
non-adaptive technique, in which, the centroids are never recalculated. Adaptive stream-
ing k-means algorithm achieves an improvement up to 31% in clustering quality when
they are compared over the course of one day. When they are compared over the course
of one week, clustering quality improvement of the adaptive streaming k-means is 12% on
average.

Complexity Analysis: Let l be the length of the initial data sequence, and d be the data
dimension. Complexity of estimating k for a single dimension is O(l), because this part
goes along the PDF and it has a length equal to the data length. Since this estimation is
performed for all dimensions, total k estimation complexity becomes O(d ⋅ l) . After deter-
mining initial centroids running k-means takes O(d ⋅ k ⋅ cs) since no iterations of the algo-
rithm are needed, where cs is the number of different centroid sets. Assigning a newly
received data instance to the nearest cluster during the online phase is O(k). As a result,
total worst case complexity of the algorithm is O(k) + O(d ⋅ l) + O(d ⋅ k ⋅ cs) , which equals
to O(d ⋅ l) + O(d ⋅ k ⋅ cs)

3.2 FEAC‑Stream (2017)

Fast evolutionary algorithm for clustering data streams (FEAC-Stream) is an evolution-
ary algorithm for clustering data streams with a variable number of clusters, proposed
by Andrade Silva et al. (2017). FEAC-Stream is a k-means based algorithm, which esti-
mates k automatically using an evolutionary algorithm. Being fully online, FEAC-Stream
does not store synopsis of the data, instead maintains the final clustering result. During the
execution, clustering quality is tracked using the Page-Hinkley (PH) (Mouss et al. 2004)
test and if the quality falls down, the algorithm adjusts itself.

1213Data stream clustering: a review

1 3

Algorithm 2 FEAC-Stream (S, l, λ, α, iter)
Input: S : the input data stream
Input: l : length of data sequence used for initialization
Input: λ : decay rate
Input: α : weight threshold
Input: iter : k-means iteration count
1: % Initialization phase
2: Estimate k with l number of data instances, using evolutionary algorithm
3: state = normal
4: % Continuous clustering phase
5: loop
6: Read next data instance x from data stream S
7: Add x to the nearest cluster
8: Calculate weight of all clusters
9: Delete low weighted clusters
10: PHval = Calculate PH test.
11: if PHval > warning threshold then
12: state = warning
13: end if
14: if state is warning then
15: Add x to buffer B
16: end if
17: if PHval > alarm threshold then
18: Estimate k with data instances in buffer B, using evolutionary algorithm
19: state = normal
20: end if
21: end loop

Algorithm 2 shows the main flow of FEAC-Stream algorithm. PH test function and the
evolutionary algorithm are assumed to be already implemented. The algorithm is com-
posed of two main phases, which are initialization phase and continuous clustering phase.
In the initialization phase, l number of data instances are accumulated. Then k and initial
clustering is calculated using an evolutionary algorithm, at line 2 and state is set to nor-
mal, at line 3. In this evolutionary algorithm, clustering is performed using k-means with a
maximum of iter iterations. Simplified silhouette coefficient is used as the fitness function,
k is selected randomly such that k ∈ [2,

√
l] and initial centroids are also selected randomly

from the input data instances.
After clustering the initial l data instances in the initialization phase, the loop at lines

5-21 is executed for continuous clustering phase. When a new data instance is received, it is
added to the nearest cluster at line 7. Weight of all clusters are calculated and low weighted
clusters are deleted at line 8 and line 9, respectively. After that, PH test is calculated at line
10 and it is compared to warning and alarm threshold values. When PH test value exceeds
the warning threshold, the algorithm enters to warning state. In warning state, clustering
process continues and received data instances are stored in a buffer, at line 15. If PH test
value exceeds alarm threshold, this means a concept drift (see Sect. 2.1) occurs and current
clusters are not valid anymore. When PH test signals an alarm state, it also automatically
selects samples from the input data instances that reflects a new partitioning. In such a
case, FEAC-Stream clusters the data instances stored in the buffer with the evolutionary
algorithm, at line 18 and sets the state back to normal, at line 19. In the evolutionary algo-
rithm, clustering is performed using k-means with a maximum of iter iterations. Simplified
silhouette coefficient is used as the fitness function, k and initial centroids are specified by
the PH test. FEAC-Stream uses damped window model, which is described in Sect. 2.3.1.

Being k-means based, only hyper-spherical clusters can be detected by FEAC-Stream.
Moreover, clustering quality of FEAC-Stream strongly depends on the user defined param-
eters. FEAC-Stream requires three parameters which are length of data sequence used for

1214 A. Zubaroğlu, V. Atalay

1 3

initialization (l), decay rate (�) for damped window model and minimum weight threshold
(�). These parameters strongly affect the clustering quality and they are directly dependent
to the input data. Because of that, FEAC-Stream requires an expert knowledge about the
input data. Iteration count of k-means (iter) and generation count of evolutionary algorithm
are used as hard coded. Moreover, warning and alarm threshold values of PH test are cal-
culated automatically by the PH test.

Evaluation: FEAC-Stream is evaluated against CluStream-OMRk, CluStream-BkM,
StreamKM++-OMRk and StreamKM++-BkM, where CluStream and StreamKM++
are the stream clustering algorithms with fixed k, while BkM and OMRk are k estimat-
ing algorithms. Both real and artificial datasets are used for the evaluation. Real datasets
are network intrusion detection dataset, forest cover type dataset and localization data for
person activity dataset. Adjusted Rand Index (ARI) is used as clustering quality metric in
artificial datasets. While all mean ARI results are very close to each other (0.97–0.99),
FEAC-Stream has the lowest execution time. Its execution time is less by; 25% than
StreamKM++-BkM, 58% than StreamKM++-OMRk, 91% than CluStream-BkM and
nearly 93% than CluStream++-OMRk. Furthermore, FEAC-Stream successfully reacts
to concept drifts and accordingly estimates k. For network intrusion detection dataset,
simplified silhouette (SS) coefficient is used to compare the clustering quality. Again all
algorithms give very good and very close (0.90 - 0.92) SS values and still FEAC-Stream
gives the best execution time. Its execution time is less by; 65% than StreamKM++-BkM,
87% than StreamKM++-OMRk, 97% than CluStream-BkM and 98% than CluStream++-
OMRk. For the other real datasets as well, algorithms have the same running time order-
ing. These results also show that, StreamKM++ is faster than CluStream and BkM is faster
than OMRk.

Complexity Analysis: Let l be the length of the initial data sequence, gen is generation
count of evolutionary algorithm and iter is the iteration count of k-means. In the initializa-
tion phase, k is randomly selected as k ∈ [2,

√
l] . Thus, complexity of initialization phase

is O(gen ⋅ iter ⋅
√
l) . Online maintenance of the algorithm requires a complexity of O(k).

When a concept drift occurs, the algorithm is reinitialized by running evolutionary algo-
rithm again. However k and centroids are decided by PH test. Therefore, reinitialization
requires a complexity of O(gen ⋅ iter ⋅ k) . As a result, total worst case time complexity of
FEAC-Stream is O(k) + O(gen ⋅ iter ⋅ k) , which equals to O(gen ⋅ iter ⋅ k).

3.3 MuDi‑Stream (2016)

Multi density data stream clustering algorithm (MuDi-Stream) is a two phase data stream
clustering algorithm proposed by Amini et al. (2016). Main objective of MuDi-Stream is
to improve the clustering quality on data streams with multi density clusters. Note that
density based algorithms usually have problems with clusters of different densities because
of the static density threshold they use. MuDi-Stream customizes the density thresh-
old for each cluster and overcomes the problem of multi density clusters. MuDi-Stream
is a hybrid algorithm based on both density based and grid based approaches. Input data
instances are clustered in a density based approach and outliers are detected using grids.
For data synopsis core mini-clusters are used. Core mini-clusters are specialized feature
vectors (see Sect. 2.2), they keep weight, center, radius and the maximum distance from an
instance to the mean. In the online phase core mini-clusters are created and kept up to date
for each new data instance. In the offline phase final clustering is executed over the core
mini-clusters.

1215Data stream clustering: a review

1 3

Algorithm 3 MuDi-Stream online phase (S, α, λ, gridGranularity, G)
Input: S : the input data stream
Input: α : density threshold
Input: λ : decay rate
Input: gridGranularity
Input: G : total density grids for all dimensions
1: Initialize the grid structure
2: loop
3: Read next data instance x from data stream S
4: cmcs = Find the nearest cmc to x
5: if cmcs involve x then
6: Add x to cmcs
7: else
8: Map x to the gird
9: if Updated grid is dense enough then
10: Create a cmc from updated grid
11: end if
12: end if
13: if It is pruning period then
14: Remove low weighted grids
15: Remove low weighted cmcs
16: end if
17: end loop

Algorithm 3 shows the main flow of online phase of MuDi-Stream. When a new data
instance is received, it is tried to be added to an existing core mini-cluster. For this pur-
pose, the nearest core mini-cluster is found at line 4 and it is checked whether nearest core
mini-cluster can involve this data instance or not, at line 5. If the nearest core mini-cluster
is large enough, the data instance is added to the nearest core mini-cluster at line 6. Oth-
erwise, the data instance is mapped into the gird in the outlier buffer, at line 8. When a
data instance is mapped to a grid, density of this grid is checked and if it is dense enough
(more than the density threshold), a new core mini-cluster is created from this grid i.e. the
grid is converted to a core mini-cluster, at line 10. MuDi-Stream prunes both the grids in
the outlier buffer and the core mini-clusters periodically. It is checked at line 13 whether it
is pruning time or not. If it is pruning time, weight of grids and core mini-clusters are cal-
culated according to current time, and then low weighted grids and core mini-clusters are
pruned at line 14 and line 15 respectively. This pruning mechanism is an implementation
of damped window model, which is described in Sect. 2.3.1.

