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Abstract
Medical imaging is an invaluable resource in medicine as it enables to peer inside the 
human body and provides scientists and physicians with a wealth of information indispen-
sable for understanding, modelling, diagnosis, and treatment of diseases. Reconstruction 
algorithms entail transforming signals collected by acquisition hardware into interpretable 
images. Reconstruction is a challenging task given the ill-posedness of the problem and 
the absence of exact analytic inverse transforms in practical cases. While the last decades 
witnessed impressive advancements in terms of new modalities, improved temporal and 
spatial resolution, reduced cost, and wider applicability, several improvements can still 
be envisioned such as reducing acquisition and reconstruction time to reduce patient’s 
exposure to radiation and discomfort while increasing clinics throughput and reconstruc-
tion accuracy. Furthermore, the deployment of biomedical imaging in handheld devices 
with small power requires a fine balance between accuracy and latency. The design of fast, 
robust, and accurate reconstruction algorithms is a desirable, yet challenging, research 
goal. While the classical image reconstruction algorithms approximate the inverse func-
tion relying on expert-tuned parameters to ensure reconstruction performance, deep learn-
ing (DL) allows automatic feature extraction and real-time inference. Hence, DL presents 
a promising approach to image reconstruction with artifact reduction and reconstruction 
speed-up reported in recent works as part of a rapidly growing field. We review state-
of-the-art image reconstruction algorithms with a focus on DL-based methods. First, we 
examine common reconstruction algorithm designs, applied metrics, and datasets used in 
the literature. Then, key challenges are discussed as potentially promising strategic direc-
tions for future research.
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1 Introduction

Biomedical image reconstruction translates signals acquired by a wide range of sensors 
into images that can be used for diagnosis and discovery of biological processes in cell 
and organ tissue. Each biomedical imaging modality leverages signals in different bands 
of the electromagnetic spectrum, e.g. from gamma rays ( Positron emission tomography 
PET/SPECT)), X-rays (computed tomography (CT)), visible light (microscopy, endos-
copy), infrared (thermal images), and radio-frequency (Nuclear magnetic resonance 
imaging (MRI)), as well as pressure sound waves (in ultrasound (US) imaging) (Webb 
and Kagadis 2003). Reconstruction algorithms transform the collected signals into a 2, 
3, or 4-dimensional image.

The accuracy of each reconstruction is critical for discovery and diagnosis. Robust-
ness to noise and generalization cross modality specifications’ (e.g.,  sampling pattern, 
rate, etc.) and imaging devices parameters’ allow a reconstruction algorithm to be used 
in wider applications. The time required for each reconstruction determines the number 
of subjects that can be diagnosed as well as the suitability of the technique in operating 
theatres and emergency situations. The number of measurements needed for a high qual-
ity reconstruction impacts the exposure a patient or sample will have to endure. Finally, 
the hardware requirements define whether a reconstruction algorithm can be used only 
in a dedicated facility or in portable devices thus dictating the flexibility of deployment.

The study of image reconstruction is an active area of research in modern applied 
mathematics, engineering and computer science. It forms one of the most active inter-
disciplinary fields of science  (Fessler 2017) given that improvement in the quality of 
reconstructed images offers scientists and clinicians an unprecedented insight into the 
biological processes underlying disease. Figure 1 provides an illustration of the recon-
struction problem and shows a typical data flow in a medical imaging system.

Over the past few years, researchers have begun to apply machine learning tech-
niques to biomedical reconstruction to enable real-time inference and improved image 
quality in a clinical setting. Here, we first provide an overview of the image reconstruc-
tion problem and outline its characteristics and challenges (Sect. 1.1) and then outline 
the purpose, scope, and the layout of this review (Sect. 1.2).

Fig. 1  Data flow in a medical imaging and image interpretation system. Forward model encodes the physics 
of the imaging system. The inverse model transforms the collected signals by the acquisition hardware into 
a meaningful image. The success of diagnosis, evaluation, and treatment rely on accurate reconstruction, 
image visualization and processing algorithms
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1.1  Inverse problem and challenges

1.1.1  From output to input

Image reconstruction is the process of forming an interpretable image from the raw data (sig-
nals) collected by the imaging device. It is known as an inverse problem where given a set 
of measurements, the goal is to determine the original structure influencing the signal col-
lected by a receiver given some signal transmission medium properties (Fig. 2). Let y ∈ ℂ

M 
represent a set of raw acquired sensor measurements subject to some unknown noise (or per-
turbation) vector N ∈ ℂ

M intrinsic to the acquisition process. The objective is to recover the 
spatial-domain (or spatio-temporal) unknown image x ∈ ℂ

N such that:

where F(⋅) is the forward model operator that models the physics of image-formation, 
which can include signal propagation, attenuation, scattering, reflection and other trans-
forms, e.g. Radon or Fourier transform. F(⋅) can be a linear or a nonlinear operator depend-
ing on the imaging modality. A is an aggregation operation representing the interaction 
between noise and signal, in the assumption of additive noise A = +.

While imaging systems are usually well approximated using mathematical models that 
define the forward model, an exact analytic inverse transform A−1(⋅) is not always possible. 

(1)y = A(F(x),N)

Fig. 2  Propagation of signals from sender to receiver. While passing through a transmission channel, sig-
nals s pick up noise (assuming additive) along the way, until the acquired sensor data y = s+N  reaches the 
receiver. The properties of the received signal may, via a feedback loop, affect properties of future signal 
transmission. Sender and receiver modeling differ within modalities. For example the lower figure illus-
trates in the left ultrasound probe used to send and collect signals (S = R); in the middle: X-ray signal 
propagates through the subject toward the detector (S → R);   Single molecule localization microscopy is 
an instance where S and R are components of a feedback loop (S ↔ R). The signal, optical measurements 
of nano-meter precise fluorescent emissions, is reconstructed in a discrete (temporal) X/Y/Z domain. An 
example of a feedback loop in SMLM is the auto-tuning of the laser power in response to an increase in 
density (R) that can compromise the spatio-temporal sparsity required for accurate reconstruction (Cardoen 
et al. 2019)
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Reconstruction approaches usually resort to iteratively approximate the inverse function 
and often involve expert-tuned parameters and prior domain knowledge considerations to 
optimize reconstruction performance.

1.1.2  An ill‑posed problem

A basic linear and finite-dimensional model of the sampling process leads us to study a 
discrete linear system of the imaging problem of the form:

For full sampling, in MRI for instance, we have M = N and the matrix F ∈ ℂ
M×N is a 

well-conditioned discrete Fourier transform matrix. However, when ( M < N ), there will 
be many images x that map to the same measurements y, making the inverse an ill-posed 
problem (Fig.  3). Mathematically, the problem is typically under-determined as there 
would be fewer equations to describe the model than unknowns. Thus, one challenge for 
the reconstruction algorithm is to select the best solution among a set of potential solu-
tions  (McCann and Unser 2019). One way to reduce the solution space is to leverage 
domain specific knowledge by encoding priors, i.e. regularization.

Sub-sampling in MRI or sparse-view/limited-angle in CT are examples of how reduc-
ing data representation ( M < N ) can accelerate acquisition or reduce radiation exposure. 
Additional gains can be found in lowered power, cost, time, and device complexity, albeit 
at the cost of increasing the degree of ill-posedness and complexity of the reconstruction 
problem. This brings up the need for sophisticated reconstruction algorithms with high fea-
ture extraction power to make the best use of the collected signal, capture modality-specific 
imaging features, and leverage prior knowledge. Furthermore, developing high-quality 

(2)y = Fx +N.

Fig. 3  (A) A problem is ill-conditioned when two different objects produce very close observed signals. 
When the observed signals are identical and hence identical reconstructed images,  the inverse solution is 
non-unique. Prior knowledge can be leveraged to rule out certain solutions that conflict with the additional 
knowledge about the object beyond the measurement vectors. (B) A use case toy example of two objects 
with the same acquired signals. Prior knowledge about homogeneity of object rules out the second object
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reconstruction algorithms requires not only a deep understanding of both the physics of 
the imaging systems and the biomedical structures but also specially designed algorithms 
that can account for the statistical properties of the measurements and tolerate errors in the 
measured data.

1.2  Scope of this survey

The field of biomedical image reconstruction has undergone significant advances over the 
past few decades and can be broadly classified into two categories: conventional methods 
(analytical and optimization based methods) and data-driven or learning-based methods. 
Conventional methods (discussed in Sect. 2) are the most dominant and have been exten-
sively studied over the last few decades with a focus on how to improve their results (Van-
denberghe et  al. 2001; Jhamb et  al. 2015; Assili 2018) and reduce their computational 
cost (Despres and Jia 2017).

Researchers have recently investigated deep learning (DL) approaches for various 
biomedical image reconstruction problems (discussed in Sect. 3) inspired by the success 
of deep learning in computer vision problems and medical image analysis   (Goceri and 
Goceri 2017). This topic is relatively new and has gained a lot of interest over the last few 
years, as shown in Fig. 4a and listed in Table 1, and forms a very active field of research 
with numerous special journal issues  (Wang 2016; Wang et  al. 2018; Ravishankar et  al. 
2019). MRI and CT received the most attention among studied modalities, as illustrated in 
Fig. 4b, given their widespread clinical usage, the availability of analytic inverse transform 
and the availability of public (real) datasets. Several special issues journals devoted to MRI 
reconstruction have been recently published  (Knoll et al. 2020; Liang et al. 2020; Sandino 
et al. 2020).