1216 A. Zubaroğlu, V. Atalay

1 3

Algorithm 4 MuDi-Stream offline phase (core mini-clusters)
Input: core mini-clusters
1: Mark all cmcs as unvisited
2: repeat
3: Randomly choose an unvisited cmc, called cmcp
4: Mark cmcp as visited
5: if cmcp has neighbors then
6: Create new final cluster C
7: Add cmcp to C
8: Add neighbors of cmcp to C
9: for each cmc in C do
10: if cmc is unvisited then
11: Mark cmc as visited
12: Add neighbors of cmc to C
13: end if
14: end for
15: else
16: Mark cmcp as noise
17: end if
18: until All cmcs are visited

Algorithm 4 shows the main flow of offline phase of MuDi-Stream. Initially all core
mini-clusters are marked as unvisited, at line 1. After that, inside a loop, an unvisited core
mini-cluster is randomly chosen at line 3 and marked as visited at line 4. If this core mini-
cluster has no neighbors, it is marked as noise at line 16. If it has neighbors, a new final
cluster is created with this core mini-cluster and its neighbors, at lines 6-8. After that, each
unvisited core mini-cluster in the new created final cluster is marked as visited and its
neighbors are added to the same final cluster, at lines 9-14. This loop continues until all
core mini-clusters are marked as visited.

Damped window model is used, and arbitrary shaped, multi density clusters can be
detected by MuDi-Stream. Moreover, MuDi-Stream is able to handle concept drift (see
Sect. 2.1), noise and outliers. However it is not suitable for high dimensional data, which
makes the processing time longer, because of the grid structure. Furthermore, clustering
quality of MuDi-Stream strongly depends on input parameters density threshold (�), decay
rate (�) for damped window model and grid granularity. These parameters require an
expert knowledge about the data.

Evaluation: MuDi-Stream is tested with two real (network intrusion detection and Land-
sat satellite) and six artificial datasets. It is compared to DenStream on a data stream with
concept drifts, a multi density dataset and a multi density data stream with concept drifts.
MuDi-Stream outperforms DenStream on all three types of input data, according to clus-
tering quality (Purity, Normalized Mutual Information (NMI), Rand Index (RI), Adjusted
Rand Index (ARI), Folkes and Mallow index (FM), Jaccard Index and F-Measure). Clus-
tering quality improvement of MuDi-Stream is 10–100% with respect to DenStream, on
different datasets.

Complexity Analysis: MuDi-Stream performs a linear search on core mini-clusters for
each new data instance. Complexity of this linear search is O(c) where c is the number
of core mini-clusters. If the new data instance cannot be merged into existing core mini-
clusters, it is mapped to the grid. Let G be total density grids for all dimensions, which is
exponential to the number of dimensions. Space complexity of the grid is O(log G) because
the scattered grid are pruned during the execution. Moreover, time complexity of mapping
a data instance to the grid is O(log log G) because the list of the grids is maintained as a

1217Data stream clustering: a review

1 3

tree. During the pruning, all core mini-clusters and grids are examined. This makes time
complexity of pruning O(c) for core mini-clusters and O(log G) for grids. As a result, the
overall time complexity of MuDi-Stream is O(c) + O(log log G) + O(c) + O(log G) , which
equals to O(c) + O(log G).

3.4 CEDAS (2016)

Clustering of evolving data streams into arbitrarily shaped clusters (CEDAS) is a fully
online data stream clustering algorithm proposed by Hyde et al. (2017) CEDAS is a density
based algorithm designed for clustering data streams with concept drifts (see Sect. 2.1),
into arbitrary shaped clusters. Damped window model (see Sect. 2.3.1) is employed with
a linear decay function instead of an exponential one. CEDAS keeps synopsis of the data
in micro-clusters and creates a graph structure with the micro-clusters that surpass a user
defined threshold. Graph structure, where nodes are the micro-clusters and edges are the
connectivity between micro-clusters, keeps the up to date final clustering results.

Algorithm 5 CEDAS (S, α, λ, r0)
Input: S : the input data stream
Input: α : density threshold
Input: λ : decay rate
Input: r0 : micro-cluster radius
1: Initialize the micro-cluster structure
2: loop
3: Read next data instance x from data stream S
4: dismin = Find the distance from x to the nearest micro-cluster center
5: if dismin < r0 then
6: Add x to the nearest micro-cluster
7: Energy of the updated micro-cluster = 1
8: else
9: Create new micro-cluster with x
10: Energy of the new micro-cluster = 1
11: end if
12: Reduce energy of all micro-clusters by λ
13: Remove negative energy micro-clusters
14: if micro-clusters are changed then
15: Update graph structure with micro-clusters that surpass α
16: end if
17: end loop

Algorithm 5 shows the main flow of CEDAS. When a new data instance is received, it
is tried to be added to an existing micro-cluster. For that purpose, the distance from new
data instance to the nearest micro-cluster is found at line 4 and it is checked whether this
distance is less than the micro-cluster radius (r0) or not, at line 5. Micro-cluster radius is
a user defined, static parameter. If the distance is less than the radius, the data instance
is added to the nearest micro-cluster, at line 6, and energy of this micro-cluster is set
to 1 at line 7. Otherwise, a new micro cluster is created with this data instance, at line
9, and energy of the new micro-cluster is set to 1, at line 10. Energy of micro-clusters
linearly fades on every cycle, with an amount of decay rate (�), at line 12. The micro-
clusters whose energy drop below zero are removed at line 13. Lastly, the graph struc-
ture is updated with the micro-clusters that surpass the density threshold (�), at line 15.
Removed micro-clusters are removed from the graph structure also, and micro-clusters

1218 A. Zubaroğlu, V. Atalay

1 3

reached the density threshold (�) added to the graph structure. Therefore, CEDAS cre-
ates final clustering results as fully online.

CEDAS is suitable for high dimensional data under favor of maintaining a graph
structure where nodes are the micro-clusters and edges are the connectivity between
micro-clusters. However, clustering quality of CEDAS strongly depends on the user
defined parameters. CEDAS requires three parameters which are decay rate (�), micro-
cluster radius (r0) and minimum density threshold (�). These parameters strongly affect
the clustering quality and they are directly dependent to the input data. Because of that,
CEDAS requires an expert knowledge about the input data.

Evaluation: CEDAS is tested with a data stream consisting of two Mackey-Glass
time series, to see how it deals with concept drift, cluster separation, cluster merging
and noise over time. Moreover, it is compared to CluStream and DenStream accord-
ing to complexity, processing speed, cluster quality and memory efficiency. CEDAS,
CluStream and DenStream are also compared with high dimensional data according
to speed and accuracy. CEDAS successfully deals with concept drift. Noise negatively
affects the clustering quality, however results are claimed to be still acceptable. Time
measurements show that CEDAS is quite suitable for high dimensional data. Firstly
CEDAS is compared against only online phases of DenStream and CluStream. For data
with less than 10 dimensions, CEDAS is the slowest one. However, processing time of
CEDAS stays nearly constant up to 10,000 dimensions. CluStream becomes slower than
CEDAS after 10 dimensions and it consumes nearly 300 times more than CEDAS for
6000 dimensions. DenStream is faster than CEDAS up to 200 dimensions. For more
than 200 dimension, DenStream becomes slower than CEDAS and consumes nearly 2
times more than CEDAS for 6000 dimensions. After that, CluStream and DenStream
are run with a frequent offline phase, to generate near real time final clustering. In this
situation CEDAS is the fastest algorithm for both low and high dimensional data. For
5 dimensional data, DenStream consumes 40 times and CluStream consumes 75 times
more than CEDAS. For very high dimensional data, time consumption of DenStream
grows faster than the others. When the data dimension is 3,000 CluStream consumes
nearly 100 times and DenStream consumes nearly 650 times more than CEDAS. The
other main advantage of CEDAS is memory efficiency. During the execution, Den-
Stream reaches up to 800 micro-clusters at certain times, while CEDAS reaches up to
100 micro-clusters.

Complexity Analysis: For each new data instance, CEDAS performs a linear search
on the micro-clusters. Complexity of this linear search is O(c) where c is the number of
micro-clusters. After that, energy of each micro-cluster is reduced, which also requires
an O(c) complexity. The last step, which updates the graph structure, is executed only
when a new micro-cluster is created or removed. In worst case, all micro-clusters are
visited, so worst case time complexity of this step is again O(c). Therefore, the overall
time complexity of CEDAS is O(c).

3.5 Improved data stream clustering algorithm (2017)

Improved data stream clustering algorithm is a two phase, density based algorithm that
is suitable for arbitrary shaped clusters, proposed by Yin et al. (2017). Main character-
istic of this algorithm is adjusting threshold values automatically, according to the input
data. This feature gets rid of the requirement of expert knowledge about the input data.

1219Data stream clustering: a review

1 3

Algorithm 6 Improved data stream clustering online phase (S, l, λ)
Input: S : the input data stream
Input: l : length of data sequence used for initialization
Input: λ : decay rate
1: % Initialization phase
2: Run DBSCAN on l number of data instances
3: % Continuous clustering phase
4: loop
5: Read next data instance x from data stream S
6: Add x to the nearest major micro-cluster OR
7: Add x to the nearest critical micro-cluster OR
8: Create a new micro-cluster with x
9: if It is pruning period then
10: Remove low weighted major micro-clusters
11: Remove low weighted critical micro-clusters
12: end if
13: end loop

Algorithm 6 shows the main flow of online phase of improved data stream clustering
algorithm. DBSCAN algorithm is assumed to be already implemented. The algorithm is
composed of two main phases, which are initialization phase and continuous clustering
phase. In the initialization phase, l number of data instances are accumulated and clus-
tered using DBSCAN, at line 2. Major micro-clusters and critical micro-clusters are cre-
ated as output of DBSCAN algorithm. Major micro-clusters have high densities and will
be included in the final clustering process. Critical micro-clusters have low densities and
treated as potential outliers. In the continuous clustering phase, when a new data instance
is received, it is tried to be added to the nearest major micro-cluster, at line 6. If nearest
major micro-cluster is not suitable, this time the new data instance is tried to be added to
the nearest critical micro-cluster, at line 7. If neither of them is suitable, a new micro-clus-
ter is created with the new data instance, at line 8. Damped window model (see Sect. 2.3.1)
is used and low weighted major and critical micro-clusters are removed periodically, at
line 10 and line 11 respectively. Threshold values of major and critical micro-clusters are
global parameters in the algorithm, instead of being specific to each micro-cluster. How-
ever they are dynamic parameters and continuously updated during the execution.

Algorithm 7 Improved data stream clustering offline phase (micro-clusters)
Input: micro-clusters
1: Mark all mcs as unvisited
2: repeat
3: Randomly choose an unvisited mc, called mcp
4: if mcp is major micro-cluster then
5: Find all micro-clusters density reachable to mcp
6: Create a final cluster by them.
7: else if mcp is critical micro-cluster then
8: Continue the next cycle
9: end if
10: until All mcs are visited

Algorithm 7 shows the main flow of offline phase of improved data stream clustering
algorithm. Initially all micro-clusters are marked as unvisited, at line 1. After that, inside a
loop, an unvisited micro-cluster is chosen randomly at line 3. If the selected micro-cluster
is a major micro-cluster, all micro-clusters that are density reachable to this micro-cluster
are found and a new final cluster is created by them, at line 5 and line 6. If the selected

1220 A. Zubaroğlu, V. Atalay

1 3

micro-cluster is a critical micro-cluster, then the execution continues with the next cycle,
at line 8. When all micro-clusters are visited, the offline phase completes. The term density
reachable is defined as follows. If the distance between a micro-cluster and another major
micro-cluster is less than or equal to the sum of their radii, then they are directly density
reachable. If any adjacent two clusters in a set of micro-clusters are directly density reach-
able, then the set of micro-clusters is density reachable (Yin et al. 2017).

Evaluation: Improved data stream clustering algorithm is evaluated against DenStream
algorithm, using the network intrusion detection dataset. Clustering quality improvement
of the improved data stream clustering algorithm is 2–7% with respect to DenStream.
Moreover, Yin et al. (2017) claims that this algorithm has a better time and spatial com-
plexity, compared with traditional clustering algorithms, however no measurement results
are shared.

Complexity Analysis: Let l be the length of the initial data sequence. Complexity of the
initialization equals to complexity of DBSCAN, which is O(l ⋅ log l) in average and O(l2)
in worst case. In the continuous clustering phase, a linear search is performed on micro-
clusters for each new data instance. Complexity of this linear search is O(c) where c is the
number of micro-clusters. When it is pruning period, pruning task is executed for each
micro-cluster one by one and this also requires a complexity of O(c). Therefore, the total
worst case complexity is O(c) + O(c), which equals to O(c).

3.6 DBIECM (2017)

DBIECM is an online, distance based, evolving data stream clustering algorithm proposed
by Zhang et al. (2017). DBIECM is the only example of distance based clustering algo-
rithms in this survey. DBIECM is an improved version of Evolving Clustering Method
(ECM) (Song and Kasabov 2001). Davies Bouldin Index (DBI) is used as the evaluation
criteria, instead of shortest distance.

Algorithm 8 DBIECM (S, r0)
Input: S : the input data stream
Input: r0 : max cluster radius
1: Initialize the cluster structure
2: loop
3: Read next data instance x from data stream S
4: disi = Find the distance from x to all cluster centers Ci, i ∈ [1, k]
5: if disi < radius of Ci then
6: Add x to Ci

7: else if disi > r0 for all i ∈ [1, k] then
8: Create new micro-cluster with x
9: else % There exist clusters such that radius of Ci < disi < r0
10: Find all clusters such that radius of Ci < disi
11: Add x to the best cluster, according to DBI
12: end if
13: end loop

Algorithm 8 shows the main flow of DBIECM. When a new data instance x is
received, an attempt is made to add the new data instance to an existing cluster. For this
purpose, the distances between x and all clusters are calculated. If radius of any cluster
is greater than or equal to its distance to x, then x is added to this cluster, as indicated
at line 6. If the distance from x to any cluster is greater than maximum cluster radius r0 ,

1221Data stream clustering: a review

1 3

which is a user defined, static parameter, then a new cluster is created with x, at line 8.
Otherwise, if there exist any clusters such that their radii are less than their distance to
x, then x is added to all of these clusters one by one and DBI of the results are calcu-
lated separately. x is added to the cluster that gives the least DBI, which means the best
clustering.

DBIECM requires the maximum cluster radius as a parameter. This parameter
directly affects the final cluster count and consequently the clustering quality. Maxi-
mum cluster radius strongly depends on the input data and requires an expert knowledge
about the data. Being distance based, DBIECM can detect only hyper-spherical clusters.
DBIECM does not employ any time window model, thus no input data instance out
dates, all input data exist in the final clustering. Moreover, no outlier detection mecha-
nism is implemented. However, it is possible to specify an outlier threshold value and
mark the clusters with low cardinality as outliers.

Evaluation: DBIECM is evaluated against ECM, with Iris, Wine, Seeds, Glass and
Breast Cancer datasets, from UCI machine learning database. Both of the algorithms
are run with the same maximum cluster radius parameter. Firstly, three different radius
values are tried, and their direct impact on the resultant cluster number is observed.
This shows the importance of the expert knowledge for radius selection. Moreover, clus-
tering quality is compared according to objective function value, DBI, accuracy and
purity. For these tests, radius value is selected according to the correct cluster number.
DBIECM achieve up to 43% better DBI, up to 33% better accuracy and up to 11% better
purity values than ECM.

Complexity Analysis: When a new data instance is received, a linear search is per-
formed on clusters. Complexity of this linear search is O(k). Pairwise distances between
all clusters are used for DBI calculation, thus DBI calculation requires a complexity
proportional to O(k2) . When there exist more than one candidate clusters for the new
data instance, the instance is added to all of them one by one and DBI is calculated
accordingly. This requires a complexity proportional to O(k3) . Therefore, although the
average complexity of DBIECM depends on the input data, the total worst case com-
plexity is O(k) + O(k3) which equals to O(k3).

3.7 I‑HASTREAM (2015)

I-HASTREAM is a two phase, adaptive, density based hierarchical, data stream cluster-
ing algorithm proposed by Hassani et al. (Hassani et al. (2015), Hassani et al. (2016)).
I-HASTREAM is an improved version of HASTREAM (Hassani et al. 2014). In the
online phase, synopsis of the data is created as micro-clusters. In the offline phase,
micro-clusters are maintained in a graph structure as a minimum spanning tree and
hierarchical clustering is employed for the final clustering. Main contributions of
I-HASTREAM are to perform the final clustering on a minimum spanning tree and to
incrementally update the minimum spanning tree according to the changes in the micro-
clusters, instead of generating it from scratch. Both of these contributions are related
to the offline phase. For I-HASTREAM and its ancestor HASTREAM (Hassani et al.
2014) no algorithmic details are specified about the online phase, instead, it is stated
that any micro-cluster model can be employed. For evaluation purpose, HASTREAM
employs online phases of DenStream and ClusTree algorithms and these results are pre-
sented by Hassani et al. (2014).

1222 A. Zubaroğlu, V. Atalay

1 3

Algorithm 9 I-HASTREAM offline phase (micro-clusters, α)
Input: micro-clusters
Input: α : weight threshold
1: MST = Update minimum spanning tree(MST , micro-clusters)
2: HC = Employ hierarchical clustering(MST , α)
3: Extract final clustering(HC)

Algorithm 9 shows main flow of offline phase of I-HASTREAM. The minimum span-
ning tree is updated according to the changes in the micro-clusters at line 1, and a hierar-
chical clustering on the minimum spanning tree is employed at line 2. As result of hierar-
chical clustering, a dendrogram is created. Final clustering is performed according to this
dendrogram, at line 3.

Evaluation: Four variants of I-HASTREAM (with different parameters) are evaluated
against HASTREAM, MR-Stream and DenStream, using network intrusion detection data-
set and the physiological dataset. Purity and Cluster Mapping Measure (CMM) (Kremer
et al. 2011) are used as evaluation criteria. One of the I-HASTREAM variants gives up to
25% better purity values than DenStream in network intrusion detection dataset. Its result
is also up to 10% better than other versions of I-HASTREAM and HASTREAM. In the
physiological dataset, the same variant of I-HASTREAM gives the best CMM and purity
values in general. HASTREAM and I-HASTREAM have very close CMM values and both
of them outperforms DenStream with up to 30% better CMM values. For purity, again
I-HASTREAM has the best values in general and it outperforms both DenStream and MR-
Stream with up to 15% better purity values. When we look at the execution time compari-
son of the algorithms, I-HASTREAM is more than five times faster than DenStream.