 Fessler (2017) wrote a brief chronological overview on image reconstruction meth-
ods highlighting an evolution from basic analytical to data-driven models. McCann et al. 
(2017)) summarized works using CNNs for inverse problems in imaging. Later, Lucas et al. 
(2018) provided an overview of the ways deep neural networks may be employed to solve 
inverse problems in imaging (e.g.,  denoising, superresolution, inpainting).  As illustrated 
in Fig. 4 since their publications a great deal of work has been done warranting a review. 
Recently, McCann and Unser (2019) wrote a survey on image reconstruction approaches 

Fig. 4  (A) The marked increase in publications on biomedical image reconstruction and deep learning in 
the past 10 years. In red: results obtained by PubMed query that can be found at: https ://bit.ly/recon _hit. 
Search query identified 310 contributions which were filtered according to quality, venue, viability and idea 
novelty, resulting in a total of 95 contributions as representatives covered in this survey (blue). (B) The pie 
chart represents the frequency of studies per modality covered in this survey

https://bit.ly/recon_hit
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where they presented a toolbox of operators that can be used to build imaging systems 
models and showed how a forward model and sparsity-based regularization can be used 
to solve reconstruction problems. While their review is more focused on the mathemati-
cal foundations of conventional methods, they briefly discussed data-driven approaches, 
their theoretical underpinning, and performance. Similarly, Arridge et  al. (2019) gave a 
comprehensive survey of algorithms that combine model and data-driven approaches for 
solving inverse problems with focus on deep neural based techniques and pave the way 
towards providing a solid mathematical theory. Zhang and Dong (2019) provided a concep-
tual review of some recent DL-based methods for CT with a focus on methods inspired by 
iterative optimization approaches and their theoretical underpinning from the perspective 
of representation learning and differential equations.

This survey provides an overview of biomedical image reconstruction methods with a 
focus on DL-based strategies, discusses their different paradigms (e.g., image domain, sen-
sor domain (raw data) or end to end learning, architecture, loss, etc. ) and how such meth-
ods can help overcome the weaknesses of conventional non-learning methods.  To sum-
marize the research done to date, we provide a comparative, structured summary of works 
representative of the variety of paradigms on this topic, tabulated according to different 
criteria, discusses the pros and cons of each paradigm as well as common evaluation met-
rics and training dataset challenges. The theoretical foundation was not emphasized in this 
work as it was comprehensively covered in the aforementioned surveys. A summary of the 
current state of the art and outline of what we believe are strategic directions for future 
research are discussed.

The remainder of this paper is organized as follows: in Sect.  2 we give an overview 
of conventional methods discussing their advantages and limitations. We then introduce 
the key machine learning paradigms and how they are being adapted in this field comple-
menting and improving on conventional methods. A review of available data-sets and per-
formance metrics is detailed in Sect. 3. Finally, we conclude by summarizing the current 
state-of-the-art and outlining strategic future research directions (Sect. 6).

2  Conventional image reconstruction approaches

A wide variety of reconstruction algorithms have been proposed during the past few dec-
ades, having evolved from analytical methods to iterative or optimization-based methods 
that account for the statistical properties of the measurements and noise as well as the hard-
ware of the imaging system (Fessler 2017). While these methods have resulted in signifi-
cant improvements in reconstruction accuracy and artifact reduction, are in routine clinical 
use currently, they still present some weaknesses. A brief overview of these methods’ prin-
ciples is presented in this section outlining their weaknesses.

2.1  Analytical methods

Analytical methods are based on a continuous representation of the reconstruction prob-
lem and use simple mathematical models for the imaging system. Classical examples are 
the inverse of the Radon transform such as filtered back-projection (FBP) for CT and the 
inverse Fourier transform (IFT) for MRI. These methods are usually computationally inex-
pensive (in the order of ms) and can generate good image quality in the absence of noise 
and under the assumption of full sampling/all angles projection (McCann and Unser 2019). 
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They typically consider only the geometry and sampling properties of the imaging system 
while ignoring the details of the system physics and measurement noise (Fessler 2017).

When dealing with noisy or incomplete measured data e.g., reducing the measurement 
sampling rate, analytical methods results deteriorate quickly as the signal becomes weaker. 
Thus, the quality of the produced image is compromised. Thaler et  al. (2018) provided 
examples of a CT image reconstruction using the FBP method for different limited projec-
tion angles and showed that analytical methods are unable to recover the loss in the signal 
(Fig. 5), resulting in compromised diagnostic performance.

2.2  Iterative methods

Iterative reconstruction methods, based on more sophisticated models for the imaging sys-
tem’s physics, sensors and noise statistics, have attracted a lot of attention over the past 
few decades. They combine the statistical properties of data in the sensor domain (raw 
measurement data), prior information in the image domain, and sometimes parameters of 
the imaging system into their objective function (McCann and Unser 2019). Compared to 
analytical methods iterative reconstruction algorithms offer a more flexible reconstruction 
framework and better robustness to noise and incomplete data representation problems at 
the cost of increased computation (Ravishankar et al. 2019).

Iterative reconstruction methods involve minimizing an objective function that usually 
consists of a data term and a regularization terms imposing some prior:

Fig. 5  CT Image reconstruction from sparse view measurements. (A) Generation of 2D projections from a 
target 2D CT slice image × for a number of N fixed angles �i . (B) Image reconstructed using conventional 
filtered back projection method for different number of a projection angles N. Modified figures from (Thaler 
et al. 2018) Reprinted by permission from Springer Nature (Thaler et al. 2018)
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where ��F(x̂) − y‖ is a data fidelity term that measures the consistency of the approximate 
solution x̂ , in the space of acceptable images e.g 2D, 3D and representing the physical 
quantity of interest, to the measured signal y,  which depends on the imaging operator and 
could include images, Fourier samples, line integrals, etc. R(⋅) is a regularization term 
encoding the prior information about the data, and � is a hyper-parameter that controls the 
contribution of the regularization term. The reconstruction error is minimized iteratively 
until convergence. We note that the solution space after convergence does not need to be 
singular, for example in methods where a distribution of solutions is sampled (Bayesian 
neural networks (Yang et al. 2018; Luo et al. 2019)). In such cases, the “ ̂x∗ ∈ ” notation 
replaces the current “ ̂x∗ = ”. However, for consistency with recent art we use the simplified 
notation assuming a singular solution space at convergence.

The regularization term is often the most important part of the modeling and what 
researchers have mostly focused on in the literature as it vastly reduces the solution space 
by accounting for assumptions based on the underlying data (e.g.,  smoothness, sparsity, 
spatio-temporal redundancy). The interested reader can refer to  (Dong and Shen 2015; 
McCann and Unser 2019) for more details on regularization modeling. Figure 6 shows an 
example of an iterative approach workflow for diffuse optical tomography (DOT) imaging.

Several image priors were formulated as sparse transforms to deal with incomplete 
data issues. The sparsity idea, representing a high dimensional image x by only a small 
number of nonzero coefficients, is one dominant paradigm that has been shown to dras-
tically improve the reconstruction quality especially when the number of measurements 
M or theirs signal to noise ratio (SNR) is low. Given the assumption that an image can 
be represented with a few nonzero coefficients (instead of its number of pixels), it is pos-
sible to recover it from a much smaller number of measurements. A popular choice for a 
sparsifying transform is total variation (TV) that is widely studied in academic literature. 
The interested reader is referred to Rodríguez (2013) for TV based algorithms modeling 
details. While TV imposes a strong assumption on the gradient sparsity via the non-smooth 

(3)x̂∗ = argmin
x̂

‖F(x̂) − y‖ + 𝜆R(x̂)

Fig. 6  Iterative image reconstruction workflow example. (A) Diffuse optical tomography (DOT) fibers brain 
probe consisting of a set of fibers for illumination and outer bundle fibers for detection (Hoshi and Yamada 
2016). (B) Probe scheme and light propagation modelling in the head, used by the forward model. (C) Itera-
tive approach pipeline. (D) DOT reconstructed image shows the total Hemoglobin (Hb) concentrations in 
the brain. (Figure licensed under CC-BY 4.0 Creative Commons license)
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absolute value that is more suited to piece-wise constant images, TV tends to cause arti-
facts such as blurred details and undesirable patchy texture in the final reconstructions 
(Fig. 7 illustrates an example of artifacts present in TV-based reconstruction). Recent work 
aimed at exploiting richer feature knowledge  to overcome TV’s weaknesses, for exam-
ple TV-type variants (Zhang et al. 2016a), non-local means (NLM) (Zhang et al. 2016b), 
wavelet approaches (Gao et al. 2011), and dictionary learning (Xu et al. 2012). Non-local 
means filtering methods, widely used for CT  (Zhang et  al. 2017), are operational in the 
image domain and allow the estimation of the noise component based on multiple patches 
extracted at different locations in the image (Sun et al. 2016).

While sparsity measures the first order sparsity, i.e the sparsity of vectors (the num-
ber of non-zero elements), some models exploited alternative properties such as the low 
rank of the data, especially when processing dynamic or time-series data, e.g. dynamic and 
functional MRI   (Liang 2007; Singh et al. 2015) where data can have a correlation over 
time. Low rank can be interpreted as the measure of the second order (i.e., matrix) spar-
sity   (Lin 2016). Low rank is of particular interest to compression given its requirement 
to a full utilization of the spatial and temporal correlation in images or videos leading to a 
better exploitation of available data. Recent work combined low rank and sparsity proper-
ties for improved reconstruction results (Zhao et al. 2012). Guo et al. (2014); Otazo et al. 
(2015) decomposed the dynamic image sequence into the sum of a low-rank component, 
that can capture the background or slowly changing parts of the dynamic object, and sparse 
component that can capture the dynamics in the foreground such as local motion or con-
trast changes. The interested reader is referred to  (Lin 2016; Ravishankar et al. 2019) for 
low rank based algorithms modeling survey.

The difficulties of solving the image reconstruction problem motivated the design of 
highly efficient algorithms for large scale, nonsmooth and nonconvex optimization prob-
lems such as the alternating direction method of multipliers (ADMM) (Boyd et al. 2011; 
Gabay and Mercier 1976), primal-dual algorithm (Chambolle and Pock 2011b), iterative 
shrinkage-thresholding algorithm (ISTA) (Daubechies et al. 2004), to name just a few. For 
instance, using the augmented Lagrangian function (Sun et al. 2016) of Eq. 3, the ADMM 
algorithm solves the reconstruction problem by breaking it into smaller subproblems that 
are easier to solve. Despite the problem decomposition, a large number of iterations is still 

Fig. 7  Figure Reconstruction results of a limited-angle CT real head phantom (120 projections) using dif-
ferent conventional reconstruction methods. (A) Reference image reconstructed from 360 projections, (B) 
Image reconstruction using analytical FBP, (C) Images reconstructed by iterative POCS-TV with initial 
zero image  (Guo et  al. 2016). Arrows point out to artifacts present in the reconstructed images.  (Figure 
licensed under CC-BY 4.0 Creative Commons license)
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required for convergence to a satisfactory solution. Furthermore, performance is defined 
to a large extent by the choice of transformation matrix and the shrinkage function which 
remain challenging to choose (McCann and Unser 2019).

ISTA is based on a simpler gradient-based algorithm where each iteration leverages 
hardware accelerated matrix-vector multiplications representing the physical system mode-
ling the image acquisition process and its transpose followed by a shrinkage/soft-threshold 
step (Daubechies et al. 2004). While the main advantage of ISTA relies on its simplicity, it 
has also been known to converge quite slowly  (Zhang and Dong 2019). Convergence was 
improved upon by a fast iterative soft-thresholding algorithm (FISTA)(Beck and Teboulle 
2009) based on the idea of Nesterov (1983).

Overall, although iterative reconstruction methods showed substantial accuracy 
improvements and artifact reductions over the analytical ones, they still face three major 
weaknesses: First, iterative reconstruction techniques tend to be vendor-specific since the 
details of the scanner geometry and correction steps are not always available to users and 
other vendors. Second, there are substantial computational overhead costs associated with 
popular iterative reconstruction techniques due to the load of the projection and back-
projection operations required at each iteration. The computational cost of these meth-
ods is often several orders of magnitude higher than analytical methods, even when using 
highly-optimized implementations. A trade-off between real-time performance and qual-
ity is made in favor of quality in iterative reconstruction methods due to their non-linear 
complexity of quality in function of the processing time. Finally, the reconstruction quality 
is highly dependent on the regularization function form and the related hyper-parameters 
settings as they are problem-specific and require non-trivial manual adjustments.  Over-
imposing sparsity ( L∞ penalties) for instance can lead to cartoon-like artifacts (McCann 
and Unser 2019). Proposing a robust iterative algorithm is still an active research area (Sun 
et al. 2019c; Moslemi et al. 2020).

3  Deep learning based image reconstruction

To further advance biomedical image reconstruction, a more recent trend is to exploit deep 
learning techniques for solving the inverse problem to improve resolution accuracy and 
speed up reconstruction results. As a deep neural network represents a complex mapping, 
it can detect and leverage features in the input space and build increasingly abstract rep-
resentations useful for the end-goal. Therefore, it can better exploit the measured signals 
by extracting more contextual information for reconstruction purposes. In this section, we 
summarize works using DL for inverse problems in imaging.

Learning-based image reconstruction is driven by data where a training dataset is used 
to tune a parametric reconstruction algorithm that approximates the solution to the inverse 
problem with a significant one-time, offline training cost that is offset by a fast inference 
time. There is a variety of these algorithms, with some being closely related to conven-
tional methods and others not. While some methods considered machine learning as a 
reconstruction step by combining a traditional model with deep modeling to recover the 
missing details in the input signal or enhance the resulting image (Sect.  3.1), some oth-
ers considered a more elegant solution to reconstruct an image from its equivalent initial 
measurements directly by learning all the parameters of a deep neural network, in an end-
to-end fashion, and therefore approximating the underlying physics of the inverse problem 
(Sect. 3.2), or even going further and solving for the target task directly (Sect. 3.3). Figure 8 
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shows a generic example of the workflow of these approaches. Table  1 surveys various 
papers based on these different paradigms and provides a comparison in terms of used data 
(Table  1-Column “Mod.”,“Samp.”,“D”), architecture (Table  1-Column “TA”,“Arch.”), 
loss and regularization (Table 1-Column “Loss”,“Reg.”), augmentation (Table 1-Column 
“Aug.”), etc .

3.1  Deep learning as processing step: two step image reconstruction models

Complementing a conventional image reconstruction approach with a DL-model enables 
improved accuracy while reducing the computational cost. The problem can be addressed 
either in the sensor domain (pre-processing) or the image domain (post-processing) 
(Fig. 8a, Table 1-Column “E2E”).

3.1.1  A pre‑processing step (sensor domain)

The problem is formulated as a regression in the sensor domain from incomplete data 
representation (e.g., sub-sampling, limited view, low dose) to complete data (full dose or 
view) using DL methods and has led to enhanced results  (Hyun et al. 2018; Liang et al. 
2018; Cheng et al. 2018). The main goal is to estimate, using a DL model, missing parts of 
the signal that have not been acquired during the acquisition phase in order to input a better 
signal to an analytical approach for further reconstruction.

Fig. 8  Visualization of common deep learning-based reconstruction paradigms from raw sensor data. (A) A 
two-step processing model is shown where deep learning complements conventional methods (Sect. 3.1). A 
typical example would be to pre-process the raw sensor data using a conventional approach f

1
 , enhance the 

resulting image with a deep learning model f
�
2
 then perform task processing using f

�
3
 . The overall function 

will thus be f
�
3
◦f

�
2
◦f

1
 . Vice versa, one can pre-process the raw sensor data using a DL-based approach f

�
2
 

to enhance the collected raw data and recover missing details then apply conventional method f
1
 to recon-

struct image and finally perform task processing using f
�
3
 . The overall function will be f

�
3
◦f

1
◦f

�
2
 in this 

case. (B) An end-to-end model is shown: The image is directly estimated from the raw sensor data with a 
deep learning model 3.2 followed by downstream processing tasks. The overall function will be f

�
3
◦f

�
2
 . (C) 

Task results can be inferred with or without explicit image reconstruction (Sect. 3.3) using f
�
3
 function
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Hyun et  al. (2018) proposed a k-space correction based U-Net to recover the unsam-
pled data followed by an IFT to obtain the final output image. They demonstrated artifact 
reduction and morphological information preservation when only 30% of the k-space data 
is acquired. Similarly, Liang et al. (2018) proposed a CT angular resolution recovery based 
on deep residual convolutional neural networks (CNNs) for accurate full view estimation 
from unmeasured views while reconstructing images using filtered back projection. Recon-
struction demonstrated speed-up with fewer streaking artifacts along with the retrieval of 
additional important image details. Unfortunately, since noise is not only present in the 
incomplete data acquisition case, but also in the full data as well, minimizing the error 
between the reference and the predicted values can cause the model to learn to predict the 
mean of these values. As a result, the reconstructed images can suffer from lack of texture 
detail.

Huang et  al. (2019b) argue that DL-based methods can fail to generalize to new test 
instances given the limited training dataset and DL’s vulnerability to small perturbations 
especially in noisy and incomplete data case. By constraining the reconstructed images to 
be consistent with the measured projection data, while the unmeasured information is com-
plemented by learning based methods, reconstruction quality can be improved. DL pre-
dicted images are used as prior images to provide information in missing angular ranges 
first followed by a conventional reconstruction algorithm to integrate the prior information 
in the missing angular ranges and constrain the reconstruction images to be consistent to 
the measured data in the acquired angular range.

Signal regression in the sensor domain reduces signal loss enabling improved down-
stream results from the coupled analytic method. However, the features extracted by DL 
methods are limited to the sensor domain only while analytical methods’ weaknesses are 
still present in afterword processing.

3.1.2  A post‑processing step (image domain)

The regression task is to learn the mapping between the low-quality reconstructed image 
and its high-quality counterpart. Although existing iterative reconstruction methods 
improved the reconstructed image quality, they remain computationally expensive and may 
still result in reconstruction artifacts in the presence of noise or incomplete information, 
e.g. sparse sampling of data (Cui et al. 2019; Singh et al. 2020). The main difficulty arises 
from the non-stationary nature of the noise and serious streaking artifacts due to informa-
tion loss (Chen et al. 2012; Al-Shakhrah and Al-Obaidi 2003). Noise and artifacts are chal-
lenging to isolate as they may have strong magnitudes and do not obey specific model dis-
tributions in the image domain (Wang et al. 2016).  The automatic learning and detection 
of complex patterns offered by deep neural networks can outperform handcrafted filters in 
the absence of complete information (Yang et al. 2017a; Singh et al. 2020).