Complexity Analysis: Because no algorithmic details are specified about the online
phase, we could not analyze complexity of I-HASTREAM.

4 Comparison of the algorithms

As common characteristics of seven data stream clustering algorithms given in Sect. 3, all
of them predict number of clusters themselves and they are all able to adopt concept drift
in the data streams. All but MuDi-Stream are suitable for high dimensional data. The rea-
son MuDi-Stream is not suitable for high dimensional data is that, it uses a grid based
approach for outlier detection. When the data are high dimensional, the number of empty
grids increases and the execution time gets higher.

Adaptive Streaming k-means and FEAC-Stream are both k-means based (partitioning
based) algorithms. DBIECM is distance based and the others are density based algorithms.
Distance based approaches are similar to density based approaches, however they do not
have a density threshold, instead they have maximum cluster radius threshold.

In general, density based algorithms have problem about finding clusters with differ-
ent densities, because of the static density threshold. However, MuDi-Stream and I-HAS-
TREAM have improvements for this problem and they successfully adopt the density
threshold to each cluster separately. This makes them able to find multi-density clusters.
Adaptive Streaming k-means and FEAC-Stream, being partition based algorithms, are
also able to find clusters with different densities. DBIECM is successful for multi density

1223Data stream clustering: a review

1 3

clusters, but not for multi size clusters. It has a static maximum cluster radius threshold and
this is a problem for clusters with different sizes. As a result, CEDAS and Improved Data
Stream Clustering algorithm are not able to find multi density clusters, but the others are.
Furthermore, all density based algorithms are able to find arbitrary shaped clusters, while
partitioning and distance based algorithms are limited with hyper-spherical clusters.

For Adaptive Streaming k-means and DBIECM, no outlier detection mechanism is men-
tioned. However, it is possible to define an outlier threshold and to mark the clusters have
less cardinality than the threshold as outliers, for both algorithms. The other algorithms
already have outlier detection mechanisms.

Up to the recent years, most of data stream clustering algorithms were online–offline
algorithms. A synopsis of the data is employed in the online phase and the final clusters are
generated in the offline phase. In this type of algorithms, offline phase is executed periodi-
cally or upon user request. Therefore, final clustering results are obtained with a latency and
they are not up to date most of the times. However, there exist several recent fully online
algorithms in the literature. Fully online algorithms maintain the final clustering results
up to date. Therefore, users get the results with no latency. CEDAS, Adaptive Stream-
ing k-means, FEAC-Stream and DBIECM are online algorithms, while MuDi-Stream,
Improved Data Stream Clustering and I-HASTREAM are online–offline algorithms.

Damped window model is the most popular time window model among data stream
clustering algorithms. On the other hand, DBIECM does not use any time window model.
Moreover, Adaptive Streaming k-means uses sliding window model. All other mentioned
algorithms use damped window model.

Finally, clustering quality of MuDi-Stream, CEDAS and DBIECM is strongly sensitive
to the input parameter threshold value. It directly affects the number of clusters and accord-
ingly the clustering quality. Selecting a proper threshold value requires an expert knowl-
edge about the input data. Therefore, for successful results of MuDi-Stream, CEDAS and
DBIECM, it is necessary to have prior information about characteristics of the input data.
Tables 3 and 4 show the comparison summary of examined data stream clustering algo-
rithms and Fig. 3 shows their main characteristics.

In conclusion, Adaptive Streaming k-means, FEAC-Stream and DBIECM have limita-
tions about the cluster shape; they are able to find only hyper-spherical clusters. MuDi-
Stream is not suitable for high dimensional data because of its grid based outlier detection
mechanism. CEDAS and Improved Data Stream Clustering algorithm can not be used for
clusters with different densities and DBIECM can not be used for clusters with different
radii. Finally, an expert knowledge about the input data and the clusters is required for
MuDi-Stream, CEDAS and DBIECM. I-HASTREAM claims to have no limitations, how-
ever no algorithmic details are specified for online phase of it. It is stated that online phases
of DenStream and ClusTree are employed instead.

5 Open problems

There exist several open problems about data stream clustering. Here, we indicate the most
notable open problems and describe them briefly.

• Finding k: Finding k is still an open problem, especially for partitioning based algo-
rithms. There exist some recent methods for this purpose, however none of them is
widely accepted and well matured yet. For density based algorithms, determining k

1224 A. Zubaroğlu, V. Atalay

1 3

Ta
bl

e
3

 C
om

pa
ris

on
 o

f r
ec

en
t d

at
a

str
ea

m
 c

lu
ste

rin
g

al
go

rit
hm

s

A
lg

or
ith

m
Ye

ar
B

as
e

al
go

rit
hm

Ph
as

es
W

in
do

w
 m

od
el

C
lu

ste
r c

ou
nt

C
lu

ste
r s

ha
pe

A
da

pt
iv

e
St

re
am

in
g

k-
M

ea
ns

20
17

Pa
rti

tio
ni

ng
 b

as
ed

O
nl

in
e

Sl
id

in
g

A
ut

o
H

yp
er

-s
ph

er
ic

al
FE

A
C

-S
tre

am
20

17
Pa

rti
tio

ni
ng

 b
as

ed
O

nl
in

e
D

am
pe

d
A

ut
o

H
yp

er
-s

ph
er

ic
al

M
uD

i-S
tre

am
20

16
D

en
si

ty
 b

as
ed

O
nl

in
e–

offl
in

e
D

am
pe

d
A

ut
o

A
rb

itr
ar

y
C

ED
A

S
20

16
D

en
si

ty
 b

as
ed

O
nl

in
e

D
am

pe
d

A
ut

o
A

rb
itr

ar
y

Im
pr

ov
ed

 D
at

a
St

re
am

 C
lu

ste
rin

g
20

17
D

en
si

ty
 b

as
ed

O
nl

in
e–

offl
in

e
D

am
pe

d
A

ut
o

A
rb

itr
ar

y
D

B
IE

C
M

20
17

D
ist

an
ce

 b
as

ed
O

nl
in

e
N

on
e

A
ut

o
H

yp
er

-s
ph

er
ic

al
I-

H
A

ST
R

EA
M

20
15

D
en

si
ty

 b
as

ed
O

nl
in

e–
offl

in
e

D
am

pe
d

A
ut

o
A

rb
itr

ar
y

1225Data stream clustering: a review

1 3

Ta
bl

e
4

 C
om

pa
ris

on
 o

f r
ec

en
t d

at
a

str
ea

m
 c

lu
ste

rin
g

al
go

rit
hm

s (
co

nt
in

ue
d

fro
m

 T
ab

le
 3

)

A
lg

or
ith

m
M

ul
ti

de
ns

ity
 c

lu
ste

rs
H

ig
h

di
m

en
si

on
al

 d
at

a
O

ut
lie

r d
et

ec
tio

n
D

rif
t a

da
pt

io
n

Ex
pe

rt
kn

ow
le

dg
e

A
da

pt
iv

e
St

re
am

in
g

k-
M

ea
ns

Ye
s

Su
ita

bl
e

N
o

Ye
s

N
o

FE
A

C
-S

tre
am

Ye
s

Su
ita

bl
e

Ye
s

Ye
s

N
o

M
uD

i-S
tre

am
Ye

s
N

ot
 su

ita
bl

e
Ye

s
Ye

s
Re

qu
ire

d
C

ED
A

S
N

o
Su

ita
bl

e
Ye

s
Ye

s
Re

qu
ire

d
Im

pr
ov

ed
 D

at
a

St
re

am
 C

lu
ste

rin
g

N
o

Su
ita

bl
e

Ye
s

Ye
s

N
o

D
B

IE
C

M
Ye

s (
no

t m
ul

ti
si

ze
)

Su
ita

bl
e

N
o

Ye
s

Re
qu

ire
d

I-
H

A
ST

R
EA

M
Ye

s
Su

ita
bl

e
Ye

s
Ye

s
N

o

1226 A. Zubaroğlu, V. Atalay

1 3

is easier, however parameters that depend on domain knowledge are necessary. If
cluster characteristics such as density and minimum allowable gap between clus-
ters are known a priori, current algorithms are then able to detect k; however, in
most cases, knowledge about input data is not available before the execution and it
may not be possible to specify parameters that are valid for all clusters. For exam-
ple, multi-density clusters require different density thresholds and multi-size clus-
ters require different distance thresholds. Determining such parameters is another
open problem by itself. Moreover, concept drift, which may invalidate data spe-
cific parameters, is very common in data streams. Therefore, finding a k estimation
method that adopts to changes in both k and cluster characteristics is a challenge.
Such a method should react to concept drift fast, adopt the new data distribution
with minimum quality loss and estimate k.

• Parameter Requirements: Current data stream clustering algorithms require param-
eters such as k, density threshold, distance threshold, decay rate and window length.
Such parameters are very sensitive to the input data and they directly affect the
clustering quality. It is a challenge to automatically specify these parameters with-
out domain knowledge, manage them for each cluster separately, and update them
according to the data characteristics.

• Evaluation Criteria: There is no de facto evaluation criteria for data stream cluster-
ing. Traditional evaluation methods are used for stream clustering results. Defining a
new evaluation metric that is suitable for data streams might contribute to this field
and inspire interest.