Given an initial reconstruction estimate from a direct inverse operator e.g., FBP (Sun 
et al. 2018; Gupta et al. 2018; Chen et al. 2017a), IFT (Wang et al. 2016), or few iterative 
approach steps (Jin et al. 2017; Cui et al. 2019; Xu et al. 2017), deep learning is used to 
refine the initialized reconstruction and produce the final reconstructed image. For exam-
ple, Chen et al. (2017b) used an autoencoder to improve FBP results on a limited angle CT 
projection. Similarly, Jin et al. (2017) enhanced FBP results on a sparse-view CT via sub-
sequent filtering by a U-Net to reduce artifacts. U-Net and other hour-glass shaped archi-
tectures rely on a bottleneck layer to encode a low-dimensional representation of the target 
image.
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Generative adversarial networks (GAN)  (Goodfellow et  al. 2014) were leveraged to 
improve the quality of reconstructed images. Wolterink et al. (2017) proposed to train an 
adversarial network to estimate full-dose CT images from low-dose CT ones and showed 
empirically that an adversarial network improves the model’s ability to generate images 
with reduced aliasing artifacts. Interestingly, they showed that combining squared error 
loss with adversarial loss can lead to a noise distribution similar to that in the reference 
full-dose image even when no spatially aligned full-dose and low dose scans are available.

Yang et al. (2017a) proposed a deep de-aliasing GAN (DAGAN) for compressed sens-
ing MRI reconstruction that resulted in reduced aliasing artifacts while preserving texture 
and edges in the reconstruction. Remarkably, a combined loss function based on content 
loss ( consisting of a pixel-wise image domain loss, a frequency domain loss and a percep-
tual VGG loss) and adversarial loss were used. While frequency domain information was 
incorporated to enforce similarity in both the spatial (image) and the frequency domains, 
a perceptual VGG coupled to a pixel-wise loss helped preserve texture and edges in the 
image domain.

Combining DL and conventional methods reduce the computational cost but has its own 
downsides. For instance, the features extracted by DL methods are highly impacted by the 
results of the conventional methods, especially in case of limited measurements and the 
presence of noise where the initially reconstructed image may contain significant and com-
plex artifacts that may be difficult to remove even by DL models. In addition, the infor-
mation missing from the initial reconstruction is challenging to be reliably recovered by 
post-processing like many inverse problems in the computer vision literature such as image 
inpainting. Furthermore, the number of iterations required to obtain a reasonable initial 
image estimate using an iterative method can be hard to define and generally requires a 
long run-time (in the order of several min) to be considered for real-time scanning. There-
fore, the post-processing approach may be more suitable to handle initial reconstructions 
that are of relatively good quality and not drastically different from the high-quality one.

3.2  End‑to‑end image reconstruction: direct estimation

An end-to-end solution leverages the image reconstruction task directly from sensor-
domain data using a deep neural network by mapping sensor measurements to image 
domain while approximating the underlying physics of the inverse problem (Fig. 8b). This 
direct estimation model may represent a better alternative as it benefits from the multi-
ple levels of abstraction and the automatic feature extraction capabilities of deep learning 
models.

Given pairs of measurement vectors y ∈ ℂ
M and their corresponding ground truth 

images x ∈ ℂ
N (that produce y), the goal is to optimize the parameters � ∈ ℝ

d of a neural 
network in an end-to-end manner to learn the mapping between the measurement vector y 
and its reconstructed tomographic image x, which recovers the parameters of underlying 
imaged tissue. Therefore, we seek the inverse function A−1(⋅) that solves:

where L is the loss function of the network that, broadly, penalizes the dissimilarity 
between the estimated reconstruction and the ground truth. The regularization term R , 
often introduced to prevent over-fitting, can apply penalties on layer parameters (weights) 
or layer activity (output) during optimization. L1/L2 norms are the most common choices. 

(4)�
∗ = argmin

�

L
(
A

−1(y, �), x
)
+ �R(A−1(y, �))
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� is a hyper-parameter that controls the contribution of the regularization term. Best net-
work parameters ( �∗ ) depend on hyper-parameters, initialization and a network architecture 
choice.

Recently, several paradigms have emerged for end-to-end DL-based reconstruction the 
most common of which are generic DL models and DL models that unroll an iterative 
optimization.

3.2.1  Generic models

Although some proposed models rely on multilayer perceptron (MLP) feed-forward 
artificial neural network  (Pelt and Batenburg 2013; Boublil et  al. 2015; Feng et  al. 
2018; Wang et  al. 2019), CNNs remain the most popular generic reconstruction mod-
els mainly due to their data filtering and features extraction capabilities. Specifically, 
encoder-decoder (Nehme et al. 2018; Häggström et al. 2019), U-Net (Waibel et al. 2018), 
ResNet (Cai et al. 2018) and decoder like architecture (Yoon et al. 2018; Wu et al. 2018; 
Zhu et  al. 2018) are the most dominant architectures as they rely on a large number of 
stacked layers to enrich the level of features extraction. A set of skip connections enables 
the later layers to reconstruct the feature maps with both the local details and the global 
texture and facilitates stable training when the network is very deep. Figure 9 illustrates 
some of the architectures that are widely adopted in medical image reconstruction.

The common building blocks of neural network architectures are convolutional lay-
ers, batch normalization layers, and rectified linear units (ReLU). ReLU is usually used to 
enforce information non-negativity properties, given that the resulting pixels values repre-
sent tissue properties e.g., chromophores concentration maps (Yoo et al. 2020), refractive 
index  (Sun et  al. 2016), and more examples in Table  1. Batch normalization is used to 
reduce the internal covariate shift and accelerates convergence. The resulting methods can 
produce relatively good reconstructions in a short time and can be adapted to other modali-
ties but require a large training dataset and good initialization parameters. Table  1-Col-
umn “E2E” (check-marked) summarizes papers by architecture, loss, and regularization for 
2D, 3D, 4D, and different modalities.

Zhu et al. (2018) proposed a manifold learning framework based decoder neural network 
to emulate the fast-Fourier transform (FFT) and learn an end-to-end mapping between 
k-space data and image domains where they showed artifact reduction and reconstruction 
speed up. However, when trained with an L1 or L2 loss only, a DL-based reconstructed 
image still exhibits blurring and information loss, especially when used with incom-
plete data. Similarly, Yedder et al. (2018) proposed a decoder like model for DOT image 
reconstruction. While increased reconstruction speed and lesion localization accuracy are 
shown, some artifacts are still present in the reconstructed image when training with L2 
loss only. This motivated an improved loss function in their follow-up work (Yedder et al. 
2019) where they suggested combining L2 with a Jaccard loss component to reduce recon-
structing false-positive pixels.

Thaler et  al. (2018) proposed a Wasserstein GAN (WGAN) based architecture for 
improving the image quality for 2D CT image slice reconstruction from a limited num-
ber of projection images using a combination of L1 and adversarial losses. Similarly, Ouy-
ang et  al. (2019) used a GAN based architecture with a task-specific perceptual and L1 
losses to synthesize PET images of high quality and accurate pathological features. Some 
attempts were made to reconstruct images observed by the human visual system directly 
from brain responses using GAN (Shen et  al. 2019; St-Yves and Naselaris 2018). Shen 
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et al. (2019) trained a GAN for functional magnetic resonance imaging (fMRI) reconstruc-
tion to directly map between brain activity and perception (the perceived stimulus). An 
adversarial training strategy which consists of three networks: a generator, a comparator, 
and a discriminator was adopted. The comparator is a pre-trained neural network on natural 
images used to calculate a perceptual loss term. The loss function is based on L2 distance 
in image space, perceptual loss (similarity in feature space) and adversarial loss.

To further enhance results and reduce artifacts due to motion and corruption of k-space 
signal, Oksuz et  al. (2019) proposed a recurrent convolutional neural network (RCNN) 
to reconstruct high quality dynamic cardiac MR images while automatically detecting 
and correcting motion-related artifacts and exploiting the temporal dependencies within 
the sequences. Proposed architecture included two sub-networks trained jointly: an arti-
fact detection network that identifies potentially corrupted k-space lines and an RCNN for 
reconstruction.

To relax the requirement of a large number of training samples, a challenging require-
ment in a medical setting, simulating data was proposed as an alternative source of train-
ing data. However, creating a realistic synthetic dataset is a challenging task in itself as 
it requires careful modeling of the complex interplay of factors influencing real-world 
acquisition environment. To bridge the gap between the real and in silico worlds, transfer 

Fig. 9  Common network architectures used for image reconstruction. From left to right: a multilayer per-
ceptron network based on fully connected layers; an encoder-decoder architecture based convolutional lay-
ers; a residual network, e.g. ResNet (He et al. 2016), utilizing skip connections (skip connection is crucial 
in facilitating stable training when the network is very deep); and a generative adversarial network (GAN). 
A decoder like architecture includes only the decoder part of the encoder-decoder architecture and may be 
preceded by a fully connected layer to map measurements to the image space depending on the input data 
size. A U-Net (Ronneberger et al. 2015) resembles the encoder-decoder architecture while it uses skip con-
nections between symmetric depths. A GAN (Goodfellow et al. 2014) includes a generator and descriminor 
that contest with each other in a min-max game. The generator learns to create more realistic data by incor-
porating feedback from the discriminator. We refer the interested reader to (Alom et al. 2019; Khan et al. 
2020) for a an in depth survey of various types of deep neural network architectures
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learning provides a potential remedy as it helps transfer the measurements from the simula-
tion domain to the real domain by keeping the general attenuation profile while accounting 
for real-world factors such as scattering, etc.