• Benchmark Data: There is a lack of high quality benchmark data to use in data
stream clustering algorithms. One of the most popular datasets for stream cluster-
ing is the forest cover type dataset and it is not even a stream data. Artificial and
real datasets that include concept drift, outliers and class labels, are necessary for
benchmarking purposes in data stream clustering field. Generating and collecting
such artificial and real stream datasets and popularizing them is a challenge.

• Experimental Comparison Environment: There is not a system that runs more than
one data stream clustering algorithms at the same time, feeds them in the same way,
and compares their execution performance and clustering quality.

• Different Data Types: Handling different data types is another challenging task in
data stream clustering. Most of the stream clustering algorithms work with quan-
titative features and define the similarity based on euclidean distance. Current data
structures that keep the data synopsis are also specialized for quantitative features.
There exists a lack of clustering algorithms that work with categorical data. It is
common to convert categorical data to quantitative data and use existing algorithms.

• Performance Improvements: Any performance improvements is always welcome,
since the number of connected devices is increasing and the data generated by them
are scaling up and accelerating every day. This situation requires a continuous per-
formance improvement in data stream clustering algorithms. It is possible to improve
the performance by using parallel programming and edge computing. However in
this study, we focus on processing where the whole data is gathered and processed
directly on a single processor.

Concept drift is a data stream specific and it generates several challenges. The num-
ber of clusters, cluster densities, sizes and shapes may change over time due to concept
drift. The problems of traditional clustering become continuous problems for stream
clustering.

1227Data stream clustering: a review

1 3

6 Popular data repositories and datasets

6.1 Data repositories

There exist several stream data resources on the internet. Moreover, it is common to use
traditional datasets as streams or to generate artificial data streams. Traditional datasets
are generally read by order and treated as streams for testing and benchmarking pur-
poses. We mention the stream data sources in this section. Data streams in Stream Data
Mining Repository (see Sect. 6.1.4) and MOA (see Sect. 6.1.5) already have true class
labels. However, Citi Bike System Data (see Sect. 6.1.1) does not possess explicitly a
class label. One should decide how to employ the data and then assign accordingly the
class labels. Moreover, National Weather Service Public Alerts (see Sect. 6.1.3) and
Meetup RSVP Stream (see Sect. 6.1.2) have several features that can be used as class
labels.

6.1.1 Citi Bike system data

Citi Bike NYC (2013) is a public bicycle sharing system. It is composed of 750 stations
and 12,000 bikes. Citi Bike publicly publishes real time system data in Citi Bike Sys-
tem Data which includes system information, station information, free bike status etc.
in a json structure. Moreover, Citi Bike also publishes trip histories, daily ridership and
membership data, and monthly operating reports stored as data streams.

6.1.2 Meetup RSVP stream

Meetup (2002) is a website providing membership software, allowing its users to sched-
ule events using a common platform. Meetup has an invitation response mechanism in
which the invitees click to RSVP button and enter their responses. Meetup publicly pub-
lishes these RSVP responses as a stream (Meetup Stream 2002), which is suitable for
data stream clustering.

6.1.3 National weather service public alerts

National Weather Service (NWS) (1870) creates public alerts, watches, warnings, advi-
sories, and other similar products in the Common Alerting Protocol (CAP) and Atom
Syndication Format (ATOM) (NWS Public Alerts, n.d.). These are data streams and
they can be used for data stream clustering studies.

6.1.4 Stream data mining repository

Stream Data Mining Repository is a public repository by Zhu (2010) holding four dif-
ferent stream datasets, which are Sensor Stream (2,219,803 instances, 5 features, and 54
clusters), Power Supply Stream (29,928 instances, 2 features, and 24 clusters), Network

1228 A. Zubaroğlu, V. Atalay

1 3

Intrusion Detection 10% Subset (494,021 instances, 41 features, and 23 clusters) and
Hyper Plane Stream (100,000 instances, 10 features, and 5 clusters).

6.1.5 MOA

Massive Online Analysis (MOA) (Bifet et al. 2010) is a popular open source framework
for data stream mining. MOA includes 4 different datasets which are suitable for data
stream processing. Moreover, it also includes a number of classes to generate artificial
data streams. There exist several studies in the literature that use MOA as a data source.
More information about MOA is available in Sect. 7.1 and artificial data stream generation
classes of MOA are listed in Sect. 6.2.1.

6.1.6 Other repositories

Some other data repositories are listed here.

• Real World Data in Real Time API : https ://www.hooks data.io/
• New York City Open Data : https ://opend ata.cityo fnewy ork.us/
• Registry of Open Data on AWS : https ://regis try.opend ata.aws/
• Twitter Data :
 https ://devel oper.twitt er.com/en/docs/tutor ials/consu ming-strea ming-data
• AirNow Air Quality Observations : https ://docs.airno wapi.org/
• National Wind Technology Center (NWTC) :
 https ://data.nrel.gov/submi ssion s/33
• Solar Radiation Research Laboratory (SRRL) :
 https ://data.nrel.gov/submi ssion s/7
• Awesome Public Datasets :
 https ://githu b.com/aweso medat a/aweso me-publi c-datas ets

6.2 Popular datasets

It is very common to use artificial datasets in data stream clustering for both testing and
benchmark purposes. Artificial datasets give the user opportunity to specify the stream
properties such as noise ratio, concept drift, cluster shapes and densities. Artificial
data stream generation by MOA and details of popular datasets are given. All datasets

Table 5 Properties of popular datasets

Dataset name Number of instances Number of
features

Number of clusters

Forest cover type 581,012 54 7
Network intrusion detection 4,898,431 41 23
Network intrusion detection subset 494,021 41 23
Charitable donation 191,779 481 Not specified
Sensor stream 2,219,803 5 54
Power supply stream 29,928 2 24
Hyper plane stream 100,000 10 5

https://www.hooksdata.io/
https://opendata.cityofnewyork.us/
https://registry.opendata.aws/
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://docs.airnowapi.org/
https://data.nrel.gov/submissions/33
https://data.nrel.gov/submissions/7
https://github.com/awesomedata/awesome-public-datasets

1229Data stream clustering: a review

1 3

mentioned in this section, except Charitable Donation Dataset, have true class labels.
Table 5 summarizes properties of popular datasets.

6.2.1 Artificial data streams

Massive Online Analysis (MOA) (described in Sect. 7.1) has a number of classes (Moa
Stream Generators 2014) to generate artificial data streams in different shapes and with or
without concept drift.

6.2.2 Forest cover type dataset

Forest Cover Type Dataset is publicly available on Machine Learning Repository of UCI.
It has totally 581,012 instances and each of them belongs to one of 7 cover types. The
instances are described by 54 features, 10 of which are quantitative and 44 of which are
binary. Each instance is giving information of an area of 30x30 meters. This dataset is not
actually a data stream, but a stationary dataset. It does not have a time stamp or an exclu-
sive order information. However, it is converted into a data stream by taking the data input
order as the streaming order.

6.2.3 Network intrusion detection dataset

Network Intrusion Detection Dataset is used for The Third International Knowledge Dis-
covery and Data Mining Tools Competition, which was a session of KDD-99, The Fifth
International Conference on Knowledge Discovery and Data Mining. It is publicly availa-
ble on KDD archive of UCI. This set has 4,898,431 records of network traffic data and each
of them belongs to one of 23 types of connection (22 attack types and normal connection).
The instances are described by 41 features, some of which are discrete and the others are
continuous. There exists also a 10% subset of this dataset which is more concentrated than
the original dataset. The subset itself is yet another most used dataset.

6.2.4 Charitable donation dataset

Charitable Donation Dataset is used for The Second International Knowledge Discovery
and Data Mining Tools Competition, which was held in conjunction with KDD-98, The
Fourth International Conference on Knowledge Discovery and Data Mining. This dataset
has 191,779 instances and each instance has 481 features. These instances, are information
about people who have made charitable donations in response to direct mailing requests.
This dataset is publicly available on KDD archive of UCI.

6.2.5 Various spam mail datasets

There exist several spam mail datasets publicly available in different online data reposito-
ries. Spam mail datasets are suitable for stream clustering because mails inherently are data
streams. They have a date-time information which makes them easily interpreted as data
streams.

1230 A. Zubaroğlu, V. Atalay

1 3

6.2.6 Various sensor network datasets

There exist several sensor network datasets publicly available on the Internet. One of
sensor network data repositories is A Community Resource for Archiving Wireless Data
At Dartmouth (CRAWDAD). It is very common to use sensor network datasets in data
stream clustering, since they inherently are data streams.

7 Data stream processing tools

We provide brief information about popular tools that are used for data stream mining.

7.1 MOA

Massive Online Analysis (MOA) (Bifet et al. 2010) is a popular open source frame-
work for data stream mining. It is implemented in Java and released under the GNU
General Public License. MOA is specialized for data streams. It includes algorithms for
regression, clustering, classification, outlier detection, concept drift detection and rec-
ommender systems, and it also includes tools for evaluation. Data stream generators are
provided. It can be used as both a stream processing tool and an environment to develop
stream processing algorithms. Furthermore, MOA has the ability to interact with Wai-
kato Environment for Knowledge Analysis (1993), which is a data mining software.

7.2 RapidMiner

RapidMiner (2001), formerly known as Yet Another Learning Environment (YALE),
is another data mining tool but it is developed by a private company. It has an inte-
grated development environment, which is called RapidMiner Studio. It supports all
data preparation, result visualization, model validation and optimization steps of the
machine learning process. It has a Streams plugin (Bockermann 2018) which integrates
the stream oriented processing into the RapidMiner suite. This plugin allows developing
data stream processing tools using utilities of RapidMiner.

7.3 R

R (1993) is a free software environment and programming language for statistical com-
puting. R is an open source project and it is released under the GNU General Public
License. R, a rich in packages software environment, has special packages for cluster-
ing, data streams, stream mining etc. These packages are as follows.

• stream: A framework for data stream modeling and associated data mining tasks
such as clustering and classification.

• rstream: Unified object oriented interface for multiple independent streams of ran-
dom numbers from different sources.

1231Data stream clustering: a review

1 3

• streamMOA: Interface for data stream clustering algorithms implemented in the
MOA framework.

• RMOA: Connects R with MOA framework to build classification and regression mod-
els on streaming data.

8 Data stream processing platforms

Currently there exist several data stream mining platforms (Janardan and Mehta 2017;
Prasad and Agarwal 2016) developed by different organizations.

• Apache Storm (2011) is a distributed, real time stream processing computation frame-
work. It is free and open source. Moreover, Apache Storm is scalable and fault tolerant.
It is designed to be used with any programming language.

• Apache Spark (2012) is a well known, open source, fast and general engine for large-
scale data processing. Apache Spark has an extension, called Spark Streaming (2012),
that enables scalable, high-throughput, fault tolerant stream processing of live data
streams. Spark Streaming can be seen as a layer between data streams and Apache
Spark. Spark Streaming gets a data stream, creates data batches from the stream and
feeds Apache Spark with these batches. In this way, results of the data stream process-
ing are produced by Apache Spark batch by batch. Spark Stream accepts input from
many different sources such as Kafka, Flume, Twitter, ZeroMQ, Kinesis, or TCP sock-
ets.

• Apache Samza (2013) (Ramesh 2013) is another open source, distributed stream pro-
cessing framework. It is near real time and asynchronous. It provides fault tolerance,
processor isolation, security, and resource management using Apache Hadoop Yarn.
It uses Apache Kafka for messaging. Apache Samza, together with Apache Kafka, is
developed by LinkedIn engineers, and commonly known as LinkedIn’s framework for
stream processing.

• Apache Kafka (2011) is an open source stream processing software platform. The
objective of the project is to provide a unified, high throughput, low latency platform
for real time data streams. It is scalable and fault tolerant. It has a publish-subscribe
messaging system. Apache Kafka is the other platform developed by LinkedIn, similar
to Apache Samza.

• AmazonKinesis (2013) is one of the Amazon web services. It is a cloud based, real
time data processing service that is developed for large and distributed data streams. In
functionality, Amazon Kinesis has similarities to Apache Kafka. It is scalable and able
to pull any amount of data, from any number of sources. It is designed to make it easier
to develop real time applications and it has a fully managed infrastructure.

• IBM Infosphere (1996) (Gedik and Andrade 2012) is a commercial, enterprise-grade
stream processing platform, that is designed to retrieve meaningful information from
data in motion, working on time window models with windows of minutes to hours. It
provides low latency for time critical applications such as fraud detection and network
management. It also has the ability to fuse streams. IBM Inforsphere adapts rapidly to
changing data forms and types and it manages high availability itself.

• Google Cloud Stream (2012) is Google’s solution for data stream processing. It has a
fully managed infrastructure and it provides ingesting, processing and analyzing event
streams in real time. It is an integrated, scalable and open stream analytics solution.

1232 A. Zubaroğlu, V. Atalay

1 3

Google Cloud Stream works with a full harmony with other solutions of Google Cloud,
like Cloud Pub/Sub, Cloud Dataflow, BigQuery, Cloud Machine Learning etc.

• Microsoft Azure Stream Analytics (2012) is Microsoft’s solution for data stream pro-
cessing. It is a serverless, scalable, on demand real time, complex event processing
engine. It is able to run on multiple streams from different sources. Azure Stream Ana-
lytics has a declarative SQL like language. It can be used as integrated with other Azure
solutions such as Azure Machine Learning, Azure IoT Hub, Power BI etc.

9 Conclusions

With the technological improvements, number of interconnected devices is increasing.
Connected devices continuously generate large scale data with high speed, which are called
data streams. Therefore, processing data streams in real time is arousing more interest and
clustering seems to be the most suitable data processing method for data streams.

We present a survey of recent progress in data stream clustering algorithms. There are
essential differences between traditional data clustering algorithms and data stream cluster-
ing algorithms. We emphasize the most important data stream clustering concepts such as
concept drift, window models, outlier detection methods and data structures. Seven most
recent data stream clustering algorithms are analyzed in detail. For each algorithm, a com-
prehensive analysis is presented including algorithmic detail, evaluation of the results and
complexity. Global comparison of these algorithms highlighting their advantages and dis-
advantages is also presented. An overview of the most popular stream processing tools and
platforms is given along with stream datasets.

Several open challenges exist regarding data stream clustering. Finding number of clus-
ters and adopting to changes in the number of clusters in data streams are the most crucial
challenges. Furthermore, existing algorithms need critical parameters that directly affect
clustering quality and require prior knowledge about input data. Moreover, concept drift
may change data characteristics and invalidate these parameters. Developing generic and
self-adapting algorithms is another popular data stream clustering challenge. Additionally,
there is a lack of algorithms that handle different data types. Most of existing algorithms
are able to deal with only quantitative data. Last but not least, data stream clustering algo-
rithms should execute with high performance in despite of memory restrictions.

It may be ideal to compare the efficiency and the effectiveness of the data stream clus-
tering algorithms on a benchmarking framework under controlled conditions of artificial
datasets that contain concept drift, outliers and class labels and of real datasets. Data
stream clustering using deep neural network models and within edge computing are the
two emerging topics to be explored further.

References

A community resource for archiving wireless data at Dartmouth (CRAWDAD) (n.d.) https ://crawd ad.org/
keywo rd-senso r-netwo rk.html. Accessed 25 August 2018

Ackermann MR, Märtens M, Raupach C, Swierkot K, Lammersen C, Sohler C (2012) Streamkm++: a clus-
tering algorithm for data streams. J Exp Algorithm 17:2.4:2.1–2.4:2.30

Aggarwal CC (2013) A survey of stream clustering algorithms. In: Reddy CK, Aggarwal CC (eds) Data
clustering: algorithms and applications. CRC Press, Boca Raton, pp 231–258

Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceed-
ings of the 29th international conference on very large data bases, VLDB ’03, vol 9, pp 81–92

https://crawdad.org/keyword-sensor-network.html
https://crawdad.org/keyword-sensor-network.html

1233Data stream clustering: a review

1 3

Aggarwal C, Han J, Wang J, Yu P (2004) A framework for projected clustering of high dimensional data
streams, pp 852–863. https ://doi.org/10.1016/B978-01208 8469-8/50075 -9

Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional
data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international confer-
ence on management of data, association for computing machinery, SIGMOD ’98, New York, NY,
USA, pp 94–105. https ://doi.org/10.1145/27630 4.27631 4

Alam F, Mehmood R, Katib I, Albeshri A (2016) Analysis of eight data mining algorithms for smarter inter-
net of things (IoT). Procedia Comput Sci 98:437–442

AmazonKinesis (2013) Amazon Kinesis. https ://aws.amazo n.com/kines is/. Accessed 25 Mar 2018
Amini A, Saboohi H, Herawan T, Wah TY (2016) Mudi-stream: a multi density clustering algorithm for

evolving data stream. J Netw Comput Appl 59(C):370–385
Andrade Silva J, Hruschka ER, Gama J (2017) An evolutionary algorithm for clustering data streams with a

variable number of clusters. Expert Syst Appl 67:228–238
Apache Kafka (2011) https ://kafka .apach e.org/. Accessed 25 Mar 2018
Apache Samza (2013) Samza. https ://samza .apach e.org/. Accessed 25 Mar 2018
Apache Spark (2012) Apache Spark lightning-fast cluster computing. https ://spark .apach e.org/. Accessed 25

Mar 2018
Apache Storm (2011) http://storm .apach e.org/. Accessed 25 Mar 2018
Bezerra CG, Costa BSJ, Guedes LA, Angelov PP (2020) An evolving approach to data streams cluster-

ing based on typicality and eccentricity data analytics. Inf Sci 518:13–28. https ://doi.org/10.1016/j.
ins.2019.12.022

Bhosale SV (2014) A survey: outlier detection in streaming data using clustering approached. Int J Comput
Sci Inf Technol 5:6050–6053

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: massive online analysis. J Mach Learn Res
11:1601–1604

Bockermann C (2018) RapidMiner streams plugin. https ://sfb87 6.de/strea ms/doc/rapid miner .html. Accessed
25 Mar 2018

Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise.
vol 2006. https ://doi.org/10.1137/1.97816 11972 764.29

Carnein M, Assenmacher D, Trautmann H (2017) An empirical comparison of stream clustering algorithms.
In: Proceedings of the computing frontiers conference, CF’17, pp 361–366

Chauhan P, Shukla M (2015) A review on outlier detection techniques on data stream by using different
approaches of K-Means algorithm. In: 2015 international conference on advances in computer engi-
neering and applications

Chen Y, Tu L (2007) Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM
SIGKDD international conference on knowledge discovery and data mining, KDD ’07, pp 133–142

Christodoulou V, Bi Y, Wilkie G (2018) A fuzzy shape-based anomaly detection and its application to
electromagnetic data. IEEE J Sel Top Appl Earth Obs Remote Sens 11(9):3366–3379. https ://doi.
org/10.1109/JSTAR S.2018.28548 65