Yedder et  al. (2019) proposed a supervised sensor data distribution adaptation based 
MLP to take advantage of cross-domain learning and reported accuracy enhancement in 
detecting tissue abnormalities. Zhou et  al. (2019) proposed unsupervised CT sinograms 
adaptation, based on CycleGAN and content consistent regularization, to further allevi-
ate the need for real measurement-reconstruction pairs. Interestingly, the proposed method 
integrated the measurement adaptation network and the reconstruction network in an end-
to-end network to jointly optimize the whole network.

Waibel et al. (2018) investigated two different variants of DL-based methods for photo-
acoustique image reconstruction from limited view data. The first method is a post-process-
ing DL method while the second one is an end-to-end reconstruction model. Interestingly, 
they showed empirically that an end-to-end model achieved qualitative and quantitative 
improvements compared to reconstruction with a post-processing DL method. Zhang and 
Liang (2020) studied the importance of fully connected layers, commonly used in end-to 
end model (Zhu et al. 2018; Yedder et al. 2019), to realize back-projection data from the 
sensor domain to the image domain and showed that while a back-projection can be learned 
through neural networks it is constrained by the memory requirements induced by the non-
linear number of weights in the fully connected layers. Although several generic DL archi-
tectures and loss functions have been explored to further enhance reconstruction results in 
different ways (resolution, lesion localization, artifact reduction, etc.), a DL-based method 
inherently remains a black-box that can be hard to interpret. Interpretability is key not only 
for trust and accountability in a medical setting but also to correct and improve the DL 
model.

3.2.2  Unrolling iterative methods

Unrolling conventional optimization algorithms into a DL model has been suggested by 
several works (Qin et al. 2018; Schlemper et al. 2017; Würfl et al. 2018; Sun et al. 2016; 
Adler and Öktem 2018; Hosseini et al. 2019) in order to combine the benefits of traditional 
iterative methods and the expressive power of deep models (Table 1-Column “E2E”). Raja-
gopal et al. (2019) proposed a theoretical framework demonstrating how to leverage itera-
tive methods to bootstrap network performance while preserving network convergence and 
interpretability featured by the conventional approaches.

Deep ADMM-Net (Sun et al. 2016) was the first proposed model reformulating the iter-
ative reconstruction ADMM algorithm into a deep network for accelerating MRI recon-
struction, where each stage of the architecture corresponds to an iteration in the ADMM 
algorithm. In its iterative scheme, the ADMM algorithm requires tuning of a set of param-
eters that are difficult to determine adaptively for a given data set. By unrolling the ADMM 
algorithm into a deep model, the tuned parameters are now all learnable from the train-
ing data. The ADMM-Net was later further improved to Generic-ADMM-Net (Yang et al. 
2017b) where a different variable splitting strategy was adopted in the derivation of the 
ADMM algorithm and demonstrated state-of-the-art results with a significant margin over 
the BM3D-based algorithm (Dabov et al. 2007). Similarly, the PD-Net (Adler and Öktem 
2018) adopted neural networks to approximate the proximal operator by unrolling the pri-
mal-dual hybrid gradient algorithm  (Chambolle and Pock 2011a) and demonstrated per-
formance boost compared with conventional and two step image reconstruction models. 
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Figure 10 shows results of their proposed method in a simplified setting of a two-dimen-
sional CT image reconstruction problem.

In like manner, Schlemper et al. (2017) proposed a cascade convolutional network that 
embeds the structure of the dictionary learning-based method while allowing end-to-end 
parameter learning. The proposed model enforces data consistency in the sensor and image 
domain simultaneously, reducing the aliasing artifacts due to sub-sampling. An extension 
for dynamic MR reconstructions (Schlemper et al. 2018) exploits the inherent redundancy 
of MR data.

While, the majority of the aforementioned methods used shared parameters over itera-
tions only, Qin et al. (2018) proposed to propagate learnt representations across both itera-
tion and time. Bidirectional recurrent connections over optimization iterations are used to 
share and propagate learned representations across all stages of the reconstruction process 
and learn the spatio–temporal dependencies. The proposed deep learning based iterative 
algorithm can benefit from information extracted at all processing stages and mine the tem-
poral information of the sequences to improve reconstruction accuracy. The advantages 
of leveraging temporal information was also demonstrated in single molecule localization 
microscopy (Cardoen et al. 2019). An LSTM was able to learn an unbiased emission den-
sity prediction in a highly variable frame sequence of spatio-temporally separated fluores-
cence emissions. In other words, joint learning over the temporal domain of each sequence 
and across iterations leads to improved de-aliasing.

3.2.3  Semi‑supervised and unsupervised learning methods

The majority of deep learning methods for image reconstruction are based on supervised 
learning where the mapping between signal and reconstructed image is learned. However, 
the performance of supervised learning is, to a large degree, determined by the size of the 
available training data which is constrained in a medical setting. In an effort to work around 
this requirement, Gong et al. (2018) applied the deep image prior method (Ulyanov et al. 
2018) to PET image reconstruction. The network does not need prior training matching 
pairs, as it substitutes the target image with a neural network representation of the target 
domain but rather requires the patient’s own prior information. The maximum-likelihood 
estimation of the target image is formulated as a constrained optimization problem and is 
solved using the ADMM algorithm. Gong et al. (2019) have extended the approach to the 

Fig. 10  Reconstructions of the Shepp–Logan phantom in a two-dimensional CT image reconstruction prob-
lem using different reconstruction methods. (a) Reference image.(b)–(c) The standard FBP and TV-regular-
ized reconstruction. (d) FBP reconstruction followed by a U-Net architecture. (e) The learned primal-dual 
scheme (Adler and Öktem 2018). One can observe the artifacts in the conventional methods removed by the 
DL-based approaches. Overall, the unrolled-iterative method gave the best results and outperformed even 
the DL as a post-processing step method. The interested reader is referred to (Arridge et al. 2019) for more 
details about the training setting. (Reproduced with permission of Cambridge University Press)
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direct parametric PET reconstruction where acquiring high-quality training data is more 
difficult. However, to obtain high-quality reconstructed images without prior training data-
sets, registered MR or CT images are necessary. While rigid registration is sufficient for 
brain regions, accurate registration is more difficult for other regions.

Instead of using matched high-dose and a low-dose CT, Kang et al. (2019) proposed to 
employ the GAN loss to match the probability distribution where a cycleGAN architec-
ture based cyclic loss and identity loss for multiphase cardiac CT problems is used. Simi-
larly, Li et al. (2020b) used an unsupervised data fidelity enhancement network that uses 
an unsupervised network to fine-tune a supervised network to different CT scanning proto-
col properties. Meng et al. (2020) proposed to use only a few supervised sinogram-image 
pairs to capture critical features (i.e., noise distribution, tissue characteristics) and transfer 
these features to larger unlabeled low-dose sinograms. A weighted least-squares loss model 
based TV regularization term and a KL divergence constraint between the residual noise of 
supervised and unsupervised learning is used while a FBP is employed to reconstruct CT 
images from the obtained sinograms.

3.3  Raw‑to‑task methods: task‑specific learning

Typical data flow in biomedical imaging involves solving the image reconstruction task 
followed by preforming an image processing task (e.g.,  segmentation, classification) 
(Fig  11a). Although each of these two tasks (reconstruction and image processing) is 
solved separately, the useful clinical information extracted for diagnosis by the second task 
is highly dependent on the reconstruction results. In the raw-to-task paradigm, task results 
are directly inferred from raw data, where image reconstruction and processing are lumped 
together and reconstructed image may not be necessarily outputted (Fig. 8c, Fig. 11b)

Jointly solving for different tasks using a unified model is frequently considered in the 
computer vision field, especially for image restoration (Sbalzarini 2016), and has lead to 
improved results than solving tasks sequentially (Paul et al. 2013). The advantages explain 
the recent attention this approach received in biomedical image reconstruction (Sun et al. 
2019a; Huang et  al. 2019a). For instance, a unified framework allows joint parameters 
tuning for both tasks and feature sharing where the two problems regularize each other 
when considered jointly. In addition, when mapping is performed directly from the sensor 
domain, the joint task can even leverage sensor domain features for further results enhanc-
ing while it can be regarded as a task-based image quality metric that is learned from the 

Fig. 11  (A)  Biomedical image processing workflow usually involves two steps optimized independently 
(reconstruction and image analysis) for diagnosis purposes.  (B) Jointly solving these tasks using a unified 
model allows joint parameters tuning and feature sharing
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data. Furthermore, Sbalzarini (2016) argues that solving ill-posed problems in sequence 
can be more efficient than in isolation. Since the output space of a method solving an 
inverse problem is constrained by forming the input space of the next method, the overall 
solution space contracts. Computational resources can then be focused on this more limited 
space improving runtime, solution quality or both.