Citi Bike NYC (2013) Citi Bike: NYC’s official bike sharing system. https ://www.citib ikeny c.com/.
Accessed 25 Mar 2018

Citi Bike System Data (2013) https ://www.citib ikeny c.com/syste m-data. Accessed 25 Mar 2018
Dang XH, Lee VCS, Ng WK, Ong KL (2009) Incremental and adaptive clustering stream data over slid-

ing window. In: Bhowmick SS, Küng J, Wagner R (eds) Database and expert systems applications.
Springer, Berlin, pp 660–674

Din SU, Shao J, Kumar J, Ali W, Liu J, Ye Y (2020) Online reliable semi-supervised learning on evolving
data streams. Inf Sci 525:153–171. https ://doi.org/10.1016/j.ins.2020.03.052

Ding S, Wu F, Qian J, Jia H, Jin F (2015) Research on data stream clustering algorithms. Artif Intell Rev
43(4):593–600

Duan L, Xiong D, Lee J, Guo F (2006) A local density based spatial clustering algorithm with noise. Inf
Syst 32:4061–4066. https ://doi.org/10.1109/ICSMC .2006.38476 9

Ester M, Kriegel HP, Sander J, Wimmer M, Xu X (1998) Incremental clustering for mining in a data ware-
housing environment. In: Proceedings of the 24rd international conference on very large data bases,
VLDB ’98, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 323–333

Fahy C, Yang S, Gongora M (2018) Ant colony stream clustering: a fast density clustering algorithm for
dynamic data streams. IEEE Trans Cybern 49(6):2215–2228

Fisher D (1996) Iterative optimization and simplification of hierarchical clustering. J Artif Intell Res 4:147–
178. https ://doi.org/10.1613/jair.276

Gaber MM, Zaslavsky A, Krishnaswamy S (2009) Data stream mining. In: Maimon O, Rokach L (eds) Data
mining and knowledge discovery handbook. Springer, Berlin, pp 759–787

https://doi.org/10.1016/B978-012088469-8/50075-9
https://doi.org/10.1145/276304.276314
https://aws.amazon.com/kinesis/
https://kafka.apache.org/
https://samza.apache.org/
https://spark.apache.org/
http://storm.apache.org/
https://doi.org/10.1016/j.ins.2019.12.022
https://doi.org/10.1016/j.ins.2019.12.022
https://sfb876.de/streams/doc/rapidminer.html
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1109/JSTARS.2018.2854865
https://doi.org/10.1109/JSTARS.2018.2854865
https://www.citibikenyc.com/
https://www.citibikenyc.com/system-data
https://doi.org/10.1016/j.ins.2020.03.052
https://doi.org/10.1109/ICSMC.2006.384769
https://doi.org/10.1613/jair.276

1234 A. Zubaroğlu, V. Atalay

1 3

Gama J, Rodrigues PP, Lopes L (2011) Clustering distributed sensor data streams using local processing
and reduced communication. Intell Data Anal 15(1):3–28

Gama J, Žliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.
ACM Comput Surv 46(4):44:1–44:37

Gedik B, Andrade H (2012) A model-based framework for building extensible, high performance stream
processing middleware and programming language for IBM InfoSphere Streams. Softw Pract Exp
42(11):1363–1391

Ghesmoune M, Lebbah M, Azzag H (2016) State-of-the-art on clustering data streams. Big Data Anal
1(1):13

Google Cloud Stream (2012) Streaming analytics for real time insights—Google Cloud. https ://cloud .googl
e.com/solut ions/big-data/strea m-analy tics/. Accessed 25 Mar 2018

Hassani M, Spaus P, Seidl T (2014) Adaptive multiple-resolution stream clustering. In: Machine learning
and data mining in pattern recognition, pp 134–148

Hassani M, Spaus P, Cuzzocrea A, Seidl T (2015) Adaptive stream clustering using incremental graph
maintenance. In: Proceedings of the 4th international conference on big data, streams and heterogene-
ous source mining: algorithms, systems, programming models and applications , BIGMINE’15, vol
41, pp 49–64

Hassani M, Spaus P, Cuzzocrea A, Seidl T (2016) I-hastream: density-based hierarchical clustering of big
data streams and its application to big graph analytics tools. In: 2016 16th IEEE/ACM international
symposium on cluster, cloud and grid computing (CCGrid), pp 656–665

Hyde R, Angelov P, MacKenzie A (2017) Fully online clustering of evolving data streams into arbitrarily
shaped clusters. Inf Sci 382–383:96–114

Infosphere IBM (1996) Streaming analytics—overview—IBM Cloud. https ://www.ibm.com/cloud /strea
ming-analy tics. Accessed 25 Mar 2018

Isaksson C, Dunham M, Hahsler M (2012) Sostream: self organizing density-based clustering over data
stream. vol 7376. https ://doi.org/10.1007/978-3-642-31537 -4_21

Janardan Mehta S (2017) Concept drift in streaming data classification: algorithms, platforms and issues.
Procedia Comput Sci 122:804–811. https ://doi.org/10.1016/j.procs .2017.11.440

Karypis G, Han EH, Kumar V (1999) Chameleon a hierarchical clustering algorithm using dynamic mod-
eling. Computer 32:68–75. https ://doi.org/10.1109/2.78163 7

Kaufman L, Rousseeuw PJ (1990) Chapter 3: Clustering large applications (Program CLARA). Wiley,
Hoboken, pp 126–163. https ://doi.org/10.1002/97804 70316 801.ch3

Keogh E, Lin J, Fu A (2005) Hot sax: efficiently finding the most unusual time series subsequence. In:
Proceedings of the fifth IEEE international conference on data mining, ICDM ’05, IEEE Computer
Society, USA, pp 226–233. https ://doi.org/10.1109/ICDM.2005.79

Kim T, Park CH (2020) Anomaly pattern detection for streaming data. Exp Syst Appl 149:113252. https ://
doi.org/10.1016/j.eswa.2020.11325 2

Kong X, Bi Y, Glass DH (2019) Detecting anomalies in sequential data augmented with new features. Artif
Intell Rev 53:625–652

Kremer H, Kranen P, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer B (2011) An effecive evaluation
measure for clustering on evolving data streams. In: Proceedings of the 17th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, KDD ’11, pp 868–876

Kumar P (2016) Data stream clustering in internet of things. SSRG Int J Comput Sci Eng 3(8):1–14
Liu L, Huang H, Guo Y, Chen F (2009) rDenStream, a clustering algorithm over an evolving data stream.

In: 2009 International conference on information engineering and computer science, pp 1–4
Lu Y, Sun Y, Xu G, Liu G (2005) A grid-based clustering algorithm for high-dimensional data streams. In:

Li X, Wang S, Dong ZY (eds) Advanced data mining and applications. Springer, Berlin, pp 824–831
Mahdiraji AR (2009) Clustering data stream: a survey of algorithms. Int J Knowl-Based Intell Eng Syst

13(2):39–44
Mansalis S, Ntoutsi E, Pelekis N, Theodoridis Y (2018) An evaluation of data stream clustering algorithms.

Stat Anal Data Min ASA Data Sci J 11(4):167–187
Massive Online Analysis (MOA) (2014) MOA—machine learning for data streams. https ://moa.cms.waika

to.ac.nz/. Accessed 25 Mar 2018
Meesuksabai W, Kangkachit T, Waiyamai K (2011) Hue-stream: evolution-based clustering technique for

heterogeneous data streams with uncertainty, pp 27–40. https ://doi.org/10.1007/978-3-642-25856 -5_3
Meetup (2002) We are what we do | Meetup. https ://www.meetu p.com/. Accessed 25 Mar 2018
Meetup Stream (2002) Extend your community | Meetup. https ://www.meetu p.com/meetu p_api/docs/strea

m/2/rsvps /. Accessed 25 Mar 2018
Merino JA (2015) Streaming data clustering in MOA using the leader algorithm. PhD thesis, Universitat

Politècnica de Catalunya

https://cloud.google.com/solutions/big-data/stream-analytics/
https://cloud.google.com/solutions/big-data/stream-analytics/
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://doi.org/10.1007/978-3-642-31537-4_21
https://doi.org/10.1016/j.procs.2017.11.440
https://doi.org/10.1109/2.781637
https://doi.org/10.1002/9780470316801.ch3
https://doi.org/10.1109/ICDM.2005.79
https://doi.org/10.1016/j.eswa.2020.113252
https://doi.org/10.1016/j.eswa.2020.113252
https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
https://doi.org/10.1007/978-3-642-25856-5_3
https://www.meetup.com/
https://www.meetup.com/meetup_api/docs/stream/2/rsvps/
https://www.meetup.com/meetup_api/docs/stream/2/rsvps/

1235Data stream clustering: a review

1 3

Microsoft Azure Stream Analytics (2012) Stream analytics—real time data analytics—Microsoft Azure.
https ://azure .micro soft.com/en-us/servi ces/strea m-analy tics/. Accessed 25 Mar 2018

MOA Stream Generators (2014) MOA: Package moa.stream.generators. https ://www.cs.waika to.ac.
nz/~abife t/MOA/API/names pacem oa_1_1stre ams_1_1gene rator s.html. Accessed 25 Mar 2018

Modi KD, Oza PB (2017) Outlier analysis approaches in data mining. Int J Innov Res Technol 3:6–12
Mousavi M, Bakar A, Vakilian M (2015) Data stream clustering algorithms: a review. Int J Adv Soft

Comput Appl 7:1–15
Mouss H, Mouss D, Mouss N, Sefouhi L (2004) Test of page-hinckley, an approach for fault detec-

tion in an agro-alimentary production system. In: 2004 5th Asian control conference (IEEE Cat.
No.04EX904), vol 2, pp 815–818

Namadchian A, Esfandani G (2012) Dsclu: a new data stream clustring algorithm for multi density envi-
ronments. In: 2012 13th ACIS international conference on software engineering, artificial intel-
ligence, networking and parallel/distributed computing, pp 83–88

National Weather Service (NWS) (1870) National Weather Service. https ://www.weath er.gov/. Accessed
25 Mar 2018

Nguyen HL, Woon YK, Ng WK (2015) A survey on data stream clustering and classification. Knowl Inf
Syst 45(3):535–569

NWS Public Alerts (n.d.) NWS Public Alerts. https ://alert s.weath er.gov/. Accessed 25 Mar 2018
O’Callaghan L, Meyerson A, Motwani R, Mishra N, Guha S (2002) Streaming-data algorithms for high-

quality clustering. In: Proceedings of the 18th international conference on data engineering, ICDE
’02, pp 685–694

Ordonez C (2003) Clustering binary data streams with k-means. In: Proceedings of the 8th ACM SIG-
MOD workshop on research issues in data mining and knowledge discovery, DMKD ’03, Asso-
ciation for Computing Machinery, New York, NY, USA, pp 12–19, https ://doi.org/10.1145/88208
2.88208 7

Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076
Prasad BR, Agarwal S (2016) Stream data mining: platforms, algorithms, performance evaluators and

research trends. Int J Database Theory Appl 9(9):201–218
Puschmann D, Barnaghi P, Tafazolli R (2017) Adaptive clustering for dynamic IoT data streams. IEEE

Internet Things J 4(1):64–74
R (1993) R—the R Project for statistical computing. https ://www.r-proje ct.org/. Accessed 25 Mar 2018
Ramesh N (2013) Apache Samza, LinkedIn’s framework for stream processing—The New Stack. https ://

thene wstac k.io/apach e-samza -linke dins-frame work-for-strea m-proce ssing /. Accessed 25 Mar 2018
Ramirez-Gallego S, Krawczyk B, Garcia S, Wozniak M, Herrera F (2017) A survey on data preprocess-

ing for data stream mining: current status and future directions. Neurocomputing 239:39–57
RapidMiner (2001) Data Sicence Platform—RapidMiner. https ://rapid miner .com/. Accessed 25 Mar 2018
Rodrigues P, Gama J, Pedroso JP (2006) Odac: hierarchical clustering of time series data streams. https

://doi.org/10.1137/1.97816 11972 764.48
Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Statist

27(3):832–837
Sadik S, Gruenwald L (2014) Research issues in outlier detection for data streams. SIGKDD Explor

Newsl 15(1):33–40
Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39. https ://doi.

org/10.1109/MC.2017.9
Sheikholeslami G, Chatterjee S, Zhang A (2000) Wavecluster: a wavelet-based clustering approach for spa-

tial data in very large databases. VLDB J 8(3–4):289–304. https ://doi.org/10.1007/s0077 80050 009
Shi W, Dustdar S (2016) The promise of edge computing. Computer 49(5):78–81
Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things

J 3(5):637–646
Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho ACPLFd, Ja Gama (2013) Data stream cluster-

ing: a survey. ACM Comput Surv 46(1):13:1–13:31
Song Q, Kasabov N (2001) ECM–a novel on-line, evolving clustering method and its applications. In:

Posner MI (ed) Foundations of cognitive science. The MIT Press, Cambridge, pp 631–682
Souiden I, Brahmi Z, Toumi H (2016) A survey on outlier detection in the context of stream mining: review

of existing approaches and recommadations. In: Advances in intelligent systems and computing
Streaming Spark (2012) Apache spark streaming. https ://spark .apach e.org/strea ming/. Accessed 25 Mar

2018
Sun Y, Lu Y (2006) A grid-based subspace clustering algorithm for high-dimensional data streams.

In: Feng L, Wang G, Zeng C, Huang R (eds) Web information systems–WISE 2006 workshops.
Springer, Berlin, pp 37–48

https://azure.microsoft.com/en-us/services/stream-analytics/
https://www.cs.waikato.ac.nz/%7eabifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.cs.waikato.ac.nz/%7eabifet/MOA/API/namespacemoa_1_1streams_1_1generators.html
https://www.weather.gov/
https://alerts.weather.gov/
https://doi.org/10.1145/882082.882087
https://doi.org/10.1145/882082.882087
https://www.r-project.org/
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
https://thenewstack.io/apache-samza-linkedins-framework-for-stream-processing/
https://rapidminer.com/
https://doi.org/10.1137/1.9781611972764.48
https://doi.org/10.1137/1.9781611972764.48
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1007/s007780050009
https://spark.apache.org/streaming/

1236 A. Zubaroğlu, V. Atalay

1 3

Tasoulis D, Ross G, Adams N (2007) Visualising the cluster structure of data streams, vol 4723, pp 81–92.
https ://doi.org/10.1007/978-3-540-74825 -0_8

Thakkar P, Vala J, Prajapati V (2016) Survey on outlier detection in data stream. Int J Comput Appl
136(2):13–16

Udommanetanakit K, Rakthanmanon T, Waiyamai K (2007) E-stream: Evolution-based technique for
stream clustering. vol 4632, pp 605–615. https ://doi.org/10.1007/978-3-540-73871 -8_58

Waikato Environment for Knowledge Analysis (1993) Weka 3—data mining with open source machine
learning software in Java. https ://www.cs.waika to.ac.nz/ml/weka/. Accessed 25 Mar 2018

Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009) Density-based clustering of data streams at multiple
resolutions. ACM Trans Knowl Discov Data 3(3):1–28. https ://doi.org/10.1145/15523 03.15523 07

Wang H, Yu Y, Wang Q, Wan Y (2012) A density-based clustering structure mining algorithm for data
streams. In: Proceedings of the 1st international workshop on big data, streams and heterogeneous
source mining: algorithms, systems, programming models and applications, BigMine’12, Association
for Computing Machinery, New York, NY, USA, pp 69–76. https ://doi.org/10.1145/23513 16.23513 26

Wang W, Yang J, Muntz RR (1997) Sting: a statistical information grid approach to spatial data mining. In:
Proceedings of the 23rd international conference on very large data bases, , VLDB ’97, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, pp 186–195

Xu J, Wang G, Li T, Deng W, Gou G (2017) Fat node leading tree for data stream clustering with density
peaks. Knowl-Based Syst 120:99–117. https ://doi.org/10.1016/j.knosy s.2016.12.025

Yasumoto K, Yamaguchi H, Shigeno H (2016) Survey of real-time processing technologies of iot data
streams. J Inf Process 24(2):195–202

Yin C, Xia L, Zhang S, Sun R, Wang J (2017) Improved clustering algorithm based on high-speed network
data stream. Soft Comput 22(13):4185–4195

Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large data-
bases. SIGMOD Rec 25(2):103–114

Zhang X, Furtlehner C, Germain-Renaud C, Sebag M (2014) Data stream clustering with affinity propaga-
tion. IEEE Trans Knowl Data Eng 26(7):1644–1656

Zhang KS, Zhong L, Tian L, Zhang XY, Li L (2017) DBIECM—an evolving clustering method for stream-
ing data clustering. AMSE J 60(1):239–254

Zhou A, Cao F, Yan Y, Sha C, He X (2007) Distributed data stream clustering: a fast em-based approach. In:
2007 IEEE 23rd international conference on data engineering, pp 736–745

Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows.
Knowl Inf Syst 15(2):181–214

Zhu XH (2010) Stream data mining repository. http://www.cse.fau.edu/~xqzhu /strea m.html. Accessed 25
Mar 2018

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/978-3-540-74825-0_8
https://doi.org/10.1007/978-3-540-73871-8_58
https://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1145/1552303.1552307
https://doi.org/10.1145/2351316.2351326
https://doi.org/10.1016/j.knosys.2016.12.025
http://www.cse.fau.edu/%7exqzhu/stream.html

	Data stream clustering: a review
	Abstract
	1 Introduction
	2 Concepts in data stream clustering
	2.1 Concept drift
	2.2 Data structures for data streams
	2.3 Time window models
	2.3.1 Damped window
	2.3.2 Landmark window
	2.3.3 Sliding window

	2.4 Outlier detection

	3 Stream clustering algorithms
	3.1 Adaptive streaming k-means (2017)
	3.2 FEAC-Stream (2017)
	3.3 MuDi-Stream (2016)
	3.4 CEDAS (2016)
	3.5 Improved data stream clustering algorithm (2017)
	3.6 DBIECM (2017)
	3.7 I-HASTREAM (2015)

	4 Comparison of the algorithms
	5 Open problems
	6 Popular data repositories and datasets
	6.1 Data repositories
	6.1.1 Citi Bike system data
	6.1.2 Meetup RSVP stream
	6.1.3 National weather service public alerts
	6.1.4 Stream data mining repository
	6.1.5 MOA
	6.1.6 Other repositories

	6.2 Popular datasets
	6.2.1 Artificial data streams
	6.2.2 Forest cover type dataset
	6.2.3 Network intrusion detection dataset
	6.2.4 Charitable donation dataset
	6.2.5 Various spam mail datasets
	6.2.6 Various sensor network datasets

	7 Data stream processing tools
	7.1 MOA
	7.2 RapidMiner
	7.3 R

	8 Data stream processing platforms
	9 Conclusions
	References