Image reconstruction is not always necessary for optimal performance. For example, in 
single-pixel imaging recent work (Latorre-Carmona et al. 2019) illustrates that an online 
algorithm can ensure on-par performance in image classification without requiring the full 
image reconstruction. A typical pipeline in processing compressive sensing requires image 
reconstruction before classical computer vision (CV) algorithms process the images in 
question. Recent work (Braun et al. 2019) has shown that CV algorithms can be embed-
ded into the compressive sensing domain directly, avoiding the reconstruction step alto-
gether. In discrete tomography the full range of all possible projections is not always feasi-
ble or available due to time, resource, or physical constraints. A hybrid approach in discrete 
tomography (Pap et al. 2019) finds a minimal number of projections required to obtain a 
close approximation of the final reconstruction image. While an image is still reconstructed 
after the optimal number of projections is found, determining this optimal set required no 
reconstructions, a significant advantage compared to an approach where either an iterative 
or combinatorial selection of reconstructions to determine the optimal set of projections.

4  Medical training datasets

The performance of learning-based methods is dictated to a large extent by the size and 
diversity of the training dataset. In a biomedical setting, the need for large, diverse, and 
generic datasets is non-trivial to satisfy given constraints such as patient privacy, access 
to acquisition equipment and the problem of divesting medical practitioners to annotate 
accurately the existing data. In this section, we will discuss how researchers address the 
trade-offs in this dilemma and survey the various publicly available dataset type used in 
biomedical image reconstruction literature.

Table  1-Columns “Data”, “Site” and “Size” summarise details about dataset used by 
different surveyed papers, which are broadly classified into clinical (real patient), physi-
cal phantoms, and simulated data. The sources of used datasets have been marked in the 
last column of Table 1-Columns “Pub”. Data” in case of their public availability to other 
researchers. Since phantom data are not commonly made publicly available, the focus 
was mainly given to real and simulated data whether they are publicly available or as 
part of challenges. Used augmentation techniques have been mentioned in Table  1-Col-
umns “Aug”. Remarkably, augmentation is not always possible in image reconstruction 
task especially in sensor domain given the non-symmetries of measurements in some 
case, the nonlinear relationship between raw and image data, and the presence of other 
phenomena(e.g., scattering). We herein survey the most common source of data and dis-
cuss their pros and cons.

4.1  Real‑world datasets

Some online platforms (e.g.,   Lung Cancer Alliance , Mridata , MGH-USC HCP (2016), 
and Biobank) made the initiative to share datasets between researchers for image recon-
struction task.  Mridata, for example, is an open platform for sharing clinical MRI raw 
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k-space datasets. The dataset is sourced from acquisitions of different manufactur-
ers, allowing researchers to test the sensitivity of their methods to overfitting on a single 
machine’s output while may require the application of transfer-learning techniques to han-
dle different distributions. As of writing, only a subset of organs for well known modalities 
e.g.,  MRI and CT are included (Table  1-Columns “Site”). Representing the best recon-
struction images acquired for a specific modality, the pairs of signal-image form a gold 
standard for reconstruction algorithms. Releasing such data, while extremely valuable for 
researchers, is a non-trivial endeavour where legal and privacy concerns have to be taken 
into account by, for example, de-anonymization of the data to make sure no single patient 
or ethnographically distinct subset of patients can ever be identified in the dataset. Source 
of real-word used datasets on surveyed papers has been marked in Table 1-Columns “Pub. 
Data” where the sizes remain relatively limited to allow a good generalization of DL-based 
methods.

4.2  Physics‑based simulation

Physics-based simulation (Schweiger and Arridge 2014; Harrison 2010; Häggström et al. 
2016) provides an alternative source of training data that allows generating a large and 
diversified dataset. The accuracy of a physical simulation with respect to real-world acqui-
sitions increases at the cost of an often super-linear increase in computational resources. 
In addition, creating realistic synthetic datasets is a nontrivial task as it requires careful 
modeling of the complex interplay of factors influencing real-world acquisition environ-
ment. With a complete model of the acquisition far beyond computational resources, a 
practitioner needs to determine how close to reality the simulation needs to be in order 
to allow the method under development to work effectively. Transfer learning provides a 
potential remedy to bridge the gap between real and in silico worlds and alleviates the need 
for a large clinical dataset (Zhu et al. 2018; Yedder et al. 2019). In contrast, the approach 
of not aiming for complete realism but rather using the simulation as a tool to sharpen the 
research question can be appropriate. Simulation is a designed rather than a learned model. 
For both overfitting to available data is undesirable. The assumptions underlying the design 
of the simulation are more easily verified or shown not to hold if the simulation is not fit to 
the data, but represents a contrasting view. For example, simulation allows the recreation 
and isolation of edge cases where a current approach is performing sub-par. As such simu-
lation is a key tool for hypothesis testing and validation of methods during development. 
For DL-based methods the key advantage simulation offers is the almost unlimited volume 
of data that can be generated to augment limited real-world data in training. With the size 
of datasets as one of the keys determining factors for DL-based methods leveraging simu-
lation is essential. Surveyed papers that used simulated data as a training or augmentation 
data have been marked in Table 1-Columns “Pub”.

4.3  Challenge datasets

There are only a few challenge (competition) datasets for image reconstruction task 
e.g., LowDoseCT (2014) FastMRI (Zbontar et al. 2018), Fresnel (Geffrin et al. 2005) and 
SMLM challenge (Holden and Sage 2016) that includes raw measurements. Low-quality 
signals can be simulated by artificially subsampling the full-dose acquired raw signal 
while keeping their corresponding high resolution images pair (Gong et al. 2018; Xu et al. 
2017). While this method offers an alternative source of training data, the downsampling 
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is only one specific artificial approximation to the actual acquisition of low-dose imaging 
and may not reflect the real physical condition. Hence, performance can be compromised 
by not accounting for the discrepancy between the artificial training data and real data. 
Practitioners can leverage techniques such as transfer learning to tackle the discrepancy. 
Alternatively, researchers collect high-quality images from other medical imaging chal-
lenges, e.g., segmentation (MRBrainS challenge (Mendrik et al. 2015), Bennett and Simon 
(2013)), and use simulation, using a well known forward model, to generate full and/or 
incomplete sensor domain pairs. Here again, only a subset of body scans and diseases for 
well-studied modalities are publicly available as highlighted in Table  1-Columns “Site” 
and “Pub. Data”.

5  Reconstruction evaluation metrics

5.1  Quality

Measuring the performance of the reconstruction approaches is usually performed using 
three metrics, commonly applied in computer vision, in order to access the quality of the 
reconstructed images. These metrics are the root mean squared error (RMSE) or normal-
ized mean squared error, structural similarity index (SSIM) or its extended version multi-
scale structural similarity (Wang et al. 2003), and peak signal to noise ratio (PSNR).

While RMSE measures the pixel-wise intensity difference between ground truth and 
reconstructed images by evaluating pixels independently, ignoring the overall image struc-
ture, SSIM, a perceptual metric, quantifies visually perceived image quality and captures 
structural distortion. SSIM combines luminance, contrast, and image structure measure-
ments and ranges between [0,1] where the higher SSIM value the better and SSIM = 1 
means that the two compared images are identical.

PSNR (Eq.  5) is a well-known metric for image quality assessment which provides 
similar information as the RMSE but in units of dB while measuring the degree to which 
image information rises above background noise. Higher values of PSNR indicate a better 
reconstruction.

where Xmax is the maximum pixel value of the ground truth image.
Illustrating modality specific reconstruction quality is done by less frequently used met-

rics such as contrast to noise ratio (CNR) (Wu et al. 2018) for US. Furthermore, modalities 
such as US, SMLM or some confocal fluorescence microscopy can produce a raw image 
where the intensity distribution is exponential or long-tailed. Storing the raw image in a 
fixed-precision format would lead to unacceptable loss of information due to uneven sam-
pling of the represented values. Instead, storing and more importantly processing the image 
in logarithmic or dB-scale preserves the encoded acquisition better. The root mean squared 
logarithmic error (RMSLE) is then a logical extension to use as an error metric (Beattie 
2018).

Normalized mutual information (NMI) is a metric used to determine the mutual infor-
mation shared between two variables, in this context image ground truth and reconstruc-
tion  (Wu et al. 2018; Zhou et al. 2019). When there is no shared information NMI is 0, 

(5)PSNR = 20.log10

�
Xmax√
MSE

�
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whereas if both are identical a score of 1 is obtained. To illustrate NMI’s value, consider 
two images X, Y with random values. When generated from two different random sources, 
X and Y are independent, yet RMSE  (X,Y) can be quite small. When the loss function 
minimizes RMSE, such cases can induce stalled convergence at a suboptimal solution due 
to a constant gradient. NMI, on the other hand, would return zero (or a very small value), 
as expected. RMSE minimizes average error which may make it less suitable for detailed 
distribution matching tasks in medical imaging such as image registration where NMI 
makes for a more effective optimization target (Wells III et al. 1996).

The intersection over union, or Jaccard index, is leveraged to ensure detailed accurate 
reconstruction (Yedder et al. 2018; Sun et al. 2019a). In cases where the object of interest 
is of variable size and small with respect to the background, an RMSE score is biased by 
matching the background rather than the target of interest. In a medical context, it is often 
small deviations (e.g. tumors, lesions, deformations) that are critical to diagnosis. Thus, 
unlike computer vision problems where little texture changes might not alter the overall 
observer’s satisfaction, in medical reconstruction, further care should be taken to ensure 
that practitioners are not misled by a plausible but not necessarily correct reconstruction. 
Care should be taken to always adjust metrics with respect to their expected values under 
an appropriate random model (Gates and Ahn 2017). The understanding of how a metric 
responds to its input should be a guideline to its use. As one example, the normalization 
method in NMI has as of writing no less than 6 (Gates and Ahn 2017) alternatives with 
varying effect on the metric. Table 1-Columns “Metrics” surveys the most frequently used 
metrics on surveyed papers.

5.2  Inference speed

With reconstruction algorithms constituting a key component in time-critical diagnosis or 
intervention settings, the time complexity is an important metric in selecting methods. Two 
performance criteria are important in the context of time: throughput measures how many 
problem instances can be solved over a time period, and latency measures the time needed 
to process a single problem instance. In a non-urgent medical setting, a diagnosing facility 
will value throughput more than latency. In an emergency setting where even small delays 
can be lethal, latency is critical above all. For example, if a reconstruction algorithm is 
deployed on a single device it is not unexpected for there to be waiting times for process-
ing. As a result latency, if the waiting time is included, will be high and variable, while 
throughput is constant. In an emergency setting there are limits as to how many devices can 
be deployed, computing results on scale in a private cloud on the other hand can have high 
throughput, but higher latency as there will be a need to transfer data offsite for processing. 
In this regard it is critical for latency sensitive applications to allow deployment on mobile 
(low-power) devices. To minimize latency (including wait-time), in addition to parallel 
deployment, the reconstruction algorithm should have a predictable and constant inference 
time, which is not necessarily true for iterative approaches.

Unfortunately, while some papers reported their training and inference times, 
(Table 1-Columns “Metrics-IS”) it is not obvious to compare their time complexity given 
the variability in datasets, sampling patterns, hardware, and DL frameworks.  A dedicated 
study, out of the scope of this survey, needs to be conducted for a fair comparison. Overall, 
the offline training of DL methods bypasses the laborious online optimization procedure 
of conventional methods, and has the advantage of lower inference time over all but the 
simplest analytical.  In addition, when reported, inference times are usually in the order 
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of milliseconds per image making them real time capable. The unrolled iterative network, 
used mainly in the MR image reconstruction (Sun et al. 2016; Yang et al. 2017b) as the for-
ward and backward projections can be easily performed via FFT, might be computationally 
expensive for other modality where the forward and backward projections can not be com-
puted easily. Therefore, the total training time can be much longer. In addition when data is 
acquired and reconstructed in 3D, the GPU memory becomes a limiting factor especially 
when multiple unrolling modules are used or the network architecture is deep.

6  Conclusion, discussion and future direction

Literature shows that DL-based image reconstruction methods have gained popularity over 
the last few years and demonstrated image quality improvements when compared to con-
ventional image reconstruction techniques especially in the presence of noisy and limited 
data representation. DL-based methods address the noise sensitivity and incompleteness 
of analytical methods and the computational inefficiency of iterative methods. In this sec-
tion we will illustrate the main trends in DL-based medical image reconstruction: a move 
towards task-specific learning where image reconstruction is no longer required for the end 
task, and the focus on a number of strategies to overcome the inherent sparsity of manually 
annotated training data.

6.1  Discussion

Learning:  Unlike conventional approaches that work on a single image in isolation and 
require prior knowledge, DL-based reconstruction methods leverage the availability of 
large-scale datasets and the expressive power of DL to impose implicit constraints on the 
reconstruction problem. While DL-based approaches do not require prior knowledge, their 
performance can improve with it. By not being dependent on prior knowledge, DL-based 
methods are more decoupled from a specific imaging (sub)modality and thus can be more 
generalizable. The ability to integrate information from multiple sources without any pre-
processing is another advantage of deep neural networks. Several studies have exploited 
GANs for cross-modal image generation (Li et al. 2020a; Kearney et al. 2020) as well as to 
integrate prior information (Lan et al. 2019; Bhadra et al. 2020). Real-time reconstruction 
is offered by DL-based methods by performing the optimization or learning stage offline, 
unlike conventional algorithms that require iterative optimization for each new image. The 
diagnostician can thus shorten diagnosis time increasing the throughput in patients treated. 
In operating theatres and emergency settings this advantage can be life saving.

Interpretability: While the theoretical understanding and the interpretability of con-
ventional reconstruction methods are well established and strong (e.g., one can prove a 
method’s optimality for a certain problem class), it is weak for the DL-based methods (due 
to the black-box nature of DL) despite the effort in explaining the operation of DL-based 
methods on many imaging processing tasks. However, one may accept the possibility that 
interpretabilty is secondary to performance as fully understanding DL-based approaches 
may never become practical.

Complexity: On the one hand, conventional methods can be straightforward to imple-
ment, albeit not necessarily to design. On the other, they are often dependent on param-
eters requiring manual intervention for optimal results. DL-based approaches can be chal-
lenging to train with a large if not intractable hyper-parameter space (e.g.,  learning rate, 
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initialization, network design). In both cases, the hyper-parameters are critical to results 
and require a large time investment from the developer and the practitioner. In conclusion, 
there is a clear need for robust self-tuning algorithms, for both DL-based and conventional 
methods.

Robustness: Conventional methods can provide good reconstruction quality when the 
measured signal is complete and the noise level is low, their results are consistent across 
datasets and degrade as the data representation and/or the signal to noise ratio is reduced 
by showing noise or artifacts (e.g., streaks, aliasing). However, a slight change in the imag-
ing parameters (e.g., noise level, body part, signal distribution, adversarial examples, and 
noise) can severely reduce the DL-based approaches’ performances and might lead to the 
appearance of structures that are not supported by the measurements (Antun et al. 2019; 
Gottschling et  al. 2020). DL based approaches still leave many unsolved technical chal-
lenges regarding their convergence and stability that in turn raise questions about their reli-
ability as a clinical tool. A careful fusion between DL-based and conventional approaches 
can help mitigate these issues and achieve the performance and robustness required for 
biomedical imaging.

Speed: DL-based methods have the advantage in processing time over all but the most 
simple analytical methods at inference time. As a result, latency will be low for DL-based 
methods. However, one must be careful in this analysis. DL-based methods achieve fast 
inference by training for a long duration, up to weeks, during development. If any changes 
to the method are needed and retraining is required, even partial, a significant downtime 
can ensue. Typical DL-based methods are not designed to be adjusted at inference time. 
Furthermore, when a practitioner discovers that, at diagnosis time, the end result is sub-
par, an iterative method can be tuned by changing its hyper-parameters. For a DL-based 
approach, this is non-trivial if not infeasible.

A final if not less important distinction is adaptive convergence. At deployment, a DL-
based method has a fixed architecture and weights with a deterministic output. Iterative 
methods can be run iterations until acceptable performance is achieved. This is a double-
edged sword as convergence is not always guaranteed and the practitioner might not know 
exactly how many more iterations are needed.

Training Dataset: Finally, the lack of large scale biomedical image datasets for training 
due to privacy, legal, and intellectual property related concerns, limits the application of 
DL-based methods on health care. Training DL-based models often requires scalable high 
performance hardware provided by cloud based offerings. However, deploying on cloud 
computing and transmitting the training data risks the security, authenticity, and privacy of 
that data. Training on encrypted data offers a way to ensure privacy during training (Gilad-
Bachrach et al. 2016). More formally a homomorphic encryption algorithm (Rivest et al. 
1978) can ensure evaluation (reconstruction) on the encrypted data results are identical 
after decryption to reconstruction on the non-encrypted data. In practice, this results in 
an increase in dataset size as compression becomes less effective, a performance penalty 
is induced by the encryption and decryption routines, and interpretability and debugging 
the learning algorithm becomes more complex since it operates on human unreadable data.

The concept of federated learning, where improvements of a model (weights) are shared 
between distributed clients without having to share datasets, has seen initial success in 
ensuring privacy while enabling improvements in quality (Geyer et al. 2017). However a 
recent work by Zhu et al. (2019) has shown that if an attacker has access to the network 
architecture and the shared weights, the training data can be reconstructed with high fidel-
ity from the gradients alone. Data sharing security in a federated setting still presents a 
concern that requires further investigations.
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Simulating a suitable training set also remains a challenge that requires careful tuning 
and more realistic physical models to improve DL-based algorithm generalization.

Performance: Reconstruction is sensitive to missing raw measurements (false negative, 
low recall) and erroneous signal (false positive, low precision). Sensitivity in reconstruc-
tion is critical to ensure all present signals are reconstructed but high recall is not sufficient 
as in this setting a reconstructed image full of artifacts and noise can still have high recall. 
Specificity may be high in reconstructed images, where little to no artifacts or noise is pre-
sent, but at the cost of omitting information. In the following we discuss how the indicators 
of both are affected by training regimes and dataset size.

Deep learning reconstruction quality varies when using different loss metrics. For 
instance, when a basic L1 or L2 loss in image space is used solely, reconstruction results 
tend to be worse quality because it generates an average of all possible reconstructions 
having the same distance in image space, hence the reconstructed images might still pre-
sent artifacts (Shen et  al. 2019; Yedder et  al. 2018). Adding feature loss in high dimen-
sional space like perceptual loss and frequency domain loss helps to better constrain the 
reconstruction to be perceptually more similar to the original image (Yang et  al. 2017a; 
Shen et  al. 2019; Huang et  al. 2019b). Furthermore, reconstruction quality varies with 
dataset size. To analyze the effect of training-dataset size on reconstruction quality, Shen 
et  al. (2019) trained their reconstruction model with a variable number of training sam-
ples while gradually increasing the dataset size from 120 to 6,000 samples. Interestingly, 
they reported that while the reconstruction quality improved with the number of training 
samples, the quality increase trend did not converge which suggests that better reconstruc-
tion quality might be achieved if larger datasets are available. Similarly, Sun and Kamilov 
(2018) studied the effect of decreasing the number of measurements and varying the noise 
level on multiple scattering based deep learning reconstruction methods and concluded that 
better feature extraction from higher dimensional space are required for very low sampling 
cases. In addition, data is usually imbalanced, with the unhealthy (including anomalies) 
samples being outnumbered by the healthy ones resulting in reduced performance and 
compromised reconstruction of tumor related structures (Wen et al. 2019).

While deep networks can take the whole image and produce outputs in a single forward 
pass, input size can sometimes be a limiting factor as excessive memory cost becomes a 
challenge for current GPU architectures especially for three-dimensional (3D) images with 
relatively high resolution. Patch-based training divides the image into possibly overlap-
ping patches and produces outputs for each sub-image in independent forward passes while 
requiring a reduced amount of memory and time on GPU. For patch-based training, each 
iteration can take a set of patches (minibatch) for a more stable training where a proper 
choice of batch size is important for a network convergence and generalization (Goceri 
and Gooya 2018). However, patch-based learning is mostly relevant when training in the 
same domain, which is the case of deep learning as a pre/post-processing step (Cheng et al. 
2018; Wu et al. 2019; Xu et al. 2017), given the difficulty to map part of the raw signal to a 
corresponding image patch in end-to-end learning.

Task-specific Learning: Prediction tasks, such as classification or prediction of treat-
ment directly from measurements, that is, omitting the image reconstruction task, is a non-
trivial approach that, under the right conditions, can be very worthwhile. Since an explicit 
encoding of the image is no longer needed, the architecture can be reduced in complexity 
or redesigned to focus specifically on the task. In addition, focusing on task-specific perfor-
mance ensures all computational resources are committed to task-specific training rather 
than expending focus to perhaps unnecessary image reconstruction as an intermediate step. 
Indeed, as we move towards artificial intelligence based task the field is still undecided if 
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the reconstructed image is required at all for state-of-the-art performance in classification, 
diagnosis, or treatment prediction as it becomes less important to have a spatio-temporal 
image representation (i.e. the domain that humans are familiar with). However, one cannot 
deny the human reliance on visual evidence. Removing the image reconstruction task then 
can lead to lower interpretability, and perhaps makes it harder for clinicians to trust the out-
come. Trust can be regained by increased performance and stability. We observe that from 
an optimization point of view solving a sequence of two ill-posed problems (reconstruction 
and task prediction) can be easier compared to solving the entire composite problem at 
once. When the output of the first ill-posed problem is the input of the second, the search 
space can be dramatically reduced (Sbalzarini 2016).

Finally, a stumbling block towards adaptation of task-specific training is the lack of 
standardized datasets. Learning the translation from measurement domain to task domain 
leads to a field of widely diverse combinations of measurement versus tasks domains, mak-
ing it less likely to find a standardized challenge dataset offering at least a subset of com-
binations. The motivation behind task-specific learning can be as simple as a lack of image 
training data, forcing the practitioner to remove the image reconstruction task altogether 
by necessity. An contrasting approach to task-specific learning and image-reconstruction 
aided learning are multi-output or synthesizing networks. For example, consider MRI 
where the acquisition device can generate T1 or T2 images, or a combination of both, by 
changing acquisition parameters. A classification network that expects both as input is then 
limited in application unless an intermediate network synthesizes the ‘missing‘ images. In 
other words, rather than omitting the reconstruction, synthesizing networks reconstruct a 
set of images from a single input (Sharma and Hamarneh 2019). One can then generalize 
this concept to asking what reconstruction space is ideal for the end task, rather than limit-
ing the method to human interpretable reconstruction (images).

6.2  Future directions

The future of the field will be to produce higher quality images given the most limited 
resource budget such as radiation dose, scanning time, and scanner complexity as well as 
from online real patient inputs using algorithms with the fewest hand-tuned parameters and 
lowest power consumption.

There remain a vast range of challenges and opportunities in the field. So far, most 
approaches focus on CT and MR image reconstruction while only a handful of approaches 
exist for the reconstruction of the remaining modalities. Hence, the applicability of deep 
learning models to these problems is yet to be fully explored. In addition, proposed deep 
learning architectures are often generic and are not fully optimized for specific applica-
tions. For instance, how to optimally exploit spatio-temporal redundancy, or how to exploit 
multi-spectral data. By addressing these core questions and designing network layers to 
efficiently learn such data representation, the network architecture can gain a boost in per-
formance and reliability.

Joint multi-modal image reconstruction, such as DOT/CT  (Baikejiang et  al. 2017) 
and PET/MRI  (Wang et  al. 2015), has been proposed on several iterative approaches 
to take advantage of both imaging modalities and led to improving the overall imaging 
performance, especially avoiding the spatio-temporal artifacts due to the scanning with 
different devices at different times and positions. The idea relies on leveraging the infor-
mation provided by feature similarity between multiple modalities. While this direction 
has great interest, it has only just begun to receive consideration (Cui et al. 2019) and 



244 H. Ben Yedder et al.

1 3

remains a direction for further exploration. Collecting suitably calibrated and registered 
data on hybrid multi-modality imaging systems remains a key challenge as well.

Attention driven sampling received increasing interest recently especially in a limited 
data representation context. While adapting the sampling to the reconstruction algorithm 
showed improved image quality compared to conventional sampling strategies (Jin et al. 
2019), it could be computationally more expensive with unknown convergence behav-
ior. The development of efficient sampling learning algorithms would be a promising 
research direction. In optical coherence tomography the application of wavelet based 
compressive sensing has been shown capable to reconstruct with as little as 20% of the 
samples (Lebed et al. 2013). The potential demonstrated through handcrafted sampling 
strategies indicates that DL-based methods could also exploit this opportunity.

Deep learning models require computationally powerful hardware (GPU) to pro-
vide online reconstruction and achieve state of the art performance. Network prun-
ing and sparsifying, recently proposed for computer vision tasks  (Alford et  al. 2018; 
Aghasi et  al. 2017; Huang and Wang 2018), presents a promising direction yet to be 
explored on image reconstruction tasks in order to allow DL-based model processing 
on CPU and mobile devices. This will be of great interest to emergent mobile scan-
ners  (e.g.,  DOT  (Shokoufi and Golnaraghi 2016), US  (Georgeson and Safai 2017), 
CT (Rykkje et al. 2019)).

Reducing the encoding size in bits of network weights without altering the quality 
of the prediction has been demonstrated on several references deep learning image pro-
cessing networks Sun et  al. (2019b). A reported decrease in training time of 30-60% 
is only one benefit. By reducing network weights from 64 or 32 bits to 8 or smaller 
(i.e.,  weights quantization) the network requires a smaller memory footprint. As a 
result, networks that are at the time of writing too large to fit on a single GPU can 
be reduced to fit on a single GPU. Conversely, networks too large to deploy on edge 
devices (handheld scanner, mobile phones, etc.) can become easily deployable in the 
field without changing their architecture. Finally and not least important, the reduction 
in training time results in a significant reduction in the environmental impact of the 
training procedure.

As performance evaluation metrics are more computer vision task-oriented, they tend 
to be insufficient in the biomedical imaging context as they do not provide real diagnos-
tic accuracy significance. We advocate a shift toward task-oriented evaluations given that 
reconstructed images are usually used for a specific diagnosis or treatment purpose. While 
such a measure may be expensive, especially if they require human expert feedback, they 
will be critical in creating algorithms that can advance the biomedical imaging practice.

The application of novel DL approaches to medical image reconstruction is spanning 
an increasingly large number of modalities. A clear trend is present in recent art moving 
towards unsupervised approaches, inspired by a constraint in realistic or real world train-
ing data. An extension of this principle is illustrated by task-specific training where the 
reconstruction task is omitted altogether in favor of a singular focus on the actual end task 
such as classification or diagnosis. Related to the sparsity of manually annotated training 
data is generalizability with works focusing on sacrificing challenge dataset performance 
in favor of generalizability. Hybrid learning, the concept of reconstructing an image using 
a secondary modality as prior shows promise in this regard as well. With interpretability 
in DL still a hot topic we observe the beginning of a trend that moves away from inter-
pretability by omitting any intermediate results as showcased in task-specific learning. The 
potential for reduced trust by the end user is offset by ‘trust by results’: if a diagnosis is 
more accurate without a reconstructed image, is the image needed at all? Novel concepts 
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such as federated learning and homomorphic encryption to protect distributed clinical data 
are quickly finding adoption in the field.
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